WO2023038130A1 - 養液トレイ - Google Patents

養液トレイ Download PDF

Info

Publication number
WO2023038130A1
WO2023038130A1 PCT/JP2022/033976 JP2022033976W WO2023038130A1 WO 2023038130 A1 WO2023038130 A1 WO 2023038130A1 JP 2022033976 W JP2022033976 W JP 2022033976W WO 2023038130 A1 WO2023038130 A1 WO 2023038130A1
Authority
WO
WIPO (PCT)
Prior art keywords
nutrient solution
cultivation
tray
pot
solution tray
Prior art date
Application number
PCT/JP2022/033976
Other languages
English (en)
French (fr)
Inventor
西村申
大嶋一孝
Original Assignee
株式会社プランテックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プランテックス filed Critical 株式会社プランテックス
Priority to CA3231245A priority Critical patent/CA3231245A1/en
Priority to JP2023547016A priority patent/JPWO2023038130A1/ja
Publication of WO2023038130A1 publication Critical patent/WO2023038130A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • Patent Document 1 Japanese Patent Application No. 2020-071382
  • the plant cultivation apparatus comprises a plurality of sensors for monitoring the growth state of plants to be cultivated, and the environment, which is at least one state of light, air, water, and space, within the plant cultivation apparatus. and a process control means for managing the work process of cultivating the plant.” (see abstract).
  • Patent Literature 1 describes a mechanism for performing both environmental management within the device and process management for work processes for cultivating plants in a plant cultivating device.
  • this patent document does not disclose a mechanism or the like for cultivating plants more easily or in a more suitable environment. Therefore, the present invention provides a mechanism for changing the spacing between plants without thinning or transplanting the plants.
  • the nutrient solution tray includes a storage portion for storing plants, a nutrient solution inflow area for inflowing water or nutrient solution, and a nutrient solution outflow region having a nutrient solution outlet for causing the water or the nutrient solution to flow out, wherein at least the storage part, the nutrient solution inflow region, and the nutrient solution outflow region are connected to the nutrient solution.
  • the nutrient solution tray has a first mounting surface pair consisting of a first mounting surface and a second mounting surface, the first mounting surface being the longitudinal direction of the nutrient solution tray.
  • the second installation surface is formed on the side of the nutrient solution outflow region in the longitudinal direction of the nutrient solution tray, and the first installation surface is formed on the side of the nutrient solution outflow region in the longitudinal direction of the nutrient solution tray. is farther from the bottom surface than the second installation surface.
  • FIG. 1 is an example of a perspective view for comparing planting units with different spacing conditions.
  • FIG. 2 is an example of a top view for comparing planting units with different spacing conditions.
  • FIG. 3 is an example of an enlarged view of area A in FIG.
  • FIG. 4 is an example of an enlarged view of area B in FIG.
  • FIG. 5 is an example of an enlarged view of area C in FIG.
  • FIG. 6 is an example of an enlarged view of area D in FIG.
  • FIG. 7 is an example of a perspective view of a planting pot in a reduced state.
  • FIG. 8 is an example of six views of a planting pot in a contracted state.
  • FIG. 9 is an example of a perspective view of a growing pot in an extended state.
  • FIG. 9 is an example of a perspective view of a growing pot in an extended state.
  • FIG. 10 is an example of a 6-sided view of a planting pot in an extended state.
  • FIG. 11 is an example of an exploded view of a planting pot.
  • FIG. 12 is an example perspective view of a first end pot piece.
  • FIG. 13 is an example of six views of the first end pot piece.
  • FIG. 14 is an example of a perspective view of an intermediate pot piece.
  • FIG. 15 is an example of six views of the intermediate pot piece.
  • FIG. 16 is an example perspective view of a second end pot piece.
  • FIG. 17 is an example of a six-sided view of the second end pot piece.
  • FIG. 18 is an example of two planting pots arranged longitudinally.
  • FIG. 19 is an example of an explanatory diagram illustrating how an insertion area is inserted into an accommodation area.
  • FIG. 19 is an example of an explanatory diagram illustrating how an insertion area is inserted into an accommodation area.
  • FIG. 19 is an example of an explanatory diagram illustrating how an insertion area is inserted into
  • FIG. 20 is an example of an explanatory diagram for explaining the engagement state between the slide slit and the latch.
  • FIG. 21 is an example of a perspective view of a nutrient solution tray.
  • FIG. 22 is an example of a top view and a bottom view of a nutrient solution tray.
  • FIG. 23 is an example of a perspective view of a nutrient solution tray having a pattern structure.
  • FIG. 24 is an example of a top view of a nutrient solution tray having a pattern structure.
  • 25 is an example of an enlarged top view of an end region of a nutrient solution tray having the pattern structure of FIG. 24.
  • FIG. 26 is an example of an enlarged perspective view of an end region of a nutrient solution tray having the pattern structure of FIG. 24.
  • FIG. 27 is an example of a side view of the end region of the nutrient solution tray.
  • FIG. 28 is an example of a side view of the nutrient solution tray in different states.
  • FIG. 29 is an example of a functional block diagram showing the configuration of the cultivation device.
  • FIG. 30 is an example of a diagram showing the inside of the cultivation apparatus.
  • FIG. 31 is an example of a schematic cross-sectional view of the cultivation chamber viewed from the longitudinal direction.
  • FIG. 32 shows an example of a cultivation plate and a nutrient solution tray arranged in a cultivation apparatus.
  • FIG. 33 is an example of an explanatory diagram of an air circulation device provided in the cultivation apparatus.
  • FIG. 34 is an example of the explanatory view explaining a seeding tray.
  • FIG. 35 is an example of another explanatory drawing explaining a seeding tray.
  • FIG. 36 is an example of an explanatory diagram explaining a cultivation plate.
  • FIG. 37 is an example of an explanatory diagram explaining a cultivation plate spacer.
  • FIG. 38 is an example of an explanatory diagram explaining a cultivation panel.
  • FIG. 39 is an example of another explanatory diagram for explaining the cultivation panel.
  • FIG. 40 is an example of an explanatory diagram explaining the arrangement of cultivation plates and cultivation plate spacers in a cultivation panel.
  • FIG. 41 is another example of an explanatory diagram for explaining the arrangement of the cultivation plate and the cultivation plate spacers in the cultivation panel.
  • FIG. 42 is an example of an explanatory diagram for comparing nutrient solution trays in different usage states.
  • FIG. 42 is an example of an explanatory diagram for comparing nutrient solution trays in different usage states.
  • FIG. 43 is an example of an explanatory diagram for comparing nutrient solution trays in different usage states.
  • FIG. 44 is an example of a cross-sectional view of the nutrient solution tray 4200a of FIG. 42 taken along line O-O'.
  • FIG. 45 is an example of a cross-sectional view of the nutrient solution tray 4200b of FIG. 42 taken along line O-O'.
  • FIG. 46 is an example of the above cross-sectional view of the nutrient solution tray 4200c of FIG. 42 taken along line O-O'.
  • FIG. 47 is an example of the cross-sectional view of the nutrient solution tray 4200d of FIG. 42 taken along line O-O'.
  • FIG. 44 is an example of a cross-sectional view of the nutrient solution tray 4200a of FIG. 42 taken along line O-O'.
  • FIG. 45 is an example of a cross-sectional view of the nutrient solution tray 4200b of FIG. 42 taken along line O-O'.
  • FIG. 48 is an example of an enlarged view of the periphery of the nutrient solution outflow area of the nutrient solution tray of FIG.
  • FIG. 49 is an example of a top view of the nutrient solution tray 4200a of FIG.
  • FIG. 50 is an example of an explanatory diagram illustrating the nutrient solution tray 4200a of FIG.
  • FIG. 51 is an example of a top view of the nutrient solution tray 4200c of FIG.
  • FIG. 52 is an example of a cross-sectional view for explaining the nutrient solution tray 4200c of FIG.
  • FIG. 53 is an example of a top view of the nutrient solution tray 4200d of FIG.
  • FIG. 54 is an example of a cross-sectional view for explaining the nutrient solution tray 4200d of FIG.
  • FIG. 55 is an example of an explanatory diagram illustrating another nutrient solution tray.
  • 56 is an example of a partially enlarged view for explaining the nutrient solution tray of FIG. 55.
  • FIG. FIG. 57 is an example flow diagram illustrating auto-population.
  • FIG. 58 is an example schematic diagram illustrating auto-implantation.
  • FIG. 59 is an example of a schematic diagram illustrating the unloading step S5710 from the tray of FIG.
  • FIG. 60 is an example of an explanatory diagram explaining the actual growth range and the predicted growth range.
  • FIG. 61 is an example of an illustration explaining the spacing of growing plates with slow growing plants.
  • FIG. 62 is an example of an illustration explaining the spacing of growing plates with fast-growing plants.
  • FIG. 63 is an example of an explanatory diagram illustrating spacing of cultivation plates having plants with uneven growth ranges.
  • FIG. 64 is another example of an illustration explaining the spacing of a growing plate with plants having a biased growth range.
  • Example 1 The planting pot and the nutrient solution tray of the present embodiment are used, for example, in an artificial light type plant factory, etc., and can be suitably used in a plant factory with a large production scale in which it has been difficult to manage the cultivation environment conventionally. be done.
  • the term “planting pot” may be read as “seedling pot” or “cultivating pot”, but the planting pot of the present embodiment has a configuration in which the interval between pots can be changed, and the conventional They are essentially different from nursery pots and cultivation pots.
  • "nutrient solution” in the following description may be read as "water or nutrient solution” as long as there is no discrepancy in technical content.
  • FIG. 29 Before describing this embodiment, a specific example of the above plant factory will be described using FIGS. 29 to 33.
  • FIG. 29 is an example of a functional block diagram showing the configuration of a cultivation device 2900 used in the above plant factory.
  • the cultivation device 2900 includes a cultivation chamber 2910 , a plurality of cultivation chambers 2920 , an air circulation device 2930 , a nutrient solution circulation device 2940 , an operation section 2950 , a control section 2960 and a display section 2970 .
  • Cultivation room 2910 has a rectangular parallelepiped outer wall that can be sealed inside, and can maintain a cultivation environment that is independent of the environment (temperature and humidity) of the working room of the plant factory in which cultivation apparatus 2900 is arranged.
  • FIG. 30 is an example of a diagram showing the inside of the cultivation apparatus.
  • FIG. 30 shows the cultivation apparatus 2900 with the outer wall of the cultivation room 2910 removed.
  • FIG. 31 shows an example of a schematic cross-sectional view of the cultivation chamber 2910 of FIG. 29 viewed from the longitudinal direction.
  • a plurality of cultivation chambers 2920 are formed by partitioning cultivation chambers 2910 vertically with predetermined intervals by cultivation shelves 3107, each of which has a substantially rectangular parallelepiped shape.
  • a plurality of cultivation chambers 2920 can be configured by providing an exterior to a conventionally known multi-level cultivation shelf. In this embodiment, the five stages of cultivation shelves 3107 are provided with an exterior (the outer wall of the cultivation room 2910).
  • FIG. 32 shows an example of a cultivation plate and a nutrient solution tray arranged in a cultivation apparatus.
  • a plurality of nutrient solution trays 3010 and cultivation plates 3020 as shown in FIG. 32 are arranged such that their short sides are aligned with the longitudinal direction of the cultivation chamber 2920 as shown in FIG. be done.
  • the nutrient solution tray 3010 has substantially the same size as the rectangular cultivation plate 3020 and is composed of a rectangular tray that can be arranged so as to fit the cultivation plate 3020 .
  • 16 cultivation plates 3020 are arranged in each cultivation chamber 2920 in a state in which cultivation plates 3020 are fitted in nutrient solution trays 3010 of approximately 30 cm ⁇ 120 cm (see FIG. 33). Note that the number of sheets may be larger according to the scale of the cultivation apparatus of FIG. 29 .
  • the length in the longitudinal direction is at least twice the length in the lateral direction.
  • the ratio of length in the lateral direction:length in the longitudinal direction is 1:5.
  • the size of the cultivation chamber 2920 (the number of cultivation plates 3020 arranged in the cultivation chamber 2920) is not limited to the size of the embodiment described above.
  • the nutrient solution tray 3010 and the cultivation plate 3020 are rectangular in this embodiment, they may be square. In the case of a square, one side of the square cultivation plate 3020 is arranged along the longitudinal direction of the cultivation chamber 2920 . Thus, in the state where the nutrient solution tray 3010 is arranged, each of the plurality of cultivation chambers 2920 is in a sealed or semi-sealed state.
  • the nutrient solution tray 3010 is formed with a discharge port 3108 (see FIG. 31) for discharging the supplied nutrient solution at one end side in the longitudinal direction (downstream side of the flow of the nutrient solution).
  • the nutrient solution tray 3010 has an inclined surface inclined at a predetermined angle (for example, about 1 degree) with respect to the lateral direction of the cultivation chamber 2920 so that the downstream side of the nutrient solution flow is downward.
  • a nutrient solution recovery pipe 3109 is arranged below the discharge port 3108 (see FIG. 31).
  • the nutrient solution tray 3010 may not have a size corresponding to one cultivation plate 3020, and may be configured so that a plurality of cultivation plates 3020 can be arranged in one nutrient solution tray 3010. . Further, above each cultivation chamber 2920, as shown in FIG. In this embodiment, two artificial light sources 3101 are arranged along the longitudinal direction of the nutrient solution tray 3010 and the cultivation plate 3020 (the lateral direction of the cultivation chamber 2920). As the artificial light source 3101, an LED that consumes less power and can be made thin is preferably used. A fluorescent lamp may also be used as an artificial light source.
  • FIG. 33 is an example of an explanatory diagram of an air circulation device provided in the cultivation apparatus.
  • the configuration of air circulation device 2930 will be described with reference to FIG.
  • the air circulation device 2930 may have functions of adjusting at least temperature, humidity, carbon dioxide concentration, and air velocity (flow rate).
  • the air circulation device 2930 includes an air sterilizer 3310, a direct-expansion air conditioner 3320 having heating, cooling, and dehumidifying functions (a method of directly cooling air with a refrigerant), and a humidifying device having a humidifying function. 3330 , a carbon dioxide supply device 3340 that adjusts the carbon dioxide concentration, a suction pump 3350 and a compression pump 3360 .
  • a chiller device of an inter-expansion method (a method of cooling air through water with a refrigerant) may be used.
  • Each cultivation chamber 2920 and air circulation device 2930 are connected via an air recovery pipe 3370 and an air supply pipe 3380 .
  • Air recovery tube 3370 and air supply tube 3380 extend longitudinally of growth chamber 2920 .
  • the air recovery pipe 3370 is formed with a plurality of air recovery ports provided at predetermined intervals.
  • the air supply pipe 3380 is formed with a plurality of air supply ports 3381 provided at predetermined intervals, and these air supply ports 3381 are provided with constant flow valves (not shown).
  • a temperature sensor, a humidity sensor, and a carbon dioxide concentration sensor (not shown) are attached to predetermined positions of each cultivation chamber 20A to monitor the temperature, humidity, and carbon dioxide concentration of the circulating air.
  • Air collected from each cultivation chamber 2920 by suction pump 3350 through air collection tube 3370 is sterilized through air sterilizer 3310 and sent to air conditioner 3320 .
  • the air conditioner 3320 performs temperature adjustment and dehumidification according to the measurement results of the temperature sensor and the humidity sensor, and then the humidification device 3330 performs humidification.
  • the carbon dioxide supply device 3340 supplies carbon dioxide from a carbon dioxide supply source 3341 such as a carbon dioxide cylinder according to the measurement result of the carbon dioxide concentration sensor.
  • Air adjusted to predetermined conditions and a predetermined flow rate is supplied to each cultivation chamber 2920 through an air supply pipe 3380 by a compression pump 3360 .
  • the set value of the air flow rate may be fixed or changeable.
  • the direction of air flow in the cultivation chamber 2920 is along the lateral direction of the cultivation chamber 2920 .
  • the time from the supply of the air to the collection can be shortened. Therefore, changes in the cultivation environment such as temperature, humidity, and carbon dioxide concentration that occur between the upstream side and the downstream side of the air flow can be reduced.
  • the direction of air flow in the cultivation chamber 2920 may be from the top to the bottom of the cultivation chamber 2920 .
  • one cultivation apparatus 2900 includes one cultivation chamber 2910, one cultivation chamber 2910 includes a plurality of cultivation chambers 2920 and one air circulation device 2930, and a plurality of cultivation chambers 2920 includes one Air is sent from the air circulation device 2930 .
  • one cultivation apparatus 2900 includes one cultivation chamber 2910, and one cultivation chamber 2910 includes a plurality of cultivation chambers 2920 and a plurality of air circulation devices 2930 corresponding to each cultivation chamber 2920.
  • the configuration may be such that air is sent to each of the plurality of cultivation chambers 2920 from the corresponding air circulation device 2930 .
  • the temperature, humidity, carbon dioxide concentration, flow velocity (flow rate), and the like of the circulating air can be changed for each cultivation chamber 2920 .
  • one cultivation apparatus 2900 may include a plurality of cultivation chambers 2910 , and each of the plurality of cultivation chambers 2910 may include a plurality of cultivation chambers 2920 and one air circulation device 2930 . Furthermore, one cultivation apparatus 2900 may include a plurality of cultivation chambers 2910, and each of the plurality of cultivation chambers 2910 may include a plurality of cultivation chambers 2920 and a plurality of air circulation devices 2930 corresponding to the respective cultivation chambers 2920. . As shown in FIG.
  • the nutrient solution circulation device 2940 is arranged below the cultivation chamber 2910, and supplies the nutrient solution adjusted to predetermined conditions to the nutrient solution tray 3010 of each cultivation chamber 2920 at a predetermined flow rate, The nutrient solution that has passed through each nutrient solution tray 3010 is collected and adjusted to a predetermined condition, and this is repeated to circulate and supply the nutrient solution.
  • the above cultivation apparatus is suitable for providing plants with a uniform or desired growing environment regardless of changes in the surrounding environment. A step of increasing the distance between individual plants, that is, thinning the plants as they grow, is necessary.
  • the roots of thinned plants are often damaged or deformed, and the thinned plants are often discarded as they are.
  • the planned growth cannot be expected compared to the plants that have not been thinned due to the damage or deformation of the roots or changes in the environment.
  • the plants to be cultivated are plants that are the source of valuable medicinal ingredients, or highly functional vegetables and fruits that have been found to have improved nutritional value compared to conventional plants, discarding these plants due to thinning , the economic loss is particularly large.
  • the planting pot and the nutrient solution tray of this embodiment may be used, for example, in greenhouse cultivation such as vinyl greenhouses or glass greenhouses, outdoor cultivation in open fields, or home vegetable gardens.
  • the planting pot and the nutrient solution tray of this embodiment provide the user with the space between the pot holes, that is, the space between the plants, without pulling the plants out of the pot holes.
  • a quick and easy change mechanism can be provided.
  • FIG. 1 is an example of a perspective view for comparing planting units with different spacing conditions.
  • four planting units 100 (100a to 100d) with different spacing conditions of pot holes 110 are illustrated.
  • the planting unit 100 (100a to 100d) keeps plants in an appropriate spacing state during a predetermined period from seeding, for example, from seeding to harvesting or from seeding to transplanting to a larger facility or field. can be used for cultivation.
  • the planting unit 100 can also be used as a seedling-raising unit (a combination of a seedling-raising pot and a nutrient solution tray), for example.
  • a planting pot 101 having three pot holes 110 is accommodated in the planting pot accommodation area 105 of the nutrient solution tray 102 .
  • the planting pot storage area 105 of the nutrient solution tray 102 accommodates the planting pot 101 and the spacer 103.
  • the planting pots 101 and spacers 103 are stored in relation to the orientation of the planting pots 101 and spacers 103, and further to the expansion and contraction state of the planting pots 101, and to the planting pots.
  • the orientations of the planting pots 101 and spacers 103 (for example, the longitudinal relationship of the planting pots 101 and spacers 103 with respect to the longitudinal direction of the nutrient solution tray 102) are arranged in different states.
  • the nutrient solution tray 102 of the cultivating unit 100 holds the cultivating pot 101 in either a contracted state or an extended state, and the longitudinal direction of the nutrient solution tray 102 is oriented in the longitudinal direction or in the lateral direction of the nutrient solution tray. Either orientation can be accommodated in the growing pot accommodation area 105 .
  • the dimensions of the planting pot storage area 105 of the nutrient solution tray 102 are such that the longest extension length of the planting pot 101 corresponds to the length L1 of the first side of the planting pot storage area 105, and the planting pot 101 corresponds to the length L2 of the second side of the planting pot accommodating area 105, and an integer multiple of the width of the planting pot 101 in the lateral direction corresponds to It is preferably designed to correspond to the length L2 of the second side of the planting pot housing area 105 .
  • the planting pot 101 can be contracted or stretched by moving the constituent elements of the planting pot 101 in the longitudinal direction of the planting pot 101. can be done.
  • the number of constituent elements constituting the planting pot 101 may be two or more, but in this specification, a configuration with three constituent elements will be mainly described as an example.
  • the planting pot 101 can be in one of two states with different lengths in the longitudinal direction, that is, a contracted state or an elongated state, and the longitudinal direction of the nutrient solution tray 102 can be either the longitudinal direction or the lateral direction. It is arranged in the planting pot 101 in a state of being oriented to one side.
  • the planting pot 101, the nutrient solution tray 102, and the spacer 103 are preferably made of thermoplastic resin, particularly preferably polypropylene (PP) or high-impact polystyrene (HIPS). It is preferable that the material constituting the planting pot 101, the nutrient solution tray 102, and the spacer 103 further has wear resistance, light blocking property, light resistance, water resistance, etc., and is elastically deformable.
  • thermoplastic resin particularly preferably polypropylene (PP) or high-impact polystyrene (HIPS).
  • PP polypropylene
  • HIPS high-impact polystyrene
  • the planting pot 101 and the spacer 103 are made of a light-shielding material, the nutrient solution flowing under the planting pot 101 and the spacer 103 is not exposed to light, thereby suppressing the growth of algae and the like in the nutrient solution. can do.
  • the light resistance of the material of the planting pot 101, the nutrient solution tray 102, and the spacer 103 is particularly high against the light of the light source's planned photosynthetic photon flux density (PPFD). is preferred.
  • PPFD photosynthetic photon flux density
  • a material having high light resistance to light with a wavelength of about 400 nm to about 700 nm, which is the absorption wavelength range of chlorophyll is preferred.
  • UV light ultraviolet light
  • a material having high light resistance is preferable.
  • the user can select the pot holes 110 of the growing pot 101 for receiving (planting) the plants of the growing pot 101 by appropriately selecting the different states and orientations of the growing units 100b-100d within the nutrient solution tray 102. is adjusted or changed so as to be more suitable for the growth state of the plant, particularly the state of the roots of the plant below the planting pot 101 and the overlapping state of the leaves of the plant above the planting pot 101. can be done. Thereby, the plant can perform photosynthesis more efficiently even if the photosynthetic photon flux density of the light in the cultivation environment is the same.
  • the interval between the pot holes 110 is variable, there is no need to pull out the plants from the pot holes 110 for thinning, so that damage and deformation of roots, leaves, stems, etc. due to the pulling out work can be avoided. can be done.
  • the thinning operation by changing the intervals of the pot holes 110 of the growing units 100 (100b to 100d) can be performed without extracting the plants from the pot holes 110.
  • FIG. Therefore, the conventional problems caused by extracting the plant from the pot hole 110 can be fundamentally avoided.
  • FIG. 2 is an example of a top view for comparing planting units with different spacing conditions.
  • regions A to D are illustrated by dashed lines for each of the planting units 100a to 100d.
  • a plurality of contracted planting pots 101a are arranged in a nutrient solution tray 102 in the planting unit 100a.
  • the longitudinal direction of the planting pot 101a is the same as the longitudinal direction of the nutrient solution tray .
  • a plurality of contracted planting pots 101b and a plurality of spacers 103 are arranged in a nutrient solution tray 102.
  • the longitudinal direction of the planting pot 101b and the spacer 103 is the same as the lateral direction of the nutrient solution tray .
  • One spacer 103 is arranged between two planting pots 101b.
  • the longitudinal length Ls of the spacer 103 is approximately 1.5 times the longitudinal length Lps of the contracted growth pot 101b.
  • the length Ls of the spacer 103 may be, for example, an integer multiple of the length Lps of the contracted growth pot 101b.
  • the spacer 103 not only secures the interval between the planting pots 101b, but also serves to prevent the nutrient solution in the nutrient solution tray 102 from being exposed to light. Since the spacer 103 reliably blocks light, it is possible to suppress the growth of algae and the like in the nutrient solution tray 102 .
  • a plurality of growing pots 101c in an extended state and a plurality of spacers 103 are arranged in the nutrient solution tray 102.
  • the longitudinal direction of the planting pot 101c and the spacer 103 is the same as the lateral direction of the nutrient solution tray 102.
  • One spacer 103 is arranged between two planting pots 101c.
  • the length Ls of the spacer 103 is slightly longer than the longitudinal length Lpl of the growing pot 101c in the extended state. Since the length Ls of the spacer 103 is slightly longer than the length Lpl of the growing pot 101c in the extended state, the spacer 103 covers a wider range of the growing pot accommodating region 105 of the nutrient solution tray 102. The incidence of light on the nutrient solution in the solution tray 102 can be further reduced.
  • a plurality of growing pots 101d in an extended state and a plurality of spacers 103 are arranged in a nutrient solution tray 102 in the growing unit 100d.
  • the longitudinal direction of the planting pot 101d and the spacer 103 is the same as the lateral direction of the nutrient solution tray 102.
  • Two spacers 103 are arranged between the two planting pots 101d.
  • the user can place the potholes 110 at different intervals and change the spacing of the potholes 110 by selecting and changing the state of the planting units 100a-100d. More specifically, by selecting and changing the orientation of the planting pots 101 and spacers 103 within the planting unit 100 and the length of the planting pots 101, the spacing between the plants planted in the pot holes 110 can be adjusted. , can be changed flexibly and easily.
  • Figures 1, 2 and other figures describe an embodiment in which the growing unit 100 uses only a growing pot 101 with three pot holes, but the growing pot 101 has the same extended length and retracted length. If so, it is possible to combine breeding pots 101 having different numbers of pot holes without changing the nutrient solution tray 102 . Such a configuration is advantageous when growing different types of plants, especially different sizes, in one growing unit 100 .
  • the type of planting pot 101 having different numbers of pot holes is, for example, a combination of four or more pot pieces each having one pot hole, or one pot piece having two large and small pot holes. There may be.
  • Cultivation of a plurality of types of plants in the same planting unit 100 is particularly advantageous in greenhouse cultivation such as vinyl greenhouses and glass greenhouses, outdoor cultivation in open fields, home gardens, etc., where only main plants are cultivated in the same plant.
  • an advantageous effect can be expected compared to cultivating with the planting unit 100 .
  • Advantageous effects of using companion plants are expected to be, for example, insect repellent, promotion of fruiting, control and prevention of disease damage, and the like.
  • the configuration in which the same planting unit 100 can use the planting pots 101 with different numbers of pot holes with standardized extension lengths is advantageous in that it can support the cultivation of different plants, as described above. .
  • the space that can be used for cultivating plants is limited compared to cultivation plants and farms. Useful.
  • FIG. 3 is an example of an enlarged view of area A in FIG.
  • a distance D301 indicates the distance between the first pot hole 301 and the second pot hole 302 of the planting pot 101a in the contracted state.
  • the interval D302 indicates the interval between the second pot hole 302 and the third pot hole 303 of the planting pot 101a in the contracted state.
  • the spacings D301 and D302 are approximately equal, but could be designed to have different lengths.
  • a distance D303 indicates the distance between the pot holes 110 of the two planting pots 101a. When referring to "pothole spacing” hereinafter, it means the center-to-center spacing of two potholes 110 .
  • the plants in the growing unit 100a are arranged such that the arrangement in the transverse direction of the planting unit 100a is denser than the arrangement in the longitudinal direction of the breeding unit 100a. , are placed.
  • FIG. 4 is an example of an enlarged view of area B in FIG.
  • the distance between two pot holes 110 in the longitudinal direction of the planting pot 101b is the same as in the embodiment of FIG.
  • the interval D401 corresponds to the width of the spacer 103 in the lateral direction.
  • a distance D402 indicates the distance between the pot holes 110 of two adjacent planting pots 101b with the spacer 103 interposed therebetween.
  • the distance D402 between plants adjacent in the lateral direction of the planting unit 100b is the same as the distance between plants adjacent in the lateral direction of the planting unit 100a in the embodiment of FIG. Wider than D303 (D402>D303).
  • the pot holes 110 in the planting unit 100b are arranged at approximately equal intervals in the lateral direction and the longitudinal direction of the planting unit 100b.
  • each plant has two pot holes 110 in the longitudinal direction of the growing pot 101b, similar to the embodiment of FIG.
  • the user replaces the growing pots 101a of the planting unit 100a in the embodiment shown in FIG. 3 with the spacers 103 for each row, thereby easily changing to the planting unit 100b in the embodiment shown in FIG. be able to.
  • the two pot holes 110 aligned in the lateral direction of the planting unit 100a can be further separated by the interval D401.
  • FIG. 5 is an example of an enlarged view of area C in FIG.
  • a distance D501 indicates the distance between the first pot hole 501 and the second pot hole 502 of the growing pot 101c in the extended state.
  • the interval D501 is longer than the interval D301 between the first pot hole 301 and the second pot hole 302 of the contracted planting pot 101a by an interval D503.
  • a distance D502 indicates the distance between the second pot hole 502 and the third pot hole 503 of the growing pot 101c in the extended state.
  • the interval D502 is longer than the interval D302 between the second pot hole 302 and the third pot hole 303 of the contracted planting pot 101a by an interval D504.
  • the distances D501 and D502 and the distances D503 and D504 are substantially equal to each other, but they can also be designed to have different lengths.
  • the distance between the pot holes 110 of two adjacent planting pots 101c via the spacer 103 in the longitudinal direction of the planting unit 100c is the distance D402 in the embodiment of FIG. ing.
  • the user stretches the contracted planting pot 101b of the planting unit 100b in the state of the embodiment shown in FIG. It can be rotated 90° and placed in the nutrient solution tray 102 .
  • the pot holes 110 can be further spaced apart in the lateral direction of the .
  • the plants in the growing unit 100c are arranged such that the longitudinal arrangement of the growing unit 100c is denser than the transverse arrangement of the growing unit 100c. , are placed.
  • FIG. 6 is an example of an enlarged view of area D in FIG.
  • a distance D601 indicates the distance between the pot holes 110 of the two adjacent planting pots 101d with the two spacers 103 interposed therebetween.
  • the user adds another spacer 103 between the two planting pots 101c in the two planting units 100c of the embodiment of FIG. While maintaining the intervals D501 and D502 in the lateral direction, the pot holes 110 can be arranged in a state in which the interval is further widened in the longitudinal direction of the planting pot 101c than in the state of the planting unit 100c.
  • the spacing D601 between longitudinally adjacent plants of the growing unit 100d is greater than the spacing D402 between longitudinally adjacent plants of the growing unit 100c in the embodiment of FIG. is also wide (D601>D402).
  • the pot holes 110 in the planting unit 100d are arranged at approximately equal intervals in the lateral direction and the longitudinal direction of the planting unit 100c.
  • the pot holes 110 are arranged at approximately equal intervals in the lateral direction and the longitudinal direction of the planting unit 100 (100b, 100d).
  • the potholes 110 are more spaced apart than in the embodiment of FIG.
  • three or more spacers 103 may be arranged between two planting units 100 .
  • the user can change the state of the planting pots 101 arranged in the planting unit 100, the number of spacers 103 arranged between the planting pots 101, and the arrangement direction of the planting pots 101 and the spacers 103.
  • the distance between the pot holes 110 can be easily and easily adjusted only in the lateral direction, only in the longitudinal direction, or both in the lateral direction and the longitudinal direction, without having to pull out the plants from the pot holes 110. It is possible to flexibly change in steps in the lateral and longitudinal directions of the growing unit 100 .
  • FIG. 7 is an example of a perspective view of the planting pot 101 in a reduced state.
  • FIG. 7(a) is an example of a perspective view of a planting pot in a contracted state viewed from above.
  • FIG. 7(b) is an example of a perspective view of a planting pot in a contracted state viewed from below.
  • the distance between the pot holes 110 of the first end pot piece 701, the second end pot piece 702, and the intermediate pot piece 703 is the shortest.
  • the top and longitudinal sides of each of the first end pot piece 701, the second end pot piece 702 and the middle pot piece 703 are flush with each other and the length of the planting pot 101 in the contracted state. It forms a top surface and longitudinal sides.
  • FIG. 8 is an example of six views of the planting pot 101 in a contracted state.
  • the first end pot piece 701 , the second end pot piece 702 and the intermediate pot piece 703 each have one pot hole 110 .
  • the first end pot piece 701, the second end pot piece 702 and the intermediate pot piece 703 form the top and longitudinal sides of the contracted planting pot 101 flush.
  • the first end pot piece 701 , the second end pot piece 702 and the intermediate pot piece 703 have legs 801 , 802 and 803 that contact the bottom of the planting pot containing area 105 respectively.
  • adjacent legs of different pot pieces outline each other.
  • the upper surface forming the housing area of the first end pot piece 701 and the upper surface forming the housing area of the intermediate pot piece 703 have arcuate cutouts 815 and 835, respectively.
  • the upper surface portion forming the insertion area of the intermediate pot piece 703 and the upper surface portion forming the insertion area of the second end pot piece 702 have arcuate cutouts 831 and 821, respectively.
  • arcuate cutouts 815, 835 formed in each receiving area are formed in each insertion area by contacting walls 845, 825, respectively, of the pothole 110 and similarly.
  • the arcuate cutouts 831, 821 contact the cylindrical wall portions 810, 830 of the pot hole 110, respectively, to allow the first end pot piece 701, the intermediate pot piece 703, and the second end pot piece 702 to be separated. , stop moving in the longitudinal direction.
  • the arc-shaped cut formed in the housing area of the first end pot piece 701 The longitudinal contraction of the first end pot piece 701 and the second end pot piece 702 is stopped by the notch 815 contacting the wall 825 of the pot hole 110 of the second end pot piece 702 . .
  • a very simple configuration can be achieved by using the wall structure that defines the pot hole 110 provided in each piece as a stopper for longitudinal movement.
  • FIG. 9 is an example of a perspective view of the planting pot 101 in an extended state.
  • FIG. 9(a) is an example of a perspective view of a planting pot in an extended state as viewed from above.
  • FIG. 9(b) is an example of a perspective view of a planting pot in an extended state as seen from below.
  • the distance between the pot holes 110 of the first end pot piece 701, the second end pot piece 702 and the middle pot piece 703 is the longest.
  • the spacing between each pothole 110 is approximately equal, but it is also possible to design different lengths.
  • FIG. 10 is an example of six views of the planting pot 101 in an extended state.
  • the intermediate pot piece 703 1013 is pulled out to the maximum extent from the housing area 1001 of the first end pot piece 701 .
  • the insertion area 1012 of the second end pot piece 702 is pulled out to the maximum extent from the accommodation area 1003 of the intermediate pot piece 703 .
  • an intermediate pot having no pot holes may be placed between the first end pot piece 701 and the second end pot piece 702. may be provided. As a result, it is possible to further increase the variation of the interval adjustment.
  • FIG. 11 is an example of an exploded view of the planting pot 101. As shown in FIG. FIG. 11 illustrates that the first end pot piece 701, the second end pot piece 702 and the intermediate pot piece 703 that make up the growing pot 101 are separable from each other. Accordingly, when the first end pot piece 701, the second end pot piece 702, or the intermediate pot piece 703 is damaged, only the damaged piece can be replaced so that the remaining pieces can continue to be used. can. In addition, since the planting pot 101 can be separated, cleaning and maintenance of the planting pot 101, that is, the first end pot piece 701, the second end pot piece 702, and the intermediate pot piece 703 can be easily performed. can.
  • the first end pot piece 701 has a receiving area 1001 for inserting the insertion area 1013 of the intermediate pot piece 703 .
  • the middle pot piece 703 has a receiving area 1003 for inserting the insertion area 1012 of the second end pot piece 702 .
  • the width W1 of the receiving area 1001 of the first end potpiece 701 and the width W3 of the receiving area 1003 of the intermediate potpiece 703 are equal to each other.
  • the width W2 of the insertion region 1013 of the middle pot piece 703 and the width W4 of the insertion region 1012 of the second end pot piece 702 are equal to each other.
  • FIG. 12 is an example perspective view of a first end pot piece.
  • FIG. 12(a) is an example of a perspective view of the first end pot piece viewed from above.
  • FIG. 12(b) is an example of a perspective view of the first end pot piece viewed from below.
  • the first end pot piece 701 has a pot hole 110 on the upper surface 1201 for putting and cultivating plants (seedlings, seeds, etc.).
  • One end of the first end pot piece 701 is provided with an arcuate cutout 815 .
  • a hook-shaped opening 1203 is formed in the side wall 1202 near the arcuate cutout 815 .
  • Both side walls are each provided with two legs 801 .
  • the legs 801 are in contact with the bottom surface of the nutrient solution tray 102 when the planting pot 101 is placed on the nutrient solution tray 102 . Thereby, a space for the nutrient solution to flow is formed between the planting pot 101 and the bottom surface of the nutrient solution tray 102 .
  • leg portion 801 is positioned so as not to overlap the pot hole 110 when viewed from the side of the first end pot piece 701, that is, in the direction from one side wall portion 1202 to the other side wall portion 1202. Therefore, it is possible to stably hold the pot piece without obstructing the route through which the nutrient solution is supplied to the roots.
  • a cylindrical wall portion 810 is formed inside the first end pot piece 701 to connect with the pot hole 110 .
  • Cylindrical wall 810 is configured to hold the plant well.
  • the cylindrical wall portion 810 may be configured in the shape of a truncated cylinder so that the plant does not fall off.
  • the receiving area 1001 is defined by the inner surface of both side walls 1202 of the first end pot piece 701 and the outer surface of the cylindrical wall 810 .
  • Both side walls 1202 forming the receiving area 1001 of the first end pot piece 701 have hooked openings 1203 near the arcuate cutouts 815 .
  • the hook-shaped opening 1203 is such that when the insertion region 1013 of the intermediate pot piece 703 is inserted into the accommodation region 1001 , the latch claw 1204 is pushed by the insertion region 1013 of the intermediate pot piece 703 in the lateral direction of the first end pot piece 701 . It helps to be elastically displaced.
  • FIG. 13 is an example of six views of the first end pot piece.
  • FIG. 13 shows examples of the top, bottom, side and end faces of the first end pot piece.
  • the shape, configuration, and ratio of each part can be designed and changed as appropriate. Description of individual parts is omitted here because it is as described with reference to FIG. 12 .
  • FIG. 14 is an example of a perspective view of an intermediate pot piece.
  • FIG. 14(a) is an example of a perspective view of the intermediate pot piece viewed from above.
  • FIG. 14(b) is an example of a perspective view of the intermediate pot piece viewed from below.
  • the intermediate pot piece 703 has a pot hole 110 for placing and cultivating a plant (seedling, seed, etc.) on the upper surface 1401 .
  • Both side walls 1402 of the intermediate pot piece 703 are each provided with two legs 803 .
  • the legs 803 are in contact with the bottom surface of the nutrient solution tray 102 when the planting pot 101 is placed on the nutrient solution tray 102 . Thereby, a space for the nutrient solution to flow is formed between the planting pot 101 and the bottom surface of the nutrient solution tray 102 .
  • the bottom surface of the nutrient solution tray 102 is the surface of the nutrient solution tray 102 on which the planting pot 101 is arranged.
  • the bottom surface of the nutrient solution tray 102 is also referred to as the top surface of the nutrient solution tray 102 , and the opposite surface is referred to as the bottom surface of the nutrient solution tray 102 .
  • the leg portion 803 is positioned so as not to overlap the pot hole 110 when viewed from the side of the intermediate pot piece 703, that is, in the direction from one side wall portion 1402 to the other side wall portion 1402. Therefore, it is possible to stably hold the pot piece without obstructing the route through which the nutrient solution is supplied to the roots. Note that even in a configuration in which one intermediate pot piece 703 exists between the first end pot piece 701 and the second end pot piece 702 (a configuration in which the planting pot 101 is composed of three pot pieces 701, 702, and 703).
  • An arcuate notch 831 is provided at one end of the intermediate pot piece 703 .
  • the other end of the intermediate pot piece 703 is also provided with an arc-shaped notch 835 .
  • Both side walls 1402 forming the accommodation area 1003 of the intermediate pot piece 703 have hooked openings 1403 near the arcuate cutouts 835 .
  • the hook-shaped opening 1403 is such that when the insertion region 1012 of the second end pot piece 702 is inserted into the housing region 1003, the latch claw 1407 is elastically displaced in the transverse direction of the intermediate pot piece 703 by the insertion region 1012. help to be
  • a cylindrical wall portion 830 connecting with the pothole 110 extends from the top surface 1401 to the interior of the intermediate potpiece 703 .
  • Cylindrical wall 830 is configured for good plant retention.
  • the cylindrical wall portion 830 may be configured in the shape of a truncated cylinder so that the plant does not fall off.
  • Inside the middle pot piece 703 is provided a receiving area 1003 for receiving the insertion area 1012 of the second end pot piece 702 .
  • the receiving area 1003 is defined by both first sidewalls 1404 and the cylindrical wall 830 of the intermediate pot piece 703 .
  • the interior of the intermediate pot piece 703 is further provided with an insertion area 1013 for insertion into the receiving area 1001 of the first end pot piece 701 .
  • the insertion area 1013 is defined by both second side walls 1405 and the cylindrical wall 830 of the intermediate pot piece 703 .
  • a slit-shaped opening 1406 is formed in the second side wall 1405 . The slit-like opening 1406 guides the movement of the latch pawl 1204 of the first end pot piece 701 when the planting pot 101 is expanded and contracted between the contracted state and the expanded state.
  • FIG. 15 is an example of six views of the intermediate pot piece.
  • FIG. 15 shows examples of the top surface, bottom surface, both side surfaces, and both end surfaces of the intermediate pot piece.
  • the shape, configuration, and ratio of each part can be designed and changed as appropriate. Description of individual parts is omitted here because it is as described with reference to FIG. 14 .
  • FIG. 16 is an example perspective view of a second end pot piece.
  • FIG. 16(a) is an example of a perspective view of the second end pot piece viewed from above.
  • FIG. 16(b) is an example of a perspective view of the second end pot piece viewed from below.
  • the second end pot piece 702 has a pot hole 110 on the upper surface 1601 for placing and cultivating plants (seedlings, seeds, etc.).
  • One end of the second end pot piece 702 is provided with an arc-shaped notch 1603 .
  • Both side walls 1602 of the second end pot piece 702 have slit-shaped openings 1605 extending linearly from the vicinity of the arcuate cutout 1603 to the vicinity of the pot hole 110 .
  • Both side walls 1602 of the second end pot piece 702 are each provided with two legs 802 .
  • the leg portion 802 contacts the bottom surface of the nutrient solution tray 102 when the planting pot 101 is placed on the nutrient solution tray 102 .
  • a gap is formed between the planting pot 101 and the bottom surface of the nutrient solution tray 102, forming a space for the nutrient solution to flow.
  • the leg 1604 is positioned so as not to overlap the pot hole 110 when viewed from the side of the second end pot piece 702, i.e., in the direction from one side wall 1602 to the other side wall 1602. Therefore, it is possible to stably hold the pot piece without obstructing the route through which the nutrient solution is supplied to the roots.
  • the interior of the second end pot piece 702 is provided with a cylindrical wall portion 1606 that connects with the pot hole 110 .
  • Cylindrical wall 1606 is configured for good plant retention. Cylindrical wall portion 1606 may be configured in the shape of a truncated cylinder to prevent plants from falling off.
  • the interior of the second end pot piece 702 is provided with an insertion area 1608 for insertion into the receiving area 1003 of the intermediate pot piece 703 described above.
  • the insertion area 1608 is defined by the outer surface of both sidewalls 1602 of the second end pot piece 702 and the outer peripheral surface of the cylindrical wall 1606 on the upper surface 1601 side.
  • FIG. 17 is an example of a six-sided view of the second end pot piece.
  • FIG. 17 shows examples of the top, bottom, side and end faces of the second end pot piece.
  • the shape, configuration, and ratio of each part can be designed and changed as appropriate. Description of individual parts is omitted here because it is as described with reference to FIG. 16 .
  • FIG. 18 is an example of two planting pots arranged longitudinally.
  • FIG. 18(a) shows an example of a state in which two planting pots 101 (1810, 1820) are arranged side by side in the longitudinal direction and connected.
  • FIG. 18(b) is an example of a state in which the connection state of FIG. 18(a) is released and the two planting pots 101 (1810, 1820) are separated.
  • the first end pot piece 701 of one of the growing pots 1810 has a first coupling portion 1812 on the side opposite to the receiving area of the first end pot piece 701 and the other growing pot 1820
  • the second end pot piece 702 of has a second coupling portion 1822 on the opposite side to the insertion area of the second end pot piece 702 .
  • the first joint part 1812 and the second joint part 1822 are formed complementary to each other, and the two planting pots 101 (1810, 1820) are connected to the first joint part 1812 and the second joint part 1822. are used to connect to each other.
  • the planting pots 1810 and 1820 each have a concave portion at one end and a convex portion at the other end.
  • the connected state in which the two planting pots 101 are arranged side by side in the longitudinal direction and connected in the nutrient solution tray 102 as shown in FIG. to maintain alignment.
  • two planting pots 101 aligned in the longitudinal direction can be easily released from the connection state in FIG. state can be
  • FIG. 19 is an example of an explanatory diagram illustrating how an insertion area is inserted into an accommodation area.
  • FIG. 19(a) is an example of an explanatory diagram illustrating a state before inserting the insertion area 1013 of the intermediate pot piece 703 into the housing area 1001 of the first end pot piece 701.
  • FIG. 19(b) is an example of an explanatory diagram illustrating a state after inserting the insertion area 1013 of the intermediate pot piece 703 into the housing area 1001 of the first end pot piece 701.
  • the latch pawl 1204 provided in the wall defining the receiving area 1001 for the first end pot piece 701 is inserted into the slit provided in the wall defining the insertion area 1013 for the intermediate pot piece 703.
  • FIG. 19(a) is an example of an explanatory diagram illustrating a state before inserting the insertion area 1013 of the intermediate pot piece 703 into the housing area 1001 of the first end pot piece 701.
  • FIG. 19(b) is an example of an explanatory
  • the latch pawl 1204 is formed such that the insertion area 1013 of the intermediate pot piece 703 is inserted into the receiving area 1001 of the first end pot piece 701 with the latch pawl 1204
  • the latch claw 1204 slides smoothly on the top and is formed so as to come into contact with the slit-shaped opening 1406 and act as a stopper when pulled in the direction opposite to the insertion.
  • FIG. 20 is an example of an explanatory diagram for explaining the engagement state between the slit-shaped opening and the latch claw.
  • the latch pawl 1204 contacts the end of the slit-like opening 1406 on the receiving area side, preventing the first end pot piece 701 and the intermediate pot piece 703 from separating further, and It functions as a stopper so that the intermediate pot piece 703 does not slip out of the first end pot piece 701 .
  • 20 shows the slidable engagement between the first end potpiece 701 and the intermediate potpiece 703, the same is true between the intermediate potpiece 703 and the second end potpiece 702. A slidable engagement exists.
  • the protrusions such as the latch claws 1204 and 1407 move while being linearly guided within the slit-shaped openings 1406 and 1605.
  • the occurrence of displacement in the vertical direction perpendicular to the is prevented.
  • the projections contact the longitudinal ends of the slit-shaped openings 1406, 1605 within the slit-shaped openings 1406, 1605 so that the first end pot piece 701 to the intermediate pot piece 703 Moreover, it is possible to reliably prevent the second end pot piece 702 from coming off the middle pot piece 703 .
  • the projections such as the latch claws 1204 of the first end pot piece 701 Linearly guided movement within the slit-shaped opening 1605 of the two-end pot piece 702 achieves the same effect as described above.
  • FIG. 21 is an example of a perspective view of a nutrient solution tray.
  • FIG. 21(a) is an example of a perspective view of the nutrient solution tray viewed from above.
  • FIG. 21(b) is an example of a perspective view of the nutrient solution tray viewed from below.
  • the nutrient solution tray 102 has a planting pot accommodation area 105 for accommodating the planting pot 101, a nutrient solution inflow area for allowing the nutrient solution to flow in, and a nutrient solution outflow area having a nutrient solution outlet. there is These areas will be described in more detail using FIG.
  • the nutrient solution tray 102 has a discharge slit 2111 at one end in the longitudinal direction of the bottom surface 2101 .
  • the nutrient solution is discharged from the discharge slit 2111, which is the nutrient solution outlet.
  • the nutrient solution tray 102 has a protrusion (protrusion structure) 2106 on the bottom surface 2101 near the discharge slit 2111 .
  • the projecting portion 2106 is formed in a region where the nutrient solution in the nutrient solution tray 102 is exposed to the light from the light source. If the height of the protruding portion 2106 is higher than the height of the liquid surface of the nutrient solution in the state where the nutrient solution is poured into the nutrient solution tray 102 and the plants are cultivated, the area of light incident on the nutrient solution can be reduced. . As a result, the generation of algae and the like can be reduced.
  • the nutrient solution tray 102 has legs 2104 and 2105 with different heights.
  • the walls 2107 and 2108 of the nutrient solution tray 102 have a recessed notch 2102 at a planned overflow position (planned overflow position) near the discharge slit 2111 .
  • One wall 2108 further has a pair of first connection structures (first coupling structures) 2103 and the other wall 2107 further has a pair of second connection structures 2113.
  • Two adjacent nutrient solution trays 102 can be connected to each other by fitting the first connecting structure 2103 of the embodiment of FIG. 21 into the second connecting structure 2113 from above. This connection state is maintained when the nutrient solution tray 102 is moved (shifted) in the horizontal direction, and can be easily released when one of the nutrient solution trays 102 is moved (lifted) in the vertical direction. .
  • the walls 2107 and 2108 of the nutrient solution tray 102 and both of the short side walls of the nutrient solution tray 102 have marking portions (marking portions) structured with unevenness, grooves, etc., or colored markings on the edge portions thereof. You may have a part.
  • the control unit of the growth monitoring unit processes, for example, a video (image) of the nutrient solution tray 102 photographed from above, and detects plants in the nutrient solution tray 102 that deviate from the expected growth rate, that is, grow faster than normal. It is also possible to identify a plant that is growing slowly or a plant that is growing slower than that, and output notification information to the administrator together with the positional information of the stamped portion. Thereby, it is possible to quickly recognize the position in the nutrient solution tray 102 of a plant that deviates from the expected growth rate.
  • control unit of the growth monitoring unit is configured to be able to identify plant abnormalities and non-standard growth speeds based on image analysis and AI diagnosis. Especially with such a configuration, it is possible to quickly and accurately judge and distinguish the signs of each lesion that are difficult to identify with the human eye, and the range affected by each lesion. By using it, even if the human eye cannot identify plant abnormalities, it is possible to specify the range and position of the target growing pot 101 and remove it from the nutrient solution tray 102 .
  • FIG. 22 is an example of a top view and a bottom view of a nutrient solution tray.
  • FIG. 22(a) is an example of a top view of the nutrient solution tray.
  • FIG. 22(b) is an example of a bottom view of the nutrient solution tray.
  • Each component of the nutrient solution tray 102 (discharge slit 2111, projecting portion 2106, legs 2104 and 2105, first connection structure 2103, second connection structure 2113) is the same as each component of the nutrient solution tray 102 in FIG. , so the description is omitted.
  • a first installation portion 2201 and a second installation portion 2202 are provided on the lower surface of the nutrient solution tray 102. As shown in FIG. 22(b), a first installation portion 2201 and a second installation portion 2202 are provided on the lower surface of the nutrient solution tray 102. As shown in FIG. When the nutrient solution tray 102 is installed in the cultivation apparatus, the nutrient solution tray 102 abuts on the two support portions of the cultivation apparatus having the same height at the first installation portion 2201 and the second installation portion 2202, respectively. , supported by those two supports.
  • FIG. 23 is an example of a perspective view of a nutrient solution tray having a pattern structure.
  • FIG. 23(a) is an example of a perspective view of a nutrient solution tray having a pattern structure as viewed from above.
  • FIG. 23(b) is an example of a perspective view of a nutrient solution tray having a pattern structure viewed from below.
  • the nutrient solution tray 102 of FIG. 23 has a bottom surface 2101 with a pattern structure and a bottom surface 2302 with a pattern structure.
  • the “pattern structure” means a structure provided on a plane such as the bottom surface 2101 or the bottom surface 2302 and identifiable as a three-dimensional pattern on the plane.
  • 23 to 26 exemplify a pattern structure that is convex with respect to the plane on which they are provided, but adopts a pattern structure that is concave with respect to the plane on which they are provided. You can also
  • the pattern structure provided on the bottom surface 2101 promotes the uniform spreading and flow of the nutrient solution in the nutrient solution tray 102 . This point will be discussed in more detail in connection with FIGS. 24 and 25.
  • FIG. The lower surface 2302 having the pattern structure is provided with a mesh-like (hatched) rib pattern structure, thereby improving the rigidity of the nutrient solution tray 102 while suppressing an increase in the weight of the nutrient solution tray 102. be able to.
  • FIG. 24 is an example of a top view of a nutrient solution tray having a pattern structure.
  • the bottom surface of the nutrient solution tray 102 having a pattern structure includes a nutrient solution inflow area 2401 for inflowing the nutrient solution and a planting pot accommodation area (planting pot) for accommodating the planting pot 101 . 105, and a nutrient solution outflow region 2403 having a discharge slit 2111 serving as a nutrient solution outlet. That is, the planting pot housing area 105, the nutrient solution inflow area 2401, and the nutrient solution outflow area 2403 form the bottom surface through which the nutrient solution flows in the nutrient solution tray 102.
  • the nutrient solution inflow area 2401 is a nutrient solution inflow part and receives the nutrient solution flowing in the nutrient solution tray 102 .
  • the nutrient solution inflow region 2401 has a pattern structure.
  • the nutrient solution received in the nutrient solution inflow region 2401 is spread over the entire width of the nutrient solution tray 102 in the lateral direction due to the pattern structure.
  • the planting pot storage area 105 has another pattern structure for spreading the nutrient solution over the entire width of the nutrient solution tray 102 in the lateral direction.
  • the nutrient solution outflow region 2403 has a wall portion 2405 that forms a channel that guides the nutrient solution to the discharge slit 2111 .
  • the position of the upper surface of the pattern structure is called the bottom surface of the nutrient solution tray 102, but the bottom surface of the nutrient solution tray 102 at the position without the pattern structure The bottom part where the current flows) may be called the bottom surface.
  • FIG. 25 is an example of an enlarged top view of the end of the nutrient solution tray having the pattern structure of FIG. 24.
  • FIG. FIG. 25(a) is an example of an enlarged top view of the end region of the nutrient solution tray having the pattern structure of FIG. 24 on the side of the nutrient solution inflow region.
  • FIG. 25(b) is an example of an enlarged top view of the end region of the nutrient solution tray having the pattern structure of FIG. 24 on the side of the nutrient solution outflow region.
  • Arrows in the drawing represent the flow of the nutrient solution toward the discharge slit 2111 .
  • a plurality of guide patterns 2501 are formed in the nutrient solution inflow region 2401 of the nutrient solution tray 102 in FIG. 25(a).
  • the guide pattern 2501 spreads the nutrient solution poured into the nutrient solution inflow region 2401 over the entire width of the nutrient solution tray 102 and guides it to the planting pot storage region 105 .
  • a plurality of gate patterns 2502 are provided between the nutrient solution inflow region 2401 and the planting pot storage region 105 .
  • the gate patterns 2502 are formed and arranged so that the nutrient solution flows into the planting pot housing region 105 through gaps (gates) between the gate patterns 2502 that are evenly distributed.
  • the growing pot containing area 105 advantageously comprises a plurality of diffusion patterns 2503 evenly distributed over the bottom surface of the nutrient solution tray 102 forming the growing pot containing area 105 .
  • the diffusion patterns 2503 are all T-shaped, but the diffusion patterns 2503 may have different shapes, or may be a combination of different shapes. Diffusion pattern 2503 may be an irregular pattern as long as it is configured to promote spreading and flowing of the nutrient solution within planting pot containing area 105 .
  • the guide pattern 2501 , the gate pattern 2502 , and the diffusion pattern 2503 promote the spread and flow of the nutrient solution in the planting pot storage area 105 from the stage when the nutrient solution starts to flow into the nutrient solution tray 102 .
  • a guide wall 2504 is provided in the nutrient solution outflow area 2403 (FIG. 25(b)) of the nutrient solution tray.
  • the nutrient solution that has passed through the planting pot storage area 2402 is guided to the discharge slit 2111 along the guide wall 2504 .
  • the guide wall 2507 By providing the guide wall 2507, the flow velocity of the nutrient solution flowing through the nutrient solution outflow region 2403, particularly near the corners of the nutrient solution outflow region 2403, increases. As a result, it is possible to prevent dirt and the like from accumulating in the corners of the nutrient solution tray 102 and to reduce clogging and dirt in the discharge slit 2111 .
  • FIG. 26 is an example of a perspective view of the end of the nutrient solution tray having the pattern structure of FIG. 24.
  • FIG. FIG. 26(a) is an example of an enlarged perspective view of the end region of the nutrient solution tray having the pattern structure of FIG. 24 on the side of the nutrient solution inflow region.
  • FIG. 26(b) is an example of an enlarged perspective view of the end region of the nutrient solution tray having the pattern structure of FIG. 24 on the side of the nutrient solution outflow region.
  • Arrows in the drawing represent the flow of the nutrient solution toward the discharge slit 2111 .
  • FIG. 26 illustrates that a recessed notch 2102 is provided at a planned overflow position (planned overflow position) 2601 on the wall of the nutrient solution tray in the extending direction of the discharge slit 2111 .
  • a nutrient solution collection pipe arranged below the discharge port 3108 in the cultivation chamber 2910 illustrated in FIG. Similar to 3109, there is a nutrient solution recovery part of the cultivation machine.
  • the cultivating unit 100 Due to the presence of the notch 2601 at the expected overflow position 2601 in the extension direction of the discharge slit 2111, if the discharge slit 2111 is clogged or if the amount of nutrient solution supplied to the cultivating unit 100 is excessive, the cultivating unit 100 will not be able to function properly. Even when the nutrient solution overflows from the notch 2601, it is possible to target the nutrient solution to overflow. As a result, the nutrient solution can be reliably recovered by the nutrient solution recovery unit, and the nutrient solution that overflows from an unexpected portion of the nutrient solution tray 102 can wet equipment and the like, causing malfunctions and other problems. can be prevented.
  • FIG. 27 is an example of a side view of the end region of the nutrient solution tray.
  • FIG. 27(a) is an example of a side view of the end region of the nutrient solution tray on the side of the nutrient solution inflow region.
  • FIG. 27(b) is an example of a side view of the end region of the nutrient solution tray on the side of the nutrient solution outflow region.
  • a first installation portion (first installation surface) 2201 and a first leg (third installation surface) 2104 are provided in the end region of the nutrient solution tray 102 on the side of the nutrient solution inflow region 2401 (Fig. 27(a)).
  • a second installation portion (second installation surface) 2202 and a second leg (fourth installation surface) 2105 are provided in the end region of the nutrient solution tray 102 on the side of the nutrient solution outflow region 2403 (Fig. 27(b)).
  • a first installation surface pair consisting of a first installation portion 2201 and a second installation portion 2202 is set inside the cultivation machine, for example, on a support frame of the cultivation machine, with the nutrient solution tray 102 set on the cultivation machine (for example, a support frame). frame).
  • a second installation surface pair consisting of a first leg portion 2104 and a second leg portion 2105 can be placed on a workbench or the ground outside the cultivation machine, for example, while the nutrient solution tray 102 is placed on the workbench or the ground. It is the part that comes into contact with
  • First mounting portion 2201 and second mounting portion 2202 (first mounting surface pair), and first leg 2104 and second leg 2105 (second mounting surface pair) are described below.
  • the nutrient solution tray 102 is designed to have different inclinations when placed outside the cultivation machine and when set inside the cultivation machine.
  • the first installation part 2201 and the second installation part 2202 constitute a first installation surface pair that comes into contact with, for example, the support frame of the cultivation apparatus when the nutrient solution tray 102 is set in the cultivation apparatus.
  • a first leg 2104 and a second leg 2105 form a second mounting surface pair that spaces the nutrient solution tray 102 on, for example, a horizontal workbench. When performing work, etc., it comes into contact with the work surface of the workbench.
  • the first leg portion 2104 and the first installation portion 2201 have different heights (intervals) from the reference line L, which is the position of the bottom surface of the nutrient solution tray 102 . Further, the installation surface of the first leg portion 2104 and the installation surface of the first installation portion 2201 are inclined with respect to the reference line L, respectively. In other words, when the reference line L of the nutrient solution tray 102 is parallel to the horizontal line, the installation surface of the first leg portion 2104 and the installation surface of the first installation portion 2201 are each inclined with respect to the horizontal line.
  • the first legs 2104 have a first height Hs1 and a second height Hs2 at both longitudinal ends of the nutrient solution tray 102 . Also, the first leg 2104 has an average height Hs_ave.
  • the first installation portion 2201 has a first interval Dl1 and a second interval Dl2 at both ends of the nutrient solution tray 102 in the longitudinal direction. Also, the first installation portion 2201 has an average interval Dl_ave.
  • the second leg portion 2105 and the second installation portion 2202 have different heights (intervals) from the reference line L (bottom position) of the nutrient solution tray 102 . Furthermore, the second leg portion 2105 and the second installation portion 2202 are inclined with respect to the reference line L, respectively.
  • the second leg 2105 has a first height Hl1 and a second height Hl2 at both ends of the nutrient solution tray 102 in the longitudinal direction. Also, the second leg 2105 has an average height Hl_ave.
  • the second installation portion 2202 has a first spacing Ds1 and a second spacing Ds2 at both ends of the nutrient solution tray 102 in the longitudinal direction. Also, the second installation portion 2202 has an average interval Ds_ave.
  • the average height Hs_ave of the first leg 2104 is lower than the average height Hl_ave of the second leg 2105 (Hs_ave ⁇ Hl_ave).
  • the average interval Dl_ave of the first installed portion 2201 is longer than the average interval Ds_ave of the second installed portion 2202 (Dl_ave>Ds_ave).
  • the average height Hs_ave of the first leg 2104 is longer than the average spacing Dl_ave of the first mounting portion 2201 (Hs_ave>Dl_ave).
  • the first installation portion 2201 (first installation surface) is formed on the side of the nutrient solution inflow region 2401 in the longitudinal direction of the nutrient solution tray 102 .
  • the second installation portion 2202 (second installation surface) is formed on the side of the nutrient solution outflow region 2403 in the longitudinal direction of the nutrient solution tray 102 .
  • the first installation surface is further from the bottom surface than the second installation surface.
  • the first leg portion 2104 (third installation surface) is formed on the side of the nutrient solution inflow region 2401 in the longitudinal direction of the nutrient solution tray.
  • the second leg 2105 (fourth installation surface) is formed on the side of the nutrient solution outflow region 2403 in the longitudinal direction of the nutrient solution tray.
  • the fourth installation surface is farther from the bottom surface than the third installation surface.
  • FIG. 28 is an example of a side view of the nutrient solution tray in different states.
  • FIG. 28(a) is an example of a side view of the nutrient solution tray 102 in a state where the reference line L of the nutrient solution tray 102 of FIG. 27 is horizontal.
  • FIG. 28(b) is an example of a side view of the nutrient solution tray 102 placed on a horizontal workbench 2801.
  • FIG. 28(c) is an example of a side view of the nutrient solution tray 102 set on the support frame 2802 of the horizontal cultivation machine.
  • the reference line L is the position of the bottom surface of the nutrient solution tray 102. In the state of FIG. It will be in a state parallel to the line L.
  • the nutrient solution tray 102 is placed on a horizontal workbench 2801, and as indicated by the arrow, the nutrient solution tray 102 is tilted with the nutrient solution inflow region 2401 side facing downward. That is, when the nutrient solution tray 102 containing the nutrient solution is taken out from the cultivation apparatus and placed on the workbench 2801, or when the nutrient solution is supplied to the nutrient solution tray 102 placed on the workbench 2801, the nutrient solution is discharged.
  • the slit 2111 is positioned above the liquid surface of the nutrient solution, so that the nutrient solution can be prevented (reduced) from flowing out of the discharge slit 2111 of the nutrient solution tray 102 .
  • the nutrient solution tray 102 is installed on the support frame 2802 of the horizontal cultivation machine. As indicated by the arrow, the nutrient solution tray 102 is tilted with the outflow region 2403 side facing downward. In the state of FIG. 28(c), the portion 2820 just before connecting the two support frames 2802 of the cultivation machine is horizontal.
  • the nutrient solution tray 102 is positioned so that the downstream side of the nutrient solution flow faces downward in the cultivation machine. It is slanted so that it is below the edge. In addition, it is preferable that the inclination in this case is, for example, about 1 degree.
  • the nutrient solution supplied to the nutrient solution inflow region 2401 of the nutrient solution tray 102 naturally flows into the outflow region of the nutrient solution tray 102 due to the inclination of the nutrient solution tray 102 . 2403.
  • FIG. 28(c) also shows a horizontal line 2830 passing through the apex of the end wall of the nutrient solution tray 102 on the nutrient solution outflow region 2403 side.
  • the lowest point P2102 of the recessed notch 2102 concave toward the bottom surface is located below the horizontal line 2830. In FIG. That is, when too much nutrient solution is injected, unnecessary nutrient solution flows out from the notch 2102 .
  • the nutrient solution tray when the nutrient solution tray is installed using the first installation surface pair, the nutrient solution flows from the nutrient solution inflow region of the nutrient solution tray toward the nutrient solution outflow region, and the discharge slit 2111 (the nutrient solution outflow port ).
  • the discharge slit 2111 (nutrient solution outlet) exists above the surface of the nutrient solution.
  • Example 2 The spacing set consisting of the cultivation plate, the cultivation plate spacer, and the nutrient solution tray of this embodiment is used, for example, in an artificial light type plant factory together with the nutrient solution tray, like the planting pot of Example 1. Therefore, it is suitable for use in large-scale plant factories where it has been difficult to manage the cultivation environment in the past.
  • FIG. 34 is an example of the explanatory view explaining a seeding tray.
  • FIG. 34(a) is an example of a perspective view of a seeding tray 3400 containing a sponge medium 3410.
  • FIG. 34(b) is an example of a perspective view of the seeding tray 3400 with the lid 3420 covered.
  • FIG. 34(c) is an example of a cross-sectional view of the seeding tray 3400 of FIG. 34(b).
  • a seeding tray 3400 can accommodate a sponge medium 3410 .
  • Sponge medium 3410 may be made of, for example, urethane foam, but may be made of other synthetic materials. Furthermore, instead of the sponge medium 3410, rock wool (culture mat) may be used.
  • the sponge medium 3410 is provided with a plurality of slits, for example, H-shaped slits, and plant seeds or seeds can be planted in these slits.
  • the seeding tray 3400 can also store a nutrient solution. Seeds, seeds, etc. planted in the sponge medium 3410 can absorb the nutrient solution through the sponge medium 3410 and grow.
  • the seeding tray 3400 has a notch portion 3401 and a stepped portion 3402 .
  • the stepped portion 3402 is preferably aligned with the height of the sponge culture medium 3410 .
  • the lower edge of the notch 3401 is preferably aligned with the height of the sponge culture medium 3410 .
  • water and nutrient solution can be discharged from the notch portion 3401 without tilting the seeding tray 3400 .
  • the water and the nutrient solution stored in the seeding tray 3400 are prevented from overflowing unevenly due to acceleration/deceleration and shock during carrying, automatic transportation, and other handling of the seeding tray 3400. can be prevented.
  • the notch 3401 may be provided on a wall surface that is not in the movement direction of the automatic transporter in order to prevent water or nutrient solution from overflowing the seeding tray 3400 .
  • the stepped portion 3402 can also be used as a guide in the depth direction.
  • the seeding tray 3400 can be covered with a lid 3420 . As a result, immediately after seeding, the evaporation of water and nutrient solution from the seeding tray 3400 can be moderately suppressed.
  • FIG. 35 is an example of another explanatory drawing explaining a seeding tray.
  • FIG. 35(a) is another example of a perspective view of the seeding tray 3400 containing the sponge medium 3410.
  • FIG. 35(b) is an example of an explanatory diagram illustrating a state in which a sponge medium 3410 containing germinated plants is removed from the seeding tray 3400.
  • FIG. 35(c) is an example of an explanatory diagram illustrating a step of accommodating a plant germinated in the sponge medium 3410 in the cultivation plate 3600.
  • the plants are cultivated in the seeding tray 3400 containing the sponge medium 3410 until the plants fully germinate.
  • a partial sponge medium 3511 containing a germinated plant 3512 is torn off as a transplant medium 3510 along predetermined breaking lines 3411, 3412 such as cuts formed in the sponge medium 3410 (S3500C-1).
  • a set 3500 of partial sponge medium 3511 and germinated plants 3512 can be put into the cultivation holes 3610 of the cultivation plate 3600 (S3500C-2), thereby preparing the cultivation plate 3520 with the germinated plants 3512 .
  • sprouted plant 3512 Although only one sprouted plant 3512 is illustrated in FIG. 35(b), in reality, from one sponge medium 3410, several tens to hundreds of partial sponge medium 3511 and sprouted plants 3512 are set. 3500 can be obtained.
  • FIG. 36 is an example of an explanatory diagram explaining a cultivation plate.
  • FIG. 36(a) is an example of a top view of a cultivation plate 3600.
  • FIG. FIG. 36(b) is an example of a bottom view of the cultivation plate 3600.
  • FIG. FIG. 36(c) is an example of a side view of the cultivation plate 3600.
  • FIG. FIG. 36(d) is an example of a top perspective view of the cultivation plate 3600.
  • FIG. FIG. 36(e) is an example of a bottom perspective view of the cultivation plate 3600.
  • FIG. 36(a) is an example of a top view of a cultivation plate 3600.
  • FIG. 36(b) is an example of a bottom view of the cultivation plate 3600.
  • FIG. 36(c) is an example of a side view of the cultivation plate 3600.
  • FIG. FIG. 36(d) is an example of a top perspective view of the cultivation plate 3600.
  • FIG. FIG. 36(e) is an example of
  • the cultivation plate 3600 has a cultivation hole 3610 in the center for receiving and holding the germinated plant 3512 together with the partial sponge medium 3511 . Since the cultivation hole 3610 has the same configuration and function as the pot hole 110 of Example 1, detailed description thereof will be omitted.
  • the cultivation plate 3600 has a length 3600L1 in the first direction in FIG. 36(a) and a length 3600L2 in the second direction in FIG. 36(a).
  • the cultivation plate 3600 preferably has a square shape in which the length 3600L1 in the first direction and the length 3600L2 in the second direction are equal.
  • the horizontal direction in the drawing may be referred to as the first direction
  • the vertical direction in the drawing may be referred to as the second direction.
  • the cultivation plate 3600 has four legs 3620 .
  • the height from the tips of the legs to the upper surface of the cultivation plate 3600 is 3600H1.
  • Growing plate 3600 has a rim 3630 .
  • the height from the edge 3630 to the top surface of the cultivation plate 3600 is 3600H2.
  • a height 3600H1 from the tip of the leg to the top surface of the cultivation plate 3600 is preferably longer than a height 3600H2 from the edge 3630 to the top surface of the cultivation plate 3600 .
  • FIG. 37 is an example of an explanatory diagram explaining a cultivation plate spacer.
  • FIG. 37(a) is an example of a top view of a cultivation plate spacer 3700.
  • FIG. 37(b) is an example of a bottom view of the cultivation plate spacer 3700.
  • FIG. FIG. 37(c) is an example of a side view of the cultivation plate spacer 3700.
  • FIG. FIG. 37(d) is an example of a top perspective view of the cultivation plate spacer 3700.
  • FIG. FIG. 37(e) is an example of a bottom perspective view of the cultivation plate spacer 3700.
  • FIG. 37(a) is an example of a top view of a cultivation plate spacer 3700.
  • FIG. 37(b) is an example of a bottom view of the cultivation plate spacer 3700.
  • FIG. 37(c) is an example of a side view of the cultivation plate spacer 3700.
  • FIG. 37(d) is an example of a top perspective view of the cultivation plate spacer 3
  • the cultivation plate spacer 3700 has a length 3700L1 in the first direction in FIG. 37(a) and a length 3700L2 in the second direction in FIG. 37(a).
  • the cultivation plate spacer 3700 preferably has a square shape in which the length 3700L1 in the first direction and the length 3700L2 in the second direction are equal.
  • Growing plate spacer 3700 has four legs 3720 .
  • the height from the tip of the leg to the top surface of the cultivation plate spacer 3700 is 3700H1.
  • the grow plate spacer 3700 has an edge 3730 .
  • the height from edge 3730 to the top surface of cultivation plate spacer 3700 is 3700H2.
  • a height 3700H1 from the tip of the leg to the top surface of the cultivation plate spacer 3700 is preferably longer than a height 3700H2 from the edge 3730 to the top surface of the cultivation plate spacer 3700.
  • each part of the cultivation plate 3600 and the dimensions of each part of the cultivation plate spacer 3700 are preferably the same.
  • the cultivation plate 3600 and the cultivation plate spacer 3700 each have a substantially square shape, but the cultivation plate 3600 and the cultivation plate spacer 3700 each have a different polygonal shape, such as a regular hexagonal shape. It may have a rectangular shape. In such a configuration, the sidewalls or the like of the nutrient solution tray 4200 may have corresponding or complementary irregularities. In such a configuration, for example, the contours of the polygonal shapes of the cultivation plate 3600 and the cultivation plate spacers 3700 and the contours of the concave and convex portions of the side walls of the nutrient solution tray 4200 are fitted to each other, so that the nutrient solution tray 4200 can be transported. Therefore, it is possible to effectively suppress the slipping of the cultivation plate 3600 and the cultivation plate spacer 3700 that accompanies this.
  • FIG. 38 is an example of an explanatory diagram explaining a cultivation panel.
  • FIG. 38(a) is an example of a top view of a cultivation panel 3800.
  • FIG. 38(b) is an example of a side view of a cultivation panel 3800.
  • FIG. 38(c) is an example of a bottom view of the cultivation panel 3800.
  • FIG. 38(d) is an example of a front view of a cultivation panel 3800.
  • FIG. 38(a) is an example of a top view of a cultivation panel 3800.
  • FIG. 38(b) is an example of a side view of a cultivation panel 3800.
  • FIG. 38(c) is an example of a bottom view of the cultivation panel 3800.
  • FIG. 38(d) is an example of a front view of a cultivation panel 3800.
  • FIG. 38(a) is an example of a top view of a cultivation panel 3800.
  • FIG. 38(b) is an example of a side view of a cultivation panel 3
  • the cultivation panel 3800 has a length 3800L1 in the first direction in FIG. 38(a) and a length 3800L2 in the second direction in FIG. 38(a).
  • the third integral multiple of the length 3800L1 of the short side of the cultivation panel 3800 may correspond to the length of the container 4920 of the nutrient solution tray 4200 in the short direction.
  • the short side length 3800L1 of the cultivation panel 3800 may be, for example, approximately 20 cm to approximately 40 cm.
  • the third integer multiple may be, for example, one or two.
  • the fourth integral multiple of the length 3800L2 of the long side of the cultivation panel 3800 may correspond to the length of the container 4920 of the nutrient solution tray 4200 in the longitudinal direction.
  • the fourth integral multiple of the length 3800L2 of the long side of the cultivation panel 3800 may correspond to the length of the storage portion 4920 of the nutrient solution tray 4200 in the longitudinal direction.
  • the long side length 3800L2 of the cultivation panel 3800 may be, for example, approximately 45 cm to approximately 90 cm.
  • the fourth integral multiple may be, for example, 2 to 4 times.
  • a plurality of openings 3830 are formed in the cultivation panel 3800 .
  • the opening 3830 has an upper opening surface 3831 and a lower opening surface 3832 , the area of the upper opening surface 3831 being larger than the area of the lower opening surface 3832 .
  • a plurality of openings 3830 are formed along short sides of the cultivation panel 3800 .
  • multiple openings 3830 may be formed along the long sides of the growth panel 3800 .
  • An upper opening surface 3831 of the opening 3830 has a length 3830L1a in the first direction in FIG. 38(a) and a length 3830L2a in the second direction in FIG. 38(a).
  • the upper opening surface 3831 is an example of a first opening surface.
  • the opening 3830 is preferably formed such that the fifth integral multiple of the length of one side of the cultivation plate 3600 and the cultivation plate spacer 3700 corresponds to the longitudinal length 3830L1a of the upper opening surface 3831.
  • the fifth integer multiple may be, for example, 4 to 8 times.
  • the opening 3830 is formed so that the sixth integral multiple of the length of one side of the cultivation plate 3600 and the cultivation plate spacer 3700 corresponds to the length 3830L2a of the upper opening surface 3831 in the lateral direction. good.
  • the sixth integral multiple may be, for example, 1 or 2.
  • a beam extending in the longitudinal direction of the opening 3830 that divides the lower opening surface 3832 into two is provided on the lower opening surface 3832 of the opening 3830. Better if formed.
  • the lower opening surface 3832 of the opening 3830 has a length 3830L1b in the first direction in FIG. 38(a) and a length 3830L2b in the second direction in FIG. 38(a).
  • the lower opening surface 3832 is an example of a second opening surface.
  • a lower opening surface peripheral edge 3833 is formed around the lower opening surface 3832 of the opening 3830 .
  • the area of the upper opening surface 3831 is approximately equal to the sum of the area of the lower opening surface 3832 and the area of the lower opening surface peripheral edge 3833 .
  • the length 3830L2a of the upper opening surface 3831 of the opening 3830 in the second direction is approximately equal to the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600 and the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700. , slightly larger than them. Thereby, the opening 3830 can accommodate the cultivation plate 3600 and the cultivation plate spacer 3700 easily and stably.
  • the length 3830L2b of the lower opening surface 3832 of the opening 3830 in the second direction is smaller than the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600 and the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700. .
  • the opening 3830 can accommodate the cultivation plate 3600 and the cultivation plate spacer 3700 so as not to fall from the lower opening surface 3832 .
  • Each opening 3830 is separated from the longitudinal outer peripheral edge 3820 of the cultivation panel 3800 by a length 3800L1a in the lateral direction (transverse direction).
  • the length 3800L1a is the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600, the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700, and the second direction of the upper opening surface 3831 of the opening 3830. Approximately equal to half the length 3830L2a.
  • the openings 3830 formed at both ends of the cultivation panel 3800 in the longitudinal direction are separated from the short outer peripheral edge 3810 of the cultivation panel 3800 by a length of 3800L2a in the vertical direction (longitudinal direction). ing.
  • the length 3800L2a is the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600, the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700, and the second direction of the upper opening surface 3831 of the opening 3830. Approximately equal to half the length 3830L2a.
  • the length 3800L1a and the length 3800L2a may correspond to the lengths 3600L1, 3600L2 of each side of the growth plate 3600 and the lengths 3700L1, 3700L2 of each side of the growth plate spacer 3700.
  • a cultivation panel 3800 is used, as will be described later, for some arrangements using only the cultivation plate 3600 and cultivation plate spacers 3700, an equivalent arrangement, for example, using only the cultivation plate 3600 and cultivation panel 3800, can be applied. It can be reproduced using
  • Each opening 3830 is spaced apart at intervals of length 3800L2b in the vertical direction of FIG. 38(a).
  • This length 3800L2b is the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600, the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700, and the second direction of the upper opening surface 3831 of the opening 3830. approximately equal to length 3830L2a.
  • legs 3840 are provided on the lower opening surface 3832 of each opening 3830 .
  • the legs 3840 are preferably formed on the lower opening surface peripheral edge 3833 .
  • FIG. 39 is an example of another explanatory diagram for explaining the cultivation panel.
  • FIG. 39(a) is an example of a top perspective view of a cultivation panel 3800.
  • FIG. 39(b) is an example of a bottom perspective view of the cultivation panel 3800.
  • FIG. 39(a) is an example of a top perspective view of a cultivation panel 3800.
  • FIG. 39(b) is an example of a bottom perspective view of the cultivation panel 3800.
  • FIG. 39(a) one of the upper opening surfaces 3831 is illustrated as a virtual plane surrounded by straight lines for ease of viewing.
  • one of the lower opening surfaces 3832 is illustrated as an imaginary plane surrounded by straight lines for ease of viewing.
  • FIG. 39(b) more clearly illustrates the configuration in which the legs 3840 are formed on the lower opening surface peripheral edge 3833 as described above.
  • FIG. 40 is an example of an explanatory diagram explaining the arrangement of cultivation plates and cultivation plate spacers in a cultivation panel.
  • FIG. 40(a) is an example of a top view of a cultivation panel 3800 on which cultivation plates 3600 and cultivation plate spacers 3700 are arranged.
  • FIG. 40(b) is an example of a bottom view of a cultivation panel 3800 on which cultivation plates 3600 and cultivation plate spacers 3700 are arranged.
  • the cultivation panel 3800 has the cultivation plate 3600 and the cultivation plate spacer 3700, and also the half cultivation plate spacer 4000 arranged thereon.
  • the half cultivation plate spacer 4000 has a length 4000L1 in the first direction in FIG. 40(a) and a length 4000L2 in the second direction in FIG. 40(a).
  • the length 4000L1 of the half cultivation plate spacer 4000 in the first direction is half the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600 and the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700. Almost equal.
  • the length 4000L2 of the half cultivation plate spacer 4000 in the second direction is the lengths 3600L1 and 3600L2 of each side of the cultivation plate 3600, the lengths 3700L1 and 3700L2 of each side of the cultivation plate spacer 3700, and the length of the opening 3830. It is approximately equal to the length 3830L2a of the upper opening surface 3831 in the second direction.
  • the spacing of the cultivation plate 3600 can be adjusted more flexibly, so that the spacing between the plants grown using the nutrient solution tray 4200 can be adjusted according to the degree of growth of the plants. Spacing can be adjusted more flexibly and better.
  • FIG. 41 is another example of an explanatory diagram for explaining the arrangement of the cultivation plate and the cultivation plate spacers in the cultivation panel.
  • FIG. 41(a) is an example of a top perspective view of a cultivation panel 3800 on which cultivation plates 3600 and cultivation plate spacers 3700 are arranged.
  • FIG. 41(b) is an example of a bottom perspective view of a cultivation panel 3800 on which cultivation plates 3600 and cultivation plate spacers 3700 are arranged.
  • the height (depth) of the opening 3830 shown in FIG. 41(a) is 3600H2 from the edge 3630 of the cultivation plate 3600 to the top surface of the cultivation plate 3600, and the edge of the cultivation plate spacer 3700 is 3600H2.
  • the height from 3730 to the upper surface of the cultivation plate spacer 3700 is approximately equal to 3700H2.
  • 41(a) and 41(b) the lower opening surface peripheral edge 3833 functions as a stopper to prevent the cultivation plate 3600 and the cultivation plate spacer 3700 from falling from the opening 3830. , is shown more clearly.
  • FIG. 42 is an example of an explanatory diagram for comparing nutrient solution trays in different usage states.
  • a nutrient solution tray 4200 illustrated in FIG. 42 can be used for the same purpose as the nutrient solution tray 102 described in the first embodiment.
  • the description of the configuration common to that of the nutrient solution tray 102 is omitted.
  • the configuration described using the nutrient solution tray 4200 may be adopted for the nutrient solution tray 102 if structurally possible.
  • the nutrient solution tray 4200a alone is illustrated on the leftmost side of FIG.
  • the bottom surface of the nutrient solution tray 4200 has a nutrient solution inflow region 4910 (2401), a storage region 4920 (105), and a nutrient solution outflow region 4930 (2403), similar to the nutrient solution tray 102. (see FIG. 49).
  • the accommodation area accommodates the cultivation plate 3600, the cultivation plate spacer 3700, and the cultivation panel 3800, but it is also possible to accommodate the planting pot 101 described in the first embodiment. be.
  • the nutrient outflow area is provided with two outlets 4250 (4250a, 4250b). Furthermore, two root bypass walls 4240 (4240a, 4240b) are provided so as to connect to the outlets 4250 (4250a, 4250b) or extend to the vicinity of the outlets 4250 (4250a, 4250b).
  • the root detour walls 4240 (4240a, 4240b) correspond to protruding structures, divide the flow of the nutrient solution in the nutrient solution tray 4200, divert it, and guide it to the outlets 4250 (4250a, 4250b).
  • a plurality of weirs 4210 are provided between the nutrient inlet area and the containment area, which have the same or similar function and configuration as the gate pattern 2502 described above. Since the two root detour walls 4240 (4240a, 4240b) distribute and guide the roots of the plant to be cultivated to the two outlets 4250 (4250a, 4250b), the extended roots can reduce the possibility of clogging the
  • the flow of the nutrient solution is divided to reduce splashing, splashing, leakage, and the like of the nutrient solution.
  • a plurality of walls 4220 (4220a to 4220e) extending parallel to the longitudinal direction of the nutrient solution tray 4200 are formed in the accommodation area. These walls 4220 form a plurality of flow paths 4230 (4230a to 4220f) in the housing area.
  • the plurality of walls 4220 allow the nutrient solution to flow into the nutrient solution inflow region 4910 of the nutrient solution tray 4200 particularly when the amount of nutrient solution flowing into the nutrient solution inflow region 4910 of the nutrient solution tray 4200 is small.
  • the flow rate of the nutrient solution flowing through the storage area 4920 is not high enough to cover the entire bottom surface of the storage area 4920, the nutrient solution can be divided into several streams in the storage area 4920 and distributed. .
  • the plurality of walls 4220 (4220a to 4220e) and the plurality of channels 4230 (4230a to 4220f) formed therebetween reduce the occurrence of biased flow of the nutrient solution in the storage area 4920. can be done.
  • a nutrient solution tray 4200b containing two sponge media 4260 (4260a, 4260b).
  • the nutrient solution tray 4200 can also be used as a substitute for the seeding tray described with reference to FIGS.
  • the nutrient solution tray 4200 When the nutrient solution tray 4200 is used as a seeding tray, by circulating the nutrient solution in the tray, it is possible to easily adjust the ratio and concentration of nutrients required for germination over time.
  • FIG. 42 Third from the left in FIG. 42 is a nutrient solution tray 4200c containing cultivation plates 3600 spaced in two patterns using cultivation plate spacers 3700.
  • FIG. The rightmost part of FIG. 42 shows a nutrient solution tray 4200d containing cultivation plates 3600 spaced in two patterns using cultivation plate spacers 3700 and cultivation panels 3800 (3800a, 3800b).
  • the nutrient solution trays 4200c and 4200d are spacing sets each composed of a cultivation plate 3600, a cultivation plate spacer 3700, and a cultivation panel 3800, and accommodate four different configurations of spacing sets.
  • the four different configurations illustrated in FIG. 42 are examples of spacing set configurations. Accordingly, the spacing set can be accommodated in the accommodation area 4920 of the nutrient solution tray 4200 in configurations other than the four configurations illustrated in FIG.
  • the spacing set is a combination of the cultivation plate 3600 and the cultivation plate spacer 3700, or the cultivation plate 3600 and the cultivation panel 3800, or the cultivation plate 3600, the cultivation plate spacer 3700 and the cultivation panel 3800, in particular any number and arrangement. and can be used.
  • the spacing between the cultivation plates 3600 housed in the housing area 4920 of the nutrient solution tray 4200 can be changed arbitrarily and flexibly.
  • the cultivation plates 3600 are spaced apart from each other regularly, in particular at least partially equidistant.
  • the growth plates 3600 can be accommodated in the accommodation areas 4920 of the nutrient solution trays 4200 at multiple different spacings.
  • the cultivation plates 3600 can be arranged in the storage area 4920 of the nutrient solution tray 4200 by adjusting the spacing between adjacent cultivation plates 3600 separately, particularly irregularly. The above adjustments may be made, for example, depending on the growth rate of the plant planted in the cultivation hole 3610.
  • the cultivation plate 3600 and the cultivation plate spacer 3700 have a substantially square shape when viewed from above, as described using FIG.
  • the first integer multiple may be, for example, approximately 16 to 32 times.
  • the second integral multiple may be, for example, approximately four to eight times.
  • the user can place the cultivation plate 3600 and the cultivation plate spacers 3700 side by side in the longitudinal direction and the transverse direction of the nutrient solution tray 4200 and spread them over the accommodation area 4920 of the nutrient solution tray 4200 .
  • the plurality of cultivation plates 3600 can be accommodated in the accommodation area 4920 of the nutrient solution tray 4200 at a plurality of different intervals depending on the total number and arrangement of the cultivation plate spacers 3700 arranged between the cultivation plates 3600 as described above.
  • the lower half of the nutrient solution tray 4200c is covered with only a plurality of cultivation plates 3600, and adjacent cultivation plates 3600 are separated from each other by a first interval length (minimum interval length) 4200D1.
  • the above configuration corresponds to the first configuration using only the growing plates 3600 of the spacing set.
  • Cultivation plates 3600 and cultivation plate spacers 3700 are laid alternately on the upper half of the nutrient solution tray 4200c, and adjacent cultivation plates 3600 are separated from each other by a second interval length 4200D2.
  • the above configuration corresponds to the second configuration using grow plate 3600 and grow plate spacers 3700 of the spacing set.
  • the second configuration allows varying and very flexible spacing between the growing plates 3600 by changing the number and placement of the growing plates 3600 and growing plate spacers 3700 .
  • Cultivation plate spacers 3700 are used to adjust the spacing between cultivation plates 3600 .
  • the spacing of the cultivation plates 3600 within the nutrient solution tray 4200 does not necessarily have to be even or regular.
  • the cultivation plate spacers 3700 the interval between the cultivation plates 3600 can be arbitrarily adjusted according to the degree of growth of plants and the like.
  • the nutrient solution tray 4200d accommodates two cultivation panels 3800 (3800a, 3800b).
  • the cultivation panel 3800a alternately accommodates one cultivation plate 3600 and one cultivation plate spacer 3700 in its opening 3830 .
  • the cultivation panel 3800b is housed in its opening 3830 such that two cultivation plate spacers 3700 are present between two adjacent cultivation plates 3600. As shown in FIG.
  • the cultivation panel 3800 also functions as one large spacer. By using the cultivation panel 3800, the spacing of the cultivation plate 3600 in the longitudinal direction of the nutrient solution tray 4200 can be implemented simply.
  • the size of the cultivation panel 3800 is preferably determined so that an integral number of cultivation panels can be accommodated in the nutrient solution tray 4200 .
  • 75, 32.5, 18, and 12 plants are arranged per nutrient solution tray 4200 depending on the presence or absence and arrangement of the cultivation plate spacers 3700, the presence or absence of the cultivation panel 3800, and the like.
  • the number of plants per nutrient solution tray 4200 can be flexibly changed according to the presence or absence and arrangement of the cultivation plate spacers 3700 and the design of the cultivation panel 3800 .
  • FIG. 43 is an example of an explanatory diagram for comparing nutrient solution trays in different usage states.
  • FIG. 43(a) is a perspective view of nutrient solution trays 4200a to 4200d of FIG.
  • FIG. 43(b) is another perspective view of the nutrient solution trays 4200a to 4200d of FIG. 43, the sponge medium 4260(b) of the nutrient solution tray 4200b is removed.
  • each nutrient solution tray 4200 (4200a to 4200d) is surrounded by leaf guard plates 4300 (4300a, 4300b).
  • the leaf guard plate 4300 prevents a plant in each nutrient solution tray 4200 from coming into contact with a plant in an adjacent nutrient solution tray 4200 due to vibration, acceleration or deceleration when the nutrient solution tray 4200 is transported or carried. It prevents the plants in the tray 4200 from coming into contact with conveying devices and people.
  • a leaf guard plate 4300a extending parallel to the length of the nutrient solution tray 4200 is attached to the nutrient solution tray 4200 using attachment structures 4270 (4270a through 4270e), illustrated in FIG.
  • a leaf guard plate 4300b extending parallel to the short side of the nutrient solution tray 4200 is attached to the nutrient solution tray 4200 using another attachment structure 4830 illustrated in FIG.
  • the leaf guard plate 4300 When the leaf guard plate 4300 is made of a material having a high light-shielding property, the light environment individually adjusted for one nutrient solution tray 4200 is controlled by the light of one or two nutrient solution trays 4200 adjacent thereto. It becomes easier to avoid affecting the environment. If the leaf guard plate is constructed from a highly reflective material, more light can hit the plants in the nutrient solution tray 4200 from more directions.
  • FIG. 44 is an example of a cross-sectional view of the nutrient solution tray 4200a of FIG. 42 taken along line OO'.
  • FIG. 44(a) is an example of an overall cross-sectional view of the nutrient solution tray 4200a taken along line OO'.
  • FIG. 44(b) is an example of a partially enlarged sectional view of the nutrient solution tray 4200a taken along line OO'.
  • FIG. 44(b) illustrates a range surrounded by broken lines in the overall cross-sectional view of FIG. 44(a).
  • a bottom surface 4400 of the nutrient solution tray 4200 rises and is connected to the outer peripheral wall portion of the nutrient solution tray 4200 via a rounded bottom outer peripheral edge 4401 .
  • the bottom surface 4400 of the nutrient solution tray 4200 is preferably connected to the outer peripheral wall of the nutrient solution tray 4200 via a stepped portion extending outward in the lateral direction of the nutrient solution tray 4200 .
  • This stepped portion forms a nutrient solution flow path 4500 (4500a, 4500b) for overflow, which will be described later.
  • the height 4210H of the weir 4210 and the height 4220H of the wall 4220 from the bottom surface 4400 are substantially equal.
  • a void 4410 between the weirs 4210 corresponds to the gap (gate) between the gate patterns 2502 of the first embodiment.
  • the nutrient solution flowing into the nutrient solution inflow region 4910 of the nutrient solution tray 4200 is distributed in the lateral direction of the nutrient solution tray 4200 . and can flow into the containment area 4920 of the nutrient solution tray 4200 .
  • the amount of the nutrient solution flowing into the nutrient solution inflow region 4910 of the nutrient solution tray 4200 is small, particularly, the nutrient solution flowing into the nutrient solution inflow region 4910 of the nutrient solution tray 4200 is stored in the storage region 4920 .
  • the configuration in which the plurality of cavities 4410 are arranged in the lateral direction is advantageous because it can reduce the occurrence of biased flow of the nutrient solution in the storage region 4920. is.
  • cavity 4410 is formed deep enough to connect to bottom surface 4400.
  • the edge 4412 may be positioned higher than the actual edge 4411 of the cavity 4410 in the embodiment of Figure 44(b).
  • such a virtual edge 4412 is represented by a dashed line. The lowest point of imaginary edge 4412 is higher than bottom surface 4400 by height 4410H.
  • nutrient solution In configurations where the cavity 4410 has the lowest point of the edge 4412 higher than the bottom surface 4400, nutrient solution accumulates in the nutrient solution entry area 4910 of the nutrient solution tray 4200a until the height 4410H is reached. When the height of the nutrient solution accumulated in the nutrient solution inflow region 4910 exceeds the height 4410H, the nutrient solution flows from the plurality of vacancies 4410 arranged side by side into the channels 4230 (4230a to 4230f) almost simultaneously. flows evenly or evenly. Note that the surface tension of the nutrient solution is not considered.
  • FIG. 45 is an example of a cross-sectional view of the nutrient solution tray 4200b of FIG. 42 taken along line OO'.
  • the nutrient solution tray 4200b has overflow nutrient solution channels 4500 (4500a, 4500b) on both sides of the contained sponge medium 4260 (4260a).
  • the overflow nutrient solution channels 4500a and 4500b have widths of 4500L1 and 4500L2, respectively.
  • the sponge medium 4260 (4260a) When the sponge medium 4260 (4260a) is accommodated in the nutrient solution tray, the sponge medium 4260 (4260a) is held with a gap from the tray bottom surface 4400 by the walls 4220 in the longitudinal direction of the nutrient solution tray. At this time, the nutrient solution passes through the gap and sponge medium 4260 (4260a), but since the sponge medium 4260 (4260a) is soft, the amount of gap tends to be unstable. If the gap described above becomes smaller, a sufficient gap is not secured for the nutrient solution to flow, and if the amount of nutrient solution in the nutrient solution tray 4200 increases, the nutrient solution overflows beside the sponge medium 4260.
  • notch 4820 corresponds to the concave notch 2102 of the first embodiment.
  • FIG. 46 is an example of the cross-sectional view of the nutrient solution tray 4200c taken along line OO' in FIG.
  • FIG. 46(a) is an example of an overall cross-sectional view of the nutrient solution tray 4200c taken along line OO'.
  • FIG. 46(b) is an example of a partially enlarged sectional view of the nutrient solution tray 4200c taken along line OO'.
  • FIG. 46(b) illustrates a range surrounded by broken lines in the overall cross-sectional view of FIG. 46(a).
  • the leg portion 3620 of the cultivation plate 3600 is in contact with the bottom surface 4400 of the nutrient solution tray 4200c so that the cultivation plate 3600 stands on its own within the nutrient solution tray 4200c. Therefore, the height 3600H1 from the tip of the leg to the top surface of the cultivation plate 3600 matches the height 4600H1 of the top surface of the cultivation plate 3600 in the nutrient solution tray 4200c.
  • FIG. 47 is an example of the cross-sectional view of the nutrient solution tray 4200d of FIG. 42 taken along line OO'.
  • FIG. 47(a) is an example of an overall cross-sectional view of the nutrient solution tray 4200d taken along line OO'.
  • FIG. 47(b) is an example of a partially enlarged sectional view of the nutrient solution tray 4200d along the OO' line.
  • FIG. 47(b) illustrates a range surrounded by broken lines in the overall cross-sectional view of FIG. 47(a).
  • the leg portion 3620 of the cultivation plate 3600 is not in contact with the bottom surface 4400 of the nutrient solution tray 4200d. Specifically, the distal ends of the legs 3620 of the cultivation plate 3600 are separated from the bottom surface 4400 of the nutrient solution tray 4200d by a height 4220H. 47(b), this height 4220H is slightly greater than the height 4210H of the weir 4210. In the example of FIG.
  • the cultivation panel 3800 is self-supporting within the nutrient solution tray 4200d by the leg portion 3840 of the cultivation panel 3800 coming into contact with the bottom surface 4400 of the nutrient solution tray 4200d.
  • the cultivation plate 3600 is accommodated in the opening 3830 of the cultivation panel 3800 , and the edge 3630 of the cultivation plate 3600 is in contact with the lower opening surface peripheral edge 3833 of the opening 3830 of the cultivation panel 3800 .
  • Cultivation panel 3800 lifts cultivation plate 3600 to a predetermined height at which leg 3620 of cultivation plate 3600 does not contact bottom surface 4400 of nutrient solution tray 4200d.
  • the height 4700H1 of the top surface of the cultivation plate 3600 in the nutrient solution tray 4200d is 3600H1 from the tip of the leg to the top surface of the cultivation plate 3600. , equal to the sum of the predetermined heights 4220H lifted by the grow panel 3800. Cultivation panels 3800 having different predetermined heights 4220H may be used according to the type of plant to be cultivated and the growth phase of the plant to be cultivated.
  • FIG. 48 is an example of an enlarged view of the periphery of the nutrient solution outflow area of the nutrient solution tray of FIG.
  • FIG. 48(a) is an example of an enlarged view of the periphery of the nutrient solution outflow region for explaining the flow of the nutrient solution overflowing from the nutrient solution trays 4200a and 4200b.
  • FIG. 48(b) is an example of an enlarged view of the periphery of the nutrient solution outflow region, explaining portions where the nutrient solution overflows from the nutrient solution trays 4200a and 4200b.
  • the nutrient solution When the amount of nutrient solution in the nutrient solution tray 4200 increases due to clogging of the outlets 4250 (4250a, 4250b) or the like, the nutrient solution reaches a predetermined notch 4820 (2102), which will be described later, and reaches the expected overflow position 4810. At (2601), the nutrient solution is discharged from between two adjacent nutrient solution trays 4200 (4200a, 4200b) as indicated by arrows 4800.
  • FIG. The specific configurations of the notch 4820 (2102) and the expected overflow position 4810 (2601) are as described with reference to FIGS. 26, 28, and the like.
  • FIG. 48 shows mounting structures 4830a and 4840a with a leaf guard plate 4300b extending in the lateral direction of the nutrient solution tray 4200 attached, and mounting structures 4830a and 4840a with the leaf guard plate 4300b extending in the lateral direction of the nutrient solution tray 4200 removed. Structures 4830b, 4840b are also shown.
  • the leaf guard plate 4300 (4300b) extending in the lateral direction of the nutrient solution tray 4200 preferably has a concave portion 4850 so as not to block the flow of the nutrient solution flowing through the overflow nutrient solution channel 4500 .
  • FIG. 49 is an example of a top view of the nutrient solution tray 4200a of FIG. As described with reference to FIG. 42, the nutrient solution tray 4200 (4200a) has a nutrient solution inflow region 4910 (2401), a storage region 4920 (105), and a nutrient solution outflow region 4930 (2403). .
  • FIG. 50 is an example of an explanatory diagram illustrating the nutrient solution tray 4200a of FIG.
  • FIG. 50(a) is an example of a cross-sectional view taken along line AA' in FIG.
  • FIG. 50(b) is an example of a cross-sectional view taken along line BB' of FIG.
  • FIG. 50(c) is an example of a cross-sectional view taken along line CC' in FIG.
  • FIG. 50(d) is an example of a partially enlarged view of FIG.
  • FIG. 50(a) shows a structure in which a plurality of weirs 4210 and voids 4410 are arranged in the lateral direction of the nutrient solution tray 4200a.
  • FIG. 50(b) shows a structure in which a plurality of channels 4230 (4230a to 4230f) separated by a plurality of walls 4220 (4220a to 4220e) are arranged in the lateral direction of the nutrient solution tray 4200a. ing.
  • FIG. 50(c) shows a structure in which two outlets 4250 (4250a, 4250b) and two root bypass walls 4240 (4240a, 4240b) are arranged in the lateral direction of the nutrient solution tray 4200a. .
  • FIG. 50(d) shows the range enclosed by the dashed line in FIG.
  • the first outlet 4250a is formed longer than the second outlet 4250b, but the lengths of the two outlets 4250 (4250a, 4250b) are It can be appropriately designed according to the planned discharge amount or discharge rate from the outlets 4250 (4250a, 4250b).
  • FIGS. 50(c) and 50(d) show a configuration in which the two outlets 4250 (4250a, 4250b) have a funnel-shaped narrow portion extending downward of the nutrient solution tray 4200 as a step. It is A toilet for receiving the discharged nutrient solution may be provided below the discharge port 4250 (4250a, 4250b). This makes it easier to prevent the nutrient solution discharged from the discharge ports 4250 (4250a, 4250b) from being scattered.
  • FIG. 51 is an example of a top view of the nutrient solution tray 4200c of FIG.
  • the lower half of the nutrient solution tray 4200c is covered with cultivation plates 3600, and adjacent cultivation plates 3600 are regularly spaced apart at equal intervals.
  • Cultivation plates 3600 and cultivation plate spacers 3700 are laid alternately on the upper half of the nutrient solution tray 4200c, and the adjacent cultivation plates 3600 are arranged in the lower half of the nutrient solution tray 4200c. are also widely spaced apart.
  • FIG. 52 is an example of a cross-sectional view for explaining the nutrient solution tray 4200c of FIG.
  • FIG. 52(a) is an example of a cross-sectional view taken along line DD' of FIG.
  • FIG. 52(b) is an example of a cross-sectional view taken along line EE' of FIG.
  • FIG. 52(c) is an example of a cross-sectional view taken along line FF' of FIG.
  • FIG. 52(d) is an example of a cross-sectional view taken along line GG' of FIG.
  • FIGS. 52(a) and 52(b) show a structure in which cultivation plates 3600 and cultivation plate spacers 3700 are alternately arranged in the lateral direction of the nutrient solution tray 4200c.
  • the cultivation plates 3600 and the cultivation plate spacers 3700 which are alternately arranged in the lateral direction of the nutrient solution tray 4200c, are in contact with the bottom surface 4400 of the nutrient solution tray 4200c at the leg portions 3620 and 3720, respectively.
  • FIGS. 52(c) and 52(f) show a structure in which the cultivation plates 3600 are arranged in the lateral direction of the nutrient solution tray 4200c.
  • the cultivation plates 3600 arranged in the lateral direction of the nutrient solution tray 4200c are in contact with the bottom surface 4400 of the nutrient solution tray 4200c at the leg portions 3620 thereof.
  • FIG. 53 is an example of a top view of the nutrient solution tray 4200d of FIG. As described with reference to FIG. 42, in the nutrient solution tray 4200d, the cultivation plates 3600 are spaced in two patterns using cultivation plate spacers 3700 and cultivation panels 3800 (3800a, 3800b).
  • FIG. 54 is an example of a cross-sectional view for explaining the nutrient solution tray 4200d of FIG.
  • FIG. 54(a) is an example of a cross-sectional view taken along line HH' in FIG.
  • FIG. 54(b) is an example of a cross-sectional view taken along line II' in FIG.
  • FIG. 54(c) is an example of a cross-sectional view taken along line JJ' in FIG.
  • FIG. 54(d) is an example of a cross-sectional view taken along line KK' of FIG.
  • FIG. 54(a) shows a structure in which the cultivation plate 3600 and the cultivation plate spacer 3700 are arranged in the lateral direction of the nutrient solution tray 4200d while being accommodated in the opening 3830 of the cultivation panel 3800. .
  • Two cultivation plate spacers 3700 are arranged between the two cultivation plates 3600 .
  • the leg portion 3620 of the cultivation plate 3600 and the leg portion 3620 of the cultivation plate spacer 3700 are not in contact with the bottom surface 4400 of the nutrient solution tray 4200d.
  • a height 5400H from the bottom surface 4400 to the top surface of the cultivation plate 3600 and the top surface of the cultivation plate spacer 3700 in the embodiment of FIG. 54(a) is equal to the height 4700H1 described using FIG. 47(b).
  • FIG. 54(c) shows a structure in which the cultivation plate 3600 and the cultivation plate spacer 3700 are arranged in the lateral direction of the nutrient solution tray 4200d while being housed in the opening 3830 of the cultivation panel 3800. .
  • One cultivation plate spacer 3700 is arranged between two cultivation plates 3600 .
  • FIGS. 54(b) and 54(d) show a short outer peripheral edge 3810 of the cultivation panel 3800 shown in FIGS. 54(a) and 54(c).
  • FIG. 55 is an example of an explanatory diagram illustrating another nutrient solution tray.
  • Figures 55(a) to 55(c) illustrate a nutrient solution tray 5500 that is different from the nutrient solution tray 4200 illustrated in Figures 42 to 54 .
  • Another nutrient solution tray 5500 has a guide pattern 5510 and a diffusion pattern 5520 that are similar in pattern structure to the pattern structure (guide pattern 2501 and diffusion pattern 2503) described with reference to FIG.
  • the guide pattern 5510 and the diffusion pattern 5520 are examples of pattern structures, and they are designed in a shape that divides or spreads the flow of the nutrient solution in the lateral direction of the nutrient solution tray. Similar to the pattern structure described with reference to FIG. 25, the guide pattern 5510 and the diffusion pattern 5520 promote even spreading of the nutrient solution over the entire bottom surface.
  • FIG. 55( a ) is an example of a perspective view of another nutrient solution tray 5500 .
  • FIG. 55(b) is an example of a top view of another nutrient solution tray 5500.
  • FIG. 55(c) is an example of a cross-sectional view taken along line NN' of FIG. 55(b).
  • the mounting structure 4270 (4270a to 4270e) illustrated in FIG. 55(a) is used to mount the leaf guard plate 4300 (4300a) to another nutrient solution tray 5500, as in the case of the nutrient solution tray 4200. Ranges M and N enclosed by dashed lines in FIG. 55(a) will be described in detail with reference to FIG.
  • FIG. 55(b) dimensions of another nutrient solution tray 5500 are illustrated.
  • Another nutrient solution tray 5500 has a longitudinal length of 1355 mm and a lateral length of 310 mm.
  • the length of the storage area 4920 (105) of another nutrient solution tray 5500 in the longitudinal direction is 1155 mm.
  • the above dimensions can be adopted for the nutrient solution tray 4200 as well.
  • FIG. 55(c) shows a configuration in which the height (thickness) of the diffusion pattern 5520 is lower than the heights of the weir 4120 and the wall portion 4220.
  • FIG. A range O surrounded by a dashed line in FIG. 55(c) will be described in detail with reference to FIG.
  • FIG. 56 is an example of a partially enlarged view for explaining the nutrient solution tray of FIG. 55.
  • FIG. 56(a) to 56(c) specifically illustrate a structure in which the height (thickness) of the diffusion pattern 5520 is lower than the height of the weir 4210 and the wall portion 4220.
  • the height of the weir 4210 and the wall portion 4220 is, for example, about 2 mm to 3 mm, and the height of the diffusion pattern 5520 is, for example, about 0.5 mm.
  • Diffusion pattern 5520 helps reduce nutrient flow bias in each channel due to slight tilting of separate nutrient solution trays 5500 .
  • FIG. 57 is an example flow diagram illustrating auto-population.
  • the process of removing the growing plate 3600 with the plant from the nutrient tray 4200 containing the grown plants and transplanting it to another appropriately spaced nutrient tray 4200 can be mechanized and automatically performed. . A specific process will be described with reference to FIG.
  • FIG. 58 is an example schematic diagram illustrating auto-implantation.
  • the auto-transplanting process of plants may be performed according to the auto-transplanting flow 5700 shown in FIG. 57, for example.
  • the automatic transplanting process of taking out plants from the nutrient solution tray 4200 containing grown plants and placing them in a new nutrient solution tray 4200 in a different spacing state will be described below.
  • a removal mechanism (capture unit) 5900 scoops up, for example, a row of cultivation plates 3600 in the nutrient solution tray 4200 and removes the plants in the cultivation tray to be transplanted. (S5710).
  • the cultivation plates 3600 that have been taken out are individually transported through the transport path 5800 .
  • a feature quantity relating to the plants contained in each cultivation plate 3600 being conveyed is measured by the sensor device (S5720).
  • the weight of each cultivation plate 3600 is measured by a weighing scale provided on the transport path 5800 .
  • An image (for example, moving image or still image) of the plant contained in each cultivation plate 3600 being transported is captured by the image capturing device, and the automatic transplantation control device captures the captured image of the plant based on the captured image data.
  • Recognition/image analysis is performed (S5730). In the image recognition/image analysis step S5730, for example, the presence or absence of disease or signs of disease, and the degree of growth (eg, leaf size, plant height) are recognized and analyzed.
  • step S5720 of measuring the feature amount and the step S5720 of performing image recognition/image analysis may be performed in sequence, at the same time, or in the same section of the transport path 5800.
  • the automatic transplantation control device determines the growth state and health state of the plant based on the measured feature amount and the result of image recognition/image analysis.
  • the automatic transplantation control device uses a sorter to sort cultivation plates 3600b containing excessively fast-growing plants, excessively slow-growing plants, plants showing signs of disease, etc., and cultivation plate spacers 3700b that need to be replaced or cleaned. , and select cultivation plates 3600a that are suitable for the spacing state planned at station C (S5740).
  • the selected cultivation plates 3600 are transported to station B and arranged in a planned spacing state (S5750).
  • cultivation plate spacers 3700a and cultivation panels 3800 can also be added according to the arrangement of the planned spacing state.
  • the cultivation panel 3800 to be added is, for example, the cultivation panel 3800 having slow-growing plants among the plants cultivated in other nutrient solution trays 4200, which will be described later with reference to FIGS.
  • the cultivation plates 3600 arranged in the intended spacing state are loaded onto a new nutrient solution tray 4200 using the loading mechanism (S5760).
  • FIG. 59 is an example of a schematic diagram illustrating the unloading step S5710 from the tray of FIG.
  • FIG. 59 illustrates the unloading mechanism 5900 performing the unloading step S5710 at station A.
  • FIG. 59 is an example of a schematic diagram illustrating the unloading step S5710 from the tray of FIG.
  • FIG. 59 illustrates the unloading mechanism 5900 performing the unloading step S5710 at station A.
  • the take-out mechanism (catching section) 5900 is composed of, for example, a driving section (conveyor) 5910 and a holding section 5920 .
  • the drive unit 5910 transports a row of cultivation plates 3600 from the nutrient solution tray 4200 to station A, and the suppressing unit 5920 prevents the cultivation plates 3600 from falling or detaching from the drive unit 5910 during transportation.
  • the driving portion 5910 is composed of, for example, a driving rail 5911, a hook portion 5912, and a fall prevention portion 5913.
  • the hook portion 5912 attached to the drive rail 5911 that rotates takes up the cultivation plate 3600 from the nutrient solution tray 4200 (S5710-1).
  • the drive rail 5911 conveys the picked-up cultivation plate 3600 to station A (S5710-2).
  • station A receives the transported cultivation plate 3600 (S5710-3).
  • FIG. 60 is an example of an explanatory diagram explaining the actual growth range and the predicted growth range.
  • FIG. 60(a) illustrates the actual growth range and the predicted growth range of isotropically growing plants using FIGS. 60(a-1) to 60(a-3).
  • FIG. 60(b) is an example of an explanatory diagram for explaining the spacing state of the cultivation plate 3600 having the plants in the state of FIG. 60(a).
  • FIG. 60(a-1) is an example of an explanatory diagram for explaining the actual growth range and the predicted growth range using two circles.
  • FIG. 60(a-2) is an example of an explanatory diagram in which actual leaves of actual plants are added to FIG. 60(a-1).
  • FIG. 60(a-3) is an example of an explanatory drawing to which virtual leaves of a plant grown as predicted in FIG. 60(a-1) are added.
  • the actual growth range 6010 is illustrated by a solid line circle, and the predicted growth range 6020 is illustrated by a broken line circle. Also, although only the partial sponge medium 3511 of the transplant medium 3510 accommodated in the cultivation plate 3600 is illustrated, the illustration of the partial sponge medium 3511 is omitted in subsequent drawings.
  • the actual growth range 6010 can be defined, for example, by a circle, ellipse, or the like inscribed by at least one of the actual leaves of the actual plant. "At least one of the actual leaves of the actual plant” may be, for example, the leaf forming the outermost outline of the actual plant in the image taken of the plant.
  • FIG. 60 (a-1) a cultivation plate 3520av having plants of average growth range is illustrated.
  • the leaves 6011 and 6013 are inscribed in a circle indicating the actual growth range 6010.
  • a leaf 6012 exists outside the circle indicating the actual growth range 6010
  • a leaf 6014 exists inside the circle indicating the actual growth range 6010 .
  • the predicted growth range 6020 of the leaves 6011-6014 of the actual plant of FIG. 60(a-2) is illustrated by dashed circles.
  • the predicted growth range 6020 may be, for example, a growth range predicted at the timing of the next spacing.
  • Predicted growth area 6020 is inscribed in a circle indicating growth area 6020 where predicted leaf 6021 and leaf 6023 are predicted.
  • Predicted leaf 6022 exists outside the circle indicating predicted growth range 6020
  • predicted leaf 6024 exists inside the circle indicating predicted growth range 6020 .
  • FIG. 60(b) illustrates the spacing of cultivation plates 3600 containing similarly grown plants.
  • FIG. 60(b) there is no region where the actual growth areas 6010 of the plants on each cultivation plate 3600 overlap.
  • FIG. 60(b) there are multiple regions where the predicted growth ranges 6020 of the plants on each cultivation plate 3600 overlap.
  • FIG. 60(b) as an example, a region 6000A where the predicted growth ranges 6020a and 6020b overlap is emphasized with diagonal lines.
  • the area of the predicted growth range 6020 of the plant on one cultivation plate 3600 With respect to the area of the predicted growth range 6020 of the plant on one cultivation plate 3600, the area of the region that overlaps the predicted growth range 6020 of the plant on the adjacent cultivation plate 3600, for example, on the next scheduled spacing date, If the given percentage is exceeded, a wider spacing pattern should be selected.
  • the "predetermined ratio" can be set, for example, in the range of about 0% to 5% for plants immediately after germination, and in the range of about 30% to 40% for plants with advanced growth. .
  • this numerical range may be changed over time, for example, based on the type of plant to be cultivated, the growth phase of the plant (how many days after germination), and the like. The above numerical ranges and other numerical ranges specified in the following description can result in better growth of plants cultivated in the nutrient solution tray 4200 .
  • An even or regular spacing pattern is particularly advantageous when the plants grown in the nutrient solution tray 4200 grow in substantially the same manner.
  • the substantially similar growth of the plants means, for example, that the weight of the cultivated plants is in the range of -20% to +20% with respect to the average weight of the plants cultivated in the same nutrient solution tray 4200. can be defined as This numerical range may change over time, for example, based on the type of plant being cultivated, the growth phase of the plant (how many days after germination), and the like.
  • the determination result or analysis result of the proportion of the plant in the photographed image of the plant to be cultivated may be used.
  • the isotropicity of plant growth may also be determined based on the results of image recognition/image determination. Isotropicity of plant growth can be determined, for example, by determining the amount by which the center of the circle representing the actual growth area 6010 deviates from the center of the cultivation hole 3610 in the cultivation plate 3600 .
  • FIG. 61 is an example of an illustration explaining the spacing of growing plates with slow growing plants.
  • FIG. 61(a) is an example of an illustration illustrating spacing conditions including a growth plate with slow growing plants.
  • FIG. 61(b) is an example of an explanatory diagram illustrating another spacing state suitable for arranging a cultivation plate having slower growing plants than the spacing state of FIG. 61(a).
  • the transplantation control device removes the cultivation plate 3520a having slow-growing plants from the transport path 5800 from station A to station B in the sorting step S5740.
  • the automatic transplantation control device automatically transplants the cultivation plate 3520a having plants that grow slower than the detached surrounding plants to the nutrient solution tray 4200 with a more suitable spacing as shown in FIG. 61(b). Introduce into another transport path to the station where it is to be carried out.
  • Plants growing slower than the surrounding plants is, for example, the weight value is lower than the average weight value of a plurality of plants cultivated in the same nutrient solution tray 4200 by a predetermined percentage.
  • a “slow-growing plant compared to surrounding plants” means that, for example, the area of its actual growth range 6010 is the actual growth range of a plurality of plants grown in the same nutrient solution tray 4200.
  • the area of the predicted growth range 6020 is smaller than the average value of the area of 6010 by a predetermined percentage
  • the area of the predicted growth range 6020 is the area of the predicted growth range 6020 of the plurality of plants cultivated in the same nutrient solution tray 4200. It can also be defined by, for example, being a predetermined percentage less than the average value.
  • the "predetermined ratio" is, for example, a range of about 10% to about 20% for plants immediately after germination, and a range of about 20% to about 30% for plants that have advanced in growth. can be set to It should be noted that the numerical range defining the "predetermined ratio" can be changed over time, for example, based on the type of plant to be cultivated, the growth phase of the plant (how many days after germination), and the like.
  • the individual plant may be used as a standard for comparing the growth rate of
  • FIG. 62 is an example of an illustration explaining the spacing of cultivation plates with fast-growing plants.
  • FIG. 62(a) is an example of an illustration illustrating a spacing state including a growing plate with fast growing plants.
  • FIG. 62(b) is an example of an explanatory diagram illustrating another spacing state suitable for arranging cultivation plates having plants that grow faster than the spacing state of FIG. 62(a).
  • the transplant control device removes the cultivation plate 3520b having the fast-growing plant from the transport path 5800 from station A to station B in the sorting step S5740.
  • the automatic transplantation control device automatically transplants the cultivation plate 3520b having plants growing faster than the detached surrounding plants to the nutrient solution tray 4200 with a more suitable spacing condition as shown in FIG. 62(b). Introduce into another transport path to the station where it is to be carried out.
  • FIG. 62(a) shows a first range 6200A1 where the actual growth range 2610a of the fast-growing plant and the predicted growth range 6220c of the average-growing plant overlap, and the actual growth range 6200A1 of the average-growing plant.
  • Plants growing faster than surrounding plants are, for example, those whose weight values are higher than the average weight value of a plurality of plants cultivated in the same nutrient solution tray 4200 by a predetermined percentage.
  • the area of the actual growth range 6010 or the area of the predicted growth range 6020 is the average value of the areas of the actual growth ranges 6010 of a plurality of plants cultivated in the same nutrient solution tray 4200 or the same nutrient solution tray.
  • the area of the second area 6200A2 is greater than about 30% of the area of the actual growth area 6010b of an average growing plant, and so on.
  • weights and areas for example, from the center of the cultivation hole 3610 of the cultivation plate 3600 to the distal end of the outermost leaf of the plant grown in the cultivation hole 3610 .
  • the length to the root may be used as a measure to compare the growth rate of individual plants.
  • the process of transplanting to a plurality of different spacing states be performed at the same time within one cultivation apparatus or cultivation plant. This allows for more flexible and more appropriate spacing of individual plants throughout the cultivation apparatus or cultivation plant.
  • FIG. 63 is an example of an explanatory diagram illustrating spacing of cultivation plates having plants with uneven growth ranges.
  • FIG. 63(a) is an example of an explanatory diagram for explaining overlapping of growth ranges of plants with uneven growth ranges.
  • FIG.63(b) is an example of the explanatory drawing explaining another spacing state which rotated and arrange
  • FIG. 63(a) illustrates a cultivation plate 3520av having plants with an average growth range and cultivation plates 3520c, 3520d, 3520e, 3520f, and 3520g having plants with a biased growth range.
  • FIG. 63(a) further shows a third range 6300A1 where the predicted growth ranges 6020 (6020e, 6020f, 6020g) of the three plants overlap, and the actual growth ranges 6010 (6010a, 6010b) of the two plants.
  • a fourth overlapping area 6300A2 is shown.
  • the transplanting step described in FIGS. 57 and 58 may additionally include a step of rotating the cultivation plate 3600 between the image recognition/image analysis step S5730 and the arranging step S5750.
  • some of the growing plates 3520c, 3520d, 3520e, 3520f, 3520g in FIG. In the spacing state after arrangement, occurrence of the third range 6300A1 and the fourth range 6300A2 can be reduced.
  • FIG. 63(b) shows cultivation plates 3520cR, 3520dR, and 3520fR in which cultivation plates 3520c, 3520d, and 3520f are rotated by 90°, and a cultivation plate 3520eR in which cultivation plates 3520e are rotated by 180°, is shown.
  • generation of the third range 6300A1 and the fourth range 6300A2 is avoided in FIG. 63(b).
  • FIG. 64 is another example of an illustration explaining the spacing of a growing plate with plants having a biased growth range.
  • FIG. 64(a) is an example of an explanatory diagram for explaining overlap of growth ranges of plants with uneven growth ranges similar to FIG. 63(a).
  • FIG. 64(a) illustrates a spacing condition similar to FIG. 63(a). For details, refer to the description of FIG. 63(a).
  • FIG. 64(b) is an example of an explanatory diagram illustrating another spacing state in which cultivation plate spacers 3700 are added to the spacing state of FIG. 63(a).
  • the automatic transplantation control device determines whether or not the third range 6300A1 and the fourth range 6300A2 occur in the image recognition/image analysis step S5730, and depending on the determination, the third range 6300A1 and , the fourth area 6300A2 may be further grown plate spacers 3700 added to the expected spacing conditions in the alignment step S5750.
  • growth plate spacers 3700a, 3700b are placed around growth plates 3520c, 3520d, 3520e, 3520f, 3520g having plants with biased growth ranges relative to the expected spacing situation in FIG. 64(a).
  • 3700c, 3700d can reduce the occurrence of the third range 6300A1 and the fourth range 6300A2 in the rearranged spacing state.
  • a planting pot Equipped with multiple pot pieces, each of said pot pieces having a pot hole for receiving a plant; the spacing between the pot holes of the pot pieces is variable; planting pot.
  • the plurality of pot pieces comprises a first end pot piece, an intermediate pot piece, and a second end pot piece; By moving the first end pot piece, the intermediate pot piece and the second end pot piece in the longitudinal direction of the growing pot, the spacing between the pot holes is changed. planting pot.
  • said first end pot piece having a receiving area for inserting an insertion area of said intermediate pot piece; said intermediate pot piece having a receiving area for inserting an insertion area of said second end pot piece; moving the insertion area of the intermediate potpiece within the accommodation area of the first end potpiece, or moving the insertion area of the second end potpiece within the accommodation area of the intermediate potpiece; the spacing between the pot holes is changed by at least one of planting pot.
  • the width of the receiving area of the first end pot piece and the width of the receiving area of the intermediate pot piece are equal; the width of the insertion area of the intermediate pot piece and the width of the insertion area of the second end pot piece are equal; when the distance between the pot holes is the shortest, the receiving area of the first end pot piece and the receiving area of the intermediate pot piece are flush with each other; planting pot.
  • said first end pot piece having a first coupling portion opposite said receiving area; said second end pot piece having a second coupling portion opposite said insertion region; wherein the first coupling portion and the second coupling portion are complementarily formed so as to longitudinally connect the two planting pots; planting pot.
  • a top portion forming a receiving area for the first end pot piece, a top portion forming a receiving area for the intermediate pot piece, a top portion forming an insertion area for the intermediate pot piece, and the second end pot.
  • the upper surface portion forming the insertion area of the piece has an arcuate cutout portion, When the distance between the pot holes is the shortest, the arcuate cutout portion is in contact with at least a portion of the wall portion of the pot hole. planting pot.
  • the protrusion is movable in the slit-shaped opening in a direction to extend or contract the planting pot, when the distance between the pot holes is the shortest, the protrusion contacts the longitudinal end of the slit-shaped opening within the slit-shaped opening. planting pot.
  • the longest extension length of the planting pot corresponds to the length of the first side of the planting pot housing part
  • An integral multiple of the shortest stretchable length of the planting pot corresponds to the length of the second side of the planting pot housing portion
  • An integral multiple of the length of the width of the planting pot corresponds to the length of the second side of the planting pot housing portion, planting pot.
  • the first end pot piece, the intermediate pot piece, and the second end pot piece have legs that contact the bottom of the planting pot housing, planting pot.
  • the leg of the pot piece is arranged at a position not overlapping the pot hole when viewed from the side of the pot piece; planting pot.
  • the nutrient solution tray has a first installation surface pair consisting of a first installation surface and a second installation surface, The first installation surface is formed on the side of the nutrient solution inflow region in the longitudinal direction of the nutrient solution tray, The second installation surface is formed on the side of the nutrient solution outflow region in the longitudinal direction of the nutrient solution tray, the first installation surface is farther from the bottom surface than the second installation surface; nutrient tray.
  • the nutrient solution tray has a second installation surface pair consisting of a third installation surface and a fourth installation surface,
  • the third installation surface is formed on the side of the nutrient solution inflow region in the longitudinal direction of the nutrient solution tray,
  • the fourth installation surface is formed on the side of the nutrient solution outflow region in the longitudinal direction of the nutrient solution tray, the fourth installation surface is farther from the bottom surface than the third installation surface; nutrient tray.
  • the nutrient solution outflow area has at least one protruding structure protruding from the bottom surface of the nutrient solution outflow area; the protruding structure diverts the flow of the water or the nutrient solution toward the nutrient solution outflow region; nutrient tray.
  • Each side wall portion extending in the longitudinal direction of the nutrient solution tray has a joint structure,
  • the connecting structure connects two adjacent nutrient solution trays in the lateral direction of the nutrient solution trays. nutrient tray.
  • one of the sidewalls has a convex coupling structure, the other sidewall having a concave coupling structure; the convex coupling structure of one of the two adjacent nutrient solution trays and the concave coupling structure of the other of the two adjacent nutrient solution trays are coupled; nutrient tray.
  • the container has a plurality of longitudinal walls extending in the longitudinal direction of the nutrient solution tray, Having a channel through which the water or the nutrient solution flows between the two longitudinal walls, nutrient tray.
  • the container has a plurality of longitudinal walls extending in the longitudinal direction of the nutrient solution tray, having a channel through which the water or the nutrient solution flows between the two longitudinal walls; at least one said gap is connected to said channel; nutrient tray.
  • the pattern structure divides or expands the flow of the water or the nutrient solution in the lateral direction of the nutrient solution tray, nutrient tray.
  • At least one side wall portion of the nutrient solution tray extending in the longitudinal direction of the nutrient solution tray has a cutout portion. nutrient tray.
  • the bottom surface is connected to a side wall portion of the nutrient solution tray extending in the longitudinal direction via a stepped portion extending in the longitudinal direction of the nutrient solution tray; nutrient tray.
  • a plurality of the cultivation plates are accommodated in the accommodating portion of the nutrient solution tray at a plurality of different intervals according to the arrangement of the cultivation plates and/or the cultivation plate spacers. spacing set.
  • a first integer multiple of the length of one side of the cultivation plate and the cultivation plate spacer corresponds to the length of the storage portion of the nutrient solution tray in the longitudinal direction
  • a second integral multiple of the length of one side of the cultivation plate and the cultivation plate spacer corresponds to the length in the lateral direction of the storage portion of the nutrient solution tray, spacing set.
  • a third integral multiple of the length of the long side of the cultivation panel corresponds to the length of the storage portion of the nutrient solution tray in the longitudinal direction
  • a fourth integral multiple of the length of the short side of the cultivation panel corresponds to the length in the short direction of the storage portion of the nutrient solution tray
  • the cultivation panel has at least one opening
  • a fifth integral multiple of the length of one side of the cultivation plate and the cultivation plate spacer corresponds to the length of the opening in the lateral direction
  • a sixth integral multiple of the length of one side of the cultivation plate and the cultivation plate spacer corresponds to the length in the longitudinal direction of the opening. spacing set.
  • the opening having a first upper opening surface and a second lower opening surface;
  • the area of the first opening surface is larger than the area of the second opening surface, said opening having a rim region around said second opening face;
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the above-described embodiments disclose at least the claimed structures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

植物をより容易に又はより適した環境で栽培する仕組みを提供する。養液トレイが、植物を収容するための収容部、水又は養液を流入させるための養液流入領域、及び、前記水又は前記養液を流出させるための養液流出口を有する養液流出領域を有し、少なくとも前記収容部、前記養液流入領域、及び、前記養液流出領域が、前記養液トレイの底面を形成し、前記養液トレイは、第1の設置面及び第2の設置面からなる第1の設置面ペアを有し、前記第1の設置面は、前記養液トレイの長手方向で前記養液流入領域の側に形成されており、前記第2の設置面は、前記養液トレイの長手方向で前記養液流出領域の側に形成されており、前記第1の設置面は、前記第2の設置面よりも前記底面から離れている。

Description

養液トレイ
[関連出願]
 本出願は、2021年9月10日に出願された「育植ポット及び養液トレイ」と題する日本国特許出願2021-147489号、及び2022年4月6日に出願された「育植ポット及び養液トレイ」と題する日本国特許出願2022-063600号の優先権を主張し、それぞれの開示はその全体が参照により本明細書に取り込まれる。
 本発明は、養液トレイに関する。
 本技術分野の背景技術として、特願2020-071382号公報(特許文献1)がある。この公報には、「植物栽培装置であって、栽培する植物の生育状態を監視する複数のセンサと、前記植物栽培装置内の光、空気、水、空間の少なくとも1つの状態である環境を管理する環境管理手段と、前記植物を栽培する作業工程を管理する工程管理手段と、を有する。」と記載されている(要約参照)。
特願2020-071382号公報
 前記特許文献1には、植物栽培装置において装置内の環境管理と植物を栽培する作業工程についての工程管理とを共に行う仕組みが記載されている。しかしながら、この特許文献には、植物をより容易に又はより適した環境で栽培する仕組み等は開示されていない。
 そこで、本発明は、植物の間引き作業や移植作業を行うことなく、植物間の間隔を変更する仕組みを提供する。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、養液トレイが、植物を収容するための収容部、水又は養液を流入させるための養液流入領域、及び、前記水又は前記養液を流出させるための養液流出口を有する養液流出領域を有し、少なくとも前記収容部、前記養液流入領域、及び、前記養液流出領域が、前記養液トレイの底面を形成し、前記養液トレイは、第1の設置面及び第2の設置面からなる第1の設置面ペアを有し、前記第1の設置面は、前記養液トレイの長手方向で前記養液流入領域の側に形成されており、前記第2の設置面は、前記養液トレイの長手方向で前記養液流出領域の側に形成されており、前記第1の設置面は、前記第2の設置面よりも前記底面から離れていること、を特徴とする。
 本発明によれば、植物をより容易に又はより適した環境で栽培する仕組み等を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、異なるスペーシング状態の育植ユニットを比較するための斜視図の例である。 図2は、異なるスペーシング状態の育植ユニットを比較するための上面図の例である。 図3は、図2の領域Aの拡大図の例である。 図4は、図2の領域Bの拡大図の例である。 図5は、図2の領域Cの拡大図の例である。 図6は、図2の領域Dの拡大図の例である。 図7は、縮小状態の育植ポットの斜視図の例である。 図8は、縮小状態の育植ポットの6面図の例である。 図9は、伸長状態の育植ポットの斜視図の例である。 図10は、伸長状態の育植ポットの6面図の例である。 図11は、育植ポットの分解図の例である。 図12は、第1端部ポットピースの斜視図の例である。 図13は、第1端部ポットピースの6面図の例である。 図14は、中間ポットピースの斜視図の例である。 図15は、中間ポットピースの6面図の例である。 図16は、第2端部ポットピースの斜視図の例である。 図17は、第2端部ポットピースの6面図の例である。 図18は、長手方向に並べた2つの育植ポットの例である。 図19は、収容領域へ挿入領域を挿入する様子を説明する説明図の例である。 図20は、スライドスリットとラッチの係合状態を説明する説明図の例である。 図21は、養液トレイの斜視図の例である。 図22は、養液トレイの上面図及び下面図の例である。 図23は、パターン構造を有する養液トレイの斜視図の例である。 図24は、パターン構造を有する養液トレイの上面図の例である。 図25は、図24のパターン構造を有する養液トレイの端部領域の拡大上面図の例である。 図26は、図24のパターン構造を有する養液トレイの端部領域の拡大斜視図の例である。 図27は、養液トレイの端部領域の側面図の例である。 図28は、異なる状態の養液トレイの側面図の例である。 図29は、栽培装置の構成を示す機能ブロック図の例である。 図30は、栽培装置の内部を示す図の例である。 図31は、栽培室を長手方向から見た断面模式図の例である。 図32は、栽培装置に配置される栽培プレート及び養液トレイの例である。 図33は、栽培装置が備える空気循環装置の説明図の例である。 図34は、播種トレイを説明する説明図の例である。 図35は、播種トレイを説明する別の説明図の例である。 図36は、栽培プレートを説明する説明図の例である。 図37は、栽培プレートスペーサを説明する説明図の例である。 図38は、栽培パネルを説明する説明図の例である。 図39は、栽培パネルを説明する別の説明図の例である。 図40は、栽培パネルにおける栽培プレートと栽培プレートスペーサの配置を説明する説明図の例である。 図41は、栽培パネルにおける栽培プレートと栽培プレートスペーサの配置を説明する別の説明図の例である。 図42は、異なる使用状態の養液トレイを比較するための説明図の例である。 図43は、異なる使用状態の養液トレイを比較するための説明図の例である。 図44は、図42の養液トレイ4200aのO-O’ラインでの断面図の例である。 図45は、図42の養液トレイ4200bのO-O’ラインでの断面図の例である。 図46は、図42の養液トレイ4200cのO-O’ラインでの断面前記図の例である。 図47は、図42の養液トレイ4200dのO-O’ラインでの断面前記図の例である。 図48は、図42の養液トレイの養液流出領域の周辺の拡大図の例である。 図49は、図42の養液トレイ4200aの上面図の例である。 図50は、図42の養液トレイ4200aを説明する説明図の例である。 図51は、図42の養液トレイ4200cの上面図の例である。 図52は、図42の養液トレイ4200cを説明する断面図の例である。 図53は、図42の養液トレイ4200dの上面図の例である。 図54は、図42の養液トレイ4200dを説明する断面図の例である。 図55は、別の養液トレイを説明する説明図の例である。 図56は、図55の養液トレイを説明する部分拡大図の例である。 図57は、自動移植を説明するフロー図の例である。 図58は、自動移植を説明する概略図の例である。 図59は、図57のトレイからの取り出し工程S5710を説明する概略図の例である。 図60は、実際の生長範囲と予測される生長範囲を説明する説明図の例である。 図61は、生長の遅い植物を有する栽培プレートのスペーシングを説明する説明図の例である。 図62は、生長の早い植物を有する栽培プレートのスペーシングを説明する説明図の例である。 図63は、生長範囲が偏っている植物を有する栽培プレートのスペーシングを説明する説明図の例である。 図64は、生長範囲が偏っている植物を有する栽培プレートのスペーシングを説明する別の説明図の例である。
 以下、実施例を図面を用いて説明する。
 実施例1
 本実施例の育植ポット及び養液トレイは、例えば人工光型の植物工場等で用いられるものであり、従来では栽培環境の管理が困難であった生産規模の大きい植物工場においても好適に用いられる。
 なお、「育植ポット」なる用語は、「育苗ポット」や「栽培ポット」と読み替えてもよいが、本実施例の育植ポットは、ポット間の間隔が変更可能である構成において、従来の育苗ポットや栽培ポットとは本質的に異なるものである。
 また、以下の説明における「養液」は、技術的な内容に齟齬が生じない限り、「水又は養液」と読み替えてもよい。
 本実施例について説明する前に、図29~図33を用いて上記の植物工場の具体的な例について説明する。
 図29は上記の植物工場で用いられる栽培装置2900の構成を示す機能ブロック図の例である。
 栽培装置2900は、栽培室2910と、複数の栽培チャンバ2920と、空気循環装置2930と、養液循環装置2940と、操作部2950と、制御部2960と、表示部2970と、を備える。
 栽培室2910は、内部を密閉可能な直方体形状の外壁を備えており、栽培装置2900が配置される植物工場の作業室の環境(温度や湿度)から独立した栽培環境を維持可能である。外壁の素材としては、栽培室2910の外側である作業室の環境の影響を受けにくいように、断熱材を用いるのが好ましい。
 図30は、栽培装置の内部を示す図の例である。
 図30には、栽培室2910の外壁を取り除いた状態の栽培装置2900を示す。
 図31は、図29の栽培室2910を長手方向から見た断面模式図の例を示す。
 複数の栽培チャンバ2920は、図32に示すように、栽培室2910が上下方向に所定の間隔で栽培棚3107により区画されて形成され、それぞれが略直方体形状を有する。複数の栽培チャンバ2920は、従来公知の多段式の栽培棚に外装を設けることにより構成することができる。本実施形態では、5段の栽培棚3107に外装(栽培室2910の外壁)を設けて構成した。
 図32は、栽培装置に配置される栽培プレート及び養液トレイの例である。
 各栽培チャンバ2920には、図32に示すような養液トレイ3010及び栽培プレート3020が、図33に示すように、これらの短手方向が栽培チャンバ2920の長手方向に沿うように、複数枚配置される。養液トレイ3010は、矩形状の栽培プレート3020と略同じ大きさで、栽培プレート3020をはめ込むように配置可能な矩形状トレイで構成されている。本実施形態では、およそ30cm×120cmの養液トレイ3010に栽培プレート3020がはめ込まれた状態(図33参照)で、各栽培チャンバ2920に16枚配置される。なお、枚数は図29の栽培装置の規模に応じてより多いものでもよい。
 なお、栽培チャンバ2920の形状は、生産規模の大きい植物工場に好適に用いられるため、長手方向の長さが短手方向の長さに対して2倍以上である長尺な形状であることが好ましい。本実施形態では、短手方向の長さ:長手方向の長さ=1:5である。ただし、栽培チャンバ2920の大きさ(栽培チャンバ2920に配置される栽培プレート3020の枚数)は、上述の実施形態の大きさに限られない。
 また、本実施形態で養液トレイ3010及び栽培プレート3020は矩形であるが、これに限らず正方形であってもよい。正方形の場合、正方形の栽培プレート3020の一辺が栽培チャンバ2920の長手方向に沿うよう配置される。
 このように、養液トレイ3010が配置された状態においては、複数の栽培チャンバ2920は、それぞれが密閉又は半密閉の状態となる。
 また、養液トレイ3010には、供給された養液を排出するための排出口3108(図31参照)が長手方向の一端側(養液の流れの下流側)に形成される。また、養液トレイ3010は、養液の流れの下流側が下方になるように、栽培チャンバ2920の短手方向について所定の角度(例えば、1度程度)で傾斜した傾斜面を備えており、これにより、供給された養液が養液トレイ3010に滞留することなく、供給流量に応じた所定の流速で一方向の流れを作り出すことができる。また、養液回収管3109が、排出口3108の下方に配置される(図31参照)。
 なお、養液トレイ3010は、栽培プレート3020の1枚分に対応するサイズでなくてもよく、複数枚の栽培プレート3020を1つの養液トレイ3010に配置することができるよう構成してもよい。
 また、各栽培チャンバ2920の上方には、図31に示すように、人工光源3101が配置され、人工光源3101の調光を行う調光器が接続される。本実施形態では、人工光源3101は、養液トレイ3010及び栽培プレート3020の長手方向(栽培チャンバ2920の短手方向)に沿うように、2本配置される。人工光源3101としては、消費電力が少く薄型に構成できるLEDが好適に用いられる。また、人工光源として蛍光灯を用いてもよい。
 図33は、栽培装置が備える空気循環装置の説明図の例である。
 図33を参照して、空気循環装置2930の構成について説明する。空気循環装置2930は、少なくとも温度、湿度、二酸化炭素濃度及び空気の流速(流量)を調整する機能を有していればよい。本実施形態では、空気循環装置2930は、空気滅菌装置3310と、加温、冷却及び除湿機能を有する直膨式(冷媒で直接空気を冷やす方式)の空調装置3320と、加湿機能を有する加湿装置3330と、二酸化炭素濃度を調整する二酸化炭素供給装置3340と、吸引ポンプ3350と、圧縮ポンプ3360と、を備える。
 なお、温度を調整する機能を有する装置として、間膨方式(冷媒で水を介して空気を冷やす方式)のチラー装置を用いてもよい。
 各栽培チャンバ2920と空気循環装置2930とは、空気回収管3370及び空気供給管3380を介して接続される。空気回収管3370及び空気供給管3380は、栽培チャンバ2920の長手方向に延びている。空気回収管3370には所定の間隔で設けられる複数の空気回収口が形成されている。また、空気供給管3380には所定の間隔で設けられる複数の空気供給口3381が形成され、これら空気供給口3381には不図示の定流量弁が設けられている。
 また、不図示の温度センサ、湿度センサ及び二酸化炭素濃度センサが各栽培チャンバ20Aの所定箇所に取り付けられ、循環中の空気の温度、湿度や二酸化炭素濃度がモニタされる。
 吸引ポンプ3350により空気回収管3370を介して各栽培チャンバ2920から回収された空気は、空気滅菌装置3310を経て滅菌され、空調装置3320に送られる。空調装置3320では、温度センサ及び湿度センサの測定結果に応じて温度調整や除湿がなされたのち、加湿装置3330で加湿が行われる。その後、二酸化炭素供給装置3340により、二酸化炭素濃度センサの測定結果に応じて二酸化炭素ボンベ等の二酸化炭素供給源3341から二酸化炭素が供給される。そして、圧縮ポンプ3360により空気供給管3380を介して各栽培チャンバ2920に所定の条件及び所定の流速に調整された空気が供給される。
 なお、空気の流速の設定値は、固定でもよく、また変更可能でもよい。
 この際、図31に示すように栽培チャンバ2920における空気の流れ方向は、栽培チャンバ2920の短手方向に沿っている。これにより、空気の流れ方向を栽培チャンバ2920の長手方向に沿うように供給した場合に比べて、空気の供給から回収までの時間を短くすることができる。よって、空気の流れの上流側と下流側とで生じる温度や湿度、二酸化炭素濃度等の栽培環境の変化を小さくすることができる。
 ただし、これに限定されず、栽培チャンバ2920における空気の流れ方向は、栽培チャンバ2920の上方から下方に沿っていてもよい。
 なお、実施形態においては、1つの栽培装置2900が1つの栽培室2910を備え、1つの栽培室2910が複数の栽培チャンバ2920と1つの空気循環装置2930を備え、複数の栽培チャンバ2920に1つの空気循環装置2930から空気が送られる。
 ただし、これに限定されず、1つの栽培装置2900が1つの栽培室2910を備え、1つの栽培室2910が複数の栽培チャンバ2920と、それぞれの栽培チャンバ2920に対応する複数の空気循環装置2930を備え、複数の栽培チャンバ2920のそれぞれに、対応する空気循環装置2930から空気が送られる構成であってもよい。この場合、栽培チャンバ2920ごとに循環中の空気の温度、湿度、二酸化炭素濃度及び流速(流量)等を変えることができる。
 また、1つの栽培装置2900が複数の栽培室2910を備え、複数の栽培室2910がそれぞれ、複数の栽培チャンバ2920と1つの空気循環装置2930を備えてもよい。更に、1つの栽培装置2900が複数の栽培室2910を備え、複数の栽培室2910がそれぞれ、複数の栽培チャンバ2920と、それぞれの栽培チャンバ2920に対応する複数の空気循環装置2930を備えてもよい。
 養液循環装置2940は、図30に示すように、栽培室2910の下方に配置され、所定の条件に調整された養液を所定の流速で各栽培チャンバ2920の養液トレイ3010に供給し、各養液トレイ3010を通過した養液を回収して、所定の条件となるように調整し、これを繰り返して養液の循環供給を行う。
 上記の栽培装置は、周囲の環境変化によらず植物に均一な或いは所望の生育環境を提供することに適しているが、従来の植物栽培の場合と同様に、栽培する植物の生長に応じて個々の植物の間の間隔を拡げる工程、すなわち、植物の生長に合わせて間引きを行う工程が必要である。
 しかしながら、通常、間引かれた植物(田畑やポット等から引き抜かれた植物)の根は、損傷や変形を被ることが多く、間引かれた植物はそのまま廃棄されることも少なくない。また、間引かれた植物は、仮に別の栽培地へ移植したとしても、上記の根の損傷や変形或いは環境の変化により、間引かれなかった植物と比べて、予定した生長が期待できないことが多い。
 例えば、栽培する植物が、貴重な薬効成分の元となる植物や従来と比べて栄養価等の向上が認められた高機能性の野菜、果物等の場合、間引きに伴うそれらの植物の廃棄は、経済的な損失が特に大きくなる。
 植物の生長に伴い葉が重なることで個々の葉の面積あたりの受光量が減少するという問題を解消するために、植物が大きくなることを想定して間隔を予め広く取るという対応も考えられるが、これは、初期は植物が小さいので空き地が発生し、面積利用効率が悪化する。
 更に、間引き作業を兼ねて一定期間生長した後に移植により間隔を調整することで受光と面積利用効率を両立させるという対応は、上述の通り、作業時に根や葉の折れや切断を防ぐことが難しく、それに伴い生長速度が低下する。
 これらの問題は、本実施例の育植ポット及び養液トレイによって解消することができる。特に、上記のような栽培装置においては、ポットの下で個々の植物の根が絡まったり衝突したりすることや、ポットの上で個々の植物の葉が過剰に重なり合うこと、等を避けるための間引き作業(スペーシング作業)を、迅速且つ容易に行うことができる。それにより、間引き作業後の植物の生長が良好に促進される。
 本実施例の育植ポット及び養液トレイの利用に適した植物工場や栽培装置等の具体例について、図29から図33を用いて説明したが、本実施例の育植ポット及び養液トレイは、その他の環境でも利用することができる。本実施例の育植ポット及び養液トレイは、例えばビニールハウスやガラスハウス等のハウス栽培、屋外での露地栽培、或いは、家庭菜園等で利用してもよい。
 本実施例の育植ポット及び養液トレイは、いずれの環境においても、利用者に対してポット穴の間の間隔を、すなわち、植物の間の間隔を、植物をポット穴から抜き出すことなく、迅速且つ容易に変更する仕組みを提供することができる。
 図1は、異なるスペーシング状態の育植ユニットを比較するための斜視図の例である。
 図1には、ポット穴110のスペーシング状態が異なる4つの育植ユニット100(100a~100d)が図示されている。育植ユニット100(100a~100d)は、播種から所定の期間、例えば、播種から収穫までの間や播種からより大規模な設備や田畑へ移植するまでの間、植物を適切なスペーシング状態で栽培するために利用することができる。育植ユニット100は、例えば(育苗ポット及び養液トレイの組み合わせである)育苗ユニットとしても利用することができる。
 育植ユニット100aにおいては、養液トレイ102の育植ポット収容領域105に、3つのポット穴110を有する育植ポット101が収容されている。また、育植ユニット100b~100dにおいては、養液トレイ102の育植ポット収容領域105に、育植ポット101、及び、スペーサ103、が収容されている。
 育植ユニット100a~100dの育植ポット収容領域105には、育植ポット101及びスペーサ103が、育植ポット101及びスペーサ103の配向に関して、更に、育植ポット101の伸縮状態に関して、及び、育植ポット101及びスペーサ103の配向(例えば養液トレイ102の長手方向に対する育植ポット101及びスペーサ103の長手方向の関係)に関して、それぞれ異なる状態で配置されている。
 育植ユニット100の養液トレイ102は、育植ポット101を、収縮状態又は伸長状態のいずれの状態でも、また、その長手方向を養液トレイの長手方向に向けた又は短手方向に向けたいずれの配向状態でも、育植ポット収容領域105に収容することができる。
 養液トレイ102の育植ポット収容領域105の寸法は、育植ポット101の最長の伸長長さが、育植ポット収容領域105の第1の辺の長さL1に対応し、育植ポット101の最短の伸縮長さの整数倍が、育植ポット収容領域105の第2の辺の長さL2に対応し、そして、育植ポット101の短手方向の幅の長さの整数倍が、育植ポット収容領域105の第2の辺の長さL2に対応するように、設計されていることが好ましい。
 図1の実施例では、育植ポット101は、育植ポット101を構成する構成要素を、育植ポット101の長手方向に移動させることで、収縮状態又は伸長状態のいずれかの状態を取ることができる。なお、育植ポット101を構成する構成要素は、2つ以上であればよいが、本明細書においては、主に構成要素が3つの構成を例に説明する。
 育植ポット101は、長手方向での長さが異なる2つの状態のどちらか一方で、即ち、収縮状態又は伸長状態で、また、その長手方向を養液トレイ102の長手方向又は短手方向のいずれか一方に配向された状態で、育植ポット101内に配置されている。
 育植ポット101、養液トレイ102、及び、スペーサ103は、有利には熱可塑性樹脂から、特に有利にはポリプロピレン(PP)や耐衝撃性ポリスチレン(HIPS)から、構成されている。育植ポット101、養液トレイ102、及び、スペーサ103を構成する材料は更に、耐摩耗性、遮光性、耐光性、耐水性等を有し、また、弾性変形可能であることが好ましい。
 光源を用いて植物の生長を促進させる場合、光源は、植物の葉に効率よく光が当たるように、配置されると有利であるが、その場合でも、養液中での藻類等の発生を抑制するため、養液に当たる光はできる限り少ないことが好ましい。
 育植ポット101及びスペーサ103が遮光性の材料から構成されていることにより、育植ポット101及びスペーサ103の下方を流れる養液に光が当たらず、養液内での藻等の発生を抑制することができる。
 育植ポット101、養液トレイ102、及び、スペーサ103の材料の耐光性は、特に、光源の予定される光合成光量子束密度(photosynthetic photon flux density、PPFD)の光に対して高い耐光性を有することが好ましい。例えば、葉緑素の吸収波長域である約400nmから約700nmの波長の光に対する耐光性が高い材料が好ましい。
 なお、使用後の育植ポット101、養液トレイ102、及び、スペーサ103の洗浄・殺菌するために紫外光(UV光)を用いる場合等のために、約200nmから約300nmの波長の光に対しても耐光性が高い材料であると好ましい。
 使用者は、養液トレイ102内での異なる状態及び配向の育植ユニット100b~100dを適宜選択することによって育植ポット101の植物を収容する(植える)ための育植ポット101のポット穴110の間隔を、植物の生育状態に、特には育植ポット101下方での植物の根の状態や育植ポット101上方での植物の葉の重なり合いの状態に、より適するように調整或いは変更することができる。
 それにより、植物は、栽培環境の光の光合成光量子束密度が同一であっても、より効率的に光合成を行うことができる。
 ポット穴110の間の間隔が可変であることにより、間引きのためにポット穴110から植物を抜き出す作業がなくなるので、この抜き出し作業に起因する根や葉や茎等の損傷や変形を回避することができる。
 言い換えれば、育植ユニット100(100b~100d)のポット穴110の間隔を変更することによる間引き作業は、植物をポット穴110から抜き出すことなく、実行することができる。従って、植物をポット穴110から抜き出すことに起因する従来の問題を、根本的に回避することができる。
 図2は、異なるスペーシング状態の育植ユニットを比較するための上面図の例である。
 図2には、それぞれの育植ユニット100a~100dに対して、領域A~領域Dが破線で図示されている。
 育植ユニット100aには、収縮状態の複数の育植ポット101aが養液トレイ102内に配置されている。育植ユニット100a内では、育植ポット101aの長手方向は、養液トレイ102の長手方向と同一の方向である。
 育植ユニット100bには、収縮状態の複数の育植ポット101b及び複数のスペーサ103が養液トレイ102内に配置されている。育植ユニット100b内では育植ポット101b及びスペーサ103の長手方向は、養液トレイ102の短手方向と同一の方向である。2つの育植ポット101bの間には1つのスペーサ103が配置されている。
 図2の実施例では、スペーサ103の長手方向の長さLsは、収縮状態の育植ポット101bの長手方向の長さLpsのおよそ1.5倍である。別の実施例では、スペーサ103の長さLsは、例えば収縮状態の育植ポット101bの長さLpsの整数倍であってもよい。
 スペーサ103は、育植ポット101bの間の間隔を確保するだけでなく、養液トレイ102内の養液に光が当たらないようにする役割も担っている。スペーサ103が光を確実に遮断することにより、養液トレイ102内での藻等の発生を抑えることができる。
 育植ユニット100cには、伸長状態の複数の育植ポット101c及び複数のスペーサ103が養液トレイ102内に配置されている。育植ユニット100c内では育植ポット101c及びスペーサ103の長手方向は、養液トレイ102の短手方向と同一の方向である。2つの育植ポット101cの間には1つのスペーサ103が配置されている。
 図2の実施例では、スペーサ103の長さLsは、伸長状態の育植ポット101cの長手方向の長さLplよりも僅かに長い。スペーサ103の長さLsが伸長状態の育植ポット101cの長さLplよりも僅かに長いことにより、スペーサ103は、養液トレイ102の育植ポット収容領域105をより広い範囲で覆うので、養液トレイ102内の養液への光の入射をより減少させることができる。
 育植ユニット100dには、伸長状態の複数の育植ポット101d及び複数のスペーサ103が養液トレイ102内に配置されている。育植ユニット100d内では、育植ポット101d及びスペーサ103の長手方向は、養液トレイ102の短手方向と同一の方向である。2つの育植ポット101dの間には2つのスペーサ103が配置されている。
 利用者は、育植ユニット100a~100dの状態を選択及び変更することによって、ポット穴110を異なる間隔で配置すること及びポット穴110の間隔を変更すること、ができる。
 より具体的には、育植ユニット100内での育植ポット101及びスペーサ103の向き及び育植ポット101の長さを選択及び変更することによって、ポット穴110内に植えられた植物の間隔を、柔軟且つ容易に変更することができる。
 図1、図2及びその他の図面では、育植ユニット100が3つのポット穴を有する育植ポット101のみを用いる実施例について説明するが、育植ポット101の伸長長さ及び収縮長さが同一であれば、養液トレイ102を変更せずに、ポット穴の数が異なるタイプの育植ポット101を組み合わせることも可能である。そのような構成は、1つの育植ユニット100で異なる種類の、特に異なる大きさの植物を栽培する場合に有利である。
 ポット穴の数が異なるタイプの育植ポット101は、例えば、それぞれが1つのポット穴を有するポットピースを4つ以上組み合わせたものや、1つのポットピースが大小2つのポット穴を有するもの等であってもよい。
 例えば、メインの植物と追加の植物、例えばいわゆるコンパニオンプランツ、を同一の育植ユニット100で栽培することによって、大きさの異なる複数の種類の植物の間でのより適したスペーシングを行うことが可能となる。
 同一の育植ユニット100で複数の種類の植物を栽培することは、特に、ビニールハウスやガラスハウス等のハウス栽培、屋外での露地栽培、或いは、家庭菜園等では、メインの植物のみを同一の育植ユニット100で栽培するよりも有利な効果が期待できる場合がある。コンパニオンプランツを用いることによる有利な効果としては、例えば、虫除け、結実の促進、病害の抑制や予防、等が期待できる。
 また、同一の育植ユニット100で、伸縮長さが規格化されたポット穴の数の異なる育植ポット101を利用できる構成は、上述の通り、異なる植物の栽培に対応できる点で有利である。特に、個人で植物栽培を行う場合は、栽培プラントや農場に比べて植物栽培に利用できる空間が限られており、限られた空間を個々人の希望に応じて柔軟に管理して利用できる仕組みは有用である。
 図3は、図2の領域Aの拡大図の例である。
 間隔D301は、収縮状態の育植ポット101aの第1のポット穴301及び第2のポット穴302の間隔を示している。
 間隔D302は、収縮状態の育植ポット101aの第2のポット穴302及び第3のポット穴303の間隔を示している。
 図3の実施例では、間隔D301及び間隔D302は、略等しいが、異なる長さに設計することも可能である。
 間隔D303は、2つの育植ポット101aのポット穴110の間の間隔を示している。
 以下「ポット穴の間隔」という場合、それは2つのポット穴110の中心と中心の間の間隔を意味する。
 従って、図3の実施例の状態の育植ユニット100aに植物を植えた場合、それぞれの植物は、育植ポット101aの長手方向では、2つのポット穴110の間隔D301=D302で、離れて配置され、育植ポット101aの短手方向では、2つのポット穴110の間隔D303で、離れて配置される。
 図3の実施例では、育植ユニット100aの長手方向で隣り合う植物の間の間隔D301=D302は、育植ユニット100aの短手方向で隣り合う植物の間の間隔D303よりも広い(D301>D303、D302>D303)。言い換えれば、図3の実施例では、育植ユニット100a内の植物は、育植ユニット100aの短手方向での配置が育植ユニット100aの長手方向での配置に比べてより密であるように、配置されている。
 図4は、図2の領域Bの拡大図の例である。
 図4の実施例では、育植ポット101bの長手方向での2つのポット穴110の間隔は、図3の実施例と同様である。
 間隔D401は、スペーサ103の短手方向の幅に対応する。
 間隔D402は、スペーサ103を介して隣り合う2つの育植ポット101bのポット穴110の間の間隔を示している。間隔D402は、図3の間隔D303と、間隔D401の和に対応する(D402=D303+D401)。
 従って、図4の実施例では、育植ユニット100bの短手方向で隣り合う植物の間の間隔D402は、図3の実施例における育植ユニット100aの短手方向で隣り合う植物の間の間隔D303よりも広い(D402>D303)。その結果、図4の実施例では、育植ユニット100b内のポット穴110は、育植ユニット100bの短手方向及び長手方向で、ほぼ等間隔に配置されている。
 従って、図4の実施例の状態の育植ユニット100bに植物を植えた場合、それぞれの植物は、育植ポット101bの長手方向では2つのポット穴110は、図3の実施例と同様に、間隔D301=D302だけ離れて配置され、育植ポット101bの短手方向では2つのポット穴110は間隔D402(=D303+D401)で離れて配置される。
 利用者は、図3の実施例の状態の育植ユニット100aの育植ポット101aを1行ごとにスペーサ103に置き換えることで、容易に図4の実施例の状態の育植ユニット100bへ変更することができる。その結果、育植ユニット100aの短手方向で並ぶ2つのポット穴110を、間隔D401分だけ更に離すことができる。
 図5は、図2の領域Cの拡大図の例である。
 間隔D501は、伸長状態の育植ポット101cの第1のポット穴501及び第2のポット穴502の間の間隔を示している。間隔D501は、収縮状態の育植ポット101aの第1のポット穴301及び第2のポット穴302の間の間隔D301よりも、間隔D503分だけ長い。
 間隔D502は、伸長状態の育植ポット101cの第2のポット穴502及び第3のポット穴503の間の間隔を示している。間隔D502は、収縮状態の育植ポット101aの第2のポット穴302及び第3のポット穴303の間の間隔D302よりも、間隔D504分だけ長い。
 図5の実施例では、間隔D501及び間隔D502、並びに、間隔D503及び間隔D504、は互いに略等しいが、異なる長さに設計することも可能である。
 図5の実施例では、育植ユニット100cの長手方向で、スペーサ103を介して隣り合う2つの育植ポット101cのポット穴110の間の間隔は、図4の実施例における間隔D402分だけ離れている。上述の通り、この間隔D402は、図4の実施例における育植ポット101bの長手方向の間隔D301=D302にほぼ等しい(D301=D302≒D402)。
 利用者は、図4の実施例の状態の育植ユニット100bの縮小状態の育植ポット101bを引き伸ばし、育植ポット101cを伸長状態へ移行させ、またその後、育植ポット101c及びスペーサ103を、90°回転させて養液トレイ102に配置することができる。それにより、図4の実施例における育植ポット101bの長手方向の間隔D301=D302(≒D402)を略維持したまま、図4の実施例の育植ユニット100bの状態よりも、育植ポット101cの短手方向で、ポット穴110を更に間隔を拡げて分散させることができる。
 それにより、図5の実施例では、育植ユニット100cの短手方向で隣り合う植物の間の間隔D501=D502は、育植ユニット100cの長手方向で隣り合う植物の間の間隔D402よりも広い(D501>D402、D502>D402)。言い換えれば、図5の実施例では、育植ユニット100c内の植物は、育植ユニット100cの長手方向での配置が育植ユニット100cの短手方向での配置に比べてより密であるように、配置されている。
 図6は、図2の領域Dの拡大図の例である。
 間隔D601は、2つのスペーサ103を介して隣り合う2つの育植ポット101dのポット穴110の間の間隔を示している。
 利用者は、図5の実施例の2つ育植ユニット100c内の2つの育植ポット101cの間に更にもう1つスペーサ103を追加することで、図5の実施例における育植ポット101cの短手方向の間隔D501、D502を維持したまま、育植ユニット100cの状態よりも、育植ポット101cの長手方向で更に間隔を拡げて分散した状態で、ポット穴110を配置することができる。
 従って、図6の実施例では、育植ユニット100dの長手方向で隣り合う植物の間の間隔D601は、図5の実施例における育植ユニット100cの長手方向で隣り合う植物の間の間隔D402よりも広い(D601>D402)。その結果、図6の実施例では、育植ユニット100d内のポット穴110は、育植ユニット100cの短手方向及び長手方向で、ほぼ等間隔に配置されている。
 図4の実施例及び図6の実施例のどちらも、ポット穴110は、育植ユニット100(100b、100d)の短手方向及び長手方向で、ほぼ等間隔に配置されているが、図6の実施例では、ポット穴110は、図4の実施例に比べてより間隔を拡げられて配置されている。
 なお、2つ育植ユニット100の間には、3つ以上のスペーサ103が配置されてもよい。
 利用者は、育植ユニット100内に配置する育植ポット101の状態、育植ポット101間に配置するスペーサ103の数、育植ポット101やスペーサ103の配置方向を変更することができる。それにより、ポット穴110からの植物の引き抜き作業を行うことなしに、ポット穴110の間隔を、短手方向のみで、長手方向のみで、或いは、短手方向及び長手方向の双方で、容易且つ柔軟に、育植ユニット100の短手方向及び長手方向で段階的に変更することができる。
 図7は、縮小状態の育植ポット101の斜視図の例である。
 図7(a)は、縮小状態の育植ポットを上方から見た斜視図の例である。
 図7(b)は、縮小状態の育植ポットを下方から見た斜視図の例である。
 縮小状態の育植ポット101では、第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703のポット穴110の間隔は最も短い。
 図7の実施例では、第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703のそれぞれの上面及び長手側面は、面一に、縮小状態の育植ポット101の上面及び長手側面を形成している。
 図8は、縮小状態の育植ポット101の6面図の例である。
 第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703は、それぞれ1つのポット穴110を有している。
 図8の実施例では、第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703は、縮小状態の育植ポット101の上面及び長手側面を面一に形成している。
 第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703は、それぞれ育植ポット収容領域105の底部と接触する脚部801、802、803を有している。縮小状態の育植ポット101では、異なるポットピースの隣り合う脚部は、互いに輪郭を重ねている。それにより、縮小状態の育植ポット101が、その長手方向を、養液の流れの方向に対して垂直に配置されている場合に、脚部が育植ポット101の下方を流れる養液の流れの抵抗となることを最小限にすることができる。
 第1端部ポットピース701の収容領域を形成する上面部及び中間ポットピース703の収容領域を形成する上面部はそれぞれ円弧状の切り欠き部815、835を有している。また、中間ポットピース703の挿入領域を形成する上面部及び第2端部ポットピース702の挿入領域を形成する上面部も同様に、それぞれ円弧状の切り欠き部831、821を有している。
 図8の実施例では、各収容領域に形成された円弧状の切り欠き部815、835がそれぞれポット穴110の壁部845、825に接触することによって、また同様に、各挿入領域に形成された円弧状切り欠き部831、821がそれぞれポット穴110の円筒壁部810、830に接触することによって、第1端部ポットピース701、中間ポットピース703、及び、第2端部ポットピース702の、長手方向へ縮小する移動が止まる。
 なお、第1端部ポットピース701及び第2端部ポットピース702の2つのポットピースから構成された育植ポット101では、第1端部ポットピース701の収容領域に形成された円弧状の切り欠き部815が、第2端部ポットピース702のポット穴110の壁部825に接触することによって、第1端部ポットピース701及び第2端部ポットピース702の長手方向へ縮小する移動が止まる。
 各ピースに設けられたポット穴110を画定する壁部構造を、長手方向移動のストッパーとしても利用することで、非常に簡潔な構成とすることができる。
 図9は、伸長状態の育植ポット101の斜視図の例である。
 図9(a)は、伸長状態の育植ポットを上方から見た斜視図の例である。
 図9(b)は、伸長状態の育植ポットを下方から見た斜視図の例である。
 伸長状態の育植ポット101では、第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703のポット穴110の間隔は最も長い。
 図9の実施例では、各ポット穴110の間隔は略等しいが、異なる長さに設計することも可能である。
 図10は、伸長状態の育植ポット101の6面図の例である。
 育植ポット101が伸長状態では、第1端部ポットピース701の収容領域1001から、中間ポットピース703の1013は、最大限引き出されている。
 育植ポット101が伸長状態では、中間ポットピース703の収容領域1003から、第2端部ポットピース702の挿入領域1012は、最大限引き出されている。
 なお、図7から図10の実施例では、第1端部ポットピース701及び第2端部ポットピース702の間には、1つの中間ポットピース703しか存在しないが、第1端部ポットピース701及び第2端部ポットピース702の間に2つ以上の中間ポットピース703を設けてもよい。それにより、より大型の育植ユニット100やそのような育植ユニット100を用いたより大規模な栽培装置2900でも、容易に植物の間隔を変更することができる。
 更に、栽培する植物の種類や栽培量(生産量)の調整等に応じて、例えばポット穴を備えていない中間ポットを、第1端部ポットピース701及び第2端部ポットピース702の間に設けてもよい。
 それにより、間隔調整のバリエーションを更に格段に増加させることができる。
 図11は、育植ポット101の分解図の例である。
 図11は、育植ポット101を構成する第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703が、互いに分離可能であることを図示している。
 それにより、第1端部ポットピース701、第2端部ポットピース702、又は、中間ポットピース703が破損した場合は、破損したピースのみを交換することで、残りのピースを引き続き利用することができる。また、分離可能であることにより、育植ポット101の、すなわち、第1端部ポットピース701、第2端部ポットピース702、及び、中間ポットピース703の、洗浄やメンテナンスも容易に行うことができる。
 第1端部ポットピース701は、中間ポットピース703の挿入領域1013を挿入するための収容領域1001を有している。
 中間ポットピース703は、第2端部ポットピース702の挿入領域1012を挿入するための収容領域1003を有している。
 図11の実施例では、第1端部ポットピース701の収容領域1001の幅W1及び中間ポットピース703の収容領域1003の幅W3は互いに等しい。また、中間ポットピース703の挿入領域1013の幅W2及び第2端部ポットピース702の挿入領域1012の幅W4は互いに等しい。
 それにより、構造上、第1端部ポットピース701及び第2端部ポットピース702の間に複数の中間ポットピース703を組み込むことも、第1端部ポットピース701及び第2端部ポットピース702を直接接続させることも、可能である。すなわち、育植ポット101は、4つ以上のポットピースから構成されることも、あるいは2つのポットピースから構成されることも、可能である。
 図12は、第1端部ポットピースの斜視図の例である。
 図12(a)は、第1端部ポットピースを上方から見た斜視図の例である。
 図12(b)は、第1端部ポットピースを下方から見た斜視図の例である。
 第1端部ポットピース701は、上面1201に植物(苗や種等)を入れて栽培するためのポット穴110を有している。第1端部ポットピース701の一方の端部には、円弧状切り欠き部815が設けられている。円弧状切り欠き部815の近傍の側壁部1202には鉤状開口部1203が形成されている。両方の側壁部にはそれぞれ2つの脚部801が設けられている。脚部801は、育植ポット101を養液トレイ102へ配置した状態では、養液トレイの底面と接触する。それにより、育植ポット101と養液トレイ102の底面の間に養液が流れるための空間が形成される。
 また、脚部801は、第1端部ポットピース701の側面から見て、即ち一方の側壁部1202から他方の側壁部1202へ向かう方向で見て、ポット穴110と重ならない位置に配置されており、これにより、根に養液が供給される経路を阻害することなく、安定したポットピースの保持が可能となる。なお、第1端部ポットピース701の収容領域1001に、中間ポットピース703の挿入領域1013が挿入される構成でも(育植ポット101が3つのポットピース701、702、703からなる構成でも)、第2端部ポットピース702の挿入領域1012が挿入される構成でも(育植ポット101が2つのポットピース701、702からなる構成でも)、ポット穴110に配置された根への中間ポットピース703の脚部803又は第2端部ポットピース702の脚部802による阻害のない養液供給は、同様に実現可能である。
 第1端部ポットピース701の内部には、ポット穴110と接続する円筒壁部810が形成されている。円筒壁部810は植物を良好に保持することができるように構成されている。円筒壁部810は、植物が抜け落ちないように円筒台状に構成されていてもよい。
 第1端部ポットピース701の内部には、後述の中間ポットピース703の挿入領域1013を収容するための収容領域1001が設けられている。収容領域1001は、第1端部ポットピース701の両方の側壁部1202の内側面及び円筒壁部810の外周面によって画定されている。
 第1端部ポットピース701の収容領域1001を形成する両方の側壁部1202は、円弧状切り欠き部815の近傍に、鉤状開口部1203を有している。鉤状開口部1203は、収容領域1001内へ中間ポットピース703の挿入領域1013を挿入する際に、ラッチ爪1204が中間ポットピース703の挿入領域1013によって第1端部ポットピース701の短手方向へ弾性的に変位されることを補助する。
 図13は、第1端部ポットピースの6面図の例である。
 図13は、第1端部ポットピースの上面、下面、両側面、及び、両端面の例を示すものである。各部の形状、構成、比率は適宜設計及び変更可能である。個々の部位についての説明は、図12に関連して説明した通りであるのでここでは省略する。
 図14は、中間ポットピースの斜視図の例である。
 図14(a)は、中間ポットピースを上方から見た斜視図の例である。
 図14(b)は、中間ポットピースを下方から見た斜視図の例である。
 中間ポットピース703は、上面1401に栽培する植物(苗や種等)を入れて栽培するためのポット穴110を有している。
 中間ポットピース703の両方の側壁部1402にはそれぞれ2つの脚部803が設けられている。脚部803は、育植ポット101を養液トレイ102へ配置した状態で、養液トレイ102の底面と接触する。それにより、育植ポット101と養液トレイ102の底面の間に養液が流れるための空間が形成される。なお、養液トレイ102の底面とは、育植ポット101を配置する側の養液トレイ102の面である。養液トレイ102の底面は、養液トレイ102の上面とも称し、その反対側の面は養液トレイ102の下面と称する。
 また、脚部803は、中間ポットピース703の側面から見て、即ち一方の側壁部1402から他方の側壁部1402へ向かう方向で見て、ポット穴110と重ならない位置に配置されており、これにより、根に養液が供給される経路を阻害することなく、安定したポットピースの保持が可能となる。なお、第1端部ポットピース701と第2端部ポットピース702の間に、1つの中間ポットピース703が存在する構成でも(育植ポット101が3つのポットピース701、702、703からなる構成でも)、複数の中間ポットピース703が存在する構成でも(育植ポット101が4つ以上のポットピース701、702、703からなる構成でも)、ポット穴110に配置された根への第1端部ポットピース701の脚部801、中間ポットピース703の脚部803、及び、第2端部ポットピース702の脚部802による阻害のない養液供給は、同様に実現可能である。
 中間ポットピース703の一方の端部には、円弧状の切り欠き部831が設けられている。同様に、中間ポットピース703の他方の端部にも、円弧状の切り欠き部835が設けられている。
 中間ポットピース703の収容領域1003を形成する両方の側壁部1402は、円弧状の切り欠き部835の近傍に、鉤状開口部1403を有している。鉤状開口部1403は、収容領域1003内へ第2端部ポットピース702の挿入領域1012を挿入する際に、ラッチ爪1407が挿入領域1012によって中間ポットピース703の短手方向へ弾性的に変位されることを補助する。
 ポット穴110と接続する円筒壁部830は、上面1401から中間ポットピース703の内部まで延びている。円筒壁部830は植物を良好に保持するように構成されている。円筒壁部830は、植物が抜け落ちないように円筒台状に構成されていてもよい。
 中間ポットピース703の内部には、第2端部ポットピース702の挿入領域1012を収容するための収容領域1003が設けられている。収容領域1003は、中間ポットピース703の両方の第1の側壁部1404及び円筒壁部830によって画定されている。
 中間ポットピース703の内部には更に、第1端部ポットピース701の収容領域1001へ挿入するための挿入領域1013が設けられている。挿入領域1013は、中間ポットピース703の両方の第2の側壁部1405及び円筒壁部830によって画定されている。第2の側壁部1405にはスリット状開口部1406が形成されている。
 育植ポット101を収縮状態と伸長状態の間で伸縮させる際、スリット状開口部1406は、第1端部ポットピース701のラッチ爪1204の移動を案内する。
 図15は、中間ポットピースの6面図の例である。
 図15は、中間ポットピースの上面、下面、両側面、及び、両端面の例を示すものである。各部の形状、構成、比率は適宜設計及び変更可能である。個々の部位についての説明は、図14に関連して説明した通りであるのでここでは省略する。
 図16は、第2端部ポットピースの斜視図の例である。
 図16(a)は、第2端部ポットピースを上方から見た斜視図の例である。
 図16(b)は、第2端部ポットピースを下方から見た斜視図の例である。
 第2端部ポットピース702は、上面1601に栽培する植物(苗や種等)を入れて栽培するためのポット穴110を有している。第2端部ポットピース702の一方の端部には、円弧状の切り欠き部1603が設けられている。第2端部ポットピース702の両方の側壁部1602は、円弧状の切り欠き部1603の近傍からポット穴110の近傍まで直線的に延びるスリット状開口部1605を有している。
 第2端部ポットピース702の両方の側壁部1602にはそれぞれ2つの脚部802が設けられている。脚部802は、育植ポット101を養液トレイ102へ配置した状態で、養液トレイ102の底面と接触する。それにより、育植ポット101と養液トレイ102の底面の間に隙間ができ、養液が流れるための空間が形成される。
 また、脚部1604は、第2端部ポットピース702の側面から見て、即ち一方の側壁部1602から他方の側壁部1602へ向かう方向で見て、ポット穴110と重ならない位置に配置されており、これにより、根に養液が供給される経路を阻害することなく、安定したポットピースの保持が可能となる。なお、第2端部ポットピース702の挿入領域1012が、中間ポットピース703の収容領域1003に挿入される構成でも(育植ポット101が3つのポットピース701、702、703からなる構成でも)、第1端部ポットピース701の収容領域1001に挿入される構成でも(育植ポット101が2つのポットピース701、702からなる構成でも)、ポット穴110に配置された根への第1端部ポットピース701の脚部801又は中間ポットピース703の脚部803による阻害のない養液供給は、同様に実現可能である。
 第2端部ポットピース702の内部には、ポット穴110と接続する円筒壁部1606が設けられている。円筒壁部1606は植物を良好に保持するように構成されている。円筒壁部1606は、植物が抜け落ちないように円筒台状に構成されていてもよい。
 第2端部ポットピース702の内部には、上述の中間ポットピース703の収容領域1003へ挿入するための挿入領域1608が設けられている。挿入領域1608は、第2端部ポットピース702の両方の側壁部1602の外側面及び円筒壁部1606の上面1601側の外周面によって画定されている。
 図17は、第2端部ポットピースの6面図の例である。
 図17は、第2端部ポットピースの上面、下面、両側面、及び、両端面の例を示すものである。各部の形状、構成、比率は適宜設計及び変更可能である。個々の部位についての説明は、図16に関連して説明した通りであるのでここでは省略する。
 図18は、長手方向に並べた2つの育植ポットの例である。
 図18(a)は、2つの育植ポット101(1810、1820)を長手方向に並べて接続させた状態の例である。
 図18(b)は、図18(a)の接続状態を解除し、2つの育植ポット101(1810、1820)を離した状態の例である。
 一方の育植ポット1810の第1端部ポットピース701は、第1端部ポットピース701の収容領域に対して反対側に第1の結合部1812を有しており、他方の育植ポット1820の第2端部ポットピース702は、第2端部ポットピース702の挿入領域に対して反対側に第2の結合部1822を有している。
 第1の結合部1812及び第2の結合部1822は互いに相補的に形成されており、2つの育植ポット101(1810、1820)は、第1の結合部1812及び第2の結合部1822を用いて、互いに接続している。
 図18の実施例では、育植ポット1810、1820はそれぞれ、一方の端部に凹部、他方の端部に凸部を有しており、それらが互いに相補的な形状を有していることにより、養液トレイ102内で図18(a)のように2つの育植ポット101を長手方向に並べて接続させた接続状態では、例えば養液の流れや移動時の揺れ等に対して、安定して整列した状態を維持することができる。
 その一方で、長手方向に並んだ2つの育植ポット101は、それらを長手方向で互いに離れるようにずらすことで、容易に図18(a)の接続状態を解除し、図18(b)の状態とすることができる。
 図19は、収容領域へ挿入領域を挿入する様子を説明する説明図の例である。
 図19(a)は、第1端部ポットピース701の収容領域1001へ、中間ポットピース703の挿入領域1013を挿入する前の状態を説明する説明図の例である。
 図19(b)は、第1端部ポットピース701の収容領域1001へ、中間ポットピース703の挿入領域1013を挿入した後の状態を説明する説明図の例である。
 図19(b)では、第1端部ポットピース701の収容領域1001を画定する壁部に設けられたラッチ爪1204は、中間ポットピース703の挿入領域1013を画定する壁部に設けられたスリット状開口部1406へ係合している。
 有利には、ラッチ爪1204は、以下のように形成されている、即ち、中間ポットピース703の挿入領域1013は、第1端部ポットピース701の収容領域1001へ挿入する際にはラッチ爪1204上をスムーズに滑り、挿入時とは反対方向へ引く際にはラッチ爪1204は、スリット状開口部1406と当たりストッパーとなるように、形成されている。
 図20は、スリット状開口部とラッチ爪の係合状態を説明する説明図の例である。
 図20の実施例では、ラッチ爪1204は、スリット状開口部1406の収容領域側の端部と接触し、第1端部ポットピース701と中間ポットピース703がそれ以上離れないように、そして、中間ポットピース703が第1端部ポットピース701から抜けないように、ストッパーとして機能している。
 図20では、第1端部ポットピース701と中間ポットピース703の間のスライド可能な係合状態が図示されているが、中間ポットピース703と第2端部ポットピース702の間にも同様のスライド可能な係合状態が存在する。
 育植ポット101を伸縮させる際に、ラッチ爪1204、1407等の突起部は、スリット状開口部1406、1605内で直線的に案内されて移動するので、個々のポットピースのガタツキの発生やスリットに対して垂直な鉛直方向でのズレの発生が防止される。また、突起部が、スリット状開口部1406、1605内で、スリット状開口部1406、1605の前記長手方向の端部に接触することによって、第1端部ポットピース701から中間ポットピース703が、また、中間ポットピース703から第2端部ポットピース702が抜けることを確実に防ぐことができる。なお、第1端部ポットピース701及び第2端部ポットピース702の2つのポットピースから構成された育植ポット101でも、第1端部ポットピース701のラッチ爪1204等の突起部が、第2端部ポットピース702のスリット状開口部1605内で直線的に案内されて移動することで、上記と同様の効果が達成される。
 図21は、養液トレイの斜視図の例である。
 図21(a)は、養液トレイを上方から見た斜視図の例である。
 図21(b)は、養液トレイを下方から見た斜視図の例である。
 養液トレイ102は、育植ポット101を収容するための育植ポット収容領域105、養液を流入させるための養液流入領域、及び、養液流出口を有する養液流出領域を有している。これらの領域については、図24を用いてより詳細に説明する。
 養液トレイ102は底面2101の長手方向の端部の一方に、排出スリット2111を有している。養液流出部である排出スリット2111からは、養液が排出される。
 養液トレイ102は、排出スリット2111近傍の底面2101に、突出部(突出構造)2106を有している。
 突出部2106は、養液トレイ102内の養液が光源からの光に対して露出される領域に、形成されている。突出部2106の高さが養液トレイ102に養液を流して植物の栽培する状態での養液の液面の高さよりも高いと、光が養液へ入射する面積を減少させることができる。それにより、藻類等の発生を低減させることができる。
 養液トレイ102は高さの異なる脚部2104、2105を有している。
 養液トレイ102の壁部2107、2108は、排出スリット2111近傍の予定の溢れ位置(予定オーバーフロー位置)に、凹状の切り欠き部2102を有している。一方の壁部2108は更に、1対の第1の接続構造(第1の結合構造)2103を有しており、他方の壁部2107は更に、1対の第2の接続構造2113を有している。
 図21の実施例の第1の接続構造2103を第2の接続構造2113へ上からはめ込むことにより、隣り合う2つの養液トレイ102を互いに接続することができる。この接続状態は、養液トレイ102を水平方向へ動かす(ずらす)場合は、接続が維持され、一方の養液トレイ102を鉛直方向へ動かす(持ち上げる)場合には、容易に解除することができる。
 養液トレイ102の壁部2107、2108や養液トレイ102の両方の短手側壁部は、それらの縁部分に、凹凸や溝等で構造化された印部(しるし部分)や色付けされた印部を有していてもよい。
 生長モニタリング部の制御部は、例えば養液トレイ102を上方から撮影した映像(画像)を処理し、養液トレイ102内で予定の生長速度から外れた植物、すなわち、通常よりも早く生長をしている植物やよりも遅く生長をしている植物、を識別し、印部の位置情報とともに管理者へ通知情報を出力してもよい。
 それにより、予定の生長速度から外れた植物の養液トレイ102内での位置を迅速に認識することができる。
 生長モニタリング部の制御部は、画像解析やAI診断に基づき、植物の異常や植物の基準を外れた生長速度を識別できる構成であると更に有利である。そのような構成では特に、人間の目では識別が困難な各病変の兆候や、各病変が影響を及ぼす範囲を迅速且つ高精度に判定、判別することが可能であり、印部の位置情報を用いれば、植物の異常を人間の目では識別できない場合であっても、対象となる範囲の育植ポット101の範囲や位置を特定し、養液トレイ102から取り除くことができる。
 図22は、養液トレイの上面図及び下面図の例である。
 図22(a)は、養液トレイを上面図の例である。
 図22(b)は、養液トレイを下面図の例である。
 養液トレイ102の各構成部分(排出スリット2111、突出部2106、脚部2104、2105、第1の接続構造2103、第2の接続構造2113)は、図21の養液トレイ102の各構成部分と対応するものであるので、説明は省略する。
 図22(b)に図示されているように、養液トレイ102の下面には、第1の設置部2201及び第2の設置部2202が設けられている。養液トレイ102を栽培装置内に組み込んだ状態では、養液トレイ102は、第1の設置部2201及び第2の設置部2202で栽培装置の高さの等しい2つの支持部のそれぞれと当接し、それら2つの支持部によって支持される。
 図23は、パターン構造を有する養液トレイの斜視図の例である。
 図23(a)は、パターン構造を有する養液トレイを上方から見た斜視図の例である。
 図23(b)は、パターン構造を有する養液トレイを下方から見た斜視図の例である。
 図23の養液トレイ102は、パターン構造を備える底面2101及びパターン構造を備える下面2302を有している。
 以下の記載では、「パターン構造」とは、底面2101や下面2302等の平面に設けられ、当該平面に対して三次元的な模様として識別できる構造を意味する。なお、図23から図26ではパターン構造として、それらが設けられた平面に対して凸状の構造が例示されているが、パターン構造として、それらが設けられた平面に対して凹状の構造を採用することもできる。
 底面2101に設けられたパターン構造は、養液トレイ102で養液が均一に拡がって流れることを促進する。この点については、図24及び図25との関連でより詳細に説明する。
 パターン構造を備える下面2302には、メッシュ状(網掛け状)のリブパターン構造が設けられており、それにより、養液トレイ102の重量の増加を低く抑えつつ養液トレイ102の剛性を向上させることができる。
 図24は、パターン構造を有する養液トレイの上面図の例である。
 図24の実施例では、パターン構造を有する養液トレイ102の底面は、養液を流入させるための養液流入領域2401、育植ポット101を収容するための育植ポット収容領域(育植ポット収容部)105、及び、養液流出口である排出スリット2111を有する養液流出領域2403を有している。すなわち、育植ポット収容領域105、養液流入領域2401、及び、養液流出領域2403が、養液トレイ102内で養液が流れる底面を形成する。
 養液流入領域2401は、養液流入部であり、養液トレイ102内を流れる養液を受け取る。養液流入領域2401はパターン構造を有している。養液流入領域2401で受け取られた養液は、パターン構造によって、養液トレイ102の短手方向の全幅に渡って拡げられる。
 育植ポット収容領域105も同様に、養液を養液トレイ102の短手方向の全幅に渡って拡げるための別のパターン構造を有している。
 養液流出領域2403は、養液を排出スリット2111へ案内する流路を形成する壁部2405を有している。
 なお、本実施例ではパターン構造がある場合には、パターン構造の上面の位置を養液トレイ102の底面と呼ぶが、パターンの構造の無い位置の養液トレイ102の底の面(すなわち養液が流れる底の部分)を底面と呼んでもよい。
 図25は、図24のパターン構造を有する養液トレイの端部の拡大上面図の例である。
 図25(a)は、図24のパターン構造を有する養液トレイの養液流入領域側の端部領域の拡大上面図の例である。
 図25(b)は、図24のパターン構造を有する養液トレイの養液流出領域側の端部領域の拡大上面図の例である。図中の矢印は、排出スリット2111へ向かう養液の流れを表している。
 図25(a)の養液トレイ102の養液流入領域2401には、複数のガイドパターン2501が形成されている。ガイドパターン2501は、養液流入領域2401に流し込まれた養液を、養液トレイ102の全幅に渡って拡げて、育植ポット収容領域105へと案内する。
 養液流入領域2401と育植ポット収容領域105の間には、複数のゲートパターン2502が設けられている。例えば養液が均等に分布して配置されたゲートパターン2502の間の隙間(ゲード)を通って、育植ポット収容領域105内へ流入するように、ゲートパターン2502が形成及び配置されていると有利である。
 育植ポット収容領域105は、有利には、育植ポット収容領域105を形成する養液トレイ102の底面全体に均等に分布して配置された複数の拡散パターン2503を有している。
 図25の実施例では、拡散パターン2503は全てT形状に形成されているが、拡散パターン2503は異なる形状であってもよいし、複数の異なる形状の組み合わせであってもよい。拡散パターン2503は、育植ポット収容領域105内で養液が拡がって流れることを促進する構成であれば、不規則的なパターンでもよい。
 ガイドパターン2501、ゲートパターン2502、拡散パターン2503は、特に、養液が養液トレイ102内へ流入し始める段階から、養液が育植ポット収容領域105内で拡がって流れることを促進する。
 図25の実施例では、養液トレイの養液流出領域2403(図25(b))に、ガイド壁2504が設けられている。育植ポット収容領域2402を通った養液は、ガイド壁2504に沿って、排出スリット2111へ案内される。ガイド壁2507を設けることにより、養液流出領域2403、特に養液流出領域2403の隅付近、を流れる養液の流速は増加する。それにより、養液トレイ102の隅に汚れ等が溜まることも避けること、及び、排出スリット2111での詰まりや汚れの発生を低減すること、ができる。
 図26は、図24のパターン構造を有する養液トレイの端部の斜視図の例である。
 図26(a)は、図24のパターン構造を有する養液トレイの養液流入領域側の端部領域の拡大斜視図の例である。
 図26(b)は、図24のパターン構造を有する養液トレイの養液流出領域側の端部領域の拡大斜視図の例である。
 図中の矢印は、排出スリット2111へ向かう養液の流れを表している。
 図26は、排出スリット2111の延伸方向にある養液トレイの壁部の予定の溢れ位置(予定オーバーフロー位置)2601に、凹状の切り欠き部2102が設けられていることを図示している。
 養液トレイ102を栽培機械の設置位置に設置した状態では、排出スリット2111の下方には、図31に図示されている栽培室2910内で排出口3108の下方に配置されている養液回収管3109と同様に、栽培機械の養液回収部が存在する。
 排出スリット2111の延伸方向に予定の溢れ位置2601に切り欠き部2601が存在することで、仮に排出スリット2111が詰まった場合や育植ユニット100への養液の供給量が過多で育植ユニット100から養液が溢れる場合でも、切り欠き部2601から養液を狙って溢れ出させることが可能となる。それにより、養液回収部で養液を確実に回収することができ、養液トレイ102の予想外の部分から溢れ出した養液によって機器等が濡れ、故障することや、その他の不具合が発生すること等を防ぐことができる。
 図27は、養液トレイの端部領域の側面図の例である。
 図27(a)は、養液トレイの養液流入領域側の端部領域の側面図の例である。
 図27(b)は、養液トレイの養液流出領域側の端部領域の側面図の例である。
 第1の設置面ペアを用いて養液トレイ102を支持(設置)した場合、養液トレイ102は養液流出領域2403を養液流入領域2401よりも下にして傾く。また、第2の設置面ペアを用いて養液トレイ102を支持した場合、養液トレイ102は養液流出領域2403を養液流入領域2401よりも上にして傾く。
 以下では、この点について、より具体的に説明する。
 養液トレイ102の養液流入領域2401側の端部領域には、第1の設置部(第1設置面)2201及び第1の脚部(第3設置面)2104が設けられている(図27(a))。
 養液トレイ102の養液流出領域2403側の端部領域には、第2の設置部(第2設置面)2202及び第2の脚部(第4設置面)2105が設けられている(図27(b))。
 第1の設置部2201及び第2の設置部2202からなる第1設置面ペアは、養液トレイ102を栽培機械の内部で例えば栽培機械の支持フレーム上にセットした状態で、栽培機械(例えば支持フレーム)と接触する部分である。
 第1の脚部2104及び第2の脚部2105からなる第2設置面ペアは、養液トレイ102を栽培機械の外部で例えば作業台や地面等の上に置いた状態で、作業台や地面等と接触する部分である。
 第1の設置部2201及び第2の設置部2202(第1の設置面ペア)、並びに、第1の脚部2104及び第2の脚部2105(第2の設置面ペア)は、以下に説明するように、養液トレイ102が栽培機械の外部に置いた状態と栽培機械の内部にセットした状態で異なる傾きを有するように、設計されている。
 第1の設置部2201及び第2の設置部2202は、養液トレイ102を栽培装置等にセットした状態で、例えば栽培装置の支持フレームと接触する第1の設置面ペアを構成する。
 第1の脚部2104及び第2の脚部2105は第2の設置面ペアを構成し、この第2の設置面ペアは、養液トレイ102を、例えば水平な作業台等に乗せてスペーシング作業等を行う際に、作業台の作業面と接触する。
 第1の脚部2104及び第1の設置部2201は、養液トレイ102の底面の位置である基準線Lから、異なる高さ(間隔)を有している。更に、第1の脚部2104の設置面及び第1の設置部2201の設置面は、それぞれ基準線Lに対して傾斜している。
 言い換えれば、養液トレイ102の基準線Lを水平線と平行にした場合、第1の脚部2104の設置面及び第1の設置部2201の設置面は、それぞれ水平線に対して傾斜している。
 図27(a)の実施例では、第1の脚部2104は、養液トレイ102の長手方向の両端で、第1の高さHs1及び第2の高さHs2を有している。また、第1の脚部2104は平均高さHs_aveを有している。
 第1の設置部2201は、養液トレイ102の長手方向の両端で、第1の間隔Dl1及び第2の間隔Dl2を有している。また、第1の設置部2201は平均間隔Dl_aveを有している。
 第2の脚部2105及び第2の設置部2202は、養液トレイ102の基準線L(底面の位置)から、異なる高さ(間隔)を有している。更に、第2の脚部2105及び第2の設置部2202は、それぞれ基準線Lに対して傾斜している。
 図27(b)の実施例では、第2の脚部2105は、養液トレイ102の長手方向の両端で、第1の高さHl1及び第2の高さHl2を有している。また、第2の脚部2105は平均高さHl_aveを有している。
 第2の設置部2202は、養液トレイ102の長手方向の両端で、第1の間隔Ds1及び第2の間隔Ds2を有している。また、第2の設置部2202は平均間隔Ds_aveを有している。
 図27の実施例では、第1の脚部2104の平均高さHs_aveは、第2の脚部2105は平均高さHl_aveよりも低い(Hs_ave<Hl_ave)。
 図27の実施例では、第1の設置部2201の平均間隔Dl_aveは、第2の設置部2202は平均間隔Ds_aveよりも長い(Dl_ave>Ds_ave)
 図27の実施例では、第1の脚部2104の平均高さHs_aveは、第1の設置部2201の平均間隔Dl_aveよりも長い(Hs_ave>Dl_ave)。
 つまり、第1の設置部2201(第1の設置面)は、養液トレイ102の長手方向で養液流入領域2401の側に形成されている。第2の設置部2202(第2の設置面)は、養液トレイ102の長手方向で養液流出領域2403の側に形成されている。この第1の設置面は、第2の設置面よりも底面から離れている。
 また、第1の脚部2104(第3の設置面)は、前記養液トレイの長手方向で養液流入領域2401の側に形成されている。第2の脚部2105(第4の設置面)は、養液トレイの長手方向で養液流出領域2403の側に形成されている。この第4の設置面は、第3の設置面よりも底面から離れている。
 図28は、異なる状態の養液トレイの側面図の例である。
 図28(a)は、図27の養液トレイ102の基準線Lを水平にした状態の養液トレイ102の側面図の例である。
 図28(b)は、水平の作業台2801に置いた状態の養液トレイ102の側面図の例である。
 図28(c)は、水平の栽培機械の支持フレーム2802にセットした状態の養液トレイ102の側面図の例である。
 基準線Lは、養液トレイ102の底面の位置であるが、図28(a)の状態では、基準線Lを水平にしており、養液トレイ102内の養液の液面が水平の基準線Lと平行な状態となる。
 図28(b)の状態では、水平の作業台2801に養液トレイ102を設置しており、矢印が示すように、養液トレイ102の養液流入領域2401側を下にして傾いている。
 つまり、養液が入っている状態の養液トレイ102を栽培装置から取り出して作業台2801に置いた場合や、作業台2801に置いた養液トレイ102に養液を供給した場合などに、排出スリット2111が養液の液面よりも上の位置に来るようになっており、養液が養液トレイ102の排出スリット2111から流れ出ることを防ぐ(減らす)ことができる。
 図28(c)の状態では、水平の栽培機械の支持フレーム2802に養液トレイ102を設置している。矢印が示すように、養液トレイ102の流出領域2403側を下にして傾いている。
 図28(c)の状態では、栽培機械の2つの支持フレーム2802をつないだ直前2820は水平である。
 より具体的には、養液トレイ102は、栽培機械内で、養液の流れの下流側が下方になるように、つまり、養液トレイ102の流出領域2403側の端部が流入領域2401側の端部よりも下になるように傾いている。なお、この場合の傾きは、例えば1度程度であることが好ましい。
 それにより、養液トレイ102を栽培装置にセットした状態では、養液トレイ102の養液流入領域2401へ供給された養液は、養液トレイ102の傾きにより自然に養液トレイ102の流出領域2403へと流れる。
 図28(c)には、更に、養液トレイ102の養液流出領域2403側の端部壁部の頂点を通る水平線2830が図示されている。図28(c)の状態では、底面方向へ凹の凹状の切り欠き部2102の最下点P2102は、水平線2830よりも、下に位置している。つまり、養液をたくさん注入しすぎた場合には、この切り欠き部2102から不要な養液が流れ出るようになっている。
 このように、第1の設置面ペアを用いて養液トレイを設置した場合、養液が養液トレイの養液流入領域から養液流出領域へ向かって流れ、排出スリット2111(養液流出口)から流出することが可能である。一方、第2の設置面ペアを用いて養液トレイ102を設置した場合、排出スリット2111(養液流出口)が養液の液面よりも上に存在する。
 実施例2
 本実施例の栽培プレート、栽培プレートスペーサ及び養液トレイからなるスペーシングセットは、実施例1の育植ポットと同様に、養液トレイとともに、例えば人工光型の植物工場等で用いられるものであり、従来では栽培環境の管理が困難であった生産規模の大きい植物工場においても好適に用いられる。
 図34は、播種トレイを説明する説明図の例である。
 図34(a)は、スポンジ培地3410を収容した状態の播種トレイ3400の斜視図の例である。
 図34(b)は、蓋3420を被せた状態の播種トレイ3400の斜視図の例である。
 図34(c)は、図34(b)の播種トレイ3400の断面図の例である。
 播種トレイ3400は、スポンジ培地3410を収容することができる。スポンジ培地3410は例えば発泡ウレタン製から構成することができるが、その他の合成物質から構成してもよい。更に、スポンジ培地3410に代えて、ロックウール(カルチャーマット)を用いてもよい。
 スポンジ培地3410には、スリット、例えばH形状のスリット、が複数設けられており、それらのスリットに植物の種や種子等を植えることができる。
 播種トレイ3400は更に、養液を蓄えることができる。スポンジ培地3410に植えられた種や種子等は、スポンジ培地3410を介して、養液を吸収し、生長することができる。
 播種トレイ3400は、切り欠き部3401及び段差部3402を有している。
 段差部3402は、スポンジ培地3410の高さの位置と揃っているとよい。
 切り欠き部3401の下縁も同様に、スポンジ培地3410の高さの位置と揃っているとよい。
 そのような構成では、播種トレイ3400を、スポンジ培地3410ごと水や養液に容易に浸すことができる。浸した播種トレイ3400を持ち上げることで、播種トレイ3400内に蓄えられる水や養液の量を、容易に適量に、調節することができる。
 また、播種トレイ3400を傾けることなく、切り欠き部3401から水や養液を排出することができる。
 播種トレイ3400の淵を高くすることで、播種トレイ3400に蓄えられた水や養液が、播種トレイ3400の持ち運びや、自動搬送、その他の取り扱いの際の加減速や衝撃によって、偏り溢れることを防止することができる。
 播種トレイ3400を自動搬送機で搬送する構成では、水や養液が播種トレイ3400から溢れることを防止するため、切り欠き部3401は自動搬送機の移動方向ではない壁面に設けるとよい。
 段差部3402は、深さ方向の目安としても用いることができる。
 播種トレイ3400には、蓋3420を被せることができる。それにより、播種直後は、播種トレイ3400からの水や養液の蒸発を適度に抑えることができる。
 図35は、播種トレイを説明する別の説明図の例である。
 図35(a)は、スポンジ培地3410を収容した状態の播種トレイ3400の別の斜視図の例である。
 図35(b)は、発芽した植物を含むスポンジ培地3410を播種トレイ3400から取り出した状態を説明する説明図の例である。
 図35(c)は、スポンジ培地3410で発芽した植物を栽培プレート3600に収容する工程を説明する説明図の例である。
 播種後は、植物が十分に発芽するまでの期間、植物はスポンジ培地3410を収容した播種トレイ3400内で栽培される。
 発芽した植物3512を含む部分スポンジ培地3511は、移植培地3510として、例えばスポンジ培地3410に形成された切れ目等の予定破断線3411、3412に沿って、引きちぎられる(S3500C-1)。
 部分スポンジ培地3511と発芽した植物3512のセット3500は、栽培プレート3600の栽培穴3610に入れられ(S3500C-2)、それにより、発芽した植物3512を有する栽培プレート3520を準備することができる。
 図35(b)では、発芽した植物3512は1つのみ図示されているが、実際には、1つのスポンジ培地3410から、数十から数百の、部分スポンジ培地3511と発芽した植物3512のセット3500を得ることができる。
 図36は、栽培プレートを説明する説明図の例である。
 図36(a)は、栽培プレート3600の上面図の例である。
 図36(b)は、栽培プレート3600の下面図の例である。
 図36(c)は、栽培プレート3600の側面図の例である。
 図36(d)は、栽培プレート3600の上方斜視図の例である。
 図36(e)は、栽培プレート3600の下方斜視図の例である。
 栽培プレート3600は中央に、発芽した植物3512を部分スポンジ培地3511ごと収容及び保持するための栽培穴3610を有している。
 栽培穴3610の機能は、実施例1のポット穴110と同様の構成及び機能を有するものであるので、詳細な説明は省略する。
 栽培プレート3600は、図36(a)における第1方向の長さ3600L1、及び、図36(a)における第2方向の長さ3600L2、を有している。特に、栽培プレート3600は、第1方向の長さ3600L1及び第2方向の長さ3600L2が等しい正方形の形状を有しているとよい。
 なお、以降の説明では、図の左右方向を第1方向と称して説明し、図の上下方向を第2方向と称して説明することもある。
 栽培プレート3600は、4つの脚部3620を有している。脚部の先端から栽培プレート3600の上部面までの高さは3600H1である。
 栽培プレート3600は、縁3630を有している。縁3630から栽培プレート3600の上部面までの高さは3600H2である。
 脚部の先端から栽培プレート3600の上部面までの高さ3600H1は、縁3630から栽培プレート3600の上部面までの高さ3600H2よりも長いとよい。
 図37は、栽培プレートスペーサを説明する説明図の例である。
 図37(a)は、栽培プレートスペーサ3700の上面図の例である。
 図37(b)は、栽培プレートスペーサ3700の下面図の例である。
 図37(c)は、栽培プレートスペーサ3700の側面図の例である。
 図37(d)は、栽培プレートスペーサ3700の上方斜視図の例である。
 図37(e)は、栽培プレートスペーサ3700の下方斜視図の例である。
 栽培プレートスペーサ3700は、図37(a)における第1方向の長さ3700L1、及び、図37(a)における第2方向の長さ3700L2、を有している。特に、栽培プレートスペーサ3700は、第1方向の長さ3700L1及び第2方向の長さ3700L2が等しい正方形の形状を有しているとよい。
 栽培プレートスペーサ3700は、4つの脚部3720を有している。脚部の先端から栽培プレートスペーサ3700の上部面までの高さは3700H1である。
 栽培プレートスペーサ3700は、縁3730を有している。縁3730から栽培プレートスペーサ3700の上部面までの高さは3700H2である。
 脚部の先端から栽培プレートスペーサ3700の上部面までの高さ3700H1は、縁3730から栽培プレートスペーサ3700の上部面までの高さ3700H2よりも長いとよい。
 栽培プレート3600の各部の寸法と、栽培プレートスペーサ3700の各部の寸法は、同一であるとよい。以下では、栽培プレート3600の各辺の長さ、及び、栽培プレートスペーサ3700の各辺の長さ、がそれぞれ同一である構成(3600L1=3600L2=3700L1=3700L2)について説明する。
 そのような栽培プレート3600及び栽培プレートスペーサ3700をくみあわせることにより、後述する非常に柔軟で容易なスペーシングが可能となる。
 図36及び図37では、栽培プレート3600及び栽培プレートスペーサ3700は、それぞれ、略正方形の形状を有しているが、栽培プレート3600及び栽培プレートスペーサ3700は、それぞれ別の多角形の形状、例えば正六角形の形状、を有していてもよい。
 そのような構成では、養液トレイ4200の側壁部等は、対応する或いは相補的な凹凸部を有しているとよい。そのような構成では、例えば、栽培プレート3600及び栽培プレートスペーサ3700の多角形の形状の輪郭と、養液トレイ4200の側壁部の凹凸部の輪郭が嵌り合うことによって、養液トレイ4200の運搬等に伴って生じる、栽培プレート3600及び栽培プレートスペーサ3700の滑り等を、効果的に抑制することができる。
 図38は、栽培パネルを説明する説明図の例である。
 図38(a)は、栽培パネル3800の上面図の例である。
 図38(b)は、栽培パネル3800の側面図の例である。
 図38(c)は、栽培パネル3800の下面図の例である。
 図38(d)は、栽培パネル3800の正面図の例である。
 栽培パネル3800は、図38(a)における第1方向の長さ3800L1、及び、図38(a)における第2方向の長さ3800L2、を有している。
 栽培パネル3800の短辺の長さ3800L1の第3の整数倍は、養液トレイ4200の収容部4920の短手方向の長さに対応するとよい。なお、
 栽培パネル3800の短辺の長さ3800L1は、例えば約20cmから約40cm、であるとよい。
 また、第3の整数倍は、例えば1倍又は2倍であるとよい。
 栽培パネル3800の長辺の長さ3800L2の第4の整数倍が、養液トレイ4200の収容部4920の長手方向の長さに対応するとよい。
 栽培パネル3800の長辺の長さ3800L2の第4の整数倍は、養液トレイ4200の収容部4920の長手方向の長さに対応するとよい。
 栽培パネル3800の長辺の長さ3800L2は、例えば約45cmから約90cm、であるとよい。
 また、第4の整数倍は、例えば2倍から4倍であるとよい。
 栽培パネル3800には、複数の開口部3830が形成されている。開口部3830は上側開口面3831と下側開口面3832を有しており、上側開口面3831の面積は下側開口面3832の面積よりも大きい。
 図38に図示される栽培パネル3800では、複数の開口部3830は、栽培パネル3800の短辺に沿って形成されている。別の構成では、複数の開口部3830は、栽培パネル3800の長辺に沿って形成されていてもよい。
 開口部3830の上側開口面3831は、図38(a)における第1方向の長さ3830L1a、及び、図38(a)における第2方向の長さ3830L2a、を有している。上側開口面3831は、第1の開口面の一例である。
 開口部3830は、栽培プレート3600及び栽培プレートスペーサ3700の1辺の長さの第5の整数倍が、上側開口面3831の長手方向の長さ3830L1aに対応するように、形成されているとよい。
 第5の整数倍は、例えば4倍から8倍であるとよい。
 開口部3830は、栽培プレート3600及び栽培プレートスペーサ3700の1辺の長さの第6の整数倍が、上側開口面3831の短手方向の長さ3830L2aに対応するように、形成されているとよい。
 第6の整数倍は、例えば1倍又は2倍であるとよい。なお、第6の整数倍が2倍である構成では、開口部3830の下側開口面3832に、下側開口面3832を2つに分割する、開口部3830の長辺方向に延びる梁部が形成されているとよりよい。
 開口部3830の下側開口面3832は、図38(a)における第1方向の長さ3830L1b、及び、図38(a)における第2方向の長さ3830L2b、を有している。下側開口面3832は、第2の開口面の一例である。
 開口部3830の下側開口面3832の周りには、下側開口面周囲縁3833が形成されている。上側開口面3831の面積は、下側開口面3832の面積と下側開口面周囲縁3833の面積の和にほぼ等しい。
 開口部3830の上側開口面3831の第2方向の長さ3830L2aは、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2にほぼ等しいが、それらよりもわずかに大きい。
 それにより、開口部3830は、栽培プレート3600及び栽培プレートスペーサ3700を容易かつ安定的に収容することができる。
 開口部3830の下側開口面3832の第2方向の長さ3830L2bは、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2よりも小さい。
 それにより、開口部3830は、栽培プレート3600及び栽培プレートスペーサ3700が下側開口面3832から落下しないように収容することができる。
 各開口部3830は、栽培パネル3800の長手外周縁3820から、横方向(短手方向)で長さ3800L1a分だけ離れている。
 この長さ3800L1aは、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2、及び、開口部3830の上側開口面3831の第2方向の長さ3830L2a、の半分の長さにほぼ等しい。
 栽培パネル3800の長手方向の両端側に形成された開口部3830は、それぞれ、各開口部3830は、栽培パネル3800の短手外周縁3810から、縦方向(長手方向)で長さ3800L2a分だけ離れている。
 この長さ3800L2aは、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2、及び、開口部3830の上側開口面3831の第2方向の長さ3830L2a、の半分の長さにほぼ等しい。
 別の実施例では、長さ3800L1a及び長さ3800L2aは、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2に対応するとよい。
 そのような栽培パネル3800を用いると、後述するように、栽培プレート3600及び栽培プレートスペーサ3700のみを用いた一部の配置に対して、同等の配置を、例えば栽培プレート3600及び栽培パネル3800のみを用いて、再現することが可能となる。
 各開口部3830は、図38(a)の縦方向で長さ3800L2bの間隔で離間している。この長さ3800L2bは、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2、及び、開口部3830の上側開口面3831の第2方向の長さ3830L2a、にほぼ等しい。
 各開口部3830の下側開口面3832には、4つの脚部3840が設けられている。
 脚部3840は、下側開口面周囲縁3833に形成されているとよい。
 図39は、栽培パネルを説明する別の説明図の例である。
 図39(a)は、栽培パネル3800の上方斜視図の例である。
 図39(b)は、栽培パネル3800の下方斜視図の例である。
 図39(a)では、見やすさのために、上側開口面3831の1つが直線で囲われた仮想の平面で図示されている。
 図39(b)では、見やすさのために、下側開口面3832の1つが直線で囲われた仮想の平面で図示されている。
 図39(b)からは、上述の通り、脚部3840が下側開口面周囲縁3833に形成されている構成がより明確に図示されている。
 図40は、栽培パネルにおける栽培プレートと栽培プレートスペーサの配置を説明する説明図の例である。
 図40(a)は、栽培プレート3600と栽培プレートスペーサ3700が配置された栽培パネル3800の上面図の例である。
 図40(b)は、栽培プレート3600と栽培プレートスペーサ3700が配置された栽培パネル3800の下面図の例である。
 図40(a)、図40(b)の実施例では、栽培パネル3800には、栽培プレート3600と栽培プレートスペーサ3700に加えて、ハーフ栽培プレートスペーサ4000も配置されている。
 ハーフ栽培プレートスペーサ4000は、図40(a)における第1方向の長さ4000L1、及び、図40(a)における第2方向の長さ4000L2、を有している。
 ハーフ栽培プレートスペーサ4000の第1方向の長さ4000L1は、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2、の半分の長さにほぼ等しい。
 ハーフ栽培プレートスペーサ4000の第2方向の長さ4000L2は、栽培プレート3600の各辺の長さ3600L1、3600L2、及び、栽培プレートスペーサ3700の各辺の長さ3700L1、3700L2、及び、開口部3830の上側開口面3831の第2方向の長さ3830L2a、にほぼ等しい。
 ハーフ栽培プレートスペーサ4000を用いることで、栽培プレート3600のスペーシングをより柔軟に調整することができるので、養液トレイ4200を用いて栽培する植物の生長度合いに応じて、それらの植物の間のスペーシングをより柔軟かつより適切に調整することができる。
 図41は、栽培パネルにおける栽培プレートと栽培プレートスペーサの配置を説明する別の説明図の例である。
 図41(a)は、栽培プレート3600と栽培プレートスペーサ3700が配置された栽培パネル3800の上方斜視図の例である。
 図41(b)は、栽培プレート3600と栽培プレートスペーサ3700が配置された栽培パネル3800の下方斜視図の例である。
 図41(a)に図示されている開口部3830の高さ(深さ)は、栽培プレート3600の縁3630から栽培プレート3600の上部面までの高さは3600H2、及び、栽培プレートスペーサ3700の縁3730から栽培プレートスペーサ3700の上部面までの高さは3700H2と、ほぼ等しい。
 図41(a)、図41(b)には、下側開口面周囲縁3833がストッパーとして機能し、栽培プレート3600と栽培プレートスペーサ3700が開口部3830から落下することを防止していることが、より明確に図示されている。
 図42は、異なる使用状態の養液トレイを比較するための説明図の例である。
 図42に図示する養液トレイ4200は、実施例1で説明した養液トレイ102と同様の目的で使用することができる。養液トレイ4200の構成のうち、養液トレイ102と共通の構成については、説明を省略する。
 また、養液トレイ4200を用いて説明した構成は、構造上可能であれば、養液トレイ102に採用してもよい。
 図42で最も左側には、養液トレイ4200aが単独で図示されている。
 図42の実施例では、養液トレイ4200の底面には、養液トレイ102と同様に、養液流入領域4910(2401)、収容領域4920(105)、及び、養液流出領域4930(2403)を有している(図49参照)。
 図42の実施例では、収容領域には、栽培プレート3600、栽培プレートスペーサ3700、及び、栽培パネル3800が収容されているが、実施例1で説明した育植ポット101を収容することも可能である。
 図42の実施例では、養液流出領域には、2つの排出口4250(4250a、4250b)が設けられている。
 更に、2つの根迂回壁4240(4240a、4240b)が、それぞれ排出口4250(4250a、4250b)に接続するように又は排出口4250(4250a、4250b)の近傍まで延びるように、設けられている。
 根迂回壁4240(4240a、4240b)は、突出構造に対応し、養液トレイ4200内の養液の流れを分流し、迂回させて、排出口4250(4250a、4250b)へ案内する。
 図42の実施例では、養液流入領域と収容領域の間に、複数の堰4210が設けられており、これは、上述のゲートパターン2502と同様又は類似の機能と構成を有する。
 2つの根迂回壁4240(4240a、4240b)は、栽培する植物の根を、2つの排出口4250(4250a、4250b)へ分配して案内するので、伸びた根が排出口4250(4250a、4250b)を塞ぐ可能性を低減することができる。
 図21から図26を用いて説明した、1つの排出スリット2111及び1つの壁部2405を有する養液トレイ102と比較すると、養液流出領域4930(2403)に、2つの排出口4250(4250a、4250b)及び2つの根迂回壁4240(4240a、4240b)を有する養液トレイ4200では、養液の流れが分けられることで、養液のはね、飛び散り、漏れ等が低減される。
 図42の実施例では、収容領域に、養液トレイ4200の長手方向に対して平行に延びる、複数の壁部4220(4220aから4220e)が形成されている。これらの壁部4220によって、収容領域には、複数の流路4230(4230aから4220f)が形成されている。
 複数の壁部4220(4220aから4220e)は、養液トレイ4200の養液流入領域4910に流入する養液の液量が少ない場合に、特に、養液トレイ4200の養液流入領域4910に流入する養液が、収容領域4920を流れる養液が収容領域4920の底面全体を覆うほどの流量ではない場合に、養液を収容領域4920で何本かの流れに分けて分散して流すことができる。それにより、複数の壁部4220(4220aから4220e)及びそれらの間に形成される複数の流路4230(4230aから4220f)は、収容領域4920での養液の偏った流れの発生を低減することができる。
 図42で左から2番目には、2つのスポンジ培地4260(4260a、4260b)を収容した養液トレイ4200bが図示されている。
 養液トレイ4200は、図34、図35を用いて説明した播種トレイの代わりとして用いることもできる。
 養液トレイ4200を播種トレイとして使用する場合、トレイ内の養液を循環させることで、発芽までに必要となる養分の割合や濃度等を、時間にわたって容易に調整することができる。
 図42で左から3番目には、栽培プレートスペーサ3700を用いて2つのパターンでスペーシングされた栽培プレート3600を収容した養液トレイ4200cが図示されている。
 図42で最も右側には、栽培プレートスペーサ3700及び栽培パネル3800(3800a、3800b)を用いて、2つのパターンでスペーシングされた栽培プレート3600を収容した養液トレイ4200dが図示されている。
 養液トレイ4200c、4200dは、栽培プレート3600、栽培プレートスペーサ3700、及び、栽培パネル3800、からなるスペーシングセットであって、異なる4つの構成のスペーシングセットを収容している。
 図42に図示されている4つの異なる構成は、スペーシングセットの構成の例である。従って、スペーシングセットは、図42に図示されている4つの構成とは異なる構成でも、養液トレイ4200の収容領域4920に収容され得る。
 スペーシングセットは、栽培プレート3600及び栽培プレートスペーサ3700、又は、栽培プレート3600及び栽培パネル3800、又は、栽培プレート3600及び栽培プレートスペーサ3700及び栽培パネル3800、を組み合わせて、特には任意の個数及び配列で、使用することができる。
 それにより、養液トレイ4200の収容領域4920に収容された栽培プレート3600の間の間隔は、任意にそして柔軟に、変更され得る。
 図42の養液トレイ4200c、4200dでは、栽培プレート3600は、規則的に、特には少なくとも部分的に等間隔に、互いに離間して配置されている。しかしながら、別の構成では、栽培プレート3600は、複数の異なる間隔で、養液トレイ4200の収容領域4920に収容され得る。
 栽培プレート3600は、隣り合う栽培プレート3600との間の間隔を、それぞれ別々に、特には不規則的に調整して、養液トレイ4200の収容領域4920に配置され得る。上記の調整は、例えばその栽培穴3610に植えられた植物の生長度合いに応じて、実行され得る。
 例えば、栽培プレート3600及び栽培プレートスペーサ3700は、図36を用いて説明したように、上面図で見て略正方形の形状を有している。栽培プレート3600及び栽培プレートスペーサ3700の、図36に示した略正方形の1辺の長さ3600L1、3600L2、3700L1、3700L2(3600L1=3600L2=3700L1=3700L2)の第1の整数倍が、養液トレイ4200の収容部4920(105)の長手方向の長さに対応するとよい。
 第1の整数倍は、例えば16倍から32倍程度であるとよい。
 同様に、
栽培プレート3600及び栽培プレートスペーサ3700の、図36に示した略正方形の1辺の長さ3600L1、3600L2、3700L1、3700L2(3600L1=3600L2=3700L1=3700L2)の第2の整数倍が、養液トレイ4200の収容部4920(105)の短手方向の長さに対応するとよい。
 第2の整数倍は、例えば4倍から8倍程度であるとよい。
 それにより、ユーザは、栽培プレート3600及び栽培プレートスペーサ3700を、養液トレイ4200の長手方向及び短手方向に並べて、養液トレイ4200の収容領域4920に敷き詰めて、配置することができる。
 複数の栽培プレート3600は、上述のように、栽培プレート3600の間に配置する栽培プレートスペーサ3700の総数や配置に応じて、複数の異なる間隔で養液トレイ4200の収容領域4920に収容され得る。
 養液トレイ4200cの下半分には、複数の栽培プレート3600のみが敷き詰められており、隣り合う栽培プレート3600は第1の間隔長さ(最小の間隔長さ)4200D1で互いに離間している。
 上記の構成は、スペーシングセットの栽培プレート3600のみを用いる第1の構成に対応する。
 養液トレイ4200cの上半分には、栽培プレート3600と栽培プレートスペーサ3700が互い違いに敷き詰められており、隣り合う栽培プレート3600は第2の間隔長さ4200D2で互いに離間している。
 上記の構成は、スペーシングセットの栽培プレート3600及び栽培プレートスペーサ3700を用いる第2の構成に対応する。
 第2の構成は、栽培プレート3600及び栽培プレートスペーサ3700の総数及び配置を変更することによって、栽培プレート3600の間の間隔を様々に且つ非常に柔軟に変更することができる。
 栽培プレートスペーサ3700は、栽培プレート3600間の間隔を調整するために用いられる。養液トレイ4200内での栽培プレート3600の間隔は、必ずしも均等或いは規則的である必要はない。栽培プレートスペーサ3700を使用することによって、栽培プレート3600の間隔は、植物の生長度合い等に応じて、任意に調整され得る。
 養液トレイ4200dは2つの栽培パネル3800(3800a、3800b)を収容している。栽培パネル3800aは、その開口部3830内に、栽培プレート3600及び栽培プレートスペーサ3700を、1つずつ互い違いに収容している。栽培パネル3800bは、その開口部3830内に、隣り合う2つの栽培プレート3600の間に2つの栽培プレートスペーサ3700が存在するように、収容している。
 栽培パネル3800は1つの大型のスペーサとしての機能も有している。
 栽培パネル3800を用いることによって、養液トレイ4200の長手方向での栽培プレート3600のスペーシングを、簡潔に実行することができる。
 養液トレイ4200の長手方向での各開口部3830の間の長さ3800L2bの大きさは、より大きく設計されていてもよい。その場合は、各開口部3830の間の長さ3800L2bは、栽培プレート3600の各辺の長さ(3600L1、3600L2)、及び、栽培プレートスペーサ3700の各辺の長さ(3700L1、3700L2)の整数倍(例えば、3800L2b=n x 3600L1(nは整数))。
 更に別の実施例では、各開口部3830の間の長さ3800L2bは、栽培プレート3600の各辺の長さ(3600L1、3600L2)、及び、栽培プレートスペーサ3700の各辺の長さ(3700L1、3700L2)の半分(例えば、3800L2b=1/2 x 3600L1)であってもよい。
 また、栽培パネル3800の大きさは、養液トレイ4200に整数個収容できるように寸法決定されているとよい。
 図42の実施例では、栽培プレートスペーサ3700の有無や配置、栽培パネル3800の有無、等によって、養液トレイ4200あたり、75株、32.5株、18株、12株の植物が配置されている。
 しかしながら、栽培プレートスペーサ3700の有無や配置、栽培パネル3800の設計に応じて、養液トレイ4200あたりの植物の数は柔軟に変更することができる。
 図43は、異なる使用状態の養液トレイを比較するための説明図の例である。
 図43(a)は、図42の養液トレイ4200aから4200dの斜視図である。
 図43(b)は、図42の養液トレイ4200aから4200dの別の斜視図である。
 なお、図43の実施例では、養液トレイ4200bのスポンジ培地4260(b)は取り除かれている。
 図43の実施例では、各養液トレイ4200(4200aから4200d)の収容領域は、周囲をリーフガードプレート4300(4300a、4300b)によって取り囲まれている。
 リーフガードプレート4300は、養液トレイ4200の搬送時や持ち運び時に、振動や加減速によって、各養液トレイ4200内の植物が隣の養液トレイ4200内の植物と接触することや、各養液トレイ4200内の植物が搬送装置や人と接触することを防止する。
 養液トレイ4200の長手方向に平行に延びるリーフガードプレート4300aは、図42に図示されている、取付構造4270(4270aから4270e)を用いて、養液トレイ4200に取り付けられている。
 養液トレイ4200の短手方向に平行に延びるリーフガードプレート4300bは、図48に図示されている、別の取付構造4830を用いて、養液トレイ4200に取り付けられている。
 リーフガードプレート4300が高い遮光性を有する材料から構成されている場合、1つの養液トレイ4200に対して個別に調整された光環境が、それに隣り合う1つ又は2つの養液トレイ4200の光環境に影響を及ぼすことを避けやすくなる。
 リーフガードプレートが高い反射性を有する材料から構成されている場合、より多くの光を、より多方向から、養液トレイ4200内の植物に当てることができる。
 図44は、図42の養液トレイ4200aのO-O’ラインでの断面図の例である。
 図44(a)は、養液トレイ4200aのO-O’ラインでの全体断面図の例である。
 図44(b)は、養液トレイ4200aのO-O’ラインでの部分拡大断面図の例である。図44(b)は、図44(a)の全体断面図において、破線で囲われた範囲を図示している。
 養液トレイ4200の底面4400は、アールのついた底面外周縁4401を介して、立ち上がり、養液トレイ4200の外周壁部と接続している。
 特に、養液トレイ4200の底面4400は、養液トレイ4200の短手方向の外側へ延びる段差部を介して、養液トレイ4200の外周壁部と接続しているとよい。この段差部により後述のオーバーフロー時用養液流路4500(4500a、4500b)が形成される。
 図44(b)の実施例では、底面4400からの、堰4210の高さ4210Hと壁部4220の高さ4220Hはほぼ等しい。
 堰4210の間の空所4410は、実施例1のゲートパターン2502の間の隙間(ゲード)に対応する。
 空所4410が養液トレイ4200の短手方向に並んで配置されていることによって、養液トレイ4200の養液流入領域4910に流入した養液は、養液トレイ4200の短手方向に分布して、養液トレイ4200の収容領域4920へ流入することができる。
 養液トレイ4200の養液流入領域4910に流入する養液の液量が少ない場合、特に、養液トレイ4200の養液流入領域4910に流入する養液が、収容領域4920を流れる養液が収容領域4920の底面全体を覆うほどの流量ではない場合、複数の空所4410が短手方向に並んだ構成は、収容領域4920での養液の偏った流れの発生を低減することができるので有利である。
 特に、堰4210の間の少なくとも1つの空所4410が、図42を用いて説明した上述の流路4230(4230aから4230f)に接続している構成は、収容領域4920での養液の偏った流れの発生をより低減することができる
 図44(b)の実施例では、空所4410は、底面4400に接続する程度まで深く形成されている。別の実施例では、図44(b)の実施例における空所4410の実際の縁4411よりも、より高い位置に縁4412を設けてもよい。
 図44(b)には、そのような仮想の縁4412を破線で表している。
 仮想の縁4412の最下点は、底面4400よりも、高さ4410H分だけ、高い。
 空所4410が、底面4400よりも高い位置に縁4412の最下点を有する構成では、養液は、高さ4410Hに到達するまで、養液トレイ4200aの養液流入領域4910内に貯まる。
 養液流入領域4910に貯まった養液の高さが高さ4410Hを超えると、養液は並んで配置された複数の空所4410からほぼ同時に、各流路4230(4230aから4230f)へ養液が均等に或いは分布して流れ込む。なお、養液の表面張力は考慮していない。
 図45は、図42の養液トレイ4200bのO-O’ラインでの断面図の例である。
 図45の実施例では、養液トレイ4200bは、収容されたスポンジ培地4260(4260a)の両側に、オーバーフロー時用養液流路4500(4500a、4500b)を有している。
 オーバーフロー時用養液流路4500a、4500bは、それぞれ、幅4500L1、4500L2を有している。
 スポンジ培地4260(4260a)が養液トレイに収容された状態では、スポンジ培地4260(4260a)は養液トレイ長手方向の壁部4220によりトレイ底面4400から隙間を生じた状態で保持される。このとき、養液は前述の隙間およびスポンジ培地4260(4260a)内を通過するが、スポンジ培地4260(4260a)は軟質であることから隙間量が不安定になりやすい。前述の隙間が小さくなった場合には養液が流れる為に十分な隙間が確保されておらず、養液トレイ4200内の養液の量が増加した場合、養液はスポンジ培地4260脇のオーバーフロー時用養液流路4500(4500a、4500b)を流れ、速やかに後述の所定の予定オーバーフロー位置4810に到達し、そこに形成された切り欠き部4820から排出される。
 なお、切り欠き部4820は、実施例1の凹状の切り欠き部2102に対応する。
 オーバーフロー時用養液流路4500(4500a、4500b)の、養液トレイ4200は、スポンジ培地が収容されている場合でも、栽培プレート3600、栽培プレートスペーサ3700、栽培パネル3800が収容された場合でも、オーバーフロー時に意図した位置で養液が排出されるような高さに、設けられているとよい。
 図46は、図42の養液トレイ4200cのO-O’ラインでの断面前記図の例である。
 図46(a)は、養液トレイ4200cのO-O’ラインでの全体断面図の例である。
 図46(b)は、養液トレイ4200cのO-O’ラインでの部分拡大断面図の例である。図46(b)は、図46(a)の全体断面図において、破線で囲われた範囲を図示している。
 図46(b)では、栽培プレート3600の脚部3620が、養液トレイ4200cの底面4400と接触することによって、栽培プレート3600は養液トレイ4200c内で自立している。したがって、脚部の先端から栽培プレート3600の上部面までの高さは3600H1と、養液トレイ4200c内での栽培プレート3600の上部面の高さ4600H1の大きさは一致している。
 図47は、図42の養液トレイ4200dのO-O’ラインでの断面前記図の例である。
 図47(a)は、養液トレイ4200dのO-O’ラインでの全体断面図の例である。
 図47(b)は、養液トレイ4200dのO-O’ラインでの部分拡大断面図の例である。図47(b)は、図47(a)の全体断面図において、破線で囲われた範囲を図示している。
 図47(b)では、栽培プレート3600の脚部3620は、養液トレイ4200dの底面4400とは接触していない。具体的には、栽培プレート3600の脚部3620の遠位端部は、養液トレイ4200dの底面4400から高さ4220Hだけ離れている。
 図47(b)の実施例では、この高さ4220Hは、堰4210の高さ4210Hよりもわずかに大きい。
 図47(b)の実施例では、栽培パネル3800の脚部3840が、養液トレイ4200dの底面4400と接触することによって、栽培パネル3800は養液トレイ4200d内で自立している。
 栽培プレート3600は栽培パネル3800の開口部3830に収容されており、栽培プレート3600の縁3630は、栽培パネル3800の開口部3830の下側開口面周囲縁3833に接触している。そして、栽培パネル3800は、栽培プレート3600を、栽培プレート3600の脚部3620が養液トレイ4200dの底面4400に接触しない所定の高さまで、持ち上げている。
 図47(b)の実施例では、養液トレイ4200d内での栽培プレート3600の上部面の高さ4700H1の大きさは、脚部の先端から栽培プレート3600の上部面までの高さは3600H1と、栽培パネル3800によって持ち上げられた所定の高さ4220Hの和に等しい。
 栽培する植物の種類や、栽培する植物の生長フェーズに応じて、所定の高さ4220Hが異なる栽培パネル3800を使用してもよい。
 図48は、図42の養液トレイの養液流出領域の周辺の拡大図の例である。
 図48(a)は、養液トレイ4200a及び養液トレイ4200bから溢れ出る養液の流れを説明する養液流出領域の周辺の拡大図の例である。
 図48(b)は、養液トレイ4200a及び養液トレイ4200bから養液が溢れ出る部分を説明する養液流出領域の周辺の拡大図の例である。
 排出口4250(4250a、4250b)の詰まり等によって、養液トレイ4200内の養液の量が増加した場合、養液は後述の所定の切り欠き部4820(2102)に到達し、予定オーバーフロー位置4810(2601)で、隣り合う2つの養液トレイ4200(4200a、4200b)の間から矢印4800で示すように、排出される。
 切り欠き部4820(2102)、及び、予定オーバーフロー位置4810(2601)の具体的な構成は、図26、図28等を用いて説明した通りである。
 図48には、養液トレイ4200の短手方向に延びるリーフガードプレート4300bを取り付けた状態の取付構造4830a、4840aと、養液トレイ4200の短手方向に延びるリーフガードプレートを取り外した状態の取付構造4830b、4840bも図示されている。
 養液トレイ4200の短手方向に延びるリーフガードプレート4300(4300b)は、オーバーフロー時用養液流路4500を流れる養液の流れを妨げないように、凹部4850を有しているとよい。
 図49は、図42の養液トレイ4200aの上面図の例である。
 図42を用いて説明したように、養液トレイ4200(4200a)は、養液流入領域4910(2401)、収容領域4920(105)、及び、養液流出領域4930(2403)を有している。
 図50は、図42の養液トレイ4200aを説明する説明図の例である。
 図50(a)は、図49のA-A’ラインでの断面図の例である。
 図50(b)は、図49のB-B’ラインでの断面図の例である。
 図50(c)は、図49のC-C’ラインでの断面図の例である。
 図50(d)は、図49の部分拡大図の例である。
 図50(a)には、複数の堰4210及び空所4410が、養液トレイ4200aの短手方向に並んでいる構造が図示されている。
 図50(b)には、複数の壁部4220(4220aから4220e)で隔てられた複数の流路4230(4230aから4230f)が、養液トレイ4200aの短手方向に並んでいる構造が図示されている。
 図50(c)には、2つの排出口4250(4250a、4250b)及び2つの根迂回壁4240(4240a、4240b)が、養液トレイ4200aの短手方向に並んでいる構造が図示されている。
 図50(d)には、図49内で破線で囲われた範囲が図示されている。図50(d)の実施例では、第1の排出口4250aが第2の排出口4250bよりも長く形成されているが、2つの排出口4250(4250a、4250b)の長さは、それぞれの排出口4250(4250a、4250b)からの予定の排出量或いは排出割合に応じて、適宜設計することができる。
 図50(c)、図50(d)には、2つの排出口4250(4250a、4250b)が、養液トレイ4200の下方に向かって延びる漏斗状の狭部を、段差として、有する構成が図示されている。
 排出口4250(4250a、4250b)の下方には、排出された養液を受け取るトイが設けられているとよい。それにより、排出口4250(4250a、4250b)から排出される養液の飛び散りをより防止しやすくなる。
 図51は、図42の養液トレイ4200cの上面図の例である。
 図42を用いて説明したように、養液トレイ4200cの下半分には、栽培プレート3600が敷き詰められており、隣り合う栽培プレート3600は等間隔で規則的に離間している。そして、養液トレイ4200cの上半分には、栽培プレート3600と栽培プレートスペーサ3700が互い違いに敷き詰められており、隣り合う栽培プレート3600は、養液トレイ4200cの下半分に配置された栽培プレート3600よりも広い間隔で離間している。
 図52は、図42の養液トレイ4200cを説明する断面図の例である。
 図52(a)は、図51のD-D’ラインでの断面図の例である。
 図52(b)は、図51のE-E’ラインでの断面図の例である。
 図52(c)は、図51のF-F’ラインでの断面図の例である。
 図52(d)は、図51のG-G’ラインでの断面図の例である。
 図52(a)、図52(b)には、栽培プレート3600と栽培プレートスペーサ3700が、養液トレイ4200cの短手方向に交互に並んでいる構造が図示されている。
 養液トレイ4200cの短手方向に交互に並んだ栽培プレート3600と栽培プレートスペーサ3700は、それぞれの脚部3620及び脚部3720で、養液トレイ4200cの底面4400に接触している。
 図52(c)、図52(f)には、栽培プレート3600が、養液トレイ4200cの短手方向に並んでいる構造が図示されている。
 養液トレイ4200cの短手方向に並んだ栽培プレート3600は、その脚部3620で、養液トレイ4200cの底面4400に接触している。
 図53は、図42の養液トレイ4200dの上面図の例である。
 図42を用いて説明したように、養液トレイ4200dでは、栽培プレート3600は、栽培プレートスペーサ3700及び栽培パネル3800(3800a、3800b)を用いて、2つのパターンでスペーシングされている。
 図54は、図42の養液トレイ4200dを説明する断面図の例である。
 図54(a)は、図53のH-H’ラインでの断面図の例である。
 図54(b)は、図53のI-I’ラインでの断面図の例である。
 図54(c)は、図53のJ-J’ラインでの断面図の例である。
 図54(d)は、図53のK-K’ラインでの断面図の例である。
 図54(a)には、栽培プレート3600と栽培プレートスペーサ3700が、栽培パネル3800の開口部3830に収容された状態で、養液トレイ4200dの短手方向に並んでいる構造が図示されている。
 2つの栽培プレート3600の間には、栽培プレートスペーサ3700が2つ配置されている。
 栽培プレート3600の脚部3620と栽培プレートスペーサ3700の脚部3620は、養液トレイ4200dの底面4400には接触していない。
 図54(a)の実施例における底面4400から栽培プレート3600の上部面及び栽培プレートスペーサ3700の上部面までの高さ5400Hは、図47(b)を用いて説明した高さ4700H1と等しい。
 図54(c)には、栽培プレート3600と栽培プレートスペーサ3700が、栽培パネル3800の開口部3830に収容された状態で、養液トレイ4200dの短手方向に並んでいる構造が図示されている。
 2つの栽培プレート3600の間には、栽培プレートスペーサ3700が1つ配置されている。
 図54(b)、図54(d)には、図54(a)、図54(c)に図示されている栽培パネル3800の短手外周縁3810が図示されている。このような栽培パネル3800を用いれば、栽培パネル3800を養液トレイ4200dから持ち上げることで、栽培パネル3800に収容された栽培プレート3600及び栽培プレートスペーサ3700をまとめて、養液トレイ4200dから容易かつ短時間で取り出すことができる。
 図55は、別の養液トレイを説明する説明図の例である。
 図55(a)から図55(c)は、図42から図54に図示する養液トレイ4200とは別の養液トレイ5500を図示している。
 別の養液トレイ5500は、図25を用いて説明したパターン構造(ガイドパターン2501及び拡散パターン2503)と同様のパターン構造であるガイドパターン5510及び拡散パターン5520を有している。
 ガイドパターン5510及び拡散パターン5520は、パターン構造体の一例であり、それらは養液の流れを、養液トレイの短手方向に分流する又は拡げる、形状で設計されている。
 図25を用いて説明したパターン構造と同様に、ガイドパターン5510及び拡散パターン5520は、養液が底面全体に均等に拡がることを促進する。
 図55(a)は、別の養液トレイ5500の斜視図の例である。
 図55(b)は、別の養液トレイ5500の上面図の例である。
 図55(c)は、図55(b)は、のN-N’ラインでの断面図の例である。
 図55(a)に図示する取付構造4270(4270aから4270e)は、養液トレイ4200の場合と同様に、リーフガードプレート4300(4300a)を別の養液トレイ5500に取り付けるために用いられる。
 図55(a)で、破線で囲われた範囲M及び範囲Nについては、図56で詳細に説明する。
 図55(b)では、別の養液トレイ5500の寸法が例示されている。
 別の養液トレイ5500の長手方向の長さは1355mm、短手方向の長さは310mmである。
 別の養液トレイ5500の収容領域4920(105)の長手方向の長さは1155mmである。
 上記の寸法は、養液トレイ4200でも同様に採用することができる。
 図55(c)には、拡散パターン5520の高さ(厚み)が、堰4120及び壁部4220の高さよりも低い構成が図示されている。
 図55(c)で、破線で囲われた範囲Oについては、図56で詳細に説明する。
 図56は、図55の養液トレイを説明する部分拡大図の例である。
 図56(a)から図56(c)では、堰4210及び壁部4220の高さに比べて、拡散パターン5520の高さ(厚み)が、低い構造が具体的に図示されている。
 堰4210及び壁部4220の高さは例えば2mm~3mm程度であり、拡散パターン5520の高さは例えば0.5mm程度である。
 拡散パターン5520は、別の養液トレイ5500の僅かな傾きによる、各流路内での養液の流れの偏りを低減するのに役立つ。
 図57は、自動移植を説明するフロー図の例である。
 生長した植物を含む養液トレイ4200から、植物ごと栽培プレート3600を取り出し、適切にスペーシングされた状態の別の養液トレイ4200へ移植する工程は、機械化して自動的に実行することができる。
 具体的な工程について、図58を用いて説明する。
 図58は、自動移植を説明する概略図の例である。
 植物の自動移植工程では、例えば図57に示されている自動移植フロー5700に従って実行され得る。
 以下、生長した植物を含む養液トレイ4200から、植物を取り出し、別のスペーシング状態で新たに養液トレイ4200へ配置する自動移植工程について説明する。
 生長した植物を含む養液トレイ4200は、栽培プレート3600を取り出し実行するステーションAへ移送され、ステーションCで予定するスペーシング状態で新たに養液トレイ4200に収容されるものとする。
 自動移植は、自動移植制御装置によって制御される自動移植機構によって、実行される。
 ステーションAでは、移植作業の対象となる栽培トレイ内の植物に対し、後述の取り出し機構(捕獲部)5900が、養液トレイ4200内の1列の栽培プレート3600を、例えばまとめてすくい上げて、取り出す(S5710)。
 取り出された栽培プレート3600は、個別に搬送路5800を通って搬送される。
 搬送中の個々の栽培プレート3600に含まれる植物に関する特徴量が、センサ機器によって測定される(S5720)。例えば、搬送路5800に設けられた重量計によって、栽培プレート3600ごと重量が測定される。
 撮影機器により、搬送中の個々の栽培プレート3600に含まれる植物の映像(例えば動画や静止画)が撮影され、自動移植制御装置は、撮影された映像データに基づいて、撮影された植物の画像認識/画像解析を行う(S5730)。
 画像認識/画像解析を行う工程S5730では、例えば、病気や病気の兆候の有無、生長度(例えば葉の大きさ、植物の高さ)、が認識や解析される。
 なお、特徴量を測定する工程S5720と、画像認識/画像解析を行う工程S5720は、前後してもよい、又は、同時に或いは搬送路5800の同一区間内で行われてもよい。
 自動移植制御装置は、測定された特徴量や画像認識/画像解析の結果に基づいて、植物の生長状態や健康状態が判別する。
 自動移植制御装置は、過度に生長が早い植物、過度に生長が遅い植物、病気の兆候が認められる植物等を含む栽培プレート3600bや、交換や洗浄を要する栽培プレートスペーサ3700bを、ソータを用いて、分別し、ステーションCで予定するスペーシング状態に適した栽培プレート3600aを選別する(S5740)。
 選別された栽培プレート3600はステーションBへ搬送され、予定するスペーシング状態に配列する(S5750)。配列する工程S5750では、予定するスペーシング状態の配列に応じて、栽培プレートスペーサ3700aや栽培パネル3800を追加することもできる。
 配列する工程S5750で、追加される栽培パネル3800とは、例えば、後述の図61、図62を用いて説明する、他の養液トレイ4200で栽培した植物のうち、生長の遅い植物を有する栽培プレート3520aや生長の早い植物を有する栽培プレート3520b等である。
 ステーションCでは、予定するスペーシング状態に配列された栽培プレート3600が、搭載機構を用いて、新たな養液トレイ4200へ搭載される(S5760)。
 図59は、図57のトレイからの取り出し工程S5710を説明する概略図の例である。
 図59には、ステーションAでの取り出し工程S5710を実行する取り出し機構5900が図示されている。
 取り出し機構(捕獲部)5900は、例えば駆動部(コンベア)5910及び抑え部5920から構成される。
 駆動部5910は、一列の栽培プレート3600を養液トレイ4200からステーションAへ搬送し、抑え部5920は、搬送中に栽培プレート3600が倒れたり、駆動部5910から脱離したりすることを防止する。
 駆動部5910は、例えば駆動レール5911、鈎部5912、及び、落下防止部5913から構成される。
 取り出し工程S5710では、周回駆動する駆動レール5911に取り付けられた鈎部5912が、栽培プレート3600を、養液トレイ4200から取り上げる(S5710-1)。その後、駆動レール5911が、取り上げた栽培プレート3600を、ステーションAまで搬送する(S5710-2)。その後、ステーションAが運ばれた栽培プレート3600を受け取る(S5710-3)。
 図60は、実際の生長範囲と予測される生長範囲を説明する説明図の例である。
 図60(a)では、図60(a-1)から図60(a-3)を用いて、等方向的に生長する植物の実際の生長範囲と予測される生長範囲を図示している。
 図60(b)は、図60(a)の状態の植物を有する栽培プレート3600のスペーシング状態を説明する説明図の例である。
 図60(a-1)は、実際の生長範囲と予測される生長範囲を2つの円を用いて説明する説明図の例である。
 図60(a-2)は、図60(a-1)に実際の植物の実際の葉を追加した説明図の例である。
 図60(a-3)は、図60(a-1)に予測される生長をした植物の仮想の葉を追加した説明図の例である。
 図60aでは、実際の生長範囲6010を実線の円、予測される生長範囲6020を破線の円、で図示している。また、栽培プレート3600に収容される移植培地3510の部分スポンジ培地3511のみを図示しているが、以降の図面では、部分スポンジ培地3511の図示は省略する。
 実際の生長範囲6010は、例えば、実際の植物の実際の葉の少なくとも1つが内接する円や楕円等で定義することができる。「実際の植物の実際の葉の少なくとも1つ」は、例えば、植物を撮影した画像内で実際の植物の最も外側の輪郭を形成する葉であるとよい。
 図60(a-1)では、平均的な生長範囲の植物を有する栽培プレート3520avが図示されている。
 図60(a-2)では、植物の最も外側にある4枚の葉6011~6014のうち、葉6011及び葉6013が実際の生長範囲6010を示す円に内接している。そして、葉6012は実際の生長範囲6010を示す円の外側に存在しており、葉6014は実際の生長範囲6010を示す円の内側に存在している。
 図60(a-3)では、図60(a-2)の実際の植物の葉6011~6014の、予測される生長範囲6020が、破線の円で図示されている。予測される生長範囲6020は、例えば次回のスペーシングを行うタイミングで予測される生長範囲であるとよい。
 予測される生長範囲6020は、予測される葉6021及び葉6023が予測される生長範囲6020を示す円に内接している。そして、予測される葉6022は予測される生長範囲6020を示す円の外側に存在しており、予測される葉6024は予測される生長範囲6020を示す円の内側に存在している。
 図60(b)では、同程度に生長した植物を含む栽培プレート3600のスペーシング状態を図示している。
 図60(b)では、それぞれの栽培プレート3600の植物の実際の生長範囲6010が重なる領域は存在していない。
 図60(b)では、それぞれの栽培プレート3600の植物の予測される生長範囲6020が重なる領域は複数存在している。図60(b)では、例として、予測される生長範囲6020a、6020bの重なる領域6000Aを斜線で強調している。
 1つの栽培プレート3600の植物の予測される生長範囲6020の面積に対して、近隣の栽培プレート3600の植物の、例えば次回のスペーシング予定日における予測される生長範囲6020と重なる領域の面積が、所定の割合を超える場合は、より広いスペーシングパターンを選択するとよい。
 この場合、「所定の割合」とは、例えば発芽直後の植物に対しては0%から5%程度、生長が進んだ植物に対しては30%から40%程度の範囲に設定することができる。なお、この数値範囲は、栽培する植物の種類、植物の生長フェーズ(発芽から何日後であるか)、等に基づいて、例えば時間とともに変更してもよい。
 上記の数値範囲や、以降の説明で特定するその他の数値範囲は、養液トレイ4200で栽培する植物のより良好な生長を促す結果をもたらすことができる。
 例えば図51、図53等に図示されている、均等な或いは規則的な、スペーシングパターンは、養液トレイ4200内で栽培される植物がほぼ同様に生長する場合に、特に有利である。
 植物の概ね同様な生長とは、例えば、栽培される植物の重量が、同じ養液トレイ4200内で栽培される植物の重量の平均値に対して、-20%から+20%の範囲にある、と定義することができる。この数値範囲は、栽培する植物の種類、植物の生長フェーズ(発芽から何日後であるか)、等に基づいて、例えば時間とともに変更してもよい。
 植物の生長の度合いを判断するために、重量の測定値に加えて又は代えて、栽培する植物を撮影した画像中に占めるその植物の割合の判定結果や分析結果を用いてもよい。そのような構成では、更に、植物の生長の等方向性を、画像認識/画像判定の結果に基づいて決定してもよい。植物の生長の等方向性は、例えば、実際の生長範囲6010を示す円の中心が、栽培プレート3600の栽培穴3610の中心からのずれの大きさを判定することによって、決定することができる。
 図61は、生長の遅い植物を有する栽培プレートのスペーシングを説明する説明図の例である。
 図61(a)は、生長の遅い植物を有する栽培プレートを含むスペーシング状態を説明する説明図の例である。
 図61(b)は、図61(a)のスペーシング状態よりも、生長の遅い植物を有する栽培プレートを配置するのに適した、別のスペーシング状態を説明する説明図の例である。
 例えば、図57、図58で説明した、特徴量の測定工程S5720や画像認識/画像解析の工程S5730で、生長の遅い植物を有する栽培プレート3520aが移植中であることが判定された場合、自動移植制御装置は、選別の工程S5740において、生長の遅い植物を有する栽培プレート3520aを、ステーションAからステーションBへの搬送路5800から離脱させる。
 自動移植制御装置は、離脱させた周りの植物に比べて生長の遅い植物を有する栽培プレート3520aを、図61(b)のようなより適したスペーシング状態の養液トレイ4200への自動移植を行うステーションへ向かう別の搬送路へ導入する。
 それにより、スペーシング後の配列が、図61(a)のようになる場合、上述の選別工程S5740では、周りの植物に比べて生長の遅い植物を有する栽培プレート3520aは、予定されたステーションB、ステーションCへは搬送されず、図61(b)のスペーシング状態での再配列を行う別のステーションへ搬送される。
 「周りの植物に比べて生長の遅い植物」は、例えば、その重量の値が同一の養液トレイ4200内で栽培される複数の植物の重量の平均値よりも所定の割合だけ低いこと、によって定義することができる。
 別の例では、「周りの植物に比べて生長の遅い植物」は、例えば、その実際の生長範囲6010の面積が、同一の養液トレイ4200内で栽培される複数の植物の実際の生長範囲6010の面積の平均値よりも所定の割合だけ小さいこと、その予測される生長範囲6020の面積が、同一の養液トレイ4200内で栽培される複数の植物の予測される生長範囲6020の面積の平均値よりも所定の割合だけ小さいこと等、によって定義することもできる。
 この場合、「所定の割合」とは、例えば、発芽直後の植物に対しては約10%から約20%の範囲に、生長が進んだ植物に対しては約20%から約30%の範囲に、設定することができる。なお、「所定の割合」を定義する数値範囲は、栽培する植物の種類、植物の生長フェーズ(発芽から何日後であるか)、等に基づいて、例えば時間とともに変更され得る。
 上記の重量や面積に代えて、例えば、栽培プレート3600の栽培穴3610の中心から、当該栽培穴3610内で栽培される植物の最も外側の葉の遠位端までの長さを、個々の植物の生長度を比較するための基準として用いてもよい。
 図62は、生育の早い植物を有する栽培プレートのスペーシングを説明する説明図の例である。
 図62(a)は、生長の早い植物を有する栽培プレートを含むスペーシング状態を説明する説明図の例である。
 図62(b)は、図62(a)のスペーシング状態よりも、生長の早い植物を有する栽培プレートを配置するのに適した、別のスペーシング状態を説明する説明図の例である。
 例えば、図57、図58で説明した、特徴量の測定工程S5720や画像認識/画像解析の工程S5730で、生長の早い植物を有する栽培プレート3520bが移植中であることが判定された場合、自動移植制御装置は、選別の工程S5740において、生長の早い植物を有する栽培プレート3520bを、ステーションAからステーションBへの搬送路5800から離脱させる。
 自動移植制御装置は、離脱させた周りの植物に比べて生長の早い植物を有する栽培プレート3520bを、図62(b)のようなより適したスペーシング状態の養液トレイ4200への自動移植を行うステーションへ向かう別の搬送路へ導入する。
 それにより、スペーシング後の配列が、図62(a)のようになる場合、上述の選別工程S5740では、周りの植物に比べて生長の早い植物を有する栽培プレート3520bは、予定されたステーションB、ステーションCへは搬送されず、図62(b)のスペーシング状態での再配列を行う別のステーションへ搬送される。
 図62(a)には、生長の早い植物の実際の生長範囲2610aと平均的な生長の植物の予測の生長範囲6220cが重なる第1の範囲6200A1、及び、平均的な生長の植物の実際の生長範囲2610bと生長の早い植物の予測の生長範囲2620dが重なる第2の範囲6200A2、がそれぞれ破線で強調されて図示されている。
 「周りの植物に比べて生長の早い植物」は、例えば、その重量の値が同一の養液トレイ4200内で栽培される複数の植物の重量の平均値よりも所定の割合だけ高いこと、その実際の生長範囲6010の面積又はその予測される生長範囲6020の面積が、同一の養液トレイ4200内で栽培される複数の植物の実際の生長範囲6010の面積の平均値又は同一の養液トレイ4200内で栽培される複数の植物の予測される生長範囲6020の面積の平均値よりも所定の割合だけ大きいこと、第1の範囲6200A1の面積が生長の早い植物の実際の生長範囲6010aの面積の10%程度より大きいこと、第2の範囲6200A2の面積が平均的な生長の植物の実際の生長範囲6010bの面積の30%程度より大きいこと、等によって定義することができる。
 図61の実施例と同様に、上記の重量や面積に代えて、例えば、栽培プレート3600の栽培穴3610の中心から、当該栽培穴3610内で栽培される植物の最も外側の葉の遠位端までの長さを、個々の植物の生長度を比較するための基準として用いてもよい。
 図61、図62を用いて説明した構成では、1つの栽培装置や栽培プラント内で、同時期に、異なる複数のスペーシング状態への移植工程が行われているとよい。それにより、栽培装置や栽培プラント全体で、個々の植物に対してより柔軟でより適切なスペーシングを行うことができる。
 個々の植物が個別の栽培プレート3600に収容されており、それらの状態や特徴を個別に取得することができるので、図58から図62を用いて説明した構成では、1つの養液トレイ4200で栽培されていた個々の植物に対して、より適したスペーシングを実行することが可能である。
 図63は、生長範囲が偏っている植物を有する栽培プレートのスペーシングを説明する説明図の例である。
 図63(a)は、生長範囲が偏っている植物の生長範囲の重なりを説明する説明図の例である。
 図63(b)は、図63(a)のスペーシング状態から、一部の栽培プレートを回転させて配置した、別のスペーシング状態を説明する説明図の例である。
 図63(a)には、平均的な生長範囲の植物を有する栽培プレート3520avと、生長範囲が偏っている植物を有する栽培プレート3520c、3520d、3520e、3520f、3520gが図示されている。
 図63(a)には更に、3つの植物の予測の生長範囲6020(6020e、6020f、6020g)が重なる第3の範囲6300A1、及び、2つの植物の実際の生長範囲6010(6010a、6010b)が重なる第4の範囲6300A2、が図示されている。
 例えば、図57、図58で説明した移植工程が、画像認識/画像解析の工程S5730から配列工程S5750の間に、追加的に栽培プレート3600の回転させる工程を有しているとよい。
 そのような構成では、図63(a)における、生長範囲が偏っている植物を有する栽培プレート3520c、3520d、3520e、3520f、3520gのうちのいくつかを回転させてから、配列することにより、再配列後のスペーシング状態において、第3の範囲6300A1、及び、第4の範囲6300A2、が生じることを低減させることができる。
 図63(b)には、栽培プレート3520c、3520d、3520fが90°回転されて配列された栽培プレート3520cR、3520dR、3520fR、及び、栽培プレート3520eが180°回転されて配列された栽培プレート3520eR、が図示されている。
 栽培プレート3520を回転させることにより、図63(b)では、第3の範囲6300A1、及び、第4の範囲6300A2の発生が回避されている。
 図64は、生長範囲が偏っている植物を有する栽培プレートのスペーシングを説明する別の説明図の例である。
 図64(a)は、図63(a)と同様の、生長範囲が偏っている植物の生長範囲の重なりを説明する説明図の例である。図64(a)は、図63(a)と同様のスペーシング状態を図示している。詳細については、図63(a)の説明を参照されたい。
 図64(b)は、図63(a)のスペーシング状態に栽培プレートスペーサ3700を追加した、別のスペーシング状態を説明する説明図の例である。
 自動移植制御装置は、画像認識/画像解析の工程S5730で、第3の範囲6300A1、及び、第4の範囲6300A2の発生の有無を判断し、その判断に応じて、第3の範囲6300A1、及び、第4の範囲6300A2の発生が低減するように、配列工程S5750で、予定のスペーシング状態に対して、更に栽培プレートスペーサ3700を追加してもよい。
 そのような構成では、図64(a)における予定のスペーシング状態に対して、生長範囲が偏っている植物を有する栽培プレート3520c、3520d、3520e、3520f、3520gの周囲に栽培プレートスペーサ3700a、3700b、3700c、3700dを追加することによって、再配列後のスペーシング状態において、第3の範囲6300A1、及び、第4の範囲6300A2、が生じることを低減させることができる。
 実施例1等には少なくとも以下が記載されている。
 (1)
 育植ポットであって、
 複数のポットピースを備え、
 前記ポットピースはそれぞれ植物を収容するためのポット穴を有し、
 複数の前記ポットピースの複数の前記ポット穴の間の間隔が変更可能である、
育植ポット。
 (2)
 前記複数のポットピースは、第1端部ポットピース、中間ポットピース、及び、第2端部ポットピースから構成され、
 前記第1端部ポットピース、前記中間ポットピース、及び、前記第2端部ポットピースを、前記育植ポットの長手方向で移動させることにより、前記ポット穴の間の間隔が変更される、
育植ポット。
 (3)
 前記第1端部ポットピースは、前記中間ポットピースの挿入領域を挿入するための収容領域を有し、
 前記中間ポットピースは、前記第2端部ポットピースの挿入領域を挿入するための収容領域を有し、
 前記第1端部ポットピースの収容領域内で前記中間ポットピースの挿入領域を移動させること、又は、前記中間ポットピースの収容領域内で前記第2端部ポットピースの挿入領域を移動させること、のうち少なくとも一方により、前記ポット穴の間の間隔が変更される、
育植ポット。
 (4)
 前記第1端部ポットピースの収容領域の幅及び前記中間ポットピースの収容領域の幅が等しく、
 前記中間ポットピースの挿入領域の幅及び前記第2端部ポットピースの挿入領域の幅が等しく、
 前記ポット穴の間の間隔が最も短い状態では、前記第1端部ポットピースの収容領域及び前記中間ポットピースの収容領域が、面一に並ぶ、
 育植ポット。
 (5)
 前記第1端部ポットピースは、前記収容領域に対して反対側に第1の結合部を有し、
 前記第2端部ポットピースは、前記挿入領域に対して反対側に第2の結合部を有し、
 前記第1の結合部及び前記第2の結合部が、2つの前記育植ポットを長手方向で接続するように、相補的に形成されている、
育植ポット。
 (6)
 前記第1端部ポットピースの収容領域を形成する上面部、前記中間ポットピースの収容領域を形成する上面部、前記中間ポットピースの挿入領域を形成する上面部、及び、前記第2端部ポットピースの挿入領域を形成する上面部が、それぞれ円弧状切り欠き部を有し、
 前記ポット穴の間の間隔が最も短い状態では、前記円弧状切り欠き部が前記ポット穴の壁部の少なくとも一部に接触している、
育植ポット。
 (7)
 前記第1端部ポットピースの収容領域を形成する側壁部、及び、前記中間ポットピースの収容領域を形成する側壁部が、それぞれ突起部を有し、
 前記中間ポットピースの挿入領域を形成する側壁部、及び、前記第2端部ポットピースの挿入領域を形成する側壁部が、それぞれスリット状開口部を有し、
 前記突起部は、前記スリット状開口部内で、前記育植ポットを伸長又は収縮する方向に移動可能であり、
 前記ポット穴の間の間隔が最も短い状態では、前記突起部は、前記スリット状開口部内で前記スリット状開口部の前記長手方向の端部に接触している、
育植ポット。
 (8)
 養液トレイの育植ポット収容部に収容可能であり、
 前記育植ポットの最長の伸長長さが、前記育植ポット収容部の第1の辺の長さに対応し、
 前記育植ポットの最短の伸縮長さの整数倍が、前記育植ポット収容部の第2の辺の長さに対応し、
 前記育植ポットの幅の長さの整数倍が、前記育植ポット収容部の前記第2の辺の長さに対応する、
育植ポット。
 (9)
 前記第1端部ポットピース、前記中間ポットピース、及び、前記第2端部ポットピースが、前記育植ポット収容部の底部と接触する脚部を有する、
育植ポット。
 (10)
 前記ポット穴の間の間隔が最も短い状態では、異なるポットピースの脚部が重なる、
育植ポット。
 (11)
 前記ポットピースの前記脚部は前記ポットピースの側面から見て前記ポット穴と重ならない位置に配置される、
育植ポット。
 実施例2等には少なくとも以下が記載されている。
 (1)
 養液トレイであって、
 植物を収容するための収容部、水又は養液を流入させるための養液流入領域、及び、前記水又は前記養液を流出させるための養液流出口を有する養液流出領域を有し、
  少なくとも前記収容部、前記養液流入領域、及び、前記養液流出領域が、前記養液トレイの底面を形成し、
 前記養液トレイは、第1の設置面及び第2の設置面からなる第1の設置面ペアを有し、
 前記第1の設置面は、前記養液トレイの長手方向で前記養液流入領域の側に形成されており、
 前記第2の設置面は、前記養液トレイの長手方向で前記養液流出領域の側に形成されており、
 前記第1の設置面は、前記第2の設置面よりも前記底面から離れている、
養液トレイ。
 (2)
 前記養液トレイは、第3の設置面及び第4の設置面からなる第2の設置面ペアを有し、
 前記第3の設置面は、前記養液トレイの長手方向で前記養液流入領域の側に形成されており、
 前記第4の設置面は、前記養液トレイの長手方向で前記養液流出領域の側に形成されており、
 前記第4の設置面は、前記第3の設置面よりも前記底面から離れている、
養液トレイ。
 (3)
 前記養液流出領域が、前記養液流出領域の前記底面から突出している少なくとも1つの突出構造を有し、
 前記突出構造が、前記養液流出領域へ向かう前記水又は前記養液の流れを、迂回させる、
養液トレイ。
 (4)
 複数の前記突出構造、及び、複数の前記養液流出口を有し、
 前記複数の突出構造が、前記流れを分流して前記複数の養液流出口へ案内する、
養液トレイ。
 (5)
 前記養液トレイの長手方向に延伸するそれぞれの側壁部が結合構造を有し、
 前記結合構造が、前記養液トレイの短手方向で隣り合う2つの前記養液トレイを結合する、
養液トレイ。
 (6)
 一方の前記側壁部が凸形の結合構造を有し、
 他方の前記側壁部が凹形の結合構造を有し、
 前記隣り合う2つの養液トレイの一方の前記凸形の結合構造と、前記隣り合う2つの養液トレイの他方の前記凹形の結合構造とが、結合する、
養液トレイ。
 (7)
 前記養液流入領域に、又は、前記収容部及び前記養液流入領域の間に、前記養液トレイの短手方向に延伸する複数の短手壁部を有し、
 2つの前記短手壁部の間に、隙間を有する、
養液トレイ。
 (8)
 前記収容部に、前記養液トレイの長手方向に延伸する複数の長手壁部を有し、
 2つの前記長手壁部の間に、前記水又は前記養液の流れる流路を有する、
養液トレイ。
 (9)
 前記養液流入領域に、又は、前記収容部及び前記養液流入領域の間に、前記養液トレイの短手方向に延伸する複数の短手壁部を有し、
 2つの前記短手壁部の間に、隙間を有し、
 前記収容部に、前記養液トレイの長手方向に延伸する複数の長手壁部を有し、
 2つの前記長手壁部の間に、前記水又は前記養液の流れる流路を有し、
 前記流路に少なくとも1つの前記隙間が接続している、
養液トレイ。
 (10)
 前記収容部及び前記養液流入領域の少なくとも一方内に、複数のパターン構造体を有する、
 前記パターン構造体は、前記水又は前記養液の流れを、前記養液トレイの短手方向に分流する又は拡げる、
養液トレイ。
 (11)
 前記養液トレイの長手方向に延伸する少なくとも一方の前記養液トレイの側壁部が、切り欠き部を有する、
養液トレイ。
 (12)
 前記底面が、前記養液トレイの長手方向に延伸する段差部を介して、前記養液トレイの長手方向に延伸する前記養液トレイの側壁部と接続する、
養液トレイ。
 (13)
 前記養液トレイの前記収容部に収容可能なスペーシングセットであって、
  植物を収容するための栽培穴を有する複数の栽培プレート、
  栽培プレートスペーサ、及び、
  前記栽培プレート及び前記栽培プレートスペーサの少なくとも1つを収容可能な栽培パネル、
 から構成されている、
スペーシングセット。
 (14)
 複数の前記栽培プレートは、前記栽培プレート及び/又は前記栽培プレートスペーサの配置に応じて、複数の異なる間隔で、前記養液トレイの前記収容部内に収容される、
スペーシングセット。
 (15)
 前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第1の整数倍が、前記養液トレイの前記収容部の長手方向の長さに対応し、
 前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第2の整数倍が、前記養液トレイの前記収容部の短手方向の長さに対応する、
スペーシングセット。
 (16)
 前記栽培パネルの長辺の長さの第3の整数倍が、前記養液トレイの前記収容部の長手方向の長さに対応し、
 前記栽培パネルの短辺の長さの第4の整数倍が、前記養液トレイの前記収容部の短手方向の長さに対応し、
 前記栽培パネルが少なくとも1つの開口部を有し、
 前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第5の整数倍が、前記開口部の短手方向の長さに対応し、
 前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第6の整数倍が、前記開口部の長手方向の長さに対応する、
スペーシングセット。
 (17)
 前記開口部が、上方の第1の開口面及び下方の第2の開口面を有し、
 前記第1の開口面の面積は、前記第2の開口面の面積より大きく、
 前記開口部が、前記第2の開口面の周りに縁領域を有し、
 前記開口部に収容された前記栽培プレート及び前記栽培プレートスペーサの少なくとも一部が、前記縁領域に接触する
スペーシングセット。
 (18)
 前記収容部に複数の前記栽培プレートを収容する場合に、
 前記収容部に前記栽培プレートのみを収容した第1の構成、
 前記収容部に前記栽培プレート及び前記栽培プレートスペーサを収容した第2の構成、
 前記収容部に前記栽培プレート、前記栽培プレートスペーサ、及び、前記栽培パネルを収容した第3の構成、
 があり、
 少なくとも部分的に、前記第2の構成及び前記第3の構成での前記栽培プレートの間隔が、前記第1の構成での前記栽培プレートの間隔よりも、広い、
スペーシングセット。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上述の実施例は少なくとも特許請求の範囲に記載の構成を開示している。
100…育植ユニット、101…育植ポット、102…養液トレイ、103…スペーサ、105…収容領域、110…ポット穴、701…第1端部ポットピース、702…第2端部ポットピース、703…中間ポットピース、2101…底面、2104…第1の脚部(第3設置面)、2105…第2の脚部(第4設置面)、2201…第1の設置部(第1設置面)、2202…第2の設置部(第2設置面)、2401…養液流入領域、2403…養液流出領域、3600…栽培プレート、3610…栽培穴、3700…栽培プレートスペーサ、3800…栽培パネル、4200…養液トレイ、4920…収容領域(収容部)、4930…養液流出領域、4400…底面 

Claims (18)

  1.  養液トレイであって、
     植物を収容するための収容部、水又は養液を流入させるための養液流入領域、及び、前記水又は前記養液を流出させるための養液流出口を有する養液流出領域を有し、
      少なくとも前記収容部、前記養液流入領域、及び、前記養液流出領域が、前記養液トレイの底面を形成し、
     前記養液トレイは、第1の設置面及び第2の設置面からなる第1の設置面ペアを有し、
     前記第1の設置面は、前記養液トレイの長手方向で前記養液流入領域の側に形成されており、
     前記第2の設置面は、前記養液トレイの長手方向で前記養液流出領域の側に形成されており、
     前記第1の設置面は、前記第2の設置面よりも前記底面から離れている、
    養液トレイ。
  2.  前記養液トレイは、第3の設置面及び第4の設置面からなる第2の設置面ペアを有し、
     前記第3の設置面は、前記養液トレイの長手方向で前記養液流入領域の側に形成されており、
     前記第4の設置面は、前記養液トレイの長手方向で前記養液流出領域の側に形成されており、
     前記第4の設置面は、前記第3の設置面よりも前記底面から離れている、
    請求項1に記載の養液トレイ。
  3.  前記養液流出領域が、前記養液流出領域の前記底面から突出している少なくとも1つの突出構造を有し、
     前記突出構造が、前記養液流出領域へ向かう前記水又は前記養液の流れを、迂回させる、
    請求項1に記載の養液トレイ。
  4.  複数の前記突出構造、及び、複数の前記養液流出口を有し、
     前記複数の突出構造が、前記流れを分流して前記複数の養液流出口へ案内する、
    請求項3に記載の養液トレイ。
  5.  前記養液トレイの長手方向に延伸するそれぞれの側壁部が結合構造を有し、
     前記結合構造が、前記養液トレイの短手方向で隣り合う2つの前記養液トレイを結合する、
     請求項1に記載の養液トレイ。
  6.  一方の前記側壁部が凸形の結合構造を有し、
     他方の前記側壁部が凹形の結合構造を有し、
     前記隣り合う2つの養液トレイの一方の前記凸形の結合構造と、前記隣り合う2つの養液トレイの他方の前記凹形の結合構造とが、結合する、
     請求項5に記載の養液トレイ。
  7.  前記養液流入領域に、又は、前記収容部及び前記養液流入領域の間に、前記養液トレイの短手方向に延伸する複数の短手壁部を有し、
     2つの前記短手壁部の間に、隙間を有する、
    請求項1に記載の養液トレイ。
  8.  前記収容部に、前記養液トレイの長手方向に延伸する複数の長手壁部を有し、
     2つの前記長手壁部の間に、前記水又は前記養液の流れる流路を有する、
    請求項1に記載の養液トレイ。
  9.  前記養液流入領域に、又は、前記収容部及び前記養液流入領域の間に、前記養液トレイの短手方向に延伸する複数の短手壁部を有し、
     2つの前記短手壁部の間に、隙間を有し、
     前記収容部に、前記養液トレイの長手方向に延伸する複数の長手壁部を有し、
     2つの前記長手壁部の間に、前記水又は前記養液の流れる流路を有し、
     前記流路に少なくとも1つの前記隙間が接続している、
    請求項1に記載の養液トレイ。
  10.  前記収容部及び前記養液流入領域の少なくとも一方内に、複数のパターン構造体を有する、
     前記パターン構造体は、前記水又は前記養液の流れを、前記養液トレイの短手方向に分流する又は拡げる、
    請求項1に記載の養液トレイ。
  11.  前記養液トレイの長手方向に延伸する少なくとも一方の前記養液トレイの側壁部が、切り欠き部を有する、
     請求項1に記載の養液トレイ。
  12.  前記底面が、前記養液トレイの長手方向に延伸する段差部を介して、前記養液トレイの長手方向に延伸する前記養液トレイの側壁部と接続する、
     請求項1に記載の養液トレイ。
  13. スペーシングセット
     請求項1に記載の前記養液トレイの前記収容部に収容可能なスペーシングセットであって、
      植物を収容するための栽培穴を有する複数の栽培プレート、
      栽培プレートスペーサ、及び、
      前記栽培プレート及び前記栽培プレートスペーサの少なくとも1つを収容可能な栽培パネル、
     から構成されている、
    スペーシングセット。
  14.  複数の前記栽培プレートは、前記栽培プレート及び/又は前記栽培プレートスペーサの配置に応じて、複数の異なる間隔で、前記養液トレイの前記収容部内に収容される、
    請求項13に記載のスペーシングセット。
  15.  前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第1の整数倍が、前記養液トレイの前記収容部の長手方向の長さに対応し、
     前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第2の整数倍が、前記養液トレイの前記収容部の短手方向の長さに対応する、
    請求項13に記載のスペーシングセット。
  16.  前記栽培パネルの短辺の長さの第3の整数倍が、前記養液トレイの前記収容部の短手方向の長さに対応し、
     前記栽培パネルの長辺の長さの第4の整数倍が、前記養液トレイの前記収容部の長手方向の長さに対応し、
     前記栽培パネルが少なくとも1つの開口部を有し、
     前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第5の整数倍が、前記開口部の長手方向の長さに対応し、
     前記栽培プレート及び前記栽培プレートスペーサの1辺の長さの第6の整数倍が、前記開口部の短手方向の長さに対応する、
    請求項13に記載のスペーシングセット。
  17.  前記開口部が、上方の第1の開口面及び下方の第2の開口面を有し、
     前記第1の開口面の面積は、前記第2の開口面の面積より大きく、
     前記開口部が、前記第2の開口面の周りに縁領域を有し、
     前記開口部に収容された前記栽培プレート及び前記栽培プレートスペーサの少なくとも一部が、前記縁領域に接触する
    請求項16に記載のスペーシングセット。
  18.  前記収容部に複数の前記栽培プレートを収容する場合に、
     前記収容部に前記栽培プレートのみを収容した第1の構成、
     前記収容部に前記栽培プレート及び前記栽培プレートスペーサを収容した第2の構成、
     前記収容部に前記栽培プレート、前記栽培プレートスペーサ、及び、前記栽培パネルを収容した第3の構成、
     があり、
     少なくとも部分的に、前記第2の構成及び前記第3の構成での前記栽培プレートの間隔が、前記第1の構成での前記栽培プレートの間隔よりも、広い、
    請求項13に記載のスペーシングセット。
PCT/JP2022/033976 2021-09-10 2022-09-09 養液トレイ WO2023038130A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3231245A CA3231245A1 (en) 2021-09-10 2022-09-09 Nutrient solution tray
JP2023547016A JPWO2023038130A1 (ja) 2021-09-10 2022-09-09

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-147489 2021-09-10
JP2021147489 2021-09-10
JP2022-063600 2022-04-06
JP2022063600 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023038130A1 true WO2023038130A1 (ja) 2023-03-16

Family

ID=85506475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033976 WO2023038130A1 (ja) 2021-09-10 2022-09-09 養液トレイ

Country Status (3)

Country Link
JP (1) JPWO2023038130A1 (ja)
CA (1) CA3231245A1 (ja)
WO (1) WO2023038130A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567251U (ja) * 1992-02-19 1993-09-07 勝 見並 観賞魚用水槽の水草鉢
JPH0734642U (ja) * 1993-12-14 1995-06-27 浜松ホトニクス株式会社 傾斜栽培水耕装置
JPH08266174A (ja) * 1995-03-30 1996-10-15 Mishima Shokuhin Kk 植物水耕栽培方法
JP2011030578A (ja) * 2010-11-22 2011-02-17 Chugoku Electric Power Co Inc:The 縦置き水耕栽培装置
JP2020071382A (ja) 2018-10-31 2020-05-07 株式会社タムロン 補正レンズ及び撮像装置
JP2020137417A (ja) * 2019-02-26 2020-09-03 貴幸 西野 把持移送装置、この把持移送装置を備えた葉物野菜収穫装置
JP2020141566A (ja) * 2019-03-04 2020-09-10 伊東電機株式会社 栽培トレイ及び植物栽培装置
WO2021024583A1 (ja) * 2019-08-06 2021-02-11 株式会社プランテックス 植物栽培装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567251U (ja) * 1992-02-19 1993-09-07 勝 見並 観賞魚用水槽の水草鉢
JPH0734642U (ja) * 1993-12-14 1995-06-27 浜松ホトニクス株式会社 傾斜栽培水耕装置
JPH08266174A (ja) * 1995-03-30 1996-10-15 Mishima Shokuhin Kk 植物水耕栽培方法
JP2011030578A (ja) * 2010-11-22 2011-02-17 Chugoku Electric Power Co Inc:The 縦置き水耕栽培装置
JP2020071382A (ja) 2018-10-31 2020-05-07 株式会社タムロン 補正レンズ及び撮像装置
JP2020137417A (ja) * 2019-02-26 2020-09-03 貴幸 西野 把持移送装置、この把持移送装置を備えた葉物野菜収穫装置
JP2020141566A (ja) * 2019-03-04 2020-09-10 伊東電機株式会社 栽培トレイ及び植物栽培装置
WO2021024583A1 (ja) * 2019-08-06 2021-02-11 株式会社プランテックス 植物栽培装置

Also Published As

Publication number Publication date
CA3231245A1 (en) 2023-03-16
JPWO2023038130A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
JP6760436B2 (ja) 植物栽培方法及び施設
JP6785378B2 (ja) 栽培装置、立体多段式栽培システム及び植物工場栽培システム
JP5916189B2 (ja) 水耕栽培装置
CN110139555B (zh) 用于在室内栽培植物的气候密封气候控制室
US11716940B2 (en) Plant cultivation method, plant cultivation system, and rack
CN103945687B (zh) 一种种植植物的方法及设备
KR101929102B1 (ko) 수경 재배 시스템, 수경 재배 방법, 식물 재배 시스템 및 식물 재배 장치
KR101022025B1 (ko) 식물 재배 장치
KR101873374B1 (ko) 수경 재배기
JP5057882B2 (ja) 植物の水耕栽培装置
WO2023038130A1 (ja) 養液トレイ
JP6659421B2 (ja) 水耕栽培装置および水耕栽培方法
CN210987536U (zh) 萝卜苗水培装置
JPH10155378A (ja) 水耕栽培方法および水耕栽培装置
WO2018016609A1 (ja) 栽培設備
KR19990087639A (ko) 식수, 식물 재배 및 이식용 장치
JP2021029173A (ja) 植物栽培装置及び植物製造方法
KR101739775B1 (ko) 수경 재배 장치
JP7044559B2 (ja) 水耕栽培容器
CN216673976U (zh) 一种种植托盘及相应的垂直化培养系统
WO2010046959A1 (ja) 植物の水耕栽培装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023547016

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18689850

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3231245

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022867451

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867451

Country of ref document: EP

Effective date: 20240410