WO2023040223A1 - 气液换热处理方法、装置、存储介质及电子装置 - Google Patents

气液换热处理方法、装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2023040223A1
WO2023040223A1 PCT/CN2022/081863 CN2022081863W WO2023040223A1 WO 2023040223 A1 WO2023040223 A1 WO 2023040223A1 CN 2022081863 W CN2022081863 W CN 2022081863W WO 2023040223 A1 WO2023040223 A1 WO 2023040223A1
Authority
WO
WIPO (PCT)
Prior art keywords
way valve
pump
temperature
opening
degree
Prior art date
Application number
PCT/CN2022/081863
Other languages
English (en)
French (fr)
Inventor
陶成
刘帆
周晓东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023040223A1 publication Critical patent/WO2023040223A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits

Definitions

  • Embodiments of the present disclosure relate to the communication field, and in particular, relate to a gas-liquid heat exchange processing method, device, storage medium, and electronic device.
  • the water heat exchange generally controls the opening of the three-way valve through a proportional integral differential coefficient (PID) adjustment method.
  • PID proportional integral differential coefficient
  • the characteristics of the PID adjustment include: simple structure, robust Strong adaptability; adjustment and tuning rarely depend on the specific model of the system; because the actual object usually has characteristics such as nonlinearity, time-varying uncertainty, and strong interference, it is difficult to achieve the ideal control effect by using a conventional PID controller.
  • Embodiments of the present disclosure provide a gas-liquid heat exchange treatment method, device, storage medium, and electronic device to at least solve the problem in the related art that the terminal and the base station cannot communicate directly, which makes it difficult for the terminal to access the cell served by the base station .
  • a gas-liquid heat exchange treatment method including:
  • the three-way valve is controlled according to the target operation opening degree.
  • controlling the three-way valve according to the target action opening includes:
  • the three-way valve is controlled not to act according to the target action opening
  • the three-way valve is controlled to be opened according to the target action opening.
  • determining the target action opening degree of the three-way valve corresponding to the temperature range of the pre-pump subcooling degree includes:
  • the target operating opening of the three-way valve corresponding to the temperature interval to which the pre-pump subcooling degree belongs is determined according to the preset correspondence between the degree of subcooling in different temperature ranges and the operating opening of the three-way valve.
  • the method before determining the target action opening degree of the three-way valve corresponding to the temperature range to which the pre-pump subcooling degree belongs, the method further includes:
  • respectively determining the action openings of the three-way valves corresponding to the multiple temperature ranges includes:
  • the three-way valves are respectively controlled according to the action openings of the plurality of three-way valves set in advance for each temperature range, and one of the action openings of the plurality of three-way valves is determined to meet the preset condition.
  • the operating opening is obtained as the operating opening of the three-way valve corresponding to each temperature interval, and the operating opening of the three-way valve corresponding to the plurality of temperature intervals is obtained.
  • the method before determining the target temperature range of subcooling degree before the pump, the method further includes:
  • the difference between the evaporation temperature before the pump and the temperature before the pump is determined as the subcooling degree before the pump.
  • a gas-liquid heat exchange treatment device including:
  • the first determination module is configured to determine the temperature range to which the subcooling degree before the pump belongs
  • the second determination module is configured to determine the target action opening degree of the three-way valve corresponding to the temperature range to which the pre-pump subcooling degree belongs;
  • a control module configured to control the three-way valve according to the target action opening.
  • control module includes:
  • the first control submodule is configured to control and close the three-way valve according to the target action opening when the target action opening is negative;
  • the second control submodule is configured to control the three-way valve not to act according to the target action opening when the target action opening is zero;
  • the third control sub-module is configured to control and open the three-way valve according to the target action opening degree when the target action opening degree is positive.
  • the second determination module is further configured to
  • the target operating opening of the three-way valve corresponding to the temperature interval to which the pre-pump subcooling degree belongs is determined according to the preset correspondence between the degree of subcooling in different temperature ranges and the operating opening of the three-way valve.
  • the device also includes:
  • the segmentation module is configured to segment the temperature range of the subcooling degree before the pump to obtain multiple temperature ranges
  • the third determination module is configured to respectively determine the action openings of the three-way valves corresponding to the multiple temperature ranges
  • the saving module is configured to save the corresponding relationship between the degree of subcooling in the plurality of temperature ranges and the action opening degree of the three-way valve.
  • the third determining module is further configured to
  • the three-way valves are respectively controlled according to the action openings of the plurality of three-way valves set in advance for each temperature range, and one of the action openings of the plurality of three-way valves is determined to meet the preset condition.
  • the operating opening is obtained as the operating opening of the three-way valve corresponding to each temperature interval, and the operating opening of the three-way valve corresponding to the plurality of temperature intervals is obtained.
  • the device also includes:
  • the first obtaining module is configured to obtain the temperature of the liquid storage tank, and determine the temperature of the liquid storage tank as the evaporation temperature before the pump;
  • the second obtaining module is configured to obtain the temperature of the condenser outlet and the pump inlet, and determine the temperature of the condenser outlet and the pump inlet as the temperature before the pump;
  • the fourth determination module is configured to determine the difference between the evaporation temperature before the pump and the temperature before the pump as the subcooling degree before the pump.
  • a computer-readable storage medium where a computer program is stored in the storage medium, wherein the computer program is set to execute any one of the above method embodiments when running in the steps.
  • an electronic device including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above Steps in the method examples.
  • the temperature range of the subcooling degree before the pump is determined; the target action opening degree of the three-way valve corresponding to the temperature range of the subcooling degree before the pump is determined; and the three-way valve is adjusted according to the target action opening degree.
  • the control can solve the problem of oscillation overshoot in the two-phase system in the related art through the PID adjustment method to control the opening of the three-way valve.
  • the system load can When changing, the temperature in front of the pump can still be quickly controlled within the required range, which can ensure the long-term safe and reliable operation of the system and avoid the risks of pump cavitation and low subcooling of the inlet liquid.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal of a gas-liquid heat exchange treatment method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a gas-liquid heat exchange treatment method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a pump driven two-phase system according to an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of the temperature range to which the pre-pump subcooling degree belongs according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram of a gas-liquid heat exchange processing device according to an embodiment of the present disclosure.
  • Fig. 1 is a block diagram of the hardware structure of the mobile terminal of the gas-liquid heat exchange processing method according to the embodiment of the present disclosure.
  • the mobile terminal may include one or more (in Fig. 1 only Shown is a) a processor 102 (the processor 102 may include but not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a The transmission device 106 and the input and output device 108 of the communication function.
  • FIG. 1 is only for illustration, and it does not limit the structure of the above mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration from that shown in FIG. 1 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the gas-liquid heat exchange treatment method in the embodiment of the present disclosure, the processor 102 runs the computer program stored in the memory 104, In this way, various functional applications and service chain address pool slicing processing are performed, that is, the above-mentioned method is realized.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or transmit data via a network.
  • the specific example of the above network may include a wireless network provided by the communication provider of the mobile terminal.
  • the transmission device 106 includes a network interface controller (NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flow chart of the gas-liquid heat exchange processing method according to an embodiment of the present disclosure. As shown in FIG. 2 , The process includes the following steps:
  • Step S202 determining the temperature range to which the subcooling degree before the pump belongs
  • Step S204 determining the target action opening degree of the three-way valve corresponding to the temperature range of the pre-pump subcooling degree
  • the above step S204 may specifically include: according to the preset corresponding relationship between the degree of subcooling in different temperature ranges and the action opening degree of the three-way valve, determine the corresponding temperature range of the subcooling degree before the pump. The target action opening of the three-way valve.
  • Step S206 controlling the three-way valve according to the target action opening.
  • the above step S206 may include: when the target action opening is negative, closing the three-way valve according to the target action opening control, for example, when the pump front is overcooled
  • the temperature range to which the degree belongs is [t N-1 , t 1 ), the three-way valve needs to be closed relatively quickly to avoid excessive reduction of the subcooling degree; when the target action opening is zero, the opening of the target action control the three-way valve not to act, for example, when the subcooling degree before the pump belongs to the temperature range [t 1 , T 1 ), the target action opening is zero, and the three-way valve does not act;
  • the action opening is positive, the three-way valve is controlled to open according to the target action opening.
  • the subcooling degree before the pump belongs to the temperature range [T 1 , T M ]
  • the three-way valve needs to be opened quickly , to avoid temperature overshoot.
  • step S202 to S206 determine the temperature range of the subcooling degree before the pump; determine the target action opening of the three-way valve corresponding to the temperature range of the subcooling degree before the pump;
  • the control of the three-way valve can solve the problem of oscillation overshoot in the two-phase system in the related art when the opening of the three-way valve is controlled by the PID adjustment method.
  • the system load In the case of large-scale changes, the temperature in front of the pump can still be quickly controlled within the required range, which can ensure the long-term safe and reliable operation of the system and avoid the risks of pump cavitation and low subcooling of the inlet liquid.
  • the temperature range of the pre-pump subcooling degree is segmented to obtain multiple temperature ranges; respectively determine the tee corresponding to the multiple temperature ranges
  • the action opening of the valve specifically, the three-way valve is controlled according to the action opening of the plurality of three-way valves set in advance for each temperature range, from the action opening of the plurality of three-way valves Determine an action opening that satisfies the preset condition, as the action opening of the three-way valve corresponding to each temperature range, and obtain the action opening of the three-way valve corresponding to the multiple temperature ranges ; Preserving the corresponding relationship between the degree of subcooling in the multiple temperature ranges and the opening degree of the action of the three-way valve.
  • the temperature of the liquid storage tank is obtained, and the temperature of the liquid storage tank is determined as the evaporation temperature before the pump; the temperature of the condenser outlet and the pump inlet is obtained, and the obtained The temperature at the outlet of the condenser and the inlet of the pump is determined as the temperature before the pump; the difference between the evaporation temperature before the pump and the temperature before the pump is determined as the subcooling degree before the pump.
  • Fig. 3 is a schematic diagram of a pump-driven two-phase system according to an embodiment of the present disclosure.
  • the pump-driven two-phase system includes a liquid storage tank with gas-liquid two-phase, T tank is the evaporation temperature before the pump, and T before the pump is condensation
  • T before the pump is condensation
  • the difference between the temperature at the outlet of the condenser and the inlet of the pump is the supercooling degree T before the pump (generally required to be ⁇ 3°C); the opening of the three-way valve is between 0 and 100%, the larger the opening, the better the heat transfer of the condenser Severely, the lower the T before the pump, the greater the T subcooling.
  • the system operates with minimum power consumption, and the three-way valve corresponds to the minimum opening degree X; when the system is just started, the heat of the load cannot rapidly increase the inlet liquid temperature, and the subcooling degree before the pump is low for a long period of time.
  • the three-way valve is likely to be closed all the way to 0, and the opening process is slow, prone to subcooling and overshoot less than 3°C, and cavitation in the pump.
  • the embodiment of the present disclosure adopts segmented proportional control, and the temperature range of the subcooling degree and its heat transfer performance are segmented.
  • the K value determining the opening degree of each action
  • the action frequency every two times
  • Action interval time to execute the control. It is considered that the operating frequency is related to the system characteristics (response time of gas-liquid heat exchange based on the adjustment of the three-way valve), and a fixed value is adopted.
  • the K value is related to the heat transfer intensity, and the optimal value needs to be selected in stages.
  • Fig. 4 is a schematic diagram of the temperature range of the pre-pump subcooling according to an embodiment of the present disclosure.
  • the three-way valve needs to be opened quickly to avoid excessive temperature.
  • the K value at this stage should be as small as possible to avoid the initial value of the three-way valve during the valve opening process. Too low and the starting point of cooling is too high, resulting in too low subcooling before the pump, and cavitation occurs; when the subcooling before the pump is at [t 1 , T 1 ), the three-way valve does not operate.
  • the minimum opening degree X of the three-way valve is set, and during the valve closing process, when the opening degree of the three-way valve reaches X, the valve closing is stopped.
  • the action period of the three-way valve is 10s.
  • the K value and corresponding action range of each section of the three-way valve are shown in Table 1, where the action range is the above-mentioned action opening.
  • the three-way valves are respectively controlled according to the action openings of the plurality of three-way valves set in advance for each temperature range, and one of the action openings of the plurality of three-way valves is determined to meet the preset condition.
  • the action opening as the action opening of the three-way valve corresponding to each temperature range, obtains the action opening of the three-way valve corresponding to the multiple temperature ranges.
  • the one highlighted in gray in Table 1 is confirmed
  • the action openings of the three-way valve corresponding to different temperature ranges determined by different systems may be different, and the determination method is the same as that described in the present disclosure.
  • the action period and K value of the three-way valve depend on the specific value (flow, temperature) of the external cooling under a certain working condition.
  • the default flow is unchanged.
  • the control parameters also change randomly.
  • the supercooling degree in front of the pump can be precisely adjusted, and no overshoot phenomenon will occur during the adjustment process; the segmented adjustment can maximize the adjustment speed without overshooting.
  • FIG. 5 is a block diagram of a gas-liquid heat exchange treatment device according to an embodiment of the present disclosure. As shown in FIG. 5 , it includes:
  • the first determination module 52 is configured to determine the temperature range to which the subcooling degree before the pump belongs
  • the second determination module 54 is configured to determine the target action opening degree of the three-way valve corresponding to the temperature range to which the pre-pump subcooling degree belongs;
  • the control module 56 is configured to control the three-way valve according to the target action opening.
  • control module 56 includes:
  • the first control submodule is configured to control and close the three-way valve according to the target action opening when the target action opening is negative;
  • the second control submodule is configured to control the three-way valve not to act according to the target action opening when the target action opening is zero;
  • the third control sub-module is configured to control and open the three-way valve according to the target action opening degree when the target action opening degree is positive.
  • the second determining module 54 is further configured to
  • the target operating opening of the three-way valve corresponding to the temperature interval to which the pre-pump subcooling degree belongs is determined according to the preset correspondence between the degree of subcooling in different temperature ranges and the operating opening of the three-way valve.
  • the device also includes:
  • the segmentation module is configured to segment the temperature range of the subcooling degree before the pump to obtain multiple temperature ranges
  • the third determination module is configured to respectively determine the action openings of the three-way valves corresponding to the multiple temperature ranges
  • the saving module is configured to save the corresponding relationship between the degree of subcooling in the plurality of temperature ranges and the action opening degree of the three-way valve.
  • the third determining module is further configured to
  • the three-way valves are respectively controlled according to the action openings of the plurality of three-way valves set in advance for each temperature range, and one of the action openings of the plurality of three-way valves is determined to meet the preset condition.
  • the operating opening is obtained as the operating opening of the three-way valve corresponding to each temperature interval, and the operating opening of the three-way valve corresponding to the plurality of temperature intervals is obtained.
  • the device also includes:
  • the first obtaining module is configured to obtain the temperature of the liquid storage tank, and determine the temperature of the liquid storage tank as the evaporation temperature before the pump;
  • the second obtaining module is configured to obtain the temperature of the condenser outlet and the pump inlet, and determine the temperature of the condenser outlet and the pump inlet as the temperature before the pump;
  • the fourth determination module is configured to determine the difference between the evaporation temperature before the pump and the temperature before the pump as the subcooling degree before the pump.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Temperature (AREA)

Abstract

一种气液换热处理方法、装置、存储介质及电子装置,该方法包括:确定泵前过冷度所属温度区间;确定该泵前过冷度所属温度区间对应的三通阀的目标动作开度;根据该目标动作开度对该三通阀进行控制,可以解决两相系统中通过PID调节方式对三通阀进行开度控制出现震荡超调现象的问题,通过对三通阀的开度进行分段控制,在系统负荷大范围变化时,仍然能快速将泵前温度控制在需求范围之内,可以保证系统长期安全可靠运行,避免泵气蚀、进液过冷度低的风险。

Description

气液换热处理方法、装置、存储介质及电子装置
相关申请的交叉引用
本公开基于2021年09月17日提交的发明名称为“气液换热处理方法、装置、存储介质及电子装置”的中国专利申请CN202111095581.8,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种气液换热处理方法、装置、存储介质及电子装置。
背景技术
对于单相CDU(Conversion Distribution Unit)系统,水换热一般通过比例积分微分(Proportion Integral Differential coefficient,简称为PID)调节方式对三通阀进行开度控制,PID调节特点包括:结构简单,鲁棒性和适应性较强;调节整定很少依赖于系统的具体模型;由于实际对象通常具有非线性、时变不确定性、强干扰等特性,利用常规PID控制器难以达到理想的控制效果。
两相系统功耗时变不确定性+气液换热剧烈性+三通阀调节非线性使得整个控制具有强烈的非线性特征,致使PID在应用中(测试)出现震荡超调现象,这在关乎泵运行寿命的两相系统中是不允许出现的。
针对相关技术中两相系统中通过PID调节方式对三通阀进行开度控制出现震荡超调现象的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种气液换热处理方法、装置、存储介质及电子装置,以至少解决相关技术中终端与基站之间不能直接通信,导致终端难以接入基站所服务的小区的问题。
根据本公开的一个实施例,提供了一种气液换热处理方法,包括:
确定泵前过冷度所属温度区间;
确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;
根据所述目标动作开度对所述三通阀进行控制。
在一示例性实施例中,根据所述目标动作开度对所述三通阀进行控制包括:
在所述目标动作开度为负的情况下,根据所述目标动作开度控制关闭所述三通阀;
在所述目标动作开度为零的情况下,根据所述目标动作开度控制所述三通阀不动作;
在所述目标动作开度为正的情况下,根据所述目标动作开度控制打开所述三通阀。
在一示例性实施例中,确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度包括:
根据预先设置的不同温度区间的过冷度与三通阀的动作开度的对应关系确定所述泵前过冷度所属温度区间对应的所述三通阀的目标动作开度。
在一示例性实施例中,在确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度之前,所述方法还包括:
对所述泵前过冷度所处温度区间进行分段,得到多个温度区间;
分别确定所述多个温度区间对应的所述三通阀的动作开度;
保存所述多个温度区间的过冷度与所述三通阀的动作开度的对应关系。
在一示例性实施例中,分别确定所述多个温度区间对应的所述三通阀的动作开度包括:
分别根据预先为每个温度区间设置的多个所述三通阀的动作开度对所述三通阀进行控制,从多个所述三通阀的动作开度中确定一个满足预设条件的动作开度,作为所述每个温度区间对应的所述三通阀的动作开度,得到所述多个温度区间对应的所述三通阀的动作开度。
在一示例性实施例中,在确定泵前过冷度的目标温度区间之前,所述方法还包括:
获取储液罐的温度,并将所述储液罐的温度确定为泵前蒸发温度;
获取冷凝器出口与泵入口温度,并将所述冷凝器出口与泵入口温度确定为泵前温度;
将所述泵前蒸发温度与所述泵前温度的差值确定为所述泵前过冷度。
根据本公开的另一个实施例,还提供了一种气液换热处理装置,包括:
第一确定模块,设置为确定泵前过冷度所属温度区间;
第二确定模块,设置为确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;
控制模块,设置为根据所述目标动作开度对所述三通阀进行控制。
在一示例性实施例中,所述控制模块包括:
第一控制子模块,设置为在所述目标动作开度为负的情况下,根据所述目标动作开度控制关闭所述三通阀;
第二控制子模块,设置为在所述目标动作开度为零的情况下,根据所述目标动作开度控制所述三通阀不动作;
第三控制子模块,设置为在所述目标动作开度为正的情况下,根据所述目标动作开度控制打开所述三通阀。
在一示例性实施例中,所述第二确定模块,还设置为
根据预先设置的不同温度区间的过冷度与三通阀的动作开度的对应关系确定所述泵前过冷度所属温度区间对应的所述三通阀的目标动作开度。
在一示例性实施例中,所述装置还包括:
分段模块,设置为对所述泵前过冷度所处温度区间进行分段,得到多个温度区间;
第三确定模块,设置为分别确定所述多个温度区间对应的所述三通阀的动作开度;
保存模块,设置为保存所述多个温度区间的过冷度与所述三通阀的动作开度的对应关系。
在一示例性实施例中,所述第三确定模块,还设置为
分别根据预先为每个温度区间设置的多个所述三通阀的动作开度对所述三通阀进行控制,从多个所述三通阀的动作开度中确定一个满足预设条件的动作开度,作为所述每个温度区间对应的所述三通阀的动作开度,得到所述多个温度区间对应的所述三通阀的动作开度。
在一示例性实施例中,所述装置还包括:
第一获取模块,设置为获取储液罐的温度,并将所述储液罐的温度确定为泵前蒸发温度;
第二获取模块,设置为获取冷凝器出口与泵入口温度,并将所述冷凝器出口与泵入口温度确定为泵前温度;
第四确定模块,设置为将所述泵前蒸发温度与所述泵前温度的差值确定为所述泵前过冷度。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
本公开实施例,确定泵前过冷度所属温度区间;确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;根据所述目标动作开度对所述三通阀进行控制,可以解决相关技术中两相系统中通过PID调节方式对三通阀进行开度控制出现震荡超调现象的问题,通过对三通阀的开度进行分段控制,在系统负荷大范围变化时,仍然能快速将泵前温度控制在需求范围之内,可以保证系统长期安全可靠运行,避免泵气蚀、进液过冷度低的风险。
附图说明
图1是本公开实施例的气液换热处理方法的移动终端的硬件结构框图;
图2是根据本公开实施例的气液换热处理方法的流程图;
图3是根据本公开实施例的泵驱两相系统的示意图;
图4是根据本公开实施例的泵前过冷度所属温度区间的示意图;
图5是根据本公开实施例的气液换热处理装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的气液换热处理方法的移动终端的硬件结构框图,如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的气液换热处理方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及业务链地址池切片处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例 包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端或网络架构的气液换热处理方法,图2是根据本公开实施例的气液换热处理方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定泵前过冷度所属温度区间;
步骤S204,确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;
本公开实施例中,上述步骤S204具体可以包括:根据预先设置的不同温度区间的过冷度与三通阀的动作开度的对应关系确定所述泵前过冷度所属温度区间对应的所述三通阀的目标动作开度。
步骤S206,根据所述目标动作开度对所述三通阀进行控制。
本公开实施例中,上述步S206具有可以包括:在所述目标动作开度为负的情况下,根据所述目标动作开度控制关闭所述三通阀,例如,当所述泵前过冷度所属温度区间为[t N-1,t 1),三通阀需要较快速关闭,避免过冷度下调过大;在所述目标动作开度为零的情况下,根据所述目标动作开度控制所述三通阀不动作,例如,当所述泵前过冷度所属温度区间为[t 1,T 1)时,目标动作开度为零,三通阀不动作;在所述目标动作开度为正的情况下,根据所述目标动作开度控制打开所述三通阀,当所述泵前过冷度所属温度区间为[T 1,T M],三通阀需要快速打开,避免温度过冲。
通过上述步骤S202至S206,确定泵前过冷度所属温度区间;确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;根据所述目标动作开度对所述三通阀进行控制,可以解决相关技术中两相系统中通过PID调节方式对三通阀进行开度控制出现震荡超调现象的问题,通过对三通阀的开度进行分段控制,在系统负荷大范围变化时,仍然能快速将泵前温度控制在需求范围之内,可以保证系统长期安全可靠运行,避免泵气蚀、进液过冷度低的风险。
在一示例性实施例中,在上述步骤S204之前,对所述泵前过冷度所处温度区间进行分段,得到多个温度区间;分别确定所述多个温度区间对应的所述三通阀的动作开度,具体的,分别根据预先为每个温度区间设置的多个所述三通阀的动作开度对所述三通阀进行控制,从多个所述三通阀的动作开度中确定一个满足预设条件的动作开度,作为所述每个温度区间对应的所述三通阀的动作开度,得到所述多个温度区间对应的所述三通阀的动作开度;保存所述多个温度区间的过冷度与所述三通阀的动作开度的对应关系。
在另一示例性实施例中,在上述步骤S202之前,获取储液罐的温度,并将所述储液罐的温度确定为泵前蒸发温度;获取冷凝器出口与泵入口温度,并将所述冷凝器出口与泵入口温度确定为泵前温度;将所述泵前蒸发温度与所述泵前温度的差值确定为所述泵前过冷度。
图3是根据本公开实施例的泵驱两相系统的示意图,如图3所示,泵驱两相系统包括储液罐气液两相,T罐即泵前蒸发温度,T泵前为冷凝器出口与泵入口温度,两者之差即为泵前过冷度T过冷(一般要求≥3℃);三通阀开度0~100%之间,开度越大冷凝器换热越剧烈,T 泵前越低,T过冷越大。②系统功耗发生变化时,三通阀开度自动发生变化,基于背景技术中的问题,在三通阀进行换热调节时,易出现震荡超调现象,无法控制在需求温度范围内,甚至导致T过冷小于3℃。
系统最小功耗运行,三通阀对应最小开度X;在系统刚启动运行时,负载热量无法将进液温度快速升高,有较长一段时间泵前过冷度处于较低的情况下,三通阀很可能一直关闭至0,打开过程较慢,容易出现过冷度过冲小于3℃,泵出现气蚀。
假设泵前过冷度目标值为T0(T0>3℃);在测试过程中发现,基于两相系统的运行特性和三通阀自身特性,气液换热在不同区段内呈现不同特征,一套比例调节策略无法适应各区段换热特征。泵前过冷度控制很不稳定。
本公开实施例采用分段比例控制,以过冷度所处温度区间及其换热表现进行分段,每段中通过定义K值(决定每次动作的开度)和动作频率(每两次动作间隔时间)来执行控制。认为动作频率和系统特性(基于三通阀调节的气液换热响应时间)相关,采用固定值。K值与换热强度相关,需要分段选用最佳值。
图4是根据本公开实施例的泵前过冷度所属温度区间的示意图,如图4所示,当泵前过冷处于[T 1,T M],三通阀需要快速打开,避免温度过冲,则温度上升的速度越来越快,K值逐渐增大;当泵前过冷处于[t N-1,t 1),三通阀需要较快速关闭,避免过冷度下调过大,温度下降的速度越来越快,K值逐渐增大;当泵前过冷处于[t N,t N-1),这个阶段K值需尽可能小,避免开阀过程三通阀起始值过低、降温起始点过高导致泵前过冷度过低,出现气蚀;当泵前过冷处于[t 1,T 1)时,三通阀不动作。
针对现有技术中,设定三通阀最低开度X,关阀过程中,当三通阀开度达到X后,停止关阀。
三通阀动作周期为10s,三通阀各区段K值及对应动作幅度如表1所示,其中,动作幅度即上述的动作开度。分别根据预先为每个温度区间设置的多个所述三通阀的动作开度对所述三通阀进行控制,从多个所述三通阀的动作开度中确定一个满足预设条件的动作开度,作为所述每个温度区间对应的所述三通阀的动作开度,得到所述多个温度区间对应的所述三通阀的动作开度表1中灰色突出显示的为确定出的不同温度区间对应的三通阀的动作开度,不同系统确定出的不同温度区间对应的三通阀的动作开度可能不同,确定方式与本公开描述相同。
表1
Figure PCTCN2022081863-appb-000001
Figure PCTCN2022081863-appb-000002
对应某一个系统,三通阀动作周期和K值取决于外冷在某一工况下的具体取值(流量、温度),本公开实施例中,默认流量是不变的,当此状态发生变化,控制参数也随机发生变化。
通过本公开实施例,系统功耗发生变化时,泵前过冷度可以被精准调节,调解过程中不会出现超调现象;分段调节在保证不超调的情况下最大可能提升调节速度。
根据本公开的另一个实施例,还提供了一种气液换热处理装置,图5是根据本公开实施例的气液换热处理装置的框图,如图5所示,包括:
第一确定模块52,设置为确定泵前过冷度所属温度区间;
第二确定模块54,设置为确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;
控制模块56,设置为根据所述目标动作开度对所述三通阀进行控制。
在一示例性实施例中,所述控制模块56包括:
第一控制子模块,设置为在所述目标动作开度为负的情况下,根据所述目标动作开度控制关闭所述三通阀;
第二控制子模块,设置为在所述目标动作开度为零的情况下,根据所述目标动作开度控制所述三通阀不动作;
第三控制子模块,设置为在所述目标动作开度为正的情况下,根据所述目标动作开度控制打开所述三通阀。
在一示例性实施例中,所述第二确定模块54,还设置为
根据预先设置的不同温度区间的过冷度与三通阀的动作开度的对应关系确定所述泵前过冷度所属温度区间对应的所述三通阀的目标动作开度。
在一示例性实施例中,所述装置还包括:
分段模块,设置为对所述泵前过冷度所处温度区间进行分段,得到多个温度区间;
第三确定模块,设置为分别确定所述多个温度区间对应的所述三通阀的动作开度;
保存模块,设置为保存所述多个温度区间的过冷度与所述三通阀的动作开度的对应关系。
在一示例性实施例中,所述第三确定模块,还设置为
分别根据预先为每个温度区间设置的多个所述三通阀的动作开度对所述三通阀进行控制,从多个所述三通阀的动作开度中确定一个满足预设条件的动作开度,作为所述每个温度区间对应的所述三通阀的动作开度,得到所述多个温度区间对应的所述三通阀的动作开度。
在一示例性实施例中,所述装置还包括:
第一获取模块,设置为获取储液罐的温度,并将所述储液罐的温度确定为泵前蒸发温度;
第二获取模块,设置为获取冷凝器出口与泵入口温度,并将所述冷凝器出口与泵入口温度确定为泵前温度;
第四确定模块,设置为将所述泵前蒸发温度与所述泵前温度的差值确定为所述泵前过冷度。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种气液换热处理方法,包括:
    确定泵前过冷度所属温度区间;
    确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;
    根据所述目标动作开度对所述三通阀进行控制。
  2. 根据权利要求1所述的方法,其中,根据所述目标动作开度对所述三通阀进行控制包括:
    在所述目标动作开度为负的情况下,根据所述目标动作开度控制关闭所述三通阀;
    在所述目标动作开度为零的情况下,根据所述目标动作开度控制所述三通阀不动作;
    在所述目标动作开度为正的情况下,根据所述目标动作开度控制打开所述三通阀。
  3. 根据权利要求1所述的方法,其中,确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度包括:
    根据预先设置的不同温度区间的过冷度与三通阀的动作开度的对应关系确定所述泵前过冷度所属温度区间对应的所述三通阀的目标动作开度。
  4. 根据权利要求3所述的方法,其中,在确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度之前,所述方法还包括:
    对所述泵前过冷度所处温度区间进行分段,得到多个温度区间;
    分别确定所述多个温度区间对应的所述三通阀的动作开度;
    保存所述多个温度区间的过冷度与所述三通阀的动作开度的对应关系。
  5. 根据权利要求4所述的方法,其中,分别确定所述多个温度区间对应的所述三通阀的动作开度包括:
    分别根据预先为每个温度区间设置的多个所述三通阀的动作开度对所述三通阀进行控制,从多个所述三通阀的动作开度中确定一个满足预设条件的动作开度,作为所述每个温度区间对应的所述三通阀的动作开度,得到所述多个温度区间对应的所述三通阀的动作开度。
  6. 根据权利要求3至5中任一项所述的方法,其中,在确定泵前过冷度的目标温度区间之前,所述方法还包括:
    获取储液罐的温度,并将所述储液罐的温度确定为泵前蒸发温度;
    获取冷凝器出口与泵入口温度,并将所述冷凝器出口与泵入口温度确定为泵前温度;
    将所述泵前蒸发温度与所述泵前温度的差值确定为所述泵前过冷度。
  7. 一种气液换热处理装置,包括:
    第一确定模块,设置为确定泵前过冷度所属温度区间;
    第二确定模块,设置为确定所述泵前过冷度所属温度区间对应的三通阀的目标动作开度;
    控制模块,设置为根据所述目标动作开度对所述三通阀进行控制。
  8. 根据权利要求7所述的装置,其中,所述控制模块包括:
    第一控制子模块,设置为在所述目标动作开度为负的情况下,根据所述目标动作开度控制关闭所述三通阀;
    第二控制子模块,设置为在所述目标动作开度为零的情况下,根据所述目标动作开度控制所述三通阀不动作;
    第三控制子模块,设置为在所述目标动作开度为正的情况下,根据所述目标动作开度控制打开所述三通阀。
  9. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至6任一项中所述的方法。
  10. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至6任一项中所述的方法。
PCT/CN2022/081863 2021-09-17 2022-03-19 气液换热处理方法、装置、存储介质及电子装置 WO2023040223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111095581.8 2021-09-17
CN202111095581.8A CN115962424A (zh) 2021-09-17 2021-09-17 气液换热处理方法、装置、存储介质及电子装置

Publications (1)

Publication Number Publication Date
WO2023040223A1 true WO2023040223A1 (zh) 2023-03-23

Family

ID=85602074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081863 WO2023040223A1 (zh) 2021-09-17 2022-03-19 气液换热处理方法、装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN115962424A (zh)
WO (1) WO2023040223A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208882A (ja) * 2010-03-30 2011-10-20 Topre Corp 気液熱交換型冷凍装置
WO2014110650A1 (en) * 2013-01-15 2014-07-24 Gilles Savard Air-liquid heat exchanger
CN106196787A (zh) * 2016-07-11 2016-12-07 珠海格力电器股份有限公司 热泵系统的控制方法及热泵系统
CN111043797A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 流量阀的调节方法与装置
CN112292004A (zh) * 2020-10-27 2021-01-29 株洲中车时代电气股份有限公司 一种泵驱两相冷却系统及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208882A (ja) * 2010-03-30 2011-10-20 Topre Corp 気液熱交換型冷凍装置
WO2014110650A1 (en) * 2013-01-15 2014-07-24 Gilles Savard Air-liquid heat exchanger
CN106196787A (zh) * 2016-07-11 2016-12-07 珠海格力电器股份有限公司 热泵系统的控制方法及热泵系统
CN111043797A (zh) * 2018-10-11 2020-04-21 青岛海尔股份有限公司 流量阀的调节方法与装置
CN112292004A (zh) * 2020-10-27 2021-01-29 株洲中车时代电气股份有限公司 一种泵驱两相冷却系统及其工作方法

Also Published As

Publication number Publication date
CN115962424A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN104457073B (zh) 一种变频控制方法
WO2020155871A1 (zh) 一种热泵机组及其排气温度控制方法、装置
WO2023024557A1 (zh) 一种空调控制方法及空调器
CN107490241B (zh) 一种变频冰箱的控制方法、存储介质及冰箱
CN112443883B (zh) 电子膨胀阀控制方法、装置及热泵机组
CN109236622B (zh) 一种压缩机频率控制方法、装置及空调器
CN109084433A (zh) 空调室内机的能力输出控制方法、设备及介质
WO2023040223A1 (zh) 气液换热处理方法、装置、存储介质及电子装置
CN112728820A (zh) 一种冷水机组及其启停控制方法和装置
CN113091231B (zh) 用于空调的控制方法、装置及空调
CN111623526B (zh) 一种热水器的流量控制方法、装置及热水器
CN114838530A (zh) 用于空调电子膨胀阀的控制方法及装置、空调、存储介质
CN114383285A (zh) 用于空调控制的方法、装置、空调及存储介质
CN115542960A (zh) 用于调节培养箱温度的方法及装置、培养箱、存储介质
CN112413807B (zh) 用于变频空调温度补偿控制的方法、装置及变频空调
CN113669966A (zh) 一种通过水温来控制热泵机组运行的方法
CN113551374A (zh) 空调外机的控制方法、装置、设备及存储介质
CN113251596A (zh) 用于空调的控制方法、装置及空调
CN104713208A (zh) 离心式冷水机组输出能量的高效节能调节系统和方法
CN112524760A (zh) 用于空调出风温度控制的方法、装置及空调
US20200110396A1 (en) Industrial Process Control Coordination and Implementation
WO2016112545A1 (zh) 用于饮水机的制冷装置及其控制方法和饮水机
CN114234401A (zh) 冰蓄冷空调系统的控制方法、装置和电子设备
CN111852832B (zh) 用于并联冷水系统的水冷机组及水泵的变台数控制方法
CN115289753A (zh) 一种多温区冷柜的控制方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE