WO2023038080A1 - 光学フィルムの製造方法および光学フィルムの製造装置 - Google Patents
光学フィルムの製造方法および光学フィルムの製造装置 Download PDFInfo
- Publication number
- WO2023038080A1 WO2023038080A1 PCT/JP2022/033690 JP2022033690W WO2023038080A1 WO 2023038080 A1 WO2023038080 A1 WO 2023038080A1 JP 2022033690 W JP2022033690 W JP 2022033690W WO 2023038080 A1 WO2023038080 A1 WO 2023038080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical film
- support
- web
- peeling
- poor solvent
- Prior art date
Links
- 239000012788 optical film Substances 0.000 title claims abstract description 118
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 65
- 239000002904 solvent Substances 0.000 claims abstract description 85
- 239000007788 liquid Substances 0.000 claims abstract description 68
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims abstract description 43
- 238000005266 casting Methods 0.000 claims abstract description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000001035 drying Methods 0.000 description 25
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000010408 film Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 13
- 238000003756 stirring Methods 0.000 description 12
- 238000004804 winding Methods 0.000 description 11
- 238000004049 embossing Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000013557 residual solvent Substances 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 150000002430 hydrocarbons Chemical group 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- -1 ester compounds Chemical class 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000002798 polar solvent Substances 0.000 description 4
- 238000011176 pooling Methods 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- 125000003368 amide group Chemical group 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 150000001925 cycloalkenes Chemical class 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000005462 imide group Chemical group 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 101100064324 Arabidopsis thaliana DTX48 gene Proteins 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/24—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/34—Component parts, details or accessories; Auxiliary operations
- B29C41/36—Feeding the material on to the mould, core or other substrate
Definitions
- the present invention relates to an optical film manufacturing method and an optical film manufacturing apparatus.
- various optical films such as a transparent protective film for protecting the polarizing elements of the polarizing plate are arranged.
- a transparent protective film for protecting the polarizing elements of the polarizing plate for example, a highly transparent resin film such as a cellulose ester film or a cycloolefin polymer (COP) film is used.
- COP cycloolefin polymer
- An optical film is manufactured, for example, using a solution film-forming method (see, for example, Japanese Patent Application Laid-Open No. 2017-187617).
- a solution film-forming method a dope containing a resin material is cast on a support such as a belt to form a web (cast film), and then the web is separated from the support.
- an object of the present invention is to provide an optical film manufacturing method and an optical film manufacturing apparatus capable of suppressing the occurrence of lateral peeling and keeping the manufacturing route and the optical film clean.
- preparing a dope comprising a cycloolefin polymer; casting said dope onto a support to form a web; peeling the web from the support while forming a pool of the poor solvent of the polymer, wherein the pool has a size of 0.5 cm or more and 3.0 cm or less in the peeling direction of the web.
- FIG. 1 is a schematic diagram showing an example of the configuration of an optical film manufacturing apparatus according to an embodiment of the present invention.
- FIG. FIG. 2 is a schematic diagram showing an example of a configuration in the vicinity of a peeling roller shown in FIG. 1;
- 2 is a flow chart showing an example of a method for manufacturing an optical film using the manufacturing apparatus shown in FIG. 1;
- a method for producing an optical film according to one aspect of the present invention includes the steps of preparing a dope containing a cycloolefin polymer, casting the dope on a support to form a web, and peeling the web from the support while forming a pool of the poor solvent for the cycloolefin polymer between the web and the web peeled from the body.
- the liquid pool has a size of 0.5 cm or more and 3.0 cm or less in the peeling direction of the web.
- An apparatus for manufacturing an optical film according to one aspect of the present invention includes a support on which a dope containing a cycloolefin polymer is cast, and a web formed on the support by casting the dope.
- the poor solvent supply part forms the liquid pool part having a size of 0.5 cm or more and 3.0 cm or less in the peeling direction of the web. According to the present invention, since a pool of the poor solvent having a size of 0.5 cm or more is formed between the support and the web in the peeling direction of the web, the occurrence of transverse peeling can be suppressed. In addition, since this liquid pool is formed with a size of 3.0 cm or less in the peeling direction of the web, contamination of the manufacturing route and the optical film due to the liquid pool can be suppressed. Therefore, it is possible to suppress the occurrence of horizontal peeling steps and to keep the manufacturing route and the optical film clean.
- X to Y indicating a range means “X or more and Y or less”.
- operations, physical properties, etc. are measured under the conditions of room temperature (20 to 25° C.)/relative humidity of 40 to 50% RH.
- FIG. 1 is a cross-sectional view showing a schematic configuration of an optical film manufacturing apparatus (manufacturing apparatus 100) according to one embodiment
- FIG. 2 is an enlarged view of a part of FIG.
- the manufacturing apparatus 100 includes, for example, a stirring device 1, a casting die 2, a support 3, a peeling roll 4, a poor solvent supply section 41, a first drying device 6, a tenter 8, a second drying device 9, a cutting section 10, and an embossing device. It has a processing section 11 and a winding device 12 .
- the peel roll 4 corresponds to a specific example of the peel section of the present invention.
- a dope containing a cycloolefin polymer is prepared in the stirring device 1 .
- the stirring device 1 includes, for example, a stirring tank 1a. At least a resin and a solvent are put into the stirring tank 1a and stirred.
- the resin contains a cycloolefin polymer, and the solvent used is, for example, a mixed solvent of a good solvent and a poor solvent for the cycloolefin polymer.
- Cycloolefin polymers include (co)polymers having the following structures.
- R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group, a halogen atom, a hydroxy group, an ester group, an alkoxy group, a cyano group, an amide group, an imide group, a silyl group, or a polar group (i.e. , a halogen atom, a hydroxy group, an ester group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group).
- R 1 to R 4 may combine with each other to form an unsaturated bond, a monocyclic ring or a polycyclic ring, and this monocyclic or polycyclic ring has a double bond. or may form an aromatic ring.
- R 1 and R 2 or R 3 and R 4 may form an alkylidene group.
- p and m are each independently an integer of 0 or more.
- R 1 and R 3 are hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, and particularly preferably 1 to 2 carbon atoms
- the polar group of the specific monomer includes a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, a cyano group and the like, and these polar groups are linking groups such as a methylene group.
- Polar groups also include hydrocarbon groups in which a polar divalent organic group such as a carbonyl group, an ether group, a silyl ether group, a thioether group, and an imino group are bonded as a linking group.
- a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group is preferable, and an alkoxycarbonyl group or an allyloxycarbonyl group is particularly preferable.
- R 2 and R 4 are a polar group represented by the formula —(CH 2 ) n COOR
- R is a hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, preferably an alkyl group.
- copolymerizable monomers include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, dicyclopentadiene and norbornene.
- the number of carbon atoms in the cycloolefin is preferably 4-20, more preferably 5-12.
- the cycloolefin polymer can be configured either singly or in combination of two or more.
- the cycloolefin polymer of the present embodiment preferably has an intrinsic viscosity [ ⁇ ]inh of 0.2 to 5 dL/g, more preferably 0.3 to 3 dL/g, particularly preferably 0.4 to 1.5 dL/g. be.
- the polystyrene equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of the cycloolefin polymer of the present embodiment is preferably 10000 to 80000, particularly preferably 12000 to 50000, and the weight average molecular weight.
- Mw is preferably in the range of 20,000 to 300,000, more preferably 30,000 to 250,000, particularly preferably 40,000 to 200,000.
- the heat resistance, water resistance, chemical resistance, and mechanical properties of the cycloolefin polymer and the moldability as a cycloolefin film are improved. becomes good.
- the glass transition temperature (Tg) of the cycloolefin polymer is, for example, 110°C or higher, preferably 110 to 350°C, more preferably 120 to 250°C, particularly preferably 120 to 220°C.
- a Tg of less than 110° C. is not preferable because it is deformed by use under high temperature conditions or by secondary processing such as coating and printing.
- the Tg exceeds 350° C., molding becomes difficult, and the possibility of deterioration of the resin due to heat during molding increases.
- a specific hydrocarbon resin described in JP-A-9-221577 and JP-A-10-287732 or a known heat Plastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, etc. may be mixed, and specific wavelength dispersion agents, sugar ester compounds (simply referred to as sugar esters), antioxidants, exfoliation accelerators, Additives such as rubber particles, plasticizers, and the like may also be included.
- a commercially available product can be preferably used as the cycloolefin polymer described above.
- Examples of commercially available products include those marketed by JSR Corporation under the trade names ARTON (registered trademark, the same shall apply hereinafter)) G, ARTON F, ARTON R, and ARTON RX; Zeonor (registered trademark, the same applies hereinafter) ZF14, ZF16, Zeonex (registered trademark, the same applies hereinafter) 250 and Zeonex 280 are commercially available, and these can be used.
- the cycloolefin polymer may be synthetic.
- a good solvent for a cycloolefin polymer is a solvent that dissolves 10 g or more of a cycloolefin polymer having a molecular weight of 10,000 or more in 100 mL of solvent at 23°C without turbidity.
- Examples of such a good solvent include methylene chloride and the like.
- a poor solvent for a cycloolefin polymer means a solvent in which the solubility of a cycloolefin polymer having a number average molecular weight of 10,000 or more in 100 mL of the solvent at 23° C. is 5 g or less. Examples of such poor solvents include water and alcohols.
- the alcohol is, for example, a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, more specifically methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol and tert-butyl alcohol, and the like. Alcohol is more preferably methanol or ethanol.
- the poor solvent may be a mixed solvent containing multiple kinds of solvents, or a mixed solvent of a good solvent and a poor solvent as long as the above definition of the poor solvent is satisfied.
- the casting die 2 is connected to the stirring vessel 1a via a conduit, for example.
- the dope prepared in the stirring tank 1a is sent to the casting die 2 by a pressurized gear pump or the like.
- the support 3 is composed of, for example, a stainless steel belt, and is held by a pair of rolls 3a and 3b and a plurality of rolls (not shown) positioned between them. One or both of the rolls 3a, 3b is provided with a drive (not shown) for applying tension to the support 3, whereby the support 3 is used under tension.
- the support 3 may be configured by a drum or the like.
- the dope is cast from the casting die 2 onto the casting position on the support 3 .
- a web (cast film) 5 is formed by drying the dope cast on the support 3 .
- the inclination of the casting die 2, that is, the direction in which the dope is discharged from the casting die 2 to the support 3, is an angle of 0° to 90° with respect to the normal to the surface of the support 3 (the surface on which the dope is cast). is within the range of
- the casting width of the dope on the support 3 is, for example, 1900 mm.
- the manufacturing apparatus 100 further has a heating section that heats the web 5 on the support 3 .
- This heating causes the solvent in the web 5 on the support 3 to evaporate.
- the heating unit heats the web 5 by sending hot air to the web 5 on the support 3, for example.
- the heating unit may heat the back surface of the support 3 using a liquid, or may heat the front and back surfaces of the support 3 by radiant heat.
- the temperature of the support 3 is maintained at, for example, 35.degree. C. to 51.degree. C. by the heating section.
- the stripping roll 4 is arranged, for example, in the transport path between the roll 3b and the first drying device 6, and strips the web 5 from the support 3.
- the web 5 separated from the support 3 will be referred to as an optical film F in the following description.
- the peel tension when peeling the web 5 from the support 3 is, for example, 20 N/m to 400 N/m, preferably 190 N/m or less, more preferably 25 N/m to 90 N/m. . By setting the peel tension to 190 N/m or less, the optical film F is less likely to wrinkle.
- the amount of residual solvent in the web 5 when it is peeled from the support 3 by the peel roll 4 may be adjusted according to the strength of the drying conditions, the length of the support 3, etc., and is in the range of 50 to 120% by mass. It is desirable to have If the amount of residual solvent is large, the flatness of the web 5 cannot be maintained during peeling, and wrinkles and vertical streaks may occur due to the peeling tension. For example, the amount of residual solvent at the time of stripping is adjusted by balancing economic speed and quality.
- the residual solvent amount is defined, for example, by the following formula.
- Residual solvent amount (mass%) (mass of web before heat treatment - mass of web after heat treatment) / (mass of web after heat treatment) x 100
- the heat treatment for measuring the residual solvent amount means heat treatment at 115° C. for 1 hour.
- the poor solvent supply part 41 is arranged near the peeling roll 4 .
- the poor solvent supply unit 41 supplies a poor solvent for the resin material forming the web 5 , that is, the cycloolefin polymer, between the support 3 and the web 5 near the peeling roll 4 .
- the poor solvent supplied by the poor solvent supply unit 41 is, for example, water, alcohol, etc., as described above.
- the poor solvent supplied by the poor solvent supply unit 41 preferably contains water, methanol, or ethanol. As a result, as will be described later, it is possible to more effectively suppress the occurrence of horizontal peeling steps.
- the poor solvent supplied by the poor solvent supply unit 41 may be a mixed solvent containing a plurality of types of solvents. good too.
- the poor solvent supply part 41 is preferably capable of efficiently supplying the poor solvent to a selective region between the support 3 and the web 5, and includes, for example, a tubular member such as a hose.
- the poor solvent supply unit 41 supplies the poor solvent at a rate of, for example, 0.1 L/min to 10 L/min, preferably 1.0 L/min to 2.0 L/min.
- a liquid pool 42 is formed between the support 3 and the web 5 (or the optical film F) peeled off from the support 3. .
- the adhesion force between the support 3 and the web 5 is reduced, and it is possible to suppress the generation of horizontal peeling steps on the web 5 .
- the liquid pool 42 has a size L of 0.5 cm or more and 3.0 cm or less in the peeling direction of the web 5 .
- the peeling direction of the web 5 is the longitudinal direction of the optical film F, for example.
- the size L of the liquid pool 42 is, for example, the distance from the position a where peeling of the web 5 (or the optical film F) starts to the position b of the optical film F corresponding to the surface of the liquid pool 42 .
- the liquid pool 42 preferably has a size T of 0.5 cm or more and 8.0 cm or less in the direction perpendicular to the peeling direction of the web 5, and more preferably 4.20 cm or more and 7.0 cm or less. desirable.
- the size T is, for example, the maximum value of the liquid pool 42 in the longitudinal direction and the vertical direction of the optical film F. correspond to the size.
- the angle ⁇ 1 between the support 3 (the surface of the roll 3b) in contact with the liquid pool 42 and the optical film F (optical film F separated from the support 3) in contact with the liquid pool 42 is, for example, It is preferably 1° or more and 40° or less, and preferably 5° or more and 30° or less. At this time, the portion of the support 3 that is in contact with the liquid pool 42 is approximated to a plane.
- the angle ⁇ 2 formed by the surface of the liquid pooling portion 42 and the optical film F in the portion in contact with the liquid pooling portion 42 is, for example, 90° or more and 140° or less, preferably 100° or more and 130° or less.
- a plurality of transport rolls are provided in the first drying device 6 provided on the transport path between the peeling roll 4 and the tenter 8 .
- the plurality of transport rolls are arranged in a zigzag pattern within the first drying device 6, for example.
- the optical film F conveyed by the plurality of conveying rolls is dried.
- the first drying device 6 dries the optical film F using, for example, hot air, infrared rays, heating rolls, microwaves, or the like. From the point of view of simplicity, the first drying device 6 preferably dries the optical film F with hot air.
- the drying method by the first drying device 6 is not limited to these.
- the tenter 8 is provided, for example, in the transport path between the first drying device 6 and the second drying device 9.
- the optical film F dried by the first drying device 6 is stretched.
- the stretching direction at this time is either the MD direction (conveying direction), the TD direction (transverse direction), or both of these directions.
- both side edges of the optical film F are fixed with clips or the like. Thereby, the flatness and dimensional stability of the optical film F can be improved.
- the optical film F may be stretched and dried.
- the second drying device 9 is provided, for example, in a transport path between the tenter 8 and the cutting section 10, and dries the optical film F stretched by the tenter 8.
- the second drying device 9 has, for example, a plurality of transport rolls arranged in a zigzag pattern, and the optical film F is dried while being transported by these transport rolls.
- the second drying device 9 dries the optical film F using, for example, hot air, infrared rays, heating rolls or microwaves. From the point of view of simplicity, the second drying device 9 preferably dries the optical film F using hot air.
- the cutting section 10 provided on the transport path between the second drying device 9 and the embossing section 11 cuts the optical film F dried by the second drying device 9 into a desired shape.
- both ends in the width direction of the optical film F are cut.
- the cutting section 10 is composed of, for example, a slitter.
- the optical film F cut at both ends is transported to the embossing section 11 along the transport path.
- the unnecessary part after cutting is collected by a shooter, for example, and reused as part of the raw material of the optical film F.
- the embossing part 11 is provided, for example, on the transport path between the cutting part 10 and the winding device 12 .
- both ends in the width direction of the optical film F are embossed (knurled).
- the embossing part 11 performs embossing by pressing a heated embossing roller against both ends of the optical film F, for example.
- the surface of the embossing roller is formed with fine unevenness.
- the winding device 12 is arranged, for example, at the end point of the transport route.
- the embossed optical film F is wound around a core to form a film roll.
- the winding device 12 winds up the optical film F using, for example, a winder.
- Winding methods include, for example, a constant torque method, a constant tension method, a taper tension method, or a program tension control method with constant internal stress.
- FIG. 3 shows an example of a method for manufacturing the optical film F using the manufacturing apparatus 100. As shown in FIG.
- step S101 At least a cycloolefin polymer and a solvent are stirred in the stirring vessel 1a of the stirring device 1 to prepare a dope (step S101).
- the prepared dope is sent to the casting die 2 using a pressurized constant-rate gear pump or the like, and the dope is cast from the casting die 2 onto the support 3 (step S102).
- the dope on the support 3 is heated, for example, by a heating unit to form a web 5 on the support 3 .
- the web 5 on the support 3 is dried and solidified or cooled and solidified until it has a peelable film strength
- the web 5 is peeled off from the support 3 while forming the poor solvent pool 42 (step S103).
- the amount of poor solvent supplied from the poor solvent supply unit 41 is adjusted so that the size L of the liquid pool 42 is 0.5 cm or more and 3.0 cm or less.
- the optical film F peeled from the support 3 is dried by the first drying device 6 .
- the optical film F is stretched by the tenter 8 (step S104), it is dried by the second drying device 9 (step S105).
- the cutting portion 10 cuts both ends of the optical film F in the width direction, and the embossing portion 11 embosses (knurls) the both ends.
- the film roll of the optical film F is completed by winding the embossed optical film F with the winding device 12 (step S106).
- the optical film F thus produced preferably contains 50% by mass or more, more preferably 70 to 90% by mass or more of the cycloolefin polymer.
- the optical film F may contain additives depending on the application. As additives, for example, benzotriazole-based ultraviolet absorbers, triazine-based ultraviolet absorbers, polyester-based additives, fine particles, and the like are particularly preferably used.
- the optical film F may contain additives such as specific wavelength dispersion agents, sugar ester compounds (simply referred to as sugar esters), antioxidants, release accelerators, rubber particles or plasticizers.
- the poor solvent pool 42 having a size L of 0.5 cm or more and 3.0 cm or less in the peeling direction of the web 5 between the web 5 and the support 3. is formed, it is possible to suppress the occurrence of horizontal peeling and to keep the manufacturing route and the optical film clean. This action and effect will be described in detail below.
- Increasing the amount of polar solvent contained in the dope can be considered as a method of suppressing the occurrence of horizontal delamination.
- the adhesion between the support and the dope is reduced, making it possible to suppress the occurrence of horizontal peeling steps.
- the web tends to become cloudy and the quality may deteriorate.
- the peeling lateral step tends to occur. This is considered to be caused by the fact that the optical film peeled off from the support comes into contact with the support again due to vibration during peeling.
- the web 5 is separated from the support 3 while forming the poor solvent pool 42 between the web 5 and the support 3 .
- the liquid pool 42 prevents the optical film F peeled from the support 3 from coming into contact with the support 3 again, thereby suppressing the generation of horizontal peeling steps.
- the liquid pool 42 has a size L of 0.5 cm or more in the peeling direction of the web 5, the optical film F and the support 3 are prevented from coming into contact with each other again at a sufficient distance. It is possible to suppress the occurrence of horizontal peeling steps.
- the poor solvent is less likely to leak or scatter from the liquid pool 42 . Therefore, contamination of the manufacturing route and the optical film F due to the liquid pool 42, specifically, adhesion of the poor solvent to the support 3 and the roll 3b, or the support 3 or the roll 3b to which the poor solvent is adhered to the surface of the optical film F can be suppressed.
- a size L of 0.5 cm or more is provided between the support 3 and the web 5 peeled from the support 3 in the peeling direction of the web 5. Since the liquid pool 42 of the poor solvent is formed, the occurrence of cross-separation is suppressed. Moreover, since the liquid pool 42 is formed with a size L of 3.0 cm or less in the peeling direction of the web 5, contamination of the manufacturing route and the optical film F due to the liquid pool 42 can be suppressed. Therefore, it is possible to suppress the occurrence of horizontal peeling steps and to keep the manufacturing route and the optical film F clean. Thereby, in the manufacturing apparatus 100, it becomes possible to improve the production speed of the optical film F containing a cycloolefin polymer.
- Fine particles (Aerosil (registered trademark) R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle diameter: 7 nm, apparent specific gravity 50 g / L) 4 parts by mass Methylene chloride 48 parts by mass Ethanol 48 parts by mass
- dispersion was performed by an attritor so that the secondary particles had a predetermined size. This was filtered through Finemet (registered trademark) NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle addition liquid.
- a dope having the following composition was prepared. First, methylene chloride and ethanol were added to a pressurized dissolution tank. A cycloolefin polymer (ARTON (registered trademark) G7810, manufactured by JSR Corporation) was charged into a pressurized dissolution tank containing a mixed solution of methylene chloride and ethanol while stirring. Furthermore, 15 minutes after the start of adding the solvent, the fine particle addition liquid prepared above was added, heated to 80° C., and completely dissolved with stirring. At this time, the temperature was raised from room temperature at a rate of 5°C/min, dissolved in 30 minutes, and then lowered at a rate of 3°C/min. The resulting solution was filtered through Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. 244 was used to prepare the dope.
- ARTON registered trademark
- the liquid pool 42 had a size L of 0.53 cm in the peeling direction of the web 5 and a size T of 0.50 cm in the direction perpendicular to the peeling direction of the web 5 .
- the liquid pool portion 42 was formed by supplying water from the poor solvent supply portion 41 at 1.4 L/min.
- the peel tension when peeling the web 5 from the support 3 is 85 N/m
- the angle ⁇ 1 between the support 3 in the portion in contact with the liquid pool 42 and the optical film F in the portion in contact with the liquid pool 42 is 5°
- the angle ⁇ 2 formed by the surface of the liquid pooling portion 42 and the optical film F in the portion in contact with the liquid pooling portion 42 was 130°.
- the sizes L, T and the angles ⁇ 1, ⁇ 2 of the liquid pool 52 were measured by measuring the vicinity of the liquid pool 42 with a camera (Ultra high resolution 71 million pixel Cameralink CMOS camera RMOD-71M-CL (color) manufactured by Illunis). sought by photographing. Specifically, the images were taken from a direction perpendicular to the direction in which the web 5 was conveyed. The size L and the angles ⁇ 1 and ⁇ 2 were read from the photographed photograph, and the size T was calculated from the following formula (1).
- the optical film F peeled from the support 3 was stretched 1.2 times in the transport direction to shrink by 15% in the width direction, and then stretched 1.5 times in the width direction at 160°C.
- the amount of residual solvent at the start of stretching was 15% by mass.
- the optical film F was dried at 120°C for 15 minutes in the first drying device 6, and then transported to the winding device 12 via the tenter 8, the second drying device 9 and the cutting section 10. As a result, an optical film F having a thickness of 100 ⁇ m and a width of 1900 mm was obtained.
- Example 2 An optical film F was produced in the same manner as in the production of the optical film F of Example 1, except that the size L of the liquid pool 42 was changed to 1 cm and the size T was changed to 0.94 cm. The sizes L and T of the liquid pool 42 were adjusted by changing the amount of poor solvent supplied from the poor solvent supply unit 41 .
- Example 3 An optical film F was produced in the same manner as in the production of the optical film F of Example 1, except that the size L of the liquid pool 42 was changed to 2.95 cm and the size T was changed to 2.79 cm. The sizes L and T of the liquid pool 42 were adjusted by changing the amount of poor solvent supplied from the poor solvent supply unit 41 .
- Example 4 An optical film F was produced in the same manner as in the production of the optical film F of Example 2, except that the poor solvent forming the liquid pool 42 was changed to methanol.
- Example 5 An optical film F was produced in the same manner as in the production of the optical film F of Example 2, except that the poor solvent forming the liquid pool 42 was changed to ethanol.
- Example 6 An optical film F was produced in the same manner as in the production of the optical film F of Example 2, except that the poor solvent forming the liquid pool 42 was changed to isopropyl alcohol.
- Example 7 An optical film F was produced in the same manner as in the production of the optical film F of Example 2, except that the poor solvent forming the liquid pool 42 was changed to tert-butyl alcohol.
- the size T of the liquid pool 42 was adjusted by changing the amount of poor solvent supplied from the poor solvent supply unit 41 and the magnitude of the peeling tension. At this time, the peel tension when peeling the web 5 from the support 3 was 35 N/m, the angle ⁇ 1 was 20°, and the angle ⁇ 2 was 110°.
- Example 9 An optical film F was produced in the same manner as in the production of the optical film F of Example 2, except that the size T of the liquid pool 42 was changed to 6.43 cm.
- the size T of the liquid pool 42 was adjusted by changing the amount of poor solvent supplied from the poor solvent supply unit 41 and the magnitude of the peeling tension. At this time, the peel tension when peeling the web 5 from the support 3 was 25 N/m, the angle ⁇ 1 was 30°, and the angle ⁇ 2 was 100°.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
図1は、一実施形態の光学フィルムの製造装置(製造装置100)の概略の構成を示す断面図であり、図2は、図1の一部を拡大して表している。製造装置100は、たとえば、攪拌装置1、流延ダイ2、支持体3、剥離ロール4、貧溶媒供給部41、第1乾燥装置6、テンター8、第2乾燥装置9、切断部10、エンボス加工部11および巻取装置12を有している。ここでは、剥離ロール4が、本発明の剥離部の一具体例に対応する。
ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
図3は、製造装置100を用いた光学フィルムFの製造方法の一例を表している。
本実施形態の製造装置100および製造方法では、ウェブ5と支持体3との間に、ウェブ5の剥離方向に0.5cm以上3.0cm以下の大きさLを有する貧溶媒の液だまり部42が形成されるので、剥離横段の発生を抑えるとともに、製造経路および光学フィルムを清浄に維持することが可能となる。以下、この作用効果について詳細に説明する。
(微粒子添加液の調製)
微粒子(アエロジル(登録商標)R812:日本アエロジル株式会社製、一次平均粒子径:7nm、見掛け比重50g/L) 4質量部
メチレンクロライド 48質量部
エタノール 48質量部
以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線株式会社製のファインメット(登録商標)NFで濾過し、微粒子添加液を調製した。
下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライドとエタノールを添加した。メチレンクロライドとエタノールの混合溶液の入った加圧溶解タンクにシクロオレフィンポリマー(ARTON(登録商標) G7810、JSR株式会社製)を攪拌しながら投入した。さらに、溶媒投入開始後15分後に、上記で調製した微粒子添加液を投入して、これを80℃に加熱し、攪拌しながら、完全に溶解した。このとき、室温から5℃/minの昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液を安積濾紙株式会社製の安積濾紙No.244を使用して濾過し、ドープを調製した。
シクロオレフィンポリマー(ARTON(登録商標) G7810、JSR株式会社製) 100質量部
メチレンクロライド 200質量部
エタノール 10質量部
微粒子添加液 1質量部
次いで、流延ダイ2を用い、ドープを温度35℃、1900mm幅で支持体3上に均一に流延した。支持体3は35-50℃の温度に制御し、搬送速度を40m/minとした。そして、支持体3上で、流延(キャスト)したウェブ5中の残留溶媒量が100質量%になるまで溶媒を蒸発させ、支持体3上からウェブ5(光学フィルムF)を剥離した。このとき、支持体3と支持体3から剥離されるウェブ5との間に貧溶媒の液だまり部42を形成しながらウェブ5を剥離した。
上記実施例1の光学フィルムFの製造において、液だまり部42の大きさLを1cm、大きさTを0.94cmに変更した以外は同様にして、光学フィルムFを製造した。液だまり部42の大きさL,Tは、貧溶媒供給部41からの貧溶媒の供給量を変更することにより調整した。
上記実施例1の光学フィルムFの製造において、液だまり部42の大きさLを2.95cm、大きさTを2.79cmに変更した以外は同様にして、光学フィルムFを製造した。液だまり部42の大きさL,Tは、貧溶媒供給部41からの貧溶媒の供給量を変更することにより調整した。
上記実施例2の光学フィルムFの製造において、液だまり部42を形成する貧溶媒をメタノールに変更した以外は同様にして、光学フィルムFを製造した。
上記実施例2の光学フィルムFの製造において、液だまり部42を形成する貧溶媒をエタノールに変更した以外は同様にして、光学フィルムFを製造した。
上記実施例2の光学フィルムFの製造において、液だまり部42を形成する貧溶媒をイソプロピルアルコールに変更した以外は同様にして、光学フィルムFを製造した。
上記実施例2の光学フィルムFの製造において、液だまり部42を形成する貧溶媒をtert-ブチルアルコールに変更した以外は同様にして、光学フィルムFを製造した。
上記実施例2の光学フィルムFの製造において、液だまり部42の大きさTを4.20cmに変更した以外は同様にして、光学フィルムFを製造した。液だまり部42の大きさTは、貧溶媒供給部41からの貧溶媒の供給量および剥離張力の大きさを変更することにより調整した。このとき、支持体3からウェブ5を剥離する際の剥離張力は35N/m、角度θ1は20°、角度θ2は110°であった。
上記実施例2の光学フィルムFの製造において、液だまり部42の大きさTを6.43cmに変更した以外は同様にして、光学フィルムFを製造した。液だまり部42の大きさTは、貧溶媒供給部41からの貧溶媒の供給量および剥離張力の大きさを変更することにより調整した。このとき、支持体3からウェブ5を剥離する際の剥離張力は25N/m、角度θ1は30°、角度θ2は100°であった。
上記実施例1の光学フィルムFの製造において、液だまり部を形成せずに、ロール3bおよび剥離ロール4を貧溶媒に浸漬させたこと以外は同様にして、光学フィルムを製造した。
上記実施例1の光学フィルムFの製造において、液だまり部を形成せずに、支持体3からウェブ5を剥離する際に、貧溶媒を噴霧したこと以外は同様にして、光学フィルムを製造した。
上記実施例1の光学フィルムFの製造において、液だまり部42の大きさLを0.4cm、大きさTを0.38cmに変更した以外は同様にして、光学フィルムを製造した。液だまり部42の大きさL,Tは、貧溶媒供給部41からの貧溶媒の供給量を変更することにより調整した。
上記実施例1の光学フィルムFの製造において、液だまり部42の大きさLを3.5cm、大きさTを3.30cmに変更した以外は同様にして、光学フィルムを製造した。液だまり部42の大きさL,Tは、貧溶媒供給部41からの貧溶媒の供給量を変更することにより調整した。
上記実施例2の光学フィルムFの製造において、液だまり部42を形成する溶媒をメチレンクロライドに変更した以外は同様にして、光学フィルムを製造した。メチレンクロライドは、シクロオレフィンポリマーの貧溶媒には該当しない。なお、支持体3は35-51℃の温度に制御した。
支持体3からウェブ5を剥離する際に生じた剥離横段を、下記の評価基準で目視によって評価した;
≪評価基準≫
A:剥離横段が発生していない、
B:実害性の少ない微小な剥離横段がまれに発生している、
C:実害性の少ない微小な剥離横段が定常的に発生している、
D:実害性のある剥離横段が発生している。
実施例1~10および比較例1~5の条件下で6時間連続して光学フィルムを製造した後、支持体3およびロール3b等を含む製造経路の汚れおよび製造された光学フィルム表面の汚れをそれぞれ、下記の評価基準で目視によって評価した;
≪評価基準≫
A:製造経路または光学フィルム表面が清浄に維持されている、
D:製造経路または光学フィルム表面に汚れがある。
Claims (4)
- シクロオレフィンポリマーを含むドープを調製する工程と、
前記ドープを支持体上に流延してウェブを形成する工程と、
前記支持体と前記支持体から剥離する前記ウェブとの間に前記シクロオレフィンポリマーの貧溶媒の液だまり部を形成しながら、前記ウェブを前記支持体から剥離する工程とを含み、
前記液だまり部は、前記ウェブの剥離方向に0.5cm以上3.0cm以下の大きさを有する、光学フィルムの製造方法。 - 前記液だまり部は、前記剥離方向と垂直方向に0.5cm以上6.4cm以下の大きさを有する、請求項1に記載の光学フィルムの製造方法。
- 前記貧溶媒は、水およびアルコールの少なくとも一方を含む、請求項1または2に記載の光学フィルムの製造方法。
- シクロオレフィンポリマーを含むドープが流延される支持体と、
前記ドープが流延されることによって前記支持体上に形成されたウェブを前記支持体から剥離する剥離部と、
前記支持体と前記支持体から剥離される前記ウェブとの間に、前記シクロオレフィンポリマーの貧溶媒を供給して液だまり部を形成する貧溶媒供給部とを備え、
前記貧溶媒供給部は、前記ウェブの剥離方向に0.5cm以上3.0cm以下の大きさを有する前記液だまり部を形成する、光学フィルムの製造装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023546981A JPWO2023038080A1 (ja) | 2021-09-13 | 2022-09-08 | |
CN202280060651.2A CN117940262A (zh) | 2021-09-13 | 2022-09-08 | 光学膜的制造方法和光学膜的制造装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021148467 | 2021-09-13 | ||
JP2021-148467 | 2021-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023038080A1 true WO2023038080A1 (ja) | 2023-03-16 |
Family
ID=85506436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/033690 WO2023038080A1 (ja) | 2021-09-13 | 2022-09-08 | 光学フィルムの製造方法および光学フィルムの製造装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023038080A1 (ja) |
CN (1) | CN117940262A (ja) |
WO (1) | WO2023038080A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002254451A (ja) * | 2001-02-28 | 2002-09-11 | Fuji Photo Film Co Ltd | 溶液製膜方法 |
JP2004291448A (ja) * | 2003-03-27 | 2004-10-21 | Fuji Photo Film Co Ltd | 溶液製膜方法及びフイルム |
JP2017187617A (ja) * | 2016-04-06 | 2017-10-12 | コニカミノルタ株式会社 | 光学フィルムの製造方法及び製造装置 |
-
2022
- 2022-09-08 WO PCT/JP2022/033690 patent/WO2023038080A1/ja active Application Filing
- 2022-09-08 JP JP2023546981A patent/JPWO2023038080A1/ja active Pending
- 2022-09-08 CN CN202280060651.2A patent/CN117940262A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002254451A (ja) * | 2001-02-28 | 2002-09-11 | Fuji Photo Film Co Ltd | 溶液製膜方法 |
JP2004291448A (ja) * | 2003-03-27 | 2004-10-21 | Fuji Photo Film Co Ltd | 溶液製膜方法及びフイルム |
JP2017187617A (ja) * | 2016-04-06 | 2017-10-12 | コニカミノルタ株式会社 | 光学フィルムの製造方法及び製造装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023038080A1 (ja) | 2023-03-16 |
CN117940262A (zh) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8303867B2 (en) | Method for producing polarizer | |
JP6216848B2 (ja) | ポリビニルアルコール系重合体フィルムロール | |
CN103163583B (zh) | 偏光膜的制造方法 | |
CN108139526B (zh) | 聚乙烯醇系薄膜、及使用其的偏光膜、偏光板、以及聚乙烯醇系薄膜的制造方法 | |
TW201043560A (en) | Method for producing optical film, optical film, polarizer, and liquid crystal display apparatus | |
CN105891929A (zh) | 光学膜的制造方法 | |
JP6889416B2 (ja) | 光学フィルムの製造方法 | |
TWI789390B (zh) | 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜之製造方法 | |
JP2010274615A (ja) | 光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置 | |
JP6819217B2 (ja) | 偏光膜製造用ポリビニルアルコール系フィルム、およびそれを用いた偏光膜、偏光板 | |
JP2017102439A (ja) | 偏光膜製造用ポリビニルアルコール系フィルム、およびそれを用いた偏光膜、偏光板、ならびに偏光膜製造用ポリビニルアルコール系フィルムの製造方法 | |
WO2023038080A1 (ja) | 光学フィルムの製造方法および光学フィルムの製造装置 | |
JP2004106420A (ja) | セルロースエステルフイルム及びその製造方法 | |
TWI676638B (zh) | 聚乙烯醇系薄膜、聚乙烯醇系薄膜之製造方法及偏光膜 | |
JP6044541B2 (ja) | 長尺延伸フィルムの製造方法及び円偏光板の製造方法 | |
TWI313772B (en) | Polarizing plate and production process for polarizing plate | |
TWI798217B (zh) | 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜之製造方法 | |
JP2018065259A (ja) | 光学フィルムの製造方法 | |
KR101050414B1 (ko) | 셀룰로오스 필름의 제조 장치 및 방법 | |
JP7192198B2 (ja) | 偏光膜用ポリビニルアルコール系フィルム、およびその製造方法、ならびに偏光膜、およびその製造方法 | |
KR102629982B1 (ko) | 편광막 제조용 폴리비닐 알코올계 필름 및 이를 사용한 편광막, 편광판, 및 편광막 제조용 폴리비닐 알코올계 필름의 제조 | |
TWI772409B (zh) | 聚乙烯醇系薄膜、偏光膜、偏光板及聚乙烯醇系薄膜之製造方法 | |
JP2017102437A (ja) | 偏光膜製造用ポリビニルアルコール系フィルム、およびそれを用いた偏光膜、偏光板、ならびに偏光膜製造用ポリビニルアルコール系フィルムの製造方法 | |
TWI716479B (zh) | 聚乙烯醇系膜及利用此聚乙烯醇系膜之偏光膜、偏光板與聚乙烯醇系膜之製造方法 | |
CN116806234A (zh) | 膜、膜卷和膜的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867401 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023546981 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280060651.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22867401 Country of ref document: EP Kind code of ref document: A1 |