WO2023040239A1 - Matériau d'anode sacrificielle intelligent en alliage de zinc-magnésium et son utilisation - Google Patents
Matériau d'anode sacrificielle intelligent en alliage de zinc-magnésium et son utilisation Download PDFInfo
- Publication number
- WO2023040239A1 WO2023040239A1 PCT/CN2022/085020 CN2022085020W WO2023040239A1 WO 2023040239 A1 WO2023040239 A1 WO 2023040239A1 CN 2022085020 W CN2022085020 W CN 2022085020W WO 2023040239 A1 WO2023040239 A1 WO 2023040239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- magnesium alloy
- phase
- reinforced concrete
- steel
- Prior art date
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 45
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000010405 anode material Substances 0.000 title claims abstract description 22
- 239000011701 zinc Substances 0.000 claims abstract description 59
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 57
- 239000010959 steel Substances 0.000 claims abstract description 57
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 44
- 239000011777 magnesium Substances 0.000 claims abstract description 34
- 239000004567 concrete Substances 0.000 claims abstract description 25
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000005260 corrosion Methods 0.000 claims abstract description 20
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 20
- 230000007797 corrosion Effects 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 13
- 239000011150 reinforced concrete Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 15
- 229910017706 MgZn Inorganic materials 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 230000006698 induction Effects 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 230000010287 polarization Effects 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- -1 0.1-0.3% of Al Substances 0.000 abstract 1
- 229910019805 Mg2Zn11 Inorganic materials 0.000 abstract 1
- 229910017708 MgZn2 Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 11
- 239000000956 alloy Substances 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical class [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004210 cathodic protection Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/12—Electrodes characterised by the material
- C23F13/14—Material for sacrificial anodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F2201/00—Type of materials to be protected by cathodic protection
- C23F2201/02—Concrete, e.g. reinforced
Definitions
- the invention belongs to the technical field of alloy materials, and in particular relates to a zinc-magnesium alloy intelligent sacrificial anode material and its application.
- reinforced concrete As a structural material, reinforced concrete is widely used in various architectural and civil engineering structures such as bridges, buildings, viaducts, dams, submarine tunnels and large ocean platforms. In today's increasingly prolific development of marine resources, the use of reinforced concrete is undoubtedly will become more widespread. However, corrosion damage abounds due to durability problems of reinforced concrete. The destruction of reinforced concrete not only causes great economic losses, but also brings great hidden dangers to the safety of people's lives and properties.
- Concrete is a material that is mixed with sand, cement and water and solidified after a certain period of time. Its interior is not a dense structure, and there are usually voids.
- the silicate water product of concrete exists in the pore space, and the water product is mainly saturated calcium hydroxide solution, and its pH can reach about 13.
- a passivation film can be formed on the surface of the steel bar. As time goes on, chloride ions gradually diffuse into the concrete. Once the chloride ions reach the surface of the steel bar, the passivation film of the steel bar is easily destroyed by the chloride ions, which induces localized corrosion of the steel bar.
- Corrosion products of steel bars will accumulate between steel bars and concrete, and the volume of corrosion products of steel bars will expand, further reducing the bonding force between steel bars and concrete, easily cracking concrete, and causing accelerated damage to reinforced concrete. Therefore, the protection of steel bars in reinforced concrete is particularly important.
- chloride ions are an important cause of steel bar corrosion, the monitoring of chloride ion intrusion in concrete is also extremely important.
- Sacrificial anode cathodic protection method is a relatively convenient and widely used method to protect steel bars.
- Zinc is currently the most widely used sacrificial anode material, but zinc dissolves very quickly in the strongly alkaline environment of concrete pore fluid. The excessive dissolution rate makes it insensitive to chloride ions, and cannot detect the intrusion of chloride ions into concrete.
- Magnesium is very sensitive to chloride ions and can be used as a material to detect whether chloride ions have invaded concrete. When chloride ions invade concrete, it can spontaneously corrode and provide cathodic current for steel bars to protect steel bars from corrosion. It is an intelligent sacrificial anode material in reinforced concrete.
- the purpose of the present invention is to overcome the defects of the prior art and provide the application of zinc-magnesium alloy parts in the detection of chloride ion intrusion in reinforced concrete.
- Another object of the present invention is to provide the application of zinc-magnesium alloy parts in preventing galvanic corrosion of steel bars in reinforced concrete.
- Another object of the present invention is to provide a zinc-magnesium alloy intelligent sacrificial anode material and a preparation method thereof.
- the chemical composition mass percentage of said zinc-magnesium alloy parts is: Mg: 10-11%, Al: 0.1-0.3%, impurity ⁇ 0.02%, balance It is Zn and consists of Zn phase, MgZn 2 phase and Mg 2 Zn 11 phase.
- it includes: embedding the zinc-magnesium alloy piece as a chloride ion response piece in reinforced concrete, and then performing a polarization curve test on the zinc-magnesium alloy piece.
- the second technical scheme of the present invention is as follows:
- a method for detecting chloride ion intrusion in reinforced concrete comprising: burying a zinc-magnesium alloy piece as a chloride ion response piece in reinforced concrete, and then performing a polarization curve test on the zinc-magnesium alloy piece, the chemical properties of the zinc-magnesium alloy piece
- the composition mass percent is: Mg: 10-11%, Al: 0.1-0.3%, impurity ⁇ 0.02%, the balance is Zn, and consists of Zn phase, MgZn 2 phase and Mg 2 Zn 11 phase.
- the third of the technical scheme of the present invention is as follows:
- the chemical composition mass percentages of the zinc-magnesium alloy parts are: Mg: 10-11%, Al: 0.1-0.3%, impurities ⁇ 0.02% , the balance is Zn, and consists of Zn phase, MgZn 2 phase and Mg 2 Zn 11 phase.
- the present invention includes embedding the zinc-magnesium alloy piece as a sacrificial anode in reinforced concrete, and contacting the steel bar therein, and the zinc-magnesium alloy piece provides the reinforcement for the steel bar when chloride ions invade into the concrete. cathodic current.
- a method for preventing galvanic corrosion of steel bars in reinforced concrete comprising embedding a zinc-magnesium alloy piece as a sacrificial anode in reinforced concrete and contacting the steel bars therein, the zinc-magnesium alloy piece being exposed when chloride ions invade the concrete Provide cathodic current for the steel bar; wherein, the chemical composition mass percentage of the zinc-magnesium alloy is: Mg: 10-11%, Al: 0.1-0.3%, impurity ⁇ 0.02%, the balance is Zn, and it is composed of Zn phase, MgZn 2 phases and Mg 2 Zn 11 phases.
- the fifth of the technical scheme of the present invention is as follows:
- a zinc-magnesium alloy intelligent sacrificial anode material its chemical composition mass percentage is: Mg: 10-11%, Al: 0.1-0.3%, impurity ⁇ 0.02%, the balance is Zn, and it is composed of Zn phase, MgZn 2 phase and Mg 2 Zn 11 phase composition.
- the preparation method of the above-mentioned zinc-magnesium alloy intelligent sacrificial anode material comprises the following steps:
- the step (2) is: feeding high-purity argon into the vacuum induction melting furnace and heating to 700-900°C.
- the zinc-magnesium alloy intelligent sacrificial anode material in the present invention is sensitive to chloride ions, and can effectively detect whether chloride ions have invaded concrete.
- the galvanic potential of the zinc-magnesium alloy intelligent sacrificial anode material and steel in the present invention is higher than the hydrogen evolution potential of steel, which can protect steel from corrosion in concrete, and does not form under-protection and over-protection to steel bars at the same time, improving the role of zinc as Response of traditional sacrificial anode materials to chloride ions and galvanic corrosion with steel.
- the zinc-magnesium alloy intelligent sacrificial anode material in the present invention has low self-corrosion current density and long service life.
- FIG. 1 is an XRD crystal diffraction pattern of Zn-11Mg prepared in Example 1 of the present invention.
- Fig. 2 is a micrograph of the crystal phase of Zn-11Mg prepared in Example 1 of the present invention.
- Example 3 is a diagram showing the test results of polarization curves of zinc and Zn-11Mg in saturated calcium hydroxide solutions containing different concentrations of chloride ions in Example 2 of the present invention.
- Fig. 4 is a galvanic test result graph of zinc and Zn-11Mg in Example 3 of the present invention and steel in saturated calcium hydroxide solutions containing different concentrations of chloride ions.
- the zinc-magnesium alloy intelligent sacrificial anode material (Zn-11Mg) in the present embodiment is as shown in Figure 1 and 2, and its chemical composition mass percent is: Mg: 10-11%, Al: 0.1-0.3%, other concrete impurity Content: ⁇ 0.02%, the balance is Zn, and consists of Zn phase, MgZn 2 phase and Mg 2 Zn 11 phase.
- the Zn-11Mg prepared in Example 1 is tested for sensitivity to chloride ions in a strong alkaline solution, and the sensitivity test is evaluated using a polarization curve.
- the specific test method is: soak the material in the test solution for 10 minutes from - 1.5 Scan in the positive direction to 0.8V Ag/AgCl/Sat.KCl , if the anode curve current reaches 200 ⁇ A/ cm2 during the scanning process, stop the test, and use the pure zinc material with a purity of 99.99% and a zinc phase as a comparison sacrificial anode material.
- the Zn-11Mg prepared in Example 1 is coupled with steel to test their galvanic potential and galvanic current, so as to characterize their protective properties.
- the process of testing is: steel and Zn-11Mg are connected with an outer wire, and the outer wire Outside the test solution, steel and Zn-11Mg were immersed in the solution with a distance of 3 cm, and the galvanic current and galvanic potential were tested with an electrochemical workstation. A pure zinc material with a purity of 99.99% and a zinc phase is used as a comparison.
- Test solution saturated calcium hydroxide solution containing 0-0.60mol/L chloride ions
- the solid line in Figure 3 is the cathodic curve of steel, which can be divided into three areas: underprotected area, suitable protected area and overprotected area. If the galvanic couple potential is located in the underprotected area, the steel in the concrete pore solution containing chloride ions Corrosion can still occur, and there is a risk of hydrogen embrittlement in the steel in the over-protected area. Only in a suitable protected area is effective protection. It can be found that the galvanic potentials of pure zinc (Zn) (Fig. 4(a)) and Zn-11Mg (Fig.
- the invention discloses a zinc-magnesium alloy intelligent sacrificial anode material and its application.
- the mass percentage of its chemical composition is: Mg: 10-11%, Al: 0.1-0.3%, impurity ⁇ 0.02%, and the balance is Zn.
- Zn phase, MgZn 2 phase and Mg 2 Zn 11 phase composition is a zinc-magnesium alloy intelligent sacrificial anode material and its application.
- the zinc-magnesium alloy intelligent sacrificial anode material in the present invention is sensitive to chloride ions, and can effectively detect whether chloride ions have invaded concrete; the galvanic potential with steel is higher than the hydrogen evolution potential of steel, which can protect steel from corrosion in concrete, At the same time, it does not form under-protection and over-protection to steel bars, and improves the response of zinc as a traditional sacrificial anode material to chloride ions and the galvanic corrosion with steel, which has industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Prevention Of Electric Corrosion (AREA)
Abstract
La présente invention divulgue un matériau d'anode sacrificielle intelligent en alliage de zinc-magnésium et son utilisation. Les composants chimiques du matériau comprennent, en pourcentages en masse : 10 à 11 % de Mg, 0,1 à 0,3 % d'Al, et des impuretés < 0,02 %, le reste étant du Zn. De plus, le matériau est composé d'une phase de Zn, d'une phase de MgZn2 et d'une phase de Mg2Zn11. Le matériau d'anode sacrificielle intelligent en alliage de zinc-magnésium selon la présente invention est sensible aux ions chlorure, et peut détecter efficacement si des ions chlorure envahissent du béton. Le potentiel galvanique du matériau par rapport à l'acier est supérieur au potentiel de dégagement d'hydrogène de l'acier, de telle sorte que l'acier peut être protégé contre la corrosion dans le béton, et la sous-protection et la surprotection des barres d'acier ne se produisent également pas, ce qui permet d'améliorer la réponse du zinc, lequel sert de matériau d'anode sacrificielle traditionnel, aux ions chlorure, et d'atténuer la corrosion galvanique vis-à-vis de l'acier.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111078669.9 | 2021-09-15 | ||
CN202111078669.9A CN113817934B (zh) | 2021-09-15 | 2021-09-15 | 一种锌镁合金智能牺牲阳极材料及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023040239A1 true WO2023040239A1 (fr) | 2023-03-23 |
Family
ID=78922546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/085020 WO2023040239A1 (fr) | 2021-09-15 | 2022-04-02 | Matériau d'anode sacrificielle intelligent en alliage de zinc-magnésium et son utilisation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113817934B (fr) |
WO (1) | WO2023040239A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113817934B (zh) * | 2021-09-15 | 2022-11-01 | 厦门大学 | 一种锌镁合金智能牺牲阳极材料及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111150A (ja) * | 2006-10-30 | 2008-05-15 | Nippon Steel Corp | 高耐食性溶融Zn系めっき鋼板 |
CN104862710A (zh) * | 2015-06-09 | 2015-08-26 | 青岛双瑞海洋环境工程股份有限公司 | 一种环境友好型的锌合金牺牲阳极 |
CN105624689A (zh) * | 2016-04-08 | 2016-06-01 | 厦门大学 | 一种腐蚀自动检测与智能防护系统 |
CN107663636A (zh) * | 2016-07-27 | 2018-02-06 | 上海法赫桥梁隧道养护工程技术有限公司 | 一种混凝土中钢筋防腐蚀用内置牺牲阳极及其制作方法 |
CN110964947A (zh) * | 2019-12-02 | 2020-04-07 | 兰州理工大学 | 一种氯盐侵蚀环境下钢筋混凝土结构用锌合金牺牲阳极材料 |
CN113817934A (zh) * | 2021-09-15 | 2021-12-21 | 厦门大学 | 一种锌镁合金智能牺牲阳极材料及其应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4264167B2 (ja) * | 1999-09-10 | 2009-05-13 | 新日本製鐵株式会社 | 耐食性に優れた溶融めっき鋼板 |
CN106835149B (zh) * | 2017-01-09 | 2019-03-05 | 青岛双瑞海洋环境工程股份有限公司 | 一种换热器管束外壁牺牲阳极保护系统 |
-
2021
- 2021-09-15 CN CN202111078669.9A patent/CN113817934B/zh active Active
-
2022
- 2022-04-02 WO PCT/CN2022/085020 patent/WO2023040239A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111150A (ja) * | 2006-10-30 | 2008-05-15 | Nippon Steel Corp | 高耐食性溶融Zn系めっき鋼板 |
CN104862710A (zh) * | 2015-06-09 | 2015-08-26 | 青岛双瑞海洋环境工程股份有限公司 | 一种环境友好型的锌合金牺牲阳极 |
CN105624689A (zh) * | 2016-04-08 | 2016-06-01 | 厦门大学 | 一种腐蚀自动检测与智能防护系统 |
CN107663636A (zh) * | 2016-07-27 | 2018-02-06 | 上海法赫桥梁隧道养护工程技术有限公司 | 一种混凝土中钢筋防腐蚀用内置牺牲阳极及其制作方法 |
CN110964947A (zh) * | 2019-12-02 | 2020-04-07 | 兰州理工大学 | 一种氯盐侵蚀环境下钢筋混凝土结构用锌合金牺牲阳极材料 |
CN113817934A (zh) * | 2021-09-15 | 2021-12-21 | 厦门大学 | 一种锌镁合金智能牺牲阳极材料及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113817934A (zh) | 2021-12-21 |
CN113817934B (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mears et al. | A theory of cathodic protection | |
González et al. | Some questions on the corrosion of steel in concrete—Part I: when, how and how much steel corrodes | |
Song et al. | The electrochemical corrosion of pure magnesium in 1 N NaCl | |
Stampella et al. | Environmentally-induced cracking of magnesium | |
Farooq et al. | Evaluating the performance of zinc and aluminum sacrificial anodes in artificial seawater | |
EP1470266B1 (fr) | Amelioration portant sur un systeme de protection cathodique | |
WO2023040239A1 (fr) | Matériau d'anode sacrificielle intelligent en alliage de zinc-magnésium et son utilisation | |
Abedin et al. | Electrochemical behaviour of Al, Al—in and Al–Ga–in alloys in chloride solutions containing zinc ions | |
KR101381053B1 (ko) | 콘크리트 처리 공정 | |
Pourgharibshahi et al. | The role of indium in the activation of aluminum alloy galvanic anodes | |
Zhang et al. | Mechanical properties and corrosion behavior of 5A06 alloy in seawater | |
Yuvaraj et al. | Influence of corrosion inhibitors in reinforced concrete–A state of art of review | |
US6958116B1 (en) | Cathodic protection system | |
JP2008057015A (ja) | 電気防食用バックフィル及びそれを用いた電気防食構造 | |
Devillers et al. | The mechanism of intergranular corrosion of dilute zinc-aluminium alloys in hot water | |
Svenningsen | Corrosion of aluminium alloys | |
Sekar et al. | Cathodic protection of steel in concrete using conductive polymer overlays | |
Wilmot | Corrosion protection of reinforcement for concrete structures | |
Bennett | Corrosion of reinforcing steel in concrete and its prevention by cathodic protection | |
Hu et al. | The effect of surface treatment on the corrosion behavior of a pure Ta sheet in an equimolar NaCl–KCl melt at 850° C in air. Part 1: Laser surface melting | |
US2935421A (en) | Coating iron and its alloys with magnesium | |
Bhuiyan et al. | Residual protection on a wharf structure following application of impressed current cathodic protection | |
Burns | Corrosion of Metals—II. Lead and Lead‐Alloy Cable Sheathing | |
JP3415744B2 (ja) | プレストレストコンクリートの再生方法 | |
JPH06212814A (ja) | コンクリートの再生方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22868617 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22868617 Country of ref document: EP Kind code of ref document: A1 |