WO2023039766A1 - 一种信号传输方法和装置 - Google Patents

一种信号传输方法和装置 Download PDF

Info

Publication number
WO2023039766A1
WO2023039766A1 PCT/CN2021/118598 CN2021118598W WO2023039766A1 WO 2023039766 A1 WO2023039766 A1 WO 2023039766A1 CN 2021118598 W CN2021118598 W CN 2021118598W WO 2023039766 A1 WO2023039766 A1 WO 2023039766A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation symbol
modulation
signal
sequence
symbols
Prior art date
Application number
PCT/CN2021/118598
Other languages
English (en)
French (fr)
Inventor
陈俊
颜矛
吴毅凌
汪孙节
唐瑜键
王朗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180102324.4A priority Critical patent/CN117941327A/zh
Priority to PCT/CN2021/118598 priority patent/WO2023039766A1/zh
Publication of WO2023039766A1 publication Critical patent/WO2023039766A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a signal transmission method and device.
  • IoT Internet-of-things
  • ASK amplitude shift keying
  • OK on-off keying
  • Terminals can be classified into passive terminals and semi-passive terminals according to whether they are powered by batteries.
  • the passive terminal itself does not have a battery power supply, and needs to rectify the radio frequency signal in the downlink, and use the rectified output DC voltage as a power source for analog and digital circuits.
  • the semi-passive terminal itself is powered by a battery and does not rely on the rectified output of the downlink signal.
  • the wireless local area network wireless local area network, WLAN
  • 802.11ba defines a downlink wake-up working mode.
  • the AP can use multi-carrier on-off keying (MC-OOK) to generate a wake-up signal.
  • MC-OOK multi-carrier on-off keying
  • the OOK wake-up signal waveform envelope ripple generated by the WLAN AP through the MC-OOK modulation method is large, which is not conducive to the demodulation of the STA's wake-up receiver.
  • the wake-up signal waveform has a large frequency-domain occupied bandwidth, low spectral efficiency and large out-of-band spurs.
  • the present application provides a signal transmission method and device, which are used to reduce the envelope ripple of the transmission signal.
  • a signal transmission method may be executed by a base station, or by an apparatus having a function similar to a base station.
  • the base station can acquire the first bit sequence, and map the first bit sequence into the first modulation symbol sequence.
  • the value of each modulation symbol in the first modulation symbol sequence belongs to a first constellation point set, and the first constellation point set includes K modulation symbols.
  • the amplitude of each modulation symbol in the above K modulation symbols is different.
  • K ⁇ 2 is an integer.
  • the base station may perform discrete Fourier transform (discrete fourier transform, DFT) on each modulation symbol in the first modulation symbol sequence to obtain a second modulation symbol sequence, and then weight the second modulation symbol sequence to obtain a third modulation symbol sequence.
  • the base station may perform inverse discrete Fourier transform (inverse fast fourier transform, IFFT) on the third modulation symbol sequence to obtain the first signal.
  • the base station may send a second signal, where the second signal includes the first signal.
  • the envelope ripple in the time domain of the signal generated by the base station is small, which is beneficial for the terminal to demodulate the transmission signal.
  • amplitudes of modulation symbols among the K modulation symbols are different, and phases of modulation symbols among the K modulation symbols are the same. Or, the amplitudes of the modulation symbols in the K modulation symbols are different and the phases of the modulation symbols in the K modulation symbols are different.
  • the base station when the amplitudes of the modulation symbols are different and the phases are the same, the base station can generate an ASK signal, and when the amplitudes of the modulation symbols are different and the phases are different, the base station can generate amplitude and phase-shift keying APSK) signal.
  • the base station may obtain an original bit sequence, and perform line coding on the original bit sequence to obtain an encoded bit sequence.
  • the base station may perform a bit repetition operation on the coded bit sequence to obtain the first bit sequence.
  • the base station can optimize the characteristics of the data bit waveform through line coding, which is beneficial for the terminal to demodulate the downlink signal.
  • the base station can realize the adjustment function of the transmission rate through the bit repetition operation.
  • the second signal includes multiple orthogonal frequency division multiplexing (orthononal frequency division multiplexing, OFDM) symbols.
  • the above-mentioned first signal is one of a plurality of OFDM symbols.
  • Guard interval data is included before each OFDM symbol in the second signal.
  • the guard interval data before the first signal includes one of the following: N data or N zeros from front to back of the first signal; N is a positive integer.
  • guard interval data there may be guard interval data between each first signal, and the guard interval data has little influence on the envelope ripple of the transmission signal.
  • the K modulation symbols are K points in any one of the following constellation diagrams: 16 quadrature amplitude modulation (quadrature amplitude modulation, QAM) constellation diagram, 64QAM constellation diagram, 256QAM constellation diagram , 1024QAM constellation, 4096QAM constellation or APSK constellation.
  • the modulation symbol mapping is performed by using the constellation points in the above constellation diagram, which can be compatible with the modulation mode of the existing cellular system.
  • the weighted coefficients may be one of the following: coefficients of a raised cosine filter, coefficients of a square root raised cosine filter, coefficients of a sine filter, or coefficients of a rectangular filter.
  • K 2.
  • the base station may acquire the second bit sequence, and map the second bit sequence into a fourth modulation symbol sequence.
  • the value of each modulation symbol in the fourth modulation symbol sequence belongs to the second constellation point set, and the second constellation point set includes the third modulation symbol and the fourth modulation symbol.
  • the amplitude of the third modulation symbol is different from the amplitude of the fourth modulation symbol.
  • the ratio of the amplitude of the third modulation symbol to the amplitude of the fourth modulation symbol is different from the ratio of the amplitude of the first modulation symbol to the amplitude of the second modulation symbol.
  • the base station may perform discrete Fourier transform (DFT) on each modulation symbol in the fourth modulation symbol sequence to obtain a fifth modulation symbol sequence, and then weight the fifth modulation symbol sequence to obtain a sixth modulation symbol sequence.
  • the base station may perform inverse discrete Fourier transform, IFFT, on the sixth modulation symbol sequence to obtain the third signal.
  • the base station may send a third signal.
  • the base station can select different constellation points in the constellation diagram to generate transmission signals with different modulation depths, and flexibly allocate between useful signal strength and carrier power, which can meet different requirements for high charging power and high signal power.
  • a communication device Including: processing unit and transceiver unit;
  • a processing unit configured to acquire a first bit sequence, and map the first bit sequence into a first modulation symbol sequence.
  • the value of each modulation symbol in the first modulation symbol sequence belongs to a first constellation point set, and the first constellation point set includes K modulation symbols.
  • the amplitude of each modulation symbol among the K modulation symbols is different. K ⁇ 2, and is an integer.
  • the processing unit is also used to perform discrete Fourier transform (DFT) on each modulation symbol in the first modulation symbol sequence to obtain a second modulation symbol sequence, and weight the second modulation symbol sequence to obtain a third modulation symbol sequence, and then perform the second modulation symbol sequence.
  • the three modulation symbol sequences are subjected to inverse discrete Fourier transform (IFFT) to obtain the first signal.
  • IFFT inverse discrete Fourier transform
  • the transceiver unit is configured to send the second signal, where the second signal includes the first signal.
  • the amplitude of each of the K modulation symbols is different and the phase of each of the K modulation symbols is the same.
  • each of the K modulation symbols has a different amplitude and each of the K modulation symbols has a different phase.
  • the processing unit when the processing unit acquires the first bit sequence, it is specifically used to: acquire the original bit sequence, and perform line coding on the original bit sequence to obtain the encoded bit sequence, and then perform bit encoding on the encoded bit sequence. Repeat the operation to obtain the first bit sequence.
  • the second signal includes a plurality of OFDM symbols
  • the first signal is one of the plurality of OFDM symbols.
  • Guard interval data is included before each OFDM symbol in the second signal.
  • the guard interval data before the first signal includes one of the following: N data or N zeros from front to back of the first signal; N is a positive integer.
  • the K modulation symbols are K points in any of the following constellations: 16 Quadrature Amplitude Modulation QAM constellation, 64QAM constellation, 256QAM constellation, 1024QAM constellation, Constellation diagram of 4096QAM or constellation diagram of amplitude phase shift keying APSK.
  • K 2.
  • the first set of constellation points includes a first modulation symbol and a second modulation symbol; the processing unit is further configured to acquire a second bit sequence, and map the second bit sequence into a fourth modulation symbol sequence.
  • the value of each modulation symbol in the fourth modulation symbol sequence belongs to the second constellation point set, and the second constellation point set includes the third modulation symbol and the fourth modulation symbol.
  • the magnitude of the third modulation symbol and the magnitude of the fourth modulation symbol are different.
  • the ratio of the amplitude of the third modulation symbol to the amplitude of the fourth modulation symbol is different from the ratio of the amplitude of the first modulation symbol to the amplitude of the second modulation symbol.
  • the processing unit is also used to perform discrete Fourier transform (DFT) on each modulation symbol in the fourth modulation symbol sequence to obtain a fifth modulation symbol sequence, and weight the fifth modulation symbol sequence to obtain a sixth modulation symbol sequence, and then to obtain a sixth modulation symbol sequence.
  • DFT discrete Fourier transform
  • IFFT inverse discrete Fourier transform
  • the sequence of six modulation symbols is subjected to inverse discrete Fourier transform (IFFT) to obtain the third signal.
  • IFFT inverse discrete Fourier transform
  • the transceiver unit is also used to send the third signal.
  • a communication device including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions to perform various possible implementations of the above-mentioned aspects method in .
  • the memory may be located within the device or external to the device.
  • the number of the processors is one or more.
  • the present application provides a communication device, including: a processor and an interface circuit, the interface circuit is used to communicate with other devices, and the processor is used to implement the methods in various possible implementation manners of the foregoing aspects.
  • a communication device in a fifth aspect, includes a logic circuit and an input and output interface.
  • the logic circuit is used to map the first bit sequence to a first modulation symbol sequence; the value of each modulation symbol in the first modulation symbol sequence belongs to the first constellation point set; the first constellation point set includes K modulation symbols; the amplitudes of the modulation symbols in the K modulation symbols are different, and the phases of the modulation symbols in the K modulation symbols are the same; K ⁇ 2, K is an integer; DFT is performed on each modulation symbol in the first modulation symbol sequence to obtain the first Two modulation symbol sequences; weighting the second modulation symbol sequence to obtain a third modulation symbol sequence; performing IFFT on the third modulation symbol sequence to obtain a first signal.
  • the input-output interface is used to output the second signal, and the second signal includes the first signal.
  • the present application further provides a chip system, including: a processor, configured to execute the methods in various possible implementation manners of the foregoing aspects.
  • the present application further provides a computer program product, including computer execution instructions, and when the communication device executes the instructions on the computer, the methods in various possible implementation manners of the above-mentioned aspects are executed.
  • the present application also provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the instructions are run on a communication device, among various possible implementations of the above-mentioned aspects Methods.
  • Fig. 1 is a waveform diagram of the On symbol in the related art
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 3 is one of the waveform diagrams of the signal provided by the embodiment of the present application.
  • FIG. 4 is one of the exemplary flowcharts of the signal transmission method provided by the embodiment of the present application.
  • FIG. 5A is a 16QAM constellation diagram provided by the embodiment of the present application.
  • FIG. 5B is a 64QAM constellation diagram provided by the embodiment of the present application.
  • FIG. 5C is a 256QAM constellation diagram provided by the embodiment of the present application.
  • FIG. 5D is a schematic diagram of the first constellation set provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of guard interval data provided by an embodiment of the present application.
  • FIG. 7A is a waveform diagram of a second signal without guard interval data provided by an embodiment of the present application.
  • FIG. 7B is a waveform diagram of a second signal whose guard interval data is CP generated in the embodiment of the present application.
  • 7C is a waveform diagram of a second signal in which the guard interval data generated by the embodiment of the present application is the data of the first N sampling points of the first signal;
  • FIG. 7D is a waveform diagram of a second signal whose guard interval data is N zeros generated in the embodiment of the present application.
  • FIG. 8 is one of the waveform diagrams of the second signal provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a second constellation set provided by an embodiment of the present application.
  • FIG. 10 is a waveform diagram of a fourth signal generated in the embodiment of the present application.
  • FIG. 11 is one of the structural diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 12 is one of the structural diagrams of a communication device provided by an embodiment of the present application.
  • the WLAN standard 802.11ba defines the downlink wake-up working mode.
  • the STA When there is no data transmission between the AP and the STA, the STA is in sleep mode.
  • the AP can generate a wake-up signal in an MC-OOK manner.
  • the STA can encode information bits by waking up a radio (wake up radio, WUR) encoder (encoder), and select the waveform to be sent based on the encoded bits. Specifically, when the coded bit is 1, an on-waveform generator (on-waveform generator, On-WG) is selected to be sent to generate an On symbol. When the encoded bit is 0, select to send off waveform generator (off waveform generator, Off-WG) to generate off symbol.
  • WUR wake up radio
  • the On symbol generated by On-WG is constructed using 13 subcarriers at the center of the 64-point inverse discrete Fourier transform (IDFT), and the sampling rate is 20MHz. Specifically, the 12 subcarriers whose subcarrier index numbers are -6, -5, ..., -1, 1, ... 5, 6 use non-zero inputs, and other subcarriers are set to zero as inputs, and then 64-point IDFT processing is performed. After randomizing the data output by the 64-point IDFT through symbol randomization, use the guard interval (GI) to add the last 16 data to the front of the 64 sampling points to generate 80 sampling points.
  • GI guard interval
  • the On symbol waveform generated using the subcarrier reference sequence ⁇ -1,1,1,1,-1,1,0,-1,-1,-1,1,-1,-1 ⁇ defined by 802.11ba is shown in the figure 1.
  • the time-domain waveform envelope of the On symbol has a large ripple and occupies a large bandwidth.
  • a single OFDM symbol can only transmit one symbol, and the spectral efficiency is low and the out-of-band spurs are large.
  • the On symbol rate and modulation depth are fixed and cannot be adjusted flexibly.
  • traditional ASK or OOK signals are not compatible with OFDM signals, and existing long term evolution (LTE) and new radio (NR) cellular communication systems cannot generate ASK or OOK signals with stable envelopes.
  • FIG. 2 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 2 ), and may also include at least one terminal (such as 120a-120j in FIG. 2 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of radio access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 2 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 2 .
  • Wireless access network equipment can also be called network equipment, which can be base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (transmission reception point, TRP), fifth generation (5th generation, 5G)
  • base station base station
  • evolved base station evolved NodeB, eNodeB
  • transmission reception point transmission reception point
  • TRP transmission reception point
  • 5th generation, 5G The next generation base station (next generation NodeB, gNB) in the mobile communication system, the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • It can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the radio access network device may be a macro base station (such as 110a in Figure 2), a micro base station or an indoor station (such as 110b in Figure 2), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively called a communication device, 110a and 110b in FIG. 2 can be called a communication device with a base station function, and 120a-120j in FIG. 2 can be called a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • a cell with which a terminal has established a wireless connection is called a serving cell of the terminal.
  • the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • signals may include data channels, control channels and reference signals.
  • the transmission of the signal may be uplink transmission, that is, sent from the terminal to the base station; it may also be downlink transmission, that is, sent from the base station to the terminal.
  • transmit is interchangeable with send and/or receive.
  • Line coding is used to eliminate or reduce DC and low frequency components in digital electrical signals, so as to facilitate transmission, reception and monitoring in wired/wireless channels.
  • a modulation symbol sequence may refer to a sequence composed of one or more modulation symbols.
  • Envelope ripple which means the amplitude fluctuations M h and M l of the radio frequency signal envelope at high level or low level, as shown in Fig. 3 .
  • M h represents the magnitude of the upward fluctuation of the amplitude
  • M l represents the magnitude of the downward fluctuation of the amplitude.
  • FIG. 4 it is an exemplary flow chart of a signal transmission method provided by an embodiment of the present application.
  • the base station and the terminal are used as execution bodies to introduce the signal transmission method proposed in the present application.
  • the transmission method proposed in this application may also be executed by a device for a base station or a device for a terminal, such as a chip.
  • the method may include the following operations.
  • S401 The base station acquires a first bit sequence.
  • the first bit sequence may be an original bit sequence.
  • the first bit sequence may be obtained by line coding the original bit sequence and performing a bit repetition operation.
  • the base station may generate a raw bit sequence and line-encode the raw bit sequence.
  • Manchester (manchester) encoding, pulse interval encoding (pulse interval encoding, PIE), etc. may be performed on the original bit sequence to obtain an encoded bit sequence.
  • the base station can perform a bit repetition operation on the coded bit sequence.
  • the number of bit one repetitions may be the same as the number of bit zero repetitions, or the number of bit one repetitions may be different from the number of bit zero repetitions.
  • the number of times the base station repeats bit ones and bit zeros may be predefined.
  • the original bit sequence is "01101010” as an example for description.
  • the base station can perform PIE encoding on the original bit sequence, that is, encode a bit "0” into a bit sequence "10", and encode a bit "1” into a bit sequence "1110".
  • the obtained encoded bit sequence is "101110111010111010111010”.
  • the number of repetitions of bit "0" and bit "1” is predefined as 2, that is to say, "0” in the encoded bit sequence is repeated as "00”, and "1” in the encoded bit sequence will be is repeated as "11". Therefore, after performing the bit repetition operation on the encoded bit sequence, the obtained first bit sequence may be "110011111100111111001100111111001100111111001100.
  • the base station can implement a transmission rate adjustment function according to the bit repetition operation, and can flexibly adjust the signal transmission rate.
  • the base station maps the first bit sequence into a first modulation symbol sequence.
  • the mapping may be performed according to points included in the first constellation point set. That is to say, the value of each modulation symbol in the first modulation symbol sequence belongs to the above-mentioned first constellation point set.
  • the first constellation point set may include K modulation symbols, and amplitudes of the modulation symbols in the K modulation symbols are different. Wherein, the above K ⁇ 2 and is an integer.
  • the above-mentioned first constellation point set may be K points in a certain constellation diagram.
  • it may be the ASK constellation diagram, the 16QAM constellation diagram, the 64QAM constellation diagram, the 256QAM constellation diagram, the 1024QAM constellation diagram, the 4096QAM constellation diagram or the K points in the APSK constellation diagram.
  • a constellation diagram of 16QAM, a constellation diagram of 64QAM, and a constellation diagram of 256QAM are shown in FIGS. 5A to 5C .
  • the phases of the modulation symbols in the aforementioned K modulation symbols are the same.
  • FIG. 5A it is a schematic diagram of 16QAM constellation points provided by the embodiment of the present application.
  • FIG. 5B it is a schematic diagram of 64QAM constellation points provided by the embodiment of the present application.
  • FIG. 5C it is a schematic diagram of 256QAM constellation points provided by the embodiment of the present application.
  • the abscissa is the real part
  • the ordinate is the imaginary part.
  • the first set of constellation points may include two points within an ellipse in the first quadrant, the second quadrant, the third quadrant, or the fourth quadrant shown in FIG. 5A, or the first set of constellation points may include the Two to four points in the ellipse in the first quadrant, the second quadrant, the third quadrant or the fourth quadrant, or the first constellation point set may include the first quadrant, the second quadrant, the fourth quadrant shown in FIG. 5C Two to eight points within an ellipse in three or four quadrants.
  • the base station can generate an ASK signal.
  • the first set of constellation points may be K points in any constellation diagram shown in FIG. 5A to FIG. 5C . Any two points in the K points cannot be constellation points in the ellipse in the same quadrant.
  • the base station can generate an APSK signal.
  • the base station may map the first bit sequence to the first modulation symbol sequence by using the first constellation point set in any one of the foregoing constellation diagrams.
  • the modulation symbols included in the first constellation point set have different amplitudes and the same phases. It is assumed that the first constellation point set includes the point with the largest magnitude and the point with the smallest magnitude in the ellipse in the first quadrant of the 256QAM constellation diagram. Wherein, bit "0" may be mapped to the aforementioned point with the smallest amplitude, and bit "1" may be mapped to the aforementioned point with the largest amplitude.
  • the base station may first map 1 bit to 8 bits according to the first constellation point set.
  • the bit “0” is mapped to "00001111”
  • the bit “1” is mapped to "00111111”.
  • the base station may map the above bit sequence into a first modulation symbol sequence through the following formula (1).
  • d(i) represents a modulation symbol
  • j is a complex number unit
  • b(8i) is the first bit in the i-th 8-bit in the first bit sequence
  • b(8i+1) is the first
  • the second bit in the i-th octet in the bit sequence, b(8i+2) is the third bit in the i-th octet in the first bit sequence
  • b(8i+3) is the first bit sequence
  • b(8i+4) is the fifth bit in the i-th octet in the first bit sequence
  • b(8i+5) is the i-th octet in the first bit sequence
  • the sixth bit in the i 8-bit, b(8i+6) is the seventh bit in the i-th 8-bit in the first bit sequence
  • b(8i+7) is the i-th in the first bit sequence Eighth bit of 8 bits.
  • the base station maps the first bit sequence through the above-mentioned first constellation point set, "00001111” is mapped into a complex number "00111111” is mapped to a complex number
  • the base station can map the first bit sequence "110011111100111111001100111111001100111111001100” to the first modulation symbol sequence through the two points in the above 256QAM constellation diagram
  • the first constellation point set includes the two constellation points shown in FIG. 5D , constellation point 1 and constellation point 2 .
  • bit “0" may be mapped to constellation point 1
  • bit "1" may be mapped to constellation point 2.
  • the base station may first map 1 bit to 8 bits according to the first constellation point set.
  • the bit “0” is mapped to "00110110”
  • the bit “1” is mapped to "00111111”.
  • the base station may map the above bit sequence into a first modulation symbol sequence through the above formula (1).
  • "00110110” is mapped to a complex number "00111111” is mapped to
  • the base station can map the first bit sequence to the first modulation symbol sequence through the constellation point 1 and the constellation point 2 in the constellation diagram shown in FIG. 5D
  • S403 The base station performs DFT on each modulation symbol in the first modulation symbol sequence to obtain a second modulation symbol sequence.
  • the number of DFT points may be 12 points, 24 points, or 36 points, etc., which are not specifically limited in this application.
  • the base station may determine the number of DFT points according to available frequency domain resources and subcarrier spacing. Specifically, taking a 4G or 5G mobile communication system as an example, if the subcarrier spacing is 15kHz and the available frequency domain resource bandwidth is 180kHz, then 12 subcarriers can be provided for generating ASK signals, and the number of DFT points at this time is 12 points, equal to the number of available subcarriers.
  • S404 The base station performs frequency-domain weighting on the second modulation symbol sequence to obtain a third modulation symbol sequence.
  • the base station may perform frequency-domain weighting on the second modulation symbol sequence.
  • the frequency-domain weighted coefficients may be raised cosine filter coefficients, square root cosine filter coefficients, sinc filter coefficients, rectangular filter coefficients, etc., which are not specifically limited in this application.
  • frequency-domain weighting can be understood as multiplying each modulation symbol in the second modulation symbol by the above-mentioned frequency-domain weighting coefficient.
  • the base station performs 12-point DFT on the first modulation symbol sequence, that is, performs DFT on every group of 12 modulation symbols, to obtain the second modulation symbol sequence.
  • the above-mentioned first modulation symbol sequence can be divided into 4 groups.
  • the frequency domain weighting coefficients of each group of modulation symbols are the same, and the frequency domain weighting coefficients of each modulation symbol in a group are different.
  • the frequency-domain weighting coefficients of each modulation symbol in a group are "0.49987801, 0.64357300, 0.77451606, 0.88324531, 0.95891583, 0.99648732, 1, 0.99648732, 0.95891583, 0.88324531, 0.7745.1603".
  • the base station can respectively multiply the 4 groups of modulation symbols by the corresponding frequency domain weighting coefficients to obtain the third modulation symbols.
  • S405 The base station performs IFFT on the third modulation symbol sequence to obtain the first signal.
  • the base station when the base station performs an IFFT operation on the third modulation symbol sequence, the number of IFFT points may be different from the number of DFT points. After obtaining the third modulation symbols, the base station may map the third modulation symbols to subcarriers respectively.
  • the service data in the 4G or 5G communication system can also be mapped to unused subcarriers, so that ASK or OOK signals and OFDM signals can be generated simultaneously.
  • the base station sends the second signal, and the corresponding terminal receives the second signal.
  • the base station may generate multiple OFDM symbols through S401-S405, that is, generate multiple first signals.
  • the second signal sent by the base station may include multiple OFDM symbols, and the first signal is one of the multiple OFDM symbols.
  • the envelope ripple of the ASK time domain signal generated by the base station is small, the occupied bandwidth is small, and the spectrum efficiency is high.
  • the technical solutions provided by the embodiments of the present application can be compatible with cellular physical layer parameters, and can be applied to LTE and NR cellular systems.
  • guard interval data may be included before each OFDM symbol.
  • the guard interval data before the first signal may be N sampling point data from back to front in the first signal, that is, cyclic prefix (cyclic prefix, CP) . If CP is used as the guard interval data, it can be compatible with 4G or 5G communication systems.
  • the guard interval data may also be N data from front to back in the first signal, that is, data of the first N sampling points of the first signal.
  • the guard interval data may also be N zeros.
  • N is a positive integer. N here is determined or predefined according to empirical values, and is not specifically limited in this application. If any of the guard interval data shown in (b) or (c) in FIG. 6 is used, envelope ripple can be reduced.
  • Figure 7A when the original bit sequence is "01101010", and the point with the largest amplitude and the point with the smallest amplitude in the ellipse in the first quadrant of the 256QAM constellation diagram in the first constellation point set, Figure 7A can be generated ⁇ the second signal shown in Fig. 7D.
  • FIG. 7A it is a schematic diagram of a second signal without guard interval data generated in the embodiment of the present application.
  • the input original bit sequence contains 4 OFDM symbols, the subcarrier spacing is 15kHz, and the length of a single OFDM symbol is 66.67 ⁇ s.
  • the envelope ripple in the time domain of the second signal generated by the embodiment of the present application is smaller than that of the current OOK signal (the OOK signal shown in FIG. 1 ), and a single signal in the second signal OFDM symbols contain multi-bit data information and are more spectrally efficient.
  • the guard interval data generated for this embodiment of the present application is the second signal of the CP.
  • This method is compatible with physical layer parameters of LTE and NR cellular systems.
  • the guard interval data generated for the embodiment of the present application is the second signal of the data of the first N sampling points of the first signal. It can be seen from FIG. 7C that the envelope ripple of the second signal is smaller than the envelope ripple of the second signal as shown in FIG. 7B , which is more conducive to demodulation of the ASK signal at the terminal side.
  • the guard interval data generated for the embodiment of the present application is a second signal of N zeros. It can be seen from FIG. 7D that the envelope ripple of the second signal is larger than the envelope ripple shown in FIG. 8 , but not much different from the envelope ripple of the second signal shown in FIG. 7B . Moreover, the amplitude change of the second signal shown in FIG. 7D is larger than the amplitude change of the second signal shown in FIG. 7C , but not much different from the amplitude change of the second signal shown in FIG. 7B .
  • the second signal shown in FIG. 8 may be generated. It can be seen from FIG. 8 that the envelope ripple in the time domain of the second signal generated by the embodiment of the present application is smaller than that of the current OOK signal (the OOK signal shown in FIG. 1 ), and the single OFDM in the second signal Symbols contain multiple bits of data information and are more spectrally efficient.
  • the base station may generate multiple second signals with different modulation depths. Specifically, when the base station maps the first bit sequence to the first modulation symbol sequence, it may determine a different set of first constellation points according to the modulation depth for mapping. Assuming that there are two modulation symbols in the first set of constellation points, the aforementioned two modulation symbols may be any two points in any group of constellation points in any constellation diagram shown in FIGS. 5A-5C . Table 1 below shows the modulation depths that can be achieved by the 16QAM modulation scheme, the 64QAM modulation scheme and the 256QAM modulation scheme.
  • the 256QAM constellation diagram in FIG. 5C is taken as an example for illustration. If you select the first constellation point from right to left and the last point from right to left among the constellation points in the first quadrant as the first constellation point set, then the modulation depth of the generated first signal is that the modulation method can achieve the maximum modulation depth. If the first point from right to left and the second point from right to left in the constellation points of the first quadrant are selected as the first set of constellation points, then the modulation depth of the generated first signal is that the modulation method can achieve The minimum modulation depth.
  • the base station can generate second signals with different modulation depths according to different requirements and the modulation depths that can be realized by the foregoing modulation modes.
  • a third signal is generated.
  • the base station maps the second bit sequence to the fourth modulation symbol sequence, it can select the second set of constellation points.
  • the second constellation point set may include a third modulation symbol and a fourth modulation symbol.
  • the magnitude of the third modulation symbol and the magnitude of the fourth modulation symbol are different.
  • the phase of the third modulation symbol and the phase of the fourth modulation symbol may be the same or different.
  • the ratio of the amplitude of the third modulation symbol to the amplitude of the fourth modulation symbol is the ratio of the amplitude of the first modulation symbol in the first set of constellation points to the amplitude of the second modulation symbol in the first set of constellation points is different.
  • the base station may perform DFT, weighting and IFFT on each symbol in the fourth modulation symbol sequence to obtain the third signal.
  • the modulation depth of the obtained third signal is different from that of the second signal.
  • the base station may also obtain the fourth signal according to the second constellation point set, the fourth signal may include multiple third signals, and add guard interval data before each third signal.
  • the guard interval data before the third signal refer to the guard interval data before the first signal, which will not be repeated here.
  • the obtained second bit sequence may be "110011111100111111001100111111001100111111001100”.
  • the second constellation point set may include constellation point 1 and constellation point 2 in the constellation diagram shown in FIG. 9 .
  • the base station may first map 1 bit to 8 bits according to the second constellation point set.
  • bit “0” is mapped to "00111100”
  • bit “1” is mapped to "00111111”.
  • ⁇ “110011111100111001100111001100111001100” ⁇ “00111111001111110011110000111100001111110011111100111111001111110011111100111111001111000011110000111111001111110011111100111111001111001110011110000111100 0011111100111111001111001111000011110000111111001111110011111100111111001111001111000011110000111111001111110011111100111100111100001111000011111100111111001111110011110011110011110000111100001111110011111100111111001111110011111100111111001111001111000011110000111111001111001111110011111100111100111100111100111100001111000011111100111100111100111100111100111100111100111100001111000011111100111100111100111100111100111100001111
  • the base station may map the above bit sequence into a fourth modulation symbol sequence through the above formula (1).
  • “00111100” is mapped to a complex number "00111111” is mapped to Therefore, the base station can map the second bit sequence "110011111100111111001100111111001100111111001100” to the fourth modulation symbol sequence through constellation point 1 and constellation point 2 shown in FIG.
  • the base station may perform DFT, weighting, and IFFT on each modulation symbol in the fourth modulation symbol sequence to obtain the third signal.
  • FIG. 10 it is a schematic diagram of a fourth signal generated in the embodiment of the present application, and the added guard interval data is CP.
  • the amplitude range of each third signal in the fourth signal in Figure 10 is between 0.82 and 1, and the amplitude changes little, but the average value is relatively large . Therefore, the useful signal power of the obtained ASK modulated signal is small, and the carrier power is large, which meets the requirement of the passive terminal for high charging power.
  • the amplitude range of each first signal is between 0 and 1, and the amplitude varies greatly but the average value is small.
  • the useful signal power of the obtained ASK modulated signal is large, and the carrier power is small, which meets the requirement of the semi-passive terminal for high useful signal power.
  • the base station can flexibly change the modulation depth of the transmission signal, and flexibly allocate between useful signal power and carrier power, which can meet the different requirements of passive terminals for high charging power and semi-passive terminals for high signal power.
  • the base station and the terminal include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • 11 to 12 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the base station in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the base station 110a or 110b shown in FIG. 1 , or may be a module (such as a chip) applied to the base station.
  • a communication device 1100 includes a processing unit 1110 and a transceiver unit 1120 .
  • the communication device 1100 is configured to implement the functions of the base station in the method embodiment shown in FIG. 4 above.
  • the processing unit 1110 is used to obtain the first bit sequence, map the first bit sequence into a first modulation symbol sequence, and perform the first modulation symbol sequence Performing DFT on each modulation symbol in the sequence to obtain a second modulation symbol sequence, performing weighting on the second modulation symbol sequence to obtain a third modulation symbol sequence, and performing IFFT on the third modulation symbol sequence to obtain a first signal.
  • the transceiver unit 1120 is used for sending the second signal, and the second signal includes the first signal.
  • processing unit 1110 and the transceiver unit 1120 can be directly obtained by referring to related descriptions in the method embodiments shown in FIG. 4 to FIG. 10 .
  • a communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 may be a transceiver or an input/output interface.
  • the communication device 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or storing input data required by the processor 1210 to execute the instructions or storing data generated by the processor 1210 after executing the instructions.
  • the processor 1210 is used to implement the functions of the above-mentioned processing unit 1110
  • the interface circuit 1220 is used to implement the functions of the above-mentioned transceiver unit 1120 .
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent to the base station by the terminal; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), the The information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or a DU or other modules, and the DU here may be a DU under an open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种信号传输方法和装置,用来减少传输信号的包络纹波。该方法中,基站获取第一比特序列并映射为第一调制符号序列,第一调制符号序列中各调制符号的取值属于第一星座点集合,第一星座点集合包括K个调制符号。其中,K个调制符号中各调制符号的幅度不同。基站对第一调制符号序列中各调制符号依次进行DFT、加权和IFFT,得到第一信号。基于上述方案,基站生成的信号时域的包络纹波小,有利于终端传输信号进行解调。此外,生成的单个OFDM符号可以传输多比特数据,信号占用带宽小,频谱效率高。

Description

一种信号传输方法和装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号传输方法和装置。
背景技术
物联网(internet-of-things,IoT)技术的快速发展使得万物互联成为现实,但物联网终端的电池寿命问题极大增加了终端的维护难度和维护成本,成为制约物联网发展的主要瓶颈。基于无线功率传输、包络检波解调和反向散射调制技术的无源反向散射(backscatter)通信有望解决终端的寿命和维护问题,使得下一代终端超低成本、高密度、免维护的无源物联网(passive IoT)成为可能。在无源物联网系统中,下行信号一般采用幅移键控(amplitude shift keying,ASK)或开关键控(on-off keying,OOK)调制方式,使得终端可以极低功耗完成解调。终端根据自身是否有电池供电,可以分为无源终端和半无源终端。无源终端自身没有电池供电,需要对下行链路中的射频信号进行整流,并将整流输出的直流电压作为电源,供模拟、数字电路使用。半无源终端自身有电池供电,不依赖下行信号的整流输出。
除反向散射通信系统外,还存在一种带有唤醒机制的系统。无线局域网(wireless local area network,WLAN)标准802.11ba定义了下行唤醒工作模式。当接入点(access point,AP)和站点(station,STA)之间没有数据传输时,STA处于睡眠模式。AP可以采用多载波开关键控(multi-carrier on-off keying,MC-OOK)方式生成唤醒信号。
然而,现有蜂窝系统不支持ASK信号生成。WLAN AP通过MC-OOK调制方式生成的OOK唤醒信号波形包络纹波大,不利于STA的唤醒接收机解调。不仅如此,该唤醒信号波形的频域占用带宽大,频谱效率低且带外杂散大。
发明内容
本申请提供一种信号传输方法和装置,用来减少传输信号的包络纹波。
第一方面,提供一种信号传输方法。该方法可以由基站执行,或者类似基站功能的装置执行。该方法中,基站可以获取第一比特序列,并将第一比特序列映射为第一调制符号序列。其中,第一调制符号序列中各调制符号的取值属于第一星座点集合,第一星座点集合包括K个调制符号。上述K个调制符号中各调制符号的幅度不同。其中,K≥2,且是整数。基站可以对第一调制符号序列中各调制符号做离散傅里叶变换(discrete fourier transform,DFT),得到第二调制符号序列,再对第二调制符号序列进行加权,得到第三调制符号序列。基站可以对第三调制符号序列进行离散傅里叶反变换(inverse fast fourier transform,IFFT),得到第一信号。基站可以发送第二信号,第二信号包括第一信号。
基于上述方案,基站生成的信号时域的包络纹波小,有利于终端对传输信号进行解调。
在一种可能的实现方式中,K个调制符号中各调制符号的幅度不同且K个调制符号中各调制符号的相位相同。或者,K个调制符号中各调制符号的幅度不同且K个调制符号中各调制符号的相位不同。
基于上述方案,在各个调制符号的幅度不同且相位相同时,基站可以生成ASK信号, 在各个调制符号的幅度不同且相位不同时,基站可以生成幅度相移键控(amplitude and phase-shift keying,APSK)信号。
在一种可能的实现方式中,基站可以获取原始比特序列,并对原始比特序列进行线路编码,得到编码后的比特序列。基站可以对编码后的比特序列进行比特重复操作,得到第一比特序列。基站通过线路编码可以优化数据比特波形的特性,有利于终端解调下行信号。基站通过比特重复操作可以实现传输速率的调节功能。
在一种可能的实现方式中,第二信号包括多个正交频分复用(orthononal frequency division multiplexing,OFDM)符号。上述第一信号是多个OFDM符号中的一个。第二信号中每个OFDM符号之前包含保护间隔数据。其中,第一信号之前的保护间隔数据包括以下中的一种:第一信号的从前到后的N个数据或N个零;N是正整数。
基于上述实现方式,每个第一信号之间可以具有保护间隔数据,且保护间隔数据对传输信号的包络纹波影响较小。
在一种可能的实现方式中,K个调制符号是以下星座图中任一个星座图中的K个点:16正交幅度调制(quadrature amplitude modulation,QAM)的星座图、64QAM的星座图、256QAM的星座图、1024QAM的星座图、4096QAM的星座图或APSK的星座图。采用上述星座图中星座点进行调制符号映射,可以兼容现有蜂窝系统的调制方式。
在一种可能的实现方式中,加权的系数可以是以下中的一种:升余弦滤波器的系数、平方根升余弦滤波器的系数、正弦滤波器的系数或矩形滤波器的系数。通过对DFT后的数据进行加权,可以减小ASK信号的包络纹波。
在一种可能的实现方式中,K=2。
在一种可能的实现方式中,基站可以获取第二比特序列,并将第二比特序列映射为第四调制符号序列。其中,第四调制符号序列中各调制符号的取值属于第二星座点集合,第二星座点集合包括第三调制符号和第四调制符号。其中,第三调制符号的幅度和第四调制符号的幅度不同。第三调制符号的幅度和第四调制符号的幅度的比值,与第一调制符号的幅度和第二调制符号的幅度的比值不同。基站可以对第四调制符号序列中各调制符号做离散傅里叶变换DFT,得到第五调制符号序列,再对第五调制符号序列进行加权,得到第六调制符号序列。基站可以对第六调制符号序列进行离散傅里叶反变换IFFT,得到第三信号。基站可以发送第三信号。基站可选择星座图中的不同星座点,生成不同调制深度的传输信号,在有用信号强度和载波功率之间灵活分配,可满足对高充电功率高信号功率的不同需求。
第二方面,提供一种通信装置。包括:处理单元和收发单元;
处理单元,用于获取第一比特序列,将第一比特序列映射为第一调制符号序列。其中,第一调制符号序列中各调制符号的取值属于第一星座点集合,第一星座点集合包括K个调制符号。K个调制符号中各调制符号的幅度不同。K≥2,且是整数。处理单元还用于对第一调制符号序列中各调制符号做离散傅里叶变换DFT,得到第二调制符号序列,并对第二调制符号序列进行加权,得到第三调制符号序列,再对第三调制符号序列进行离散傅里叶反变换IFFT,得到第一信号。收发单元,用于发送第二信号,第二信号包括第一信号。
在一种设计中,K个调制符号中各调制符号的幅度不同且K个调制符号中各调制符号的相位相同。或者,K个调制符号中各调制符号的幅度不同且K个调制符号中各调制符号 的相位不同。
在一种设计中,处理单元在获取第一比特序列时,具体用于:获取原始比特序列,并对原始比特序列进行线路编码,得到编码后的比特序列,再对编码后的比特序列进行比特重复操作,得到第一比特序列。
在一种设计中,第二信号包括多个正交频分复用OFDM符号,上述第一信号是多个OFDM符号中的一个。第二信号中每个OFDM符号之前包含保护间隔数据。其中,第一信号之前的保护间隔数据包括以下中的一种:第一信号的从前到后的N个数据或N个零;N是正整数。
在一种设计中,K个调制符号是以下星座图中任一个星座图中的K个点:16正交幅度调制QAM的星座图、64QAM的星座图、256QAM的星座图、1024QAM的星座图、4096QAM的星座图或幅度相移键控APSK的星座图。
在一种设计中,K=2。
在一种设计中,第一星座点集合包括第一调制符号和第二调制符号;处理单元,还用于获取第二比特序列,将第二比特序列映射为第四调制符号序列。其中,第四调制符号序列中各调制符号的取值属于第二星座点集合,第二星座点集合包括第三调制符号和第四调制符号。第三调制符号的幅度和第四调制符号的幅度不同。以及,第三调制符号的幅度和第四调制符号的幅度的比值,与第一调制符号的幅度和第二调制符号的幅度的比值不同。处理单元还用于对第四调制符号序列中各调制符号做离散傅里叶变换DFT,得到第五调制符号序列,并对第五调制符号序列进行加权,得到第六调制符号序列,再对第六调制符号序列进行离散傅里叶反变换IFFT,得到第三信号。收发单元,还用于发送第三信号。
第三方面,提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述各个方面的各种可能的实现方式中的方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第四方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于实现上述各个方面的各种可能的实现方式中的方法。
第五方面,提供了一种通信装置。该装置包括逻辑电路和输入输出接口。
在一个示例中,逻辑电路用于将第一比特序列映射为第一调制符号序列;第一调制符号序列中各调制符号的取值属于第一星座点集合;第一星座点集合包括K个调制符号;K个调制符号中各调制符号的幅度不同,且K个调制符号中各调制符号的相位相同;K≥2,K是整数;对第一调制符号序列中各调制符号做DFT,得到第二调制符号序列;对第二调制符号序列进行加权,得到第三调制符号序列;对第三调制符号序列进行IFFT,得到第一信号。输入输出接口用于输出第二信号,第二信号包括第一信号。对方案更详细的描述可以参考上述第一方面的相关描述。
第六方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述各个方面的各种可能的实现方式中的方法。
第七方面,本申请还提供一种计算程序产品,包括计算机执行指令,当通信装置执行指令在计算机上运行时,使得上述各个方面的各种可能的实现方式中的方法被执行。
第八方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计 算机程序或指令,当指令在通信装置上运行时,实现上述各个方面的各种可能的实现方式中的方法。
附图说明
图1为相关技术中On符号的波形图;
图2为本申请实施例提供的通信系统示意图;
图3为本申请实施例提供的信号的波形图之一;
图4为本申请实施例提供的信号传输方法的示例性流程图之一;
图5A为本申请实施例提供的16QAM星座图;
图5B为本申请实施例提供的64QAM星座图;
图5C为本申请实施例提供的256QAM星座图;
图5D为本申请实施例提供的第一星座集合的示意图;
图6为本申请实施例提供的保护间隔数据的示意图;
图7A为本申请实施例提供的无保护间隔数据的第二信号的波形图;
图7B为本申请实施例生成的保护间隔数据为CP的第二信号的波形图;
图7C为本申请实施例生成的保护间隔数据为第一信号的前N个采样点的数据的第二信号的波形图;
图7D为本申请实施例生成的保护间隔数据为N个零的第二信号的波形图;
图8为本申请实施例提供的第二信号的波形图之一;
图9为本申请实施例提供的第二星座集合的示意图;
图10为本申请实施例生成的第四信号的波形图;
图11为本申请实施例提供的通信装置的结构图之一;
图12为本申请实施例提供的通信设备的结构图之一。
具体实施方式
为便于理解本申请实施例提供的技术方案,以下通过附图对本申请实施例提供的技术方案进行解释和说明。
WLAN标准802.11ba定义了下行唤醒工作模式。当AP和STA之间没有数据传输时,STA处于睡眠模式。AP可以采用MC-OOK方式生成唤醒信号。STA可以通过唤醒无线电(wake up radio,WUR)编码器(encoder)将信息比特进行编码,并基于编码后比特选择需要发送的波形。具体的,当编码后比特为1时,选择发送导通波形发生器(on waveform generator,On-WG)生成On符号。当编码后比特为0时,选择发送关闭波形发生器(off waveform generator,Off-WG)生成off符号。
On-WG生成的On符号使用64点离散傅里叶反变换(inverse discrete fourier transform,IDFT)中心的13个子载波构造,采样率为20MHz。具体的,子载波索引号为-6,-5,…,-1,1,…5,6的12个子载波使用非零输入,其他子载波置零作为输入,然后进行64点IDFT处理。通过符号随机化对64点IDFT输出的数据进行随机化操作后,使用插入保护间隔(guard interval,GI)将最后的16个数据添加到64个采样点的前面,生成80个采样点。Off符号为Off-WG生成的全0数据。
使用802.11ba定义的子载波参考序列{-1,1,1,1,-1,1,0,-1,-1,-1,1,-1,-1}生成的On符号波形如图1所示。该On符号时域波形包络的纹波大,占用带宽大,单个OFDM符号仅能传输一个符号,频谱效率低且带外杂散大。此外,On符号速率和调制深度固定,不能灵活调整。而传统ASK或OOK信号与OFDM信号不兼容,且现有长期演进(long term evolution,LTE)和新空口(new radio,NR)蜂窝通信系统不能生成具有稳定包络的ASK或OOK信号。
图2是本申请的实施例应用的通信系统1000的架构示意图。如图2所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图2中的110a和110b),还可以包括至少一个终端(如图2中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图2只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。
无线接入网设备又可以称为网络设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图2中的110a),也可以是微基站或室内站(如图2中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图2中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图2中的110a和110b可以称为具有基站功能的通信装置,图2中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
在本申请中,信号可以包括数据信道、控制信道和参考信号。信号的传输可以是上行传输,即终端发给基站的;也可以是下行传输,即基站发给终端的。当传输作为动词的时候,传输可以与发送和/或接收互换。
为了便于理解本申请实施例涉及的技术方案,以下对本申请实施例涉及的技术术语进行解释和说明。
1)线路编码,作用是消除或减少数字电信号中的直流和低频分量,以便于在有线/无线信道中传输、接收及监测。
2)调制符号序列,可以是指由一个或多个调制符号构成的序列。
3)调制深度,定义为D=(A-B)/A,其中A表示信号的包络的最大值,B表示信号的包络的最小值。
4)包络纹波,表示射频信号包络在高电平或低电平时的幅度波动M h和M l,如图3所示。其中,M h表示幅度向上波动的大小,M l表示幅度向下波动的大小。
参阅图4,为本申请实施例提供的信号传输方法的示例性流程图。本申请实施例中将以基站以及终端为执行主体对本申请提出的信号传输方法进行介绍。可以理解,本申请提出的传输方法也可以由用于基站的装置或用于终端的装置,例如芯片执行。该方法可以包括以下操作。
S401:基站获取第一比特序列。
在一个示例中,第一比特序列可以是原始比特序列。
另一个示例中,第一比特序列可以是对原始比特序列进行线路编码以及进行比特重复操作得到的。例如,基站可以生成原始比特序列,并对该原始比特序列进行线路编码。例 如,可以对原始比特序列进行曼彻斯特(manchester)编码、脉冲间隔编码(pulse interval encoding,PIE)等,得到编码后的比特序列。
基站可以对编码后的比特序列进行比特重复操作。其中,在对编码后的比特序列进行比特重复操作时,比特一重复的次数可以与比特零重复的次数相同,或者比特一重复的次数可以与比特零重复的次数不同。基站对比特一和比特零的重复次数可以是预定义的。
以下,以原始比特序列为“01101010”为例进行说明。基站可以对原始比特序列做PIE编码,即将比特“0”编码为比特序列“10”,将比特“1”编码为比特序列“1110”。经过上述PIE编码后,得到的编码后的比特序列为“101110111010111010111010”。假设对比特“0”和比特“1”的重复次数预定义为2,也就是说编码后的比特序列中的“0”被重复为“00”,编码后的比特序列中的“1”会被重复为“11”。因此,上述编码后的比特序列进行比特重复操作后,得到的第一比特序列可以是“110011111100111111001100111111001100111111001100”。
基于上述比特重复操作,基站可以根据比特重复操作实现传输速率的调整功能,可以灵活调整信号的传输速率。
S402:基站将第一比特序列映射为第一调制符号序列。
基站将第一比特序列映射为第一调制符号序列时,可以根据第一星座点集合中包含的点进行映射。也就是说,第一调制符号序列中各调制符号的取值属于上述第一星座点集合。该第一星座点集合中可以包括K个调制符号,这K个调制符号中各调制符号的幅度不同。其中,上述K≥2,且是整数。
本申请实施例中,上述第一星座点集合可以是某一个星座图中的K个点。例如,可以是ASK的星座图、16QAM的星座图、64QAM的星座图、256QAM的星座图、1024QAM的星座图、4096QAM的星座图或APSK的星座图中的K个点。以下,通过图5A~图5C示出16QAM的星座图、64QAM的星座图和256QAM的星座图。
在一个示例中,上述K个调制符号中各调制符号的相位相同。参阅图5A,为本申请实施例提供的16QAM星座点的示意图。参阅图5B,为本申请实施例提供的64QAM星座点的示意图。参阅图5C,为本申请实施例提供的256QAM星座点的示意图。在图5A~图5C示出的任一星座图中,横坐标为实部,纵坐标为虚部。图5A~图5C示出的任一星座图中,任一象限中椭圆形内的星座点的相位是相同的。第一星座点集合可以包括图5A示出的第一象限、第二象限、第三象限或第四象限中的椭圆形内的两个点,或者第一星座点集合可以包括图5B示出的第一象限、第二象限、第三象限或第四象限中的椭圆形内的两个至四个点,或者第一星座点集合可以包括图5C示出的第一象限、第二象限、第三象限或第四象限中的椭圆形内的两个至八个点。在第一星座点集合中的各个星座点的幅度不同且相位相同时,基站可以生成ASK信号。
另一个示例中,上述K个调制符号中各调制符号的相位不同。第一星座点集合可以是图5A~图5C示出的任一星座图中的K个点。这K个点中任意两个点不能是同一象限内椭圆形内的星座点。在第一星座点集合中的各个星座点的幅度不同且相位不同时,基站可以生成APSK信号。
基站可以通过上述任意一个星座图中的第一星座点集合将第一比特序列映射为第一调制符号序列。
以下,以第一星座点集合包括的各个调制符号的幅度不同且相位相同为例进行说明。 假设第一星座点集合包括256QAM的星座图中的第一象限中椭圆形内的幅度最大的点以及幅度最小的点。其中,比特“0”可以映射为前述幅度最小的点,比特“1”可以映射为前述幅度最大的点。
根据256QAM的星座图,基站可以根据第一星座点集合先将1比特映射为8比特。其中,将比特“0”映射为“00001111”,比特“1”映射为“00111111”。具体的,上述第一以比特序列“110011111100111111001100111111001100111111001100”通过第一星座点集合可以被映射为“001111110011111100001111000011110011111100111111001111110011111100111111001111110000111100001111001111110011111100111111001111110011111100111111000011110000111100111111001111110000111100001111001111110011111100111111001111110011111100111111000011110000111100111111001111110000111100001111001111110011111100111111001111110011111100111111000011110000111100111111001111110000111100001111”。
在将1比特映射为8比特之后,基站可以通过以下公式(1)将上述比特序列映射为第一调制符号序列。
Figure PCTCN2021118598-appb-000001
上述公式(1)中d(i)表示调制符号,j为复数单位,b(8i)是第一比特序列中第i个8比特中的第一个比特,b(8i+1)是第一比特序列中第i个8比特中的第二个比特,b(8i+2)是第一比特序列中第i个8比特中的第三个比特,b(8i+3)是第一比特序列中第i个8比特中的第四个比特,b(8i+4)是第一比特序列中第i个8比特中的第五个比特,b(8i+5)是第一比特序列中第i个8比特中的第六个比特,b(8i+6)是第一比特序列中第i个8比特中的第七个比特,b(8i+7)是第一比特序列中第i个8比特中的第八个比特。
因此,基站通过上述第一星座点集合对第一比特序列进行映射后,“00001111”被映射成复数
Figure PCTCN2021118598-appb-000002
“00111111”被映射成复数
Figure PCTCN2021118598-appb-000003
基站通过上述256QAM星座图中的两个点可以将第一比特序列“110011111100111111001100111111001100111111001100”映射为第一调制符号序列
Figure PCTCN2021118598-appb-000004
以下,以第一星座点集合包括的各个调制符号的幅度不同且相位不同为例进行说明。参阅图5D,假设第一星座点集合包括图5D示出的两个星座点,星座点1和星座点2。其中,比特“0”可以映射为星座点1,比特“1”可以映射为星座点2。
根据图5D示出的星座图,基站可以根据第一星座点集合先将1比特映射为8比特。其中,将比特“0”映射为“00110110”,比特“1”映射为“00111111”。具体的,上述第一比特序列“110011111100111111001100111111001100111111001100”通过第一星座点集合可以被映射为“0011111100111111001101100011011000111111001111110011111100111111001111110011111100110110001101100011111100111111001111110011111100111111001111110011011000110110001111110011111100110110001101100011111100111111001111110011111100111111001111110011011000110110001111110011111100110110001111110011111100111111001111110011111100111111001101100011011000111111001111110011011000110110”。
在将1比特映射为8比特后,基站可以通过上述公式(1)将上述比特序列映射为第一调制符号序列。根据上述公式(1),“00110110”被映射成复数
Figure PCTCN2021118598-appb-000005
“00111111”被映射成
Figure PCTCN2021118598-appb-000006
基站通过图5D示出的星座图中的星座点1和星座点2可以将第一比特序列映射为第一调制符号序列
Figure PCTCN2021118598-appb-000007
Figure PCTCN2021118598-appb-000008
S403:基站对第一调制符号序列中各调制符号做DFT,得到第二调制符号序列。
其中,DFT的点数可以是12点、24点或36点等,本申请不做具体限定。可选的,基站可以根据可占用的频域资源和子载波间隔,确定DFT的点数。具体的,以4G或5G移动通信系统为例,若子载波间隔为15kHz,可供使用的频域资源带宽为180kHz,则可提供12个子载波用于生成ASK信号,此时的DFT点数即为12点,与可用的子载波数相等。
S404:基站对第二调制符号序列进行频域加权,得到第三调制符号序列。
其中,为了降低信号包络的纹波,基站可以对第二调制符号序列进行频域加权。频域加权的系数可以是升余弦滤波器的系数、平方根余弦滤波器的系数、sinc滤波器的系数、矩形滤波器的系数等,本申请不做具体限定。
需要说明的是,频域加权可以理解为将第二调制符号中各调制符号与上述频域加权系数相乘。
假设基站对上述第一调制符号序列做12点DFT,也就是每12个调制符号为一组做DFT,得到第二调制符号序列。上述第一调制符号序列可以分为4组,在进行频域加权时,每组调制符号的频域加权系数相同,一个组内各个调制符号的频域加权系数不同。假设一组内各个调制符号的频域加权系数分别为“0.49987801、0.64357300、0.77451606、0.88324531、0.95891583、0.99648732、1、0.99648732、0.95891583、0.88324531、0.77451606、0.64357300”。基站可以将4组调制符号分别与对应的频域加权系数相乘,得到第三调制符 号。
S405:基站对第三调制符号序列进行IFFT,得到第一信号。
其中,基站对第三调制符号序列进行IFFT操作时,IFFT的点数可以与DFT的点数不同。基站在得到第三调制符号之后,可以将第三调制符号分别映射至子载波上。
需要说明的是,当IFFT点数大于DFT点数时,也可以将4G或5G通信系统中的业务数据映射到未使用的子载波上,从而可以同时生成ASK或OOK信号和OFDM信号。
S406:基站发送第二信号,相应的终端接收第二信号。
基站可以通过S401-S405生成多个OFDM符号,也就是生成多个第一信号。基站发送的第二信号中可以包括多个OFDM符号,上述第一信号是多个OFDM符号中的一个。
基于上述方案,基站生成的ASK时域信号的包络纹波小,且占用的带宽小,频谱效率高。此外,本申请实施例提供的技术方案可以兼容蜂窝物理层参数,可以适用于LTE和NR蜂窝系统。
可选的,每个OFDM符号之前可以包含保护间隔数据。
参阅图6,如图6中的(a)所示,第一信号之前的保护间隔数据可以是第一信号中从后到前的N个采样点数据,也就是循环前缀(cyclic prefix,CP)。如果采用CP作为保护间隔数据可以兼容4G或5G通信系统。
或者,如图6中的(b)所示,保护间隔数据也可以是第一信号中从前到后的N个数据,也就是第一信号前N个采样点的数据。或者,如图6中的(c)所示,保护间隔数据还可以是N个零。其中,N是正整数。这里的N是根据经验值确定的或者预定义的,本申请不做具体限定。如果采用图6中的(b)或(c)示出的保护间隔数据中的任一种,可以减小包络纹波。
本申请实施例中,原始比特序列为“01101010”,且第一星座点集合中256QAM的星座图中的第一象限中椭圆形内的幅度最大的点以及幅度最小的点时,可以生成图7A~图7D示出的第二信号。
参阅图7A,为本申请实施例生成的无保护间隔数据的第二信号的示意图。输入的原始比特序列包含4个OFDM符号,子载波间隔为15kHz,单个OFDM符号长度为66.67μs。由图7A可以看出,本申请实施例生成的第二信号相较于目前的OOK信号(图1示出的OOK信号)的时域的包络纹波较小,且第二信号中的单个OFDM符号包含多比特数据信息,频谱效率更高。
参阅图7B,为本申请实施例生成的保护间隔数据为CP的第二信号。该方式可以与LTE和NR蜂窝系统的物理层参数兼容。
参阅图7C,为本申请实施例生成的保护间隔数据为第一信号的前N个采样点的数据的第二信号。由图7C可以看出,第二信号的包络纹波小于如图7B示出的第二信号的包络纹波,更利于终端侧解调该ASK信号。
参阅图7D,为本申请实施例生成的保护间隔数据为N个零的第二信号。由图7D可以看出第二信号的包络纹波大于如图8示出的包络纹波,但与图7B示出的第二信号的包络纹波相差不大。且,图7D示出的第二信号中幅度变化较大于图7C示出的第二信号的幅度变化,但与图7B示出的第二信号的幅度变化相差不大。
本申请实施例中,原始比特序列为“01101010”,且第一星座点集合中图5D示出的星座点1和星座点2时,可以生成图8示出的第二信号。由图8可以看出本申请实施例生成 的第二信号相较于目前的OOK信号(图1示出的OOK信号)的时域的包络纹波较小,且第二信号中的单个OFDM符号包含多比特数据信息,频谱效率更高。
在本申请实施例中,基站可以生成不同调制深度的多个第二信号。具体的,基站将第一比特序列映射为第一调制符号序列时,可以根据调制深度确定不同的第一星座点集合进行映射。假设第一星座点集合中有两个调制符号,前述两个调制符号可以是如图5A~5C中示出的任意一个星座图中,任意一组星座点中的任意两个点。以下,通过表1示出了16QAM调制方式、64QAM调制方式和256QAM调制方式可以实现的调制深度。
表1:各个调制方式实现的调制深度表
调制方式 星座点幅度比 可实现的ASK调制深度
16QAM 3:1 66.7%
64QAM 7:5~7:1 28.6%~85.7%
256QAM 15:13~15:1 13.3%~93.3%
以图5C中256QAM星座图为例进行说明。如果选择第一象限的星座点中,从右到左的第一个点以及从右到左的最后一个点作为第一星座点集合,那么生成的第一信号的调制深度是该调制方式能够达到的最大的调制深度。如果选择第一象限的星座点中从右到左的第一个点以及从右到左的第二个点作为第一星座点集合,那么生成的第一信号的调制深度是该调制方式能够达到的最小的调制深度。
基站可以根据不同的需求以及上述各个调制方式能够实现的调制深度,生成不同调制深度的第二信号。
假设基站想要改变调制深度,生成第三信号。那么基站在将第二比特序列映射为第四调制符号序列时,可以选择第二星座点集合。其中,第二星座点集合可以包括第三调制符号和第四调制符号。第三调制符号的幅度和第四调制符号的幅度不同。可选的,第三调制符号的相位和第四调制符号的相位可以相同也可以不同。由于调制深度不同,因此第三调制符号的幅度与第四调制符号的幅度的比值,与第一星座点集合中第一调制符号的幅度和第一星座点集合中第二调制符号的幅度的比值是不同。继而,基站可以对第四调制符号序列中各符号做DFT、加权以及IFFT,得到第三信号。这样得到的第三信号与第二信号的调制深度是不相同的。
可选的,基站也可以根据第二星座点集合得到第四信号,第四信号中可以包括多个第三信号,并在每个第三信号之前加入保护间隔数据。其中,第三信号之前的保护间隔数据可以参见第一信号之前的保护间隔数据,此处不再赘述。
假设原始比特序列为“01101010”,基站对原始比特序列做PIE编码以及比特重复操作后,得到的第二比特序列可以是“110011111100111111001100111111001100111111001100”。参阅图9,第二星座点集合可以包括图9示出的星座图中的星座点1和星座点2。根据图9示出的星座图,基站可以根据第二星座点集合先将1比特映射为8比特。其中,将比特“0”映射为“00111100”,比特“1”映射为“00111111”。具体的,上述第二比特序列“110011111100111111001100111111001100111111001100”通过第二星座点集合可以被映射为“0011111100111111001111000011110000111111001111110011111100111111001111110011111100111100001111000011111100111111001111110011111100111111001111110011110000111100 00111111001111110011110000111100001111110011111100111111001111110011111100111111001111000011110000111111001111110011110000111100001111110011111100111111001111110011111100111111001111000011110000111111001111110011110000111100”。
在将1比特映射为8比特后,基站可以通过上述公式(1)将上述比特序列映射为第四调制符号序列。根据上述公式(1),“00111100”被映射成复数
Figure PCTCN2021118598-appb-000009
“00111111”被映射成
Figure PCTCN2021118598-appb-000010
因此,基站通过图9示出的星座点1和星座点2可以将第二比特序列“110011111100111111001100111111001100111111001100”映射为第四调制符号序列
Figure PCTCN2021118598-appb-000011
基站可以对上述第四调制符号序列中各调制符号做DFT、加权以及IFFT,得到第三信号。参阅图10,为本申请实施例生成的第四信号示意图,添加的保护间隔数据为CP。相较于图7A生成的第二信号中的每个第一信号,图10的第四信号中每个第三信号的幅度范围是0.82~1之间,幅度的变化不大,但均值较大。因此得到的ASK已调信号的有用信号功率小,载波功率大,满足无源终端对高充电功率的需求。而图7A示出的第二信号中每个第一信号的幅度范围是0~1之间,幅度的变化大但均值较小。此时得到的ASK已调信号的有用信号功率大,载波功率小,满足半无源终端对高有用信号功率的需求。
基于上述方案,基站可以灵活的改变传输信号的调制深度,在有用信号功率和载波功率之间灵活分配,可满足无源终端对高充电功率和半无源终端对高信号功率的不同需求。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11~图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的基站110a或110b,还可以是应用于基站的模块(如芯片)。
如图11所示,通信装置1100包括处理单元1110和收发单元1120。通信装置1100用于实现上述图4中所示的方法实施例中基站的功能。
当通信装置1100用于实现图4所示的方法实施例中基站的功能时:处理单元1110用于获取第一比特序列,将第一比特序列映射为第一调制符号序列,对第一调制符号序列中 各调制符号做DFT得到第二调制符号序列,对第二调制符号序列进行加权,得到第三调制符号序列,以及对第三调制符号序列进行IFFT,得到第一信号。收发单元1120用于发送第二信号,第二信号中包含第一信号。
有关上述处理单元1110和收发单元1120更详细的描述可以直接参考图4~图10所示的方法实施例中相关描述直接得到。
如图12所示,通信设备1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。可选的,通信设备1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信设备1200用于实现图4所示的方法时,处理器1210用于实现上述处理单元1110的功能,接口电路1220用于实现上述收发单元1120的功能。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、 硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (16)

  1. 一种信号传输方法,其特征在于,包括:
    获取第一比特序列;
    将所述第一比特序列映射为第一调制符号序列;所述第一调制符号序列中各调制符号的取值属于第一星座点集合;所述第一星座点集合包括K个调制符号;所述K个调制符号中各调制符号的幅度不同;K≥2,K是整数;
    对所述第一调制符号序列中各调制符号做离散傅里叶变换DFT,得到第二调制符号序列;
    对所述第二调制符号序列进行加权,得到第三调制符号序列;
    对所述第三调制符号序列进行离散傅里叶反变换IFFT,得到第一信号;
    发送第二信号,所述第二信号包括所述第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述K个调制符号中各调制符号的幅度不同,包括:
    所述K个调制符号中各调制符号的幅度不同且所述K个调制符号中各调制符号的相位相同,或者所述K个调制符号中各调制符号的幅度不同且所述K个调制符号中各调制符号的相位不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取第一比特序列,包括:
    获取原始比特序列;
    对所述原始比特序列进行线路编码,得到编码后的比特序列;
    对所述编码后的比特序列进行比特重复操作,得到所述第一比特序列。
  4. 根据权利要求1~3任一所述的方法,其特征在于,所述第二信号包括多个正交频分复用OFDM符号,所述第一信号是所述多个OFDM符号中的一个;
    所述第二信号中每个OFDM符号之前包含保护间隔数据;其中,第一信号之前的保护间隔数据包括以下中的一种:
    所述第一信号的从前到后的N个数据或N个零;N是正整数。
  5. 根据权利要求1~4任一所述的方法,其特征在于,所述K个调制符号是以下星座图中任一个星座图中的K个点:
    16正交幅度调制QAM的星座图、64QAM的星座图、256QAM的星座图、1024QAM的星座图、4096QAM的星座图或幅度相移键控APSK的星座图。
  6. 根据权利要求1~5任一所述的方法,其特征在于,K=2。
  7. 根据权利要求6所述的方法,其特征在于,所述第一星座点集合包括第一调制符号和第二调制符号,所述方法还包括:
    获取第二比特序列;
    将所述第二比特序列映射为第四调制符号序列;所述第四调制符号序列中各调制符号的取值属于第二星座点集合;所述第二星座点集合包括第三调制符号和第四调制符号;所述第三调制符号的幅度和所述第四调制符号的幅度不同;
    所述第三调制符号的幅度和所述第四调制符号的幅度的比值,与所述第一调制符号的幅度和所述第二调制符号的幅度的比值不同;
    对所述第四调制符号序列中各调制符号做离散傅里叶变换DFT,得到第五调制符号序 列;
    对所述第五调制符号序列进行加权,得到第六调制符号序列;
    对所述第六调制符号序列进行离散傅里叶反变换IFFT,得到第三信号;
    发送所述第三信号。
  8. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元,用于获取第一比特序列;将所述第一比特序列映射为第一调制符号序列;所述第一调制符号序列中各调制符号的取值属于第一星座点集合;所述第一星座点集合包括K个调制符号;所述K个调制符号中各调制符号的幅度不同;K≥2,K是整数;对所述第一调制符号序列中各调制符号做离散傅里叶变换DFT,得到第二调制符号序列;对所述第二调制符号序列进行加权,得到第三调制符号序列;对所述第三调制符号序列进行离散傅里叶反变换IFFT,得到第一信号;
    所述收发单元,用于发送第二信号,所述第二信号包括所述第一信号。
  9. 根据权利要求8所述的装置,其特征在于,所述K个调制符号中各调制符号的幅度不同,包括:
    所述K个调制符号中各调制符号的幅度不同且所述K个调制符号中各调制符号的相位相同,或者所述K个调制符号中各调制符号的幅度不同且所述K个调制符号中各调制符号的相位不同。
  10. 根据权利要求8或9所述的装置,其特征在于,所述处理单元在获取第一比特序列时,具体用于:
    获取原始比特序列;
    对所述原始比特序列进行线路编码,得到编码后的比特序列;
    对所述编码后的比特序列进行比特重复操作,得到所述第一比特序列。
  11. 根据权利要求8~10任一所述的装置,其特征在于,所述第二信号包括多个正交频分复用OFDM符号,所述第一信号是所述多个OFDM符号中的一个;
    所述第二信号中每个OFDM符号之前包含保护间隔数据;其中,第一信号之前的保护间隔数据包括以下中的一种:
    所述第一信号的从前到后的N个数据或N个零;N是正整数。
  12. 根据权利要求8~11任一所述的装置,其特征在于,所述K个调制符号是以下星座图中任一个星座图中的K个点:
    16正交幅度调制QAM的星座图、64QAM的星座图、256QAM的星座图、1024QAM的星座图、4096QAM的星座图或幅度相移键控APSK的星座图。
  13. 根据权利要求8~12任一所述的装置,其特征在于,K=2。
  14. 根据权利要求13所述的装置,其特征在于,所述第一星座点集合包括第一调制符号和第二调制符号;
    所述处理单元,还用于获取第二比特序列;将所述第二比特序列映射为第四调制符号序列;所述第四调制符号序列中各调制符号的取值属于第二星座点集合;所述第二星座点集合包括第三调制符号和第四调制符号;所述第三调制符号的幅度和所述第四调制符号的幅度不同;所述第三调制符号的幅度和所述第四调制符号的幅度的比值,与所述第一调制符号的幅度和所述第二调制符号的幅度的比值不同;对所述第四调制符号序列中各调制符 号做离散傅里叶变换DFT,得到第五调制符号序列;对所述第五调制符号序列进行加权,得到第六调制符号序列;对所述第六调制符号序列进行离散傅里叶反变换IFFT,得到第三信号;
    所述收发单元,还用于发送所述第三信号。
  15. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1~7中任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1~7中任一项所述的方法。
PCT/CN2021/118598 2021-09-15 2021-09-15 一种信号传输方法和装置 WO2023039766A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102324.4A CN117941327A (zh) 2021-09-15 2021-09-15 一种信号传输方法和装置
PCT/CN2021/118598 WO2023039766A1 (zh) 2021-09-15 2021-09-15 一种信号传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/118598 WO2023039766A1 (zh) 2021-09-15 2021-09-15 一种信号传输方法和装置

Publications (1)

Publication Number Publication Date
WO2023039766A1 true WO2023039766A1 (zh) 2023-03-23

Family

ID=85602251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118598 WO2023039766A1 (zh) 2021-09-15 2021-09-15 一种信号传输方法和装置

Country Status (2)

Country Link
CN (1) CN117941327A (zh)
WO (1) WO2023039766A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095628A (zh) * 2011-10-31 2013-05-08 华为技术有限公司 一种降低带外辐射的发射方法、接收方法及装置
CN104486284A (zh) * 2014-12-19 2015-04-01 中国地质大学(武汉) 基于增强型六维64psk星座的正交频分复用方法
CN109274629A (zh) * 2018-11-19 2019-01-25 济南大学 Ofdm系统中峰值功率优化方法及发射系统
CN111371718A (zh) * 2018-12-26 2020-07-03 深圳市力合微电子股份有限公司 一种无线通信系统的非循环前导信号生成方法
WO2021096135A1 (ko) * 2019-11-11 2021-05-20 삼성전자 주식회사 무선 통신 시스템에서 데이터를 전송하기 위한 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095628A (zh) * 2011-10-31 2013-05-08 华为技术有限公司 一种降低带外辐射的发射方法、接收方法及装置
CN104486284A (zh) * 2014-12-19 2015-04-01 中国地质大学(武汉) 基于增强型六维64psk星座的正交频分复用方法
CN109274629A (zh) * 2018-11-19 2019-01-25 济南大学 Ofdm系统中峰值功率优化方法及发射系统
CN111371718A (zh) * 2018-12-26 2020-07-03 深圳市力合微电子股份有限公司 一种无线通信系统的非循环前导信号生成方法
WO2021096135A1 (ko) * 2019-11-11 2021-05-20 삼성전자 주식회사 무선 통신 시스템에서 데이터를 전송하기 위한 방법 및 장치

Also Published As

Publication number Publication date
CN117941327A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
TWI782013B (zh) 單使用者及多使用者傳輸之具調變波形編碼
WO2021027901A1 (zh) 数据传输方法及其装置
CN109391576B (zh) 基于序列的信号处理方法、通信设备及通信系统
WO2022033555A1 (zh) 信号传输方法和装置
JP2022184950A (ja) 拡張範囲モード送信方法および装置
WO2018177295A1 (zh) 传输dmrs的方法和装置
CN101515809A (zh) 载波聚合场景中降低参考信号cm的方法和装置
US11546193B2 (en) Data compression method and apparatus
EP4024986A1 (en) Signal transmission method and communication apparatus
EP3435554A1 (en) Antenna port indication method and apparatus
WO2021189216A1 (zh) 参考信号设置方法及装置
WO2020148481A1 (en) Probabilistic shaping for physical layer design
CN112583759A (zh) 信息传输方法及通信装置
WO2023039766A1 (zh) 一种信号传输方法和装置
WO2023078358A1 (zh) 通信的方法和装置
WO2017129128A1 (zh) 一种信息调制方法和装置
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
US9237051B2 (en) Transmitting and receiving apparatuses for frequency division multiple access
WO2020114317A1 (zh) 一种参考信号的传输方法及装置
WO2023241319A1 (zh) 一种通信方法及通信装置
WO2023169302A1 (zh) 一种通信方法及装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2022042618A1 (zh) 传输信号的方法和通信装置
WO2023116613A1 (zh) 通信方法及装置
WO2021244403A1 (zh) 一种信号发送方法、信号接收方法与相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102324.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021957056

Country of ref document: EP

Effective date: 20240314

NENP Non-entry into the national phase

Ref country code: DE