WO2023038330A1 - 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물 - Google Patents

헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물 Download PDF

Info

Publication number
WO2023038330A1
WO2023038330A1 PCT/KR2022/012644 KR2022012644W WO2023038330A1 WO 2023038330 A1 WO2023038330 A1 WO 2023038330A1 KR 2022012644 W KR2022012644 W KR 2022012644W WO 2023038330 A1 WO2023038330 A1 WO 2023038330A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
formula
same
Prior art date
Application number
PCT/KR2022/012644
Other languages
English (en)
French (fr)
Inventor
이용희
모준태
김동준
Original Assignee
엘티소재주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티소재주식회사 filed Critical 엘티소재주식회사
Publication of WO2023038330A1 publication Critical patent/WO2023038330A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to a heterocyclic compound, an organic light emitting device including the heterocyclic compound, and a composition for an organic material layer.
  • An organic light emitting device is a type of self-luminous display device, and has advantages such as a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes are combined in the organic thin film to form a pair, and then emit light while disappearing.
  • the organic thin film may be composed of a single layer or multiple layers as needed.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound capable of constituting the light emitting layer by itself may be used, or a compound capable of serving as a host or dopant of the host-dopant type light emitting layer may be used.
  • a compound capable of performing functions such as hole injection, hole transport, electron blocking, hole blocking, electron transport, and electron injection may be used.
  • Patent Document 1 US Patent No. 4,356,429
  • the present invention is to provide a heterocyclic compound, an organic light emitting device including the same, and a composition for an organic material layer.
  • the present invention provides a heterocyclic compound represented by Formula 1 below.
  • R11 is Formula 2 below,
  • L1 is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • n is an integer from 0 to 5, and when m is 2 or more, L1 is the same as or different from each other;
  • N-Het is a substituted or unsubstituted, C2 to C60 monocyclic or polycyclic heterocyclic group containing two or more N,
  • X1 is NRa; O; S; CRbRc; or a direct bond;
  • the present invention is a first electrode
  • An organic light emitting device comprising one or more organic material layers provided between the first electrode and the second electrode,
  • At least one layer of the organic material layer provides an organic light emitting device that includes the heterocyclic compound represented by Formula 1 above.
  • the present invention provides an organic light emitting device wherein the organic material layer further includes a heterocyclic compound represented by Chemical Formula 5 below.
  • R71 is a substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C2 to C60 heteroaryl group; or Formula 6 below;
  • heteroatom of the heteroaryl group is N, one heteroatom is included,
  • L2 is a substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • n is an integer from 1 to 5, and when n is 2 or more, L2 is the same as or different from each other;
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • X2 is NRe; O; S; CRfRg; or a direct bond;
  • the present invention provides a composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5.
  • the compounds described in this specification can be used as a material for an organic material layer of an organic light emitting device.
  • the compound may serve as a hole injection layer material, an electron blocking layer material, a hole transport layer material, an emission layer material, an electron transport layer material, a hole blocking layer material, and an electron injection layer material in an organic light emitting device.
  • the compound may be used as a material for a light emitting layer of an organic light emitting device.
  • the compound may be used as a light emitting material alone or in combination with a P-type host, and may be used as a host material or a dopant material of a light emitting layer.
  • the driving voltage of the organic light emitting device can be lowered, the light emitting efficiency can be improved, and the lifetime characteristics can be improved.
  • the heterocyclic compound represented by Formula 1 of the present invention can improve hole injection and hole transfer characteristics due to an increase in HOMO level due to stereospecificity, thereby lowering driving voltage, luminous efficiency and lifespan. characteristics can be improved.
  • FIGS. 1 to 3 are diagrams schematically illustrating a stacked structure of an organic light emitting device according to an exemplary embodiment of the present invention.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the hydrogen atom is substituted, that is, the position where the substituent is substituted , When two or more substituents are substituted, two or more substituents may be the same as or different from each other.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkyl group may be 1 to 60, specifically 1 to 40, and more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group,
  • the alkenyl group includes a straight chain or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the alkenyl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically, 2 to 20.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1 -butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(naphthyl-1-yl)vinyl-1-yl group, 2,2-bis(diphenyl-1-yl)vinyl-1-yl group, stilbenyl group, styrenyl group, etc., but are not limited thereto .
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the number of carbon atoms of the alkynyl group may be 2 to 60, specifically 2 to 40, and more specifically, 2 to 20.
  • the alkoxy group may be straight chain, branched chain or cyclic chain.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably 1 to 20 carbon atoms.
  • the cycloalkyl group includes a monocyclic or polycyclic group having 3 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may also be another type of ring group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the number of carbon atoms in the cycloalkyl group may be 3 to 60, specifically 3 to 40, and more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may also be another type of ring group, such as a cycloalkyl group, an aryl group, a heteroaryl group, and the like.
  • the heterocycloalkyl group may have 2 to 60, specifically 2 to 40, and more specifically 3 to 20 carbon atoms.
  • the aryl group includes a monocyclic or polycyclic group having 6 to 60 carbon atoms, and may be further substituted with other substituents.
  • the polycyclic means a group in which an aryl group is directly connected or condensed with another cyclic group.
  • the other ring group may be an aryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, and the like.
  • the aryl group may include a spiro group.
  • the number of carbon atoms of the aryl group may be 6 to 60, specifically 6 to 40, and more specifically 6 to 25.
  • aryl group examples include a phenyl group, a biphenyl group, a triphenyl group, a naphthyl group, anthryl group, a chrysenyl group, a phenanthrenyl group, a perylenyl group, a fluoranthenyl group, a triphenylenyl group, a phenalenyl group, and a pyrene group.
  • Nyl group tetracenyl group, pentacenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof etc., but is not limited thereto.
  • the phosphine oxide group includes a diphenylphosphine oxide group, a dinaphthylphosphine oxide group, and the like, but is not limited thereto.
  • the silyl group is a substituent that includes Si and the Si atom is directly connected as a radical, and is represented by -SiR101R102R103, R101 to R103 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; an alkyl group; alkenyl group; alkoxy group; cycloalkyl group; aryl group; And it may be a substituent consisting of at least one of a heterocyclic group.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like, It is not limited to this.
  • the fluorenyl group may be substituted, and adjacent substituents may bond to each other to form a ring.
  • the heteroaryl group includes S, O, Se, N or Si as a hetero atom, and includes a monocyclic or polycyclic group having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may also be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, and the like.
  • the heteroaryl group may have 2 to 60 carbon atoms, specifically 2 to 40, and more specifically 3 to 25 carbon atoms.
  • heteroaryl group examples include a pyridyl group, a pyrrolyl group, a pyrimidyl group, a pyridazinyl group, a furanyl group, a thiophenyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, and a thiazolyl group.
  • Isothiazolyl group triazolyl group, furazanyl group, oxadiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group, Thiazinyl group, dioxynyl group, triazinyl group, tetrazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazolinyl group, quinozolilyl group, naphthyridyl group, acridinyl group, phenanthridinyl group , imidazopyridinyl group, diazanaphthalenyl group, triazanedenyl group, 2-indolyl group, indolizinyl group, benzothiazolyl group, benzoxazolyl group, benzimidazolyl group,
  • the amine group is a monoalkylamine group; monoarylamine group; Monoheteroarylamine group; -NH 2 ; Dialkylamine group; Diaryl amine group; Diheteroarylamine group; an alkyl arylamine group; Alkylheteroarylamine group; And it may be selected from the group consisting of an arylheteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • the amine group include a methylamine group, a dimethylamine group, an ethylamine group, a diethylamine group, a phenylamine group, a naphthylamine group, a biphenylamine group, a dibiphenylamine group, an anthracenylamine group, a 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluorene
  • it includes, but is not limited to, a ylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group, and the like.
  • the arylene group means that the aryl group has two bonding sites, that is, a divalent group.
  • the description of the aryl group described above can be applied except that each is a divalent group.
  • the heteroarylene group means a heteroaryl group having two bonding sites, that is, a divalent group. The above description of the heteroaryl group may be applied except that each is a divalent group.
  • adjacent refers to a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, a substituent located sterically closest to the substituent, or another substituent substituted on the atom on which the substituent is substituted.
  • two substituents substituted at ortho positions in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as “adjacent” to each other.
  • "when no substituent is shown in the chemical formula or compound structure” may mean that all positions at which the substituent can occur are hydrogen or deuterium. That is, deuterium is an isotope of hydrogen, and some hydrogen atoms may be an isotope of deuterium, and in this case, the content of deuterium may be 0% to 100%.
  • deuterium is one of the isotopes of hydrogen and is an element having a deuteron composed of one proton and one neutron as an atomic nucleus, hydrogen- It can be expressed as 2, and the element symbol can also be written as D or 2 H.
  • isotopes which mean atoms having the same atomic number (Z) but different mass numbers (A), have the same number of protons, but have neutrons. It can also be interpreted as an element with a different number of neutrons.
  • the meaning of the content T% of a specific substituent is when the total number of substituents that a base compound can have is defined as T1, and the number of specific substituents among them is defined as T2.
  • T2 /T1 ⁇ 100 T%.
  • the phenyl group represented by 20% of the deuterium content may mean that the total number of substituents that the phenyl group may have is 5 (T1 in the formula), and the number of deuterium is 1 (T2 in the formula) . That is, it can be represented by the following structural formula that the content of deuterium in the phenyl group is 20%.
  • a phenyl group having a deuterium content of 0% it may mean a phenyl group that does not contain deuterium atoms, that is, has 5 hydrogen atoms.
  • the C6 to C60 aromatic hydrocarbon ring means a compound containing an aromatic ring composed of C6 to C60 carbons and hydrogen, for example, phenyl, biphenyl, terphenyl, triphenylene, naphthalene, Anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene, etc. may be mentioned, but is not limited thereto, and all aromatic hydrocarbon ring compounds known in the art as those satisfying the above number of carbon atoms include
  • the present invention provides a heterocyclic compound represented by Formula 1 below.
  • R11 is Formula 2 below,
  • L1 is a direct bond; A substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • n is an integer from 0 to 5, and when m is 2 or more, L1 is the same as or different from each other;
  • N-Het is a substituted or unsubstituted, C2 to C60 monocyclic or polycyclic heterocyclic group containing two or more N,
  • X1 is NRa; O; S; CRbRc; or a direct bond;
  • R1 to R10 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R1 to R10 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • the L1 is a direct bond; A substituted or unsubstituted C6 to C30 arylene group; Or it may be a substituted or unsubstituted C2 to C30 heteroarylene group.
  • L1 is a direct bond; A substituted or unsubstituted C6 to C20 arylene group; Or it may be a substituted or unsubstituted C2 to C20 heteroarylene group.
  • L1 is a direct bond; A C6 to C20 arylene group unsubstituted or substituted with heavy hydrogen; Or it may be a C2 to C20 heteroarylene group substituted or unsubstituted with heavy hydrogen.
  • the N-Het may be a substituted or unsubstituted, C2 to C30 monocyclic or polycyclic heterocyclic group containing two or more N.
  • the N-Het may be a substituted or unsubstituted, C2 to C20 monocyclic or polycyclic heterocyclic group containing two or more N atoms.
  • N-Het may be a C2 to C20 monocyclic or polycyclic heterocyclic group that is unsubstituted or substituted with deuterium and contains two or more N atoms.
  • the substituent when the N-Het has a substituent, the substituent is deuterium; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • the substituent when the N-Het has a substituent, the substituent is deuterium; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • the substituent when the N-Het has a substituent, the substituent is deuterium; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • the substituent is deuterium; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted dibenzofuranyl group; A substituted or unsubstituted dibenzothiophenyl group; A substituted or unsubstituted naphthobenzofuranyl group; A substituted or unsubstituted carbazolyl group; A substituted or unsubstituted naphthobenzothiophenyl group; Or it may be a substituted or unsubstituted benzocarbazolyl group.
  • the Ra, Rb, Rc, R21 to R24 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ra is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or it may be a substituted or unsubstituted terphenyl group.
  • Rb and Rc are the same as or different from each other, and each independently may be a substituted or unsubstituted C1 to C20 alkyl group.
  • Rb and Rc are the same as or different from each other, and each independently may be a substituted or unsubstituted methyl group.
  • R21 to R24 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • the compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium based on the total number of hydrogen atoms and deuterium atoms is greater than 0%, 1% or more, 10 % or more, 20% or more, 30% or more, 40% or more, or 50% or more, and 100% or less, 90% or less, 80% or less, 70% or less, or 60% or less.
  • the compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium may be 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium may be 20% to 90% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium may be 30% to 80% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 1 may not contain deuterium as a substituent, or the content of deuterium may be 50% to 70% based on the total number of hydrogen atoms and deuterium atoms.
  • Formula 1 may be a heterocyclic compound represented by any one of Formula 1-1 or Formula 1-2 below.
  • R1 to R10 are the same as defined in Formula 1,
  • R11 is the same as the definition of Formula 2,
  • X1, R21 to R24 are the same as defined in Chemical Formula 3 above.
  • Formula 2 may be represented by Formula 4 below.
  • X11 to X15 are the same as or different from each other, and each independently N; or CRd;
  • At least two or more of the X11 to X15 are N,
  • the CRd is two or more, they are the same or different from each other,
  • L1 and m are the same as those in Formula 2 above.
  • Rd is hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or a substituted or unsubstituted C2 to C20 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C20 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C20 heterocycle can do.
  • Chemical Formula 4 may be represented by any one of Chemical Formulas 4-1 to 4-4.
  • L1 and m are the same as those in Formula 2 above.
  • R31 and R32 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R31 and R32 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R31 and R32 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R31 and R32 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted dibenzofuranyl group; A substituted or unsubstituted dibenzothiophenyl group; A substituted or unsubstituted naphthobenzofuranyl group; A substituted or unsubstituted carbazolyl group; Or it may be a substituted or unsubstituted naphthobenzothiophenyl group.
  • the R33 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; It is a substituted or unsubstituted C2 to C60 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C60 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C60 heterocyclic ring.
  • R33 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; It is a substituted or unsubstituted C2 to C30 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C30 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C30 heterocycle.
  • R33 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; It is a substituted or unsubstituted C2 to C20 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C20 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C20 heterocyclic ring.
  • R33 to R35 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group, or two or more groups adjacent to each other may be bonded to each other to form a substituted or unsubstituted C6 to C20 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C20 heterocycle.
  • R36 to R40 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R36 to R40 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R36 to R40 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R36 to R40 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted carbazolyl group; A substituted or unsubstituted dibenzofuranyl group; A substituted or unsubstituted naphthobenzofuranyl group; A substituted or unsubstituted naphthobenzothiophenyl group; Or it may be a substituted or unsubstituted benzocarbazolyl group.
  • the R41 to R43 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R41 to R43 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R41 to R43 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R41 to R43 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; Or it may be a substituted or unsubstituted biphenyl group.
  • Formula 4-2 may be represented by any one of Formulas 4-2-1 to 4-2-3 below.
  • L1 and m are the same as those in Formula 2 above.
  • R44 to R46 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R44 to R46 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R44 to R46 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R44 to R46 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or it may be a substituted or unsubstituted naphthyl group.
  • R47 to R51 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; Or it may be a substituted or unsubstituted C2 to C60 heteroaryl group.
  • R47 to R51 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • R47 to R51 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R47 to R51 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted carbazolyl group; A substituted or unsubstituted dibenzofuranyl group; A substituted or unsubstituted dibenzothiophenyl group; A substituted or unsubstituted naphthobenzofuranyl group; A substituted or unsubstituted benzocarbazolyl group; Or it may be a substituted or unsubstituted naphthobenzothiophenyl group.
  • the R52 to R56 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C60 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C60 heterocycle can do.
  • R52 to R56 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C30 aryl group; Or a substituted or unsubstituted C2 to C30 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C30 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C30 heterocycle. can do.
  • R52 to R56 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C20 aryl group; Or a substituted or unsubstituted C2 to C20 heteroaryl group, or two or more groups adjacent to each other combine to form a substituted or unsubstituted C6 to C20 aromatic hydrocarbon ring or a substituted or unsubstituted C2 to C20 heterocycle can do.
  • R52 to R56 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted terphenyl group; A substituted or unsubstituted carbazolyl group; A substituted or unsubstituted dibenzofuranyl group; A substituted or unsubstituted dibenzothiophenyl group; A substituted or unsubstituted naphthobenzofuranyl group; Alternatively, it may be a substituted or unsubstituted naphthobenzothiophenyl group, or two or more adjacent groups may combine with each other to form a substituted or unsubstituted C6 to C20 aromatic hydrocarbon ring.
  • Formula 1 may be a heterocyclic compound represented by any one of the following compounds.
  • substituents in the structure of Chemical Formula 1, compounds having unique characteristics of the introduced substituents can be synthesized.
  • a substituent mainly used in hole injection layer materials, electron blocking layer materials, hole transport layer materials, light emitting layer materials, electron transport layer materials, hole blocking layer materials, and charge generating layer materials used in the manufacture of organic light emitting devices is introduced into the core structure. By doing so, it is possible to synthesize a material that satisfies the conditions required by each organic layer.
  • An organic light emitting device comprising one or more organic material layers provided between the first electrode and the second electrode,
  • At least one layer of the organic material layer relates to an organic light emitting device comprising a heterocyclic compound represented by Chemical Formula 1.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the red organic light emitting material.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the blue organic light emitting material.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for the green organic light emitting material.
  • the organic light emitting device may be a red organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for an emission layer of the red organic light emitting device.
  • the organic light emitting device may be a blue organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the blue organic light emitting device.
  • the organic light emitting device may be a green organic light emitting device, and the heterocyclic compound represented by Chemical Formula 1 may be used as a material for a light emitting layer of the green organic light emitting device.
  • the organic light emitting diode of the present invention may be manufactured by conventional organic light emitting diode manufacturing methods and materials, except for forming one or more organic material layers using the aforementioned heterocyclic compound.
  • the heterocyclic compound may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, an electron blocking layer, a hole transport layer, a light emitting layer, an electron transport layer, a hole blocking layer, an electron injection layer, and the like as organic material layers.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer including the heterocyclic compound represented by Formula 1 provides an organic light emitting device that further includes a heterocyclic compound represented by Formula 5 below. .
  • R71 is a substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C2 to C60 heteroaryl group; or Formula 6 below;
  • heteroatom of the heteroaryl group is N, one heteroatom is included,
  • L2 is a substituted or unsubstituted C6 to C60 arylene group; Or a substituted or unsubstituted C2 to C60 heteroarylene group,
  • n is an integer from 0 to 5, and when n is 2 or more, L2 is the same as or different from each other;
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C60 aryl group; Or a substituted or unsubstituted C2 to C60 heteroaryl group,
  • X2 is NRe; O; S; CRfRg; or a direct bond;
  • R61 to R70 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • R61 to R70 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • R71 is a substituted or unsubstituted C6 to C30 aryl group; A substituted or unsubstituted C2 to C30 heteroaryl group; Alternatively, it may be a group represented by Formula 6, and when the hetero atom of the heteroaryl group is N, one hetero atom may be included.
  • R11 is a substituted or unsubstituted C6 to C20 aryl group; A substituted or unsubstituted C2 to C20 heteroaryl group; Alternatively, it may be a group represented by Formula 6, and when the hetero atom of the heteroaryl group is N, one hetero atom may be included.
  • R11 is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted phenanthrenyl group; A substituted or unsubstituted dibenzothiophenyl group; A substituted or unsubstituted dibenzofuranyl group; A substituted or unsubstituted carbazolyl group; A substituted or unsubstituted naphthobenzofuranyl group; A substituted or unsubstituted naphthobenzothiophenyl group; Alternatively, it may be a group represented by Formula 6 above.
  • L2 is a substituted or unsubstituted C6 to C30 arylene group; Or it may be a substituted or unsubstituted C2 to C30 heteroarylene group.
  • L2 is a substituted or unsubstituted C6 to C20 arylene group; Or it may be a substituted or unsubstituted C2 to C20 heteroarylene group.
  • L2 is a C6 to C20 arylene group unsubstituted or substituted with deuterium; Or it may be a C2 to C20 heteroarylene group substituted or unsubstituted with heavy hydrogen.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C30 aryl group; Or it may be a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a C6 to C20 aryl group unsubstituted or substituted with deuterium; Or it may be a C2 to C20 heteroaryl group unsubstituted or substituted with heavy hydrogen.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted phenyl group; A substituted or unsubstituted naphthyl group; A substituted or unsubstituted biphenyl group; A substituted or unsubstituted fluorenyl group; A substituted or unsubstituted dibenzofuranyl group; Or it may be a substituted or unsubstituted dibenzothiophenyl group.
  • Re, Rf, Rg, R81 to R84 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; Or it may be a substituted or unsubstituted C2 to C20 heteroaryl group.
  • Re is a substituted or unsubstituted phenyl group; A substituted or unsubstituted biphenyl group; Or it may be a substituted or unsubstituted terphenyl group.
  • Rf and Rg are the same as or different from each other, and each independently may be a substituted or unsubstituted C1 to C20 alkyl group.
  • Rf and Rg are the same as or different from each other, and each independently may be a substituted or unsubstituted methyl group.
  • R81 to R84 are the same as or different from each other, and each independently hydrogen; or deuterium.
  • the compound represented by Formula 5 may not contain deuterium as a substituent, or the content of deuterium based on the total number of hydrogen atoms and deuterium atoms is greater than 0%, 1% or more, 10 % or more, 20% or more, 30% or more, 40% or more, or 50% or more, and 100% or less, 90% or less, 80% or less, 70% or less, or 60% or less.
  • the compound represented by Chemical Formula 5 may not contain deuterium as a substituent, or the content of deuterium may be 1% to 100% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 5 may not contain deuterium as a substituent, or the content of deuterium may be 20% to 90% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 5 may not contain deuterium as a substituent, or the content of deuterium may be 30% to 80% based on the total number of hydrogen atoms and deuterium atoms.
  • the compound represented by Formula 5 may not contain deuterium as a substituent, or the content of deuterium may be 50% to 70% based on the total number of hydrogen atoms and deuterium atoms.
  • the exciplex phenomenon is a phenomenon in which energy corresponding to the HOMO energy level of a donor (phost) and the LUMO energy level of an acceptor (n-host) is released through electron exchange between two molecules.
  • RISC reverse intersystem crossing
  • the internal quantum efficiency of fluorescence can be increased to 100%.
  • a donor (p-host) with good hole transport ability and an acceptor (n-host) with good electron transport ability are used as the host of the light emitting layer, holes are injected into the p-host and electrons are injected into the n-host. Since it is injected, the driving voltage can be lowered, thereby helping to improve the lifespan. That is, when the compound represented by Chemical Formula 1 is used as the acceptor and the compound represented by Chemical Formula 5 is used as the donor, excellent device characteristics are exhibited.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the content of deuterium, based on the total number of atoms, may be greater than 0%, greater than 1%, greater than 10%, greater than 20%, greater than 30%, greater than 40% or greater than 50%, less than 100%, less than 90%, less than 80% or less, 70% or less, or 60% or less.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 1% to 100% based on the total number of atoms.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 20% to 90% based on the total number of atoms.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 30% to 80% based on the total number of atoms.
  • the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 when the heterocyclic compound represented by Formula 1 and the heterocyclic compound represented by Formula 5 are simultaneously included, at least one of the compounds does not contain deuterium, or hydrogen atoms and deuterium.
  • the deuterium content may be 50% to 70% based on the total number of atoms.
  • the heterocyclic compound represented by Chemical Formula 5 may be any one selected from the following compounds.
  • one embodiment of the present invention provides a composition for an organic material layer of an organic light emitting device including the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5.
  • the weight ratio of the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5 in the composition for the organic layer of the organic light emitting device may be 1:10 to 10:1, , 1: 8 to 8: 1, 1: 5 to 5: 1, 1: 2 to 2: 1, but is not limited thereto.
  • composition for the organic material layer of the organic light emitting device can be used when forming the organic material of the organic light emitting device, and in particular, can be more preferably used when forming the host of the light emitting layer.
  • the organic material layer includes the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5, and may be used together with a phosphorescent dopant.
  • phosphorescent dopant material those known in the art may be used.
  • phosphorescent dopant materials represented by LL'MX', LL'L"M, LMX'X", L 2 MX' and L 3 M may be used, but the scope of the present invention is not limited by these examples. .
  • the M may be iridium, platinum, osmium, or the like.
  • L is an anionic bidentate ligand coordinated to M by sp 2 carbon and a hetero atom, and X may function to trap electrons or holes.
  • Non-limiting examples of L include 2-(1-naphthyl)benzoxazole, 2-phenylbenzoxazole, 2-phenylbenzothiazole, 7,8-benzoquinoline, phenylpyridine, benzothiophenylpyridine, 3- methoxy-2-phenylpyridine, thiophenylpyridine, tolylpyridine and the like.
  • Non-limiting examples of X' and X" include acetylacetonate (acac), hexafluoroacetylacetonate, salicylidene, picolinate, 8-hydroxyquinolinate, and the like.
  • the organic material layer includes the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5, and may be used together with an iridium-based dopant.
  • the iridium-based dopant may be (piq) 2 (Ir)(acac) as a red phosphorescent dopant or Ir(ppy) 3 as a green phosphorescent dopant.
  • the content of the dopant may have a content of 1% to 15%, preferably 2% to 10%, more preferably 3% to 7% based on the total weight of the light emitting layer. .
  • the organic material layer may include an electron injection layer or an electron transport layer, and the electron injection layer or electron transport layer may include a heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer may include an electron blocking layer or a hole blocking layer, and the electron blocking layer or hole blocking layer may include a heterocyclic compound represented by Chemical Formula 1. .
  • the organic material layer includes an electron transport layer, a light emitting layer, or a hole blocking layer, and the electron transport layer, the light emitting layer, or the hole blocking layer may include a heterocyclic compound represented by Chemical Formula 1. .
  • the organic material layer may include a light emitting layer, and the light emitting layer may include a heterocyclic compound represented by Chemical Formula 1.
  • the organic material layer includes a light emitting layer
  • the light emitting layer includes a host material
  • the host material may include a heterocyclic compound represented by Chemical Formula 1 above.
  • the light emitting layer may include two or more host materials, at least one of the host materials may include the heterocyclic compound represented by Formula 1, and the other one may include a heterocyclic compound represented by Formula 5 above.
  • the light emitting layer may be used by pre-mixing two or more host materials, and at least one of the two or more host materials is hetero represented by Chemical Formula 1. It may include a cyclic compound, and the other may include a heterocyclic compound represented by Chemical Formula 5.
  • the organic light emitting device may further include one layer or two or more layers selected from the group consisting of a light emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron blocking layer, and a hole blocking layer. .
  • FIG. 1 to 3 illustrate the stacking order of the electrode and the organic material layer of the organic light emitting device according to an embodiment of the present invention.
  • the scope of the present application be limited by these drawings, and structures of organic light emitting devices known in the art may be applied to the present application as well.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
  • an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, an emission layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • an emission layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 a hole blocking layer 306.
  • the scope of the present application is not limited by such a laminated structure, and layers other than the light emitting layer may be omitted as necessary, and other necessary functional layers may be further added.
  • the forming of the organic material layer is performed by pre-mixing the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5, and using a thermal vacuum deposition method. It may be formed using
  • the pre-mixing means that the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5 are first mixed and mixed in one source before depositing the heterocyclic compound represented by Chemical Formula 5 on the organic layer.
  • the premixed material may be referred to as a composition for an organic layer according to an exemplary embodiment of the present application.
  • the organic material layer including the heterocyclic compound represented by Chemical Formula 1 may further include other materials as needed.
  • the organic material layer including both the heterocyclic compound represented by Chemical Formula 1 and the heterocyclic compound represented by Chemical Formula 5 may further include other materials as needed.
  • materials other than the heterocyclic compound represented by Formula 1 or the heterocyclic compound represented by Formula 5 are exemplified below, but these are for illustrative purposes only. It is not intended to limit the scope of, and may be replaced with materials known in the art.
  • anode material Materials having a relatively high work function may be used as the anode material, and transparent conductive oxides, metals, or conductive polymers may be used.
  • the anode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material Materials having a relatively low work function may be used as the cathode material, and metals, metal oxides, or conductive polymers may be used.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • a known hole injection layer material may be used, for example, a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429, or a phthalocyanine compound disclosed in Advanced Material, 6, p.677 (1994).
  • Starburst amine derivatives described such as tris(4-carbazoyl-9-ylphenyl)amine (TCTA), 4,4',4′′-tris[phenyl(m-tolyl)amino]triphenylamine ( m-MTDATA), 1,3,5-tris[4-(3-methylphenylphenylamino)phenyl]benzene (m-MTDAPB), polyaniline/dodecylbenzenesulfonic acid, a soluble conductive polymer, or Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), polyaniline/camphor sulfonic acid, or Polyaniline/Poly(4-styrenesulfonate) or the like can be used.
  • TCTA tris(4-carbazoyl-9
  • pyrazoline derivatives As the material for the hole transport layer, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low-molecular or high-molecular materials may also be used.
  • Materials for the electron transport layer include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, and fluorenone.
  • Derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, etc. may be used, and high molecular materials as well as low molecular materials may be used.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used as a material for the light emitting layer, and if necessary, two or more light emitting materials may be mixed and used. At this time, two or more light emitting materials may be deposited and used as individual sources, or may be pre-mixed and deposited as one source.
  • a fluorescent material may be used as a material for the light emitting layer, but a phosphorescent material may also be used.
  • the material for the light emitting layer a single material that emits light by combining holes and electrons injected from the anode and the cathode may be used, but materials in which a host material and a dopant material are involved in light emission may also be used.
  • hosts of the same series may be mixed and used, or hosts of different series may be mixed and used.
  • two or more materials selected from among n-type host materials and p-type host materials may be selected and used as host materials for the light emitting layer.
  • An organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • the heterocyclic compound according to an embodiment of the present invention may act on a principle similar to that applied to an organic light emitting device in an organic electronic device including an organic solar cell, an organic photoreceptor, and an organic transistor.
  • 2,4-dichloroquinazoline 20g (100.5mM), [1,1'-biphenyl]-3-ylboronic acid ([1,1'-biphenyl]-3-ylboronic acid) 29.9 g (150.8 mM), tetrakis (triphenylphosphine) palladium (0) (tetrakis (triphenylhosphine) palladium (0), Pd (PPh 3 ) 4 ) 5.8 g (5.0 mM), sodium carbonate (Na 2 CO 3 ) 21.3 After dissolving g (201 mM) in 250 mL of tetrahydrofuran (tethrahydrofuran, THF) and 50 mL of water (H 2 O), the mixture was refluxed.
  • THF tetrahydrofuran
  • H 2 O water
  • a target compound was prepared as shown in Table 3 below by preparing in the same manner as in Preparation Example 12, except that Intermediate E in Table 3 was used instead of Compound 1-483.
  • Table 4 below is a measurement value of 1 H NMR (CDCl 3 , 300 MHz), and Table 5 below is a measurement value of FD-mass spectrometer (FD-MS: Field desorption mass spectrometry).
  • N- (4-bromophenyl) -N-phenyl- [1,1'-biphenyl] -4-amine N- (4-bromophenyl) -N-phenyl- [1,1'-biphenyl] -4 -amine 15g (37.5mM) and trifluoromethanesulfonic acid (trifluoromethanesulfonic acid) 22.2ml (251.3mM) was dissolved in d 6 -benzene (d 6 -benzene) 150mL, and then stirred at 60 ° C. for 1 hour.
  • the target compound was prepared as shown in Table 6 below in the same manner as in Preparation Example 15, except that Intermediate E in Table 6 was used instead of 3-iodo-1,1'-biphenyl.
  • Table 7 below is a measurement value of 1 H NMR (CDCl 3 , 300 MHz), and Table 8 below is a measurement value of FD-mass spectrometer (FD-MS: Field desorption mass spectrometry).
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO (Ultraviolet Ozone) treatment was performed for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • NPB N,N'-bis( ⁇ -naphthyl)-N,N'-diphenyl-4,4'-diamine
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the emission layer was deposited with the compounds listed in Table 9 as a host, and was deposited to a thickness of 400 ⁇ by doping the host with an Ir compound at 3 wt% using (piq) 2 (Ir)(acac) as a red phosphorescent dopant.
  • Ir piq 2
  • Ir piq 2
  • acac red phosphorescent dopant
  • Bphen was deposited to a thickness of 30 ⁇ as a hole blocking layer
  • Alq 3 was deposited to a thickness of 250 ⁇ as an electron transport layer thereon.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer
  • aluminum (Al) is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode, thereby forming an organic An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic light emitting device manufactured as described above were measured with McSyers' M7000, and the standard luminance was 6,000 cd through the lifetime equipment measuring equipment (M6000) manufactured by McScience with the measurement result. /m 2 , T 90 was measured.
  • Table 9 shows the results of measuring the driving voltage, luminous efficiency, color coordinate (CIE), and lifetime of the organic light emitting device manufactured according to the present invention.
  • the T 90 denotes a lifespan (unit: time), which is a time when the luminance becomes 90% of the initial luminance.
  • Example 9 1-436 - - 2.61 4.50 43.10 (0.684. 0.316) 250
  • Example 10 1-438 - - 2.59 4.47 45.15 (0.684. 0.316) 370
  • Example 11 1-440 - - 2.65 4.60 35.90 (0.685, 0.315) 175
  • Example 12 1-441 - - 2.60 4.50 49.10 (0.685, 0.315) 350
  • Example 13 1-443 - - 2.62 4.54 48.50 (0.685, 0.315) 400
  • Example 19 1-469 2-100 1:1 2.53 4.50 65.11 (0.685, 0.315) 410
  • Example 20 1-469 2-100 1:3 2.70 4.68 58.30 (0.685, 0.315) 305
  • Example 22 1-448 2-100 1:1 2.73 4.71 40.11 (0.685, 0.315) 400
  • Example 23 1-469 2-95 1:1 2.61 4.75 53.10 (0.684. 0.316) 180
  • Example 25 1-483 - - 2.61 4.48 45.10 (0.684.
  • Example 30 1-489 - - 2.31 4.40 42.89 (0.685, 0.315) 240
  • a glass substrate coated with ITO thin film to a thickness of 1,500 ⁇ was washed with distilled water and ultrasonic waves. After washing with distilled water, ultrasonic cleaning was performed with solvents such as acetone, methanol, and isopropyl alcohol, and after drying, UVO (Ultraviolet Ozone) treatment was performed for 5 minutes using UV in a UV cleaner. Thereafter, the substrate was transferred to a plasma cleaner (PT), plasma treated to remove the ITO work function and residual film in a vacuum state, and then transferred to a thermal evaporation equipment for organic deposition.
  • PT plasma cleaner
  • a light emitting layer was thermally vacuum deposited thereon as follows.
  • the light emitting layer was deposited using a single or two sources of the compounds listed in Table 10 as a red host, and using (piq) 2 (Ir)(acac) as a red phosphorescent dopant, the host was doped with 3 wt% of an Ir compound and deposited at 400 ⁇ . did At this time, as shown in Table 10 below, one compound described in Compound 1 was deposited, or one compound described in Compound 1 and one compound described in Compound 2 were premixed and then deposited from one source.
  • Bphen was deposited to a thickness of 30 ⁇ as a hole blocking layer
  • TPBI was deposited to a thickness of 250 ⁇ as an electron transport layer thereon.
  • lithium fluoride (LiF) is deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer
  • aluminum (Al) is deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode, thereby forming an organic An electroluminescent device was manufactured.
  • the electroluminescence (EL) characteristics of the organic light emitting device manufactured as described above were measured with McSyers' M7000, and the standard luminance was 6,000 cd through the lifetime equipment measuring equipment (M6000) manufactured by McScience with the measurement result. /m 2 , T 90 was measured.
  • Table 10 shows the results of measuring the driving voltage, luminous efficiency, color coordinate (CIE), and lifetime of the organic light emitting device manufactured according to the present invention.
  • the T 90 denotes a lifespan (unit: time), which is a time when the luminance becomes 90% of the initial luminance.
  • Example 36 1-3 - - 2.22 4.40 38.28 (0.685, 0.315) 110 Example 37 1-4 - - 2.22 4.44 38.55 (0.685, 0.315) 130 Example 38 1-363 - - 2.33 4.51 43.85 (0.685, 0.315) 250 Example 39 1-436 - - 2.62 4.61 45.10 (0.684. 0.316) 250 Example 40 1-438 - - 2.60 4.58 46.15 (0.684. 0.316) 400 Example 41 1-469 - - 2.53 4.50 60.11 (0.684.
  • the heterocyclic compound represented by Formula 1 of the present invention has high thermal stability.
  • desired molecular weight can be easily controlled by extending aromaticity, and a host material having an appropriate band gap can be easily designed.
  • An appropriate band gap of the light emitting layer has excellent hole transport capability and prevents loss of electrons, thereby helping to form an effective recombination zone. Therefore, as can be seen from the results of Tables 9 and 10, it was confirmed that the heterocyclic compound represented by Chemical Formula 1 of the present invention exhibited improved performance compared to Comparative Examples.
  • a donor having good hole transport ability (donor, compound 2 (p-host) in Tables 9 and 10, a heterocyclic compound of Formula 5 of the present invention) and an acceptor having good electron transport ability (Table 9 and
  • the heterocyclic compound of Chemical Formula 1 of the present invention is used as a host of the light emitting layer, injection of electrons and holes is improved through the formation of an effective recombination zone, an organic light emitting device. It was found to improve the efficiency and lifespan of
  • the organic light emitting device of Experimental Example 2 further includes an electron blocking layer, and as the electron blocking layer is included, loss of electrons can be prevented and lifespan characteristics of the device can be improved. showed better results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은 화학식 1로 표시되는 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물에 관한 것이다.

Description

헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물
본 출원은 2021년 9월 10일자 한국 특허출원 제10-2021-0121280호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물에 관한 것이다.
유기 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기 박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기 박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기 박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 저지, 정공 저지, 전자 수송, 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국 등록특허 제4,356,429호
본 발명은 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물을 제공하고자 한다.
상기 목적을 달성하기 위하여,
본 발명은 하기 화학식 1로 표시되는 헤테로 고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022012644-appb-img-000001
상기 화학식 1에 있어서,
상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 R11은 하기 화학식 2이고,
[화학식 2]
Figure PCTKR2022012644-appb-img-000002
상기 화학식 2에 있어서,
상기 L1은 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
상기 m은 0 내지 5의 정수이고, m이 2 이상인 경우 L1은 서로 같거나 상이하고,
상기 N-Het는 치환 또는 비치환되고, N을 2개 이상 포함하는 C2 내지 C60의 단환 또는 다환의 헤테로고리기이고,
상기 *은 하기 화학식 3과 연결 지점이고,
[화학식 3]
Figure PCTKR2022012644-appb-img-000003
상기 X1은 NRa; O; S; CRbRc; 또는 직접결합이고,
상기 Ra, Rb, Rc, R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
또한, 본 발명은 제1 전극;
상기 제1 전극과 대향하여 구비된 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
또한, 본 발명은 상기 유기물층이 하기 화학식 5로 표시되는 헤테로 고리 화합물을 추가로 포함하는 유기 발광 소자를 제공한다.
[화학식 5]
Figure PCTKR2022012644-appb-img-000004
상기 화학식 5에 있어서,
상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 R71은 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 또는 하기 화학식 6이고,
상기 헤테로아릴기의 헤테로 원자가 N일 경우, 헤테로 원자는 1개 포함되고,
[화학식 6]
Figure PCTKR2022012644-appb-img-000005
상기 화학식 6에 있어서,
상기 L2는 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
상기 n은 1 내지 5의 정수이고, n이 2 이상인 경우 L2는 서로 같거나 상이하고,
상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 *은 하기 화학식 7과 연결 지점이고,
[화학식 7]
Figure PCTKR2022012644-appb-img-000006
상기 X2은 NRe; O; S; CRfRg; 또는 직접결합이고,
상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
또한, 본 발명은 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 화합물은 유기 발광 소자에서 정공 주입층 재료, 전자 저지층 재료, 정공 수송층 재료, 발광층 재료, 전자 수송층 재료, 정공 저지층 재료, 전자 주입층 재료 등의 역할을 수행할 수 있다. 특히, 상기 화합물이 유기 발광 소자의 발광층 재료로 사용될 수 있다.
구체적으로, 상기 화합물은 단독으로 또는 P타입 호스트와 혼합하여 발광 재료로 사용될 수도 있고, 발광층의 호스트 재료 또는 도펀트 재료로서 사용될 수 있다. 상기 화학식 1로 표시되는 화합물을 유기물층에 사용하는 경우, 유기 발광 소자의 구동전압을 낮추고, 발광 효율을 향상시키며, 수명 특성을 향상시킬 수 있다.
보다 구체적으로, 본 발명의 화학식 1로 표시되는 헤테로 고리 화합물은 입체 특이성으로 인해 호모 레벨(HOMO level)의 상승으로 인한 정공 주입 및 정공 이동 특성을 개선할 수 있어 구동전압을 낮추고, 발광 효율 및 수명 특성을 향상시킬 수 있다.
도 1 내지 3은 각각 본 발명의 일 실시형태에 따른 유기 발광 소자의 적층구조를 개략적으로 나타낸 도면이다.
이하, 본 발명을 보다 자세히 설명한다.
본 명세서에 있어서, 상기 "치환"이라는 용어는, 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란, 중수소; 할로겐; 시아노기; C1 내지 C60의 직쇄 또는 분지쇄의 알킬기; C2 내지 C60의 직쇄 또는 분지쇄의 알케닐기; C2 내지 C60의 직쇄 또는 분지쇄의 알키닐기; C3 내지 C60의 단환 또는 다환의 시클로알킬기; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬기; C6 내지 C60의 단환 또는 다환의 아릴기; C2 내지 C60의 단환 또는 다환의 헤테로아릴기; -SiRR'R"; -P(=O)RR'; C1 내지 C20의 알킬아민기; C6 내지 C60의 단환 또는 다환의 아릴아민기; 및 C2 내지 C60의 단환 또는 다환의 헤테로아릴아민기로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중에서 선택된 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다.
본 명세서에 있어서, 상기 할로겐은 불소, 염소, 브롬 또는 요오드일 수 있다.
본 명세서에 있어서, 알킬기는 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알킬기의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥실메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸 헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알케닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알케닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다. 구체적인 예로는 비닐기, 1-프로페닐기, 이소프로페닐기, 1-부테닐기, 2-부테닐기, 3-부테닐기, 1-펜테닐기, 2-펜테닐기, 3-펜테닐기, 3-메틸-1-부테닐기, 1,3-부타디에닐기, 알릴기, 1-페닐비닐-1-일기, 2-페닐비닐-1-일기, 2,2-디페닐비닐-1-일기, 2-페닐-2-(나프틸-1-일)비닐-1-일기, 2,2-비스(디페닐-1-일)비닐-1-일기, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알키닐기는 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 상기 알키닐기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, 이소부톡시기, tert-부톡시기, sec-부톡시기, n-펜틸옥시기, 네오펜틸옥시기, 이소펜틸옥시기, n-헥실옥시기, 3,3-디메틸부틸옥시기, 2-에틸부틸옥시기, n-옥틸옥시기, n-노닐옥시기, n-데실옥시기, 벤질옥시기, p-메틸벤질옥시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 시클로알킬기의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다. 구체적으로, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 3-메틸시클로펜틸기, 2,3-디메틸시클로펜틸기, 시클로헥실기, 3-메틸시클로헥실기, 4-메틸시클로헥실기, 2,3-디메틸시클로헥실기, 3,4,5-트리메틸시클로헥실기, 4-tert-부틸시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로시클로알킬기는 헤테로 원자로서 O, S, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 아릴기, 헤테로아릴기 등일 수도 있다. 상기 헤테로시클로알킬기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 아릴기는 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 헤테로아릴기 등일 수도 있다. 상기 아릴기는 스피로기를 포함할 수 있다. 상기 아릴기의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 상기 아릴기의 구체적인 예로는 페닐기, 비페닐기, 트리페닐기, 나프틸기, 안트릴기, 크라이세닐기, 페난트레닐기, 페릴레닐기, 플루오란테닐기, 트리페닐레닐기, 페날레닐기, 파이레닐기, 테트라세닐기, 펜타세닐기, 플루오레닐기, 인데닐기, 아세나프틸레닐기, 벤조플루오레닐기, 스피로비플루오레닐기, 2,3-디히드로-1H-인데닐기, 이들의 축합고리기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 -P(=O)R101R102로 표시되고, R101 및 R102는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로 고리기 중 적어도 하나로 이루어진 치환기일 수 있다. 구체적으로 아릴기로 치환될 수 있으며, 상기 아릴기는 전술한 예시가 적용될 수 있다. 예컨대, 포스핀옥사이드기는 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -SiR101R102R103로 표시되고, R101 내지 R103은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로 고리기 중 적어도 하나로 이루어진 치환기일수 있다. 상기 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있으며, 인접한 치환기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022012644-appb-img-000007
등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 헤테로 원자로서 S, O, Se, N 또는 Si를 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 상기 다환이란 헤테로아릴기가 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴기일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬기, 헤테로시클로알킬기, 아릴기 등일 수도 있다. 상기 헤테로아릴기의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 피리딜기, 피롤릴기, 피리미딜기, 피리다지닐기, 푸라닐기, 티오페닐기, 이미다졸릴기, 피라졸릴기, 옥사졸릴기, 이속사졸릴기, 티아졸릴기, 이소티아졸릴기, 트리아졸릴기, 푸라자닐기, 옥사디아졸릴기, 티아디아졸릴기, 디티아졸릴기, 테트라졸릴기, 파이라닐기, 티오파이라닐기, 디아지닐기, 옥사지닐기, 티아지닐기, 디옥시닐기, 트리아지닐기, 테트라지닐기, 퀴놀릴기, 이소퀴놀릴기, 퀴나졸리닐기, 이소퀴나졸리닐기, 퀴노졸리릴기, 나프티리딜기, 아크리디닐기, 페난트리디닐기, 이미다조피리디닐기, 디아자나프탈레닐기, 트리아자인데닐기, 2-인돌릴기, 인돌리지닐기, 벤조티아졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티오페닐기, 벤조퓨라닐기, 디벤조티오페닐기, 디벤조퓨라닐기, 카바졸릴기, 벤조카바졸릴기, 디벤조카바졸릴기, 페나지닐기, 디벤조실롤기, 스피로비(디벤조실롤)기, 디히드로페나지닐기, 페녹사지닐기, 페난트리딜기, 티에닐기, 인돌로[2,3-a]카바졸릴기, 인돌로[2,3-b]카바졸릴기, 인돌리닐기, 10,11-디히드로-디벤조[b,f]아제피닐기, 9,10-디히드로아크리디닐기, 페난트라지닐기, 페노티아지닐기, 프탈라지닐기, 나프틸리디닐기, 페난트롤리닐기, 벤조[c][1,2,5]티아디아졸릴기, 5,10-디히드로디벤조[b,e][1,4]아자실리닐기, 피라졸로[1,5-c]퀴나졸리닐기, 피리도[1,2-b]인다졸릴기, 피리도[1,2-a]이미다조[1,2-e]인돌리닐기, 5,11-디히드로인데노[1,2-b]카바졸릴기 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아민기는 모노알킬아민기; 모노아릴아민기; 모노헤테로아릴아민기; -NH2; 디알킬아민기; 디아릴아민기; 디헤테로아릴아민기; 알킬아릴아민기; 알킬헤테로아릴아민기; 및 아릴헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 상기 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 나프틸아민기, 비페닐아민기, 디비페닐아민기, 안트라세닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기, 비페닐나프틸아민기, 페닐비페닐아민기, 비페닐플루오레닐아민기, 페닐트리페닐레닐아민기, 비페닐트리페닐레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다. 또한, 헤테로아릴렌기는 헤테로아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 헤테로아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
본 발명에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 탄소 원자에 수소 원자가 결합된 것을 의미한다. 다만, 중수소(2H, Deuterium)는 수소의 동위원소이므로, 일부 수소 원자는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"는 치환기로 올 수 있는 위치가 모두 수소 또는 중수소인 것을 의미할 수 있다. 즉, 중수소의 경우 수소의 동위원소로, 일부의 수소 원자는 동위원소인 중수소일 수 있으며, 이 때 중수소의 함량은 0% 내지 100%일 수 있다.
본 발명의 일 실시형태에 있어서, "화학식 또는 화합물 구조에 치환기가 표시되지 않은 경우"에 있어서, "중수소의 함량이 0%", "수소의 함량이 100%", "치환기는 모두 수소" 등 중수소를 명시적으로 배제하지 않는 경우에는 수소와 중수소는 화합물에 있어 혼재되어 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 중수소는 수소의 동위원소(isotope) 중 하나로 양성자(proton) 1개와 중성자(neutron) 1개로 이루어진 중양성자(deuteron)를 원자핵(nucleus)으로 가지는 원소로서, 수소-2로 표현될 수 있으며, 원소기호는 D 또는 2H로 쓸 수도 있다.
본 발명의 일 실시형태에 있어서, 동위원소는 원자 번호(atomic number, Z)는 같지만, 질량수(mass number, A)가 다른 원자를 의미하는 동위원소는 같은 수의 양성자(proton)를 갖지만, 중성자(neutron)의 수가 다른 원소로도 해석할 수 있다.
본 발명의 일 실시형태에 있어서, 특정 치환기의 함량 T%의 의미는 기본이 되는 화합물이 가질 수 있는 치환기의 총 개수를 T1으로 정의하고, 그 중 특정의 치환기의 개수를 T2로 정의하는 경우 T2/T1Х100 = T%로 정의할 수 있다.
즉, 일 예시에 있어서,
Figure PCTKR2022012644-appb-img-000008
로 표시되는 페닐기에 있어서 중수소의 함량 20%라는 것은 페닐기가 가질 수 있는 치환기의 총 개수는 5(식 중 T1)개이고, 그 중 중수소의 개수가 1(식 중 T2)인 경우를 의미할 수 있다. 즉, 페닐기에 있어서 중수소의 함량 20%라는 것인 하기 구조식으로 표시될 수 있다.
Figure PCTKR2022012644-appb-img-000009
또한, 본 발명의 일 실시형태에 있어서, "중수소의 함량이 0%인 페닐기"의 경우 중수소 원자가 포함되지 않은, 즉 수소 원자 5개를 갖는 페닐기를 의미할 수 있다.
본 발명에 있어서, C6 내지 C60의 방향족 탄화수소 고리는 C6 내지 C60개의 탄소와 수소로 이루어진 방향족 고리를 포함하는 화합물을 의미하며, 예를 들어, 페닐, 비페닐, 터페닐, 트리페닐렌, 나프탈렌, 안트라센, 페날렌, 페난트렌, 플루오렌, 피렌, 크리센, 페릴렌, 아줄렌 등을 들 수 있으나, 이에 한정되는 것은 아니며, 상기 탄소수를 충족하는 것으로서 이 분야에 공지된 방향족 탄화수소 고리 화합물을 모두 포함한다.
본 발명은 하기 화학식 1로 표시되는 헤테로 고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2022012644-appb-img-000010
상기 화학식 1에 있어서,
상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 R11은 하기 화학식 2이고,
[화학식 2]
Figure PCTKR2022012644-appb-img-000011
상기 화학식 2에 있어서,
상기 L1은 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
상기 m은 0 내지 5의 정수이고, m이 2 이상인 경우 L1은 서로 같거나 상이하고,
상기 N-Het는 치환 또는 비치환되고, N을 2개 이상 포함하는 C2 내지 C60의 단환 또는 다환의 헤테로고리기이고,
상기 *은 하기 화학식 3과 연결 지점이고,
[화학식 3]
Figure PCTKR2022012644-appb-img-000012
상기 X1은 NRa; O; S; CRbRc; 또는 직접결합이고,
상기 Ra, Rb, Rc, R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
본 발명의 일 실시형태에 있어서, 상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 L1은 직접결합; 치환 또는 비치환된 C6 내지 C30의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴렌기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 L1은 직접결합; 치환 또는 비치환된 C6 내지 C20의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴렌기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 L1은 직접결합; 중수소로 치환 또는 비치환된 C6 내지 C20의 아릴렌기; 또는 중수소로 치환 또는 비치환된 C2 내지 C20의 헤테로아릴렌기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 N-Het는 치환 또는 비치환되고, N을 2개 이상 포함하는 C2 내지 C30의 단환 또는 다환의 헤테로고리기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 N-Het는 치환 또는 비치환되고, N을 2개 이상 포함하는 C2 내지 C20의 단환 또는 다환의 헤테로고리기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 N-Het는 중수소로 치환 또는 비치환되고, N을 2개 이상 포함하는 C2 내지 C20의 단환 또는 다환의 헤테로고리기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 N-Het가 치환기를 가질 경우, 치환기는 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 N-Het가 치환기를 가질 경우, 치환기는 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 N-Het가 치환기를 가질 경우, 치환기는 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 H-Het가 치환기를 가질 경우, 치환기는 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 디벤조퓨라닐기; 치환 또는 비치환된 디벤조티오페닐기; 치환 또는 비치환된 나프토벤조퓨라닐기; 치환 또는 비치환된 카바졸릴기; 치환 또는 비치환된 나프토벤조티오페닐기; 또는 치환 또는 비치환된 벤조카바졸릴기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Ra, Rb, Rc, R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra, Rb, Rc, R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra, Rb, Rc, R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ra는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 터페닐기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rb 및 Rc는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C20의 알킬기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rb 및 Rc는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 메틸기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 0% 초과, 1% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하, 60%이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 30% 내지 80%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 50% 내지 70%일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2 중 어느 하나로 표시되는 헤테로 고리 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2022012644-appb-img-000013
[화학식 1-2]
Figure PCTKR2022012644-appb-img-000014
상기 화학식 1-1 및 1-2에 있어서,
상기 R1 내지 R10은 상기 화학식 1의 정의와 동일하고,
상기 R11의 정의는 상기 화학식 2의 정의와 동일하고,
상기 X1, R21 내지 R24는 상기 화학식 3의 정의와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 화학식 2는 하기 화학식 4로 표시되는 것일 수 있다.
[화학식 4]
Figure PCTKR2022012644-appb-img-000015
상기 화학식 4에 있어서,
상기 X11 내지 X15는 서로 같거나 상이하고, 각각 독립적으로 N; 또는 CRd이고,
상기 X11 내지 X15 중 적어도 2개 이상은 N이고,
상기 CRd가 2개 이상인 경우 서로 같거나 상이하고,
상기 Rd는 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 L1 및 m의 정의는 상기 화학식 2에서의 정의와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 Rd는 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rd는 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rd는 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 4는 하기 화학식 4-1 내지 4-4 중 어느 하나로 표시되는 것일 수 있다.
[화학식 4-1]
Figure PCTKR2022012644-appb-img-000016
[화학식 4-2]
Figure PCTKR2022012644-appb-img-000017
[화학식 4-3]
Figure PCTKR2022012644-appb-img-000018
[화학식 4-4]
Figure PCTKR2022012644-appb-img-000019
상기 화학식 4-1 내지 4-4에 있어서,
상기 R31 내지 R43는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 L1 및 m의 정의는 상기 화학식 2에서의 정의와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 R31 및 R32는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R31 및 R32는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R31 및 R32는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R31 및 R32는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 디벤조퓨라닐기; 치환 또는 비치환된 디벤조티오페닐기; 치환 또는 비치환된 나프토벤조퓨라닐기; 치환 또는 비치환된 카바졸릴기; 또는 치환 또는 비치환된 나프토벤조티오페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R33 내지 R35는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R33 내지 R35는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R33 내지 R35는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R33 내지 R35는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R36 내지 R40은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R36 내지 R40은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R36 내지 R40은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R36 내지 R40은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 카바졸릴기; 치환 또는 비치환된 디벤조퓨라닐기; 치환 또는 비치환된 나프토벤조퓨라닐기; 치환 또는 비치환된 나프토벤조티오페닐기; 또는 치환 또는 비치환된 벤조카바졸릴기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R41 내지 R43은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R41 내지 R43은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R41 내지 R43은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R41 내지 R43은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 또는 치환 또는 비치환된 비페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 4-2는 하기 화학식 4-2-1 내지 4-2-3 중 어느 하나로 표시되는 것일 수 있다.
[화학식 4-2-1]
Figure PCTKR2022012644-appb-img-000020
[화학식 4-2-2]
Figure PCTKR2022012644-appb-img-000021
[화학식 4-2-3]
Figure PCTKR2022012644-appb-img-000022
상기 화학식 4-2-1 내지 4-2-3에 있어서,
상기 Y는 O; 또는 S이고,
상기 R44 내지 R56은 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 L1 및 m의 정의는 상기 화학식 2에서의 정의와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 R44 내지 R46은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R44 내지 R46은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R44 내지 R46은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R44 내지 R46은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 나프틸기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R47 내지 R51은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R47 내지 R51은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R47 내지 R51은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R47 내지 R51은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 카바졸릴기; 치환 또는 비치환된 디벤조퓨라닐기; 치환 또는 비치환된 디벤조티오페닐기; 치환 또는 비치환된 나프토벤조퓨라닐기; 치환 또는 비치환된 벤조카바졸릴기; 또는 치환 또는 비치환된 나프토벤조티오페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R52 내지 R56은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R52 내지 R56은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R52 내지 R56은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성할 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R52 내지 R56은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 카바졸릴기; 치환 또는 비치환된 디벤조퓨라닐기; 치환 또는 비치환된 디벤조티오페닐기; 치환 또는 비치환된 나프토벤조퓨라닐기; 또는 치환 또는 비치환된 나프토벤조티오페닐기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리를 형성할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는 헤테로 고리 화합물일 수 있다.
Figure PCTKR2022012644-appb-img-000023
Figure PCTKR2022012644-appb-img-000024
Figure PCTKR2022012644-appb-img-000025
Figure PCTKR2022012644-appb-img-000026
Figure PCTKR2022012644-appb-img-000027
Figure PCTKR2022012644-appb-img-000028
Figure PCTKR2022012644-appb-img-000029
Figure PCTKR2022012644-appb-img-000030
Figure PCTKR2022012644-appb-img-000031
Figure PCTKR2022012644-appb-img-000032
Figure PCTKR2022012644-appb-img-000033
Figure PCTKR2022012644-appb-img-000034
Figure PCTKR2022012644-appb-img-000035
Figure PCTKR2022012644-appb-img-000036
Figure PCTKR2022012644-appb-img-000037
Figure PCTKR2022012644-appb-img-000038
Figure PCTKR2022012644-appb-img-000039
Figure PCTKR2022012644-appb-img-000040
Figure PCTKR2022012644-appb-img-000041
Figure PCTKR2022012644-appb-img-000042
Figure PCTKR2022012644-appb-img-000043
Figure PCTKR2022012644-appb-img-000044
Figure PCTKR2022012644-appb-img-000045
Figure PCTKR2022012644-appb-img-000046
Figure PCTKR2022012644-appb-img-000047
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 전자 저지층 물질, 정공 수송층 물질, 발광층 물질, 전자 수송층 물질, 정공 저지층 물질 및 전하 생성층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 상기 화학식 1의 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
또한, 본 발명은
제1 전극;
상기 제1 전극과 대향하여 구비된 제2 전극; 및
상기 제 1전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 것인, 유기 발광 소자에 관한 것이다.
본 발명의 일 실시형태에 있어서, 상기 제1 전극은 양극일 수 있고, 상기 제2 전극은 음극일 수 있다.
또 다른 일 실시형태에 있어서, 상기 제1 전극은 음극일 수 있고, 상기 제2 전극은 양극일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 적색 유기 발광 소재의 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 청색 유기 발광 소재의 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 녹색 유기 발광 소재의 재료로 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자는 적색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 적색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 청색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 청색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 유기 발광 소자는 녹색 유기 발광 소자일 수 있으며, 상기 화학식 1로 표시되는 헤테로 고리 화합물은 녹색 유기 발광 소자의 발광층 재료로 사용될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 유기 발광 소자는 전술한 헤테로 고리 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 헤테로 고리 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 전자 저지층, 정공 수송층, 발광층, 전자 수송층, 정공 저지층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기물층은 하기 화학식 5로 표시되는 헤테로 고리 화합물을 추가로 포함하는 것인 유기 발광 소자를 제공한다.
[화학식 5]
Figure PCTKR2022012644-appb-img-000048
상기 화학식 5에 있어서,
상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 R71은 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 또는 하기 화학식 6이고,
상기 헤테로아릴기의 헤테로 원자가 N일 경우, 헤테로 원자는 1개 포함되고,
[화학식 6]
Figure PCTKR2022012644-appb-img-000049
상기 화학식 6에 있어서,
상기 L2는 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
상기 n은 0 내지 5의 정수이고, n이 2 이상인 경우 L2는 서로 같거나 상이하고,
상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
상기 *은 하기 화학식 7과 연결 지점이고,
[화학식 7]
Figure PCTKR2022012644-appb-img-000050
상기 X2은 NRe; O; S; CRfRg; 또는 직접결합이고,
상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
본 발명의 일 실시형태에 있어서, 상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 R71은 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; 또는 상기 화학식 6으로 표시되는 기일 수 있으며, 상기 헤테로아릴기의 헤테로 원자가 N일 경우 헤테로 원자는 1개 포함될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11은 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; 또는 상기 화학식 6으로 표시되는 기일 수 있으며, 상기 헤테로아릴기의 헤테로 원자가 N일 경우 헤테로 원자는 1개 포함될 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R11은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 디벤조티오페닐기; 치환 또는 비치환된 디벤조퓨라닐기; 치환 또는 비치환된 카바졸릴기; 치환 또는 비치환된 나프토벤조퓨라닐기; 치환 또는 비치환된 나프토벤조티오페닐기; 또는 상기 화학식 6으로 표시되는 기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 L2는 치환 또는 비치환된 C6 내지 C30의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴렌기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 L2는 치환 또는 비치환된 C6 내지 C20의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴렌기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 L2는 중수소로 치환 또는 비치환된 C6 내지 C20의 아릴렌기; 또는 중수소로 치환 또는 비치환된 C2 내지 C20의 헤테로아릴렌기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 중수소로 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 중수소로 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 비페닐기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 디벤조퓨라닐기; 또는 치환 또는 비치환된 디벤조티오페닐기일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C30의 알킬기; 치환 또는 비치환된 C2 내지 C30의 알케닐기; 치환 또는 비치환된 C2 내지 C30의 알키닐기; 치환 또는 비치환된 C1 내지 C30의 알콕시기; 치환 또는 비치환된 C3 내지 C30의 시클로알킬기; 치환 또는 비치환된 C2 내지 C30의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C30의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C30의 알킬기; 치환 또는 비치환된 C6 내지 C30의 아릴기; 또는 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C2 내지 C20의 알케닐기; 치환 또는 비치환된 C2 내지 C20의 알키닐기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 치환 또는 비치환된 C3 내지 C20의 시클로알킬기; 치환 또는 비치환된 C2 내지 C20의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 또는 -NR101R102로 표시되는 기이거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C20의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로 고리를 형성하고, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 또는 치환 또는 비치환된 C2 내지 C20의 헤테로아릴기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Re는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 또는 치환 또는 비치환된 터페닐기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rf 및 Rg는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C20의 알킬기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 Rf 및 Rg는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 메틸기일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 또는 중수소일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 5로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 0% 초과, 1% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하, 60%이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 5로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 5로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 5로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 30% 내지 80%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 5로 표시되는 화합물은 치환기로서 중수소를 포함하지 않을 수 있거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량은 50% 내지 70%일 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 더 우수한 효율 및 수명 효과를 나타낸다. 이로부터 두 화합물을 동시에 포함하는 경우 엑시플렉스(exciplex) 현상이 일어남을 예상할 수 있다.
상기 엑시플렉스(exciplex) 현상은 두 분자간 전자 교환으로 도너(donor, phost)의 HOMO 에너지 레벨, 억셉터(acceptor, n-host) LUMO 에너지 레벨 크기의 에너지를 방출하는 현상이다. 두 분자간 엑시플렉스(exciplex) 현상이 일어나면 역항간 교차(Reverse Intersystem Crossing, RISC)가 일어나게 되고, 이로 인하여 형광의 내부양자 효율이 100%까지 증가할 수 있다. 정공 수송 능력이 좋은 도너(donor, p-host)와 전자 수송 능력이 좋은 억셉터(acceptor, n-host)가 발광층의 호스트로 사용될 경우, 정공은 p-host로 주입되고, 전자는 n-host로 주입되기 때문에 구동 전압을 낮출 수 있고, 그로 인해 수명 향상에 도움을 줄 수 있다. 즉, 상기 억셉터(acceptor) 로서 상기 화학식 1로 표시되는 화합물을 사용하고, 상기 도너(donor)로서 상기 화학식 5로 표시되는 화합물을 사용하는 경우, 우수한 소자 특성을 나타낸다.
본 발명의 일 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 0% 초과, 1% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상 또는 50% 이상일 수 있고, 100% 이하, 90% 이하, 80% 이하, 70% 이하, 60% 이하일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 20% 내지 90%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 30% 내지 80%일 수 있다.
본 발명의 다른 실시형태에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 경우, 상기 화합물 중 적어도 하나는 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 50% 내지 70%일 수 있다.
본 발명의 일 실시형태에 있어서, 상기 화학식 5로 표시되는 헤테로 고리 화합물은 하기 화합물 중 선택되는 어느 하나일 수 있다.
Figure PCTKR2022012644-appb-img-000051
Figure PCTKR2022012644-appb-img-000052
Figure PCTKR2022012644-appb-img-000053
Figure PCTKR2022012644-appb-img-000054
Figure PCTKR2022012644-appb-img-000055
Figure PCTKR2022012644-appb-img-000056
또한, 본 발명의 일 실시형태는 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 포함하는 유기 발광 소자의 유기물층용 조성물을 제공한다.
상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 5로 표시되는 헤테로 고리 화합물에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명의 일 실시형태에 있어서, 상기 유기 발광 소자의 유기물층용 조성물 내 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물의 중량비는 1 : 10 내지 10 : 1일 수 있고, 1 : 8 내지 8 : 1일 수 있고, 1 : 5 내지 5 : 1 일 수 있으며, 1 : 2 내지 2 : 1일 수 있으나, 이에만 한정되는 것은 아니다.
상기 유기 발광 소자의 유기물층용 조성물은 유기 발광 소자의 유기물 형성시 이용할 수 있고, 특히, 발광층의 호스트 형성시 보다 바람직하게 이용할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 포함하고, 인광 도펀트와 함께 사용할 수 있다.
상기 인광 도펀트 재료로는 당 기술분야에 알려져 있는 것들을 사용할 수 있다. 예컨대, LL'MX', LL'L"M, LMX'X", L2MX' 및 L3M로 표시되는 인광 도펀트 재료를 사용할 수 있으나, 이들 예에 의하여 본 발명의 범위가 한정되는 것은 아니다.
상기 M은 이리듐, 백금, 오스뮴 등이 될 수 있다.
상기 L은 sp2 탄소 및 헤테로 원자에 의하여 상기 M에 배위되는 음이온성 2좌 배위자이고, X는 전자 또는 정공을 트랩하는 기능을 수행할수 있다. L의 비한정적인 예로는 2-(1-나프틸)벤조옥사졸, 2-페닐벤조옥사졸, 2-페닐벤조티아졸, 7,8-벤조퀴놀린, 페닐피리딘, 벤조티오페닐피리딘, 3-메톡시-2-페닐피리딘, 티오페닐피리딘, 톨릴피리딘 등이 있다. X' 및 X"의 비한정적인 예로는 아세틸아세토네이트(acac), 헥사플루오로아세틸아세토네이트, 살리실리덴, 피콜리네이트, 8-히드록시퀴놀리네이트 등이 있다.
상기 인광 도펀트의 구체적인 예를 하기에 표시하나, 이들 예로만 한정되는 것은 아니다.
Figure PCTKR2022012644-appb-img-000057
본 발명의 일 실시형태에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 헤테로 고리 화합물, 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 포함하고, 이리듐계 도펀트와 함께 사용할 수 있다.
본 발명의 일 실시형태에 있어서, 상기 이리듐계 도펀트는 적색 인광 도펀트로 (piq)2(Ir)(acac) 또는 녹색 인광 도펀트로 Ir(ppy)3이 사용될 수 있다.
본 발명의 일 실시형태에 있어서, 상기 도펀트의 함량은 발광층 전체 중량을 기준으로 1% 내지 15%, 바람직하게는 2% 내지 10%, 보다 바람직하게는 3% 내지 7%의 함량을 가질 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 주입층 또는 전자 수송층을 포함하고, 상기 전자 주입층 또는 전자 수송층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
본 발명의 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 저지층 또는 정공 저지층을 포함하고, 상기 전자 저지층 또는 정공 저지층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 전자 수송층, 발광층 또는 정공 저지층을 포함하고, 상기 전자 수송층, 발광층 또는 정공 저지층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 유기물층은 발광층을 포함하고, 상기 발광층은 호스트 물질을 포함하며, 상기 호스트 물질은 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 포함할 수 있으며, 상기 호스트 물질 중 적어도 1개는 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있으며, 다른 하나는 상기 화학식 5로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
또 다른 실시형태에 따른 유기 발광 소자에서, 상기 발광층은 2개 이상의 호스트 물질을 예비 혼합(pre-mixed)하여 사용할 수 있으며, 상기 2개 이상의 호스트 물질 중 적어도 1개는 상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함할 수 있으며, 다른 하나는 상기 화학식 5로 표시되는 헤테로 고리 화합물을 포함할 수 있다.
상기 예비 혼합(pre-mixed)은 상기 발광층은 2개 이상의 호스트 물질을 유기물층에 증착하기 전에 먼저 재료를 섞어서 하나의 공원에 담아 혼합하는 것을 의미한다.
본 발명의 일 실시형태에 따른 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층, 전자 주입층, 전자 저지층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함할 수 있다.
도 1 내지 도 3에 본 발명의 일 실시형태에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)을 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 발명의 일 실시형태에 있어서,
기판을 준비하는 단계;
상기 기판 상에 제1 전극을 형성하는 단계;
상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계; 및
상기 1층 이상의 유기물층 상에 제2 전극을 형성하는 단계;를 포함하는 유기 발광 소자의 제조 방법으로서, 상기 1층 이상의 유기물층을 형성하는 단계가 본 발명의 일 실시형태에 따른 유기물층용 조성물을 이용하여 1층 이상의 유기물층을 형성하는 단계를 포함하는 것인 유기 발광 소자의 제조 방법을 제공한다.
본 발명의 일 실시형태에 있어서, 상기 유기물층을 형성하는 단계는 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 예비 혼합(pre-mixed)하고, 열 진공 증착 방법을 이용하여 형성하는 것일 수 있다.
상기 예비 혼합(pre-mixed)은, 상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 유기물층에 증착하기 전 먼저 재료를 섞어서 하나의 공급원에 담아 혼합하는 것을 의미한다.
예비 혼합된 재료는 본 출원의 일 실시상태에 따른 유기물층용 조성물로 언급될 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물을 포함하는 유기물층은, 필요에 따라 다른 물질을 추가로 포함할 수 있다.
상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물을 동시에 포함하는 유기물층은, 필요에 따라 다른 물질을 추가로 포함할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 헤테로 고리 화합물 또는 상기 화학식 5로 표시되는 헤테로 고리 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다. 상기 양극 재료의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다. 상기 음극 재료의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이에 한정되는 것은 아니다.
정공 주입층 재료로는 공지된 정공 주입층 재료를 이용할 수도 있는데, 예를 들면, 미국 특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 트리스(4-카바조일-9-일페닐)아민(TCTA), 4,4',4"-트리스[페닐(m-톨릴)아미노]트리페닐아민(m-MTDATA), 1,3,5-트리스[4-(3-메틸페닐페닐아미노)페닐]벤젠(m-MTDAPB), 용해성이 있는 전도성 고분자인 폴리아닐린/도데실벤젠술폰산(Polyaniline/Dodecylbenzenesulfonic acid) 또는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate)), 폴리아닐린/캠퍼술폰산(Polyaniline/Camphor sulfonic acid) 또는 폴리아닐린/폴리(4-스티렌술포네이트)(Polyaniline/Poly(4-styrenesulfonate)) 등을 사용할 수 있다.
정공 수송층 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송층 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입층 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광층 재료로는 적색, 녹색 또는 청색 발광재료가 사용될 수 있으며, 필요한 경우, 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 이 때, 2 이상의 발광 재료를 개별적인 공급원으로 증착하여 사용하거나, 예비 혼합하여 하나의 공급원으로 증착하여 사용할 수 있다. 또한, 발광층 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료를 사용할 수도 있다. 발광층 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
발광층 재료의 호스트를 혼합하여 사용하는 경우에는, 동일 계열의 호스트를 혼합하여 사용할 수도 있고, 다른 계열의 호스트를 혼합하여 사용할 수도 있다. 예를 들어, n 타입 호스트 재료 또는 p 타입 호스트 재료 중 어느 두 종류 이상의 재료를 선택하여 발광층의 호스트 재료로 사용할 수 있다.
본 발명의 일 실시형태에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명의 일 실시형태에 따른 헤테로 고리 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
<제조예>
제조예 1. 화합물 A의 제조
Figure PCTKR2022012644-appb-img-000058
제조예 1-1. 화합물 1-A의 제조
1H-1아자디벤조[g,i,j]나프토[2,1,8-cde]아쥴렌(1H-1-azadibenzo[g,ij]naphtho[2,1,8-cde]azulene) 30g(103mM)을 클로로포름(chloroform) 500mL에 녹인 후 브롬(Br2) 5.3mL(103mM)을 천천히 적가시킨 후 1시간 동안 교반하였다.
반응이 완결된 후 메탄올 300mL를 첨가하여 화합물 1-A를 35.1g(수율 92%) 얻었다.
제조예 1-2. 화합물 A의 제조
상기 화합물 1-A 20g(54mM), 2-(브로모페닐)보론산(2-bromophenyl)boronic acid) 14.1g(70.2mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 9.9g(10.8mM), 트리사이클로헥실포스핀(Tricyclohexylphosphine, P(Cy)3) 12.1g(43.2mM) 및 1,8-디아자바이사이클로[5,4,0]언덱-7-엔(1,8-Diazabicyclo[5.4.0]undec-7-ene, DBU) 20mL를 디메틸포름아미드(dimethylformamide, DMF)에 녹인 후 8시간 동안 환류시켰다.
그 후 반응 종결 후 상온에서 물(H2O) 300mL를 넣고 교반 후 감압 여과하였다. 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하였고, 메탄올 재결정하여 목적 화합물 A를 13.9g(수율 70.4%) 얻었다.
제조예 2. 화합물 B의 제조
Figure PCTKR2022012644-appb-img-000059
제조예 2-1. 화합물 5-B의 제조
1H-1아자디벤조[g,i,j]나프토[2,1,8-cde]아쥴렌(1H-1-azadibenzo[g,ij]naphtho[2,1,8-cde]azulene) 30g(103mM), 디-터트-부틸 디카보네이트(di-tert-butyl decarbonate) 27g(123.6mM) 및 4-디메틸아미노피리딘(4-Dimethylaminopyridine, DMAP) 12.6g(103mM)를 아세토나이트릴(acetonitrile) 500mL에 녹인 후 상온에서 1시간 동안 교반하였다.
반응이 완결된 후 감압여과 하였으며, 물/메탄올(H2O/MeOH)로 씻어주어, 화합물 5-B를 31.8g(수율 78.8%) 얻었다.
제조예 2-2. 화합물 4-B의 제조
화합물 5-B 31g(79.2mM)를 클로로포름(chloroform) 500mL에 녹인 후 브롬(Br2) 4.1mL(79.2mM)을 천천히 적가시킨 후 1시간 동안 교반하였다. 반응이 완결된 후 메탄올 300mL를 첨가하여 화합물 화합물 4-B를 28.1g(75.4%) 얻었다.
제조예 2-3. 화합물 3-B의 제조
화합물 4-B 28g(59.5mM), 2-클로로아닐린(2-chloroaniline) 9.1g(71.4mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 1.7g(3mM), 2-디사이클로헥실포스피노-2',6'-디메톡시비페닐(2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl, Sphos) 2.5g(6mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 11.4g(119mM)를 톨루엔(toluene) 500mL에 녹인 후 1시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여, 화합물 3-B를 28.1g(수율 91.3%) 얻었다.
제조예 2-4. 화합물 2-B의 제조
화합물 3-B 28g(54.2mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 4.9g(5.4mM), 트리사이클로헥실포스핀(Tricyclohexylphosphine, P(Cy)3) 6.1g(21.7mM) 및 1,8-디아자바이사이클로[5,4,0]언덱-7-엔(1,8-Diazabicyclo[5.4.0]undec-7-ene, DBU) 30mL를 자일렌(xylene) 400mL에 녹인 후 24시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여, 화합물 2-B를 13.5g(수율 51.8%) 얻었다.
제조예 2-5. 화합물 1-B의 제조
화합물 2-B 13.5g(28.1mM), 아이오도벤젠(iodobenzene) 6.9g(33.7mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 0.8g(1.4mM), 2-디사이클로헥실포스피노-2',6'-디메톡시비페닐(2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl, Sphos) 1.1g(2.8mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 5.4g(56.2mM)를 자일렌(xylene) 500mL에 녹인 후 1시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여, 화합물 1-B를 13.1g(수율 83.6%) 얻었다.
제조예 2-6. 화합물 B의 제조
화합물 1-B 13.1g(23.5mM) 및 트리플루오로아세트산(trifluoroacetic acid) 16mL를 디클로로메탄(dichloromethane, DCM) 150mL에 녹인 후 1시간 동안 교반하였다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여, 목적 화합물 B를 9.8g(수율 88.5%) 얻었다.
제조예 3. 화합물 C의 제조
Figure PCTKR2022012644-appb-img-000060
제조예 3-1. 화합물 3-C의 제조
1H-1아자디벤조[g,i,j]나프토[2,1,8-cde]아쥴렌(1H-1-azadibenzo[g,ij]naphtho[2,1,8-cde]azulene) 30g(103mM)을 클로로포름(chloroform) 500mL 에 녹인 후 브롬(Br2) 5.3mL(103mM)을 천천히 적가시킨 후 1시간 동안 교반하였다.
반응이 완결된 후 메탄올 300mL를 첨가하여 화합물 3-C를 35.1g(수율 92.0%) 얻었다.
제조예 3-2. 화합물 2-C의 제조
화합물 3-C 35g(94.5mM), (2-(메틸싸이오)페닐)보론산((2-(methylthio)phenyl)boronic acid) 17.5g(104mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 5.4g(4.7mM) 및 탄산칼륨(K2CO3) 26.1g(189mM)를 톨루엔(toluene) 400mL 및 물(H2O) 80mL에 녹인 후 8시간 동안 환류시켰다.
반응이 완결된 후 상온에서 물(H2O) 300mL를 첨가하여 교반한 후 추출하였다. 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여, 화합물 2-C를 31.2g(수율 79.8%) 얻었다.
제조예 3-3. 화합물 1-C의 제조
화합물 2-C 31g(75mM)를 아세트산(glacial acetic acid) 400mL에 녹인 후 교반하였다. 그 후 과산화수소(H2O2) 2.5g(75mM)를 아세트산(acetic acid)에 녹여 천천히 적가한 후 12시간 동안 교반하였다.
반응이 완결된 후 상온에서 농축 후 감압여과하여 화합물 1-C를 30.5g(수율 94.7%) 얻었다.
제조예 3-4. 화합물 C의 제조
화합물 1-C 30g(69.8mM)을 디클로로메탄(dichloromethane, DCM) 600mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 120mL를 천천히 넣어준 후 24시간 동안 교반하였다. 그 후, 물(H2O) 및 피리딘(pyridine)을 8:1의 부피비로 혼합한 용액 3000mL에 반응물을 첨가한 후 30분 동안 환류시켰다.
상온에서 감압여과한 후 컬럼크로마토그래피(디클로로메탄:헥산=1:5(부피비))로 정제하여, 목적 화합물 C를 14.2g(수율 51.1%) 얻었다.
제조예 4. 화합물 D의 제조
Figure PCTKR2022012644-appb-img-000061
제조예 4-1. 화합물 2-D의 제조
화합물 4-B 25g(53.1mM), 2-클로로페놀(2-chlorophenol) 7.5g(58.4mM), 탄산세슘(Cs2CO3) 34.6g(106.2mM)를 디메틸아민(dimethylamine, DMA) 300mL에 녹인 후 1시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:4(부피비))로 정제하여 화합물 2-D를 17.9g(수율 65.2%) 얻었다.
제조예 4-2. 화합물 1-D의 제조
화합물 2-D 17.9g(34.6mM), 초산팔라듐(Pd(OAc)2) 0.8g(3.5mM), 트리사이클로헥실포스핀 테트라플루오로보레이트(Tricyclohexylphosphine tetrafluoroborate, PCy3·HBF4) 2.5g(6.9M) 및 탄산칼륨(K2CO3) 19.1g(138.4mM)를 디메틸아민(dimethylamine, DMA) 200mL에 녹인 후 12시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여 화합물 1-D를 12.5g(수율 75.1%) 얻었다.
제조예 4-3. 화합물 D의 제조
화합물 1-D 12.5g(26.0mM) 및 트리플루오로아세트산(trifluoroacetic acid) 20mL를 디클로로메탄(dichloromethane, DCM) 150mL에 녹인 후 1시간 동안 교반하였다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:1(부피비))로 정제하여 목적 화합물 D를 7.4g(수율 74.6%) 얻었다.
제조예 5. 화합물 E의 제조
Figure PCTKR2022012644-appb-img-000062
제조예 5-1. 화합물 2-E의 제조
화합물 4-B 20.0g(42.5mM), 2-클로로벤젠싸이올(2-chlorobenzenethiol) 7.4g(51.0mM), 요오드화구리(CuI) 8.1g(42.5mM), 사이클로헥산-1,2-디아민-1,2-디아민(cyclohexane-1,2-diamine) 4.9g(42.5mM) 및 인산칼륨(K3PO4) 18g(85.0mM)를 1,4-디옥세인(1,4-Dioxane) 250mL에 녹인 후 1시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:4(부피비))로 정제하여 화합물 2-E를 16.2g(수율 71.3%) 얻었다.
제조예 5-2. 화합물 1-E의 제조
화합물 2-E 16g(30mM), 초산팔라듐(Pd(OAc)2) 0.7g(3mM), 테트라플루오로보레이트(Tricyclohexylphosphine tetrafluoroborate, PCy3·HBF4) 2.2g(6mM), 탄산칼륨(K2CO3) 16.6g(120mM)를 디메틸아민(dimethylamine, DMA) 200mL에 녹인 후 12시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하여 화합물 1-E를 10.7g(수율 71.7%) 얻었다.
제조예 5-3. 화합물 E의 제조
화합물 1-E 10.7g(21.5mM) 및 트리플루오로아세트산(trifluoroacetic acid) 16mL를 디클로로메탄(dichloromethane, DCM) 150mL에 녹인 후 1시간 동안 교반하였다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:1(부피비))로 정제하여, 목적 화합물 E 7.5g를(수율 87.9%) 얻었다.
제조예 6. 화합물 1-1-3의 제조
Figure PCTKR2022012644-appb-img-000063
2,4-디클로로퀴나졸린(2,4-dichloroquinazoline) 20g(100.5mM), [1,1'-비페닐]-3-일보론산([1,1'-biphenyl]-3-ylboronic acid) 29.9g(150.8mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 5.8g(5.0mM), 탄산나트륨(Na2CO3) 21.3g(201mM)를 테트라하이드로퓨란(tethrahydrofuran, THF) 250mL 및 물(H2O) 50mL에 녹인 후 환류시켰다.
그 후, 물(H2O) 200mL를 첨가하여 감압여과 하여 화합물 1-1-3을 22.3g(수율 70%) 얻었다.
2,4-디클로로퀴나졸린 대신 하기 표 1의 중간체 A를 사용하고, [1,1'-비페닐]-3-일보론산 대신 하기 표 1의 중간체 B를 사용한 것을 제외하고 상기 제조예 6과 동일한 방법으로 제조하여 하기 표 1과 같이 목적 화합물을 제조하였다. 하기 표 1의 목적 화합물은 본 발명의 화학식 1의 헤테로 고리 화합물의 R11 해당하는 화합물이다.
Figure PCTKR2022012644-appb-img-000064
Figure PCTKR2022012644-appb-img-000065
Figure PCTKR2022012644-appb-img-000066
제조예 7. 화합물 1-1-483의 제조
Figure PCTKR2022012644-appb-img-000067
제조예 7-1. 화합물 1-3-483의 제조
3-브로모-1,1'-비페닐(3-bromo-1,1'-biphenyl) 10g(42.9mM)을 벤젠-d6(benzene-d6) 100mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 24.6mL(278.9mM)을 천천히 적가(dropwise)한 후 1시간 동안 교반하였다. 반응이 완결된 후 메탄올(methanol) 300mL를 넣어 반응을 종결시켰으며, 화합물 1-3-483을 9.5g(수율 91.4%) 얻었다.
제조예 7-2. 화합물 1-2-483의 제조
화합물 1-3-483 9.5g(39.2mM), 4,4,4',4',5,5,5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란)(4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)) 11.9g(47.0mM), [1,1'-비스(디페닐포스피노)페로센]팔라듐(II)디클로라이드([1,1'Bis(diphenylphosphino)ferrocene]palladium(II) dichloride, PdCl2(dppf)) 1.5g(2.0mM) 및 포타슘아세테이트(Potassium acetate, KOAc) 7.7g(78.4mM)를 1,4-디옥세인(1,4-Dioxane) 100mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하였고, 메탄올로 재결정하여 화합물 1-2-483을 11g(수율 96.9%) 얻었다.
제조예 7-3. 화합물 1-1-483의 제조
화합물 1-2-483 11g(38mM), 2,4-디클로로퀴나졸린(2,4-dichloroquinazoline) 8.3g(41.8mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 2.2g(1.9mM) 및 탄산칼륨(K2CO3) 10.5g(76.0mM)를 1,4-디옥세인(1,4-Dioxane) 100mL 및 물(H2O) 20mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 감압여과한 후 메탄올로 재결정하여 목적 화합물 1-1-483을 8.9g(수율 71.3%) 얻었다.
제조예 8. 화합물 1-1-484의 제조
Figure PCTKR2022012644-appb-img-000068
제조예 8-1. 1-2-484의 제조
[1,1'-비페닐]3]일보론산([1,1'-biphenyl]-3-ylboronic acid) 10g(50.5mM), 2,4-디클로로퀴나졸린(2,4-dichloroquinazoline) 11.1g(55.6mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 2.9g(2.5mM), 탄산칼륨(K2CO3) 14.0g(101.0mM)를 1,4-디옥세인(1,4-Dioxane) 100mL 및 물(H2O) 20mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 감압여과한 후 메탄올로 재결정하여 화합물 1-2-484을 12.1g(수율 75.6%) 얻었다.
제조예 8-2. 화합물 1-1-484의 제조
화합물 1-2-484 12g(37.9mM)을 벤젠-d6(benzene-d6) 120mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 21.8mL(246.4mM)을 천천히 적가(dropwise)한 후 1시간 동안 교반하였다. 반응이 완결된 후 메탄올(methanol) 300mL를 넣어 반응을 종결시켰으며, 목적 화합물 1-1-484을 11.4g(수율 91.3%) 얻었다.
제조예 9. 화합물 1-1-486의 제조
Figure PCTKR2022012644-appb-img-000069
제조예 9-1. 화합물 1-3-486의 제조
1-브로모벤젠-2,3,4,5,6-d5(1-bromobenzene-2,3,4,5,6-d5) 20g(123.4mM), 4,4,4',4',5,5,5',5'-옥타메틸-2,2'-비(1,3,2-디옥사보로란)(4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)) 47g(185.1mM), [1,1'-비스(디페닐포스피노)페로센]팔라듐(II)디클로라이드([1,1'Bis(diphenylphosphino)ferrocene]palladium(II) dichloride, PdCl2(dppf)) 4.5g(6.2mM) 및 포타슘아세테이트(Potassium acetate, KOAc) 30.3g(308.5mM)를 1,4-디옥세인(1,4-Dioxane) 200mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하였고, 메탄올로 재결정하여 화합물 1-3-486을 21.9g(수율 84.8%) 얻었다.
제조예 9-2. 화합물 1-2-486의 제조
2,4,6-트리클로로1,3,5-트리아진(2,4,6-trichloro-1,3,5-triazine) 8g(43.4mM), 화합물 1-3-486 19g(91.1mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 2.5g(2.2mM) 및 탄산칼륨(K2CO3) 15g(108.5mM)를 1,4-디옥세인(1,4-Dioxane) 100mL 및 물(H2O) 20mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 감압여과한 후 메탄올로 재결정하여 화합물 1-2-486을 9g(수율 74.7%) 얻었다.
제조예 9-3. 화합물 1-1-486의 제조
화합물 1-2-486 9g(32.4mM), (4-클로로나프탈렌-1-일)보론산((4-chloronaphthalen-1-yl)boronic acid) 6.7g(32.4mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 1.8g(1.6mM) 및 탄산칼륨(K2CO3) 11.2g(81mM)를 1,4-디옥세인(1,4-Dioxane) 100mL 및 물(H2O) 20mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 감압여과한 후 메탄올로 재결정하여 목적 화합물 1-1-486을 11.1g(수율 84.9%) 얻었다.
제조예 10. 화합물 1-1-487의 제조
Figure PCTKR2022012644-appb-img-000070
제조예 10-1. 화합물 1-2-487의 제조
2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 10g(37.4mM), (4-클로로나프탈렌-1-일)보론산((4-chloronaphthalen-1-yl)boronic acid) 7.7g(37.4mM), 테트라키스(트리페닐포스핀)팔라듐(0)(tetrakis(triphenylhosphine)palladium(0), Pd(PPh3)4) 2.2g(1.9mM) 및 탄산칼륨(K2CO3) 12.9g(93.5mM)를 1,4-디옥세인(1,4-Dioxane) 100mL 및 물(H2O) 20mL에 녹인 후 1시간 동안 환류시켰다. 반응물을 감압여과한 후 메탄올로 재결정하여 화합물 1-2-487을 12.1g(수율 82.1%) 얻었다.
제조예 10-2. 화합물 1-1-487의 제조
화합물 1-2-487 12g(30.5mM)을 벤젠-d6(benzene-d6) 120mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 17.5mL(198.3mM)을 천천히 적가(dropwise)한 후 1시간 동안 교반하였다. 반응이 완결된 후 메탄올(methanol) 300mL를 넣어 반응을 종결시켰으며, 화합물 1-1-487을 11.4g(수율 91.1%) 얻었다.
제조예 11. 화합물 1-3의 제조
Figure PCTKR2022012644-appb-img-000071
상기 제조예 6에서 제조한 화합물 1-1-3 10g(31.6mM), 상기 제조예 2에서 제조한 화합물 B 14.4g(31.6mM) 및 탄산세슘(Cs2CO3) 20.6g(63.2mM)를 디메틸아민(dimethylamine, DMA) 140mL에 녹인 후 환류시켰다. 그 후, 물(H2O) 200mL를 첨가하고 감압여과하여 목적 화합물 1-3을 19.1g(수율 82%) 얻었다.
화합물 1-1-3 대신 하기 표 2의 중간체 C를 사용하고, 화합물 A 내지 화합물 E 중 어느 하나를 중간체 D로 사용한 것을 제외하고 상기 제조예 11과 동일한 방법으로 제조하여 하기 표 2와 같이 목적 화합물을 제조하였다.
Figure PCTKR2022012644-appb-img-000072
Figure PCTKR2022012644-appb-img-000073
Figure PCTKR2022012644-appb-img-000074
Figure PCTKR2022012644-appb-img-000075
Figure PCTKR2022012644-appb-img-000076
Figure PCTKR2022012644-appb-img-000077
Figure PCTKR2022012644-appb-img-000078
제조예 12. 화합물 1-485의 제조
Figure PCTKR2022012644-appb-img-000079
화합물 1-438 10g(15.5mM)을 벤젠-d6(benzene-d6) 120mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 8.9mL(100.8mM) 천천히 적가(dropwise)한 후 1시간 동안 80℃의 온도로 교반하였다. 반응이 완결된 후 메탄올(methanol) 300mL를 넣어 반응을 종결시켰으며, 목적 화합물 1-485를 9.6g(수율 91.3%) 얻었다.
화합물 1-483 대신 하기 표 3의 중간체 E를 사용한 것을 제외하고 상기 제조예 12과 동일한 방법으로 제조하여 하기 표 3과 같이 목적 화합물을 제조하였다.
Figure PCTKR2022012644-appb-img-000080
상기 제조예 1 내지 12 및 표 2 및 표 3에 기재된 화합물의 합성 결과를 하기 표 4 및 표 5에 나타내었다. 또한, 본 발명의 화학식 1의 헤테로 고리 화합물에 해당하는 화합물의 합성 결과도 하기 표 4 및 표 5에 나타내었다.
하기 표 4는 1H NMR(CDCl3, 300MHz)의 측정값이고, 하기 표 5는 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 1H NMR(CDCl3, 300MHz)
1-3 δ = 8.42~8.40(m, 2H), 8.13~8.10(m, 4H), 7.94~7.88(m, 3H), 7.73~7.65(m, 8H), 7.61~7.49(m, 8H), 7.24~7.10(m, 6H), 7.00~6.99(t, 1H)
1-4 δ = 8.46~8.42(m, 3H), 8.13~8.03(m, 7H), 7.93~7.85(m, 5H), 7.72~7.48(m, 8H), 7.24~7.10(m, 6H), 7.00~6.99(t, 1H)
1-20 δ = 8.86~8.85(d, 1H), 8.45~8.42(m, 3H), 8.19~8.10(m, 5H), 7.94~7.93(d, 1H), 7.89~7.88(d, 1H), 7.80~7.72(m 3H), 7.67~7.50(m, 8H), 7.45~7.30(m, 8H), 7.20~7.00(m, 5H)
1-22 δ = 8.44~8.39(m, 4H), 8.11~8.09(m, 3H), 7.98~7.80(m, 10H), 7.54~7.53(d, 1H), 7.39~7.33(m, 6H), 7.25~7.14(m, 5H), 7.00~6.99(t, 1H)
1-95 δ = 8.51~8.45(m, 4H), 8.16~8.13(m, 3H), 7.95~7.84(m, 4H), 7.72~7.49(m, 8H), 7.33~7.31(m, 1H), 7.19~7.15(m, 3H)
1-96 δ = 8.50~8.44(m, 4H), 8.15~8.13(m, 3H), 7.94~7.84(m, 6H), 7.72~7.49(m, 10H), 7.33~7.31(m, 1H), 7.19~7.15(m, 3H)
1-115 δ = 8.91~8.90(d, 2H), 8.45~8.42(m, 2H), 8.13~8.11(m, 2H), 7.94~7.80(m, 5H), 7.72~7.67(m, 6H), 7.49~7.35(m, 7H), 7.19~7.15(m, 3H),
1-131 δ = 8.85~8.84(d, 2H), 8.45~8.42(m, 2H), 8.25~8.23(d, 1H), 8.15~8.11(m, 3H), 7.95~7.88(m, 4H), 7.72~7.55(m, 6H), 7.41~7.33(m, 3H), 7.22~7.15(m, 4H),
1-133 δ = 8.89(s, 1H), 8.45~8.42(m, 2H), 8.26~8.25(d, 1H), 8.13~8.10(m, 2H), 7.95~7.88(m, 4H), 7.75~7.65(m, 8H), 7.49~7.35(m, 5H), 7.23~7.15(m, 4H),
1-183 δ = 8.50~8.42(m, 4H), 8.15~8.11(m, 3H), 7.94~7.84(m, 5H), 7.74~7.53(m, 10H), 7.41~7.33(m, 5H)
1-184 δ = 8.49(s, 1H), 8.45~8.42(m, 2H), 8.15~8.11(m, 3H), 7.94~7.84(m, 6H), 7.74~7.53(m, 10H), 7.41~7.33(m, 5H)
1-221 δ = 8.55~8.54(d, 2H), 8.42~8.41(m, 2H), 8.15~8.08(m, 3H), 7.94~7.83(m, 5H), 7.75~7.49(m, 10H), 7.35~7.24(m, 5H)
1-222 δ = 8.57~8.55(d, 2H), 8.42~8.41(m, 2H), 8.15~8.11(m, 5H), 7.98~7.85(m, 6H), 7.75~7.54(m, 9H), 7.33~7.24(m, 5H)
1-224 δ = 8.87~8.85(m, 4H), 8.41~8.40(m, 2H), 8.10~8.08(d, 2H), 7.94~7.80(m, 2H), 7.75~7.57(m, 10H), 7.33~7.24(m, 4H)
1-363 δ = 8.42~8.41(m, 2H), 8.13~8.10(m, 3H), 7.94~7.73(m, 9H), 7.61~7.41(m, 8H), 7.33~7.24(m, 5H)
1-365 δ = 8.42~8.41(m, 2H), 8.26~8.25(d, 1H), 8.20~8.19(d, 1H), 8.13~8.10(m, 4H), 7.94~7.83(m, 5H), 7.62~7.42(m, 12H), 7.33~7.20(m, 5H)
1-374 δ = 8.51~8.50(m, 2H), 8.42~8.41(m, 2H), 8.10~8.09(m, 2H), 7.95~7.94(d, 1H), 7.80~7.71(m, 6H), 7.67~7.57(m, 5H), 7.49~7.42(m, 6H), 7.33~7.29(m, 3H)
1-384 δ = 8.42~8.41(m, 2H), 8.11~8.10(m, 2H), 8.04~8.03(d, 1H), 7.98~7.82(m, 4H), 7.76(s, 1H), 7.70~7.57(m, 7H), 7.42~7.27(m, 8H)
1-436 δ = 8.42~8.40(m, 4H), 8.13~8.10(m, 5H), 7.94~7.80(m, 8H), 7.65~7.58(m, 3H), 7.49~7.47(m, 2H), 7.34~7.33(t, 1H)
1-438 δ = 8.42~8.40(m, 4H), 8.13~8.10(m, 5H), 7.94~7.84(m, 7H), 7.80~7.73(m, 5H), 7.61~7.41(m, 6H),
1-440 δ = 8.42~8.40(m, 4H), 8.25~8.24(d, 1H), 8.20~8.19(d, 1H), 8.13~8.10(m, 6H), 8.94~8.80(m, 6H), 7.62~7.50(m, 10H), 7.34~7.33(t, 1H), 7.24~7.23(t, 1H)
1-441 δ = 8.42~8.40(m, 4H), 8.13~8.10(m, 5H), 7.98~7.80(m, 10H), 7.58~7.48(m, 3H), 7.39~7.33(m, 3H)
1-443 δ = 8.54~8.53(d, 1H), 8.42~8.40(m, 4H), 8.13~8.10(m, 5H), 8.03(d, 1H), 7.99~7.82(m, 9H), 7.60~7.48(m, 6H), 7.33~7.32(t, 1H)
1-447 δ = 8.51~8.50(m, 2H), 8.43~8.81(m, 4H), 8.11~8.10(m, 4H), 7.86~7.75(m, 10H), 7.67~7.65(m, 2H), 7.49~7.41(m, 4H), 7.34~7.33(t, 1H)
1-449 δ = 8.77~8.76(d, 1H), 8.66~8.65(d, 1H), 8.45~8.43(m, 4H), 8.30(s, 1H), 8.19~8.18(d, 1H), 8.10~8.08(m, 4H), 7.94~7.80(m, 6H), 7.67~7.48(m, 10H), 7.33~7.32(t, 1H), 7.20~7.19(t, 1H)
1-469 δ = 8.80~8.78(d, 2H), 8.42~8.36(m, 5H), 8.11~8.10(m, 4H), 7.94~7.88(m, 4H), 7.80~7.73(m, 4H), 7.61~7.60(t, 1H), 7.50~7.47(m, 7H), 7.33~7.32(t, 1H)
1-478 δ = 8.97~8.96(d, 1H), 8.81~8.80(m, 4H), 8.42~8.40(m, 4H), 8.24~8.23(d, 1H), 8.12~8.10(m, 5H), 7.94~7.88(m, 3H), 7.80~7.78(m, 2H), 7.59~7.48(m, 9H), 7.32~7.31(t, 1H)
1-483 δ = 8.45~8.40(m, 4H), 8.13~8.10(m, 5H), 7.94~7.88(m, 3H), 7.83~7.80(m, 3H), 7.58~7.56(m, 1H), 7.48~7.47(d, 1H), 7.33~7.31(t, 1H)
1-484 δ = 8.44~8.40(m, 4H), 8.11~8.09(m, 4H), 7.94~7.88(m, 3H), 7.81~7.80(d, 1H), 7.48~7.47(d, 1H), 7.33~7.31(t, 1H)
1-486 δ = 8.97~8.96(d, 1H), 8.41~8.38(m, 4H), 8.24~8.23(d, 1H), 8.12~8.09(m, 5H), 7.94~7.89(m, 3H), 7.80~7.78(m, 2H), 7.55~7.48(m, 3H), 7.32~7.30(t, 1H)
1-487 δ = 8.42~8.40(m, 4H), 8.12~8.10(m, 4H), 7.95~7.90(m, 3H), 7.81~7.80(d, 1H), 7.49~7.48(d, 1H), 7.33~7.32(t, 1H)
1-489 δ = 8.45~8.43(m, 2H), 8.13~8.10(m, 3H), 7.94~7.90(m, 2H), 7.88~7.86(m, 2H), 7.58~7.56(m, 4H), 7.43~7.42(d, 1H), 7.33~7.30(m, 3H), 7.24~7.22(t, 1H)
화합물 FD-Mass 화합물 FD-Mass
1-1 m/z= 660.7800 (C48H28N4, 660.2314) 1-2 m/z= 736.8780 (C54H32N4, 736.2627)
1-3 m/z= 736.8780 (C54H32N4, 736.2627) 1-4 m/z= 710.8400 (C52H30N4, 710.2470)
1-5 m/z= 825.9750 (C60H35N4, 825.2892) 1-6 m/z= 750.8610 (C54H30N4O, 750.2420)
1-7 m/z= 766.9220 (C54H30N4S, 766.2191) 1-8 m/z= 800.9210 (C58H32N4O, 800.2756)
1-9 m/z= 800.9210 (C58H32N4O, 800.2756) 1-10 m/z= 800.9210 (C58H32N4O, 800.2756)
1-11 m/z= 800.9210 (C58H32N4O, 800.2756) 1-12 m/z= 800.9210 (C58H32N4O, 800.2756)
1-13 m/z= 800.9210 (C58H32N4O, 800.2756) 1-14 m/z= 800.9210 (C58H32N4O, 800.2756)
1-15 m/z= 660.7800 (C48H28N4, 660.2314) 1-16 m/z= 710.8400 (C52H30N4, 710.2470)
1-17 m/z= 736.8780 (C54H32N4, 736.2627) 1-18 m/z= 736.8780 (C54H32N4, 736.2627)
1-19 m/z= 786.9380 (C58H34N4, 786.2783) 1-20 m/z= 825.9750 (C60H35N4, 825.2892)
1-21 m/z= 825.9750 (C60H35N4, 825.2892) 1-22 m/z= 750.8610 (C54H30N4O, 750.2420)
1-23 m/z= 750.8610 (C54H30N4O, 750.2420) 1-24 m/z= 750.8610 (C54H30N4O, 750.2420)
1-25 m/z= 800.9210 (C58H32N4O, 800.2576) 1-26 m/z= 800.9210 (C58H32N4O, 800.2576)
1-27 m/z= 800.9210 (C58H32N4O, 800.2576) 1-28 m/z= 800.9210 (C58H32N4O, 800.2576)
1-29 m/z= 800.9210 (C58H32N4O, 800.2576) 1-30 m/z= 800.9210 (C58H32N4O, 800.2576)
1-31 m/z= 816.9820 (C58H32N4S, 816.2348) 1-32 m/z= 816.9820 (C58H32N4S, 816.2348)
1-33 m/z= 700.8010 (C50H28N4O, 700.2263) 1-34 m/z= 750.8610 (C54H30N4O, 750.2420)
1-35 m/z= 750.8610 (C54H30N4O, 750.2420) 1-36 m/z= 776.8990 (C56H32N4O, 776.2576)
1-37 m/z= 776.8990 (C56H32N4O, 776.2576) 1-38 m/z= 852.9970 (C62H36N4O, 852.2889)
1-39 m/z= 826.9590 (C60H34N4O, 826.2733) 1-40 m/z= 865.9960 (C62H35N5O, 865.2842)
1-41 m/z= 865.9960 (C62H35N5O, 865.2842) 1-42 m/z= 790.8820 (C56H30N4O2, 790.2369)
1-43 m/z= 790.8820 (C56H30N4O2, 790.2369) 1-44 m/z= 806.9430 (C56H30N4OS, 806.2140)
1-45 m/z= 840.9420 (C60H32N4O2, 840.2525) 1-46 m/z= 840.9420 (C60H32N4O2, 840.2525)
1-47 m/z= 857.0030 (C60H32N4OS, 856.2297) 1-48 m/z= 857.0030 (C60H32N4OS, 856.2297)
1-49 m/z= 716.8620 (C50H28N4S, 716.2035) 1-50 m/z= 766.9220 (C54H30N4S, 766.2191)
1-51 m/z= 766.9220 (C54H30N4S, 766.2191) 1-52 m/z= 792.9600 (C56H32N4S, 792.2348)
1-53 m/z= 792.9600 (C56H32N4S, 792.2348) 1-54 m/z= 843.0200 (C60H34N4S, 842.2504)
1-55 m/z= 882.0570 (C62H35N5S, 881.2613) 1-56 m/z= 882.0570 (C62H35N5S, 881.2613)
1-57 m/z= 806.9430 (C56H30N4OS, 806.2140) 1-58 m/z= 806.9430 (C56H30N4OS, 806.2140)
1-59 m/z= 823.0040 (C56H30N4S2, 822.1912) 1-60 m/z= 823.0040 (C56H30N4S2, 822.1912)
1-61 m/z= 857.0030 (C60H32N4OS, 856.2297) 1-62 m/z= 857.0030 (C60H32N4OS, 856.2297)
1-63 m/z= 857.0030 (C60H32N4OS, 856.2297) 1-64 m/z= 857.0030 (C60H32N4OS, 856.2297)
1-65 m/z= 687.8060 (C49H29N5, 687.2423) 1-66 m/z= 737.8660 (C53H31N5, 737.2579)
1-67 m/z= 737.8660 (C53H31N5, 737.2579) 1-68 m/z= 787.9260 (C57H33N5, 787.2736)
1-69 m/z= 787.9260 (C57H33N5, 787.2736) 1-70 m/z= 787.9260 (C57H33N5, 787.2736)
1-71 m/z= 763.9040 (C55H33N5, 787.2736) 1-72 m/z= 840.0020 (C61H37N5, 839.3049)
1-73 m/z= 813.9640 (C59H35N5, 813.2892) 1-74 m/z= 777.8870 (C55H31N5O, 777.2529)
1-75 m/z= 777.8870 (C55H31N5O, 777.2529) 1-76 m/z= 793.8480 (C55H31N5S, 793.2300)
1-77 m/z= 827.9470 (C59H33N5O, 827.2685) 1-78 m/z= 686.8180 (C50H30N4, 686.2470)
1-79 m/z= 736.8780 (C54H32N4, 736.2627) 1-80 m/z= 762.9160 (C56H34N4, 762.2783)
1-81 m/z= 750.8610 (C54H30N4O, 750.2420) 1-82 m/z= 750.8610 (C54H30N4O, 750.2420)
1-83 m/z= 800.9210 (C58H32N4O, 800.2576) 1-84 m/z= 826.9590 (C60H34N4O, 826.2733)
1-85 m/z= 762.9160 (C56H34N4, 762.2783) 1-86 m/z= 812.9760 (C60H36N4, 812.2940)
1-87 m/z= 839.0140 (C62H38N4, 838.3096) 1-88 m/z= 762.9160 (C56H34N4, 762.2783)
1-89 m/z= 813.9640 (C59H35N5, 813.2892) 1-90 m/z= 864.0240 (C63H37N5, 863.3049)
1-91 m/z= 786.9380 (C58H34N4, 786.2783) 1-92 m/z= 826.9590 (C60H34N4O, 826.2733)
1-93 m/z= 833.0799 (C59H16D19N5, 832.4085) 1-94 m/z= 741.0231 (C52H30N4, 740.4353)
1-95 m/z= 585.6660 (C42H23N3O, 585.1841) 1-96 m/z= 661.7640 (C48H27N3O, 661.2154)
1-97 m/z= 661.7640 (C48H27N3O, 661.2154) 1-98 m/z= 635.7260 (C46H25N3O, 635.1998)
1-99 m/z= 750.8610 (C54H30N4O, 750.2420) 1-100 m/z= 750.8610 (C54H30N4O, 750.2420)
1-101 m/z= 800.9210 (C58H32N4O, 800.2576) 1-102 m/z= 675.7470 (C48H25N3O2, 675.1947)
1-103 m/z= 675.7470 (C48H25N3O2, 675.1947) 1-104 m/z= 800.9210 (C58H32N4O, 800.2576)
1-105 m/z= 800.9210 (C58H32N4O, 800.2576) 1-106 m/z= 800.9210 (C58H32N4O, 800.2576)
1-107 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-108 m/z= 725.8070 (C52H27N3O2, 725.2103)
1-109 m/z= 801.9050 (C58H31N3O2, 801.2416) 1-110 m/z= 725.8070 (C52H27N3O2, 725.2103)
1-111 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-112 m/z= 741.8680 (C52H27N3OS, 741.1875)
1-113 m/z= 585.6660 (C42H23N3O, 585.1841) 1-114 m/z= 635.7260 (C46H25N3O, 635.1998)
1-115 m/z= 661.7640 (C48H27N3O, 661.2154) 1-116 m/z= 661.7640 (C48H27N3O, 661.2154)
1-117 m/z= 711.8240 (C52H29N3O, 711.2311) 1-118 m/z= 750.8610 (C54H30N4O, 750.2420)
1-119 m/z= 750.8610 (C54H30N4O, 750.2420) 1-120 m/z= 675.7470 (C48H25N3O2, 675.1947)
1-121 m/z= 751.8450 (C54H29N3O2, 751.2260) 1-122 m/z= 800.9210 (C58H32N4O, 800.2576)
1-123 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-124 m/z= 725.8070 (C52H27N3O2, 725.2103)
1-125 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-126 m/z= 725.8070 (C52H27N3O2, 725.2103)
1-127 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-128 m/z= 801.9050 (C58H31N3O2, 801.2416)
1-129 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-130 m/z= 625.6870 (C44H23N3O2, 625.1790)
1-131 m/z= 675.7470 (C48H25N3O2, 675.1947) 1-132 m/z= 701.7850 (C50H27N3O2, 701.2103)
1-133 m/z= 701.7850 (C50H27N3O2, 701.2103) 1-134 m/z= 751.8450 (C54H29N3O2, 751.2260)
1-135 m/z= 731.8290 (C50H25N3O2S, 731.1667) 1-136 m/z= 840.9420 (C60H32N4O2, 840.2525)
1-137 m/z= 765.8280 (C54H27N3O3, 765.2052) 1-138 m/z= 765.8280 (C54H27N3O3, 765.2052)
1-139 m/z= 641.7480 (C44H23N3OS, 641.1562) 1-140 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-141 m/z= 717.8460 (C50H27N3OS, 717.1875) 1-142 m/z= 717.8460 (C50H27N3OS, 717.1875)
1-143 m/z= 806.9430 (C56H30N4OS, 806.2140) 1-144 m/z= 806.9430 (C56H30N4OS, 806.2140)
1-145 m/z= 731.8290 (C50H25N3O2S, 731.1667) 1-146 m/z= 731.8290 (C50H25N3O2S, 731.1667)
1-147 m/z= 781.8890 (C54H27N3O2S, 781.1824) 1-148 m/z= 781.8890 (C54H27N3O2S, 781.1824)
1-149 m/z= 781.8890 (C54H27N3O2S, 781.1824) 1-150 m/z= 781.8890 (C54H27N3O2S, 781.1824)
1-151 m/z= 781.8890 (C54H27N3O2S, 781.1824) 1-152 m/z= 797.9500 (C54H27N3OS2, 797.1596)
1-153 m/z= 611.7040 (C44H25N3O, 611.1998) 1-154 m/z= 661.7640 (C48H27N3O, 661.2154)
1-155 m/z= 711.8240 (C52H29N3O, 711.2311) 1-156 m/z= 687.8020 (C50H29N3O, 687.2311)
1-157 m/z= 611.7040 (C44H25N3O, 611.1998) 1-158 m/z= 687.8020 (C50H29N3O, 687.2311)
1-159 m/z= 612.6920 (C43H24N4O, 612.1950) 1-160 m/z= 688.7900 (C49H28N4O, 688.2263)
1-161 m/z= 662.7520 (C47H26N4O, 662.2107) 1-162 m/z= 712.8120 (C51H28N4O, 712.2263)
1-163 m/z= 701.7890 (C49H27N5O, 701.2216) 1-164 m/z= 777.8870 (C55H31N5O, 777.2529)
1-165 m/z= 702.7730 (C49H26N4O2, 702.2056) 1-166 m/z= 778.8710 (C55H30N4O2, 778.2369)
1-167 m/z= 752.8330 (C53H28N4O2, 752.2212) 1-168 m/z= 828.9310 (C59H32N4O2, 828.2525)
1-169 m/z= 752.8330 (C53H28N4O2, 752.2212) 1-170 m/z= 768.8940 (C53H28N4OS, 768.1984)
1-171 m/z= 688.7900 (C49H28N4O, 688.2263) 1-172 m/z= 688.7900 (C49H28N4O, 688.2263)
1-173 m/z= 738.8500 (C53H30N4O, 738.2420) 1-174 m/z= 788.9100 (C57H32N4O, 788.2576)
1-175 m/z= 711.8240 (C52H29N3O, 711.2311) 1-176 m/z= 761.8840 (C56H31N3O, 761.2467)
1-179 m/z= 737.8620 (C54H31N3O, 737.2467) 1-178 m/z= 787.9220 (C58H33N3O, 787.2624)
1-179 m/z= 675.8494 (C48H13D14N3O, 675.3033) 1-180 m/z= 688.9287 (C48D27N3O, 688.3849)
1-181 m/z= 752.9354 (C53H16D14N4O, 752.3298) 1-182 m/z= 601.7270 (C42H23N3S, 601.1613)
1-183 m/z= 677.8250 (C48H27N3S, 677.1926) 1-184 m/z= 677.8250 (C48H27N3S, 677.1926)
1-185 m/z= 651.7870 (C46H25N3S, 651.1769) 1-186 m/z= 766.9220 (C54H30N4S, 766.2191)
1-187 m/z= 766.9220 (C54H30N4S, 766.2191) 1-188 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-189 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-190 m/z= 707.8690 (C48H25N3S2, 707.1490)
1-191 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-192 m/z= 741.8680 (C52H27N3OS, 741.1875)
1-193 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-194 m/z= 741.8680 (C52H27N3OS, 741.1875)
1-195 m/z= 757.9290 (C52H27N3S2, 757.1646) 1-196 m/z= 601.7270 (C42H23N3S, 601.1613)
1-197 m/z= 651.7870 (C46H25N3S, 651.1769) 1-198 m/z= 677.8250 (C48H27N3S, 677.1926)
1-199 m/z= 677.8250 (C48H27N3S, 677.1926) 1-200 m/z= 766.9220 (C54H30N4S, 766.2191)
1-201 m/z= 766.9220 (C54H30N4S, 766.2191) 1-202 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-203 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-204 m/z= 816.9820 (C58H32N4S, 816.2348)
1-205 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-206 m/z= 741.8680 (C52H27N3OS, 741.1875)
1-207 m/z= 641.7480 (C44H23N3OS, 641.1562) 1-208 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-209 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-210 m/z= 717.8460 (C50H27N3OS, 717.1875)
1-211 m/z= 806.9430 (C56H30N4OS, 806.2140) 1-212 m/z= 806.9430 (C56H30N4OS, 806.2140)
1-213 m/z= 731.8290 (C50H25N3O2S, 731.1667) 1-214 m/z= 747.8900 (C50H25N3OS2, 747.1439)
1-215 m/z= 747.8900 (C50H25N3OS2, 747.1439) 1-216 m/z= 781.8890 (C54H27N3O2S, 781.1824)
1-217 m/z= 781.8890 (C54H27N3O2S, 781.1824) 1-218 m/z= 657.8090 (C44H23N3S2, 657.1333)
1-219 m/z= 707.8690 (C48H25N3S2, 707.1490) 1-220 m/z= 707.8690 (C48H25N3S2, 707.1490)
1-221 m/z= 733.9070 (C50H27N3S2, 733.1646) 1-222 m/z= 783.9670 (C54H29N3S2, 783.1803)
1-223 m/z= 823.0040 (C56H30N4S2, 822.1912) 1-224 m/z= 747.8900 (C50H25N3OS2, 747.1439)
1-225 m/z= 747.8900 (C50H25N3OS2, 747.1439) 1-226 m/z= 797.9500 (C54H27N3OS2, 797.1596)
1-227 m/z= 797.9500 (C54H27N3OS2, 797.1596) 1-228 m/z= 797.9500 (C54H27N3OS2, 797.1596)
1-229 m/z= 814.0110 (C54H27N3S3, 813.1367) 1-230 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-231 m/z= 767.9060 (C54H29N3OS, 767.2031) 1-232 m/z= 767.9060 (C54H29N3OS, 767.2031)
1-233 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-234 m/z= 628.7530 (C43H24N4S, 628.1722)
1-235 m/z= 704.8510 (C49H28N4S, 704.2035) 1-236 m/z= 754.9110 (C53H30N4S, 754.2191)
1-237 m/z= 754.9110 (C53H30N4S, 754.2191) 1-238 m/z= 642.8384 (C43H10D14N4S, 642.2600)
1-239 m/z= 768.9964 (C53H16D14N4S, 768.3070) 1-240 m/z= 652.8994 (C43D24N4S, 652.3228)
1-241 m/z= 611.7480 (C45H29N3, 611.2361) 1-242 m/z= 687.8460 (C51H33N3, 687.2674)
1-243 m/z= 687.8460 (C51H33N3, 687.2674) 1-244 m/z= 661.8080 (C49H31N3, 661.2518)
1-245 m/z= 776.9430 (C57H36N4, 776.2940) 1-246 m/z= 776.9430 (C57H36N4, 776.2940)
1-247 m/z= 701.8290 (C51H31N3O, 701.2467) 1-248 m/z= 701.8290 (C51H31N3O, 701.2467)
1-249 m/z= 611.7480 (C45H29N3, 611.2361) 1-250 m/z= 661.8080 (C49H31N3, 661.2518)
1-251 m/z= 687.8460 (C51H33N3, 687.2674) 1-252 m/z= 687.8460 (C51H33N3, 687.2674)
1-253 m/z= 776.9430 (C57H36N4, 776.2940) 1-254 m/z= 701.8290 (C51H31N3O, 701.2467)
1-255 m/z= 701.8290 (C51H31N3O, 701.2467) 1-256 m/z= 717.8900 (C51H31N3S, 717.2239)
1-257 m/z= 751.8890(C55H33N3O, 751.2624) 1-258 m/z= 751.8890(C55H33N3O, 751.2624)
1-259 m/z= 751.8890(C55H33N3O, 751.2624) 1-260 m/z= 751.8890(C55H33N3O, 751.2624)
1-261 m/z= 651.7690(C47H29N3O, 651.2311) 1-262 m/z= 701.8290(C51H31N3O, 701.2467)
1-263 m/z= 727.8670(C53H33N3O, 727.2624) 1-264 m/z= 777.9270(C57H35N3O, 777.2780)
1-265 m/z= 638.7740(C46H30N4, 638.2470) 1-266 m/z= 714.8720(C52H34N4, 714.2783)
1-267 m/z= 688.8340(C50H32N4, 688.2627) 1-268 m/z= 738.8940(C54H34N4, 738.2783)
1-269 m/z= 803.9690(C58H37N5, 803.3049) 1-270 m/z= 727.8710(C52H33N5, 727.2736)
1-271 m/z= 714.8720(C52H34N4, 714.2783) 1-272 m/z= 764.9320(C56H36N4, 764.2940)
1-273 m/z= 660.7800 (C48H28N4, 660.2314) 1-274 m/z= 660.7800 (C48H28N4, 660.2314)
1-275 m/z= 660.7800 (C48H28N4, 660.2314) 1-276 m/z= 710.8400 (C52H30N4, 710.2470)
1-277 m/z= 750.8610 (C54H30N4O, 750.2420) 1-278 m/z= 750.8610 (C54H30N4O, 750.2420)
1-279 m/z= 766.9220 (C54H30N4S, 766.2191) 1-280 m/z= 800.9210 (C58H32N4O, 800.2756)
1-281 m/z= 800.9210 (C58H32N4O, 800.2756) 1-282 m/z= 800.9210 (C58H32N4O, 800.2756)
1-283 m/z= 800.9210 (C58H32N4O, 800.2756) 1-284 m/z= 816.9820 (C58H32N4S, 816.2348)
1-285 m/z= 660.7800 (C48H28N4, 660.2314) 1-286 m/z= 710.8400 (C52H30N4, 710.2470)
1-287 m/z= 736.8780 (C54H32N4, 736.2627) 1-288 m/z= 825.9750 (C60H35N4, 825.2892)
1-289 m/z= 750.8610 (C54H30N4O, 750.2420) 1-290 m/z= 800.9210 (C58H32N4O, 800.2756)
1-291 m/z= 800.9210 (C58H32N4O, 800.2756) 1-292 m/z= 800.9210 (C58H32N4O, 800.2756)
1-293 m/z= 700.8010 (C50H28N4O, 700.2263) 1-294 m/z= 750.8610 (C54H30N4O, 750.2420)
1-295 m/z= 776.8990 (C56H32N4O, 776.2576) 1-296 m/z= 865.9960 (C62H35N5O, 865.2842)
1-297 m/z= 790.8820 (C56H30N4O2, 790.2369) 1-298 m/z= 806.9430 (C56H30N4OS, 806.2140)
1-299 m/z= 840.9420 (C60H32N4O2, 840.2525) 1-300 m/z= 840.9420 (C60H32N4O2, 840.2525)
1-301 m/z= 716.8620 (C50H28N4S, 716.2035) 1-302 m/z= 766.9220 (C54H30N4S, 766.2191)
1-303 m/z= 792.9600 (C56H32N4S, 792.2348) 1-304 m/z= 792.9600 (C56H32N4S, 792.2348)
1-305 m/z= 687.8060 (C49H29N5, 687.2423) 1-306 m/z= 763.9040 (C55H33N5, 787.2736)
1-307 m/z= 737.8660 (C53H31N5, 737.2579) 1-308 m/z= 787.9260 (C57H33N5, 787.2736)
1-309 m/z= 777.8870 (C55H31N5O, 777.2529) 1-310 m/z= 777.8870 (C55H31N5O, 777.2529)
1-311 m/z= 827.9470 (C59H33N5O, 827.2685) 1-312 m/z= 686.8180 (C50H30N4, 686.2470)
1-313 m/z= 763.9040 (C55H33N5, 787.2736) 1-314 m/z= 813.9640 (C59H35N5, 813.2892)
1-315 m/z= 585.6660 (C42H23N3O, 585.1841) 1-316 m/z= 661.7640 (C48H27N3O, 661.2154)
1-317 m/z= 661.7640 (C48H27N3O, 661.2154) 1-318 m/z= 635.7260 (C46H25N3O, 635.1998)
1-319 m/z= 750.8610 (C54H30N4O, 750.2420) 1-320 m/z= 750.8610 (C54H30N4O, 750.2420)
1-321 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-322 m/z= 675.7470 (C48H25N3O2, 675.1947)
1-323 m/z= 800.9210 (C58H32N4O, 800.2576) 1-324 m/z= 800.9210 (C58H32N4O, 800.2576)
1-325 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-326 m/z= 725.8070 (C52H27N3O2, 725.2103)
1-327 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-328 m/z= 585.6660 (C42H23N3O, 585.1841)
1-329 m/z= 635.7260 (C46H25N3O, 635.1998) 1-330 m/z= 661.7640 (C48H27N3O, 661.2154)
1-331 m/z= 750.8610 (C54H30N4O, 750.2420) 1-332 m/z= 675.7470 (C48H25N3O2, 675.1947)
1-333 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-334 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-335 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-336 m/z= 725.8070 (C52H27N3O2, 725.2103)
1-337 m/z= 725.8070 (C52H27N3O2, 725.2103) 1-338 m/z= 625.6870 (C44H23N3O2, 625.1790)
1-339 m/z= 701.7850 (C50H27N3O2, 701.2103) 1-340 m/z= 701.7850 (C50H27N3O2, 701.2103)
1-341 m/z= 790.8820 (C56H30N4O2, 790.2369) 1-342 m/z= 715.7680 (C50H25N3O3, 715.1896)
1-343 m/z= 731.8290 (C50H25N3O2S, 731.1667) 1-344 m/z= 765.8280 (C54H27N3O3, 765.2052)
1-345 m/z= 765.8280 (C54H27N3O3, 765.2052) 1-346 m/z= 765.8280 (C54H27N3O3, 765.2052)
1-347 m/z= 641.7480 (C44H23N3OS, 641.1562) 1-348 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-349 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-350 m/z= 717.8460 (C50H27N3OS, 717.1875)
1-351 m/z= 612.6920 (C43H24N4O, 612.1950) 1-352 m/z= 662.7520 (C47H26N4O, 662.2107)
1-353 m/z= 738.8500 (C53H30N4O, 738.2420) 1-354 m/z= 702.7730 (C49H26N4O2, 702.2056)
1-355 m/z= 611.7040 (C44H25N3O, 611.1998) 1-356 m/z= 611.7040 (C44H25N3O, 611.1998)
1-357 m/z= 661.7640 (C48H27N3O, 661.2154) 1-358 m/z= 688.7900 (C49H28N4O, 688.2263)
1-359 m/z= 738.8500 (C53H30N4O, 738.2420) 1-360 m/z= 661.7640 (C48H27N3O, 661.2154)
1-361 m/z= 601.7270 (C42H23N3S, 601.1613) 1-362 m/z= 677.8250 (C48H27N3S, 677.1926)
1-363 m/z= 677.8250 (C48H27N3S, 677.1926) 1-364 m/z= 651.7870 (C46H25N3S, 651.1769)
1-365 m/z= 766.9220 (C54H30N4S, 766.2191) 1-366 m/z= 766.9220 (C54H30N4S, 766.2191)
1-367 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-368 m/z= 707.8690 (C48H25N3S2, 707.1490)
1-369 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-370 m/z= 741.8680 (C52H27N3OS, 741.1875)
1-371 m/z= 757.9290 (C52H27N3S2, 757.1646) 1-372 m/z= 601.7270 (C42H23N3S, 601.1613)
1-373 m/z= 651.7870 (C46H25N3S, 651.1769) 1-374 m/z= 677.8250 (C48H27N3S, 677.1926)
1-375 m/z= 727.8850 (C52H29N3S, 727.2082) 1-376 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-377 m/z= 741.8680 (C52H27N3OS, 741.1875) 1-378 m/z= 741.8680 (C52H27N3OS, 741.1875)
1-379 m/z= 641.7480 (C44H23N3OS, 641.1562) 1-380 m/z= 691.8080 (C48H25N3OS, 691.1718)
1-381 m/z= 691.8080 (C48H25N3OS, 691.1718) 1-382 m/z= 717.8460 (C50H27N3OS, 717.1875)
1-383 m/z= 806.9430 (C56H30N4OS, 806.2140) 1-384 m/z= 731.8290 (C50H25N3O2S, 731.1667)
1-385 m/z= 781.8890 (C54H27N3O2S, 781.1824) 1-386 m/z= 657.8090 (C44H23N3S2, 657.1333)
1-387 m/z= 733.9070 (C50H27N3S2, 733.1646) 1-388 m/z= 747.8900 (C50H25N3OS2, 747.1439)
1-389 m/z= 763.9510 (C50H25N3S3, 763.1211) 1-390 m/z= 797.9500 (C54H27N3OS2, 797.1596)
1-391 m/z= 704.8510 (C49H28N4S, 704.2035) 1-392 m/z= 754.9110 (C53H30N4S, 754.2191)
1-393 m/z= 718.9364 (C49H14D14N4S, 718.2913) 1-394 m/z= 611.7480 (C45H29N3, 611.2361)
1-395 m/z= 687.8460 (C51H33N3, 687.2674) 1-396 m/z= 687.8460 (C51H33N3, 687.2674)
1-397 m/z= 661.8080 (C49H31N3, 661.2518) 1-398 m/z= 776.9430 (C57H36N4, 776.2940)
1-399 m/z= 701.8290 (C51H31N3O, 701.2467) 1-400 m/z= 717.8900 (C51H31N3S, 717.2239)
1-401 m/z= 827.0030 (C61H38N4, 826.3096) 1-402 m/z= 751.8890(C55H33N3O, 751.2624)
1-403 m/z= 751.8890(C55H33N3O, 751.2624) 1-404 m/z= 751.8890(C55H33N3O, 751.2624)
1-405 m/z= 611.7480 (C45H29N3, 611.2361) 1-406 m/z= 661.8080 (C49H31N3, 661.2518)
1-407 m/z= 687.8460 (C51H33N3, 687.2674) 1-408 m/z= 776.9430 (C57H36N4, 776.2940)
1-409 m/z= 701.8290 (C51H31N3O, 701.2467) 1-410 m/z= 777.9270 (C57H35N3O, 777.2780)
1-411 m/z= 777.9270 (C57H35N3O, 777.2780) 1-412 m/z= 651.7690(C47H29N3O, 651.2311)
1-413 m/z= 701.8290(C51H31N3O, 701.2467) 1-414 m/z= 727.8670(C53H33N3O, 727.2624)
1-415 m/z= 757.9110(C53H31N3OS, 757.2188) 1-416 m/z= 791.9100(C57H33N3O2, 791.2573)
1-417 m/z= 791.9100(C57H33N3O2, 791.2573) 1-418 m/z= 667.8300(C47H29N3S, 667.2082)
1-419 m/z= 717.8900(C51H31N3S, 717.2239) 1-420 m/z= 717.8900(C51H31N3S, 717.2239)
1-421 m/z= 743.9280(C53H33N3S, 743.2395) 1-422 m/z= 833.0250(C59H36N4S, 832.2661)
1-423 m/z= 757.9110(C53H31N3OS, 757.2188) 1-424 m/z= 757.9110(C53H31N3OS, 757.2188)
1-425 m/z= 807.9710(C57H33N3OS, 807.2344) 1-426 m/z= 638.7740(C46H30N4, 638.2470)
1-427 m/z= 688.8340(C50H32N4, 688.2627) 1-428 m/z= 714.8720(C52H34N4, 714.2783)
1-429 m/z= 727.8710(C52H33N5, 727.2736) 1-430 m/z= 728.8550(C52H32N4O, 728.2576)
1-431 m/z= 714.8720(C52H34N4, 714.2783) 1-432 m/z= 764.9320(C56H36N4, 764.2940)
1-433 m/z= 687.8460(C51H33N3, 687.2674) 1-434 m/z= 658.8960(C46H10D20N4, 658.3726)
1-435 m/z= 785.0540(C56H16D20N4, 784.4195) 1-436 m/z= 569.6670(C42H23N3, 569.1892)
1-437 m/z= 645.7650(C48H27N3, 645.2205) 1-438 m/z= 645.7650(C48H27N3, 645.2205)
1-439 m/z= 619.7270(C46H25N3, 619.2048) 1-440 m/z= 734.8620(C54H30N4, 734.2470)
1-441 m/z= 659.7480(C48H25N3O, 659.1998) 1-442 m/z= 784.9220(C58H32N4, 784.2627)
1-443 m/z= 709.8080(C52H27N3O, 709.2154) 1-444 m/z= 569.6670(C42H23N3, 569.1892)
1-445 m/z= 619.7270(C46H25N3, 619.2048) 1-446 m/z= 645.7650(C48H27N3, 645.2205)
1-447 m/z= 695.8250(C52H29N3, 695.2361) 1-448 m/z= 734.8620(C54H30N4, 734.2470)
1-449 m/z= 675.8090(C48H25N3S, 675.1769) 1-450 m/z= 675.8090(C48H25N3S, 675.1769)
1-451 m/z= 709.8080(C52H27N3O, 709.2154) 1-452 m/z= 609.6880(C44H23N3O, 609.1841)
1-453 m/z= 659.7480(C48H25N3O, 659.1998) 1-454 m/z= 659.7480(C48H25N3O, 659.1998)
1-455 m/z= 685.7860(C50H27N3O, 685.2154) 1-456 m/z= 774.8830(C56H30N4O, 774.2420)
1-457 m/z= 699.7690(C50H25N3O2, 699.1947) 1-458 m/z= 699.7690(C50H25N3O2, 699.1947)
1-459 m/z= 824.9430(C60H32N4O, 824.2576) 1-460 m/z= 749.8290(C54H27N3O2, 749.2103)
1-461 m/z= 749.8290(C54H27N3O2, 749.2103) 1-462 m/z= 749.8290(C54H27N3O2, 749.2103)
1-463 m/z= 625.7490(C44H23N3S, 625.1613) 1-464 m/z= 675.8090(C48H25N3S, 675.1769)
1-465 m/z= 701.8470(C50H27N3S, 701.1926) 1-466 m/z= 731.8910(C50H25N3S2, 731.1490)
1-467 m/z= 731.8910(C50H25N3S2, 731.1490) 1-468 m/z= 596.6930(C43H24N4, 596.2001)
1-469 m/z= 672.7910(C49H28N4, 672.2314) 1-470 m/z= 672.7910(C49H28N4, 672.2314)
1-471 m/z= 646.7530(C47H26N4, 646.2157) 1-472 m/z= 696.8130(C51H28N4, 696.2314)
1-473 m/z= 686.7740(C49H26N4O, 686.2107) 1-474 m/z= 672.7910(C49H28N4, 672.2314)
1-475 m/z= 672.7910(C49H28N4, 672.2314) 1-476 m/z= 722.8510(C53H30N4, 722.2470)
1-477 m/z= 772.9110(C57H32N4, 772.2627) 1-478 m/z= 722.8510(C53H30N4, 722.2470)
1-479 m/z= 772.9110(C57H32N4, 772.2627) 1-480 m/z= 798.9490(C59H34N4, 798.2783)
1-481 m/z= 715.9324(C50H13N3S, 715.2804) 1-482 m/z= 736.9364(C53H16D14N4, 736.3349)
1-483 m/z= 654.8199 (C48H18D9N3, 654.2770) 1-484 m/z= 658.8443 (C48H14D13N3, 658.3021)
1-485 m/z= 672.9297 (C48D27N3, 672.3900) 1-486 m/z= 732.9120 (C53H20D10N4, 732.3098)
1-487 m/z= 738.9486 (C53H14D16N4, 738.3475) 1-488 m/z= 753.0341 (C53D30N4, 752.4353)
1-489 m/z= 686.8799 (C48H18D9N3S, 686.2491) 1-490 m/z= 704.9897 (C48D27N3S, 704.3620)
제조예 13. 화합물 2-102의 제조
Figure PCTKR2022012644-appb-img-000081
제조예 13-1. 화합물 2-1-102의 제조
N-(4-브로모페닐)-N-페닐-[1,1'-비페닐]-4-아민(N-(4-bromophenyl)-N-phenyl-[1,1'-biphenyl]-4-amine) 15g(37.5mM) 및 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 22.2ml(251.3mM)를 d6-벤젠(d6-benzene) 150mL에 녹인 후 60℃에서 1시간 동안 교반하였다.
그 후, 메탄올(MeOH) 200mL를 첨가하고 감압여과 하여 화합물 2-1-102을 12.9g(수율 82.1%) 얻었다.
제조예 13-2. 화합물 2-102의 제조
화합물 1-1-582 12.9g 및 상기 제조예 1에서 제조한 화합물 A 10.0g(27.4mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 1.3g(1.4mM), 디사이클로헥실(2',4',6'-트리아이소프로필-[1,1'-바이페닐]-2-일)포스핀(Dicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine, Xphos) 1.3g(1.4mM), 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 7.9g(82.2mM)를 자일렌(xylene) 140mL에 녹인 후 1시간 동안 환류시켰다.
그 후, 메탄올(MeOH) 200mL를 첨가하고 감압여과 하여 목적 화합물 2-102 (수율 80.7%)을 얻었다.
제조예 14. 화합물 2-103의 제조
Figure PCTKR2022012644-appb-img-000082
제조예 14-1. 화합물 2-3-103의 제조
4-브로모-1,1'-비페닐(4-bromo-1,1'-biphenyl) 10g(42.9mM)을 벤젠-d6(benzene-d6) 100mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 24.6mL(278.9mM)을 천천히 적가(dropwise)한 후 1시간 동안 교반하였다. 반응이 완결된 후 메탄올(methanol) 200mL를 넣어 반응을 종결시켰으며, 화합물 2-3-103을 9.8g(수율 94.4%) 얻었다.
제조예 14-2. 화합물 2-2-103의 제조
화합물 2-3-103 9.5g(39.2mM), 아닐린(aniline) 3.7g(39.2mM), 트리스(디벤질리덴아세톤)디팔라듐(0)(Tris(dibenzylideneacetone)dipalladium(0), Pd2dba3) 1.8g(2.0mM), 2-디사이클로헥실포스피노-2',6'-디메톡시비페닐(2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl, Sphos) 1.6g(3.9mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 7.5g(78.4mM)를 톨루엔(toluene) 100mL에 녹인 후 1시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:3(부피비))로 정제하였고, 메탄올로 재결정하여 화합물 2-2-103을 8.5g(수율 85.2%) 얻었다.
제조예 14-3. 화합물 2-1-103의 제조
화합물 2-2-103 8.5g(33.4mM), 1-브로모-4-아이오도벤젠(1-bromo-4-iodobenzene) 10.4g(36.7mM), 초산팔라듐(Pd(OAc)2) 0.4g(1.7mM), 잔트포스(Xantphos) 1.9g(3.3mM), 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 6.4g(66.8mM)를 톨루엔(toluene) 100mL에 녹인 후 1시간 동안 환류시켰다.
반응이 완결된 후 반응물을 컬럼크로마토그래피(디클로로메탄:헥산=1:4(부피비))로 정제하였고, 메탄올로 재결정하여 화합물 2-1-103을 12.2g(수율 89.2%) 얻었다.
제조예 14-4. 화합물 2-103의 제조
Figure PCTKR2022012644-appb-img-000083
화합물 A 10g(27.4mM), 화합물 2-1-103 11.2g(27.4mM), 트리스(디벤질리덴아세톤)디팔라듐(0)(Tris(dibenzylideneacetone)dipalladium(0), Pd2dba3) 1.3g(1.4mM), 디사이클로헥실(2',4',6'-트리아이소프로필-[1,1'-바이페닐]-2-일)포스핀(Dicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine, Xphos) 1.3g(2.7mM) 및 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 7.9g(82.2mM)를 자일렌(xylene) 120mL에 녹인 후 1시간 동안 환류시켰다. 그 후, 메탄올(MeOH) 200mL를 첨가하고 감압여과 하여 목적 화합물 2-103을 16.7g(수율 88%) 얻었다.
제조예 15. 화합물 2-95의 제조
Figure PCTKR2022012644-appb-img-000084
상기 제조예 1에서 제조한 화합물 A 10g(27.4mM), 3-아이오도-1,1'-비페닐(3-iodo-1,1'-biphenyl) 9.2g(32.9mM), 트리스(디벤질리덴아세톤)디팔라듐(Tris(dibenzylideneacetone)dipalladium, Pd2(dba)3) 1.3g(1.4mM), 디사이클로헥실(2',4',6'-트리아이소프로필-[1,1'-바이페닐]-2-일)포스핀(Dicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine, Xphos) 1.3g(1.4mM), 소듐 터트-부톡사이드(Sodium tert-butoxide, NaOtBu) 7.9g(82.2mM)를 자일렌(xylene) 140mL에 녹인 후 1시간 동안 환류시켰다.
그 후, 메탄올(MeOH) 200mL를 첨가하고 감압여과 하여 화합물 2-95을 11.8g(수율 83.2%) 얻었다.
3-아이오도-1,1'-비페닐 대신 하기 표 6의 중간체 E를 사용한 것을 제외하고 상기 제조예 15와 동일한 방법으로 제조하여 하기 표 6과 같이 목적 화합물을 제조하였다.
Figure PCTKR2022012644-appb-img-000085
제조예 16. 화합물 2-104의 제조
Figure PCTKR2022012644-appb-img-000086
화합물 2-105 8.5g(13.2mM)을 벤젠-d6(benzene-d6) 90mL에 녹인 후 트리플루오로메탄설폰산(trifluoromethanesulfonic acid) 7.6mL(85.8mM) 천천히 적가(dropwise)한 후 1시간 동안 80℃의 온도로 교반하였다. 반응이 완결된 후 메탄올(methanol) 100mL를 넣어 반응을 종결시켰으며, 목적 화합물 2-104을 8.3g(수율 93.2%) 얻었다.
상기 제조예 13 내지 16 및 표 6에 기재된 화합물의 합성 결과를 하기 표 7 및 표 8에 나타내었다. 또한, 본 발명의 화학식 5의 헤테로 고리 화합물에 해당하는 화합물의 합성 결과도 하기 표 7 및 표 8에 나타내었다.
하기 표 7은 1H NMR(CDCl3, 300MHz)의 측정값이고, 하기 표 8은 FD-질량분석계(FD-MS: Field desorption mass spectrometry)의 측정값이다.
화합물 1H NMR(CDCl3, 300MHz)
2-95 δ = 8.43~8.41(m, 4H), 8.21(s, 1H), 8.11~8.10(m, 4H), 7.94~7.88(m, 3H), 7.80~7.68(m, 5H), 7.49~4.45(m, 5H), 7.33~7.31(t, 1H)
2-100 δ = 8.43~8.41(m, 4H), 8.11~8.10(m, 4H), 7.90~7.80(m, 6H), 7.69~7.68(d, 2H), 7.48~7.47(d, 1H), 7.33~7.24(m, 12H), 7.00~6.99(t, 1H), 1.69(s, 6H)
2-103 δ = 8.43~8.41(m, 4H), 8.11~8.10(m, 4H), 7.94~7.88(m, 3H), 7.80~7.79(d, 1H), 7.48~7.47(d, 1H), 7.33~7.32(t, 1H)
2-104 δ = 8.40~8.38(m, 4H), 8.05~8.02(m, 4H), 7.95~7.80(m, 4H), 7.69~7.68(d, 2H), 7.38~7.37(d, 1H), 7.33~7.25(m, 5H), 7.08~7.07(d, 2H), 7.00~6.99(t, 1H)
2-105 δ = 8.40~8.38(m, 4H), 8.05~8.02(m, 4H), 7.95~7.80(m, 4H), 7.75~7.65(m, 4H), 7.55~7.37(m, 8H), 7.33~7.25(m, 5H), 7.08~7.07(d, 2H), 7.00~6.99(t, 1H)
화합물 FD-Mass 화합물 FD-Mass
2-1 m/z= 532.6460 (C40H24N2, 532.1939) 2-2 m/z= 608.7440 (C46H28N2, 608.2252)
2-3 m/z= 658.8040 (C50H30N2, 658.2409) 2-4 m/z= 632.7660 (C48H28N2, 632.2252)
2-5 m/z= 638.7880 (C46H26N2S, 638.1817) 2-6 m/z= 622.7270 (C46H26N2O, 622.2045)
2-7 m/z= 697.8410 (C52H31N3, 697.2518) 2-8 m/z= 672.7870 (C50H28N2O, 672.2202)
2-9 m/z= 699.8570 (C52H33N3, 699.2674) 2-10 m/z= 749.9170 (C56H35N3, 749.2831)
2-11 m/z= 816.0200 (C61H41N3, 815.3300) 2-12 m/z= 775.9550 (C58H37N3, 775.2987)
2-13 m/z= 813.1808 (C58D37N3, 812.5310) 2-14 m/z= 835.1359 (C61H22D19N3, 834.4493)
2-15 m/z= 457.5320 (C34H19NO, 457.1467) 2-16 m/z= 507.5920 (C38H21NO, 507.1623)
2-17 m/z= 533.6300 (C40H23NO, 533.1780) 2-18 m/z= 609.7280 (C46H27NO, 609.2093)
2-19 m/z= 557.6520 (C42H23NO, 557.1780) 2-20 m/z= 624.7430 (C46H28N2O, 624.2202)
2-21 m/z= 700.8410 (C52H32N2O, 700.2515) 2-22 m/z= 776.9390 (C58H36N2O, 776.2828)
2-23 m/z= 817.0040 (C61H40N2O, 816.3141) 2-24 m/z= 714.8240 (C52H30N2O2, 714.2307)
2-25 m/z= 714.9264 (C52H18D14N2O, 714.3393) 2-26 m/z= 733.0363 (C52D32N2O, 732.4523)
2-27 m/z= 799.0732 (C58H14D22N2O, 798.4209) 2-28 m/z= 473.5930 (C34H19NS, 473.1238)
2-29 m/z= 549.6910 (C40H23NS, 549.1551) 2-30 m/z= 640.8040 (C46H28N2S, 640.1973)
2-31 m/z= 716.9020 (C52H32N2S, 716.2286) 2-32 m/z= 756.9670 (C55H36N2S, 756.2599)
2-33 m/z= 833.0650 (C61H40N2S, 832.2912) 2-34 m/z= 563.7764 (C40H9D14NS, 563.2430)
2-35 m/z= 730.9874 (C52H18D14N2S, 730.3165) 2-36 m/z= 749.0973 (C52D32N2S, 748.4295)
2-37 m/z= 483.6140(C37H25N, 483.1987) 2-38 m/z= 533.6740(C41H27N, 533.2143)
2-39 m/z= 589.7560(C43H27NS, 589.1864) 2-40 m/z= 650.8250(C49H34N2, 650.2722)
2-41 m/z= 726.9230(C55H38N2, 726.3035) 2-42 m/z= 803.0210(C61H42N2, 802.3348)
2-43 m/z= 503.7360(C37H5D2N, 503.3242) 2-44 m/z= 765.1549(C55D38N2, 764.5420)
2-45 m/z= 532.6460 (C40H24N2, 532.1939) 2-46 m/z= 684.8420 (C52H32N2, 684.2565)
2-47 m/z= 760.9400 (C58H36N2, 760.2878) 2-48 m/z= 632.7660 (C48H28N2, 632.2252)
2-49 m/z= 699.8570 (C52H33N3, 699.2674) 2-50 m/z= 867.0680 (C64H42N4, 866.3409)
2-51 m/z= 775.9550 (C58H37N3, 775.2987) 2-52 m/z= 816.0200 (C61H41N3, 815.3300)
2-53 m/z= 551.7619 (C40H5D19N2, 551.3132) 2-54 m/z= 795.0709 (C58H18D19N3, 794.4180)
2-55 m/z= 457.5320 (C34H19NO, 457.1467) 2-56 m/z= 507.5920 (C38H21NO, 507.1623)
2-57 m/z= 563.6740 (C40H21NOS, 563.1344) 2-58 m/z= 597.6730 (C44H23NO2, 597.1729)
2-59 m/z= 673.7710 (C50H27NO2, 673.2042) 2-60 m/z= 622.7270 (C46H26N2O, 622.2045)
2-61 m/z= 624.7430 (C46H28N2O, 624.2202) 2-62 m/z= 700.8410 (C52H32N2O, 700.2515)
2-63 m/z= 740.9060 (C55H36N2O, 740.2828) 2-64 m/z= 730.8850 (C52H30N2OS, 730.2079)
2-65 m/z= 471.6174 (C34H5D14NO, 471.2345) 2-66 m/z= 528.7201 (C38D21NO, 528.2941)
2-67 m/z= 638.8284 (C46H14D14N2O, 638.3080) 2-68 m/z= 733.0363 (C52D32N2O, 732.4523)
2-69 m/z= 473.5930 (C34H19NS, 473.1238) 2-70 m/z= 523.6530 (C38H21NS, 523.1395)
2-71 m/z= 623.7730 (C46H25NS, 623.1708) 2-72 m/z= 549.6910 (C40H23NS, 549.1551)
2-73 m/z= 640.8040 (C46H28N2S, 640.1973) 2-74 m/z= 716.9020 (C52H32N2S, 716.2286)
2-75 m/z= 716.9020 (C52H32N2S, 716.2286) 2-76 m/z= 756.9670 (C55H36N2S, 756.2599)
2-77 m/z= 563.7764 (C40H9D14NS, 563.2430) 2-78 m/z= 730.9874 (C52H18D14N2S, 730.3165)
2-79 m/z= 749.0973 (C52D32N2S, 748.4295) 2-80 m/z= 483.6140(C37H25N, 483.1987)
2-81 m/z= 559.7120(C43H29N, 559.2300) 2-82 m/z= 589.7560(C43H27NS, 589.1864)
2-83 m/z= 649.7930(C49H31NO, 649.2406) 2-84 m/z= 533.6740(C41H27N, 533.2143)
2-85 m/z= 609.7220(C47H31N, 609.2457) 2-86 m/z= 573.6950(C43H27NO, 573.2093)
2-87 m/z= 699.8530(C53H33NO, 699.2562) 2-88 m/z= 650.8250(C49H34N2, 650.2722)
2-89 m/z= 700.8850(C53H36N2, 700.2878) 2-90 m/z= 726.9230(C55H38N2, 726.3035)
2-91 m/z= 766.9880(C58H42N2, 766.3348) 2-92 m/z= 655.932(C49H13D20N, 655.3868)
2-93 m/z= 765.1549(C55D38N2, 764.5420) 2-94 m/z= 441.5330(C34H19N, 441.1517)
2-95 m/z= 517.6310(C40H23N, 517.1830) 2-96 m/z= 606.7280(C46H26N2, 606.2096)
2-97 m/z= 682.8260(C52H30N2, 682.2409) 2-98 m/z= 608.7440(C46H28N2, 608.2252)
2-99 m/z= 760.9400(C58H36N2, 760.2878) 2-100 m/z= 724.9070(C55H36N2, 724.2878)
2-101 m/z= 531.7164(C40H9D14N, 531.2709) 2-102 m/z= 702.9518(C52H14D18N2, 702.3695)
2-103 m/z= 693.8969 (C52H23D9N2, 693.3130) 2-104 m/z= 717.0373 (C52D32N2, 716.4574)
2-105 m/z= 684.8420 (C52H32N2, 684.2565)
실험예 1.
실험예 1-1. 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet Ozone)처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
이어서 챔버 내의 진공도가 10-6 torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 4,4',4''-트리스[2-나프틸(페닐)아미노] 트리페닐아민(4,4',4''-Tris[2-naphthyl(phenyl)amino] triphenylamine), 2-TNATA)를 증발시켜 ITO 기판 상에 600Å의 두께로 정공 주입층을 증착하였다. 진공 증착 장비 내의 다른 셀에 하기 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine: NPB)을 넣고, 셀에 전류를 인가하여 증발시켜 정공 주입층 위에 300Å의 두께로 정공 수송층을 증착하였다.
Figure PCTKR2022012644-appb-img-000087
Figure PCTKR2022012644-appb-img-000088
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 하기 표 9에 기재된 화합물을 증착하였고, 적색 인광 도펀트로 (piq)2(Ir)(acac)을 사용하여 호스트에 Ir 화합물을 3 wt% 도핑하여 400Å의 두께로 증착하였다. 이 때 하기 표 9에 기재된 것과 같이 화합물 1에 기재된 화합물 1종을 증착하거나, 화합물 1에 기재된 화합물 1종과 화합물 2에 기재된 화합물 1종을 예비 혼합 후 하나의 공급원에서 증착하였다.
이후 정공 저지층으로 Bphen을 30Å의 두께로 증착하였으며, 그 위에 전자 수송층으로 Alq3를 250Å의 두께로 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å의 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al)을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
Figure PCTKR2022012644-appb-img-000089
Figure PCTKR2022012644-appb-img-000090
Figure PCTKR2022012644-appb-img-000091
한 편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED(Organic Light Emitting Device) 제작에 사용하였다.
실험예 1-2. 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. 본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE) 및 수명을 측정한 결과를 하기 표 9에 나타내었다.
상기 T90은 초기 휘도 대비 90%가 되는 시간인 수명(단위: 시간)을 의미한다.
화합물 1 화합물 2 비율
(N:P)
Turn-on
(V)
구동전압
(V)
효율
(cd/A)
색좌표
(x, y)
수명
(T90)
비교예 1 A - - 3.20 5.38 25.10 (0.684, 0.316) 50
비교예 2 B - - 3.60 5.79 19.11 (0.684, 0.316) 100
비교예 3 C - - 3.52 5.70 19.88 (0.684. 0.316) 110
비교예 4 D - - 3.28 5.49 21.55 (0.685. 0.315) 40
비교예 5 E - - 3.28 5.50 15.50 (0.685, 0.315) 45
비교예 6 F - - 3.29 5.50 20.50 (0.685, 0.315) 35
실시예 1 1-3 - - 2.20 4.25 35.18 (0.685, 0.315) 100
실시예 2 1-4 - - 2.21 4.24 35.55 (0.685, 0.315) 115
실시예 3 1-20 - - 2.20 4.41 30.51 (0.685, 0.315) 85
실시예 4 1-22 - - 2.25 4.35 38.11 (0.685, 0.315) 150
실시예 5 1-363 - - 2.30 4.39 42.99 (0.685, 0.315) 210
실시예 6 1-365 - - 2.37 4.50 35.10 (0.685, 0.315) 123
실시예 7 1-374 - - 2.41 4.52 42.10 (0.685, 0.315) 300
실시예 8 1-384 - - 2.45 4.62 35.11 (0.684. 0.316) 150
실시예 9 1-436 - - 2.61 4.50 43.10 (0.684. 0.316) 250
실시예 10 1-438 - - 2.59 4.47 45.15 (0.684. 0.316) 370
실시예 11 1-440 - - 2.65 4.60 35.90 (0.685, 0.315) 175
실시예 12 1-441 - - 2.60 4.50 49.10 (0.685, 0.315) 350
실시예 13 1-443 - - 2.62 4.54 48.50 (0.685, 0.315) 400
실시예 14 1-446 - - 2.69 4.58 43.50 (0.685, 0.315) 510
실시예 15 1-448 - - 2.73 4.71 37.20 (0.684. 0.316) 280
실시예 16 1-469 - - 2.51 4.30 55.15 (0.684. 0.316) 150
실시예 17 1-478 - - 2.52 4.33 62.50 (0.685, 0.315) 175
실시예 18 1-469 2-100 3:1 2.52 4.47 60.15 (0.684. 0.316) 210
실시예 19 1-469 2-100 1:1 2.53 4.50 65.11 (0.685, 0.315) 410
실시예 20 1-469 2-100 1:3 2.70 4.68 58.30 (0.685, 0.315) 305
실시예 21 1-374 2-100 1:1 2.43 4.55 45.13 (0.685, 0.315) 640
실시예 22 1-448 2-100 1:1 2.73 4.71 40.11 (0.685, 0.315) 400
실시예 23 1-469 2-95 1:1 2.61 4.75 53.10 (0.684. 0.316) 180
실시예 24 1-469 2-102 1:1 2.57 4.59 64.99 (0.684. 0.316) 520
실시예 25 1-483 - - 2.61 4.48 45.10 (0.684. 0.316) 410
실시예 26 1-484 - - 2.60 4.48 45.13 (0.684. 0.316) 415
실시예 27 1-485 - - 2.61 4.49 45.16 (0.684. 0.316) 490
실시예 28 1-486 - - 2.53 4.35 62.48 (0.685, 0.315) 210
실시예 29 1-488 - - 2.53 4.35 62.47 (0.685, 0.315) 250
실시예 30 1-489 - - 2.31 4.40 42.89 (0.685, 0.315) 240
실시예 31 1-490 - - 2.31 4.42 42.80 (0.685, 0.315) 285
실시예 32 1-469 2-105 1:1 2.55 4.55 65.15 (0.684. 0.316) 410
실시예 33 1-469 2-104 1:1 2.58 4.61 64.85 (0.684. 0.316) 580
실시예 34 1-488 2-105 - 2.55 4.38 68.11 (0.684. 0.316) 460
실시예 35 1-488 2-104 1:1 2.58 4.41 67.90 (0.685, 0.315) 620
[비교 화합물]
Figure PCTKR2022012644-appb-img-000092
실험예 2.
실험예 2-1. 유기 발광 소자의 제작
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO(Ultraviolet Ozone)처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨 후, 진공상태에서 ITO 일함수 및 잔막 제거를 위해 플라즈마 처리를 하여, 유기증착용 열증착 장비로 이송하였다.
상기 ITO 투명 전극(양극)위에 공통층인 정공 주입층으로 4,4',4''-트리스[2-나프틸(페닐)아미노] 트리페닐아민(4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine), 2-TNATA), 정공 수송층으로 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine: NPB) 및 전자 저지층으로 사이클로헥실리덴비스[N,N-비스(4-메틸페닐)벤젠아민] (cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine], TAPC) 또는 여기자 저지층으로 트리스(4-카바조일-9-일페닐)아민(Tris(4-carbazoyl-9-ylphenyl)amine, TCTA)을 형성시켰다.
Figure PCTKR2022012644-appb-img-000093
Figure PCTKR2022012644-appb-img-000094
Figure PCTKR2022012644-appb-img-000095
Figure PCTKR2022012644-appb-img-000096
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 적색 호스트로 하기 표 10에 기재된 화합물을 단일 또는 두개의 공급원에서 증착하였고, 적색 인광 도펀트로 (piq)2(Ir)(acac)을 사용하여 호스트에 Ir 화합물을 3 wt% 도핑하여 400Å증착하였다. 이 때 하기 표 10에 기재된 것과 같이 화합물 1에 기재된 화합물 1종을 증착하거나, 화합물 1에 기재된 화합물 1종과 화합물 2에 기재된 화합물 1종을 예비 혼합 후 하나의 공급원에서 증착하였다.
이후 정공 저지층으로 Bphen를 30Å의 두께로 증착하였으며, 그 위에 전자 수송층으로 TPBI를 250Å의 두께로 증착 하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å의 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al)을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
Figure PCTKR2022012644-appb-img-000097
Figure PCTKR2022012644-appb-img-000098
Figure PCTKR2022012644-appb-img-000099
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8torr 하에서 진공 승화 정제하여 OLED(Organic Light Emitting Device) 제작에 사용하였다.
실험예 2-2. 유기 발광 소자의 구동 전압 및 발광 효율
상기와 같이 제작된 유기 발광 소자에 대하여 맥사이어스사의 M7000으로 전계 발광(EL)특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. 본 발명에 따라 제조된 유기 발광 소자의 구동전압, 발광효율, 색좌표(CIE) 및 수명을 측정한 결과를 하기 표 10에 나타내었다.
상기 T90은 초기 휘도 대비 90%가 되는 시간인 수명(단위: 시간)을 의미한다.
화합물 1 화합물 2 비율
(N:P)
Turn-on
(V)
구동전압
(V)
효율
(cd/A)
색좌표
(x, y)
수명
(T90)
비교예 7 A - - 3.22 5.39 22.30 (0.684, 0.316) 70
비교예 8 B - - 3.67 5.83 23.55 (0.685, 0.315) 122
비교예 9 C - - 3.66 5.78 24.15 (0.684. 0.316) 130
실시예 36 1-3 - - 2.22 4.40 38.28 (0.685, 0.315) 110
실시예 37 1-4 - - 2.22 4.44 38.55 (0.685, 0.315) 130
실시예 38 1-363 - - 2.33 4.51 43.85 (0.685, 0.315) 250
실시예 39 1-436 - - 2.62 4.61 45.10 (0.684. 0.316) 250
실시예 40 1-438 - - 2.60 4.58 46.15 (0.684. 0.316) 400
실시예 41 1-469 - - 2.53 4.50 60.11 (0.684. 0.316) 210
실시예 42 1-478 - - 2.54 4.55 65.50 (0.685, 0.315) 255
실시예 43 1-483 - - 2.63 4.51 48.11 (0.684. 0.316) 490
실시예 44 1-484 - - 2.64 4.52 47.50 (0.684. 0.316) 495
실시예 45 1-485 - - 2.66 4.56 46.90 (0.684. 0.316) 580
실시예 46 1-469 2-100 1:3 2.71 4.70 58.20 (0.685, 0.315) 425
실시예 47 1-469 2-100 1:1 2.55 4.55 66.12 (0.685, 0.315) 630
실시예 48 1-469 2-100 3:1 2.54 4.52 61.15 (0.684. 0.316) 250
실시예 49 1-469 2-105 1:1 2.57 4.59 64.55 (0.684. 0.316) 680
실시예 50 1-469 2-104 1:1 2.58 4.69 63.15 (0.684. 0.316) 860
[비교 화합물]
Figure PCTKR2022012644-appb-img-000100
본 발명의 화학식 1로 표시되는 헤테로 고리 화합물은 열 안정성이 높다. 또한, 방향성(aromaticity) 확장으로 목적하고자 하는 분자량 조절이 용이하고, 적절한 밴드갭을 갖는 호스트 물질을 용이하게 디자인할 수 있다. 발광층의 적절한 밴드갭은 정공 운송능력이 우수하고, 전자의 유실을 막아, 효과적인 재결합 영역(recombination zone)의 형성을 도울 수 있다. 그러므로 상기 표 9 및 표 10의 결과에서 알 수 있듯이 비교예보다 본 발명의 화학식 1로 표시되는 헤테로 고리 화합물이 개선된 성능을 보이는 것을 확인할 수 있었다.
특히, 발광층에 정공 수송 능력이 좋은 도너(donor, 표 9 및 10의 화합물 2(p-host), 본 발명의 화학식 5의 헤테로 고리 화합물)와 전자 수송 능력이 좋은 억셉터(acceptor, 표 9 및 10의 화합물 1(n-host), 본 발명의 화학식 1의 헤테로 고리 화합물)가 발광층의 호스트로 사용될 경우, 전자와 전공 주입이 향상되어 효과적인 재결합 영역(recombination zone)의 형성을 통해, 유기 발광 소자의 효율 및 수명을 향상시키는 것을 알 수 있었다.
또한, 실험예 2의 유기 발광 소자는 전자 저지층을 추가로 포함하는 것으로, 전자 저지층을 포함함에 따라 전자의 손실을 방지할 수 있어 소자의 수명 특성을 향상시킬 수 있으므로, 실험예 1의 결과 보다 우수한 결과를 보였다.
[부호의 설명]
100: 기판
200: 양극
300: 유기물층
301: 정공 주입층
302: 정공 수송층
303: 발광층
304: 정공 저지층
305: 전자 수송층
306: 전자 주입층
400: 음극

Claims (18)

  1. 하기 화학식 1로 표시되는 헤테로 고리 화합물:
    [화학식 1]
    Figure PCTKR2022012644-appb-img-000101
    상기 화학식 1에 있어서,
    상기 R1 내지 R10은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 R11은 하기 화학식 2이고,
    [화학식 2]
    Figure PCTKR2022012644-appb-img-000102
    상기 화학식 2에 있어서,
    상기 L1은 직접결합; 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    상기 m은 0 내지 5의 정수이고, m이 2 이상인 경우 L1은 서로 같거나 상이하고,
    상기 N-Het는 치환 또는 비치환되고, N을 2개 이상 포함하는 C2 내지 C60의 단환 또는 다환의 헤테로고리기이고,
    상기 *은 하기 화학식 3과 연결 지점이고,
    [화학식 3]
    Figure PCTKR2022012644-appb-img-000103
    상기 X1은 NRa; O; S; CRbRc; 또는 직접결합이고,
    상기 Ra, Rb, Rc, R21 내지 R24는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  2. 제1항에 있어서,
    상기 N-Het가 치환기를 가질 경우, 상기 치환기는 중수소; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기인, 헤테로 고리 화합물.
  3. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    [화학식 1-1]
    Figure PCTKR2022012644-appb-img-000104
    [화학식 1-2]
    Figure PCTKR2022012644-appb-img-000105
    상기 화학식 1-1 및 1-2에 있어서,
    상기 R1 내지 R10은 상기 화학식 1의 정의와 동일하고,
    상기 R11의 정의는 상기 화학식 2의 정의와 동일하고,
    상기 X1, R21 내지 R24는 상기 화학식 3의 정의와 동일하다.
  4. 제1항에 있어서,
    상기 화학식 2는 하기 화학식 4로 표시되는, 헤테로 고리 화합물:
    [화학식 4]
    Figure PCTKR2022012644-appb-img-000106
    상기 화학식 4에 있어서,
    상기 X11 내지 X15는 서로 같거나 상이하고, 각각 독립적으로 N; 또는 CRd이고,
    상기 X11 내지 X15 중 적어도 2개 이상은 N이고,
    상기 CRd가 2개 이상인 경우 서로 같거나 상이하고,
    상기 Rd는 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 L1 및 m의 정의는 상기 화학식 2에서의 정의와 동일하다.
  5. 제4항에 있어서,
    상기 화학식 4는 하기 화학식 4-1 내지 4-4 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    [화학식 4-1]
    Figure PCTKR2022012644-appb-img-000107
    [화학식 4-2]
    Figure PCTKR2022012644-appb-img-000108
    [화학식 4-3]
    Figure PCTKR2022012644-appb-img-000109
    [화학식 4-4]
    Figure PCTKR2022012644-appb-img-000110
    상기 화학식 4-1 내지 4-4에 있어서,
    상기 R31 내지 R43는 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 L1 및 m의 정의는 상기 화학식 2에서의 정의와 동일하다.
  6. 제5항에 있어서,
    상기 화학식 4-2는 하기 화학식 4-2-1 내지 4-2-3 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    [화학식 4-2-1]
    Figure PCTKR2022012644-appb-img-000111
    [화학식 4-2-2]
    Figure PCTKR2022012644-appb-img-000112
    [화학식 4-2-3]
    Figure PCTKR2022012644-appb-img-000113
    상기 화학식 4-2-1 내지 4-2-3에 있어서,
    상기 Y는 O; 또는 S이고,
    상기 R44 내지 R56은 서로 같거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 L1 및 m의 정의는 상기 화학식 2에서의 정의와 동일하다.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 치환기로서 중수소를 포함하지 않거나,
    수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인, 헤테로 고리 화합물.
  8. 제1항에 있어서,
    상기 화학식 1은 하기 화합물 중 어느 하나로 표시되는, 헤테로 고리 화합물:
    Figure PCTKR2022012644-appb-img-000114
    Figure PCTKR2022012644-appb-img-000115
    Figure PCTKR2022012644-appb-img-000116
    Figure PCTKR2022012644-appb-img-000117
    Figure PCTKR2022012644-appb-img-000118
    Figure PCTKR2022012644-appb-img-000119
    Figure PCTKR2022012644-appb-img-000120
    Figure PCTKR2022012644-appb-img-000121
    Figure PCTKR2022012644-appb-img-000122
    Figure PCTKR2022012644-appb-img-000123
    Figure PCTKR2022012644-appb-img-000124
    Figure PCTKR2022012644-appb-img-000125
    Figure PCTKR2022012644-appb-img-000126
    Figure PCTKR2022012644-appb-img-000127
    Figure PCTKR2022012644-appb-img-000128
    Figure PCTKR2022012644-appb-img-000129
    Figure PCTKR2022012644-appb-img-000130
    Figure PCTKR2022012644-appb-img-000131
    Figure PCTKR2022012644-appb-img-000132
    Figure PCTKR2022012644-appb-img-000133
    Figure PCTKR2022012644-appb-img-000134
    Figure PCTKR2022012644-appb-img-000135
    Figure PCTKR2022012644-appb-img-000136
    Figure PCTKR2022012644-appb-img-000137
    Figure PCTKR2022012644-appb-img-000138
    .
  9. 제1 전극;
    상기 제1 전극과 대향하여 구비된 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층;을 포함하는 유기 발광 소자로서,
    상기 유기물층 중 1층 이상은 제1항 내지 제8항 중 어느 한 항에 따른 헤테로 고리 화합물을 포함하는, 유기 발광 소자.
  10. 제9항에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 상기 헤테로 고리 화합물을 포함하는, 유기 발광 소자.
  11. 제9항에 있어서,
    상기 유기물층은 발광층을 포함하고,
    상기 발광층은 호스트 물질을 포함하며,
    상기 호스트 물질은 상기 헤테로 고리 화합물을 포함하는, 유기 발광 소자.
  12. 제9항에 있어서,
    상기 유기물층은 하기 화학식 5로 표시되는 헤테로 고리 화합물을 추가로 포함하는, 유기 발광 소자:
    [화학식 5]
    Figure PCTKR2022012644-appb-img-000139
    상기 화학식 5에 있어서,
    상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 R71은 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 또는 하기 화학식 6이고,
    상기 헤테로아릴기의 헤테로 원자가 N일 경우, 헤테로 원자는 1개 포함되고,
    [화학식 6]
    Figure PCTKR2022012644-appb-img-000140
    상기 화학식 6에 있어서,
    상기 L2는 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    상기 n은 1 내지 5의 정수이고, n이 2 이상인 경우 L2는 서로 같거나 상이하고,
    상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 *은 하기 화학식 7과 연결 지점이고,
    [화학식 7]
    Figure PCTKR2022012644-appb-img-000141
    상기 X2은 NRe; O; S; CRfRg; 또는 직접결합이고,
    상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  13. 제12항에 있어서,
    상기 화학식 5으로 표시되는 헤테로 고리 화합물은 치환기로서 중수소를 포함하지 않거나,
    수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인, 유기 발광 소자.
  14. 제12항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물 및 상기 화학식 5로 표시되는 헤테로 고리 화합물 중 적어도 하나는 치환기로서 중수소를 포함하지 않거나, 수소 원자와 중수소 원자의 총수를 기준으로 중수소의 함량이 1% 내지 100%인, 유기 발광 소자.
  15. 제12항에 있어서,
    상기 화학식 5로 표시되는 헤테로 고리 화합물은 하기 화합물 중 선택되는 어느 하나인, 유기 발광 소자:
    Figure PCTKR2022012644-appb-img-000142
    Figure PCTKR2022012644-appb-img-000143
    Figure PCTKR2022012644-appb-img-000144
    Figure PCTKR2022012644-appb-img-000145
    Figure PCTKR2022012644-appb-img-000146
    Figure PCTKR2022012644-appb-img-000147
    .
  16. 제9항에 있어서,
    상기 유기 발광 소자는 발광층, 정공 주입층, 정공 수송층. 전자 주입층, 전자 수송층, 전자 저지층 및 정공 저지층으로 이루어진 군에서 선택되는 1층 또는 2층 이상을 더 포함하는, 유기 발광 소자.
  17. 제1항 내지 제8항 중 어느 한 항에 따른 헤테로 고리 화합물 및 하기 화학식 5로 표시되는 헤테로 고리 화합물을 포함하는, 유기 발광 소자의 유기물층용 조성물:
    [화학식 5]
    Figure PCTKR2022012644-appb-img-000148
    상기 화학식 5에 있어서,
    상기 R61 내지 R70은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 R71은 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; 또는 하기 화학식 6이고,
    상기 헤테로아릴기의 헤테로 원자가 N일 경우, 헤테로 원자는 1개 포함되고,
    [화학식 6]
    Figure PCTKR2022012644-appb-img-000149
    상기 화학식 6에 있어서,
    상기 L2는 치환 또는 비치환된 C6 내지 C60의 아릴렌기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌기이고,
    상기 n은 1 내지 5의 정수이고, n이 2 이상인 경우 L2는 서로 같거나 상이하고,
    상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이고,
    상기 *은 하기 화학식 7과 연결 지점이고,
    [화학식 7]
    Figure PCTKR2022012644-appb-img-000150
    상기 X2은 NRe; O; S; CRfRg; 또는 직접결합이고,
    상기 Re, Rf, Rg, R81 내지 R84는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; 시아노기; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C2 내지 C60의 알케닐기; 치환 또는 비치환된 C2 내지 C60의 알키닐기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 치환 또는 비치환된 C3 내지 C60의 시클로알킬기; 치환 또는 비치환된 C2 내지 C60의 헤테로시클로알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기; -P(=O)R101R102; -SiR101R102R103; 및 -NR101R102로 이루어진 군으로부터 선택되거나, 서로 인접하는 2 이상의 기가 서로 결합하여 치환 또는 비치환된 C6 내지 C60의 방향족 탄화수소 고리 또는 치환 또는 비치환된 C2 내지 C60의 헤테로 고리를 형성하며, 상기 R101, R102 및 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 또는 치환 또는 비치환된 C2 내지 C60의 헤테로아릴기이다.
  18. 제17항에 있어서,
    상기 화학식 1로 표시되는 헤테로 고리 화합물:상기 화학식 5로 표시되는 헤테로 고리 화합물의 중량비가 1:10 내지 10:1인, 유기 발광 소자의 유기물층용 조성물.
PCT/KR2022/012644 2021-09-10 2022-08-24 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물 WO2023038330A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210121280A KR102622298B1 (ko) 2021-09-10 2021-09-10 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
KR10-2021-0121280 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023038330A1 true WO2023038330A1 (ko) 2023-03-16

Family

ID=85506747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012644 WO2023038330A1 (ko) 2021-09-10 2022-08-24 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물

Country Status (3)

Country Link
KR (1) KR102622298B1 (ko)
TW (1) TW202328136A (ko)
WO (1) WO2023038330A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099547A (ko) * 2017-02-28 2018-09-05 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20200026747A (ko) * 2018-09-03 2020-03-11 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN110922422A (zh) * 2019-10-23 2020-03-27 宇瑞(上海)化学有限公司 一种磷光化合物及一种有机发光器件
CN111269239A (zh) * 2020-03-09 2020-06-12 杨曦 一种有机化合物及其在有机电子器件的应用
US20200313095A1 (en) * 2019-03-29 2020-10-01 Samsung Electronics Co., Ltd. Composition and organic light-emitting device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102546267B1 (ko) * 2020-05-08 2023-06-21 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099547A (ko) * 2017-02-28 2018-09-05 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20200026747A (ko) * 2018-09-03 2020-03-11 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
US20200313095A1 (en) * 2019-03-29 2020-10-01 Samsung Electronics Co., Ltd. Composition and organic light-emitting device including the same
CN110922422A (zh) * 2019-10-23 2020-03-27 宇瑞(上海)化学有限公司 一种磷光化合物及一种有机发光器件
CN111269239A (zh) * 2020-03-09 2020-06-12 杨曦 一种有机化合物及其在有机电子器件的应用

Also Published As

Publication number Publication date
KR20230038035A (ko) 2023-03-17
KR102622298B1 (ko) 2024-01-08
TW202328136A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2022025515A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2019245262A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2022065761A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 및 유기물층용 조성물
WO2017078494A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2019054833A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022035097A1 (ko) 유기 발광 소자 및 유기물층 형성용 조성물
WO2022092625A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조방법
WO2017018795A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2020122576A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2020138959A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2021071247A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기 발광 소자의 유기물층용 조성물
WO2017003009A1 (ko) 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2016133342A1 (ko) 이중스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2019245263A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2019132484A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016195459A2 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2022270741A1 (ko) 헤테로고리 화합물, 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물
WO2022211211A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물
WO2020138961A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
WO2022035224A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
WO2021101220A1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
WO2021010631A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2018186551A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020096419A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017061810A1 (ko) 이중 스피로형 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE