WO2023030166A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023030166A1
WO2023030166A1 PCT/CN2022/114877 CN2022114877W WO2023030166A1 WO 2023030166 A1 WO2023030166 A1 WO 2023030166A1 CN 2022114877 W CN2022114877 W CN 2022114877W WO 2023030166 A1 WO2023030166 A1 WO 2023030166A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
code
crc
cbs
check code
Prior art date
Application number
PCT/CN2022/114877
Other languages
English (en)
French (fr)
Inventor
程型清
金丽丽
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023030166A1 publication Critical patent/WO2023030166A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the sending end needs to add a cyclic redundancy check (Cyclic Redundancy Check, CRC) to the data, and the receiving end uses CRC to determine whether the data sent by the sending end is accurately received.
  • CRC Cyclic Redundancy Check
  • the transport block (transport block, TB) is divided into multiple code blocks (code block, CB), and each CB block contains CRC.
  • the receiving end can check whether each CB is received correctly according to the CRC of each CB block, so that the sending end can only resend the wrong CB, which has the advantage of improving data reliability and reducing the amount of retransmitted data.
  • the manner in which each CB block includes a CRC increases the proportion of the CRC in the transmitted bits, reduces the transmission code rate, and affects transmission performance.
  • the method of attaching CRC to each CB block is of great importance in reliability. It will not get more benefits, but will reduce the efficiency of data transmission, increase the delay, and affect the transmission performance.
  • Embodiments of the present application provide a communication method and device, which can improve transmission performance and improve data transmission efficiency.
  • the embodiment of the present application provides a communication method, including:
  • the target check code addition method among the multiple check code addition methods perform processing on the first TB to obtain first data, the first data includes M CBs, and the multiple check code addition methods are in advance Defined or configured, M is a positive integer;
  • the at least one codeword is sent.
  • an encoding block may refer to data or a data sequence input to an encoder.
  • a codeword may refer to data after passing through an encoder.
  • the code length may refer to the length of a codeword (or the length of data output by an encoder).
  • the target check code method can be determined from multiple check code adding methods, and a check code is added to the TB (and/or part of the data in the TB) based on the target check code method. Since the method of adding the check code can be flexibly determined, it can be determined for different transmission scenarios (or channel types, transmitted message types, or code rates, etc.) rate, etc.) to add check codes to improve transmission performance.
  • the code block when using a broadcast channel to transmit data or send broadcast information, the code block may not contain a check code, thereby increasing the code rate, thereby improving the efficiency of data transmission and reducing the delay.
  • the code block may not include a check code, so as to improve the efficiency of data transmission.
  • a check code can be added to the transmission block, a part of the sub-data can be added with a check code alone, and another part of the sub-data can be added together with a check code to improve the flexibility of adding a check code and improve the data transmission efficiency.
  • this method is applicable to any communication node with a communication function, such as a sending end node.
  • the foregoing method is implemented at a physical layer of wireless communication.
  • the physical layer is implemented on the underlying hardware device, and the underlying hardware device has strong processing capabilities and can perform various operations faster. Therefore, the processing of additional check codes at the physical layer can reduce calculation checks Code time overhead, improve data transmission efficiency, and reduce delay.
  • the method further includes: sending first indication information, where the first indication information is used to indicate the target check code addition in the multiple check code addition methods Way.
  • the sending end node may send the first indication information, which is used to indicate to the receiving side which check code addition method to use. At this time, the sending end node can flexibly determine the applicable checking code adding method from multiple checking code adding methods, and indicate to the receiving end through the indication information.
  • the first indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the first node and the second node may negotiate the method of adding the check code to be used during the process of establishing the connection.
  • the first node or the second node notifies the peer end of the check code addition method to be adopted through the first indication information.
  • the first indication information is sent through signaling.
  • the signaling may include, for example, one or more of broadcast information, system messages, high-layer configuration signaling, medium access control layer signaling, and the like.
  • the first indication information is carried by a header of a frame.
  • the frame is a transmission unit
  • the header of the frame is also called a frame header, which may contain one or more fields, and specifically, the first indication information may be transmitted through the fields in the frame header.
  • the first indication information is included in the header of the frame, and the receiving end may then determine the method of adding the target check code based on the header of the frame.
  • the first indication information may be used to indicate the check code adding method used in the data part of the frame, and the target check code adding method used by any frame may be flexibly set, further improving flexibility.
  • the method of adding the target check code corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indication, node communication Capability, code rate or wireless frame type, etc.
  • the communication capability of the node also referred to as the capability of the node
  • the communication capability of the node may include one or more aspects of the following aspects: the check code addition method supported by the node, the check capability of the node, etc., and the indication information for the above aspects . In this way, it is possible to determine the method of adding the target check code suitable for the current communication conditions, thereby improving the transmission efficiency.
  • the first node and the second node may negotiate the method of adding the check code to be used during the process of establishing the connection. Or each time in communication, the sending end or the receiving end notifies the opposite side of the check code addition method that should be adopted.
  • the target check code addition method is a check code addition method supported by the receiving end among the plurality of check code addition methods.
  • the receiver can feed back the check code attachment methods it supports to the sender, and the sender determines the target check code attachment method from the check code attachment methods supported by the receiver.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the target check code addition method is the first check code addition method among the multiple check code addition methods
  • the first TB and the first cyclic redundancy check CRC jointly correspond to N sub-data, the first CRC is the CRC corresponding to the first TB, and N is a positive integer, where:
  • the M CBs include M1 first CBs, each first CB includes a sub-data and a second CRC, the second CRC is the CRC corresponding to the one sub-data, M1 ⁇ 0;
  • the M CBs include M2 second CBs, the M2 second CBs correspond to N1 sub-data and a third CRC, the third CRC is the CRC corresponding to the N1 sub-data, M2 ⁇ 0, N1 ⁇ 0.
  • part of the sub-data includes a single CRC, and part of the sub-data (commonly) corresponds to the third CRC.
  • the calculation amount of the check code can be reduced, and the proportion of the check code in the transmission bits can also be reduced, so as to improve the transmission efficiency.
  • the code length corresponding to the first CB belongs to the first code length
  • the code length corresponding to the second CB belongs to the second code length, and the first code length is different from the second code length.
  • each CB block of a partial code length includes a CRC; a CB of a partial code length corresponds to one CRC.
  • M2+N1 N.
  • the M CBs include M3 third CBs, the M3 third CBs correspond to M3 sub-data, the third CBs do not contain CRC, and M3 ⁇ 0 , N2 ⁇ 0.
  • the target check code addition method is the second check code addition method among the multiple check code addition methods
  • the first TB and the first CRC jointly correspond to the M CBs, and the first CRC is a CRC corresponding to the first TB.
  • a CRC is attached to the TB block, and the CB block obtained by dividing the TB block does not contain a separate CRC.
  • the CB block obtained by dividing the TB block does not contain a separate CRC.
  • the target check code addition method is the third check code addition method among the plurality of check code addition methods
  • the first TB and the first CRC of the first TB correspond to M pieces of sub-data together, and the first CRC is the CRC corresponding to the first TB, where:
  • Each CB in the M CBs includes a sub-data and a second CRC, and the second CRC is a CRC corresponding to the one sub-data.
  • each CB block contains a separate CRC, and each TB block also has a CRC attached.
  • the receiving end can check whether each CB is received correctly according to the CRC of each CB block, so that the sending end can only resend the wrong CB, reducing the system overhead in the retransmission scenario, improving data transmission efficiency, and improving transmission performance.
  • performing processing on the first TB to obtain the first data includes:
  • the multiple ways of adding check codes may be pre-defined and pre-configured.
  • multiple verification code addition methods are defined through the protocol.
  • write multiple verification codes in the node write multiple verification codes in the node.
  • the sender supports multiple TB block segmentation methods.
  • the target segmentation method can be determined from the multiple segmentation methods, and the TB is segmented based on the target segmentation method. Since the segmentation mode can be flexibly determined, a segmentation mode suitable for the current scenario can be determined in different transmission scenarios, thereby improving transmission performance.
  • the foregoing segmentation operation is implemented at an object layer of wireless communication. Segmentation at the physical layer can reduce the time overhead of calculating the check code, improve the efficiency of data transmission, and reduce the delay.
  • the target segmentation method is a first segmentation method among multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • a possible segmentation method is exemplified above, and multiple CB blocks can be processed according to the TB block, and the multiple CB blocks must include the block with the smallest code length.
  • the receiving end decodes multiple CB blocks, it can perform decoding in the form of a pipeline, and the decoding time delay is low.
  • the pipeline decoding may mean that when the decoding module completes the decoding of the previous CB block, the next CB block is ready to be decoded.
  • the receiving end decodes the 128-length CB block code
  • the decoding module can immediately decode the 64-length CB block, which improves the decoding efficiency and reduces the decoding delay. If the code length of the CB block includes 256 code length and 64 code length, it may happen that the 64 code length data has been received, but the 256 code length has not been decoded, and it is necessary to wait for the 256 code length to be decoded before the 64 code length can be decoded. code.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the first data length may include at least one data, may also include multiple data lengths, and may also be one or more data length ranges. the same way.
  • the second data length may include at least one data, or may include multiple data lengths, and may also be one or more ranges of data lengths.
  • the above exemplifies a possible segmentation method.
  • the code length of the divided CB blocks may be longer (not necessarily including the block with the lowest code length). For TB blocks of the same length, fewer CB blocks can be obtained piece. It can reduce the time consumption when calculating the check code, increase the code rate, and improve the efficiency of data transmission.
  • the method further includes:
  • Sending second indication information where the second indication information is used to indicate a target segmentation mode among the multiple segmentation modes.
  • the sending end node may send second indication information, which is used to indicate to the receiving side which segmentation mode to use.
  • the sending end node can flexibly determine an applicable segmentation method from multiple segmentation methods, and indicate to the receiving end through indication information.
  • the second indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the first indication information and the second indication information may be the same indication information.
  • the first method of segmenting is also used.
  • the first indication information can indicate the first method of adding a check code.
  • the first segmentation mode can thus also be indicated.
  • the second indication information is sent through signaling.
  • the signaling may include, for example, one or more of broadcast information, system messages, high-layer configuration signaling, medium access control layer signaling, and the like.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the target segmentation mode is indicated by the header of the transmission unit.
  • the segmentation mode used by any transmission unit can be flexibly set, further improving flexibility.
  • the header of the transmission unit is used to indicate, and the receiving side can determine the segmentation mode based on the header of the transmission unit, which can reduce signaling overhead and improve communication efficiency.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the coding block By making the coding block satisfy the code length in the form of a positive integer power of 2, it is helpful to use a certain code rate to directly send the codeword encoded by the coding block, or receive the codeword without additional configuration of the rate matching module, simplifying
  • the encoding/decoding process reduces system power consumption.
  • the above implementation is implemented based on polar codes (Polar codes).
  • Polar codes Polar codes
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the predefined code length satisfies the form of a positive integer power of 2, which can simplify the encoding/decoding process and reduce system power consumption.
  • the embodiment of the present application provides a communication method, including:
  • this method is applicable to any communication node with a communication function, such as a receiving end node.
  • the foregoing method is implemented at an object layer of wireless communication.
  • the method further includes:
  • Receive first indication information where the first indication information is used to indicate a target check code addition mode in the plurality of check code addition modes.
  • the method of adding the target check code corresponds to one or more of the following information:
  • Communication channel type communication scene type, channel quality indicator, node communication capability, code rate or wireless frame type, etc.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the target check code addition method is a check code addition method supported by the receiving end among the plurality of check code addition methods.
  • the receiver can feed back the check code attachment methods it supports to the sender, and the sender determines the target check code attachment method from the check code attachment methods supported by the receiver.
  • performing processing on the at least one codeword to obtain the information of the first TB according to the target check code addition method among the multiple check code addition methods include:
  • the first TB and the first cyclic redundancy check CRC jointly correspond to N pieces of sub-data
  • the first CRC is the CRC corresponding to the first TB
  • N is a positive integer
  • the M CBs include M1 first CBs, each first CB includes a sub-data and a first CRC, the first CRC corresponds to the one sub-data, M1 ⁇ 0;
  • the M CBs are verified according to the target check code addition method in the multiple check code addition methods to obtain the first TB information, including:
  • the method further includes:
  • the first TB with a check code is obtained according to the M1 sub-data and the N1 sub-data, and the first TB with a check code the first TB contains the first TB and the first CRC;
  • the code length corresponding to the first CB belongs to the first code length
  • the code length corresponding to the second CB belongs to the second code length, and the first code length is different from the second code length.
  • M2+N1 N.
  • the M CBs include M3 third CBs, the M3 third CBs correspond to N2 sub-data, the third CBs do not contain CRC, and M3 ⁇ 0 , N2 ⁇ 0.
  • the first TB and the first CRC jointly correspond to the M CBs, and the first CRC is a CRC corresponding to the first TB.
  • the M CBs are verified according to the target check code addition method in the multiple check code addition methods to obtain the first TB information, including:
  • a first TB with a check code is obtained, and the first TB with a check code includes the first TB and the first CRC;
  • the first TB and the first cyclic redundancy check CRC of the first TB jointly correspond to M pieces of sub-data, where:
  • Each CB includes one sub-data and the second CRC corresponding to the one sub-data.
  • the M CBs are verified according to the target check code addition method in the multiple check code addition methods to obtain the first TB information, including:
  • a first TB with a check code is obtained, and the first TB with a check code includes the first TB and a first CRC;
  • the M CBs are obtained based on a target segmentation manner in multiple segmentation manners.
  • the target segmentation method is a first segmentation method among multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the method further includes:
  • Receive second indication information where the second indication information is used to indicate a target segmentation mode among the plurality of segmentation modes.
  • the method further includes: receiving the second indication information by receiving signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the embodiment of the present application provides a communication method, including:
  • the first data is obtained based on the first TB, the first data includes M CBs, the multiple segmentation methods are predefined or configured, and the M is positive integer;
  • the at least one codeword is sent.
  • the sender supports multiple TB block segmentation methods.
  • the target segmentation method can be determined from the multiple segmentation methods, and the TB is segmented based on the target segmentation method. Since the segmentation mode can be flexibly determined, a segmentation mode suitable for the current scenario can be determined in different transmission scenarios, thereby improving transmission performance.
  • this method is applicable to any communication node with a communication function, such as a sending end node.
  • the foregoing method is implemented at an object layer of wireless communication.
  • the target segmentation method is the first segmentation method among multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the method further includes:
  • the second indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the second indication information is sent through signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the target segmentation method corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indication, or node communication capability wait.
  • the communication capability of the node (also referred to as the capability of the node) may include one or more aspects of the following aspects: the check code addition method supported by the node, the check capability of the node, etc., and the indication information for the above aspects .
  • the target segmentation mode belongs to the segmentation mode supported by the receiving end.
  • the receiving end may feed back the segmenting methods it supports to the sending end, and the sending end determines the target check code addition method from the segmenting methods supported by the receiving end.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the embodiment of the present application provides a communication method, including:
  • receiving the second data to obtain at least one codeword includes:
  • the at least one codeword corresponds to M CBs.
  • the information of the first TB includes one or more of the following information:
  • the foregoing method is implemented at an object layer of wireless communication.
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among multiple predefined code lengths.
  • a code length corresponding to any one CB is higher than a minimum code length among a plurality of predefined code lengths.
  • the method further includes:
  • Receive second indication information where the second indication information is used to indicate a target segmentation mode among the plurality of segmentation modes.
  • the second indication information may be received when the sending end node establishes a communication connection with the receiving end, or may be received after the connection is established, or may also be received when a certain piece of information is transmitted.
  • the method further includes: receiving the second indication information by receiving signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the target segmentation method corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indicator, or node communication capability wait.
  • the target segmentation mode belongs to the segmentation mode supported by the receiving end.
  • the receiving end may feed back the segmenting methods it supports to the sending end, and the sending end determines the target check code addition method from the segmenting methods supported by the receiving end.
  • the correspondence is predefined, preconfigured, or obtained through negotiation.
  • the embodiment of the present application provides a communication device, the communication device includes a processing unit and a communication unit, and the communication device is used to realize the description of the first aspect or any possible implementation manner of the first aspect Methods.
  • the processing unit is configured to:
  • the target check code addition method among the multiple check code addition methods perform processing on the first TB to obtain first data, the first data includes M CBs, and the multiple check code addition methods are in advance Defined or configured, the M is a positive integer;
  • the communication unit is configured to send the at least one codeword.
  • the communication device is a communication node or the communication device is a component in the communication node.
  • the communication unit is further configured to: send first indication information, where the first indication information is used to indicate the target verification in the multiple verification code addition methods code attachment.
  • the first indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the first indication information is sent through signaling.
  • the first indication information is carried by a frame header.
  • the frame is a transmission unit, and the header of the frame is also called a frame header, which may contain one or more fields, and specifically, the first indication information may be transmitted through the fields in the frame header.
  • the method of adding the target check code corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indication, and node communication capability , code rate or wireless frame type, etc.
  • the target check code addition method is a check code addition method supported by the receiving end among the plurality of check code addition methods.
  • the receiver can feed back the check code attachment methods it supports to the sender, and the sender determines the target check code attachment method from the check code attachment methods supported by the receiver.
  • the correspondence is predefined, preconfigured, or obtained through negotiation.
  • the target check code addition method is the first check code addition method among the multiple check code addition methods
  • the first TB and the first cyclic redundancy check CRC jointly correspond to N sub-data, the first CRC is the CRC corresponding to the first TB, and N is a positive integer, where:
  • the M CBs include M1 first CBs, each first CB includes a sub-data and a second CRC, the second CRC is the CRC corresponding to the one sub-data, M1 ⁇ 0;
  • the M CBs include M2 second CBs, the M2 second CBs correspond to N1 sub-data and a third CRC, the third CRC is the CRC corresponding to the N1 sub-data, M2 ⁇ 0, N1 ⁇ 0.
  • the code length corresponding to the first CB belongs to the first code length
  • the code length corresponding to the second CB belongs to the second code length, and the first code length is different from the second code length.
  • M2+N1 N.
  • the M CBs include M3 third CBs, the M3 third CBs correspond to N2 sub-data, the third CBs do not include CRC, M3 ⁇ 0, N2 ⁇ 0.
  • the target check code addition method is the second check code addition method among the multiple check code addition methods
  • the first TB and the first CRC jointly correspond to the M CBs, and the first CRC is a CRC corresponding to the first TB.
  • the target check code addition method is a third check code addition method among the plurality of check code addition methods
  • the first TB and the first CRC of the first TB correspond to M pieces of sub-data together, and the first CRC is the CRC corresponding to the first TB, where:
  • Each CB in the M CBs includes a sub-data and a second CRC, and the second CRC is a CRC corresponding to the one sub-data.
  • the processing unit is further configured to:
  • the foregoing segmentation operation is implemented at an object layer of wireless communication.
  • the target segmentation method is a first segmentation method among multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the communication unit is further configured to:
  • the second indication information is sent through signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or At least one of 64 etc.
  • the embodiment of the present application provides a communication device, the communication device includes a processing unit and a communication unit, and the communication device is used to realize the description of the first aspect or any possible implementation manner of the first aspect Methods.
  • the processing unit is configured to perform processing on the at least one codeword to obtain information of the first TB according to a target check code addition method among multiple check code addition methods, the multiple check code addition methods is pre-defined or configured.
  • the information of the first TB includes one or more of the following information:
  • the communication unit is further configured to:
  • Receive first indication information where the first indication information is used to indicate a target check code addition mode in the plurality of check code addition modes.
  • the first indication information is carried by a header of a frame.
  • the frame is a transmission unit
  • the head of the frame is also called a frame header, which may contain one or more fields, and specifically, the first indication information may be transmitted through the fields in the frame header.
  • the method of adding the target check code corresponds to one or more of the following information:
  • Communication channel type communication scene type, channel quality indicator, node communication capability, code rate or wireless frame type, etc.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the target check code addition method is a check code addition method supported by the receiving end among the plurality of check code addition methods.
  • the receiver can feed back the check code attachment methods it supports to the sender, and the sender determines the target check code attachment method from the check code attachment methods supported by the receiver.
  • the M CBs are checked according to the target check code addition method in the plurality of check code addition methods to obtain the information of the first TB.
  • the first TB and the first cyclic redundancy check CRC jointly correspond to N pieces of sub-data
  • the first CRC is the CRC corresponding to the first TB
  • N is a positive integer
  • the M CBs include M1 first CBs, each first CB includes a sub-data and a first CRC, the first CRC corresponds to the one sub-data, M1 ⁇ 0;
  • the M CBs include M2 second CBs, the M2 second CBs correspond to N1 sub-data and a third CRC, the third CRC is the CRC corresponding to the N1 sub-data, M2 ⁇ 0, N1 ⁇ 0.
  • processing unit is further configured to:
  • processing unit is further configured to:
  • the first TB with a check code is obtained according to the M1 sub-data and the N1 sub-data, and the first TB with a check code the first TB contains the first TB and the first CRC;
  • the code length corresponding to the first CB belongs to the first code length
  • the code length corresponding to the second CB belongs to the second code length, and the first code length is different from the second code length.
  • M2+N1 N.
  • the M CBs include M3 third CBs, the M3 third CBs correspond to N2 sub-data, the third CBs do not include CRC, and M3 ⁇ 0 , N2 ⁇ 0.
  • the first TB and the first CRC jointly correspond to the M CBs, and the first CRC is a CRC corresponding to the first TB.
  • processing unit is further configured to:
  • a first TB with a check code is obtained, and the first TB with a check code includes the first TB and the first CRC;
  • the first TB and the first cyclic redundancy check CRC of the first TB jointly correspond to M pieces of sub-data, where:
  • Each CB includes one sub-data and the second CRC corresponding to the one sub-data.
  • processing unit is further configured to:
  • a first TB with a check code is obtained, and the first TB with a check code includes the first TB and a first CRC;
  • the M CBs are obtained based on a target segmentation manner in multiple segmentation manners.
  • the target segmentation method is the first segmentation method in multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the communication unit is further configured to:
  • Receive second indication information where the second indication information is used to indicate a target segmentation mode among the plurality of segmentation modes.
  • the communication unit is further configured to: receive the second indication information by receiving signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the embodiment of the present application provides a communication device, the communication device includes a processing unit and a communication unit, and the communication device is used to realize the description of the first aspect or any possible implementation manner of the first aspect Methods.
  • the processing unit is configured to:
  • the first data is obtained based on the first TB, the first data includes M CBs, the multiple segmentation methods are predefined or configured, and the M is positive integer;
  • the communication unit is configured to send the at least one codeword.
  • the communication device is a communication node or the communication device is a component in the communication node.
  • the foregoing method is implemented at an object layer of wireless communication.
  • the target segmentation method is the first segmentation method among multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is the second segmentation method in multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the communication unit is further configured to:
  • the second indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the second indication information is sent through signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the target segmentation method corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indicator, or node communication capability wait.
  • the target segmentation mode belongs to the segmentation mode supported by the receiving end.
  • the receiving end may feed back the segmenting methods it supports to the sending end, and the sending end determines the target check code addition method from the segmenting methods supported by the receiving end.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the embodiment of the present application provides a communication device, the communication device includes a processing unit and a communication unit, and the communication device is used to implement the description in the first aspect or any possible implementation manner of the first aspect Methods.
  • the communication unit is configured to receive the second data to obtain at least one codeword according to a target segmentation mode among multiple segmentation modes, and the multiple segmentation modes
  • the segment mode is pre-defined or configured
  • the processing unit is configured to perform processing on the at least one codeword to obtain information of the first TB.
  • the communication unit is further configured to receive second data
  • the processing unit is further configured to obtain the at least one codeword according to the second data according to a target segmentation mode in the segmentation mode.
  • the at least one codeword corresponds to M CBs.
  • the foregoing method is implemented at an object layer of wireless communication.
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • a code length corresponding to any one CB is higher than a minimum code length among a plurality of predefined code lengths.
  • the communication unit is further configured to:
  • Receive second indication information where the second indication information is used to indicate a target segmentation mode among the plurality of segmentation modes.
  • the second indication information may be received when the sending end node establishes a communication connection with the receiving end, or may be received after the connection is established, or may also be received when a certain piece of information is transmitted.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128 or at least one of 64 etc.
  • the target segmentation method corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indicator, or node communication capability wait.
  • the target segmentation mode belongs to the segmentation mode supported by the receiving end.
  • the receiving end may feed back the segmenting methods it supports to the sending end, and the sending end determines the target check code addition method from the segmenting methods supported by the receiving end.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the embodiment of the present application provides a communication device, where the communication device includes a processor and a communication interface.
  • the communication interface is used to receive and/or send data, and/or the communication interface is used to provide input and/or output to the processor.
  • the communication device is configured to implement the method described in any possible implementation manner of the first to fourth aspects.
  • the processor included in the communication device described in the ninth aspect above may be a processor dedicated to executing these methods (referred to as a dedicated processor for easy distinction), or it may be executed by calling a computer program Handlers for these methods, such as general-purpose handlers.
  • at least one processor may also include both a special-purpose processor and a general-purpose processor.
  • the above computer programs may be stored in memory.
  • the memory may be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM).
  • ROM Read Only Memory
  • the memory and the processor may be integrated on the same device, or may be separately provided on different devices.
  • the embodiment of the present application does not limit the type of the memory and the arrangement of the memory and the processor.
  • the at least one memory is located outside the communication device.
  • the at least one memory is located in the communication device.
  • part of the memory of the at least one memory is located inside the communication device, and another part of the memory is located outside the communication device.
  • an embodiment of the present application provides a communication system, the communication system includes a first node and a second node, and the first node is used to implement the method described in any one of the first aspect; the second node The node is used to implement the method described in any one of the second aspect.
  • the embodiment of the present application provides a communication system, the communication system includes a first node and a second node, and the first node is used to implement the method described in any one of the third aspect; the first node The two nodes are used to implement the method described in any one of the fourth aspect.
  • the present application provides a chip, which may include a processor and an interface, and the processor is used to read instructions through the interface to execute the method described in any one of the first to fourth aspects above.
  • the present application provides a terminal, where the terminal is used to implement the method described in any one of the first to fourth aspects.
  • the above-mentioned terminal may include the communication device described in any one of the fifth to ninth aspects.
  • Examples of some terminals include but are not limited to: smart home devices (such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.), Intelligent transportation equipment (such as automobiles, ships, drones, trains, trucks, trucks, etc.), intelligent manufacturing equipment (such as robots, industrial equipment, intelligent logistics, intelligent factories, etc.), intelligent terminals (mobile phones, computers, tablets, handheld Computers, desktops, headsets, audio, wearable devices, car devices, virtual reality devices, augmented reality devices, etc.).
  • smart home devices such as TVs, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.
  • Intelligent transportation equipment such as automobiles, ships, drones, trains, trucks, trucks, etc.
  • intelligent manufacturing equipment such as robots, industrial equipment, intelligent logistics, intelligent factories, etc.
  • intelligent terminals mobile phones, computers, tablets, handheld Computers, desktops
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions are run on at least one processor, the aforementioned first to second aspects are realized any of the methods described.
  • the present application provides a computer program product, the computer program product includes computer instructions, and when the instructions are run on at least one processor, the method described in any one of the foregoing first to second aspects is implemented.
  • the beneficial effects of some implementations may refer to the beneficial effects of the technical solutions in the first aspect, which will not be repeated here.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIGS. 4-7 are schematic diagrams of some check code addition methods provided by the embodiments of the present application.
  • Fig. 8 is a schematic diagram of a segmentation method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a decoding delay provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of another segmentation method provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a location design of redundant information provided by an embodiment of the present application.
  • FIG. 12 is a structural diagram of a transmission unit provided by an embodiment of the present application.
  • Fig. 13 is a structural diagram of another transmission unit provided by the embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • CRC is a channel coding technology that generates a short fixed-digit check code based on data such as network packets or computer files. It is mainly used to detect or verify errors that may occur after data transmission or storage.
  • a transmission unit is a data unit transferred between peer-to-peer layers during a communication process.
  • the transmission unit may be a protocol data unit (Protocol Data Unit, PDU).
  • PDU Protocol Data Unit
  • each layer entity can create a PDU of the layer entity.
  • the PDU contains information from the upper layer entity and additional information from the current layer entity, and then is transmitted to the next layer.
  • the information of the current layer entity may not be attached, such as transparent transmission.
  • a frame is a transmission unit, which may include data, a header, or a tail, etc. passed down from an upper layer.
  • the data transmitted from the upper layer is a data packet as an example.
  • a frame is formed by adding the protocol header and protocol tail of the current layer. That is to say, the front part of the frame contains a header, the end of the frame contains a tail, and the data packet is used as the data part of the frame, thus forming a complete frame.
  • frames may also have multiple types or formats.
  • control type transmission unit may also be called a control frame or a management frame
  • data type transmission unit may also be called a data frame
  • the frame may have a long frame format and a short frame format.
  • the data transmitted from the upper layer (the upper layer of the physical layer), where the upper layer may be at least one of the media access layer, link control layer, data link layer, network layer, transport layer, and application layer. In some scenarios, it is also called business data and original data.
  • the transmission block may be in the form of a packet, which is also called a data packet in some scenarios.
  • Subdata is part of data in a TB (or TB with checksum).
  • the data unit or subpacket to be encoded The data unit or subpacket to be encoded.
  • the data length of the CB block refers to the data length input to the encoder, and this length may include the length of the additional CRC or not include the length of the CRC.
  • the code length refers to the number of bits of a code word obtained after encoding the code block. For example, if the data length corresponding to an encoding block is 512 bits and the corresponding code length is 1024 bits, it means that the encoding block contains 512 bits of data before encoding, and a 1024 bits code word is obtained after encoding.
  • Polar (Polar) code is a coding method that is theoretically proved to be able to achieve Shannon capacity, and has the characteristics of high performance and low encoding and decoding complexity.
  • the code length corresponding to the code word output after encoding is a positive integer power of 2. If the code length corresponding to the codeword output after encoding is inconsistent with the length of bits that can be transmitted by the physical layer, an additional rate matching module needs to be configured so that the encoded codeword can be channel retransmitted or punctured through the rate matching module. To match the actual transmission capacity of the channel.
  • the vehicle control system can be divided into multiple communication domains, such as power transmission domain, body electronics domain, assisted driving domain, cockpit domain, etc., and each domain is dominated by a corresponding domain controller.
  • the CDC also known as the car machine, is the domain controller in the vehicle cockpit domain.
  • a node is an electronic device with communication capabilities, also known as a communication node.
  • a node may include a hand-held terminal, a vehicle, a vehicle-mounted device, or a network-side device, a user device, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a wireless communication device, a user agent, or
  • An independent device such as a user device may also be a component (such as a chip or an integrated circuit) contained in an independent device.
  • Nodes can be any possible smart terminal devices (such as mobile phones), smart transportation devices (such as vehicles, drones, etc.), smart manufacturing devices, smart home devices (such as large screens, speakers, etc.), etc.
  • the nodes in the vehicle, the nodes can also be the batteries in the battery management system and the battery pack.
  • the node when it is a vehicle-mounted device, it may be a car cockpit domain device, or a module in a car cockpit device, for example: a cockpit domain controller (cockpit domain controller, CDC), a camera, a screen, a microphone, One or more of the modules such as audio, electronic key, keyless entry or start system controller.
  • a cockpit domain controller cockpit domain controller
  • CDC cockpit domain controller
  • a camera camera
  • screen screen
  • microphone a microphone
  • One or more of the modules such as audio, electronic key, keyless entry or start system controller.
  • the nodes in the embodiments of the present application can be applied to various application scenarios, such as the following application scenarios: mobile internet (MI), industrial control (industrial control), unmanned driving (self driving), transportation safety (transportation safety) ), Internet of things (IoT), smart city (smart city), or smart home (smart home), etc.
  • MI mobile internet
  • industrial control industrial control
  • unmanned driving self driving
  • transportation safety transportation safety
  • IoT Internet of things
  • smart city smart city
  • smart home smart home
  • the nodes in this application can be applied to various communication systems, such as the following communication systems: global system of mobile communication (GSM) system, code division multiple access (CDMA) system, Wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex, FDD) system, LTE time division duplex (TDD), universal mobile telecommunications system (UMTS), worldwide interoperability for Microwave Access (WiMAX) communication system, the fifth generation ( 5th generation, 5G) system or new wireless (New Radio, NR) and other millimeter wave communication systems, sixth generation (6th generation, 6G) system, various existing short-distance communication systems (such as vehicle wireless communication systems), future An evolved short-range communication system, or a general-purpose short-range communication system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • nodes In some application scenarios or certain network types, the names of devices with similar communication capabilities may not be called nodes, but for the convenience of description, electronic devices with communication capabilities are collectively referred to as nodes in this embodiment of the application.
  • a communication system usually includes multiple nodes that can communicate with each other to transmit data.
  • the communication domain refers to a system composed of a group of nodes with communication relationships and the communication connection relationship between the communication nodes (that is, communication links). perform a specific function.
  • a communication domain may include a master node and one or more slave nodes, and the master and slave nodes, or between a master node and a master node, or between a slave node and a slave node may communicate with each other.
  • the master node can manage the slave nodes, has the function of allocating resources, and is responsible for allocating resources for the slave nodes; the slave nodes obey the scheduling of the master node, and use the resources allocated by the master node to communicate with the master node and/or with other nodes.
  • Fig. 1 shows a schematic diagram of a possible application scenario.
  • CDC, screen, speaker, or microphone can constitute a communication domain (the first communication domain shown in Figure 1), and the keyless entry and start system (passive entry passive start, PEPS), mobile phone key and car key can be A communication domain (the first communication domain shown in FIG. 1 ) is formed.
  • the CDC may be the master node, and the other nodes are slave nodes.
  • the CDC may establish a communication connection with the screen, the speaker and/or the microphone via wired communication or wireless communication, for example.
  • the master node may also be called a G node, a management node, or a control node
  • the slave node may also be called a T node or a terminal.
  • the communication link from the G node to the T node may be called a C link or downlink, and the communication link from the T node to the G node may be called a T link or an uplink.
  • the application scenario shown in FIG. 1 is only one exemplary scenario to which the solution of the present application can be applied.
  • the types and numbers of nodes in the communication domain are examples only.
  • the solution of the present application may also be applicable to any other suitable application scenarios, such as but not limited to home, office, exhibition hall, production and other scenarios.
  • the communicating nodes include a first node and a second node.
  • Fig. 2 is a schematic diagram of a possible wireless communication system provided by an embodiment of the present application.
  • the first node 201 sends data to the second node 202, so the first node 201 is called the sending end, and the second node 202 is called the receiving end.
  • nodes included in the communication system, which are shown here as a first node and a second node for ease of description.
  • the sending end needs to add a check code, such as CRC, to the data.
  • the receiving end can judge whether the data sent by the sending end is accurately received through the check code.
  • the sending end can divide the transmitted data into CB blocks, and each CB block includes CRC.
  • the receiving end can judge whether each CB is received correctly, so that the sending end can resend the wrong CB.
  • the manner in which each CB block includes a CRC will increase the proportion of the CRC in the transmission bits, thereby reducing the transmission code rate and affecting transmission performance.
  • each CB block is attached with a CRC, which will not gain more benefits in terms of reliability, but will reduce the efficiency of data transmission , increasing the delay and affecting the transmission performance.
  • the receiving end does not need to feed back the reception status of transmission blocks or CB blocks.
  • adding CRC to each CB block will reduce transmission performance.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method may apply the communication system described in FIG. 2 .
  • the version management method as shown in FIG. 3 includes at least step S301 to step S304, specifically as follows:
  • the first node executes processing on the first TB according to a target check code addition mode among multiple check code addition modes to obtain first data.
  • the first data includes M CBs, and M is a positive integer.
  • the first TB is the data to be transferred.
  • Performing processing on the first TB may include appending a check code to the first TB, segmenting, or adding a check code to partial data of the first TB (referred to as sub-data for convenience of description), and the like.
  • the check code can be used to verify whether the corresponding data is transmitted correctly.
  • the method of adding a check code is used to indicate the rules for adding a check code, and the rules for adding a check code corresponding to different methods of adding a check code are different.
  • the check code adding method used when adding the check code belongs to one of the multiple check code adding methods.
  • the multiple ways of adding check codes may be pre-defined or pre-configured. For example, through the agreement, define multiple ways of adding check codes. For another example, when the first node leaves the factory, a plurality of check code addition methods are written in the memory of the first node. For another example, through the management interface, configure multiple ways of adding check codes to the first node.
  • check code as CRC as an example, and exemplifies 4 possible ways of adding the check code:
  • FIG. 4 is a schematic diagram of a verification code addition method provided by an embodiment of the present application.
  • the first node may calculate the first CRC corresponding to the first TB according to the entire first TB, and the first CRC is, for example, the "TB-CRC" part shown in FIG. 4 .
  • the first CRC may be appended behind the first TB to obtain the first TB with a check code, as shown in area 401 .
  • the first TB with a check code can be divided into N sub-data, such as sub-data 1 to sub-data N shown in FIG. 4 .
  • the first node may calculate a second CRC according to each piece of sub-data, as shown in the "CB-CRC" part in FIG. 4 .
  • the second CRC is appended to the subdata to obtain the CB.
  • CB(1) includes sub-data 1 and the CRC corresponding to sub-data 1;
  • CB(2) includes sub-data 2 and the CRC corresponding to sub-data 2, and so on for other CBs.
  • Method 2 of adding a check code the first TB and the first CRC jointly correspond to N pieces of sub-data. Among the N pieces of sub-data, some of the sub-data individually correspond to CRC; some of the sub-data (commonly) correspond to the third CRC.
  • the M CBs include M1 (M1 ⁇ 0) first CBs, and each first CB includes one sub-data and one second CRC.
  • the second CRC is a CRC corresponding to one piece of sub-data.
  • the M CBs include M2 (M2 ⁇ 0) second CBs, the M2 second CBs correspond to N1 (N1 ⁇ 0) sub-data and the third CRC, and the third CRC is a CRC corresponding to the N1 sub-data.
  • FIG. 5 is a schematic diagram of a check code adding method provided by an embodiment of the present application.
  • the first CB contains the sub-data and the CRC corresponding to the sub-data, such as CB (a1) contains the CRC corresponding to the sub-data and sub-data 1, and for CB (a2) contains the sub-data (a2) and the sub-data (a2 ) corresponding to the CRC, and so on for the rest of the first CB.
  • the CRC corresponding to part of the sub-data (for example, N1 sub-data) is appended behind (or in front of, or in the middle of) the part of sub-data.
  • the part (N1 pieces) of sub-data with checksums may be further divided into one or more second CBs, such as CB(b1), CB(b2) and so on. It should be noted that FIG. 5 uses N1 sub-data as an example for illustration, and N1 may be 0, 1, or other positive integers during specific processing.
  • each CB block with a partial code length includes a CRC; a CB block with a partial code length corresponds to sub-data with a CRC.
  • the first code length may be one code length, such as 1024 code lengths or 512 code lengths, or a set of code lengths including multiple code lengths, for example, the second code length may be ⁇ 256, 128, 64 ⁇ , etc.
  • the second code length may be one code length, such as 1024 code lengths or 512 code lengths, or a code length set including multiple code lengths.
  • N2+N1 N.
  • the M CBs further include M3 fourth CBs, the M3 fourth CBs correspond to the M3 sub-data, and the M3 third CBs do not include the corresponding CRC.
  • FIG. 6 it is a schematic diagram of another check code addition method provided by the embodiment of the present application. For N3 sub-data in the N sub-data, the sub-data directly forms the third CB without adding a check code.
  • the code length corresponding to the third CB belongs to the third code length.
  • the third code length may be one code length, such as 1024 code lengths or 512 code lengths, or may be a set of code lengths obtained by multiple code lengths.
  • Method 3 of adding a check code the first TB and the first CRC correspond to M CBs.
  • FIG. 7 it is a schematic diagram of another check code addition method provided by the embodiment of the present application.
  • the first TB with the check code added can be divided into M CBs, and each CB does not contain a separate check code.
  • Check code appending method four the first TB corresponds to N sub-data, and the N sub-data are respectively appended with CRC to form M CBs.
  • multiple ways of adding check codes may include more or less ways of adding check codes.
  • the multiple check code adding methods include check code adding method 2 and check code adding method 3.
  • the multiple check code addition methods may also include other CRC addition methods not listed in this application.
  • the code length of the coded CB needs to satisfy the form of an integer power of 2. That is, the code length of the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length of the CB belongs to one or more of multiple predefined code lengths.
  • the multiple predefined code lengths include one or more of the following code lengths: 1024, 512, 256, 128 or 64.
  • code lengths corresponding to different CBs may be the same or different.
  • the code length corresponding to the CB block and the number of CB blocks of each code length can be determined in a segmented manner.
  • the target segmentation mode used when segmenting a TB, may belong to one of multiple segmentation modes.
  • multiple segmentation modes may be pre-configured or pre-defined. For example, multiple verification code addition methods are defined through the protocol. Or when the node leaves the factory, write multiple verification codes in the node. Or, through the communication interface, configure multiple check code attachment methods in the node
  • M CB blocks include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the predefined multiple code lengths include 5 code lengths, which are 1024, 512, 256, 128 and 64 respectively, then among the M CBs, at least one code length is 64 CB.
  • FIG. 8 is a schematic diagram of a possible segmentation method provided by the embodiment of the present application. Among the M CBs, the code length corresponding to CB(M) is 64.
  • Segmentation mode 2 among the M CB blocks, the code length of the CB block belongs to multiple consecutive code lengths among the predefined multiple code lengths.
  • the predefined code length includes 5 code lengths, which are 1024, 512, 256, 128 and 64 respectively.
  • the code length of the CB includes 3 code lengths (referred to as L1, L2, and L3 for convenience of description), and the 3 code lengths belong to consecutive code lengths among the 5 code lengths. That is, (L1, L2, L3) may be (1024, 512, 256), or (512, 256, 128), or (256, 128, 64).
  • the positions of the CBs of L1, L2, and L3 are just examples.
  • the code lengths of the CB are 1024, 512, 256, 128, and 64
  • the numbers of CB blocks corresponding to each code length are 1, 1, 1, 1, and 1, respectively.
  • the codeword corresponding to the 1024-code long CB block is at the front of the sequence, and the code words are 1024, 512, 256, 128 and 64 codes from front to back.
  • the codeword corresponding to the CB block is shown.
  • FIG. 9 is a schematic diagram of a possible decoding delay, and a schematic diagram of the sequence of CB blocks with different code lengths during reception and decoding.
  • the receiving end first receives the codeword (1) with a length of 1024 codes.
  • Segmentation method three M CB blocks do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may include a CB corresponding to a code length of 64, or may not include a CB corresponding to a code length of 64.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths; if the first The data length of one TB belongs to the second data length, the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the first data length may include at least one data, may also include multiple data lengths, and may also be one or more data length ranges. the same way.
  • the second data length may include at least one data, or may include multiple data lengths, and may also be one or more ranges of data lengths.
  • the CB blocks are obtained by four-segmentation. Since the CB blocks may not include the block with the smallest code length, fewer CB blocks can be obtained. In this way, the time consumption when calculating the check code is reduced, the code rate is increased, and the efficiency of data transmission is improved. In addition, since the longer the codeword corresponding to the coding block, the stronger the error correction capability of the transmission system, so increasing the code length corresponding to the CB can improve the error correction capability.
  • the code lengths of the CB blocks may not be continuous.
  • the predefined code length includes 5 code lengths, which are 1024, 512, 256, 128 and 64 respectively.
  • the code length of the CB includes 3 code lengths (referred to as L1, L2 and L3 for convenience of description), and the 3 code lengths may not be consecutive. That is, (L1, L2, L3) can be (1024, 512, 128), or (1024, 512, 64), or (512, 256, 64) and so on.
  • the positions of L1, L2, and L3 are just examples.
  • segmentation methods are only examples, and more or fewer segmentation methods may be included in the specific implementation process.
  • multiple segmentation methods may include segmentation method 1, segmentation method 2, and segmentation method 3.
  • segmentation method 1 and segmentation method 2 can be combined, for example, segmentation method 5 can be obtained through combination.
  • Segmentation mode five among the M CB blocks, at least one CB block with the lowest code length is included; and the code length of the CB block belongs to multiple consecutive code lengths among the predefined multiple code lengths.
  • the code length L of the CB is related to one or more of the following parameters: data length of the CB, a preset first code rate, a reduction threshold, redundant information, and the like.
  • the first code rate may be a code rate required by the transmission format, or a code rate artificially selected according to requirements, or a code rate selected from a plurality of predefined or configured code rates according to rules , where the rules may be, for example, round-robin selection or random selection, etc., which are not specifically limited.
  • the reduction threshold can adjust the code rate.
  • the first node is pre-defined or configured with correspondences between S code lengths, T code rates, and S ⁇ T data lengths, and each data length in the S ⁇ T data lengths It can correspond to one code length among the S code lengths and one code rate among the T code rates, and is used to represent a coded block when the coded block with the corresponding code length is transmitted using the corresponding code rate that is preset or configured Data length, both S and T are positive integers.
  • the corresponding relationship of S code lengths, T code rates, and S ⁇ T data lengths may be expressed in one or more forms of tables, stacks, databases, queues, or other forms.
  • Table 1 shows an exemplary S code lengths, T code rates, and S ⁇ T data lengths (CB block data length), the correspondence table is also called segment length reference table, or referred to as K table.
  • K table segment length reference table
  • 1/8 is the step reduction threshold, and the code rate can be adjusted.
  • the first node may process the TB to form M CBs based on the target segmentation method five and the check code attachment method two.
  • the M CBs include the CB with the smallest code length, and the code lengths of the M CBs show a decreasing trend.
  • the preset first code rate is 1/2
  • the length of the first TB is 750bit
  • the data length of CRC is 20bit (just an example)
  • the predefined code length is 1024 , 512, 256, 128, 64 as an example.
  • the first node adds the first CRC to the first TB to obtain a TB block (770 bits) with a check code.
  • Figure 10 is a schematic diagram of a possible segmentation method provided by the present application.
  • the TB with check code is segmented to obtain 5 sub-data, and the 5 sub-data can form 5 CBs.
  • the numbers of CBs with code lengths of 1024, 512, 256, 128, and 64 are 1, 1, 1, 1, and 1, respectively.
  • the 5 CBs include a CB block with a code length of 64, and the code length corresponding to the CB block shows a trend of continuous increase.
  • CB(1) contains sub-data 1 and the CRC corresponding to sub-data 1
  • the size of CB1 is 512bit
  • the corresponding code length is 1024
  • CB(2) contains sub-data 2 and the CRC corresponding to sub-data 2
  • the size of CB2 The size is 192bit
  • the corresponding code length is 512, and so on for other CBs.
  • redundant information can be added to form a CB block with a data length of 24bit, and the CRC (20bit) contained in CB(7) is used to check the sub-data 5 and redundant information, Or it is used to check the sub-data 5 .
  • redundant information may be included in the CB, so that the formed CB block satisfies a certain code length.
  • the redundant information may be a piece of data that is pre-defined, pre-configured, or obtained through negotiation.
  • redundant information may be 0 or 1 of multiple bits.
  • the location of the redundant information may have various designs.
  • FIG. 11 is a schematic diagram of the location design of some possible redundant information. As shown in part (a) of Figure 11, the position of redundant information can be behind the sub-data and in front of the check code; as shown in part (b) of Figure 11, the position of redundant information can be at the front of the CB block; as shown in Figure 11 In part (c), the position of the redundant information may be at the rear of the CB block.
  • the method of attaching the target check code corresponds to one or more of the following information: communication channel type, communication scene type, channel quality indicator, node communication capability, code rate or wireless frame type wait.
  • the communication capability of the node also referred to as the capability of the node
  • the capability of the node may include one or more aspects of the following aspects: the check code addition method supported by the node, the check capability of the node, etc., and the indication information for the above aspects .
  • the correspondence between the method of adding the check code and the above information may be pre-defined, pre-configured, or obtained through negotiation.
  • the corresponding relationship may be expressed in one or more forms of tables, stacks, databases, queues or other forms. The following takes the form of a table as an example to explain the possible situation of the corresponding relationship between the method of adding the target check code and the above information:
  • Table 2 is an example of the corresponding relationship between a possible communication channel type and a check code adding method provided by the embodiment of the present application. It can be seen that in the broadcast channel, the check code can be added using the check code appending method three. In the downlink control channel, check code addition mode 2 can be used to add the check code, and other situations are shown in Table 2.
  • Type of communication channel Method of additional check code broadcast channel (broadcast link) Check code additional method three public channel Check code additional method three multicast channel Check code additional method three downlink control channel Check code additional method 2 downlink data channel Check code addition method 1 system management frame Check code additional method three ... ...
  • Case 2 As shown in Table 3, it is an example of the corresponding relationship between a possible communication scenario type (or transmission unit type, such as a frame type) and a check code appending method provided by the embodiment of the present application. It can be seen that in the video telephony scenario, the check code can be added using the check code appending method one. In the scene of short video viewing, you can use the check code appending method 1 to add the check code, and the rest of the situation is shown in Table 3.
  • a radio frame is a time unit carrying symbols
  • a time length of a radio frame is a multiple of a basic time unit.
  • Data transmission between nodes uses different symbols in radio frames.
  • one radio frame may include one or more symbols, one or more switching intervals, and the like.
  • wireless frames There are many types of wireless frames, and different types of wireless frames correspond to different ways of adding check codes.
  • the corresponding relationship between the wireless frame type and the method of adding the check code can be shown in Table 4-1.
  • the check code is added through the first method of adding the check code;
  • the check code addition method 3 is used to add the check code.
  • Table 4-1 Correspondence between wireless frame types and check code appending methods
  • radio frame type Method of additional check code Radio Frame Type 1 ... Radio Frame Type 2 Check code addition method 1 Radio Frame Type 3 Check code additional method three Radio Frame Type 4 Check code additional method three ... ...
  • the wireless frame type may be predefined or preconfigured by the manufacturer, user, or management device (or administrator), for example, specified by a protocol.
  • Table 4-2 is an information table of a radio frame type. It can be seen that different radio frame types may carry different information and the duration or number of bits occupied by the information. Taking the radio frame type 2 as an example, the time length of the preamble signal in the radio frame type 2 is 10 microseconds (us), and the length of the synchronization sequence is 64 bits; and the time length of the preamble signal in the radio frame type 3 is 12 microseconds (us). us), the length of the synchronization sequence is (31+31) bits. Of course, other information, such as physical layer control information, physical layer data information, integrity protection fields, or cyclic redundancy check fields, etc., may also have different designs such as modulation methods and segmentation methods, which will not be detailed here. illustrate.
  • wireless frame types shown in Table 4-2 are only examples. During specific implementation, more or less information may be carried in the wireless frame, or some information may be designed as information. This application does not strictly limit the information carried by a certain type of wireless frame and the detailed design of the information.
  • different services need to be transmitted using radio frames of different radio frame types, or different radio frame types are used in different communication scenarios. Due to different services or different communication scenarios, the requirements for transmission efficiency and reliability are different, and the wireless frame type corresponds to the method of adding check codes, and can be used for a certain type of wireless frame. Or the method of adding check codes in communication field scenarios, so as to meet the transmission requirements of different businesses or scenarios, and improve the service quality of the network.
  • Case 4 Taking the channel quality indicator as the SNR as an example, Table 5 shows the corresponding relationship between a possible SNR level and a check code addition method provided by the embodiment of the present application. If the current SNR falls within the range corresponding to the first SNR level, use the check code addition method 1; if the current SNR falls within the range corresponding to the second SNR level, use the check code addition method 2; and so on for the rest of the cases.
  • the second node may inform the first node of the check code appending method supported by itself.
  • the first node determines the target check code attachment mode from the check code attachment modes supported by the second node.
  • the target method of adding a check code can be obtained through negotiation, or obtained according to priorities, or determined in other ways.
  • the first node and the second node may negotiate the method of adding the check code to be used during the process of establishing the connection.
  • the sending end or the receiving end notifies the opposite side of the check code addition method that should be adopted.
  • the target check code addition method used by the first node belongs to the check code addition method supported by the receiving end (eg, the second node).
  • Case 6 For different code rates, different methods of adding check codes can be used. For example, when the coding rate is 3/4, use the check code addition method 1; when the coding rate is 1/2, use the check code addition method 2; when the coding rate is 1/4, use the check code Code addition method two.
  • the code rate here refers to the code rate of the frame header (or control information).
  • the segmentation mode corresponds to one or more of the following information: communication channel type, communication scene type, channel quality indicator, or node communication capability, code rate, and the like.
  • communication channel type communication channel type
  • communication scene type communication scene type
  • channel quality indicator or node communication capability, code rate, and the like.
  • the first node may send first indication information, where the first indication information is used to indicate a target check code addition manner among the multiple check code addition manners.
  • the first indication information may be sent when the sending end node and the receiving end establish a communication connection, or after the connection is established, or may also be It is sent when a certain piece of information is transmitted.
  • the first indication information is sent through signaling.
  • the first indication information is carried by a frame header. Among them, a frame is a possible transmission unit.
  • the second indication information may be transmitted through one or more fields in the frame header.
  • the first node may send second indication information, where the second indication information is used to indicate a target segmentation mode among multiple segmentation modes.
  • the timing and sending method of sending the second indication information reference may be made to the above method of adding a check code.
  • the check append method indication field is used to indicate the target check code addition method
  • the segmentation method indication field is used to indicate the target segmentation method
  • other fields can be used to indicate the type of data unit and the address type of the device sending data, for example. , the address type of the device receiving data, the number of bytes of valid data, etc.
  • the transmission unit may also include an unshown synchronization channel, an access address, a connection interval (connection interval, CI), or an algorithm terminator (termination, TERM), etc.
  • Table 6 shows a value description of a possible check code addition method indication field provided by the embodiment of the present application.
  • the check code addition mode indication field is 00, it indicates the check code addition mode 1, and other conditions are shown in Table 5.
  • Table 6 Values and corresponding descriptions of the check code additional method indication field
  • Table 7 shows a value description of a possible segmentation mode indication field provided by the embodiment of the present application.
  • the segmentation mode indication field is 000, it indicates segmentation mode 1, and other conditions are shown in Table 6.
  • the first indication information and the second indication information may be the same indication information.
  • FIG. 13 shows a schematic structural diagram of another transmission unit.
  • the check appending mode indication field is used to indicate the target check code appending mode and segmentation mode.
  • the method of adding a check code may be related to the method of segmentation, indicating that when the method of adding a check code is used, the corresponding method of segmentation is the method of segmentation.
  • the value description of a possible check code addition method indication field provided by the embodiment of the present application is shown.
  • the segmentation mode indication field is 0x000, it indicates check code addition mode 1 and segmentation mode 1, and other conditions are shown in Table 8.
  • Table 8 Values and corresponding descriptions of the check code additional method indication field
  • the first node generates at least one codeword according to the M CBs.
  • the first node encodes the M CBs to generate at least one codeword.
  • encoding a CB can form a codeword.
  • the encoding manner is polar code encoding.
  • the transmitting end device may also perform one or more operations of bit mapping, high-order modulation, or symbol interleaving.
  • the order of operations such as encoding M CBs, bit mapping, high-order modulation, or symbol interleaving is not specifically limited, for example, these operations may be performed once, sequentially, or in parallel.
  • the codewords of the M CBs will form a complete sequence.
  • the codewords of each first encoding block and the codewords of each second encoding block in the sequence may be arranged together in an arrangement order.
  • the arrangement order may be preconfigured, preset or defined by a protocol.
  • the sequence may be sent from the receiving end to the receiving end, so that the receiving end device can also obtain the M coding blocks in order.
  • S303 The first node sends the at least one codeword.
  • the first node may carry the codewords of the M coding blocks in a transmission unit and send them through a channel.
  • the codewords of the M coded blocks may be presented as a data sequence in the transmission unit, which is convenient for description, and this data sequence is referred to as second data.
  • the second node receives at least one codeword.
  • the second node may receive at least one codeword in the following manner: the second node receives the second data, and the second node segments the codewords corresponding to the M encoding blocks from the second data to obtain at least one codeword Character.
  • the second node segments codewords corresponding to each of the M coding blocks from the second data based on a target segmentation method among the plurality of segmentation methods.
  • the target segmentation mode is indicated by second indication information.
  • the second node receives the indication information from the first node, so as to determine the target segmentation mode.
  • one or more operations such as bit mapping and demodulation may be performed.
  • This application does not specifically limit the sequence of operations such as bit mapping and demodulation.
  • S304 The second node performs processing on the at least one codeword according to a target check code adding manner among multiple check code adding manners to obtain information of the first TB.
  • the information of the first TB includes one or more of the following information: the first TB, the verification result of the first TB, the sub-data corresponding to at least one CB, the verification result of at least one CB, at least one Subdata corresponding to a coded block group (CBG), or at least one CBG verification result.
  • the verification result may include one or more items of indication information of successful verification, indication information of failed verification, or data bits of failed verification.
  • a CBG is a group formed by one or more CBs, and can be used as a data unit for encoding, decoding, verification, or retransmission operations in some scenarios.
  • the first node processes the first TB to obtain M coded blocks according to the method of adding the target check code, and then obtains at least one codeword according to the M coded blocks.
  • the second node decodes at least one codeword to obtain M coded blocks; according to the method of adding target check codes, checks whether the data is transmitted correctly through the check codes corresponding to the data.
  • the subdata corresponding to the CB may be obtained, or may further include indication information that the verification of the CB is successful.
  • indication information indicating that the verification of the CB fails can be obtained.
  • the second node performs verification in the form of CBG.
  • the sub-data corresponding to the CBG may be obtained, or may also include indication information that the verification of the CBG is successful.
  • indication information indicating that the verification of the CBG fails can be obtained.
  • the verified TB in the case that all the M CBs are verified as correct transmission, the verified TB may be carried according to the N sub-data.
  • the TB is verified by the verification code corresponding to the TB.
  • the verification is successful, the TB may be obtained, or indication information indicating that the verification of the TB is successful is also included.
  • indication information indicating that the verification of the TB fails can be obtained.
  • the second node decodes at least one codeword to obtain M coded blocks.
  • the second node checks whether the data is transmitted correctly based on the check code of the corresponding data according to the method of adding the target check code.
  • Embodiment 1 The method of adding the target check code is method 1.
  • the second node checks whether the sub-data contained in each CB is transmitted correctly according to the second CRC contained in each CB. For example, as shown in Figure 4, for CB(1), use the CRC contained in CB(1) to check whether the sub-data 1 is transmitted correctly; for CB(2), use the CRC contained in CB(2) to check whether the sub-data 2 is transmitted correctly, and so on for the rest of the cases.
  • the second node obtains the first TB with a check code according to the N sub-data.
  • the first TB with check code includes the first TB and the first CRC.
  • the second node checks the first TB according to the first CRC, and obtains the first TB or a check result of the first TB.
  • Embodiment 2 The method of adding the target check code is the method 2 of addition. For the M1 second CBs, according to the second CRC contained in each first CB, check whether the sub-data corresponding to the first CB is transmitted correctly; for the M2 second CBs, according to the second CRC Three CRCs, checking whether the N1 sub-data are transmitted correctly.
  • CB(a1) use the CRC contained in CB(a1) to check whether the sub-data (a1) is transmitted correctly; for CB(a2), use the CRC contained in CB(a2) CRC to check whether the sub-data (a2) is transmitted correctly, and so on for the rest of the first CB.
  • CB(a2) use the CRC contained in CB(a2) CRC to check whether the sub-data (a2) is transmitted correctly, and so on for the rest of the first CB.
  • CRC for the second CB, according to one or more (N1) sub-data with check codes of the second CB, use CRC to check whether the N1 sub-data are transmitted correctly, so as to determine whether the sub-data are transmitted correctly.
  • the first TB with a check code is obtained according to the M1 sub-data and the N1 sub-data.
  • the first TB with check code includes the first TB and the first CRC.
  • the second node checks the first TB according to the first CRC, and obtains the first TB or a check result of the first TB.
  • Embodiment 3 The method of adding the target check code is the method 3 of addition.
  • the second node obtains the first TB with a check code according to the M CBs.
  • the first TB with check code includes the first TB and the first CRC.
  • the second node checks the first TB according to the first CRC, and obtains the first TB or a check result of the first TB.
  • the first node can determine the target check code method from multiple check code addition methods, and add a check to the TB (and/or TB sub-data) based on the target check code method code. Since the method of adding the check code can be flexibly determined, the method of adding the check code applicable to the current scene can be determined in different transmission scenarios, thereby improving the transmission performance.
  • a check code can be added to the transmission block, a part of the sub-data can be appended with a check code alone, and another part of the sub-data can correspond to a check code together, which improves the flexibility of adding a check code and improves Efficiency of data transfer.
  • FIG. 14 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method may apply the communication system described in FIG. 2 .
  • the communication method as shown in FIG. 14 includes at least step S1401 to step S1404, specifically as follows:
  • the first TB is data to be transmitted.
  • the first TB can be segmented to obtain M CBs.
  • the first node can first calculate the check code of the first TB to obtain the first TB with the check code.
  • the first node segments the first TB to be verified to obtain M CBs.
  • This embodiment of the present application describes the first TB segment, which may or may not have a check code, and is not limited to be segmented based on the first TB itself.
  • the segmentation mode is used to indicate the segmentation rule for the first TB, and the segmentation rules indicated by different segmentation modes are different, and the obtained CB numbers or code lengths are also different.
  • the first node may segment the first TB based on a target segmentation mode among the multiple segmentation modes to form a CB.
  • the CB may contain part of the data of the first TB (hereinafter referred to as sub-data for convenience of description), may also contain both the sub-data and the check code corresponding to the sub-data, or may only contain the check code corresponding to the sub-data .
  • the multiple ways of adding check codes may be pre-defined and pre-configured. For example, multiple verification code addition methods are defined through the protocol. Or when the node leaves the factory, write multiple verification codes in the node. Or, through the communication interface, configure multiple check code attachment methods in the node
  • step S301 reference may be made to the several possible segmentation methods exemplified in step S301, which will not be repeated here.
  • the target segmentation method there is a corresponding relationship between the target segmentation method and one or more of the following information: communication channel type, communication scene type, channel quality indicator, or node communication capability, code rate, and the like.
  • the correspondence between the target segmentation mode and the above information may be pre-defined, pre-configured, or obtained through negotiation. For related description, refer to the description in step S301.
  • the corresponding relationship may be expressed in one or more forms of tables, stacks, databases, queues or other forms.
  • the following takes the form of a table as an example to illustrate the possible situations of determining the method of attaching the target check code:
  • Table 9 is an example of a possible correspondence between communication channel types and segmentation modes provided by the embodiment of the present application. It can be seen that since the broadcast channel does not have a high requirement on time delay, in the broadcast channel, the segmentation method 3 can be used to segment TBs to improve the efficiency of segmentation. For another example, in the downlink control channel, segmentation method 1 may be used to perform segmentation, which can reduce delay and improve user experience. The rest of the situation is shown in Table 8.
  • Type of communication channel Segmentation broadcast channel Segmentation method three public channel Segmentation method three multicast channel Segmentation method three downlink control channel Segmentation method one downlink data channel Segmentation method one ... ...
  • Scenario 2 Table 10 is an example of the correspondence between a possible communication scenario type and segmentation mode provided by the embodiment of the present application. It can be seen that in the video telephony scenario, segmentation method 1 can be used to perform segmentation to reduce delay. Improve user experience. In the scenario where recording data is uploaded, segmentation method 3 can be used for segmentation. The rest of the situation is shown in Table 9.
  • the second node may inform the first node of the segmentation modes it supports.
  • the first node determines the target segmentation mode from the segmentation modes supported by the second node.
  • the second node supports only one segmentation mode, only this segmentation mode can be used for subsequent communication.
  • the second node supports at least two segmentation modes, it may be determined through negotiation, or according to priorities, or determine which segmentation mode to use.
  • the first node and the second node may negotiate the used segmentation mode during the process of establishing the connection. Or each time a communication is made, the sending end or the receiving end notifies the opposite side of the segmentation method to be adopted.
  • the target segmentation method used by the first node belongs to the segmentation method supported by the receiving end (eg, the second node).
  • the first node may send second indication information, where the second indication information is used to indicate a target segmentation mode among multiple segmentation modes.
  • the second indication information is used to indicate a target segmentation mode among multiple segmentation modes.
  • the first node generates at least one codeword according to the M coding blocks.
  • step S302 For related descriptions, refer to the description in step S302, which will not be repeated here.
  • the first node may carry the codewords of the M coding blocks in a transmission unit and send them through a channel.
  • the codewords of the M coded blocks may be presented as a data sequence in the transmission unit, which is convenient for description, and this data sequence is referred to as second data.
  • S1404 The second node receives at least one codeword.
  • the second node receives at least one codeword. Specifically, the second node receives the second data, and the second node segments the codewords corresponding to the M encoding blocks from the second data to obtain at least one codeword.
  • the second node segments codewords corresponding to each of the M coding blocks from the second data based on a target segmentation method among the plurality of segmentation methods.
  • the target segmentation mode is indicated by second indication information.
  • the second node receives the indication information from the first node, so as to determine the target segmentation mode.
  • the method shown in FIG. 14 may further include step S1405. details as follows:
  • S1405 The second node performs processing on the at least one codeword to obtain information about the first TB.
  • the second node decodes the at least one codeword to obtain M coded blocks.
  • the M coded blocks and/or the first TB correspond to check codes, it is checked whether the data is transmitted correctly through the check codes of the corresponding data.
  • the target segmentation method can be determined from the multiple segmentation methods, and the TB is segmented based on the target segmentation method. Since the segmentation mode can be flexibly determined, a segmentation mode suitable for the current scenario can be determined in different transmission scenarios, thereby improving transmission performance.
  • the multiple devices provided in the embodiments of the present application include hardware structures, software units, or hardware structures and software structures that perform respective functions. combination etc.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the example units and algorithm steps described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians may use different device implementations in different usage scenarios to implement the aforementioned method embodiments, and the different implementations of devices should not be considered beyond the scope of the embodiments of the present application.
  • the device may be divided into functional units.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one functional unit.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • the communication device 150 is used to implement the aforementioned communication method, such as the signal processing method in the embodiment shown in FIG. 3 or FIG. 14 .
  • the communication device 150 may include a processing unit 1501 and a communication unit 1502 .
  • the processing unit 1501 may be used to implement functions such as processing, generation, or calculation in the aforementioned communication method, such as S301 or S302, and/or to support other processes described in the aforementioned method.
  • the communication unit 1502 may be used to perform receiving and/or sending operations in the aforementioned communication method, such as S303, and/or to support other processes described in the aforementioned method, such as processes such as sending indication information and receiving indication information.
  • the communication unit 1502 may also be replaced by a communication interface module and/or a transceiver module, and the interface module and/or transceiver module may be used to support other processes of the technologies described in the foregoing methods.
  • the processing unit 1501 is configured to:
  • the target check code addition method among the multiple check code addition methods perform processing on the first TB to obtain first data, the first data includes M CBs, and the multiple check code addition methods are in advance Defined or configured, the M is a positive integer;
  • the communication unit 1502 is configured to send the at least one codeword.
  • the communication unit 1502 is further configured to: send first indication information, where the first indication information is used to indicate a target check code addition mode among the multiple check code addition modes .
  • the first indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the first indication information is sent through signaling.
  • the first indication information is carried by a frame header.
  • the frame is a transmission unit, and the header of the frame is also called a frame header, which may contain one or more fields, and specifically, the first indication information may be transmitted through the fields in the frame header.
  • the method of adding the target check code corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indicator, node communication capability, code rate or Wireless frame type, etc.
  • the target check code addition method belongs to the check code addition method supported by the receiving side node.
  • the receiver can feed back the check code attachment methods it supports to the sender, and the sender determines the target check code attachment method from the check code attachment methods supported by the receiver.
  • the correspondence relationship is pre-defined, pre-configured, or obtained through negotiation.
  • the target check code addition method is the first check code addition method among the multiple check code addition methods
  • the first TB and the first cyclic redundancy check CRC jointly correspond to N sub-data, the first CRC is the CRC corresponding to the first TB, and N is a positive integer, where:
  • the M CBs include M1 first CBs, each first CB includes a sub-data and a second CRC, the second CRC is the CRC corresponding to the one sub-data, M1 ⁇ 0;
  • the M CBs include M2 second CBs, the M2 second CBs correspond to N1 sub-data and a third CRC, the third CRC is the CRC corresponding to the N1 sub-data, M2 ⁇ 0, N1 ⁇ 0.
  • the code length corresponding to the first CB belongs to the first code length
  • the M CBs include M3 third CBs, the M3 third CBs correspond to N2 sub-data, the third CBs do not include CRC, M3 ⁇ 0, and N2 ⁇ 0.
  • the target check code addition method is the second check code addition method among the multiple check code addition methods
  • the first TB and the first CRC jointly correspond to the M CBs, and the first CRC is a CRC corresponding to the first TB.
  • the target check code addition method is the third check code addition method among the multiple check code addition methods
  • the first TB and the first CRC of the first TB correspond to M pieces of sub-data together, and the first CRC is the CRC corresponding to the first TB, where:
  • Each CB in the M CBs includes a sub-data and a second CRC, and the second CRC is a CRC corresponding to the one sub-data.
  • processing unit 1501 is further configured to:
  • the foregoing segmentation operation is implemented at an object layer of wireless communication.
  • the target segmentation method is a first segmentation method in multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method in multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the communication unit 1502 is also configured to:
  • the second indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the second indication information is sent through signaling.
  • the second indication information is carried by a frame header.
  • a frame is a possible transmission unit.
  • the second indication information may be transmitted through one or more fields in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128, or 64, etc. at least one.
  • the communication device 150 is used to implement the method on the second node side in the embodiment shown in FIG. 3 .
  • the communication unit 1502 is configured to receive at least one codeword
  • the processing unit 1501 is configured to perform processing on the at least one code word to obtain the information of the first TB according to a target check code addition method among multiple check code addition methods, and the multiple check code addition methods Modes are predefined or configured.
  • the information of the first TB includes one or more of the following information:
  • the communication unit 1502 is further configured to:
  • Receive first indication information where the first indication information is used to indicate a target check code addition mode in the plurality of check code addition modes.
  • the communication unit 1502 is further configured to: receive the first indication information by receiving signaling.
  • the first indication information is carried by a header of a frame.
  • the frame is a transmission unit
  • the header of the frame is also called a frame header, which may contain one or more fields, and specifically, the first indication information may be transmitted through the fields in the frame header.
  • the method of adding the target check code corresponds to one or more of the following information: communication channel type, communication scenario type, channel quality indicator, node communication capability, code rate or radio frame type etc.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the target check code addition method is a check code addition method supported by the receiving end among the plurality of check code addition methods.
  • the receiver can feed back the check code attachment methods it supports to the sender, and the sender determines the target check code attachment method from the check code attachment methods supported by the receiver.
  • processing unit 1501 is further configured to:
  • the M CBs are verified to obtain the information of the first TB.
  • the first TB and the first cyclic redundancy check CRC jointly correspond to N sub-data
  • the first CRC is the CRC corresponding to the first TB
  • N is a positive integer
  • the M CBs include M1 first CBs, each first CB includes a sub-data and a first CRC, the first CRC corresponds to the one sub-data, M1 ⁇ 0;
  • the M CBs include M2 second CBs, the M2 second CBs correspond to N1 sub-data and a third CRC, the third CRC is the CRC corresponding to the N1 sub-data, M2 ⁇ 0, N1 ⁇ 0.
  • processing unit 1501 is further configured to:
  • processing unit 1501 is further configured to:
  • the first TB with a check code is obtained according to the M1 sub-data and the N1 sub-data, and the first TB with a check code the first TB contains the first TB and the first CRC;
  • the code length corresponding to the first CB belongs to the first code length
  • the code length corresponding to the second CB belongs to the second code length, and the first code length is different from the second code length.
  • M2+N1 N.
  • the M CBs include M3 third CBs, the M3 third CBs correspond to N2 sub-data, the third CBs do not contain CRC, M3 ⁇ 0, N2 ⁇ 0 .
  • the first TB and the first CRC jointly correspond to the M CBs, and the first CRC is a CRC corresponding to the first TB.
  • processing unit 1501 is further configured to:
  • a first TB with a check code is obtained, and the first TB with a check code includes the first TB and the first CRC;
  • the first TB and the first cyclic redundancy check CRC of the first TB jointly correspond to M pieces of sub-data, where:
  • Each CB includes one sub-data and the second CRC corresponding to the one sub-data.
  • processing unit 1501 is further configured to:
  • a first TB with a check code is obtained, and the first TB with a check code includes the first TB and a first CRC;
  • the M CBs are obtained based on a target segmentation manner in multiple segmentation manners.
  • the target segmentation method is the first segmentation method in multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the communication unit 1502 is further configured to:
  • the communication unit is further configured to: receive the second indication information by receiving signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128, or 64, etc. at least one of the .
  • the communication device 150 is used to implement the method on the first node side in the embodiment shown in FIG. 14 .
  • the processing unit 1501 is configured to:
  • the first data is obtained based on the first TB, the first data includes M CBs, the multiple segmentation methods are predefined or configured, and the M is positive integer;
  • the communication unit 1502 is configured to send the at least one codeword.
  • the communication device is a communication node or the communication device is a component in the communication node.
  • the foregoing method is implemented at an object layer of wireless communication.
  • the target segmentation method is the first segmentation method in multiple segmentation methods
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the target segmentation method is a second segmentation method among multiple segmentation methods
  • the M CBs do not necessarily include the third CB.
  • the code length corresponding to the third CB is the minimum code length among multiple predefined code lengths.
  • the M CBs may contain a CB with a corresponding code length of 64, or may not include a CB with a corresponding code length of 64 CB.
  • the code length of any CB is higher than the minimum code length among the predefined multiple code lengths.
  • the code length corresponding to the M CBs is related to the length of the TB. For example, if the data length of the first TB belongs to the first data length, among the M CBs, the code length corresponding to any one of the CBs is higher than the lowest code length among the predefined multiple code lengths;
  • the M CBs include at least one third CB, and the code length corresponding to the third CB is the lowest code length among the predefined multiple code lengths.
  • the second indication information may be sent when a communication connection is established between the sending end node and the receiving end, or after the connection is established, or when a certain piece of information is transmitted.
  • the second indication information is sent through signaling.
  • the code length L corresponding to the CB block satisfies the following equation:
  • L 2 n , n is a natural number.
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128, or 64, etc. at least one of the .
  • the target segmentation method has a corresponding relationship with one or more of the following information: communication channel type, communication scene type, channel quality indicator, or node communication capability.
  • the target segmentation mode belongs to the segmentation mode supported by the receiving end.
  • the receiving end may feed back the segmenting methods it supports to the sending end, and the sending end determines the target check code addition method from the segmenting methods supported by the receiving end.
  • the correspondence relationship is predefined, preconfigured, or obtained through negotiation.
  • the communication device 150 is used to implement the method on the second node side in the embodiment shown in FIG. 14 .
  • the communication unit 1502 is configured to receive the second data to obtain at least one codeword according to a target segmentation mode in multiple segmentation modes, where the multiple segmentation modes are pre-defined or configured;
  • the processing unit 1501 is configured to perform processing on the at least one codeword to obtain information of the first TB.
  • the at least one codeword corresponds to M CBs.
  • the foregoing method is implemented at an object layer of wireless communication.
  • the code length corresponding to any one CB is higher than the lowest code length among the predefined multiple code lengths.
  • the communication unit 1502 is further configured to:
  • Receive second indication information where the second indication information is used to indicate a target segmentation mode among the plurality of segmentation modes.
  • the second indication information may be received when the sending end node establishes a communication connection with the receiving end, or may be received after the connection is established, or may also be received when a certain piece of information is transmitted.
  • the communication unit 1502 is further configured to: receive the second indication information by receiving signaling.
  • the second indication information is carried by a header of a frame, and the frame is a transmission unit.
  • the second indication information may be transmitted through a field in the frame header.
  • the code length L corresponding to the CB block satisfies the following equation:
  • the code length corresponding to the CB block belongs to one or more of the predefined code lengths, and the predefined code lengths include 1024, 512, 256, 128, or 64, etc. at least one of the .
  • the target segmentation method has a corresponding relationship with one or more of the following information: communication channel type, communication scene type, channel quality indicator, or node communication capability.
  • the processor 1601 is a module for performing arithmetic operations and/or logical operations, specifically, a central processing unit (central processing unit, CPU), a picture processing unit (graphics processing unit, GPU), a microprocessor (microprocessor unit, MPU) ), Application Specific Integrated Circuit (ASIC), Field Programmable Logic Gate Array (Field Programmable Gate Array, FPGA), Complex Programmable Logic Device (Complex programmable logic device, CPLD), coprocessor (assisting central processing One or more combinations of processing modules such as processors to complete corresponding processing and applications), Microcontroller Unit (MCU) and other processing modules.
  • a central processing unit central processing unit, CPU
  • a picture processing unit graphics processing unit, GPU
  • microprocessor microprocessor unit, MPU
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • coprocessor assisting central processing
  • MCU Microcontroller Unit
  • Communication interface 1602 may be used to provide information input or output to the at least one processor. And/or, the communication interface 1602 can be used to receive data sent from the outside and/or send data to the outside, and can be a wired link interface such as an Ethernet cable, or a wireless link (Wi-Fi, Bluetooth, general wireless transmission, vehicle short-range communication technology and other short-range wireless communication technologies, etc.) interface. Optionally, the communication interface 1602 may further include a transmitter (such as a radio frequency transmitter, an antenna, etc.) or a receiver coupled with the interface.
  • a transmitter such as a radio frequency transmitter, an antenna, etc.
  • the memory 1603 is used to provide a storage space, in which data such as operating systems and computer programs can be stored.
  • Memory 1603 can be random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or portable read-only memory One or more combinations of memory (compact disc read-only memory, CD-ROM), etc.
  • At least one processor 1601 in the communication device 160 is configured to execute the aforementioned communication method, for example, the method described in the embodiment shown in FIG. 3 or FIG. 14 .
  • the aforementioned communication method for example, the method described in the embodiment shown in FIG. 3 or FIG. 14 .
  • the processor 1601 may be a processor dedicated to executing these methods (referred to as a dedicated processor for convenience), or a processor that executes these methods by invoking computer programs, such as a general-purpose processor.
  • at least one processor may also include both a special-purpose processor and a general-purpose processor.
  • the foregoing computer program may be stored in the memory 1603 .
  • the present application provides a chip, which may include a processor and an interface, and the processor is used to read instructions through the interface, so as to execute the method described in any one of the first to fourth aspects above.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on at least one processor, the aforementioned communication method is implemented, such as FIG. 3 , or The method described in Figure 14.
  • the present application also provides a computer program product, which includes computer instructions, and when executed by a computing device, implements the aforementioned communication method, such as the method described in FIG. 3 or FIG. 14 .
  • words such as “exemplary” or “for example” are used as examples, illustrations or descriptions. Any embodiment or design described herein as “exemplary” or “for example” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • At least one refers to one or more, and the “multiple” refers to two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c may represent: a, b, c, (a and b), (a and c), (b and c), or (a and b and c), where a, b, c can be single or multiple.
  • first and second use ordinal numerals such as "first" and “second” to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • first device and the second device are only for the convenience of description, and do not represent the differences in the structure and importance of the first device and the second device.
  • the first device and the second device It can also be the same device.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Abstract

本申请实施例提供一种通信方法及装置,应用于通信技术领域。该方法包括:根据多个校验码附加方式中的目标校验码附加方式,对第一传输块TB执行处理以得到第一数据,该第一数据包含M个编码块CB,所述M为正整数;根据所述M个编码块,生成至少一个码字;发送所述至少一个码字。还相应提供了一种通信系统、计算机可读存储介质、计算机程序。通过本申请实施例,能够提高传输性能,提升数据传输的效率。

Description

通信方法及装置
本申请要求于2021年09月01日提交中国专利局、申请号为202111022666.3、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及通信方法及装置。
背景技术
随着全球通信技术的不断发展,无线通信技术的发展速度与应用呈现出如火如荼的发展态势。智能运输设备、智能家居设备、机器人等基于无线通信技术的智能终端正在逐步进入人们的日常生活中。而无线通信技术由于连接便捷、拓展性好、易于维护等优点,被广泛应用与终端中。以智能运输设备为车辆例,车载无线通信可以进一步降低车内的线束数量、线束长度、线束重量,以及与之对应的安装、维护、或保养等成本,这使得车载通信技术有逐步向无线化发展的趋势。
而随着应用的多样化,车内的节点数量、类型都越来越多,对于车载通信的能力也就提出了更高的要求。例如,为了提高车载通信的可靠性要求,发送端需要在数据中加入循环冗余校验(Cyclic Redundancy Check,CRC),接收端通过CRC来确定是否准确接收到发送端发送的数据。
目前的通信系统传输数据时,传输块(transport block,TB)被划分成多个编码块(code block,CB),每个CB块都包含CRC。接收端可以根据每个CB块的CRC来校验各个CB是否正确接收,从而使得发送端可以只重新发送出现错误的CB,其好处是可以提升数据的可靠性,减少重传的数据量。但是,这种每个CB块都包含CRC的方式,会使得CRC在传输的比特中所占的比例提升,降低了传输的码率,影响传输性能。尤其,在某些对可靠性要求不高的应用中、或者对某些只需获取传输块是否正确、或者对某些广播/组播信道,每个CB块都附加CRC的方式,在可靠性上并不会获得更多收益,反而会降低传输数据的效率,增加时延,影响传输性能。
发明内容
本申请实施例提供了通信方法及装置,能够提高传输性能,提升数据传输的效率。
第一方面,本申请实施例提供了一种通信方法,包括:
根据多个校验码附加方式中的目标校验码附加方式,对第一TB执行处理以得到第一数据,所述第一数据包含M个CB,所述多个校验码附加方式是预先定义或者配置的,M为正整数;
根据所述M个编码块,生成至少一个码字;
发送所述至少一个码字。
其中,编码块可以指输入到编码器的数据或者数据序列。码字可以指经过编码器后的数据。码长可以指码字的长度(或者指编码器输出的数据长度)。
根据上述方面,可以从多个校验码添加方式中确定目标校验码方式,基于目标校验码方 式对TB(和/或TB中的部分数据)附加校验码。由于可以灵活地确定校验码附加方式,从而可以针对不同的传输场景(或者信道类型、传输的消息类型、或码率等)确定适用于当前场景(或信道类型、传输的消息类型、或码率等)的校验码附加方式,提升传输性能。
例如,在使用广播信道传输数据或者发送广播信息时,编码块中可以不包含校验码,从而提高码率,从而提升数据传输的效率,降低时延。
再如,在信道质量较好时,编码块中可以不包含校验码,提升数据传输的效率。
再如,在一些场景中时,可以对传输块添加校验码,一部分子数据单独附加校验码,而另一部分子数据一起添加一个校验码,提升添加校验码的灵活性,提升数据传输的效率。
可选的,该方法适用于具有通信功能的任一通信节点,例如发送端节点。
在第一方面的一种可能的实施方式中,上述方法是在无线通信的物理层实现的。其中,物理层是在底层硬件设备上实现的,而底层硬件设备具有较强的处理能力,能够更快地进行各种操作,因此,在物理层进行附加校验码的处理能够减少计算校验码的时间开销,提高数据传输的效率,降低时延。
在第一方面的一种可能的实施方式中,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。在该实施方式中,发送端节点可以发送第一指示信息,用于向接收侧指示使用的何种校验码附加方式。此时发送端节点可以灵活地从多个校验码附加方式中确定适用的校验码附加方式,并通过指示信息向接收端指示。
可选的,该第一指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
进一步可选的,第一节点与第二节点可以在建立连接的过程中,协商所使用的校验码附加方式。或者,第一节点或者第二节点通过第一指示信息通知对端应采用的校验码附加方式。
在第一方面的又一种可能的实施方式中,所述第一指示信息通过信令发送。其中,该信令例如可以包含广播信息、系统消息、高层配置信令、介质访问控制层信令等等中的一个或者多个。
在第一方面的又一种可能的实施方式中,所述第一指示信息通过帧的头部承载。其中,所述帧为一种传输单元,帧的头部也称为帧头,可以包含一个或者多个字段,具体可以通过帧头中的字段来传输该第一指示信息。在该实施方式中,在帧的头部包含第一指示信息,接收端可以则基于帧的头部来确定目标校验码附加方式。
一种设计中,该第一指示信息可以用于指示帧的数据部分所使用的校验码附加方式,可以灵活地设定任意一个帧所使用的目标校验码附加方式,进一步提升灵活性。
在第一方面的又一种可能的实施方式中,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。其中,节点的通信能力(也可以称为节点的能力)可以包含以下方面的一种或者多种方面:节点支持的校验码附加方式、节点的校验能力等,以及对上述方面的指示信息。如此,可以确定出适用于当前通信条件的目标校验码附加方式,提升传输效率。
例如,第一节点与第二节点可以在建立连接的过程中,协商所使用的校验码附加方式。或者每次通信时,发送端或者接收端通知对侧应采用的校验码附加方式。
在第一方面的又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中、接收端所支持的一种校验码附加方式。一种设计中,接收端可以向发送端反馈其支持的校验码附加方式,发送端从接收端支持的校验码附件方式中确定目标校验码附加方式。
在第一方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
在第一方面的又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第一校验码附加方式;
所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,其中:
所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC,M1≥0;
所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1子数据共同对应的CRC,M2≥0,N1≥0。
上述实施方式中,部分子数据包含了单独的CRC,而部分子数据(共同)对应第三CRC。如此,可以降低计算校验码的计算量,也可以降低校验码在传输比特中所占的比例,提升传输效率。
在第一方面的又一种可能的实施方式中,所述第一CB对应的码长属于第一码长;
所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
上述实施方式中,部分码长的CB块,每个CB块都包含CRC;部分码长的CB对应一个CRC。
在第一方面的又一种可能的实施方式中,M2+N1=N。
在第一方面的又一种可能的实施方式中,所述M个CB包含M3个第三CB,所述M3个第三CB对应M3个子数据,所述第三CB不包含CRC,M3≥0,N2≥0。
在第一方面的又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第二校验码附加方式;
所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
在上述方式中,TB块附加CRC,根据TB块划分得到的CB块中,不包含单独CRC。在某些场景中(例如信噪比较高的场景、或接收端不支持CB或者CBG反馈等),无需在每个CB中包含CRC判断每个CB的CRC是否通过,而是通过第一CRC校验第一TB是否正确传输即可,此时可以传输比特的码率,提高传输效率。
在第一方面的又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第三校验码附加方式;
所述第一TB和所述第一TB的第一CRC共同对应M个子数据,所述第一CRC为所述第一TB对应的CRC,其中:
所述M个CB中的每个CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC。
上述方式中,每个CB块都包含单独的CRC,每个TB块也附加CRC。接收端可以根据每个CB块的CRC来校验各个CB是否正确接收,从而使得发送端可以只重新发送出现错误的CB,降低重传场景下的系统开销,提高数据传输效率,提升传输性能。
在第一方面的又一种可能的实施方式中,根据多个校验码附加方式中的目标校验码附加方式,对第一TB执行处理以得到第一数据,包括:
根据多个校验码附加方式中的目标校验码附加方式,对所述第一TB附加第一CRC,得到带校验码的TB;
根据多个分段方式中的目标分段方式,对所述带校验码的TB进行分段,以获取所述M个CB。
可选的,所述多个校验码附加方式可以是预先定义、预先配置的。例如,通过协议定义多个校验码附加方式。或者在节点出厂时,在节点中写入多个校验码附加方式。或者,通过通信接口,在节点中配置多个校验码附加方式
上述实施方式中,发送端支持多种TB块分段方式,在对传输块分段时,可以从多个分段方式中确定目标分段方式,基于目标分段方式对TB进行分段。由于可以灵活地确定分段方式,从而在不同的传输场景中都能确定适用于当前场景的分段方式,提升传输性能。
在第一方面的又一种可能的实施方式中,上述分段操作是在无线通信的物体层实现的。在物理层进行分段能够减少计算校验码的时间开销,提高数据传输的效率,降低时延。
在第一方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
上述例举了一种可能的分段方式,根据TB块可以处理得到多个CB块,该多个CB块中一定要包含码长最小的块。如此,接收端在对多个CB块进行译码时,可以以流水线的形式进行译码,译码时延低。其中,流水线译码可以指译码模块完成上一CB块的译码时,下一个CB块已经可以等待译码。示例性地,以CB块的码长包含128码长和64码长为例,由于64码长的CB块粒度较细,在译码时间上较为灵活,接收端对128长度的CB块进行译码,对128长度的CB块译码完成后,此时译码模块可以紧接着对该64的码长的CB块进行译码,提升译码效率,译码时延低。假如CB块的码长包含256码长和64码长,可能出现64码长的数据接受完,但是256码长还没译码完,需要等待256码长译码完才能进行64码长的译码。
在第一方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。其中,第一数据长度可以包含至少一个数据,也可以包含多个数据长度,还可以为一个或者多个数据长度范围。同理。第二数据长度可以包含至少一个数据,也可以包含多个数据长度,还可以为一个或者多个数据长度范围。
上述例举了一种又可能的分段方式,划分得到的CB块的码长可能都较长(不一定包含最低码长的块),对于同等长度的TB块,可以得到数量更少的CB块。可以减少计算校验码时的时间消耗,提高码率,提升数据传输的效率。
在第一方面的又一种可能的实施方式中,所述方法还包括:
发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。在该实施方式中,发送端节点可以发送第二指示信息,用于向接收侧指示使用的何种分段方式。此时发送端节点可以灵活地从多个分段方式中确定适用的分段方式,并通过指示信息向接收端指示。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
可选的,该第一指示信息和第二指示信息可以是同一指示信息。例如,校验码附加方式和分段方式存在对应关系,在使用第一校验码附加方式时,也使用第一分段方式,此时第一指示信息可以指示第一校验码附加方式,从而也可以指示第一分段方式。
在第一方面的又一种可能的实施方式中,所述第二指示信息通过信令发送。其中,该信令例如可以包含广播信息、系统消息、高层配置信令、介质访问控制层信令等等中的一个或者多个。
在第一方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在该实施方式中,通过传输单元的头部指示该目标分段方式。如此,可以灵活地设定任意一个传输单元所使用的分段方式,进一步提升灵活性。另一方面,使用传输单元的头部来指示,接收侧基于传输单元头部即可确定分段方式,可以减少信令开销,提高通信效率。
在第一方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
通过使编码块满足2的正整数次幂形式的码长,有助于使用某一码率直接发送对编码块编码后的码字,或接收码字,而无需再额外配置速率匹配模块,简化编码/解码的过程,降低系统功耗。一种设计中,上述实施方式基于极化码(Polar码)实现,通过使编码块满足的2的正整数次幂形式的码长,可以有效简化Polar码编码/解码的系统设计,进而可降低Polar码编码/解码的系统功耗。
在第一方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
其中,预定义的码长满足2的正整数次幂形式,可以简化编码/解码的过程,降低系统功耗。
第二方面,本申请实施例提供了一种通信方法,包括:
接收至少一个码字;
根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一TB的信息,所述多个校验码附加方式是预先定义或者配置的。
可选的,该方法适用于具有通信功能的任一通信节点,例如接收端节点。
在第二方面的一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在第二方面的又一种可能的实施方式中,所述第一TB的信息包含以下信息中的一项或者多项:
所述第一TB、所述第一TB的校验结果、至少一个CB对应的子数据、至少一个CB的校验结果、至少一个编码块组(codeblockgroup,CBG)对应的子数据、或至少一个CBG的校验结果。
在第二方面的又一种可能的实施方式中,所述方法还包括:
接收第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
在第二方面的又一种可能的实施方式中,所述方法还包括:通过接收信令来接收第一指示信息。
在第二方面的又一种可能的实施方式中,所述第一指示信息通过帧的头部承载。其中,所述帧为一种传输单元,帧的头部也称为帧头,可以包含一个或者多个字段,具体可以通过帧头中的字段来传输该第一指示信息。
在第二方面的又一种可能的实施方式中,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:
通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。
在第二方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
在第二方面的又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中、接收端所支持的一种校验码附加方式。一种设计中,接收端可以向发送端反馈其支持的校验码附加方式,发送端从接收端支持的校验码附件方式中确定目标校验码附加方式。
在第二方面的又一种可能的实施方式中,所述根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一TB的信息,包括:
根据所述至少一个码字得到M个CB,M为正整数;
所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息。
在第二方面的又一种可能的实施方式中,所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,
其中:
所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第一CRC,所述第一CRC对应所述一个子数据,M1≥0;
所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1个子数据共同对应的CRC,M2≥0,N1≥0。
在第二方面的又一种可能的实施方式中,所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息,包括:
对于所述M1个第二CB,根据每一个第一CB所包含的第二CRC,校验所述第一CB对应的子数据是否正确传输;
对于所述M2个第二CB,根据所述第三CRC,校验所述N1个子数据是否正确传输。
在第二方面的又一种可能的实施方式中,所述方法还包括:
在所述M1个第二CB对应的M1个子数据正确传输以及所述N1个子数据正确传输时,根据M1个子数据和N1个子数据得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在第二方面的又一种可能的实施方式中,所述第一CB对应的码长属于第一码长;
所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
在第二方面的又一种可能的实施方式中,M2+N1=N。
在第二方面的又一种可能的实施方式中,所述M个CB包含M3个第三CB,所述M3个第三CB对应N2个子数据,所述第三CB不包含CRC,M3≥0,N2≥0。
在第二方面的又一种可能的实施方式中,所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
在第二方面的又一种可能的实施方式中,所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息,包括:
根据所述M个CB,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在第二方面的又一种可能的实施方式中,所述第一TB和所述第一TB的第一循环冗余校验CRC共同对应M个子数据,其中:
每个CB包含一个子数据和所述一个子数据对应的第二CRC。
在第二方面的又一种可能的实施方式中,所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息,包括:
对于所述M个CB,根据每个CB所包含的第二CRC,检验每个CB所包含的子数据是否正确传输;
在所述M个子数据正确传输时,根据所述M个子数据,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在第二方面的又一种可能的实施方式中,所述M个CB为基于多个分段方式中的目标分段方式得到的。
在第二方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第二方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第二方面的又一种可能的实施方式中,所述方法还包括:
接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
在第二方面的又一种可能的实施方式中,所述方法还包括:通过接收信令,接收所述第 二指示信息。
在第二方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第二方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第二方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
第三方面,本申请实施例提供一种通信方法,包括:
根据多个分段方式中的目标分段方式,基于第一TB得到第一数据,所述第一数据包含M个CB,所述多个分段方式是预先定义或者配置的,所述M为正整数;
根据所述M个编码块,生成至少一个码字;
发送所述至少一个码字。
上述实施方式中,发送端支持多种TB块分段方式,在对传输块分段时,可以从多个分段方式中确定目标分段方式,基于目标分段方式对TB进行分段。由于可以灵活地确定分段方式,从而在不同的传输场景中都能确定适用于当前场景的分段方式,提升传输性能。
可选的,该方法适用于具有通信功能的任一通信节点,例如发送端节点。
在第三方面的一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在第三方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第三方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第三方面的又一种可能的实施方式中,所述方法还包括:
发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在第三方面的又一种可能的实施方式中,所述第二指示信息通过信令发送。
在第三方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧 为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第三方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第三方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
在第三方面的又一种可能的实施方式中,所述目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力等。其中,节点的通信能力(也可以称为节点的能力)可以包含以下方面的一种或者多种方面:节点支持的校验码附加方式、节点的校验能力等,以及对上述方面的指示信息。
在第三方面的又一种可能的实施方式中,所述目标分段方式属于接收端所支持的分段方式。一种设计中,接收端可以向发送端反馈其支持的分段方式,发送端从接收端支持的分段方式中确定目标校验码附加方式。
在第三方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
第四方面,本申请实施例提供一种通信方法,包括:
根据多个分段方式中的目标分段方式,接收所述第二数据得到至少一个码字,所述多个分段方式是预先定义或者配置的;
对所述至少一个码字执行处理,得到第一TB的信息。
在第四方面的一种可能的实施方式中,根据多个分段方式中的目标分段方式,接收所述第二数据得到至少一个码字,包括:
接收第二数据;
根据所述分段方式中的目标分段方式,根据所述第二数据得到所述至少一个码字。
在第四方面的又一种可能的实施方式中,所述至少一个码字对应M个CB。
在第四方面的又一种可能的实施方式中,所述第一TB的信息包含以下信息中的一项或者多项:
所述第一TB、所述第一TB的校验结果、至少一个CB对应的子数据、至少一个CB的校验结果、至少一个CBG对应的子数据、或至少一个CBG的校验结果。
在第四方面的又一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在第四方面的又一种可能的实施方式中,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第四方面的又一种可能的实施方式中,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长。
在第四方面的又一种可能的实施方式中,所述方法还包括:
接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时接收,也可以是在建立连接后接收,或者还可以是在传输某一段信息时接收。
在第四方面的又一种可能的实施方式中,所述方法还包括:通过接收信令,接收所述第二指示信息。
在第四方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第四方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第四方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
在第四方面的又一种可能的实施方式中,所述目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力等。
在第四方面的又一种可能的实施方式中,所述目标分段方式属于接收端支持的分段方式。一种设计中,接收端可以向发送端反馈其支持的分段方式,发送端从接收端支持的分段方式中确定目标校验码附加方式。
在第四方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
第五方面,本申请实施例提供了一种通信装置,所述通信装置包括处理单元和通信单元,所述通信装置用于实现第一方面或第一方面的任一种可能的实施方式所描述的方法。
在第五方面的一种可能的实施方式中,所述处理单元,用于:
根据多个校验码附加方式中的目标校验码附加方式,对第一TB执行处理以得到第一数据,所述第一数据包含M个CB,所述多个校验码附加方式是预先定义或者配置的,所述M为正整数;
根据所述M个编码块,生成至少一个码字;
所述通信单元,用于发送所述至少一个码字。
可选的,该通信装置为通信节点或者该通信装置为通信节点内的部件。
在第五方面的一种可能的实施方式中,所述通信单元还用于:发送第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
可选的,该第一指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在第五方面的一种可能的实施方式中,所述第一指示信息通过信令发送。
在第五方面的一种可能的实施方式中,所述第一指示信息通过帧的头部承载。其中,所述帧为一种传输单元,帧的头部也称为帧头,可以包含一个或者多个字段,具体可以通过帧头中的字段来传输该第一指示信息。
在第五方面的一种可能的实施方式中,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。
在第五方面的一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中、接收端所支持的一种校验码附加方式。一种设计中,接收端可以向发送端反馈其支持的校验码附加方式,发送端从接收端支持的校验码附件方式中确定目标校验码附加方式。
在第五方面的一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
在第五方面的一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第一校验码附加方式;
所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,其中:
所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC,M1≥0;
所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1子数据共同对应的CRC,M2≥0,N1≥0。
在第五方面的一种可能的实施方式中,所述第一CB对应的码长属于第一码长;
所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
在第五方面的一种可能的实施方式中,M2+N1=N。
在第五方面的一种可能的实施方式中,所述M个CB包含M3个第三CB,所述M3个第三CB对应N2个子数据,所述第三CB不包含CRC,M3≥0,N2≥0。
在第五方面的一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第二校验码附加方式;
所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
在第五方面的一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第三校验码附加方式;
所述第一TB和所述第一TB的第一CRC共同对应M个子数据,所述第一CRC为所述第一TB对应的CRC,其中:
所述M个CB中的每个CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC。
在第五方面的一种可能的实施方式中,所述处理单元,还用于:
根据多个校验码附加方式中的目标校验码附加方式,对所述第一TB附加第一CRC,得到带校验码的TB;
根据多个分段方式中的目标分段方式,对所述带校验码的TB进行分段,以获取所述M个CB。
在第五方面的一种可能的实施方式中,上述分段操作是在无线通信的物体层实现的。
在第五方面的一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第五方面的一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所 述第三CB对应的码长为预定义的多个码长中的最低码长。
在第五方面的一种可能的实施方式中,所述通信单元,还用于:
发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在第五方面的一种可能的实施方式中,所述第二指示信息通过信令发送。
在第五方面的一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第五方面的一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第五方面的一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
第六方面,本申请实施例提供了一种通信装置,所述通信装置包括处理单元和通信单元,所述通信装置用于实现第一方面或第一方面的任一种可能的实施方式所描述的方法。
在第六方面的一种可能的实施方式中,所述通信单元,用于接收至少一个码字;
所述处理单元,用于根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一TB的信息,所述多个校验码附加方式是预先定义或者配置的。
可选的,该通信装置为通信节点或者该通信装置为通信节点内的部件。
在第六方面的又一种可能的实施方式中,所述第一TB的信息包含以下信息中的一项或者多项:
所述第一TB、所述第一TB的校验结果、至少一个CB对应的子数据、至少一个CB的校验结果、至少一个CBG对应的子数据、或至少一个CBG的校验结果。
在第六方面的又一种可能的实施方式中,所述通信单元,还用于:
接收第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
在第六方面的又一种可能的实施方式中,所述通信单元,还用于:通过接收信令来接收第一指示信息。
在第六方面的又一种可能的实施方式中,所述第一指示信息通过帧的头部承载。其中,所述帧为一种传输单元,帧的头部也称为帧头,可以包含一个或者多个字段,具体可以通过帧头中的字段来传输该第一指示信息。
在第六方面的又一种可能的实施方式中,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:
通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。
在第六方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
在第六方面的又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中、接收端所支持的一种校验码附加方式。一种设计中,接收端可以向发送端反馈其支持的校验码附加方式,发送端从接收端支持的校验码附件方式中确定目标校验码附加方式。
在第六方面的又一种可能的实施方式中,所述处理单元,还用于:
根据所述至少一个码字得到M个CB,M为正整数;
所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息。
在第六方面的又一种可能的实施方式中,所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,
其中:
所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第一CRC,所述第一CRC对应所述一个子数据,M1≥0;
所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1个子数据共同对应的CRC,M2≥0,N1≥0。
在第六方面的又一种可能的实施方式中,所述处理单元,还用于:
对于所述M1个第二CB,根据每一个第一CB所包含的第二CRC,校验所述第一CB对应的子数据是否正确传输;
对于所述M2个第二CB,根据所述第三CRC,校验所述N1个子数据是否正确传输。
在第六方面的又一种可能的实施方式中,所述处理单元,还用于:
在所述M1个第二CB对应的M1个子数据正确传输以及所述N1个子数据正确传输时,根据M1个子数据和N1个子数据得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在第六方面的又一种可能的实施方式中,所述第一CB对应的码长属于第一码长;
所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
在第六方面的又一种可能的实施方式中,M2+N1=N。
在第六方面的又一种可能的实施方式中,所述M个CB包含M3个第三CB,所述M3个第三CB对应N2个子数据,所述第三CB不包含CRC,M3≥0,N2≥0。
在第六方面的又一种可能的实施方式中,所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
在第六方面的又一种可能的实施方式中,所述处理单元,还用于:
根据所述M个CB,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在第六方面的又一种可能的实施方式中,所述第一TB和所述第一TB的第一循环冗余校验CRC共同对应M个子数据,其中:
每个CB包含一个子数据和所述一个子数据对应的第二CRC。
在第六方面的又一种可能的实施方式中,所述处理单元,还用于:
对于所述M个CB,根据每个CB所包含的第二CRC,检验每个CB所包含的子数据是否正确传输;
在所述M个子数据正确传输时,根据所述M个子数据,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在第六方面的又一种可能的实施方式中,所述M个CB为基于多个分段方式中的目标分段方式得到的。
在第六方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分 段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第六方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第六方面的又一种可能的实施方式中,所述通信单元,还用于:
接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
在第六方面的又一种可能的实施方式中,所述通信单元,还用于:通过接收信令,接收所述第二指示信息。
在第六方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第六方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第六方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
第七方面,本申请实施例提供了一种通信装置,所述通信装置包括处理单元和通信单元,所述通信装置用于实现第一方面或第一方面的任一种可能的实施方式所描述的方法。
在第七方面的一种可能的实施方式中,所述处理单元,用于:
根据多个分段方式中的目标分段方式,基于第一TB得到第一数据,所述第一数据包含M个CB,所述多个分段方式是预先定义或者配置的,所述M为正整数;
根据所述M个编码块,生成至少一个码字;
所述通信单元,用于发送所述至少一个码字。
可选的,该通信装置为通信节点或者该通信装置为通信节点内的部件。
在第七方面的又一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在第七方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第七方面的又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分 段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第七方面的又一种可能的实施方式中,所述通信单元还用于:
发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在第七方面的又一种可能的实施方式中,所述第二指示信息通过信令发送。
在第七方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第七方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第七方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
在第七方面的又一种可能的实施方式中,所述目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力等。
在第七方面的又一种可能的实施方式中,所述目标分段方式属于接收端支持的分段方式。一种设计中,接收端可以向发送端反馈其支持的分段方式,发送端从接收端支持的分段方式中确定目标校验码附加方式。
在第七方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
第八方面,本申请实施例提供了一种通信装置,所述通信装置包括处理单元和通信单元,所述通信装置用于实现第一方面或第一方面的任一种可能的实施方式所描述的方法。
在第八方面的一种可能的实施方式中,所述通信单元,用于根据多个分段方式中的目标分段方式,接收所述第二数据得到至少一个码字,所述多个分段方式是预先定义或者配置的;
所述处理单元,用于对所述至少一个码字执行处理,得到第一TB的信息。
在第八方面的一种可能的实施方式中,所述通信单元,还用于接收第二数据;
所述处理单元,还用于根据所述分段方式中的目标分段方式,根据所述第二数据得到所述至少一个码字。
在第八方面的又一种可能的实施方式中,所述至少一个码字对应M个CB。
在第八方面的又一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在第八方面的又一种可能的实施方式中,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在第八方面的又一种可能的实施方式中,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长。
在第八方面的又一种可能的实施方式中,所述通信单元,还用于:
接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时接收,也可以是在建立连接后接收,或者还可以是在传输某一段信息时接收。
在第八方面的又一种可能的实施方式中,所述通信单元,还用于:通过接收信令,接收所述第二指示信息。
在第八方面的又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在第八方面的又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在第八方面的又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
在第八方面的又一种可能的实施方式中,所述目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力等。
在第八方面的又一种可能的实施方式中,所述目标分段方式属于接收端所支持的分段方式。一种设计中,接收端可以向发送端反馈其支持的分段方式,发送端从接收端支持的分段方式中确定目标校验码附加方式。
在第八方面的又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
第九方面,本申请实施例提供一种通信装置,该通信装置包括处理器和通信接口。所述通信接口用于接收和/或发送数据,和/或,所述通信接口用于为所述处理器提供输入和/或输出。所述通信装置用于实现第一至四方面任一项可能实施方式所描述的方法。
需要说明的是,上述第九方面所描述的通信装置所包含的处理器,可以是专门用于执行这些方法的处理器(便于区别称为专用处理器),也可以是通过调用计算机程序来执行这些方法的处理器,例如通用处理器。可选的,至少一个处理器还可以既包括专用处理器也包括通用处理器。
可选的,上述计算机程序可以存在存储器中。示例性的,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM)。
存储器可以与处理器集成在同一块器件上,也可以分别设置在不同的器件上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
在一种可能的实施方式中,上述至少一个存储器位于上述通信装置之外。
在又一种可能的实施方式中,上述至少一个存储器位于上述通信装置之内。
在又一种可能的实施方式之中,上述至少一个存储器的部分存储器位于上述通信装置之内,另一部分存储器位于上述通信装置之外。
第十方面,本申请实施例提供一种通信系统,所述通信系统包含第一节点和第二节点,所述第一节点用于实现第一方面任一项所描述的方法;所述第二节点用于实现第二方面任一项所描述的方法。
第十一方面,本申请实施例提供一种通信系统,所述通信系统包含第一节点和第二节点,所述第一节点用于实现第三方面任一项所描述的方法;所述第二节点用于实现第四方面任一项所描述的方法。
第十二方面,本申请提供一种芯片,该芯片可以包括处理器和接口,处理器用于通过接口读取指令,以执行如上述第一至四方面中任一项所述的方法。
第十三方面,本申请提供一种终端,该终端用于实现如第一至四方面中任一项所述的方法。
或者,上述终端可以包含第五至九方面任一项所述的通信装置。
一些终端的举例包括但不限于:智能家居设备(诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等)、智能运输设备(诸如汽车、轮船、无人机、火车、货车、卡车等)、智能制造设备(诸如机器人、工业设备、智能物流、智能工厂等)、智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)。
第十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在至少一个处理器上运行时,实现前述第一至二方面任一项所描述的方法。
第十五方面,本申请提供了一种计算机程序产品,计算机程序产品包括计算机指令,当所述指令在至少一个处理器上运行时,实现前述第一至二方面任一项所描述的方法。
本申请第二至第十五方面所提供的技术方案,部分实施方式的有益效果可以参考第一方面的技术方案的有益效果,此处不再赘述。
附图说明
下面将对实施例描述中所需要使用的附图作简单的介绍。
图1是本申请实施例提供的一种应用场景的示意图;
图2是本申请实施例提供的一种无线通信系统的示意图;
图3是本申请实施例提供的一种通信方法的流程示意图;
图4-图7是本申请实施例提供的一些校验码附加方式的示意图;
图8是本申请实施例提供的一种分段方式的示意图;
图9是本申请实施例提供的一种译码时延的示意图;
图10是本申请实施例提供的又一种分段方式的示意图;
图11是本申请实施例提供的一种冗余信息的位置设计示意图;
图12是本申请实施例提供的一种传输单元的结构图;
图13是本申请实施例提供的又一种传输单元的结构图;
图14是本申请实施例提供的一种通信方法的流程示意图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合附图对本申请实施例进行详细介绍。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。如有不一致,以本说明书中所说明的含义或者根据本说明书中记载的内容得出的含义为准。另外,本文中所使用 的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
为了便于理解,以下示例地给出了部分与本申请实施例相关概念的说明以供参考。如下所述:
1.循环冗余校验(Cyclic Redundancy Check,CRC)
CRC是根据网络数据包或计算机文件等数据产生简短固定位数校验码的信道编码技术,主要用来检测或校验数据传输或者保存后可能出现的错误。
2.传输单元
本申请实施例中,传输单元是通信过程中,对等层次之间传递的数据单位。
例如,传输单元可以为协议数据单元(Protocol Data Unit,PDU)。在通信系统的协议栈中,每一层实体都可以建立本层实体的PDU,PDU中包含来自上层实体的信息,以及当前层实体附加的信息,然后被传送到下一层。某些场景中,也可以不附加当前层实体的信息,例如透传。
一种可能的方案中,帧(frame)是一种传输单元,可以包含上层传下来的数据、头部、或尾部等。以上层传下来的数据是数据包为例,数据包到达当前层后,加上当前层的协议头和协议尾就构成了一个帧。也即是说,帧的前部包含一个头部,帧的结尾包含一个尾部,而数据包则作为帧的数据部分,如此,构成一个完整帧。
可选的,由于通信的场景、或帧的长度等不同,或者协议的规定,帧也可以有多种类型、或多种格式。
例如,控制类型传输单元又可以称为控制帧或者管理帧,数据类型传输单元又可以称为数据帧。
例如,一种可能的方案中,根据协议规定,帧可以有长帧格式和短帧格式。
3.传输块(Transmission Block,TB)
从上层(物理层的上层)传递下来的数据,这里的上层可以是媒体接入层、链路控制层、数据链路层、网络层、传输层、应用层中的至少一种。在一些场景中也被称为业务数据、原数据。可选的,所述传输块可以是包(packet)形式,在一些场景中也被称为数据包。
4.子数据
子数据是TB(或带校验的TB)中的部分数据。
5.编码块(Coded Block,CB)
待编码的数据单元或子数据包。
另外,本申请实施中,CB块的数据长度是指输入到编码器的数据长度,此长度可以包含附加的CRC的长度或者不包含CRC的长度。而码长则是指对编码块进行编码后所获得的码字的比特位数。例如,如果一个编码块对应的数据长度为512bit,对应的码长为1024bit,则意味着该编码块在编码前包含512bit的数据,而编码后得到1024bit的码字。
6.极化码
极化(Polar)码是一个理论上证明可以达到香农容量的编码方式,具有高性能、编译码复杂度较低等特点。
在polar码中,编码后输出的码字所对应的码长为2的正整数次幂。如果编码后输出的码字所对应的码长与物理层能够传输的比特数长度不一致,则需要额外配置速率匹配模块,以便通过速率匹配模块对编码后的码字进行信道重传或打孔,以匹配信道的实际传输能力。
7.座舱域控制器(Cockpit Domain Controller,CDC)
以域为单位的域控制器集成化成为车辆控制系统的主流的架构。该架构中,车辆控制系 统可以划分为多个通信域,如动力传动域、车身电子域、辅助驾驶域、座舱域等等,每个域都由相应的域控制器来主导。
其中,CDC,也称为车机,是车辆座舱域中的域控制器。
8.节点
节点是具有通信能力的电子设备,也称为通信节点。例如,节点可以包括手持终端、车辆、车载设备、或网络侧设备、用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、无线通信设备、用户代理或用户装置等独立设备,也可以是包含在独立设备中的部件(例如芯片或集成电路)。节点可以为任一可能的智能终端设备(如手机)、智能运输设备(如车辆、无人机等)、智能制造设备、智能家居设备(例如大屏、音箱等)等。一种可能的场景中,在车辆内,节点还可以为电池管理系统和电池包中的电池。
示例性地,当节点为车载设备时,可以是汽车座舱(cockpit domain)设备,或者汽车座舱设备中的一个模块,例如:座舱域控制器(cockpit domain controller,CDC)、摄像头、屏幕、麦克风、音响、电子钥匙、无钥匙进入或启动系统控制器等模块中的一个或者多个。
本申请实施例中的节点可以应用于多种应用场景中,例如以下应用场景:移动互联网(mobile internet,MI)、工业控制(industrial control)、无人驾驶(self driving)、运输安全(transportation safety)、物联网(internet of things,IoT)、智慧城市(smart city)、或智慧家庭(smart home)等。
本申请中的节点可以应用于多种通信系统中,例如应用于以下通信系统中:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for Microwave Access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(New Radio,NR)等毫米波通信系统、第六代(6th generation,6G)系统、现有的各种短距离通信系统(例如车载无线通信系统)、未来演进的短距离通信系统、或通用短距通信系统等。
在某些应用场景、或某些网络类型中,具备相类似通信能力的设备的名称也可能不称为节点,但是为了方便描述,本申请实施例中将具有通信能力的电子设备统称为节点。
上述对概念的示例性说明可以应用在下文的实施例中。
下面对本申请实施例应用的场景和系统架构进行介绍。
通信系统通常包含多个节点,节点之间可以互相通信,以传输数据。以车载通信系统为例,车辆内可以存在多个通信域,通信域是指由一组具有通信关系的节点以及信节点之间的通信连接关系(即通信链路)组成的系统,通常用于完成一种特定的功能。示例性地,一个通信域可以包括一个主节点和一个或多个从节点,主从节点间、或主节点与主节点间、或从节点与从节点间可以互相通信。其中主节点可以管理从节点,具有分配资源的功能,负责为从节点分配资源;从节点听从主节点的调度,使用主节点分配的资源与主节点、和/或与其他节点进行通信。
例如,图1示出了一种可能的应用场景的示意图。其中,CDC、屏幕、扬声器、或麦克风等可以构成一个通信域(如图1所示的第一通信域),无钥匙进入及启动系统(passive entry  passive start,PEPS)、手机钥匙和车钥匙可以构成一个通信域(如图1所示的第一通信域)。以第一通信域为例,CDC可以为主节点,其余节点为从节点。示例性地,CDC例如可以经由有线通信或无线通信与屏幕、扬声器和/或麦克风建立通信连接。
在一些具体的实施场景中,主节点也可以称为G节点、管理节点或者控制节点,从节点也可以称为T节点或者终端。G节点向T节点的通信链路可以称为C链路或者下行链路,T节点向G节点的通信链路可以称为T链路或者上行链路。
本领域技术人员应当理解,图1所示的应用场景仅是本申请的方案可以适用的其中一个示例性场景。通信域中的节点类型和数量仅为示例。除了图1所示的应用场景之外,本申请的方案还可以适用于其它任何合适的应用场景,例如但不局限于家居、办公、展厅、生产等场景。
示例性地,以通信的节点包含第一节点与第二节点为例。图2是本申请实施例提供的一种可能的无线通信系统的示意图。第一节点201向第二节点202发送数据,因此将第一节点201称为发送端,将第二节点202称为接收端。
应理解,该通信系统中包括的节点还可以为更多个,此处为了便于描述故示出为第一节点和第二节点。
为了保证传输的可靠性,发送端需要在数据中加入校验码,例如CRC,接收端可以通过校验码判断是否准确接收到发送端发送的数据。
发送端可以将传输的数据划分成CB块,每个CB块都包含CRC。接收端可以判断各个CB是否正确接收,从而使得发送端可以重新发送出现错误的CB。但是这种每个CB块都包含CRC的方式,会使得CRC在传输比特中所占的比例提升,从而降低传输的码率,影响传输性能。尤其,对于某些可靠性要求不高的应用或者某些可靠性要求不高的信道,每个CB块都附加CRC,在可靠性上并不会获得更多收益,反而会降低传输数据的效率,增加时延,影响传输性能。
且对于某些信道,如广播信道,其是单向广播,并不需要接收端反馈传输块或者CB块的接收情况,在这种情况下,对于每个CB块添加CRC会降低传输的性能。
有鉴于此,提供本申请实施例的技术方案。
下面对本申请实施例的方法进行详细介绍。
【实施例一】
请参见图3,图3是本申请实施例提供的一种通信方法的流程示意图。可选的,该方法可以应用图2所述的通信系统。如图3所述的版本管理方法至少包括步骤S301至步骤S304,具体如下:
S301:第一节点根据多个校验码附加方式中的目标校验码附加方式,对第一TB执行处理以得到第一数据。其中,第一数据包含M个CB,M为正整数。
其中,第一TB是待传输的数据。对第一TB执行处理可以包含对第一TB附加校验码、分段、或对第一TB的部分数据(便于描述称为子数据)附加校验码等。其中,校验码可以用于验证对应的数据是否正确传输。
而校验码附加方式用于指示附加校验码的规则,不同校验码附加方式对应的附加校验码的规则不同。本申请实施例中,附加校验码时所使用的校验码附加方式,属于多个校验码附加方式中的一个。该多个校验码附加方式可以是预先定义或者预先配置的。例如,通过协议,定义多个校验码附加方式。再如,在第一节点出厂时,在第一节点的存储器中写入多个校验 码附加方式。再如,通过管理接口,给第一节点配置多个校验码附加方式。
示例性的,以下以校验码为CRC为例,例举4种可能的校验码附加方式:
校验码附加方式一:第一TB和第一CRC共同对应N个子数据;每个CB包含一个子数据和第二CRC,第二CRC为所述一个子数据对应的CRC。此时,M=N。
示例性的,请参见图4,图4是本申请实施例提供的一种校验码附加方式的示意图。第一节点可以根据整个第一TB计算得到第一TB对应的第一CRC,第一CRC例如为图4所示的“TB-CRC”部分。该第一CRC可以附加在第一TB的后方,得到带校验码的第一TB,如区域401所示。带校验码的第一TB可以划分为N个子数据,如图4所示的子数据1至子数据N。第一节点可以根据每一个子数据计算得到一个第二CRC,如图4所示的“CB-CRC”部分。第二CRC被附加在子数据后方,得到CB。
例如,CB(1)包含子数据1和子数据1对应的CRC;CB(2)包含子数据2和子数据2对应的CRC,其余CB以此类推。
校验码附加方式二:第一TB和第一CRC共同对应N个子数据。N个子数据中,部分子数据单独对应CRC;部分子数据(共同)对应第三CRC。
具体的,M个CB中包含M1(M1≥0)个第一CB,每个第一CB包含一个子数据和一个第二CRC。其中,第二CRC为一个子数据对应的CRC。M个CB中包含M2(M2≥0)个第二CB,M2个第二CB对应N1(N1≥0)个子数据和第三CRC,第三CRC为N1个子数据共同对应的CRC。
示例性的,请参见图5,图5是本申请实施例提供的一种校验码附加方式的示意图。关于N个子数据的相关描述可以参考前述图4。在N个子数据中,部分子数据(例如N2个子数据)对应有单独的CRC,从而形成M1(M1=N2)个第一CB。如图5所示,第一CB包含子数据和子数据对应的CRC,如CB(a1)包含有子数据和子数据1对应的CRC,对于CB(a2)包含有子数据(a2)和子数据(a2)对应的CRC,其余第一CB以此类推。
而部分子数据(例如N1个子数据)对应的CRC附加在该部分子数据的后方(或者前方、或者中间,本申请对于附加的位置不进行限定)。该带校验的部分(N1个)子数据可以进一步被划分为一个或者多个第二CB,第二CB例如CB(b1)、CB(b2)等。需要说明的是,图5以N1个子数据为例进行说明,具体处理过程中,N1可以为0,也可以为1,或者为其他正整数。
在一种可能的情况中,所述第一CB对应码长属于第一码长;所述第二CB属于第二码长,第一码长和第二码长不同。也即是说,部分码长的CB块,每个CB块都包含CRC;部分码长的CB块对应带CRC的子数据。
可选的,第一码长可以是一个码长,例如1024码长或512码长,也可以是包含多个码长的码长集合,如第二码长可以为{256,128,64}等。类似的,第二码长可以是一个码长,例如1024码长或512码长,也可以是包含多个码长的码长集合。
一种可能的设计中,N2+N1=N。
又一种可能的设计中,M个CB中还包括M3个第四CB,该M3个第四CB对应M3个子数据,且该M3个第三CB不包含对应的CRC。示例性地,如图6所示是本申请实施例提供的又一种校验码附加方式的示意图。对于N个子数据中的N3个子数据,该子数据直接形成第三CB,无需添加校验码。
可选的,第三CB对应码长属于第三码长。其中,第三码长可以是一个码长,例如1024码长或512码长,也可以是多个码长得到的码长集合。
校验码附加方式三:第一TB和第一CRC共同对应M个CB。如图7所示是本申请实施例提供的又一种校验码附加方式的示意图。附加校验码的第一TB,可以划分形成M个CB,每个CB不包含单独的校验码。
校验码附加方式四:第一TB对应N个子数据,N个子数据分别附加CRC以形成M个CB。具体的,第一节点可以将TB划分为N个子数据,每个子数据分别附加一个CRC以形成一个CB。此时,N=M。
应理解,上述四种校验码附加方式为本申请例举的可能情况。在具体实施过程中,多个校验码附加方式可以包含更多或者更少的校验码附加方式。例如,多个校验码附加方式包含校验码附加方式二和校验码附加方式三。或者,多个校验码附加方式还可以包含本申请中未例举的其他CRC附加方式。
上述说明了校验码附加方式,以下对TB的分段方式进行说明。为了进一步降低功耗,提升性能,编码后的CB的码长需要满足2的整数次幂的形式。即,CB块的码长满足以下等式:
L=2 n,n为自然数。
在一种可能的设计中,CB的码长属于预先定义的多个码长中的一种或多种。例如,该预先定义的多个码长包含以下码长中的一个或多个:1024、512、256、128或64。
需要说明的是,前述M个CB中,不同CB对应的码长可以相同,也可以不同。CB块所对应的码长以及每一种码长的CB块的数量,可以分段方式来确定。申请实施例中,对TB进行分段时,所使用的目标分段方式可以属于多个分段方式中的一个。可选的,多个分段方式可以是预先配置,或者预先定义的。例如,通过协议定义多个校验码附加方式。或者在节点出厂时,在节点中写入多个校验码附加方式。或者,通过通信接口,在节点中配置多个校验码附加方式
为了便于理解,以下例举几种可能的分段方式:
分段方式一:M个CB块中,包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
例如,预先定义的多个码长(或者说预先定义的码长集合)包含5个码长,分别为1024、512、256、128和64,则M个CB中,至少包含1个码长为64的CB。如图8所示为本申请实施例提供的一种可能的分段方式的示意图,M个CB中,CB(M)对应的码长为64。
分段方式二:M个CB块中,CB块的码长属于预定义的多个码长中的多个连续的码长。例如,预先定义的码长包含5个码长,分别为1024、512、256、128和64。此时,M个CB中,CB的码长包含3个码长(便于描述称为L1、L2和L3),则该3个码长属于5个码长中连续的码长。即,(L1,L2,L3)可以为(1024,512,256),或为(512,256,128),或为(256,128,64)。可选的,L1、L2、L3的CB的位置仅为示例。
一种设计中,当不同码长的CB块经过编码形成码字后,码字在形成序列时,CB块对应的码长呈现递减趋势。
示例性地,若CB的码长为1024、512、256、128和64,各个码长对应的CB块的数量分别为1、1、1、1和1。CB块经过编码后,在传输单元的承载部分所形成序列时,则1024码长的CB块对应的码字在序列前部,从前到后分别为1024、512、256、128和64码长的CB块对应的码字。如图9所示为一种可能的译码时延的示意图,不同码长的CB块的序列在接收和译码的时间示意图。接收端则最先接收1024码长的码字(1),在对码字(1)进行译码时,可以接收码字(2);对码字(2)进行译码时,可以接收码字(3)……从而在接收下 一个码字的时间内,可以对上一码字的译码,实现流水线译码,提高译码的效率,降低时延。
分段方式三:M个CB块中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例。M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。其中,第一数据长度可以包含至少一个数据,也可以包含多个数据长度,还可以为一个或者多个数据长度范围。同理。第二数据长度可以包含至少一个数据,也可以包含多个数据长度,还可以为一个或者多个数据长度范围。
对于同等长度的TB块,通过方式四分段得到CB块,由于CB块可以不包含码长最小的块,因此可以得到数量更少的CB块。如此,减少计算校验码时的时间消耗,提高码率,提升数据传输的效率。此外,由于编码块对应的码字越长,则传输系统的纠错能力越强,因此提高CB对应的码长,可以提升纠错能力。
分段方式四:M个CB块中,CB块的码长可以不连续。例如,预先定义的码长包含5个码长,分别为1024、512、256、128和64。此时,M个CB中,CB的码长包含3个码长(便于描述称为L1、L2和L3),则该3个码长可以不连续。即,(L1,L2,L3)可以为(1024,512,128),或为(1024,512,64),或为(512,256,64)等。其中L1、L2、L3的位置仅为示例。
以上四种分段方式仅为示例,具体实施过程中可以包含更多或者更少的分段方式。例如,多个分段方式可以包含分段方式一、分段方式二、分段方式三,第一节点对第一TB进行处理时,包含了基于上述3中分段方式中的一种分段方式对第一TB进行分段的过程。应理解,上述四种分段方式可以在不互斥的情况下进行结合。例如,分段方式一和分段方式二可以结合,例如结合得到分段方式五。分段方式五即:M个CB块中,包含至少一个码长为最低码长的CB块;且CB块的码长属于预定义的多个码长中的多个连续的码长。
一种设计中,CB的码长L与以下参数中的一个或者多个参数相关:CB的数据长度、预设的第一码率、降阶阈值、冗余信息等。其中,第一码率可以是传输格式所要求的码率,也可以是根据需求人为选择的一个码率,还可以是按照规则从预先定义或者配置的多个码率中选出的一个码率,其中的规则例如可以是轮询选取或者随机选取等,具体不作限定。降阶阈值可以调节码率。
一种可能的实现方式中,第一节点中预先定义或者配置有S个码长、T个码率、以及S×T个数据长度的对应关系,S×T个数据长度中的每个数据长度可对应S个码长中的一个码长和T个码率中的一个码率,用于表征预先设定或者配置的使用所对应码率传输所对应码长的编码块时的一个编码块的数据长度,S和T均为正整数。可选的,S个码长、T个码率、以及S×T个数据长度的对应关系可以以表格、栈、数据库、队列或其它形式中的一种或多种来表示。示例性的,当以表格形式表示时,表1示出一种示例性地,按照对应关系一设定或配置的S个码长、T个码率、以及S×T个数据长度(CB块的数据长度)的对应关系表,该 对应关系表也称为分段长度参照表,或简称为K表。其中,“512×(1/4-1/8)”中,1/8为降阶阈值,可以调节码率。
表1:一种K表的具体示例
Figure PCTCN2022114877-appb-000001
举例来说,第一节点可以基于目标分段方式五,以及校验码附件方式二,对TB进行处理形成M个CB。M个CB中包含码长最小的CB,M个CB的码长呈递减趋势。若以上述表1为使用的K表,预设的第一码率为1/2,第一TB的长度为750bit,CRC的数据长度为20bit(仅为示例),预定义的码长为1024、512、256、128、64为例。第一节点对第一TB附加第一CRC,得到带校验码的TB块(770bit)。
如图10所示为本申请提供的一种可能的分段方式的示意图,根据分段方式对带校验码的TB进行分段得到5个子数据,该5个子数据可以形成5个CB。如图10所示,码长为1024、512、256、128、64的CB数量分别为1、1、1、1、1。如此,5个CB中包含码长为64的CB块,且CB块对应的码长呈连续递加的趋势。
其中,CB(1)包含子数据1和子数据1对应的CRC,CB1的大小为512bit,对应的码长为1024;类似的,CB(2)包含子数据2和子数据2对应的CRC,CB2的大小为192bit,对应的码长为512,其余CB以此类推。可选的,对于CB(5),可以添加冗余信息以形成数据长度为24bit的CB块,CB(7)中包含的CRC(20bit)用于对子数据5和冗余信息进行校验,或者用于对子数据5进行校验。
其余分段方式的具体实施情况此处不在一一示例。
可选的,CB中可以包括冗余信息,以使得形成的CB块满足某一码长。该冗余信息可以是预先定义、预先配置或者协商得到的一段数据。例如,冗余信息可以是多个bit的0或1。进一步可选的,冗余信息的位置可以有多种设计。如图11所示为一些可能的冗余信息的位置设计示意图。如图11的(a)部分,冗余信息的位置可以为子数据后方,校验码前方;如图11的(b)部分,冗余信息的位置可以为CB块前部;如图11的(c)部分,冗余信息的位置可以为CB块后部。
在一种可能的设计中,目标校验码附加方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。其中,节点的通信能力(也可以称为节点的能力)可以包含以下方面的一种或者多种方面:节点支持的校验码附加方式、节点的校验能力等,以及对上述方面的指示信息。
可选的,校验码附加方式与以上信息的对应关系可以是预先定义、预先配置或者协商得 到的。可选的,对应关系可以以表格、栈、数据库、队列或其它形式中的一种或多种来表示。以下以表格形式为例,对目标校验码附加方式与上述信息的对应关系的可能情况进行说明:
情况1:如表2所示是本申请实施例提供的一种可能的通信信道的类型与校验码附加方式的对应关系示例。可以看出,在广播信道中,可以使用校验码附加方式三来附加校验码。在下行控制信道中,可以使用校验码附加方式二来附加校验码,其余情况如表2所示。
表2:通信信道的类型与校验码附加方式的对应关系
通信信道的类型 校验码附加方式
广播信道(广播链路) 校验码附加方式三
公共信道 校验码附加方式三
组播信道 校验码附加方式三
下行控制信道 校验码附加方式二
下行数据信道 校验码附加方式一
系统管理帧 校验码附加方式三
…… ……
情况2:如表3所示是本申请实施例提供的一种可能的通信场景类型(或者传输单元的类型,例如帧类型)与校验码附加方式的对应关系示例。可以看出,在视频电话的场景中,可以使用校验码附加方式一来附加校验码。在短视频查看的场景中,可以使用校验码附加方式一来附加校验码,其余情况如表3所示。
表3:通信场景的类型与校验码附加方式的对应关系
通信场景的类型或帧类型 校验码附加方式
视频电话 校验码附加方式一
短视频查看 校验码附加方式一
录音数据上传 校验码附加方式二
搜索附近蓝牙设备 校验码附加方式三
键鼠应用 校验码附加方式三
常规覆盖场景 校验码附加方式二
低时延场景 校验码附加方式三
扩展覆盖场景 校验码附加方式二
长帧格式 校验码附加方式二
短帧格式 校验码附加方式三
…… ……
情况3:不同的无线帧类型,采用不同的校验码附件方式。
其中,无线帧是一种承载符号的时间单元,一个无线帧的时间长度为基本时间单元的倍数。例如,一个无线帧的时间长度表示为Tf,Tf=640×Ts。节点之间的数据传输使用无线帧中不同的符号。示例性的,一个无线帧中可以包含一个或者多个符号、一个或者多个切换间隔等。
无线帧类型有多种,不同的无线帧类型对应不同的校验码附加方式。作为一种可能的示例,无线帧类型与校验码附加方式的对应关系可以如表4-1所示,当使用无线帧类型2时,通过校验码附加方式一来进行校验码附加;当使用无线帧类型3或无线帧类型4时,使用校验码附加方式三来进行校验码附加。
表4-1:无线帧类型与校验码附加方式的对应关系
无线帧类型 校验码附加方式
无线帧类型1 ……
无线帧类型2 校验码附加方式一
无线帧类型3 校验码附加方式三
无线帧类型4 校验码附加方式三
…… ……
应理解,表4-1所示的对应关系仅为示例,具体实施过程中无线帧类型与校验码附加方式的对应关系可以有其他情况,本申请对于二者的对应关系的设计不做严格限定。
进一步的,无线帧类型可以由厂商、用户或管理设备(或管理员)等预先定义或者预先配置的,例如,通过协议规定等。示例性的,如表4-2是一种无线帧类型的信息表,可以看出,不同的无线帧类型,其所承载的信息以及信息所占用的时长或位数可以不同。以无线帧类型2为例,无线帧类型2中前导信号的时间长度为10微秒(us)、同步序列的长度为64位;而无线帧类型3中前导信号的时间长度为12微秒(us)、同步序列的长度为(31+31)位。当然,其余信息,例如物理层控制信息、物理层数据信息、完整性保护字段、或循环冗余校验字段等,也可能有调制方式、分段方式等的不同设计,此处不再一一说明。
表4-2:无线帧类型及其描述
Figure PCTCN2022114877-appb-000002
应理解,表4-2所示的无线帧类型仅为示例,具体实施过程中,无线帧中可以承载更多或者更少的信息,或者一些信息可以被设计为信息等。本申请对于某一种无线帧类型所承载信息以及其信息详细设计不做严格限定。
在一些可能实施方式中,不同的业务需要使用不同无线帧类型的无线帧来传输,或者,不同的通信场景下使用的无线帧类型不同。由于不同的业务或不同的通信场景下,对于传输的效率和传输的可靠性的需求不同,将无线帧类型与校验码附加方式对应,可以针对某一种无线帧类型来采用适用于对应业务或通信场场景的校验码附加方式,从而满足不同业务或不同场景下的传输需求,提升网络的服务质量。
情况4:以信道质量指示为信噪比为例,如表5所示是本申请实施例提供的一种可能的信噪比等级与校验码附加方式的对应关系。若当前信噪比落入第一信噪比等级对应的范围,则使用校验码附加方式一;若当前信噪比落入第二信噪比等级对应的范围,则使用校验码附 加方式二;其余情况以此类推。
表5:信噪比等级与校验码附加方式的对应关系
信噪比等级 信噪比区间 校验码附加方式
第一等级 <-5 校验码附加方式一
第二等级 [-5,5) 校验码附加方式二
第三等级 [5,15) 校验码附加方式二
…… …… ……
情况5:第二节点可以告知第一节点自己所支持的校验码附加方式。第一节点从第二节点支持的校验码附件方式中,确定目标校验码附加方式。可选的,若第二节点只支持一种校验码附加方式,则后续通信只能采用这一种校验码附加方式。可选的,若第二节点支持至少两种校验码附加方式,则可以协商得到、或者按照优先级得到、或者其他方式确定目标校验码附加方式。
进一步可选的,第一节点与第二节点可以在建立连接的过程中,协商所使用的校验码附加方式。或者,发送端或者接收端通知对侧应采用的校验码附加方式。
总之,第一节点所使用的目标校验码附加方式,属于接收端(例如第二节点)支持的校验码附加方式。
情况6:针对不同的码率,可以采用不同的校验码附加方式。举例来说,编码码率为3/4时,使用校验码附加方式一;编码码率为1/2时,使用校验码附加方式二;编码码率为1/4时,使用校验码附加方式二。可选的,这里的码率是指帧头(或者控制信息)部分的码率。
上述情况1-6是为了方便理解本方案而作出示例性的描述,并不旨在限定对应关系的存在形式、指定的信道对应的校验码附加方式、指定的码率对应的校验码附加方式。
在又一种可能的设计中,分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力、码率等。相关描述和可能的情况可以参考前述对校验码附加方式的描述。
在一种可能的实现方式中,第一节点可以发送第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。可选的,发送第一指示信息的时机可以有多种可能设计,例如该第一指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。可选的,该第一指示信息通过信令发送。或者可选的,该第一指示信息通过帧的头部承载。其中,帧为一种可能的传输单元。进一步的,可以通过帧头中的一个或者多个字段来传输该第二指示信息。
在又一种可能的实现方式中,第一节点可以发送第二指示信息,该第二指示信息用于指示多个分段方式中的目标分段方式。关于发送第二指示信息的时机、发送的方式可以参考上述校验码附加方式。
图12示出了一种传输单元的示意性结构图。传输单元可以示例性的包括前导、头部(header)、数据部分(或称为有效数据、有效负载payload)、或者其他字段等。前导码例如可以用于实行频率同步、符号时间同步(symbol timing estimation,STE)、自动增益控制(automatic gain control,AGC)等。数据部分例如可以包括有效数据(或称为有效负载(payload))。header中包含校验码附加方式指示字段和/或分段方式指示字段,以及其他字段。其中,校验附加方式指示字段用于指示目标校验码附加方式,分段方式指示字段用于指示目标分段方式,其他字段例如可以用于指示数据单元的类型、发送数据的设备位址类型、接收数据的设备位址类型、有效数据的字节数等。可选的,传输单元中还可以包括未示出的同步 信道、接入地址、连接间隔(connection interval,CI)、或算法结束符(termination,TERM)等。
示例性的,表6所示为本申请实施例提供的一种可能的校验码附加方式指示字段的取值描述。当校验码附加方式指示字段为00时,则指示校验码附加方式一,其余情况如表5所示。
表6:校验码附加方式指示字段的取值与对应描述
取值(3bit) 描述
00 校验码附加方式一
01 校验码附加方式二
10 校验码附加方式三
11 保留值
示例性的,表7所示为本申请实施例提供的一种可能的分段方式指示字段的取值描述。当分段方式指示字段为000时,则指示分段方式一,其余情况如表6所示。
表7:分段方式指示字段的取值与对应描述
取值(3bit) 描述
000 分段方式一
001 分段方式二
010 分段方式三
011 分段方式四
100 分段方式五
101-111 保留值
在又一种可能的实施方式中,第一指示信息和第二指示信息可以是同一个指示信息。请参见图13示出了又一种传输单元的示意性结构图。其中,校验附加方式指示字段用于指示目标校验码附加方式以及分段方式。例如,校验码附加方式可以与分段方式相关,指示使用校验码附加方式一时则对应的分段方式为分段方式一。再如,所示为本申请实施例提供的一种可能的校验码附加方式指示字段的取值描述。当分段方式指示字段为0x000时,则指示校验码附加方式一以及分段方式一,其余情况如表8所示。
表8:校验码附加方式指示字段的取值与对应描述
取值(16bit) 描述
0x000 校验码附加方式一、分段方式一
0x002 校验码附加方式二、分段方式一
0x003 校验码附加方式三、分段方式一
0x004 校验码附加方式一、分段方式二
0x005 校验码附加方式二、分段方式二
…… ……
S302:第一节点根据所述M个CB,生成至少一个码字。
具体的,第一节点对M个CB进行编码,生成至少一个码字。例如,对一个CB进行编码,可以形成一个码字。
一种可能的设计中,编码方式为polar码编码。
示例性的,发送端设备在获得M个CB后,还可以执行比特映射、高阶调制或符号交织等操作中的一项或多项。其中,编码M个CB、比特映射、高阶调制或符号交织等操作的顺 序不作具体限定,例如这些操作可以是一次执行完成的,也可以是依次执行的,还可以是并行执行的。
一种可能的实现方式中,在上述一项或多项操作完成后,M个CB的码字会形成一个完整的序列。该序列中的各个第一编码块的码字和各个第二编码块的码字可以按照排列顺序排列在一起。可选的,该排列顺序可以预先配置、预先设置或者由协议定义。或者可选的,该排列顺序可以由接收端发送给接收端,以便接收端设备也能按照顺序获得M个编码块。
S303:第一节点发送所述至少一个码字。
具体的,第一节点可以将M个编码块的码字承载在传输单元中,并通过信道发送。其中,M个编码块的码字在传输单元中可呈现为一个数据序列,便于描述,将该数据序列称为第二数据。
相应的,第二节点接收至少一个码字。可选的,第二节点接收至少一个码字可以通过以下方式:第二节点接收第二数据,第二节点从第二数据中分段出M个编码块各自对应的码字,得到至少一个码字。
一种设计中,第二节点基于多个分段方式中的目标分段方式,从第二数据中分段出M个编码块各自对应的码字。
可选的,该目标分段方式通过第二指示信息指示。例如,第二节点接收来自第一节点的指示信息,从而确定目标分段方式。
可选的,第二节点在接收第二数据时,可以经过比特映射、解调等操作中的一项或多项。本申请对于比特映射、解调等操作的顺序不作具体限定。
S304:第二节点根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一TB的信息。
可选的,第一TB的信息包含以下信息中的一项或者多项:第一TB、第一TB的校验结果、至少一个CB对应的子数据、至少一个CB的校验结果、至少一个编码块组(coded block group,CBG)对应的子数据、或至少一个CBG的校验结果。其中,校验结果可以包含校验成功的指示信息、校验失败的指示信息、或校验失败的数据位等中的一项或者多项。CBG是由一个或者多个CB形成的组,部分场景中可以作为编码、译码、校验、或重传等操作的数据单位。
可以理解的,第一节点根据目标校验码附加方式,对第一TB进行处理得到M个编码块,进而根据M个编码块得到至少一个码字。相应的,第二节点对至少一个码字进行解码,以获得M个编码块;根据目标校验码附加方式,通过对应数据的校验码来校验该数据是否正确传输。
一种情况中,第二节点在对CB进行校验时,在校验成功时可以得到CB对应的子数据,或者还包括校验CB成功的指示信息。在校验失败时,可以得到校验CB失败的指示信息。
又一种情况中,第二节点以CBG的形式进行校验。在校验成功时可以得到CBG对应的子数据,或者还包括校验CBG成功的指示信息。在校验失败时,可以得到校验CBG失败的指示信息。
又一种情况中,在M个CB均校验为正确传输的情况下,可以根据N个子数据带校验的TB。通过TB对应的校验码对TB进行校验。在校验成功时可以得到TB,或者还包括校验TB成功的指示信息。在校验失败时,可以得到校验TB失败的指示信息。
在一种可能的设计中,第二节点对至少一个码字进行译码,得到M个编码块。第二节点根据目标校验码附加方式,基于对应数据的校验码来校验该数据是否正确传输。以下例举几 种可能的实施方式:
实施方式一:目标校验码附加方式为附加方式一。第二节点对于所述M个CB,根据每个CB所包含的第二CRC,检验每个CB所包含的子数据是否正确传输。例如,如图4所示,对于CB(1),使用CB(1)中包含的CRC来校验所述子数据1是否正确传输;对于CB(2),使用CB(2)中包含的CRC来校验所述子数据2是否正确传输,其余情况以此类推。
进一步的,在所述N(此时,N=M)个子数据正确传输时,第二节点根据所述N个子数据,得到带校验码的第一TB。该带校验码的第一TB包含所述第一TB和第一CRC。第二节点根据第一CRC校验第一TB,得到第一TB或第一TB的校验结果。
实施方式二:目标校验码附加方式为附加方式二。对于所述M1个第二CB,根据每一个第一CB所包含的第二CRC,校验所述第一CB对应的子数据是否正确传输;对于所述M2个第二CB,根据所述第三CRC,校验所述N1个子数据是否正确传输。
例如,如图5所示,对于CB(a1),使用CB(a1)中包含的CRC来校验所述子数据(a1)是否正确传输;对于CB(a2),使用CB(a2)中包含的CRC来校验所述子数据(a2)是否正确传输,其余第一CB以此类推。对于第二CB,根据一个或者多个第二CB带校验码的(N1个)子数据,使用CRC来校验N1个子数据是否正确传输,从而确定子数据是否正确传输。
进一步的,在M1个第二CB对应的M1个子数据正确传输以及N1个子数据正确传输时,根据M1个子数据和N1个子数据得到带校验码的第一TB。该带校验码的第一TB包含所述第一TB和第一CRC。第二节点根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
实施方式三:目标校验码附加方式为附加方式三。第二节点根据M个CB得到带校验码的第一TB。该带校验码的第一TB包含第一TB和第一CRC。第二节点根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在图3所示的实施例中,第一节点可以从多个校验码添加方式中确定目标校验码方式,基于目标校验码方式对TB(和/或TB的子数据)附加校验码。由于可以灵活地确定校验码附加方式,从而在不同的传输场景中都能确定适用于当前场景的校验码附加方式,提升传输性能。
例如,在使用广播信道传输数据时,无需对传输块的子数据添加校验码,从而提高码率,从而提升数据传输的效率,降低时延。
再如,在信道质量较好时,可以无需对传输块的子数据添加校验码,提升数据传输的效率。
再如,在一些场景中时,可以对传输块添加校验码,一部分子数据单独附加校验码,而另一部分子数据可以一起对应一个校验码,提升添加校验码的灵活性,提升数据传输的效率。
【实施例二】
请参见图14,图14是本申请实施例提供的一种通信方法的流程示意图。可选的,该方法可以应用图2所述的通信系统。如图14所述的通信方法至少包括步骤S1401至步骤S1404,具体如下:
S1401:第一节点根据多个分段方式中的目标分段方式,基于第一TB得到第一数据,所述第一数据包含M个CB。其中,第一数据包含M个CB,M为正整数。
具体的,第一TB是待传输的数据。为了降低编码/译码的时延和功耗,可以将第一TB分段,获得M个CB。一些设计中,第一节点可以先计算得到第一TB的校验码,得到带校 验码的第一TB。第一节点将待校验码的第一TB进行分段,获得M个CB。本申请实施例以对第一TB分段进行描述,其可以带有校验码,也可以不带校验码,并不限定一定是基于第一TB本身进行分段。
分段方式用于指示对第一TB的分段规则,不同的分段方式指示的分段规则不同,所得到的CB的数量、或码长也不同。第一节点可以基于多个分段方式中的目标分段方式,对第一TB进行分段,形成的CB。应理解,CB可以包含第一TB的部分数据(便于描述以下称为子数据),也可以既包含子数据也包含子数据对应的校验码,或者还可以只包含子数据对应的校验码。该多个校验码附加方式可以是预先定义、预先配置的。例如,通过协议定义多个校验码附加方式。或者在节点出厂时,在节点中写入多个校验码附加方式。或者,通过通信接口,在节点中配置多个校验码附加方式
相关分段方式可以参考步骤S301中例举的几种可能的分段方式,此处不在赘述。
在又一种可能的设计中,目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力、码率等。可选的,目标分段方式与以上信息的对应关系可以是预先定义、预先配置或者协商得到的。相关描述可以参考步骤S301中的描述。
可选的,对应关系可以以表格、栈、数据库、队列或其它形式中的一种或多种来表示。以下以表格形式为例,对确定目标校验码附加方式的可能情况进行说明:
情况一:如表9所示是本申请实施例提供的一种可能的通信信道的类型与分段方式的对应关系示例。可以看出,由于广播信道对时延的要求不高,因此在广播信道中,可以使用分段方式三来对TB进行分段,提升分段的效率。再如,在下行控制信道中,可以使用分段方式一来进行分段,可以降低时延,提升用户体验。其余情况如表8所示。
表9:通信信道的类型与分段方式的对应关系
通信信道的类型 分段方式
广播信道 分段方式三
公共信道 分段方式三
组播信道 分段方式三
下行控制信道 分段方式一
下行数据信道 分段方式一
…… ……
情况二:如表10所示是本申请实施例提供的一种可能的通信场景类型与分段方式的对应关系示例。可以看出,在视频电话的场景中,可以使用分段方式一来进行分段,降低时延。提升用户体验。在录音数据上传的场景中,可以使用分段方式三来进行分段。其余情况如表9所示。
表10:通信场景的类型与校验码附加方式的对应关系
通信场景的类型 校验码附加方式
视频电话 校验码附加方式一
短视频查看 校验码附加方式一
录音数据上传 校验码附加方式三
搜索附近蓝牙设备 校验码附加方式三
…… ……
对于信道质量指示、码率等相关的描述可以参考步骤S301中情况3和情况5中的描述。此处不在赘述。
一种可能的设计中,第二节点可以告知第一节点自己所支持的分段方式。第一节点从第二节点支持的分段方式中,确定目标分段方式。可选的,若第二节点只支持一种分段方式,则后续通信只能采用这一种分段方式。可选的,若第二节点支持至少两种分段方式,则可以协商得到、或者按照优先级得到、或者其他方式确定采用哪一种分段方式。进一步可选的,第一节点与第二节点可以在建立连接的过程中,协商所使用的分段方式。或者每次通信时,发送端或者接收端通知对侧应采用的分段方式。
总之,第一节点所使用的目标分段方式,属于接收端(例如第二节点)支持的分段方式。
可选的,第一节点可以发送第二指示信息,该第二指示信息用于指示多个分段方式中的目标分段方式。关于发送第二指示信息的实际、发送的方式可以参考步骤S301中的相关描述。
可选的,对TB和/或子数据附加校验码的可能方式,可以参考步骤S301中对校验码附加方式的相关描述。
S1402:第一节点根据所述M个编码块,生成至少一个码字。
相关描述可以参见步骤S302中的描述,此处不在赘述。
S1403:第一节点发送所述至少一个码字。
具体的,第一节点可以将M个编码块的码字承载在传输单元中,并通过信道发送。其中,M个编码块的码字在传输单元中可呈现为一个数据序列,便于描述,将该数据序列称为第二数据。
S1404:第二节点接收至少一个码字。
相应的,第二节点接收至少一个码字。具体的,第二节点接收第二数据,第二节点从第二数据中分段出M个编码块各自对应的码字,得到至少一个码字。
一种设计中,第二节点基于多个分段方式中的目标分段方式,从第二数据中分段出M个编码块各自对应的码字。
可选的,该目标分段方式通过第二指示信息指示。例如,第二节点接收来自第一节点的指示信息,从而确定目标分段方式。
可选的,第二节点在接收第二数据时,可以经过比特映射、解调等操作中的一项或多项。本申请对于比特映射、解调等操作的顺序不作具体限定。
可选的,图14所示的方法还可以包含步骤S1405。具体如下:
S1405:第二节点对所述至少一个码字执行处理,得到第一TB的信息。
具体的,第二节点对该至少一个码字进行解码,以获得M个编码块。在M个编码块和/或第一TB对应有校验码时,通过对应数据的校验码来校验该数据是否正确传输。
相关描述可以参考步骤S304中的相关描述。
上述方法中,支持多种TB块分段方式,在对传输块分段时,可以从多个分段方式中确定目标分段方式,基于目标分段方式对TB进行分段。由于可以灵活地确定分段方式,从而在不同的传输场景中都能确定适用于当前场景的分段方式,提升传输性能。
上述详细阐述了本申请实施例的方法,下面提供本申请实施例的装置。
可以理解的是,本申请实施例提供的多个装置,例如通信装置,为了实现上述方法实施例中的功能,其包含了执行各个功能相应的硬件结构、软件单元、或硬件结构和软件结构的 组合等。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以在不同的使用场景中,使用不同的装置实现方式来实现前述的方法实施例,对于装置的不同实现方式不应认为超出本申请实施例的范围。
本申请实施例可以对装置进行功能单元的划分。例如,可对应各个功能划分各个功能单元,也可将两个或两个以上的功能集成在一个功能单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请例举一种可能的通信装置,如图15所示。该通信装置150用于实现前述的通信方法,例如图3、或者以及图14所述实施例中的信号处理方法。
一种可能的实施方式中,该通信装置150可以包括处理单元1501和通信单元1502。其中,处理单元1501可以用于实现前述的通信方法中的处理、生成、或计算等功能,例如S301、或S302,和/或用于支持前述方法所描述的其它过程。通信单元1502可以用于执行实现前述的通信方法中的接收和/或发送操作,例如S303,和/或用于支持前述方法所描述的其它过程,例如发送指示信息、接收指示信息等过程。一些可能实施场景中,通信单元1502还可以由通信接口模块和/或收发模块代替,并且该接口模块和/或收发模块可以用于支持前述方法所描述的技术的其它过程。
一种可能的设计中,该通信装置150用于实现图3所示实施例中的第一节点侧的方法。
在一种可能的实施方式中,所述处理单元1501,用于:
根据多个校验码附加方式中的目标校验码附加方式,对第一TB执行处理以得到第一数据,所述第一数据包含M个CB,所述多个校验码附加方式是预先定义或者配置的,所述M为正整数;
根据所述M个编码块,生成至少一个码字;
所述通信单元1502,用于发送所述至少一个码字。
在一种可能的实施方式中,所述通信单元1502还用于:发送第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
可选的,该第一指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在一种可能的实施方式中,所述第一指示信息通过信令发送。
在一种可能的实施方式中,所述第一指示信息通过帧的头部承载。其中,所述帧为一种传输单元,帧的头部也称为帧头,可以包含一个或者多个字段,具体可以通过帧头中的字段来传输该第一指示信息。
在一种可能的实施方式中,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。
在一种可能的实施方式中,所述目标校验码附加方式属于接受侧节点支持的校验码附加方式。一种设计中,接收端可以向发送端反馈其支持的校验码附加方式,发送端从接收端支持的校验码附件方式中确定目标校验码附加方式。
在一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
在一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第一校验码附加方式;
所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,其中:
所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC,M1≥0;
所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1子数据共同对应的CRC,M2≥0,N1≥0。
在一种可能的实施方式中,所述第一CB对应的码长属于第一码长;
所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
在一种可能的实施方式中,M2+N1=N。
在一种可能的实施方式中,所述M个CB包含M3个第三CB,所述M3个第三CB对应N2个子数据,所述第三CB不包含CRC,M3≥0,N2≥0。
在一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第二校验码附加方式;
所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
在一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中的第三校验码附加方式;
所述第一TB和所述第一TB的第一CRC共同对应M个子数据,所述第一CRC为所述第一TB对应的CRC,其中:
所述M个CB中的每个CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC。
在一种可能的实施方式中,所述处理单元1501,还用于:
根据多个校验码附加方式中的目标校验码附加方式,对所述第一TB附加第一CRC,得到带校验码的TB;
根据多个分段方式中的目标分段方式,对所述带校验码的TB进行分段,以获取所述M个CB。
在一种可能的实施方式中,上述分段操作是在无线通信的物体层实现的。
在一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预 定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在一种可能的实施方式中,所述通信单元1502,还用于:
发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在一种可能的实施方式中,所述第二指示信息通过信令发送。
在一种可能的实施方式中,所述第二指示信息通过帧的头部承载。其中,帧为一种可能的传输单元。进一步的,可以通过帧头中的一个或者多个字段来传输该第二指示信息。
在一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
一种可能的设计中,该通信装置150用于实现图3所示实施例中的第二节点侧的方法。
在一种可能的实施方式中,所述通信单元1502,用于接收至少一个码字;
所述处理单元1501,用于根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一TB的信息,所述多个校验码附加方式是预先定义或者配置的。
在又一种可能的实施方式中,所述第一TB的信息包含以下信息中的一项或者多项:
所述第一TB、所述第一TB的校验结果、至少一个CB对应的子数据、至少一个CB的校验结果、至少一个CBG对应的子数据、或至少一个CBG的校验结果。
在又一种可能的实施方式中,所述通信单元1502,还用于:
接收第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
在又一种可能的实施方式中,所述通信单元1502,还用于:通过接收信令来接收第一指示信息。
在又一种可能的实施方式中,所述第一指示信息通过帧的头部承载。其中,所述帧为一种传输单元,帧的头部也称为帧头,可以包含一个或者多个字段,具体可以通过帧头中的字段来传输该第一指示信息。
在又一种可能的实施方式中,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型等。
在又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
在又一种可能的实施方式中,所述目标校验码附加方式为所述多个校验码附加方式中、接收端所支持的一种校验码附加方式。一种设计中,接收端可以向发送端反馈其支持的校验码附加方式,发送端从接收端支持的校验码附件方式中确定目标校验码附加方式。
在又一种可能的实施方式中,所述处理单元1501,还用于:
根据所述至少一个码字得到M个CB,M为正整数;
所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得 到所述第一TB的信息。
在又一种可能的实施方式中,所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,
其中:所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第一CRC,所述第一CRC对应所述一个子数据,M1≥0;
所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1个子数据共同对应的CRC,M2≥0,N1≥0。
在又一种可能的实施方式中,所述处理单元1501,还用于:
对于所述M1个第二CB,根据每一个第一CB所包含的第二CRC,校验所述第一CB对应的子数据是否正确传输;
对于所述M2个第二CB,根据所述第三CRC,校验所述N1个子数据是否正确传输。
在又一种可能的实施方式中,所述处理单元1501,还用于:
在所述M1个第二CB对应的M1个子数据正确传输以及所述N1个子数据正确传输时,根据M1个子数据和N1个子数据得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在又一种可能的实施方式中,所述第一CB对应的码长属于第一码长;
所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
在又一种可能的实施方式中,M2+N1=N。
在又一种可能的实施方式中,所述M个CB包含M3个第三CB,所述M3个第三CB对应N2个子数据,所述第三CB不包含CRC,M3≥0,N2≥0。
在又一种可能的实施方式中,所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
在又一种可能的实施方式中,所述处理单元1501,还用于:
根据所述M个CB,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在又一种可能的实施方式中,所述第一TB和所述第一TB的第一循环冗余校验CRC共同对应M个子数据,其中:
每个CB包含一个子数据和所述一个子数据对应的第二CRC。
在又一种可能的实施方式中,所述处理单元1501,还用于:
对于所述M个CB,根据每个CB所包含的第二CRC,检验每个CB所包含的子数据是否正确传输;
在所述M个子数据正确传输时,根据所述M个子数据,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和第一CRC;
根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
在又一种可能的实施方式中,所述M个CB为基于多个分段方式中的目标分段方式得到的。
在又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在又一种可能的实施方式中,所述通信单元1502,还用于:
接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
在又一种可能的实施方式中,所述通信单元,还用于:通过接收信令,接收所述第二指示信息。
在又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
一种可能的设计中,该通信装置150用于实现图14所示实施例中的第一节点侧的方法。
在一种可能的实施方式中,所述处理单元1501,用于:
根据多个分段方式中的目标分段方式,基于第一TB得到第一数据,所述第一数据包含M个CB,所述多个分段方式是预先定义或者配置的,所述M为正整数;
根据所述M个编码块,生成至少一个码字;
所述通信单元1502,用于发送所述至少一个码字。
可选的,该通信装置为通信节点或者该通信装置为通信节点内的部件。
在又一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第一分段方式;
所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在又一种可能的实施方式中,所述目标分段方式为多个分段方式中的第二分段方式;
所述M个CB中,不一定包含第三CB。该第三CB对应的码长为预定义的多个码长中最小码长。
举例来说,以预定义的多个码长为{1024,512,256,128,64}为例,则M个CB中可能包含对应码长为64的CB,也可能不包含对应码长为64的CB。
一种可能的实现方式中,M个CB中,任意一个CB的码长均高于预定义的多个码长中最小码长。
在一种可能的实施方式中,M个CB所对应的码长,与TB的长度相关。例如,若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在又一种可能的实施方式中,所述通信单元1502还用于:
发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时发送,也可以是在建立连接后发送,或者还可以是在传输某一段信息时发送。
在又一种可能的实施方式中,所述第二指示信息通过信令发送。
在又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
在又一种可能的实施方式中,所述目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力等。
在又一种可能的实施方式中,所述目标分段方式属于接收端支持的分段方式。一种设计中,接收端可以向发送端反馈其支持的分段方式,发送端从接收端支持的分段方式中确定目标校验码附加方式。
在又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
一种可能的设计中,该通信装置150用于实现图14所示实施例中的第二节点侧的方法。
在一种可能的实施方式中,所述通信单元1502,用于根据多个分段方式中的目标分段方式,接收所述第二数据得到至少一个码字,所述多个分段方式是预先定义或者配置的;
所述处理单元1501,用于对所述至少一个码字执行处理,得到第一TB的信息。
在一种可能的实施方式中,所述通信单元1502,还用于接收第二数据;
所述处理单元1501,还用于根据所述分段方式中的目标分段方式,根据所述第二数据得到所述至少一个码字。
在又一种可能的实施方式中,所述至少一个码字对应M个CB。
在又一种可能的实施方式中,上述方法是在无线通信的物体层实现的。
在又一种可能的实施方式中,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
在又一种可能的实施方式中,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长。
在又一种可能的实施方式中,所述通信单元1502,还用于:
接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
可选的,该第二指示信息可以在发送端节点和接收端建立通信连接时接收,也可以是在建立连接后接收,或者还可以是在传输某一段信息时接收。
在又一种可能的实施方式中,所述通信单元1502,还用于:通过接收信令,接收所述第 二指示信息。
在又一种可能的实施方式中,所述第二指示信息通过帧的头部承载,所述帧为一种传输单元。可选的,具体可以通过帧头中的字段来传输该第二指示信息。
在又一种可能的实施方式中,所述CB块对应的码长L满足以下等式:
L=2 n,n为自然数。
在又一种可能的实施方式中,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64等中的至少一个。
在又一种可能的实施方式中,所述目标分段方式与以下信息中的一个或多个存在对应关系:通信信道类型、通信场景类型、信道质量指示、或节点的通信能力等。
在又一种可能的实施方式中,所述目标分段方式属于接收端所支持的分段方式。一种设计中,接收端可以向发送端反馈其支持的分段方式,发送端从接收端支持的分段方式中确定目标校验码附加方式。
在又一种可能的实施方式中,所述对应关系是预先定义、预先配置或者协商得到的。
请参见图16,图16是本申请实施例提供的一种通信装置160的结构示意图,该通信装置160可以为节点,也可以为节点内的部件(例如芯片、软件模块或者硬件模块等)。该通信装置160可以包括至少一个处理器1601。可选的还可以包括通信接口1602。进一步可选的,通信装置160还可以包括至少一个存储器1603。更进一步可选的,还可以包含总线1604,其中,处理器1601、通信接口1602和存储器1603通过总线1604相连。
其中,处理器1601是进行算术运算和/或逻辑运算的模块,具体可以是中央处理器(central processing unit,CPU)、图片处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)、复杂可编程逻辑器件(Complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(Microcontroller Unit,MCU)等处理模块中的一种或者多种的组合。
通信接口1602可以用于为所述至少一个处理器提供信息输入或者输出。和/或,所述通信接口1602可以用于接收外部发送的数据和/或向外部发送数据,可以为包括诸如以太网电缆等的有线链路接口,也可以是无线链路(Wi-Fi、蓝牙、通用无线传输、车载短距通信技术以及其他短距无线通信技术等)接口。可选的,通信接口1602还可以包括与接口耦合的发射器(如射频发射器、天线等),或者接收器等。
存储器1603用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器1603可以是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)等等中的一种或者多种的组合。
该通信装置160中的至少一个处理器1601用于执行前述的通信方法,例如图3、或图14所述实施例所描述的方法。相关内容可以参照前述,此处不在赘述。
可选的,处理器1601,可以是专门用于执行这些方法的处理器(便于区别称为专用处理器),也可以是通过调用计算机程序来执行这些方法的处理器,例如通用处理器。可选的,至少一个处理器还可以既包括专用处理器也包括通用处理器。可选的,在通信装置160包括至少一个处理器1601的情况下,上述计算机程序可以存在存储器1603中。
本申请提供一种芯片,该芯片可以包括处理器和接口,处理器用于通过接口读取指令,以执行如上述第一至四方面中任一项所述的方法。
本申请还提供了一种算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在至少一个处理器上运行时,实现前述的通信方法,例如图3、或图14所述的方法。
本申请还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,在被计算设备执行时,实现前述的通信方法,例如图3、或图14所述的方法。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中实施例提到的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b、或c中的至少一项(个),可以表示:a、b、c、(a和b)、(a和c)、(b和c)、或(a和b和c),其中a、b、c可以是单个,也可以是多个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例使用“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一设备和第二设备,只是为了便于描述,而并不是表示这第一设备和第二设备的结构、重要程度等的不同,在某些实施例中,第一设备和第二设备还可以是同样的设备。
上述实施例中所用,根据上下文,术语“当……时”可以被解释为意思是“如果……”或“在……后”或“响应于确定……”或“响应于检测到……”。以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    根据多个校验码附加方式中的目标校验码附加方式,对第一传输块TB执行处理以得到第一数据,所述第一数据包含M个编码块CB,所述多个校验码附加方式是预先定义或者配置的,所述M为正整数;
    根据所述M个编码块,生成至少一个码字;
    发送所述至少一个码字。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息通过帧的头部承载。
  4. 根据权利要求1所述的方法,其特征在于,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:
    通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型。
  5. 根据权利要求4所述的方法,其特征在于,所述对应关系是预先定义、预先配置或者协商得到的。
  6. 根据权利要求1所述的方法,其特征在于,所述目标校验码附加方式为所述多个校验码附加方式中、接收端所支持的一种校验码附加方式。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述目标校验码附加方式为所述多个校验码附加方式中的第一校验码附加方式;
    所述第一TB和第一循环冗余校验CRC对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,其中:
    所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC,M1≥0;
    所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1子数据共同对应的CRC,M2≥0,N1≥0。
  8. 根据权利要求7所述的方法,其特征在于,所述第一CB对应的码长属于第一码长;
    所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,所述目标校验码附加方式为所述多个校验码附加方式中的第二校验码附加方式;
    所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
  10. 根据权利要求1-6任一项所述的方法,其特征在于,所述目标校验码附加方式为所述多个校验码附加方式中的第三校验码附加方式;
    所述第一TB和所述第一TB的第一CRC共同对应M个子数据,所述第一CRC为所述第一TB对应的CRC,其中:
    所述M个CB中的每个CB包含一个子数据和第二CRC,所述第二CRC为所述一个子数据对应的CRC。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,根据多个校验码附加方式中的目标校验码附加方式,对第一传输块TB执行处理以得到第一数据,包括:
    根据多个校验码附加方式中的目标校验码附加方式,对所述第一TB附加第一CRC,得到带校验码的TB;
    根据多个分段方式中的目标分段方式,对所述带校验码的TB进行分段,以获取所述M个CB。
  12. 根据权利要求11中所述的方法,其特征在于,所述目标分段方式为多个分段方式中的第一分段方式;
    所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
  13. 根据权利要求11中所述的方法,其特征在于,所述目标分段方式为多个分段方式中的第二分段方式;
    若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
    若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
  15. 根据权利要求14所述的方法,其特征在于,所述第二指示信息通过帧的头部承载。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述CB块对应的码长L满足以下等式:
    L=2 n,n为自然数;
    或者,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64中的至少一个。
  17. 一种通信方法,其特征在于,包括:
    接收至少一个码字;
    根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一传输块TB的信息,所述多个校验码附加方式是预先定义或者配置的。
  18. 根据权利要求17所述的方法,其特征在于,所述第一传输块TB的信息包含以下信息中的一项或者多项:
    所述第一TB、所述第一TB的校验结果、至少一个编码块CB对应的子数据、至少一个CB的校验结果、至少一个编码块组CBG对应的子数据、或至少一个CBG的校验结果。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述多个校验码附加方式中的目标校验码附加方式。
  20. 根据权利要求19所述的方法,其特征在于,所述第一指示信息通过帧的头部承载。
  21. 根据权利要求17或18所述的方法,其特征在于,所述目标校验码附加方式与以下信息中的一个或多个存在对应关系:
    通信信道类型、通信场景类型、信道质量指示、节点的通信能力、码率或无线帧类型。
  22. 根据权利要求21所述的方法,其特征在于,所述对应关系是预先定义、预先配置或者协商得到的。
  23. 根据权利要求17-22任一项所述的方法,其特征在于,所述根据多个校验码附加方式中的目标校验码附加方式,对所述至少一个码字执行处理以得到第一传输块TB的信息,包 括:
    根据所述至少一个码字得到M个CB,M为正整数;
    所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第一TB和第一循环冗余校验CRC共同对应N个子数据,所述第一CRC为所述第一TB对应的CRC,N为正整数,
    其中:
    所述M个CB包含M1个第一CB,每个第一CB包含一个子数据和第一CRC,所述第一CRC对应所述一个子数据,M1≥0;
    所述M个CB包含M2个第二CB,所述M2个第二CB对应N1个子数据和第三CRC,所述第三CRC为所述N1个子数据共同对应的CRC,M2≥0,N1≥0。
  25. 根据权利要求24所述的方法,其特征在于,所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息,包括:
    对于所述M1个第二CB,根据每一个第一CB所包含的第二CRC,校验所述第一CB对应的子数据是否正确传输;
    对于所述M2个第二CB,根据所述第三CRC,校验所述N1个子数据是否正确传输。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    在所述M1个第二CB对应的M1个子数据正确传输以及所述N1个子数据正确传输时,根据M1个子数据和N1个子数据得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
    根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
  27. 根据权利要求24-26任一项所述的方法,其特征在于,所述第一CB对应的码长属于第一码长;
    所述第二CB对应的码长属于第二码长,所述第一码长和所述第二码长不同。
  28. 根据权利要求23的方法,其特征在于,所述第一TB和第一CRC共同对应所述M个CB,所述第一CRC为所述第一TB对应的CRC。
  29. 根据权利要求28的方法,其特征在于,所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息,包括:
    根据所述M个CB,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和所述第一CRC;
    根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
  30. 根据权利要求22所述的方法,其特征在于,所述第一TB和所述第一TB的第一循环冗余校验CRC共同对应M个子数据,其中:
    所述M个CB中的每个CB包含一个子数据和所述一个子数据对应的第二CRC。
  31. 根据权利要求30的方法,其特征在于,所述根据多个校验码附加方式中的目标校验码附加方式,对所述M个CB进行校验以得到所述第一TB的信息,包括:
    对于所述M个CB,根据每个CB所包含的第二CRC,检验每个CB所包含的子数据是否正确传输;
    在所述M个子数据正确传输时,根据所述M个子数据,得到带校验码的第一TB,所述带校验码的第一TB包含所述第一TB和第一CRC;
    根据所述第一CRC校验所述第一TB,得到所述第一TB或所述第一TB的校验结果。
  32. 根据权利要求23-29所述的方法,其特征在于,所述M个CB为基于多个分段方式中的目标分段方式得到的。
  33. 根据权利要求32中所述的方法,其特征在于,所述目标分段方式为多个分段方式中的第一分段方式;
    所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
  34. 根据权利要求32中所述的方法,其特征在于,所述目标分段方式为多个分段方式中的第二分段方式;
    若所述第一TB的数据长度属于第一数据长度,所述M个CB中,任意一个CB对应的码长高于预定义的多个码长中的最低码长;
    若所述第一TB的数据长度属于第二数据长度,所述M个CB包含至少一个第三CB,所述第三CB对应的码长为预定义的多个码长中的最低码长。
  35. 根据权利要求32-34任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示多个分段方式中的目标分段方式。
  36. 根据权利要求35所述的方法,其特征在于,所述第二指示信息通过帧的头部承载。
  37. 根据权利要求17-36任一项所述的方法,其特征在于,所述CB块对应的码长L满足以下等式:
    L=2 n,n为自然数;
    或者,所述CB块对应的码长属于预先定义的码长中的一个或者多个,所述预先定义的码长包含1024、512、256、128或64中的至少一个。
  38. 一种通信装置,所述通信装置包括处理单元和通信单元,所述通信装置用于实现权利要求1-16任一项所述的方法。
  39. 一种通信装置,所述通信装置包括处理单元和通信单元,所述通信装置用于实现权利要求17-37任一项所述的方法。
  40. 一种通信装置,其特征在于,所述数据处理装置包括至少一个处理器和通信接口;
    所述通信接口用于接收和/或发送数据,和/或,所述通信接口用于为所述处理器提供输入和/或输出;
    所述至少一个处理器用于实现权利要求1-16任一项所述的方法,或者,用于实现权利要求17-37任一项所述的方法。
  41. 一种终端,其特征在于,所述终端包含如权利要求38-40任一项所述的通信装置。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在至少一个处理器上运行时,实现如权利要求1-16任一项所述的方法,或者,实现如权利要求17-37任一项所述的方法。
PCT/CN2022/114877 2021-09-01 2022-08-25 通信方法及装置 WO2023030166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111022666.3 2021-09-01
CN202111022666.3A CN115733580A (zh) 2021-09-01 2021-09-01 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023030166A1 true WO2023030166A1 (zh) 2023-03-09

Family

ID=85292208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114877 WO2023030166A1 (zh) 2021-09-01 2022-08-25 通信方法及装置

Country Status (2)

Country Link
CN (1) CN115733580A (zh)
WO (1) WO2023030166A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615986A (zh) * 2008-06-27 2009-12-30 华为技术有限公司 一种数据传输方法、装置及通信系统
CN106888072A (zh) * 2017-03-24 2017-06-23 宇龙计算机通信科技(深圳)有限公司 数据传输方法及装置
WO2019221499A1 (ko) * 2018-05-15 2019-11-21 삼성전자 주식회사 무선 통신 시스템에서 재전송을 수행하기 위한 장치 및 방법
CN110661533A (zh) * 2018-06-28 2020-01-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 优化译码器存储极化码译码性能的方法
CN111600677A (zh) * 2019-02-20 2020-08-28 成都华为技术有限公司 一种数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615986A (zh) * 2008-06-27 2009-12-30 华为技术有限公司 一种数据传输方法、装置及通信系统
CN106888072A (zh) * 2017-03-24 2017-06-23 宇龙计算机通信科技(深圳)有限公司 数据传输方法及装置
WO2019221499A1 (ko) * 2018-05-15 2019-11-21 삼성전자 주식회사 무선 통신 시스템에서 재전송을 수행하기 위한 장치 및 방법
CN110661533A (zh) * 2018-06-28 2020-01-07 西南电子技术研究所(中国电子科技集团公司第十研究所) 优化译码器存储极化码译码性能的方法
CN111600677A (zh) * 2019-02-20 2020-08-28 成都华为技术有限公司 一种数据传输方法及装置

Also Published As

Publication number Publication date
CN115733580A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2021159974A1 (zh) 混合自动重传请求信息的反馈方法及设备
CN112653541B (zh) 通信方法及装置
US20230139754A1 (en) Coding method and apparatus
US20230171028A1 (en) Method for processing bluetooth data packet and communication apparatus
CN110661608B (zh) 通信方法、装置、计算机可读介质及电子设备
CN108234093B (zh) 控制信息指示方法及网元
WO2020025063A1 (zh) 一种通信方法及装置
WO2022205234A1 (zh) 一种通信方法及装置
EP3790213B1 (en) Mac-based hybrid automatic repeat request (harq)
CN111669835A (zh) 通信的方法、装置及系统
WO2022021220A1 (zh) 一种数据传输方法及装置
US20230224105A1 (en) Communication Method and Apparatus
WO2023030166A1 (zh) 通信方法及装置
WO2022262031A1 (zh) 一种数据处理方法、装置及系统
WO2022133918A1 (zh) 解码失败的处理方法、装置和系统
CN111246419A (zh) 一种信息发送方法、接收方法及装置
WO2019084860A1 (zh) 车联网中的数据发送方法及终端
WO2020199046A1 (zh) 一种Wi-Fi通信方法及装置
WO2023040124A1 (zh) 通信方法及装置、计算机可读存储介质及计算机程序产品
WO2023060378A1 (en) Methods, devices, and systems for transmitting multiple transport block groups
WO2023226691A1 (zh) 一种通信方法及通信装置
WO2022027661A1 (zh) 通信方法、装置及系统
WO2022233247A1 (zh) 一种公共信号的发送方法、接收方法及通信装置
US20230412321A1 (en) Data transmission methods and devices
WO2024034122A1 (ja) 端末、基地局、無線通信システム及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863304

Country of ref document: EP

Effective date: 20240307

NENP Non-entry into the national phase

Ref country code: DE