WO2023040124A1 - 通信方法及装置、计算机可读存储介质及计算机程序产品 - Google Patents

通信方法及装置、计算机可读存储介质及计算机程序产品 Download PDF

Info

Publication number
WO2023040124A1
WO2023040124A1 PCT/CN2021/143050 CN2021143050W WO2023040124A1 WO 2023040124 A1 WO2023040124 A1 WO 2023040124A1 CN 2021143050 W CN2021143050 W CN 2021143050W WO 2023040124 A1 WO2023040124 A1 WO 2023040124A1
Authority
WO
WIPO (PCT)
Prior art keywords
psfch
resource
terminal device
pssch
resources
Prior art date
Application number
PCT/CN2021/143050
Other languages
English (en)
French (fr)
Inventor
陈咪咪
张萌
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023040124A1 publication Critical patent/WO2023040124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device, a computer-readable storage medium, and a computer program product.
  • terminal devices can communicate with each other through a side link (sidelink, SL).
  • sidelink sidelink
  • side link communication supports hybrid automatic repeat request (hybrid automatic repeat request, HARQ) feedback.
  • HARQ hybrid automatic repeat request
  • the sending end sends data to the receiving end through a physical sidelink shared channel (PSSCH), and the receiving end feeds back HARQ information to the sending end through a physical sidelink feedback channel (PSFCH).
  • PSSCH physical sidelink shared channel
  • PSFCH physical sidelink feedback channel
  • the HARQ information can be an acknowledgment (acknowledgment, ACK) or a negative acknowledgment (NACK), ACK indicates successful reception, and NACK indicates unsuccessful reception), so that the sender can know the data reception situation.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • ACK indicates successful reception
  • NACK indicates unsuccessful reception
  • the present application provides a communication method and device, a computer-readable storage medium, and a computer program product, which are used to improve the resource utilization rate of feeding back HARQ information.
  • the present application provides a communication method, including:
  • the first terminal device receives multiple different TBs through multiple PSSCHs
  • the first terminal device sends the HARQ information corresponding to the multiple different TBs on PSFCH resources, where the PSFCH resources include at least one PRB in the frequency domain.
  • the first terminal device sends the HARQ information corresponding to the multiple different TBs on the PSFCH resource, including:
  • the first terminal device sends a coding result on the PSFCH resource, where the coding result is a result obtained by coding the HARQ information corresponding to the multiple TBs.
  • the PSFCH resources include time domain resources and frequency domain resources, and before the first terminal device sends the HARQ information corresponding to the multiple different TBs on the PSFCH resources, the method further includes :
  • the first terminal device determines the time domain resource of the PSFCH resource according to the time domain indication information
  • the first terminal device determines the frequency-domain resource of the PSFCH resource according to the frequency-domain indication information or the time-frequency resource occupied by the PSSCH transmitting at least one of the multiple TBs.
  • the time domain indication information is used to indicate the time interval between the PSSCH for transmitting each TB and the PSFCH for transmitting its corresponding HARQ information;
  • the first terminal device determines the time domain resource of the PSFCH resource according to the time domain indication information, including:
  • the first terminal device determines the time domain resource of the PSFCH resource according to the receiving moment of the first PSSCH and the time interval between the first PSSCH and the PSFCH corresponding to the first PSSCH, and the first PSSCH uses for transmitting one or more TBs of the plurality of TBs.
  • the time domain indication information is used to indicate the period of the PSFCH; the first terminal device determines the time domain resource of the PSFCH resource according to the time domain indication information, including:
  • the first terminal device determines the time domain resource of the PSFCH resource according to the period of the PSFCH.
  • the time domain indication information is used to indicate the HARQ information feedback cycle; the first terminal device determines the time domain resource of the PSFCH resource according to the time domain indication information, including:
  • the first terminal device determines the time domain position of the PSFCH resource according to the HARQ information feedback cycle; wherein, the HARQ information feedback cycle is K times the PSFCH cycle, and K is an integer greater than or equal to 1 .
  • the frequency domain indication information includes: an index of the at least one PRB;
  • the first terminal device determines the frequency domain resource of the PSFCH resource according to the frequency domain indication information, including:
  • the first terminal device determines frequency domain resources of the PSFCH resources according to the index of the at least one PRB.
  • the first terminal device determines the frequency domain resource of the PSFCH resource according to the time-frequency resource occupied by the PSSCH for transmitting at least one TB among the multiple TBs, including:
  • the first terminal device acquires a PSFCH resource set, where the PSFCH resource set includes multiple PRBs;
  • the first terminal device determines n PRBs from the PSFCH resource pool according to the first number n and the time-frequency resources occupied by the PSSCH for transmitting the first TB, where n is an integer greater than or equal to 1, and the n There is a preset mapping relationship between a PRB and the time-frequency resource occupied by the PSSCH for transmitting the first TB, where the first TB is any one of the multiple TBs;
  • the first terminal device determines the n PRBs as frequency domain resources of the PSFCH resources.
  • the first number n is carried in sidelink control information SCI or radio resource control RRC signaling.
  • the time domain indication information is carried in SCI or RRC signaling, and/or the frequency domain indication information is carried in SCI or RRC signaling.
  • the present application provides a communication device, and the communication device includes:
  • a receiving module configured to receive a plurality of different transport blocks TB through a plurality of physical sidelink shared channels PSSCH;
  • the sending module is configured to send hybrid automatic repeat request HARQ information corresponding to the multiple different TBs on a physical sidelink feedback channel PSFCH resource, where the PSFCH resource includes at least one physical resource block PRB in the frequency domain.
  • the sending module is specifically configured to:
  • the encoding result is a result obtained by encoding the HARQ information corresponding to the multiple TBs.
  • the PSFCH resources include time domain resources and frequency domain resources
  • the communication device further includes a determination module, the determination module is configured to:
  • the frequency domain resource of the PSFCH resource is determined according to the frequency domain indication information or the time frequency resource occupied by the PSSCH transmitting at least one TB among the plurality of TBs.
  • the time domain indication information is used to indicate the time interval between the PSSCH for transmitting each TB and the PSFCH for transmitting its corresponding HARQ information; the determining module is specifically used for:
  • the first PSSCH is used to transmit the multiple One or more TBs in TB.
  • the time domain indication information is used to indicate the period of the PSFCH; the determining module is specifically configured to:
  • the time domain indication information is used to indicate the HARQ information feedback cycle; the determining module is specifically used for:
  • the HARQ information feedback cycle is K times the PSFCH cycle, and K is an integer greater than or equal to 1.
  • the frequency domain indication information includes: an index of the at least one PRB; the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • n PRBs from the PSFCH resource pool, where n is an integer greater than or equal to 1, and the n PRBs are related to the transmission of the There is a preset mapping relationship between the time-frequency resources occupied by the PSSCH of the first TB, and the first TB is any one of the multiple TBs;
  • the frequency domain positions corresponding to the n PRBs are used to determine the frequency domain positions of the target resources.
  • the first number n is carried in sidelink control information SCI or radio resource control RRC signaling.
  • the time domain indication information is carried in SCI or RRC signaling, and/or the frequency domain indication information is carried in SCI or RRC signaling.
  • the present application provides a communication device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer-executable instructions
  • the processor executes the computer-executed instructions stored in the memory, so as to implement the method provided in any possible implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a computer, any possible implementation of the first aspect provides method is executed.
  • the present application provides a computer program product, including a computer program.
  • the computer program When the computer program is executed by a computer, the method provided in any possible implementation manner of the first aspect is executed.
  • the first terminal device can transmit HARQ information corresponding to multiple different TBs on one PSFCH, realizing the multiplexing of HARQ information corresponding to multiple TBs into one
  • the PSFCH meets the requirements of the HARQ information multiplexing scenario, and improves the resource utilization rate of the feedback HARQ information.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a resource mapping relationship between a PSSCH subchannel and a PSFCH according to an embodiment of the present application
  • FIG. 5A is a schematic diagram of a method of determining PSFCH candidate PRBs provided by an embodiment of the present application.
  • FIG. 5B is a schematic diagram of another method for determining PSFCH candidate PRBs provided in the embodiment of the present application.
  • FIG. 6A is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 6B is a schematic diagram of an interaction process of a communication method provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a time-domain resource for determining PSFCH resources provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of frequency domain resources for determining PSFCH resources provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • first”, “second”, “third”, “fourth”, etc. in this application are used to distinguish similar objects, and are not used to describe a specific order or sequence.
  • the execution order of each step in the method provided in the present application is only an example, and there may be other orders in actual implementation, which is not limited in the present application.
  • the terms “comprising” and “having”, as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the communication system shown in FIG. 1 includes a network device 101 and two terminal devices (terminal device 102 and terminal device 103 respectively), both of which are within the coverage of the network device 101 .
  • the network device 101 can communicate with the terminal device 102 and the terminal device 103 respectively.
  • the terminal device 102 can communicate with the terminal device 103 .
  • the terminal device 102 may send a message to the terminal device 103 through the network device 101 , and the terminal device 102 may also directly send a message to the terminal device 103 .
  • the link directly communicating between the terminal device 102 and the terminal device 103 is called a side link, and may also be called a device-to-device (device-to-device, D2D) link, a side link, and the like. Transmission resources on the side link may be allocated by network devices.
  • FIG. 2 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • the communication system shown in FIG. 2 also includes a network device 101 and two terminal devices.
  • the difference from FIG. 1 is that the terminal device 103 is within the coverage of the network device 101, and the terminal device 104 is outside the coverage of the network device 101.
  • the network device 101 can communicate with the terminal device 103
  • the terminal device 103 can communicate with the terminal device 104 .
  • the terminal device 103 may receive configuration information sent by the network device 101, and perform sidelink communication according to the configuration information.
  • the terminal device 104 may, according to the pre-configuration (pre-configuration) information and the information carried in the sidelink broadcast channel (physical sidelink broadcast channel, PSBCH) sent by the terminal device 103, Conduct sideways communication.
  • pre-configuration physical sidelink broadcast channel, PSBCH
  • FIG. 3 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Both the terminal device 104 and the terminal device 105 shown in FIG. 3 are outside the coverage of the network device 101 .
  • Both the terminal device 104 and the terminal device 105 can determine the sidelink configuration according to the pre-configuration information, and perform sidelink communication.
  • the terminal equipment involved in this embodiment of the present application can also be referred to as a terminal, which can be a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as Ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be user equipment (user equipment, UE), where the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with a wireless communication function.
  • the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the devices used to realize the functions of terminal devices can be regarded as terminal devices; the terminal devices can also be devices that can support the terminal devices to realize the functions, such as chip systems, and the devices can be installed in the terminal devices .
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in the embodiment of the present application includes a base station (base station, BS), which may be a device deployed in a wireless access network and capable of performing wireless communication with a terminal device.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the base station involved in the embodiment of the present application may be a base station in fifth generation mobile communications (5th generation mobile networks, 5G) or a base station in LTE, where the base station in 5G may also be called a sending and receiving point ( transmission reception point, TRP) or gNB.
  • the devices for realizing the functions of the network devices can be regarded as network devices; they can also be devices capable of supporting the network devices to realize the functions, such as chip systems, and the devices can be installed in the network devices.
  • NR-V2X is a communication scenario based on sidelink links.
  • X can generally refer to any device with wireless receiving and transmitting capabilities, including but not limited to slow-moving wireless devices, fast Mobile on-board equipment, roadside infrastructure, network control nodes with wireless transmission and reception capabilities, etc.
  • the technical solutions provided in this application can be applied to NR-V2X communication scenarios, and can also be applied to other scenarios based on sidelink-based communication.
  • NR-V2X communication supports unicast, multicast, and broadcast transmission methods. For unicast transmission, the sending terminal sends data, and there is only one receiving terminal. For multicast transmission, the sending terminal sends data, and the receiving terminal is all terminals in a communication group, or all terminals within a certain transmission distance. For broadcast transmission, the sending terminal sends data, and the receiving terminal is any terminal around the sending terminal.
  • resource pool There is a resource pool (resource pool, RP) configuration in NR-V2X, and the resource pool limits the time-frequency resource range of sidelink communication.
  • the minimum time-domain granularity of the resource pool configuration is one slot, and the resource pool can contain discontinuous time slots in time; the minimum frequency-domain granularity is one subchannel, and a subchannel includes multiple continuous channels in the frequency domain.
  • a physical resource block (PRB), in NR-V2X, a subchannel may include 10, 12, 15, 20, 25, 50, 75 or 100 PRBs.
  • the second-order sidelink control information is introduced.
  • the first-order SCI (or first sidelink control information) is carried in the physical sidelink control channel (PSCCH), and is used to indicate the transmission resource, reserved resource information, modulation and coding strategy of the PSSCH ( Modulation and coding scheme, MCS) level, priority and other information.
  • the second-order SCI (or called the second side line control information) is carried in the PSSCH and is used to indicate source ID, destination ID, hybrid automatic repeat transmission HARQ ID, new data indicator (new data indicator, NDI), etc. for data demodulated information.
  • the second-order SCI includes two formats, SCI format 2-A and SCI format 2-B.
  • SCI format 2-A the content in SCI format 2-A is shown in Table 1
  • SCI format 2-B the content in SCI format 2-B is shown in Table 2.
  • HARQ process number Number of bits occupied HARQ process number (HARQ process number) field 4bits NDI domain 1 bit Redundancy version (RV) field 2bits
  • Source ID field 8bits
  • Destination ID field 16bits HARQ feedback indication (HARQ feedback enabled/disabled indicator) field 1 bit Cast type indicator field 2bit Channel State Information Request (CSI request) field 1 bit
  • the source identification code field is used to indicate the source identification code
  • the target identification code field is used to indicate the target identification code
  • the transmission type indication includes: unicast (unicast), groupcast (groupcast) and broadcast (Broadcast).
  • Source ID field 8bits target identifier field 16bits HARQ feedback indication field 1 bit Zone ID field 12bits Communication range requirement field 4bits
  • the area identification code field is used to indicate the area identification code.
  • the terminal device decodes the first-stage SCI from the PSCCH, and determines the format of the second-stage SCI according to the information in the second-stage SCI format (2nd-stage SCI format) field in the first-stage SCI. Furthermore, according to the format of the second-order SCI, the second-order SCI carried in the PSSCH is decoded.
  • the content of the second-stage SCI format (2nd-stage SCI format) field in the first-order SCI is as shown in Table 3.
  • PSFCH is introduced in NR-V2X.
  • the sending terminal sends sideline data, including PSCCH and PSSCH, to the receiving terminal, and the receiving terminal sends hybrid automatic repeat request (HARQ) information to the sending terminal, and the sending terminal judges whether data transmission is required based on the HARQ information fed back by the receiving terminal. Retransmission.
  • the HARQ information is carried in the PSFCH.
  • the HARQ information may be ACK or NACK, ACK indicates successful reception, and NACK indicates unsuccessful reception.
  • PSFCH appears periodically in the time domain.
  • the period size of PSFCH is configured by radio resource control (radio resource control, RRC) parameter.
  • RRC radio resource control
  • the period of the PSFCH may be 1, 2, 4, etc., and the unit is a slot (slot).
  • the resource pool configuration information of the sidelink includes: transmission resources of the PSCCH/PSSCH and transmission resources of the PSFCH.
  • the sending terminal sends the PSCCH/PSSCH in the sending resource pool configured for it.
  • the receiving terminal detects whether there is a PSCCH/PSSCH sent by other terminals in the receiving resource pool configured for it. If detected, the receiving terminal determines the transmission resource for sending PSFCH according to the transmission resource of PSCCH/PSSCH and the configuration information of PSFCH in the receiving resource pool . After sending the PSCCH/PSSCH, the sending terminal will determine resources for receiving the PSFCH according to the PSFCH configuration information in the sending resource pool, and perform PSFCH detection.
  • the sending resource pool configured for the sending terminal is generally the same as the receiving resource pool configured for the receiving terminal, so that the sending terminal and the receiving terminal transmit resources according to the PSSCH and the resources in their respective resource pools
  • the configuration information of PSFCH can determine the same PSFCH transmission resource.
  • the receiving terminal determines the transmission resources used to send the PSFCH in the following manner:
  • the configuration information (sl-PSFCH-RB-Set) sent by the network device can be received, and the configuration information indicates which PRBs in the frequency domain in the resource pool can be used for PSFCH transmission.
  • the PSFCH available PRB subsets associated with each subchannel on each time slot are as follows:
  • the above formula (1) represents the available PRB subset associated with the jth subchannel in the ith time slot in a PSFCH period.
  • FIG. 4 is a schematic diagram of a resource mapping relationship between subchannels of a PSSCH and a PSFCH provided by an embodiment of the present application. As shown in Figure 4, it is assumed that the period of the PSFCH is 2 time slots. There are PRB resources available for PSFCH in slot n+1 and slot n+3. There is a mapping relationship between each subchannel in slot n and the PSFCH available PRB resources in slot n+1. For example, FIG. 4 illustrates that the subchannel s in time slot n is mapped to the k to k+1 PRBs in the PSFCH available PRB set in time slot n+1 (that is, the k to k+1 PRBs are PSFCH available PRBs associated with subchannel s of slot n).
  • mapping relationship between each sub-channel in slot n+3 and the PSFCH available PRB resources in slot n+3 which will not be illustrated here one by one.
  • FIG. 5A is a schematic diagram of a method for determining PSFCH candidate PRBs provided by the embodiment of the present application. As shown in FIG. 5A , assuming that the PSSCH received by the terminal device occupies 4 subchannels, which are respectively subchannel 1 to subchannel 4, the The PSFCH associated with subchannel 1 can use a subset of PRBs as candidate PRBs. Wherein, the PSFCH available PRB subset associated with sub-channel 1 can be obtained by the above formula (1).
  • FIG. 5B is a schematic diagram of another method for determining PSFCH candidate PRBs provided by the embodiment of the present application.
  • the PSSCH received by the terminal device occupies 4 subchannels, which are respectively subchannel 1 to subchannel 4, you can The available PSFCH PRB subset associated with subchannel 1, the available PSFCH PRB subset associated with subchannel 2, the available PSFCH PRB subset associated with subchannel 3, and the available PSFCH PRB subset associated with subchannel 4 are all used as candidate PRBs.
  • the PSFCH available PRB subset associated with each subchannel can be obtained by the above formula (1).
  • the P ID represents the identification of the sending terminal
  • the M ID represents the group identification of the group where the sending terminal and the receiving terminal belong.
  • M ID 0 when the side communication is unicast and multicast type 2.
  • the multicast type 1 means that the receiving terminal only supports feedback of NACK
  • the multicast type 2 means that the receiving terminal can feed back both NACK and ACK.
  • the identifier and group identifier of the terminal device may be allocated when the terminal device establishes a connection with the network device, or may be allocated when a side connection is established between the terminal device and the terminal device.
  • the index of a PRB available for the PSFCH can be uniquely determined through the above formula (4), and the PRB is the target PRB.
  • the index of the cyclic shift pair can also be determined through the above formula (4). According to the determined index of the cyclic shift pair and Table 1, the parameter m 0 for generating the sequence bearing the HACQ information can be determined.
  • the terminal device determines the sequence parameter mcs carrying the HRAQ information according to the decoding situation of the PSSCH. For example, as shown in Table 5, in unicast and multicast type 2 scenarios, if the PSSCH is successfully decoded, ACK should be fed back, and the ACK information is carried by the sequence. At this time, the value of the parameter mcs for generating the sequence is 6; If the decoding of the PSSCH fails, NACK should be fed back, and the NACK information is carried by the sequence. At this time, the value of the parameter mcs for generating the sequence is 0. For another example, as shown in Table 6, in the multicast type 1 scenario, if the decoding of the PSSCH fails, NACK should be fed back, and the NACK information is carried by the sequence. At this time, the value of the parameter mcs of the generated sequence is 0. If successful, no HARQ information is fed back.
  • HARQ information (HARQ-ACK Value) 0 (NACK) 1(ACK) Sequence cyclic shift 0 6
  • HARQ information (HARQ-ACK Value) 0 (NACK) 1(ACK) Sequence cyclic shift 0 N/A
  • a sequence bearing HARQ information is generated by using the determined sequence parameters m0 and mcs, and sent in the target PRB.
  • the current PSFCH resource determination method can determine the only available PSFCH PRB for a PSSCH, and determine the sequence parameters for carrying HARQ information, and finally carry 1 bit in the determined target PRB HARQ information.
  • one PSFCH can only feed back the HARQ information corresponding to one PSSCH, which cannot be applied to the scenario of multiplexing the HARQ information of multiple PSSCHs.
  • the multiplexing of HARQ information of multiple PSSCHs means that the HARQ information of multiple PSSCHs is carried on the same PSFCH.
  • one or more PRBs can be determined when determining PSFCH resources, and the HARQ information of multiple PSSCHs can be on the same PSFCH To meet the requirement of multiplexing HARQ information of multiple PSSCHs.
  • FIG. 6A is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 6A, the method of this embodiment includes:
  • the first terminal device receives multiple different TBs through multiple PSSCHs.
  • each TB corresponds to a PSSCH.
  • the data carried in each TB is side data sent by the second terminal device to the first terminal device.
  • the above multiple TBs are received within one PSFCH period.
  • one PSFCH period is 4 time slots, and time slot 1, time slot 2, time slot 3, and time slot 4 are one PSFCH period.
  • the first terminal device can receive TB1 through the PSSCH of time slot 1, receive TB2 through the PSSCH of time slot 2, receive TB3 through the PSSCH of time slot 3, and receive TB4 through the PSSCH of time slot 4.
  • the first terminal device can also receive TB in some of the above four time slots, for example, receive TB1 through the PSSCH of time slot 1, receive TB2 through the PSSCH of time slot 3, and receive TB2 through the PSSCH of time slot 2 and time slot 1.
  • Slot 4 has no TBs to receive.
  • the foregoing multiple TBs may come from the same second terminal device, or may come from multiple different second terminal devices. This embodiment does not limit it.
  • the first terminal device sends HARQ information corresponding to multiple different TBs on PSFCH resources, where the PSFCH resources include at least one PRB in the frequency domain.
  • the embodiment of the present application is different from the determination method of the above-mentioned existing PSFCH resource.
  • the PSFCH resource includes one or more PRBs in the frequency domain, instead of determining only one PRB. Since PSFCH resources may include multiple PRBs, more HARQ information can be carried by PSFCH resources, thereby meeting the requirement of multiplexing HARQ information of multiple PSSCHs.
  • the first terminal device sends an encoding result on the PSFCH resource, and the encoding result is a result obtained by encoding HARQ information corresponding to multiple TBs.
  • Another difference between the embodiment of the present application and the aforementioned prior art is that, when the embodiment of the present application carries HARQ information in the PSFCH resource, the form of a cyclic shift sequence is no longer used. Because, in the form of a cyclic shift sequence, only 1 bit of information can be carried in one PSFCH PRB.
  • the HARQ information corresponding to multiple TBs is encoded, and the encoding result is carried on the PSFCH resource for transmission. In this way, it is equivalent to canceling the restriction that one PSFCH PRB can only carry 1-bit information, so that more information can be carried on PSFCH resources.
  • FIG. 6B is a schematic diagram of an interaction process of a communication method provided by an embodiment of the present application. As shown in Figure 6B, the method of this embodiment includes:
  • the second terminal device sends multiple different TBs to the first terminal device through multiple PSSCHs.
  • the first terminal device receives multiple different TBs through multiple PSSCHs.
  • the first terminal device determines the time-domain resource of the PSFCH resource according to the time-domain indication information, and determines the frequency domain of the PSFCH resource according to the frequency-domain indication information or the time-frequency resource occupied by the PSSCH that transmits at least one TB among the multiple TBs Resources: PSFCH resources include at least one PRB in the frequency domain.
  • the first terminal device sends HARQ information corresponding to multiple different TBs to the second terminal device on the PSFCH resource.
  • the first terminal device when the first terminal device determines the time domain resource of the PSFCH resource, it may adopt the following possible solutions.
  • Time domain resource determination scheme 1
  • the time domain indication information is used to indicate the time interval between the PSSCH for transmitting each TB and the PSFCH for transmitting its corresponding HARQ information. For different TBs, the time intervals indicated by the corresponding time domain indication information may be different.
  • the above-mentioned time interval may be a start time interval or an end time interval, which is not limited in this embodiment of the present application.
  • the first terminal device determines the time-domain resource of the PSFCH resource according to the receiving moment of the first PSSCH and the time interval between the first PSSCH and the PSFCH corresponding to the first PSSCH.
  • the first PSSCH is used to transmit one or more TBs in the plurality of TBs.
  • the transmission time can be determined.
  • the time domain resources of the PSFCH resources determined above for transmitting the HARQ information corresponding to each TB are the same.
  • the above time domain indication information may be carried in the SCI.
  • the first terminal device also receives the SCI corresponding to each TB from the second terminal device.
  • the SCI includes time-domain indication information (for example, PSSCH-to-HARQ_feedback), indicating the time interval between the PSSCH for transmitting the TB and the PSFCH for transmitting the corresponding HARQ information.
  • time-domain indication information for example, PSSCH-to-HARQ_feedback
  • the first terminal device can determine the time domain resource of the PSFCH resource for transmitting the HARQ information corresponding to the TB according to the time domain resource of the PSSCH resource for transmitting the TB and the time interval carried in the SCI corresponding to the TB.
  • the above time domain indication information is carried in the second-order SCI.
  • a new format of the second-order SCI can be used, for example, SCI format 2-C.
  • the value of the 2nd-stage SCI formats field in the first-order SCI can be set to 10 or 11 to indicate SCI format 2-C.
  • the second-order SCI may also include a sidelink assignment index (sidelink assignment index, SAI), which is used to indicate the position of the HARQ information corresponding to the TB in the codebook (codebook).
  • SAI sidelink assignment index
  • the second terminal device dynamically indicates the time interval between the PSSCH for transmitting each TB and the PSFCH for transmitting its corresponding HARQ information in the SCI, so that the first terminal device can determine the time interval according to the time interval indicated in the SCI. Find out which time domain resource needs to feed back the HARQ information of the TB.
  • FIG. 7 is a schematic diagram of determining time-domain resources of PSFCH resources provided by an embodiment of the present application.
  • the first terminal device receives 3 TBs, which are TB1 transmitted in time slot 1, TB2 transmitted in time slot 2, and TB3 transmitted in time slot 3.
  • the time interval (PSSCH-to-HARQ_feedback) carried in the SCI corresponding to TB1 transmitted in time slot 1 is 3 time slots
  • the time interval (PSSCH-to-HARQ_feedback) carried in the SCI corresponding to TB2 transmitted in time slot 2 (PSSCH-to-HARQ_feedback) is three time slots.
  • the first terminal device may determine that the HARQ information of the above TB1, TB2, and TB3 needs to be fed back in time slot 4.
  • the time domain indication information is used to indicate the period of the PSFCH.
  • Exemplary PSFCH periods may be 1, 2, 4 slots, etc.
  • the above time domain indication information may be carried in RRC signaling.
  • the first terminal device may determine the time domain resource of the PSFCH resource according to the period of the PSFCH. For example, it is assumed that the period of PSFCH is 4 time slots, that is, there are PSFCH resources in time slot 4 and time slot 8 . After receiving the TB in time slot 1, time slot 2, time slot 3, and time slot 4, the first terminal device may determine that the time domain resource of the PSFCH resource is time slot 4. After receiving the TB in time slot 5, time slot 6, time slot 7, and time slot 8, the first terminal device may determine that the time domain resource of the PSFCH resource is time slot 8.
  • the time domain indication information is used to indicate the HARQ information feedback period.
  • the feedback period of the HRAQ information is K times the period of the PSFCH, and K is an integer greater than or equal to 1.
  • the feedback period of HARQ information is 4 time slots.
  • HARQ information feedback is only performed in time slot 4 and time slot 8 . That is to say, assuming that the first terminal device receives a TB in time slot 1, time slot 2, time slot 3, and time slot 4, it determines that the time domain resource of the PSFCH resource is time slot 4. Assuming that the first terminal device receives TBs in time slot 5, time slot 6, time slot 7, and time slot 8, it determines that the time domain resource of the PSFCH resource is time slot 8.
  • the above time domain indication information may be carried in RRC signaling.
  • the first terminal device when the first terminal device determines the frequency domain resource of the PSFCH resource, it may adopt the following possible solutions.
  • the first terminal device determines the frequency domain resource of the PSFCH resource according to the time-frequency resource occupied by the PSSCH for transmitting at least one TB of the multiple TBs.
  • the first terminal device determines the frequency domain resource of the PSFCH resource according to the time-frequency resource occupied by the PSSCH for transmitting the first TB.
  • the first TB is any one of the multiple TBs.
  • the first terminal device acquires a PSFCH resource set, and the PSFCH resource set includes multiple PRBs.
  • the PSFCH resource set may be pre-configured by the network device to the first terminal device.
  • the first terminal device determines n PRBs from the PSFCH resource pool according to the first number n and the time-frequency resources occupied by the PSSCH for transmitting the first TB, where n is an integer greater than or equal to 1, and the n PRBs are related to the transmission first There is a preset mapping relationship between the time-frequency resources occupied by the PSSCH of a TB.
  • the first terminal device determines n PRBs as frequency domain resources of PSFCH resources.
  • the above-mentioned preset mapping relationship may refer to an association relationship between each subchannel of each time slot of the PSSCH and available PRBs of the PSFCH, and the above-mentioned association relationship may be as shown in FIG. 4 .
  • the foregoing association relationship may be pre-configured by the network device, or agreed in advance by the first terminal device and the second terminal device.
  • the first TB is the first TB among the multiple TBs.
  • FIG. 8 is a schematic diagram of determining frequency domain resources of PSFCH resources provided by an embodiment of the present application.
  • the time-frequency resource occupied by the PSSCH that transmits TB1 can be used to determine the association of TB1 From the PSFCH resources associated with TB1, determine the frequency domain resources of the PSFCH resources that are finally used to feed back the HARQ information of the above four TBs.
  • the following describes in detail how to determine the frequency domain resource of the PSFCH resource according to the time-frequency resource occupied by the first TB.
  • the above formula (1) can be substituted into the above formula (1), and the PSFCH available PRB associated with each subchannel of the time slot occupied by the PSSCH transmitting the first TB can be determined .
  • the following formula (5) can be used to determine the candidate PRB for sending PSFCH from the PSFCH available PRB associated with each subchannel of the time slot occupied by the PSSCH for transmitting the first TB:
  • n is the first number in this embodiment of the present application, that is, the number of PRBs required for sending the PSFCH this time, and n is an integer greater than 0. is a candidate PRB for sending PSFCH.
  • the first number n may be carried in SCI or RRC signaling.
  • the value of the first number n may be determined by the number of bits of the HARQ information to be fed back and the modulation order.
  • the first number n may be obtained according to a preset field in the SCI.
  • the first number n can be obtained according to the SAI field in the second-order SCI. In this way, according to actual needs, it is possible to determine in real time how many PSFCH PRBs the HARQ information to be fed back needs to occupy, and determine PSFCH resources as needed, without causing waste of PSFCH resources.
  • FIG. 5A is a schematic diagram of a method for determining PSFCH candidate PRBs provided by the embodiment of the present application. As shown in FIG. 5A , it is assumed that the PSSCH for transmitting the first TB received by the first terminal device occupies 4 subchannels, which are respectively subchannel 1 For sub-channel 4, the PSFCH available PRB subset associated with sub-channel 1 may be used as a candidate PRB. Wherein, the PSFCH available PRB subset associated with sub-channel 1 can be obtained by the above formula (1).
  • FIG. 5B is a schematic diagram of another method for determining PSFCH candidate PRBs provided by the embodiment of the present application. As shown in FIG. 5B , it is assumed that the PSSCH for transmitting the first TB received by the first terminal device occupies 4 subchannels, and the subchannels are respectively From 1 to subchannel 4, the available PRB subset of PSFCH associated with subchannel 1, the available PRB subset of PSFCH associated with subchannel 2, the available PRB subset of PSFCH associated with subchannel 3, and the available PRB subset of PSFCH associated with subchannel 4 All sets are used as candidate PRBs. Wherein, the PSFCH available PRB subset associated with each subchannel can be obtained by the above formula (1).
  • P ID represents the identity of the sending terminal (ie, the second terminal device), and when the side-line communication is multicast type 1, M ID represents the sending terminal (ie, the second terminal device) and the receiving terminal (ie, the first terminal device)
  • M ID represents the sending terminal (ie, the second terminal device) and the receiving terminal (ie, the first terminal device)
  • the ID of the group the group is in. M ID 0 when the side communication is unicast and multicast type 2.
  • the multicast type 1 means that the receiving terminal only supports feedback of NACK
  • the multicast type 2 means that the receiving terminal can feed back both NACK and ACK.
  • the identifier of the terminal device and the identifier of the group may be allocated when a terminal device establishes a connection with a network device, or may be allocated when a sideline connection is established between a terminal device and a terminal device.
  • the indices of n PRBs can be determined through the above formula (6), and the n PRBs are target PRBs.
  • one group index can be determined from 25 group indexes, and the PRB in the group corresponding to the group index is the target PRB. In this way, the final determined number of target PRBs is two.
  • this solution can determine n PRBs by introducing the first number n, so that it can be used for Feedback the HARQ information of multiple TBs.
  • the frequency domain indication information includes at least one PRB index; the first terminal device may determine the frequency domain resource of the PSFCH resource according to the at least one PRB index.
  • the above frequency domain indication information may be carried in the SCI or in the RRC signaling.
  • the above frequency domain indication information may be carried in the second-order SCI.
  • the PSFCH resource set indication (resource set indication) information field is included in the second-order SCI, and the information field includes one or more PRB indexes.
  • the index of the included PRB can be configured by RRC parameters.
  • a new format of the second-order SCI can be used, for example, SCI format 2-C.
  • the value of the 2nd-stage SCI formats field in the first-order SCI can be set to 10 or 11 to indicate SCI format 2-C.
  • the available PRBs for PSFCH in the resource pool in step (1) may be different from the frequency domain resources for PSFCH in protocol version R16.
  • the PSFCH resource indicated in the 2nd-stage SCI may be different from the PSFCH frequency domain resource in the protocol version R16.
  • time domain resource determination scheme 1 when determining PSFCH resources, the above-mentioned time domain resource determination scheme 1, time domain resource determination scheme 2 and time domain resource determination scheme 3, frequency domain resource determination scheme 1, and frequency domain resource determination scheme 2 can be used in combination .
  • time domain resource determination scheme 2 when determining PSFCH resources, the above-mentioned time domain resource determination scheme 1, time domain resource determination scheme 2 and time domain resource determination scheme 3, frequency domain resource determination scheme 1, and frequency domain resource determination scheme 2 can be used in combination .
  • several implementation schemes are combined with examples for illustration.
  • the time domain resource determination scheme 1 when determining the time domain resource of the PSFCH resource, the time domain resource determination scheme 1 is adopted, and when the frequency domain resource of the PSFCH resource is determined, the frequency domain resource determination scheme 1 is adopted.
  • the time domain resource determination scheme 1 when determining the time domain resource of the PSFCH resource, the time domain resource determination scheme 1 is adopted, and when the frequency domain resource of the PSFCH resource is determined, the frequency domain resource determination scheme 2 is adopted.
  • the time domain resource determination scheme 2 when determining the time domain resource of the PSFCH resource, the time domain resource determination scheme 2 is adopted, and when the frequency domain resource of the PSFCH resource is determined, the frequency domain resource determination scheme 1 is adopted.
  • the time domain resource determination scheme 2 when determining the time domain resource of the PSFCH resource, the time domain resource determination scheme 2 is adopted, and when the frequency domain resource of the PSFCH resource is determined, the frequency domain resource determination scheme 2 is adopted.
  • the time domain resource determination scheme 3 when determining the time domain resource of the PSFCH resource, the time domain resource determination scheme 3 is adopted, and when the frequency domain resource of the PSFCH resource is determined, the frequency domain resource determination scheme 1 is adopted.
  • the time domain resource determination scheme 3 when determining the time domain resource of the PSFCH resource, the time domain resource determination scheme 3 is adopted, and when the frequency domain resource of the PSFCH resource is determined, the frequency domain resource determination scheme 2 is adopted.
  • each scheme for determining resources in the time domain and each scheme for determining resources in the frequency domain may refer to the detailed descriptions of the foregoing embodiments, and details are not repeated here.
  • the embodiment of the present application realizes the multiplexing of HARQ information corresponding to multiple TBs (PSSCHs) into one PSFCH, which meets the requirement of the HARQ information multiplexing scenario and improves the resource utilization rate of feeding back the HARQ information.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device provided in this embodiment may be in the form of software and/or hardware.
  • the communication device provided in this embodiment may be a terminal device, or may be a module, unit, chip, chip module, etc. in the terminal device.
  • the communication device 900 provided in this embodiment includes: a receiving module 901 and a sending module 903 . in,
  • the receiving module 901 is configured to perform the receiving step performed by the first terminal device in the foregoing method embodiments.
  • the receiving module 901 may execute S601 or S611 in the foregoing embodiments.
  • the sending module 903 is configured to execute the receiving step executed by the first terminal device in the above method embodiment.
  • the sending module 903 may execute S602 or S613 in the foregoing embodiments.
  • the communications apparatus 900 may further include a determination module 902 configured to perform the step of determining PSFCH resources performed by the first terminal device in the above method embodiments.
  • the determining module 902 may execute S612 in the foregoing embodiments.
  • the communication device provided in this embodiment can be used to implement the communication method performed by the first terminal device in any of the above method embodiments, and its implementation principle and technical effect are similar, and details are not described here.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device, or a chip, a chip module, a processor, etc. in the terminal device.
  • a communication device 1000 provided in this embodiment includes: a transceiver 1001 , a memory 1002 , and a processor 1003 .
  • the transceiver 1001 may include: a transmitter and/or a receiver.
  • the transmitter may also be called a transmitter, a transmitter, a sending port, or a sending interface, and similar descriptions
  • the receiver may also be called a receiver, a receiver, a receiving port, or a receiving interface, or similar descriptions.
  • the transceiver 1001 , the memory 1002 , and the processor 1003 are connected to each other through a bus 1004 .
  • the memory 1002 is used to store computer-executable instructions
  • the processor 1003 is configured to execute the computer-executed instructions stored in the memory, so as to enable the communication device 1000 to execute the method shown in any of the foregoing embodiments.
  • the transmitter in the transceiver 1001 may be used to perform the sending function of the terminal device in the above method embodiment.
  • the receiver in the transceiver 1001 may be used to perform the receiving function of the terminal device in the foregoing method embodiments.
  • the processor 1003 may be configured to execute the communication method executed by the terminal device in the foregoing method embodiments.
  • the communication device provided in this embodiment can be used to implement the communication method performed by the first terminal device in any of the above method embodiments, and its implementation principle and technical effect are similar, and details are not described here.
  • An embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, it can implement the method executed by the first terminal device in any of the above method embodiments.
  • the implementation principle and technical effect of the communication method are similar, and will not be repeated here.
  • the embodiment of the present application also provides a chip, including: a memory, a processor, and hardware system resources, the memory stores computer-executed instructions, and the processor executes the computer-executed instructions to implement any of the above method embodiments
  • a chip including: a memory, a processor, and hardware system resources
  • the memory stores computer-executed instructions
  • the processor executes the computer-executed instructions to implement any of the above method embodiments
  • the implementation principle and technical effect of the communication method performed by the first terminal device are similar, and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a computer, the communication method performed by the first terminal device in any of the above method embodiments is implemented, and its implementation principle and technical effect are similar. I won't go into details here.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods, for example, multiple modules can be combined or integrated. to another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or modules may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing unit, each module may exist separately physically, or two or more modules may be integrated into one unit.
  • the units formed by the above modules can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software function modules can be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or a processor (processor) to execute the method described in each embodiment of the present application. partial steps.
  • processor can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC) wait.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in conjunction with the application can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the storage may include a high-speed RAM memory, and may also include a non-volatile storage NVM, such as at least one disk storage, and may also be a U disk, a mobile hard disk, a read-only memory, a magnetic disk, or an optical disk.
  • NVM non-volatile storage
  • the bus can be an Industry Standard Architecture (Industry Standard Architecture, ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • the above-mentioned storage medium can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable In addition to programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory magnetic memory
  • flash memory magnetic disk or optical disk.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and the storage medium may be located in application specific integrated circuits (Application Specific Integrated Circuits, ASIC).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium can also exist in the electronic device or the main control device as discrete components.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置、计算机可读存储介质及计算机程序产品,该方法包括:第一终端设备通过多个PSSCH接收多个不同TB,在PSFCH资源上发送多个不同TB对应的HARQ信息。其中,PSFCH资源在频域上包括至少一个PRB。通过上述过程,实现了多个TB(即多个PSSCH)对应的HARQ信息复用一个PSFCH,满足HARQ信息复用场景的需求,提高了HARQ信息的资源利用率。

Description

通信方法及装置、计算机可读存储介质及计算机程序产品
本申请要求于2021年09月17日提交中国专利局、申请号为2021110923709、申请名称为“通信方法及装置、计算机可读存储介质及计算机程序产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置、计算机可读存储介质及计算机程序产品。
背景技术
在车联网(vehicle to everything,V2X)技术中,终端设备与终端设备之间可以通过侧链路(sidelink,SL)进行通信。
在新空口(new radio,NR)V2X场景下,侧链路通信支持混合自动重传请求(hybrid automatic repeat request,HARQ)反馈。具体而言,发送端通过物理侧链路共享信道(physical sidelink shared channel,PSSCH)向接收端发送数据,接收端通过物理侧链路反馈信道(physical sidelink feedback channel,PSFCH)向发送端反馈HARQ信息(例如,HARQ信息可以为确认(acknowledgement,ACK)或者否认(negative acknowledgement,NACK),ACK表示成功接收,NACK表示未成功接收),以便发送端获知数据的接收情况。
如何提高反馈HARQ信息的资源利用率是亟待解决的技术问题。
发明内容
本申请提供一种通信方法及装置、计算机可读存储介质及计算机程序产品,用以提高反馈HARQ信息的资源利用率。
第一方面,本申请提供一种通信方法,包括:
第一终端设备通过多个PSSCH接收多个不同TB;
所述第一终端设备在PSFCH资源上发送所述多个不同TB对应的HARQ信息,所述PSFCH资源在频域上包括至少一个PRB。
一种可能的实现方式中,所述第一终端设备在PSFCH资源上发送所述多个不同TB对应的HARQ信息,包括:
所述第一终端设备在所述PSFCH资源上发送编码结果,所述编码结果为对所述多个TB对应的HARQ信息进行编码得到的结果。
一种可能的实现方式中,所述PSFCH资源包括时域资源和频域资源,在所述第一终端设备在PSFCH资源上发送所述多个不同TB对应的HARQ信息之前,所述方法还包括:
所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源;
所述第一终端设备根据频域指示信息或者传输所述多个TB中至少一个TB的PSSCH所占的时频资源,确定所述PSFCH资源的频域资源。
一种可能的实现方式中,所述时域指示信息用于指示传输每个TB的PSSCH与传输其对应的HARQ信息的PSFCH之间的时间间隔;
所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源,包括:
所述第一终端设备根据第一PSSCH的接收时刻以及所述第一PSSCH与所述第一PSSCH对应的PSFCH之间的时间间隔,确定所述PSFCH资源的时域资源,所述第一PSSCH用于传输所述多个TB中的一个或多个TB。
一种可能的实现方式中,所述时域指示信息用于指示PSFCH的周期;所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源,包括:
所述第一终端设备根据所述PSFCH的周期,确定所述PSFCH资源的时域资源。
一种可能的实现方式中,所述时域指示信息用于指示HARQ信息反馈周期;所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源,包括:
所述第一终端设备根据所述HARQ信息反馈周期,确定所述PSFCH资源的时域位置;其中,所述HARQ信息反馈周期为PSFCH的周期的K倍,所述K为大于或者等于1的整数。
一种可能的实现方式中,所述频域指示信息包括:所述至少一个PRB的索引;
所述第一终端设备根据频域指示信息,确定所述PSFCH资源的频域资源,包括:
所述第一终端设备根据所述至少一个PRB的索引,确定所述PSFCH资源的频域资源。
一种可能的实现方式中,所述第一终端设备根据所述传输多个TB中至少一个TB的PSSCH所占的时频资源,确定所述PSFCH资源的频域资源,包括:
所述第一终端设备获取PSFCH资源集,所述PSFCH资源集中包括多个PRB;
所述第一终端设备根据第一数量n以及传输第一TB的PSSCH所占的时频资源,从所述PSFCH资源池中确定出n个PRB,n为大于或者等于1的整数,所述n个PRB与传输所述第一TB的PSSCH所占的时频资源之间具有预设映射关系,所述第一TB为所述多个TB中的任意一个TB;
所述第一终端设备将所述n个PRB确定为所述PSFCH资源的频域资源。
一种可能的实现方式中,所述第一数量n承载在侧行控制信息SCI或者无线资源控制RRC信令中。
一种可能的实现方式中,所述时域指示信息承载在SCI或者RRC信令中,和/或,所述频域指示信息承载在SCI或者RRC信令中。
第二方面,本申请提供一种通信装置,所述通信装置包括:
接收模块,用于通过多个物理侧行共享信道PSSCH接收多个不同传输块TB;
发送模块,用于在物理侧行反馈信道PSFCH资源上发送所述多个不同TB对应的混合自动重传请求HARQ信息,所述PSFCH资源在频域上包括至少一个物理资源块PRB。
一种可能的实现方式中,所述发送模块具体用于:
在所述PSFCH资源上发送编码结果,所述编码结果为对所述多个TB对应的 HARQ信息进行编码得到的结果。
一种可能的实现方式中,所述PSFCH资源包括时域资源和频域资源,所述通信装置还包括确定模块,所述确定模块用于:
根据时域指示信息,确定所述PSFCH资源的时域资源;
根据频域指示信息或者传输所述多个TB中至少一个TB的PSSCH所占的时频资源,确定所述PSFCH资源的频域资源。
一种可能的实现方式中,所述时域指示信息用于指示传输每个TB的PSSCH与传输其对应的HARQ信息的PSFCH之间的时间间隔;所述确定模块具体用于:
根据第一PSSCH的接收时刻以及所述第一PSSCH与所述第一PSSCH对应的PSFCH之间的时间间隔,确定所述PSFCH资源的时域资源,所述第一PSSCH用于传输所述多个TB中的一个或多个TB。
一种可能的实现方式中,所述时域指示信息用于指示PSFCH的周期;所述确定模块具体用于:
根据所述PSFCH的周期,确定所述PSFCH资源的时域资源。
一种可能的实现方式中,所述时域指示信息用于指示HARQ信息反馈周期;所述确定模块具体用于:
根据所述HARQ信息反馈周期,确定所述PSFCH资源的时域位置;其中,所述HARQ信息反馈周期为PSFCH的周期的K倍,所述K为大于或者等于1的整数。
一种可能的实现方式中,所述频域指示信息包括:所述至少一个PRB的索引;所述确定模块具体用于:
根据所述至少一个PRB的索引,确定所述PSFCH资源的频域资源。
一种可能的实现方式中,所述确定模块具体用于:
获取PSFCH资源集,所述PSFCH资源集中包括多个PRB;
根据第一数量n以及传输第一TB的PSSCH所占的时频资源,从所述PSFCH资源池中确定出n个PRB,n为大于或者等于1的整数,所述n个PRB与传输所述第一TB的PSSCH所占的时频资源之间具有预设映射关系,所述第一TB为所述多个TB中的任意一个TB;
将所述n个PRB对应的频域位置,确定所述目标资源的频域位置。
一种可能的实现方式中,所述第一数量n承载在侧行控制信息SCI或者无线资源控制RRC信令中。
一种可能的实现方式中,所述时域指示信息承载在SCI或者RRC信令中,和/或,所述频域指示信息承载在SCI或者RRC信令中。
第三方面,本申请提供一种通信装置,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储有计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现如第一方面中任一种可能的实现方式所提供的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时使得第一方面中任一种可能的实现 方式所提供的方法被执行。
第五方面,本申请提供一种计算机程序产品,包括计算机程序,所述计算机程序被计算机执行时使得第一方面中任一种可能的实现方式所提供的方法被执行。
本申请提供的通信方法及装置、计算机可读存储介质及计算机程序产品,第一终端设备可以在一个PSFCH上发送多个不同TB对应的HARQ信息,实现了多个TB对应的HARQ信息复用一个PSFCH,满足HARQ信息复用场景的需求,提高了反馈HARQ信息的资源利用率。
附图说明
图1为本申请实施例提供的一种应用场景示意图;
图2为本申请实施例提供的另一种应用场景示意图;
图3为本申请实施例提供的又一种应用场景示意图;
图4为本申请实施例提供一种PSSCH的子信道与PSFCH之间的资源映射关系示意图;
图5A为本申请实施例提供的一种确定PSFCH候选PRB的方式示意图;
图5B为本申请实施例提供的另一种确定PSFCH候选PRB的方式示意图;
图6A为本申请实施例提供的一种通信方法的流程示意图;
图6B为本申请实施例提供的一种通信方法的交互流程示意图;
图7为本申请实施例提供的一种确定PSFCH资源的时域资源的示意图;
图8为本申请实施例提供的一种确定PSFCH资源的频域资源的示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,并非用于描述特定的顺序或先后次序。本申请提供的方法中各个步骤的执行顺序仅仅为示例,在实际实现时可以有其他的顺序,本申请不作限制。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在介绍本申请实施例提供的技术方案之前,首先对本申请实施例可能应用的应用场景进行说明。
示例性的,图1为本申请实施例提供的一种应用场景示意图。图1所示的通信系统中包括一个网络设备101以及两个终端设备(分别为终端设备102和终端设备103), 终端设备102和终端设备103均处于网络设备101的覆盖范围内。网络设备101可以分别与终端设备102、终端设备103通信。终端设备102可以与终端设备103通信。示例性的,终端设备102可以通过网络设备101向终端设备103发送消息,终端设备102还可以直接向终端设备103发送消息。其中,终端设备102与终端设备103之间直接通信的链路称为侧链路,也可以称为设备到设备(device-to-device,D2D)链路、侧行链路等。侧链路上的传输资源可以由网络设备分配。
示例性的,图2为本申请实施例提供的另一种应用场景示意图。图2所示的通信系统同样包括一个网络设备101以及两个终端设备,与图1不同的是,终端设备103处于网络设备101的覆盖范围内,终端设备104在网络设备101的覆盖范围之外。网络设备101可以与终端设备103通信,终端设备103可以与终端设备104通信。示例性的,终端设备103可以接收网络设备101发送的配置信息,根据配置信息进行侧行通信。由于终端设备104无法接收网络设备101发送的配置信息,终端设备104可以根据预配置(pre-configuration)信息以及终端设备103发送的侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息,进行侧行通信。
示例性的,图3为本申请实施例提供的又一种应用场景示意图。图3所示的终端设备104和终端设备105均在网络设备101的覆盖范围之外。终端设备104与终端设备105均可以根据预配置信息确定侧行配置,进行侧行通信。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端设备的功能的装置均可以认为是终端设备;终端设备也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。示例性地,本申请实施例涉及到的基站可以是第五代移动通信(5th generation mobile networks,5G)中的基站或LTE中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,用于实现网络设备的功能的装置均可以认为是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
需要说明的是,本申请实施例描述的系统架构以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本 领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的问题,同样适用。
NR-V2X是基于侧行链路进行通信的一种通信场景,在NR-V2X通信中,X可以泛指任意具有无线接收和发送能力的设备,包括但不限于慢速移动的无线装置,快速移动的车载设备,路侧基础设施、具有无线发射接收能力的网络控制节点等。本申请提供的技术方案可以应用于NR-V2X通信场景中,也可以应用于其他基于侧行链路进行通信的场景中。NR-V2X通信支持单播、组播、广播的传输方式。对于单播传输,发送终端发送数据,接收终端只有一个。对于组播传输,发送终端发送数据,接收终端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端。对于广播传输,发送终端发送数据,接收终端是发送终端周围的任意一个终端。
NR-V2X中存在资源池(resource pool,RP)的配置,资源池限定了侧行通信的时频资源范围。资源池配置的最小时域粒度为一个时隙(slot),资源池内可以包含时间上不连续的时隙;最小频域粒度为一个子信道(subchannel),一个子信道包括频域上连续的多个物理资源块(physical resource block,PRB),在NR-V2X中,一个子信道可以包括10、12、15、20、25、50、75或100个PRB。
NR-V2X通信中,引入2阶侧行控制信息(sidelink control information,SCI)。第一阶SCI(或称为第一侧行控制信息)承载在物理侧行控制信道(physical sidelink control channel,PSCCH)中,用于指示PSSCH的传输资源、预留资源信息、调制与编码策略(modulation and coding scheme,MCS)等级、优先级等信息。第二阶SCI(或称为第二侧行控制信息)承载在PSSCH中,用于指示源ID、目的ID、混合自动重传HARQ ID、新数据指示(new data indicator,NDI)等用于数据解调的信息。
目前协议中,第二阶SCI包括两种格式(format),SCI format 2-A和SCI format 2-B。其中,SCI format 2-A中的内容如表1所示,SCI format 2-B中的内容如表2所示。
表1
SCI format 2-A中包括的内容 所占bit数
HARQ进程号(HARQ process number)域 4bits
NDI域 1bit
冗余版本(Redundancy version,RV)域 2bits
源标识码(Source ID)域 8bits
目标标识码(Destination ID)域 16bits
HARQ反馈指示(HARQ feedback enabled/disabled indicator)域 1bit
传输类型指示(Cast type indicator)域 2bit
信道状态信息请求(CSI request)域 1bit
其中,源标识码域用于指示源标识码,目标标识码域用于指示目标标识码,传输类型指示包括:单播(unicast)、组播(groupcast)和广播(Broadcast)。
表2
SCI format 2-B中包括的内容 所占bit数
HARQ进程号域 4bits
新数据指示域 1bit
冗余版本域 2bits
源标识码域 8bits
目标标识码域 16bits
HARQ反馈指示域 1bit
区域标识码(Zone ID)域 12bits
通信范围要求距离(Communication range requirement)域 4bits
其中,区域标识码域,用于指示区域标识码。
终端设备从PSCCH中解码出第一阶SCI,根据第一阶SCI中的第二阶SCI格式(2nd-stage SCI format)域中的信息,确定出第二阶SCI的格式。进而根据第二阶SCI的格式,对PSSCH中承载的第二阶SCI进行解码。
其中,第一阶SCI中的第二阶SCI格式(2nd-stage SCI format)域的内容如表3所示。
表3
Figure PCTCN2021143050-appb-000001
为了提高通信的可靠性,在NR-V2X中引入了PSFCH。发送终端向接收终端发送侧行数据,包括PSCCH和PSSCH,接收终端向发送终端发送混合自动重传请求(hybrid automatic repeat request,HARQ)信息,发送终端根据接收终端反馈的HARQ信息判断是否需要进行数据重传。其中,HARQ信息承载在PSFCH中。例如,HARQ信息可以为ACK或者NACK,ACK表示成功接收,NACK表示未成功接收。
PSFCH在时域上是周期性出现的。PSFCH的周期大小由无线资源控制(radio resource control,RRC)参数配置。示例性的,PSFCH的周期可以为1、2、4等,单位为时隙(slot)。
侧行链路的资源池配置信息包括:PSCCH/PSSCH的传输资源,以及PSFCH的传输资源。发送终端在为其配置的发送资源池中发送PSCCH/PSSCH。接收终端在为其配置的接收资源池中检测是否存在其他终端发送的PSCCH/PSSCH,如果检测到,接收终端根据PSCCH/PSSCH的传输资源以及接收资源池中PSFCH的配置信息确定发送PSFCH的传输资源。发送终端发送PSCCH/PSSCH后,会根据发送资源池中的PSFCH配置信息确定接收PSFCH的资源,并进行PSFCH的检测。为了让发送终端和接收终端能够正常进行数据传输,通常为发送终端配置的发送资源池与为接收终端配置的接收资源池相同,从而使得发送终端和接收终端根据PSSCH传输资源以及各自资源池中的PSFCH的配置信息可以确定相同的PSFCH传输资源。
目前协议中,接收终端采用如下方式确定用于发送PSFCH的传输资源:
(1)在资源池中获取PSFCH可用的PRB集(PRB set)
示例性的,可以接收网络设备发送的配置信息(sl-PSFCH-RB-Set),配置信息指 示资源池中频域上的哪些PRB可用于PSFCH传输。
(2)获取一个PSFCH周期内每个时隙上的每个子信道关联的PSFCH可用PRB子集(PRB subset)。
示例性的,每个时隙上的每个子信道关联的PSFCH可用PRB子集如下:
Figure PCTCN2021143050-appb-000002
Figure PCTCN2021143050-appb-000003
其中,上述公式(2)中,
Figure PCTCN2021143050-appb-000004
表示sl-PSFCH-RB-Set指示的PSFCH可用PRB总数,
Figure PCTCN2021143050-appb-000005
表示PSFCH所关联的PSSCH的时隙数,N subch表示每个时隙的子信道数;
Figure PCTCN2021143050-appb-000006
表示PSFCH可用PRB可以划分的子集总数。经过上述公式(2)计算得到的
Figure PCTCN2021143050-appb-000007
表示每个PRB子集中包括的PRB数量(即每个时隙上的每个子信道关联的PSFCH可用PRB的数量)。
上述公式(1)表示的是一个PSFCH周期内第i个时隙中的第j个子信道所关联的可用PRB子集。
Figure PCTCN2021143050-appb-000008
图4为本申请实施例提供的一种PSSCH的子信道与PSFCH之间的资源映射关系示意图。如图4所示,假设PSFCH的周期为2个时隙。在时隙n+1以及时隙n+3存在PSFCH可用的PRB资源。时隙n中的每个子信道与时隙n+1中的PSFCH可用PRB资源之间存在映射关系。例如,图4示例的是,时隙n中的子信道s被映射至时隙n+1中的PSFCH可用PRB集中的第k至k+1个PRB(也就是说,第k至k+1个PRB为时隙n的子信道s关联的PSFCH可用PRB)。时隙n+1中的每个子信道与时隙n+1中的PSFCH可用PRB资源之间存在映射关系,时隙n+2中的每个子信道与时隙n+3中的PSFCH可用PRB资源之间存在映射关系,时隙n+3中的每个子信道与时隙n+3中的PSFCH可用PRB资源之间存在映射关系,此处不一一举例说明。
(3)根据接收到的PSSCH所占的时频资源,确定用于发送PSFCH的候选PRB以及循环移位对(cyclic shift pairs)的总数。
示例性的,可以采用如下公式(3.1)确定出用于发送PSFCH的候选PRB以及循环移位对(cyclic shift pairs)的总数
Figure PCTCN2021143050-appb-000009
Figure PCTCN2021143050-appb-000010
上述公式(3.1)中,
Figure PCTCN2021143050-appb-000011
取值为1或
Figure PCTCN2021143050-appb-000012
为一个PSSCH所占的子信道总数。
Figure PCTCN2021143050-appb-000013
取值为1时,说明将PSSCH所占的其中一个子信道关联的PSFCH可用PRB子集作为候选PRB。图5A为本申请实施例提供的一种确定PSFCH候选PRB的方式示意图,如图5A所示,假设终端设备接收到的PSSCH占了4个子信道,分别为子信道1至子信道4,可以将子信道1关联的PSFCH可用PRB子集作为候选PRB。其中,子信道1关联的PSFCH可用PRB子集可以通过上述公式(1)得到。
Figure PCTCN2021143050-appb-000014
取值为
Figure PCTCN2021143050-appb-000015
时,说明将PSSCH所占的所有子信道关联的PSFCH可用PRB子集均作为候选PRB。图5B为本申请实施例提供的另一种确定PSFCH候选PRB 的方式示意图,如图5B所示,假设终端设备接收到的PSSCH占了4个子信道,分别为子信道1至子信道4,可以将子信道1关联的PSFCH可用PRB子集、子信道2关联的PSFCH可用PRB子集、子信道3关联的PSFCH可用PRB子集、子信道4关联的PSFCH可用PRB子集均作为候选PRB。其中,每个子信道关联的PSFCH可用PRB子集可以通过上述公式(1)得到。
上述公式(3.1)中,
Figure PCTCN2021143050-appb-000016
表示支持的循环移位对总数。
Figure PCTCN2021143050-appb-000017
的取值可以参见表4所示。
表4
Figure PCTCN2021143050-appb-000018
(4)从候选PRB中确定最终用于承载HARQ信息的目标PRB以及循环移位对索引。
示例性的,可以采用如下公式(4)确定目标PRB以及循环移位对索引:
Figure PCTCN2021143050-appb-000019
其中,P ID表示发送终端的标识,当侧行通信是组播类型1时,M ID表示发送终端和接收终端所在组的组的标识。当侧行通信是单播和组播类型2时,M ID=0。其中,组播类型1是指接收终端只支持反馈NACK,组播类型2指接收终端NACK和ACK均可反馈。终端设备的标识和组标识可以是在终端设备与网络设备建立连接时分配的,还可以是在终端设备与终端设备之间建立侧行连接时分配的。通过上述公式(4)可以唯一确定一个PSFCH可用PRB的索引,该PRB即为目标PRB。通过上述公式(4)还可以确定出循环移位对的索引。根据确定出的循环移位对的索引以及表1,可以确定出用于生成承载HACQ信息的序列的参数m 0
(5)确定承载HRAQ信息的序列参数mcs。
终端设备根据PSSCH的解码情况,确定承载HRAQ信息的序列参数mcs。例如,如表5所示,在单播、组播类型2场景中,若对PSSCH解码成功,则应该反馈ACK,ACK信息由序列承载,此时生成序列的参数mcs取值为6;若对PSSCH解码失败,则应该反馈NACK,NACK信息由序列承载,此时生成序列的参数mcs取值为0。又例如,如表6所示,在组播类型1场景中,若对PSSCH解码失败,则应该反馈NACK,NACK信息由序列承载,此时生成序列的参数mcs取值为0,若对PSSCH解码成功,则不反馈HARQ信息。
表5
HARQ信息(HARQ-ACK Value) 0(NACK) 1(ACK)
序列循环移位(Sequence cyclic shift) 0 6
表6
HARQ信息(HARQ-ACK Value) 0(NACK) 1(ACK)
序列循环移位(Sequence cyclic shift) 0 N/A
进一步的,利用上述确定出的序列参数m0以及mcs生成承载HARQ信息的序列,并在目标PRB中发送。
通过上述步骤(1)至(5)可见,目前PSFCH资源的确定方式,针对一个PSSCH可以确定出唯一一个PSFCH可用PRB,并确定承载HARQ信息的序列参数,最终在确定出的目标PRB中承载1bit的HARQ信息。这样,使得一个PSFCH只能反馈一个PSSCH对应的HARQ信息,无法适用于多个PSSCH的HARQ信息复用的场景。本申请实施例中,多个PSSCH的HARQ信息复用是指,多个PSSCH的HARQ信息在同一个PSFCH上承载。
为了解决上述技术问题,本申请实施例中,通过对PSFCH资源确定方式进行重新设计,使得在确定PSFCH资源时,可以确定出一个或者多个PRB,多个PSSCH的HARQ信息可以在同一个PSFCH上发送,从而满足多个PSSCH的HARQ信息复用的需求。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图6A为本申请实施例提供的一种通信方法的流程示意图。如图6A所示,本实施例的方法包括:
S601:第一终端设备通过多个PSSCH接收多个不同TB。
其中,每个TB对应一个PSSCH。每个TB中携带的数据为第二终端设备向第一终端设备发送的侧行数据。
可选的,上述多个TB是在一个PSFCH周期内接收到的。
举例而言,假设一个PSFCH周期为4个时隙,时隙1、时隙2、时隙3、时隙4为一个PSFCH周期。那么,第一终端设备可以通过时隙1的PSSCH接收到TB1,通过时隙2的PSSCH接收到TB2,通过时隙3的PSSCH接收到TB3,通过时隙4的PSSCH接收到TB4。当然,第一终端设备也可以在上述4个时隙中的部分时隙接收到TB,例如,通过时隙1的PSSCH接收到TB1,通过时隙3的PSSCH接收到TB2,时隙2和时隙4没有待接收TB。
本申请实施例中,上述多个TB可以来自于同一个第二终端设备,还可以来自于多个不同的第二终端设备。本实施例对此不作限定。
S602:第一终端设备在PSFCH资源上发送多个不同TB对应的HARQ信息,PSFCH资源在频域上包括至少一个PRB。
本申请实施例与上述现有的PSFCH资源的确定方式不同,本申请实施例中PSFCH资源在频域上包括一个或者多个PRB,而不是确定出唯一一个PRB。由于PSFCH资源中可以包括多个PRB,因此,使得PSFCH资源能够承载的HARQ信息较多,从而 能够满足多个PSSCH的HARQ信息复用的需求。
一种可能的实现方式中,第一终端设备在PSFCH资源上发送编码结果,编码结果为对多个TB对应的HARQ信息进行编码得到的结果。
本申请实施例与前述现有技术的另一个不同之处在于,本申请实施例在PSFCH资源中承载HARQ信息时,不再采用循环移位序列的形式。因为,采用循环移位序列的形式,会使得一个PSFCH PRB中仅能承载1bit的信息。本申请实施例中,对多个TB对应的HARQ信息进行编码,将编码结果承载在PSFCH资源上进行发送。这样,相当于取消了一个PSFCH PRB中仅能承载1bit信息的限制,使得PSFCH资源上可以承载更多的信息。
图6B为本申请实施例提供的一种通信方法的交互流程示意图。如图6B所示,本实施例的方法包括:
S611:第二终端设备通过多个PSSCH向第一终端设备发送多个不同TB。
相应的,第一终端设备通过多个PSSCH接收多个不同TB。
S612:第一终端设备根据时域指示信息,确定PSFCH资源的时域资源,并根据频域指示信息或者传输多个TB中至少一个TB的PSSCH所占的时频资源,确定PSFCH资源的频域资源;PSFCH资源在频域上包括至少一个PRB。
S613:第一终端设备在PSFCH资源上向第二终端设备发送多个不同TB对应的HARQ信息。
应理解,本实施例中S611和S613的实现方式与图6A所示实施例类似,重复内容不再赘述。下面针对S612中PSFCH资源的时域资源和频域资源的确定方式分别进行介绍。
本申请实施例中,第一终端设备在确定PSFCH资源的时域资源时,可以采用如下几种可能的方案。
时域资源确定方案1:
时域指示信息用于指示传输每个TB的PSSCH与传输其对应的HARQ信息的PSFCH之间的时间间隔。针对不同的TB,其对应的时域指示信息所指示的时间间隔可以不同。
其中,上述的时间间隔可以是起始时间间隔,也可以是结束时间间隔,本申请实施例对此不作限定。
第一终端设备根据第一PSSCH的接收时刻以及第一PSSCH与第一PSSCH对应的PSFCH之间的时间间隔,确定PSFCH资源的时域资源。其中,第一PSSCH用于传输多个TB中的一个或者多个TB。
示例性的,以一个PSSCH传输一个TB为例,针对每个TB,根据该TB对应的时域指示信息所指示的时间间隔、以及传输该TB的PSSCH资源的时域资源,可以确定出传输该TB对应的HARQ信息的PSFCH资源的时域资源。
应理解的是,当多个TB的HARQ信息需要在同一PSFCH反馈时,上述确定出的传输每个TB对应的HARQ信息的PSFCH资源的时域资源是相同的。
可选的,上述时域指示信息可以承载在SCI中。示例性的,第一终端设备还从第二终端设备接收每个TB对应的SCI。在SCI中包括时域指示信息(例如 PSSCH-to-HARQ_feedback),指示传输该TB的PSSCH与传输其对应的HARQ信息的PSFCH之间的时间间隔。这样,第一终端设备根据传输该TB的PSSCH资源的时域资源以及该TB对应的SCI中所携带的时间间隔,即可确定出传输该TB对应的HARQ信息的PSFCH资源的时域资源。
可选的,上述时域指示信息承载在第二阶SCI中。示例性的,可以使用第二阶SCI的新格式,例如,SCI format 2-C。此时,可以将第一阶SCI中的2nd-stage SCI formats域的取值设置为10或者11来指示SCI format 2-C。
可选的,第二阶SCI中还可以包括侧行分配索引(sidelink assignment index,SAI),用于指示该TB对应的HARQ信息在码本(codebook)中的位置。
该方案中,第二终端设备通过在SCI中动态指示传输每个TB的PSSCH与传输其对应的HARQ信息的PSFCH之间的时间间隔,使得第一终端设备可以根据SCI中指示的时间间隔,确定出需要在哪个时域资源上反馈该TB的HARQ信息。
举例而言,图7为本申请实施例提供的一种确定PSFCH资源的时域资源的示意图。如图7所示,假设第一终端设备接收到3个TB,分别为时隙1中传输的TB1、时隙2中传输的TB2、时隙3中传输的TB3。假设时隙1中传输的TB1所对应的SCI中携带的时间间隔(PSSCH-to-HARQ_feedback)为3个时隙,时隙2中传输的TB2所对应的SCI中携带的时间间隔(PSSCH-to-HARQ_feedback)为2个时隙,时隙3中传输的TB3所对应的SCI中携带的时间间隔(PSSCH-to-HARQ_feedback)为1个时隙。这样,第一终端设备接收到上述3个TB,可以确定出需要在时隙4反馈上述TB1、TB2、TB3的HARQ信息。
时域资源确定方案2:
时域指示信息用于指示PSFCH的周期。示例性的PSFCH的周期可以1、2、4个时隙等。
可选的,上述时域指示信息可以承载在RRC信令中。
该方案中,第一终端设备可以根据PSFCH的周期,确定PSFCH资源的时域资源。举例而言,假设PSFCH的周期为4个时隙,即,在时隙4、时隙8存在PSFCH资源。第一终端设备在时隙1、时隙2、时隙3、时隙4接收到TB后,可以确定出PSFCH资源的时域资源为时隙4。第一终端设备在时隙5、时隙6、时隙7、时隙8接收到TB后,可以确定出PSFCH资源的时域资源为时隙8。
时域资源确定方案3:
时域指示信息用于指示HARQ信息反馈周期。其中,HRAQ信息的反馈周期为PSFCH的周期的K倍,K为大于或者等于1的整数。
举例而言,假设K=2,若PSFCH的周期为2个时隙,则HARQ信息的反馈周期为4个时隙。例如,在时隙2、时隙4、时隙6、时隙8均存在PSFCH资源。但是采用该方案时,仅在时隙4、时隙8进行HARQ信息反馈。也就是说,假设第一终端设备在时隙1、时隙2、时隙3、时隙4接收到TB,则确定PSFCH资源的时域资源为时隙4。假设第一终端设备在时隙5、时隙6、时隙7、时隙8接收到TB,则确定PSFCH资源的时域资源为时隙8。
可选的,上述时域指示信息可以承载在RRC信令中。
本申请实施例中,第一终端设备在确定PSFCH资源的频域资源时,可以采用如下几种可能的方案。
频域资源确定方案1:
第一终端设备根据传输多个TB中的至少一个TB的PSSCH所占的时频资源,确定PSFCH资源的频域资源。
可选的,第一终端设备根据传输第一TB的PSSCH所占的时频资源,确定PSFCH资源的频域资源。第一TB为多个TB中的任意一个TB。
示例性的,第一终端设备获取PSFCH资源集,该PSFCH资源集中包括多个PRB。PSFCH资源集可以是网络设备预先配置给第一终端设备的。第一终端设备根据第一数量n以及传输第一TB的PSSCH所占的时频资源,从PSFCH资源池中确定出n个PRB,n为大于或者等于1的整数,n个PRB与传输第一TB的PSSCH所占的时频资源之间具有预设映射关系。第一终端设备将n个PRB确定为PSFCH资源的频域资源。
其中,上述的预设映射关系可以是指,PSSCH的每个时隙的每个子信道与PSFCH可用PRB之间的关联关系,上述关联关系可以如图4所示。上述关联关系可以是网络设备预先配置的,或者是第一终端设备和第二终端设备事先约定的。
可选的,第一TB为多个TB中的第一个TB。示例性的,图8为本申请实施例提供的一种确定PSFCH资源的频域资源的示意图。如图8所示,假设第一终端设备依次接收到TB1、TB2、TB3、TB4,则可以根据传输TB1(即第一个接收到的TB)的PSSCH所占的时频资源,确定出TB1关联的PSFCH资源,从TB1关联的PSFCH资源中,确定出最终用于反馈上述4个TB的HARQ信息的PSFCH资源的频域资源。
下面详细说明如何根据该第一TB所占的时频资源,确定PSFCH资源的频域资源。
(1)在资源池中获取PSFCH可用的PRB集(PRB set)。
(2)获取一个PSFCH周期内每个时隙上的每个子信道关联的PSFCH可用PRB子集(PRB subset)。
其中,上述的步骤(1)和(2)与前述相关技术中的步骤(1)和(2)是相同的,此处不做赘述。
(3)根据传输第一TB的PSSCH所占的时频资源,确定用于发送PSFCH的候选PRB。
具体的,针对传输第一TB的PSSCH所占时隙的每个子信道,代入上述公式(1)中,可以确定出传输第一TB的PSSCH所占时隙的每个子信道所关联的PSFCH可用PRB。
进一步的,可以采用如下公式(5),从传输第一TB的PSSCH所占时隙的各子信道关联的PSFCH可用PRB中,确定出用于发送PSFCH的候选PRB:
Figure PCTCN2021143050-appb-000020
上述公式(5)中,
Figure PCTCN2021143050-appb-000021
取值为1或
Figure PCTCN2021143050-appb-000022
为传输第一TB的PSSCH所占的子信道总数。n为本申请实施例中的第一数量,即,本次发送PSFCH所需的PRB的数量,n为大于0的整数。
Figure PCTCN2021143050-appb-000023
为用于发送PSFCH的候选PRB。
可选的,第一数量n可以承载在SCI或者RRC信令中。
第一数量n的取值可以由需要反馈的HARQ信息的bit数以及调制阶数确定。
可选的,第一数量n可以是根据SCI中的预设字段得到的。例如,第一数量n可以根据第二阶SCI中的SAI字段得到。这样,可以根据实际需求,实时确定出待反馈的HARQ信息需要占用多少个PSFCH PRB,按需确定PSFCH资源,不会造成PSFCH资源的浪费。
Figure PCTCN2021143050-appb-000024
取值为1时,说明将PSSCH所占的其中一个子信道关联的PSFCH可用PRB子集作为候选PRB。图5A为本申请实施例提供的一种确定PSFCH候选PRB的方式示意图,如图5A所示,假设第一终端设备接收到的传输第一TB的PSSCH占了4个子信道,分别为子信道1至子信道4,可以将子信道1关联的PSFCH可用PRB子集作为候选PRB。其中,子信道1关联的PSFCH可用PRB子集可以通过上述公式(1)得到。
Figure PCTCN2021143050-appb-000025
取值为
Figure PCTCN2021143050-appb-000026
时,说明将PSSCH所占的所有子信道关联的PSFCH可用PRB子集均作为候选PRB。图5B为本申请实施例提供的另一种确定PSFCH候选PRB的方式示意图,如图5B所示,假设第一终端设备接收到的传输第一TB的PSSCH占了4个子信道,分别为子信道1至子信道4,可以将子信道1关联的PSFCH可用PRB子集、子信道2关联的PSFCH可用PRB子集、子信道3关联的PSFCH可用PRB子集、子信道4关联的PSFCH可用PRB子集均作为候选PRB。其中,每个子信道关联的PSFCH可用PRB子集可以通过上述公式(1)得到。
(4)从候选PRB中确定最终用于承载HARQ信息的目标PRB。
示例性的,可以采用如下公式(6)确定目标PRB:
Figure PCTCN2021143050-appb-000027
其中,P ID表示发送终端(即第二终端设备)的标识,当侧行通信是组播类型1时,M ID表示发送终端(即第二终端设备)和接收终端(即第一终端设备)所在组的组的标识。当侧行通信是单播和组播类型2时,M ID=0。其中,组播类型1是指接收终端只支持反馈NACK,组播类型2指接收终端NACK和ACK均可反馈。终端设备的标识和组的标识可以是在终端设备与网络设备建立连接时分配的,还可以是在终端设备与终端设备之间建立侧行连接时分配的。通过上述公式(6)可以确定n个PRB的索引,该n个PRB即为目标PRB。
为了便于理解,下面举例说明。
假设上述公式(5)中
Figure PCTCN2021143050-appb-000028
取值为1,根据上述公式(1)和(2)确定出的每个子信道关联的PSFCH可用PRB中包括50个PRB,即
Figure PCTCN2021143050-appb-000029
若n=2,则上述公式(5)的含义为:将连续两个PRB划分为1组,从而将50个PRB划分为25组,
Figure PCTCN2021143050-appb-000030
这样,上述50个PRB转换为25个组索引,每个组中有两个PRB。根据公式(6)可以从25个组索引中确定出一个组索引,该组索引对应的组中的PRB即为目标PRB。这样,最终确定出的目标PRB的数量为2。
该方案与上述现有的PSFCH资源的确定方式的不同之处在于步骤(3)中引入第一数量n。由于上述现有的PSFCH资源的确定方式仅能确定出唯一一个PRB,可能不 够反馈多个TB的HARQ信息,因此,该方案通过引入第一数量n,可以确定出n个PRB,使得能够用于反馈多个TB的HARQ信息。
频域资源确定方案2:
频域指示信息包括至少一个PRB的索引;第一终端设备可以根据至少一个PRB的索引,确定PSFCH资源的频域资源。
可选的,上述频域指示信息可以承载在SCI中或者承载在RRC信令中。
可选的,上述频域指示信息可以承载在第二阶SCI中。在第二阶SCI中包括PSFCH的资源集合指示(resource set indication)信息域,该信息域中包括一个或者多个PRB的索引。具体包括的PRB的索引可以由RRC参数配置。
示例性的,可以使用第二阶SCI的新格式,例如,SCI format 2-C。此时,可以将第一阶SCI中的2nd-stage SCI formats域的取值设置为10或者11来指示SCI format 2-C。
本申请实施例中,考虑向前兼容性,对于上述频域资源确定方案1,步骤(1)的资源池中PSFCH可用的PRB可以不同于协议版本R16中PSFCH的频域资源。对于上述频域资源确定方案2,2nd-stage SCI中指示的PSFCH资源可以不同于协议版本R16中PSFCH的频域资源。
本申请实施例中在确定PSFCH资源时,上述的时域资源确定方案1、时域资源确定方案2与时域资源确定方案3、频域资源确定方案1、频域资源确定方案2可以组合使用。下面结合几种实现方案进行举例说明。
第一种实现方式中,在确定PSFCH资源的时域资源时,采用时域资源确定方案1,在确定PSFCH资源的频域资源时,采用频域资源确定方案1。
第二种实现方式中,在确定PSFCH资源的时域资源时,采用时域资源确定方案1,在确定PSFCH资源的频域资源时,采用频域资源确定方案2。
第三种实现方式中,在确定PSFCH资源的时域资源时,采用时域资源确定方案2,在确定PSFCH资源的频域资源时,采用频域资源确定方案1。
第四种实现方式中,在确定PSFCH资源的时域资源时,采用时域资源确定方案2,在确定PSFCH资源的频域资源时,采用频域资源确定方案2。
第五种实现方式中,在确定PSFCH资源的时域资源时,采用时域资源确定方案3,在确定PSFCH资源的频域资源时,采用频域资源确定方案1。
第六种实现方式中,在确定PSFCH资源的时域资源时,采用时域资源确定方案3,在确定PSFCH资源的频域资源时,采用频域资源确定方案2。
在上述六种实现方式中,各时域资源确定方案以及各频域资源确定方案可以参加前述实施例的详细说明,此处不做赘述。
本申请实施例实现了多个TB(PSSCH)对应的HARQ信息复用一个PSFCH,满足HARQ信息复用场景的需求,提高了反馈HARQ信息的资源利用率。
图9为本申请实施例提供的一种通信装置的结构示意图。本实施例提供的通信装置可以为软件和/或硬件的形式。本实施例提供的通信装置可以为终端设备,或者,为终端设备中的模块、单元、芯片、芯片模组等。
如图9所示,本实施例提供的通信装置900,包括:接收模块901和发送模块903。 其中,
接收模块901,用于执行上述方法实施例中由第一终端设备执行的接收步骤。例如,接收模块901可以执行上述实施例中的S601或者S611。
发送模块903,用于执行上述方法实施例中由第一终端设备执行的接收步骤。例如,发送模块903可以执行上述实施例中的S602或者S613。
一种可能的实现方式中,如图9所示,通信装置900还可以包括确定模块902,用于执行上述方法实施例中由第一终端设备执行的确定PSFCH资源的步骤。例如,确定模块902可以执行上述实施例中的S612。
本实施例提供的通信装置,可用于执行上述任意方法实施例中由第一终端设备执行的通信方法,其实现原理和技术效果类似,此处不做赘述。
图10为本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以为终端设备,或者为终端设备中的芯片、芯片模组、处理器等。如图10所示,本实施例提供的通信装置1000,包括:收发器1001、存储器1002、处理器1003。收发器1001可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或接收接口等类似描述。示例性地,收发器1001、存储器1002、处理器1003,各部分之间通过总线1004相互连接。
存储器1002用于存储计算机执行指令;
处理器1003用于执行该存储器所存储的计算机执行指令,用以使得通信装置1000执行上述任一实施例所示的方法。
其中,收发器1001中的发送器,可用于执行上述方法实施例中终端设备的发送功能。收发器1001中的接收器,可用于执行上述方法实施例中终端设备的接收功能。处理器1003可用于执行上述方法实施例中终端设备执行的通信方法。
本实施例提供的通信装置可用于执行上述任一方法实施例中由第一终端设备执行的通信方法,其实现原理和技术效果类似,此处不作赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被计算机执行时,实现如上任一方法实施例中由第一终端设备执行的通信方法,其实现原理和技术效果类似,此处不作赘述。
本申请实施例还提供一种芯片,包括:存储器、处理器以及硬件系统资源,所述存储器中存储有计算机执行指令,所述处理器运行所述计算机执行指令,以实现如上任一方法实施例中由第一终端设备执行的通信方法,其实现原理和技术效果类似,此处不作赘述。
本申请实施例还提供一种计算机程序产品,包括计算机程序,所述计算机程序被计算机执行时实现如上任一方法实施例中由第一终端设备执行的通信方法,其实现原理和技术效果类似,此处不作赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备通过多个物理侧行共享信道PSSCH接收多个不同传输块TB;
    所述第一终端设备在物理侧行反馈信道PSFCH资源上发送所述多个不同TB对应的混合自动重传请求HARQ信息,所述PSFCH资源在频域上包括至少一个物理资源块PRB。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备在PSFCH资源上发送所述多个不同TB对应的HARQ信息,包括:
    所述第一终端设备在所述PSFCH资源上发送编码结果,所述编码结果为对所述多个TB对应的HARQ信息进行编码得到的结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述PSFCH资源包括时域资源和频域资源,在所述第一终端设备在PSFCH资源上发送所述多个不同TB对应的HARQ信息之前,所述方法还包括:
    所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源;
    所述第一终端设备根据频域指示信息或者传输所述多个TB中至少一个TB的PSSCH所占的时频资源,确定所述PSFCH资源的频域资源。
  4. 根据权利要求3所述的方法,其特征在于,所述时域指示信息用于指示传输每个TB的PSSCH与传输其对应的HARQ信息的PSFCH之间的时间间隔;
    所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源,包括:
    所述第一终端设备根据第一PSSCH的接收时刻以及所述第一PSSCH与所述第一PSSCH对应的PSFCH之间的时间间隔,确定所述PSFCH资源的时域资源,所述第一PSSCH用于传输所述多个TB中的一个或多个TB。
  5. 根据权利要求3所述的方法,其特征在于,所述时域指示信息用于指示PSFCH的周期;所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源,包括:
    所述第一终端设备根据所述PSFCH的周期,确定所述PSFCH资源的时域资源。
  6. 根据权利要求3所述的方法,其特征在于,所述时域指示信息用于指示HARQ信息反馈周期;所述第一终端设备根据时域指示信息,确定所述PSFCH资源的时域资源,包括:
    所述第一终端设备根据所述HARQ信息反馈周期,确定所述PSFCH资源的时域位置;其中,所述HARQ信息反馈周期为PSFCH的周期的K倍,所述K为大于或者等于1的整数。
  7. 根据权利要求3至6任一项所述的方法,其特征在于,所述频域指示信息包括:所述至少一个PRB的索引;
    所述第一终端设备根据频域指示信息,确定所述PSFCH资源的频域资源,包括:
    所述第一终端设备根据所述至少一个PRB的索引,确定所述PSFCH资源的频域资源。
  8. 根据权利要求3至6任一项所述的方法,其特征在于,所述第一终端设备根据所述传输多个TB中至少一个TB的PSSCH所占的时频资源,确定所述PSFCH资源的 频域资源,包括:
    所述第一终端设备获取PSFCH资源集,所述PSFCH资源集中包括多个PRB;
    所述第一终端设备根据第一数量n以及传输第一TB的PSSCH所占的时频资源,从所述PSFCH资源池中确定出n个PRB,n为大于或者等于1的整数,所述n个PRB与传输所述第一TB的PSSCH所占的时频资源之间具有预设映射关系,所述第一TB为所述多个TB中的任意一个TB;
    所述第一终端设备将所述n个PRB确定为所述PSFCH资源的频域资源。
  9. 根据权利要求8所述的方法,其特征在于,所述第一数量n承载在侧行控制信息SCI或者无线资源控制RRC信令中。
  10. 根据权利要求3所述的方法,其特征在于,所述时域指示信息承载在SCI或者RRC信令中,和/或,所述频域指示信息承载在SCI或者RRC信令中。
  11. 一种通信装置,其特征在于,所述通信装置包括:
    接收模块,用于通过多个物理侧行共享信道PSSCH接收多个不同传输块TB;
    发送模块,用于在物理侧行反馈信道PSFCH资源上发送所述多个不同TB对应的混合自动重传请求HARQ信息,所述PSFCH资源在频域上包括至少一个物理资源块PRB。
  12. 一种通信装置,其特征在于,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储有计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1至10中任一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时使得如权利要求1至10任一项所述的方法被执行。
  14. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被计算机执行时使得权利要求1至10中任一项所述的方法被执行。
PCT/CN2021/143050 2021-09-17 2021-12-30 通信方法及装置、计算机可读存储介质及计算机程序产品 WO2023040124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111092370.9A CN115835381A (zh) 2021-09-17 2021-09-17 通信方法及装置、计算机可读存储介质及计算机程序产品
CN202111092370.9 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023040124A1 true WO2023040124A1 (zh) 2023-03-23

Family

ID=85515223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143050 WO2023040124A1 (zh) 2021-09-17 2021-12-30 通信方法及装置、计算机可读存储介质及计算机程序产品

Country Status (2)

Country Link
CN (1) CN115835381A (zh)
WO (1) WO2023040124A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200374978A1 (en) * 2019-08-16 2020-11-26 Sergey Panteleev Physical sidelink feedback channel (psfch) transmission and reception in new radio (nr) systems
CN112242882A (zh) * 2019-07-17 2021-01-19 夏普株式会社 由用户设备执行的方法以及用户设备
CN112564865A (zh) * 2019-09-26 2021-03-26 株式会社Kt 用于发送和接收侧链harq反馈信息的方法和装置
CN113271684A (zh) * 2020-02-14 2021-08-17 维沃移动通信有限公司 旁链路传输控制方法、发送终端和接收终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242882A (zh) * 2019-07-17 2021-01-19 夏普株式会社 由用户设备执行的方法以及用户设备
US20200374978A1 (en) * 2019-08-16 2020-11-26 Sergey Panteleev Physical sidelink feedback channel (psfch) transmission and reception in new radio (nr) systems
CN112564865A (zh) * 2019-09-26 2021-03-26 株式会社Kt 用于发送和接收侧链harq反馈信息的方法和装置
CN113271684A (zh) * 2020-02-14 2021-08-17 维沃移动通信有限公司 旁链路传输控制方法、发送终端和接收终端

Also Published As

Publication number Publication date
CN115835381A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US9935741B2 (en) Providing acknowledgement information by a wireless device
JP2021508205A (ja) データ伝送方法及び装置、コンピュータ記憶媒体
CN113455084A (zh) 用于在无线通信系统中提供harq反馈的方法和装置
CN109257820B (zh) 通信方法和设备
WO2020200014A1 (zh) 通信方法及装置
TWI725160B (zh) 用於設備間通信的方法和裝置
CN108631929B (zh) 数据传输方法和设备
CN114270755A (zh) 用于在支持侧链路通信的通信系统中发送和接收harq响应的方法和装置
CN115380596A (zh) 一种支持多播业务的自动重传请求确认反馈信息的传输方法和装置
CN110383736B (zh) 反馈信息的传输方法、装置、设备及存储介质
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
WO2020220793A1 (zh) 一种通信方法和装置
WO2020220996A1 (zh) 通信方法及装置
CN112187401B (zh) 多时间单元传输方法及相关装置
WO2023040124A1 (zh) 通信方法及装置、计算机可读存储介质及计算机程序产品
WO2022028268A1 (zh) 通信方法及装置
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
CN111246419A (zh) 一种信息发送方法、接收方法及装置
WO2021068693A1 (zh) 通信方法及装置
WO2022077300A1 (en) Scheduling multicast and broadcast services
CN110999337B (zh) 反馈序列的传输方法、装置、设备及可读存储介质
CN112584430B (zh) 一种通信方法及装置
CN114747270A (zh) 一种侧行数据传输的方法、装置和系统
WO2023030166A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE