WO2023038072A1 - 乳酸菌、乳酸菌スターター、発酵乳、発酵乳の製造方法、及び乳酸菌のスクリーニング方法 - Google Patents

乳酸菌、乳酸菌スターター、発酵乳、発酵乳の製造方法、及び乳酸菌のスクリーニング方法 Download PDF

Info

Publication number
WO2023038072A1
WO2023038072A1 PCT/JP2022/033646 JP2022033646W WO2023038072A1 WO 2023038072 A1 WO2023038072 A1 WO 2023038072A1 JP 2022033646 W JP2022033646 W JP 2022033646W WO 2023038072 A1 WO2023038072 A1 WO 2023038072A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
acid bacteria
culture
culture solution
fermented milk
Prior art date
Application number
PCT/JP2022/033646
Other languages
English (en)
French (fr)
Inventor
浩文 後藤
智奈弥 溝口
芳美 眞壁
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to CN202280060920.5A priority Critical patent/CN117916358A/zh
Priority to JP2023546975A priority patent/JPWO2023038072A1/ja
Publication of WO2023038072A1 publication Critical patent/WO2023038072A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to lactic acid bacteria, lactic acid starter, fermented milk, and a method for producing fermented milk, more specifically, lactic acid bacteria, lactic acid bacteria starter and fermented milk containing the same, and methods for producing fermented milk, and further, lactic acid bacteria. It relates to a screening method.
  • fermented milk is defined as "milk or milk containing non-fat milk solids equal to or higher than that is fermented with lactic acid bacteria or yeast. made into a paste or liquid, or frozen".
  • Representative examples of such fermented milk include yogurt such as set type yogurt (solid fermented milk), soft type yogurt (paste-like fermented milk), and drink type yogurt (liquid fermented milk).
  • yogurt for example, in the "Codex standards (FAO (Food and Agriculture Organization of the United Nations) / WHO (World Health Organization))", which is a food standard shared by the international community, "Lactobacillus delbrueckii subspecies Bulgari bulgaricus and Streptococcus thermophilus (S. thermophilus), which are subjected to lactic acid fermentation.”
  • FEO Food and Agriculture Organization of the United Nations
  • WHO World Health Organization
  • yogurt generally refers to a product obtained by adding these two types of bacteria as a starter to raw milk and fermenting the lactose in the raw milk, and having a sour taste mainly due to the lactic acid produced by the fermentation. characterized by
  • lactic acid bacteria such as Streptococcus thermophilus can produce lactic acid by fermentation even at low temperatures
  • the fermented product after the fermentation for example, fermented milk such as yogurt
  • the fermented product after the fermentation cannot be stored under low temperature conditions. Even so, there was a problem that the amount of lactic acid produced was excessive and the acidity increased (that is, the pH decreased), and the flavor was spoiled.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-236416
  • Patent Document 2 describes an acid production-suppressing strain of Lactobacillus delbrueckii subspecies bulgaricus for the purpose of obtaining fermented milk with little increase in acidity under low-temperature storage. and a viscous-producing strain of Streptococcus salivarius subspecies thermophilus.
  • Patent Document 2 12% reduced skim milk with 0.05% yeast extract is coagulated at 37 to 43 ° C.
  • Patent Document 3 describes a Lactobacillus delbrueckii subsp. In the same mutant strain, when the pH decreases during the fermentation process, H + is not excreted outside the cells, and the pH in the cells decreases, suppressing growth (that is, causing so-called apoptosis). It is described that the amount of lactic acid produced is reduced.
  • JP-A-7-236416 Japanese Patent No. 4331309 JP-A-2001-95561
  • the present invention has been made in view of the above-mentioned problems of the prior art, and provides fermented milk in which a decrease in pH during low-temperature storage is suppressed and the number of viable lactic acid bacteria is sufficiently maintained even by the low-temperature storage.
  • An object of the present invention is to provide a lactic acid bacterium that can be obtained, a lactic acid starter and fermented milk containing the lactic acid bacterium, a method for producing the fermented milk, and a method for screening the lactic acid bacterium.
  • the present inventors have conducted intensive research to achieve the above object, and as a result, when cultured at 43 ° C. in a specific condition, that is, (a) 10% skim milk medium, (a1) pH of the culture solution becomes 4.7 or less is 7 hours or less from the start of the culture, and (a2) the pH of the culture solution after 20 hours from the start of the culture is 4.1 or more, and/or ( b) In a 10% skim milk powder medium, when cultured at 43 ° C. until the pH of the culture solution becomes 4.7 or less and then stored at 10 ° C.
  • a specific condition that is, (a) 10% skim milk medium, (a1) pH of the culture solution becomes 4.7 or less is 7 hours or less from the start of the culture, and (a2) the pH of the culture solution after 20 hours from the start of the culture is 4.1 or more, and/or ( b) In a 10% skim milk powder medium, when cultured at 43 ° C. until the pH of the culture solution becomes 4.7 or less and then stored at
  • a lactic acid bacterium belonging to Streptococcus thermophilus the following (a) and (b): (a) When cultured at 43 ° C. in a 10% skim milk medium, (a1) the time until the pH of the culture solution becomes 4.7 or less is 7 hours or less from the start of the culture, and (a2) the above 20 hours after the start of culture, the pH of the culture solution is 4.1 or higher, and (b) after culturing at 43 ° C. in a 10% skim milk medium until the pH of the culture solution is 4.7 or lower, 10 When stored at ° C.
  • the lactic acid bacterium composition according to [6] further containing lactic acid bacteria belonging to the genus Lactobacillus.
  • the lactic acid bacteria composition according to [6] or [7] which is a lactic acid bacteria starter.
  • the lactic acid bacteria composition according to [6] or [7] which is fermented milk.
  • a method for producing fermented milk comprising a fermentation step of obtaining fermented milk by fermenting.
  • a lactic acid bacterium belonging to Streptococcus thermophilus the following (a): (a) When cultured at 43 ° C.
  • a method for screening lactic acid bacteria comprising a selection step of selecting low-acid-producing lactic acid bacteria using as an index the satisfaction of the following conditions.
  • a method for producing fermented milk comprising a fermentation step of obtaining fermented milk by adding lactic acid bacteria selected by the screening method for lactic acid bacteria according to [12] to a formula liquid containing raw material milk and fermenting them.
  • a lactic acid bacterium capable of obtaining fermented milk in which a decrease in pH during storage at a low temperature (for example, 10° C.) is suppressed and in which the number of viable lactic acid bacteria is sufficiently maintained even by the storage at a low temperature can be obtained. It is possible to provide a lactic acid bacteria starter and fermented milk, a method for producing fermented milk, and a method for screening lactic acid bacteria.
  • FIG. 10 is a graph showing changes over time in the number of viable bacteria during storage at 10° C. for OLS4802 strain (Example 2), OLS4803 strain (Example 3), and P2101201 strain (Comparative Example 1) in Test Example 3.
  • FIG. 10 is a graph showing changes over time in the number of viable bacteria during storage at 10° C. for OLS4802 strain (Example 2), OLS4803 strain (Example 3), and P2101201 strain (Comparative Example 1) in Test Example 3.
  • lactic acid bacteria is a general term for microorganisms capable of assimilating glucose to produce lactic acid at a yield of 50% or more based on sugar, and as physiological properties, they are Gram-positive cocci or bacilli. characteristics such as no motility, no ability to form spores in many cases (some lactic acid bacteria have the ability to form spores, such as Bacillus coagulans), and negative catalase.
  • the lactic acid bacterium of the present invention is a lactic acid bacterium belonging to Streptococcus thermophilus.
  • Streptococcus thermophilus also called Streptococcus thermophilus, is a lactic acid bacterium capable of producing lactic acid from lactose.
  • lactic acid bacteria belonging to Streptococcus thermophilus are sometimes referred to as "S. thermophilus”.
  • the lactic acid bacterium of the present invention S.
  • the thermophilus preferably has the prtS gene.
  • S. cerevisiae harboring the prtS gene By using Thermophilus, the time required for completion of fermentation can be shortened, and fermented milk with a more favorable flavor tends to be obtained.
  • the "prtS gene” refers to a gene encoding a cell wall-bound serine protease that degrades casein.
  • S. Thermophilus possesses the prtS gene, for example, S. cerevisiae, which can be obtained from public databases (Genbank, etc.).
  • a sequence highly conserved among prtS genes of Thermophilus is selected, a part of the prtS gene is amplified by PCR using a primer set prepared based on the sequence, and the desired PCR product is obtained. can do.
  • the primer set include, but are not limited to, a primer set consisting of Fprimer and Rprimer described in the Examples below.
  • the lactic acid bacteria of the present invention are the following (a) and (b): (a) when cultured at 43 ° C. in a 10% skim milk medium, (a1) The time required for the pH of the culture solution to reach 4.7 or less is 7 hours or less from the start of the culture, and (a2) 20 hours after the start of the culture, the pH of the culture solution is 4.1 or higher, and (b) the culture is continued at 43 ° C. in a 10% skim milk medium until the pH of the culture solution is 4.7 or lower. After that, when stored at 10 ° C.
  • the number of viable bacteria in the culture solution after storage is 1 ⁇ 10 8 cfu/g or more, and (b2) the pH of the culture solution after storage is 4.2 or higher; It is necessary to satisfy at least one condition selected from the group consisting of When the lactic acid bacterium satisfies the above condition (a) and/or condition (b), in the fermented milk obtained using such lactic acid bacterium, the acid production amount during low temperature storage is reduced to suppress the pH drop, and It is possible to sufficiently maintain the viable cell count of lactic acid bacteria even by the low-temperature storage.
  • the present inventors have surprisingly found that there is a correlation between the pH change of the culture solution during cultivation at 43°C and the pH change of the culture solution during storage at 10°C, and that condition (a) is It has been found that the above-mentioned effects of the present invention are exhibited by the lactic acid bacteria that satisfy.
  • condition (a) may further include the following (a3) and/or (a4): (a3) After culturing until the pH of the culture solution is 4.7 or less, the number of viable bacteria in the culture solution after storage at 10 ° C. for 10 days is 1 ⁇ 10 8 cfu / g or more, and / or (a4) after culturing until the pH of the culture solution is 4.7 or less in the culture, and then after storage at 10 ° C. for 10 days, the pH of the culture solution becomes 4.2 or more, is preferably satisfied.
  • condition (b) when the lactic acid bacterium satisfies only the above condition (b) (that is, the condition (b1) and the condition (b2)), the condition (b) further includes the following (b3) and/or (b4): (b3) the time until the pH of the culture solution becomes 4.7 or less is 7 hours or less from the start of the culture, and/or (b4) the pH of the culture solution after 20 hours from the start of the culture is 4.1 more than is preferably satisfied.
  • skim milk powder medium indicates a medium containing 10% by mass of skim milk powder.
  • the skim milk powder according to the present invention refers to powdered skim milk obtained by removing fat from animal milk (preferably cow's milk). (Hereinafter referred to as "Milk Ministerial Ordinance” in some cases)", the milk solid content is 95.0% or more and the water content is 5.0% or less.
  • the composition of such skimmed milk powder includes, for example, a composition containing the composition described in "Japanese Food Standard Composition Tables 2015 Edition (7th Edition)", that is, 100 g, energy 300 to 400 (preferably 359) kcal, water 3-5 (preferably 3.8) g, protein 30-40 (preferably 34.0) g, lipid 0.2-2 (preferably 1.0) g, carbohydrates (including lactose) 45-60 ( Preferably 53.3) g, calcium 900-2000 (preferably 1100) mg, vitamin A 3-10 (preferably 6) ⁇ g, vitamin B 2 0.5-2 (preferably 1.60) mg, cholesterol 10 30 (preferably 25) mg, equivalent to 0.5 to 2 (preferably 1.4) g of salt.
  • the pH of such a 10% skim milk powder medium is usually 6-7.
  • the 10% skim milk medium according to the conditions (a) and (b) may contain other components other than the skim milk powder, but even in that case, the content of the other components is It is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, and is composed of 10% by mass of skim milk powder and 90% by mass of water (preferably drinking water). Especially preferred.
  • the other components include yeast extract and peptides.
  • the 10% skimmed milk medium according to the conditions (a) and (b) may be substantially free of the yeast extract. preferable.
  • "substantially does not contain” means, for example, 0.001% by mass or less with respect to the total mass.
  • the lactic acid bacterium of the present invention can satisfy the condition (a) and/or the condition (b) even in a medium that does not contain the yeast extract.
  • the 10% skim milk powder medium according to conditions (a) and (b) is preferably sterilized or sterilized. These conditions are not particularly limited, but for example, the sterilization conditions include conditions of 70 to 130° C. for 1 minute to 1 hour, and the sterilization conditions include conditions of 75 to 125° C. Conditions for 10 minutes to 30 minutes can be mentioned.
  • the 10% skim milk powder medium the following first 10% skim milk powder medium and second 10% skim milk powder medium have the same composition and / or the same sterilization treatment or sterilization treatment. or may have different compositions and/or treatments.
  • the second 10% skim milk powder medium may contain part or all of the culture solution after the first culture.
  • activation culture (first culture)
  • first culture a 10% skim milk medium
  • first 10% skim milk powder medium a 10% skim milk medium
  • the amount of lactic acid bacteria to be subjected to the first culture is preferably an amount such that the number of viable bacteria is 1 ⁇ 10 2 to 2 ⁇ 10 8 cfu/g in the first 10% skim milk powder medium. , 1 ⁇ 10 4 to 1 ⁇ 10 6 cfu/g.
  • the number of viable bacteria is measured by, for example, an appropriately diluted lactic acid bacteria-containing solution (for example, in the case of the first culture, the culture solution of the first culture (lactic acid bacteria and the first 10% skim milk powder The diluted solution of the medium)) is spread on a suitable agar medium, for example, a BCP-added plate count agar medium, which is an official medium stipulated by the Ministerial Ordinance for Milk, etc., cultured, and measured by counting the number of colonies that appear. can be done. Since the viable count value (cfu/g) at this time is the viable count in the lactic acid bacteria-containing solution (g), the viable count in the culture solution of the first culture, for example, is calculated from this. do.
  • an appropriately diluted lactic acid bacteria-containing solution for example, in the case of the first culture, the culture solution of the first culture (lactic acid bacteria and the first 10% skim milk powder The diluted solution of the medium)
  • a suitable agar medium for example, a BCP-added plate count
  • the anaerobic culture method is not particularly limited, but a method conventionally known as an anaerobic culture method for lactic acid bacteria, for example, in the presence of an oxygen concentration adjusting agent (e.g., Anaeropack Kenki (manufactured by Mitsubishi Gas Chemical Company)) Static culture in
  • an oxygen concentration adjusting agent e.g., Anaeropack Kenki (manufactured by Mitsubishi Gas Chemical Company)
  • Static culture e.g., Anaeropack Kenki (manufactured by Mitsubishi Gas Chemical Company) Static culture in the present invention
  • the first culture may be repeated a plurality of times (for example, two times or less) by inoculating the culture solution after the culture into the first powdered skim milk medium again.
  • Second culture In conditions (a) and (b), culture using lactic acid bacteria or a culture solution after the first culture (i.e., a first 10% skim milk medium containing activated lactic acid bacteria) (hereinafter sometimes referred to as "second culture”).
  • first culture i.e., a first 10% skim milk medium containing activated lactic acid bacteria
  • second culture In the second culture, culture is performed at 43° C. in a 10% skim milk powder medium (hereinafter, the medium for the second culture is sometimes referred to as a “second 10% skim milk powder medium”).
  • the amount of lactic acid bacteria to be subjected to the second culture is preferably an amount such that the number of viable bacteria is 2 ⁇ 10 6 to 5 ⁇ 10 7 cfu/g for the second 10% skim milk powder medium.
  • the culture method for the second culture is not particularly limited, but a method conventionally known as a fermentation method for fermented milk using lactic acid bacteria, such as static culture, can be appropriately employed.
  • the second culture when fermentation is performed in which lactose contained in the second 10% skim milk powder medium is metabolized by lactic acid bacteria to produce lactic acid, the lactic acid lowers the pH of the culture solution.
  • the fermentation is completed when the pH of the culture solution (that is, the pH of the second 10% skim milk medium containing lactic acid bacteria) is 4.7 or less.
  • the standard is to become
  • the time to complete the fermentation (that is, the pH reaches 4.7) must be 7 hours or less from the start of the second culture, and 6 hours It is particularly preferably 5 hours or less, and more preferably 5 hours or less.
  • a lactic acid bacterium whose time until completion of fermentation exceeds the upper limit is not preferable in terms of production efficiency because it takes time to produce fermented milk, and low-temperature storage reduces the number of viable bacteria in fermented milk.
  • the lower limit of the time until completion of the fermentation is not particularly limited, but for example, it is preferably 1 hour or more, more preferably 2 hours or more.
  • the pH of the culture solution after 20 hours from the start of the second culture is 4.1 or higher, and the pH of the culture solution after 24 hours is It is particularly preferred that the pH is 4.1 or higher.
  • the upper limit of the time from the start of the second culture in which the pH can be maintained at 4.1 or higher is not particularly limited, but is preferably 30 hours or less, for example. The present inventors have found that lactic acid bacteria that can maintain a pH of 4.1 or higher after long-term culture at 43° C.
  • the pH may be maintained at 4.1 or higher after long-term culture at 43 ° C. In this case, at least conditions (a1) and (b3), and/or conditions (b1) and (a3) are not met.
  • the culture solution after the fermentation is completed (that is, after the pH reaches 4.7) is quickly cooled and stored.
  • the storage conditions are not particularly limited, but include a method conventionally known as a storage method for fermented milk, for example, a method in which the culture solution is enclosed (preferably sealed) in a container and allowed to stand.
  • condition (a3), condition (a4), condition (b1), and condition (b2) must be low, more specifically, 10°C. be.
  • the storage period for these conditions is independently required to be 10 days or more, particularly preferably 16 days or more, more preferably 20 days or more, and 35 days or more. It is even more preferable to have Even if the lactic acid bacteria of the present invention are stored under low-temperature conditions for a long period of time, the amount of acid production is sufficiently low and the number of viable bacteria is sufficiently maintained.
  • Lactic acid bacteria are usually capable of producing lactic acid even at low temperatures, so if the culture solution after completion of fermentation is stored for a long time as described above, the amount of lactic acid produced increases even under low temperature conditions. The pH of the culture solution further decreases along with this.
  • the pH of the culture solution after storage at 10 ° C. for 10 days that is, the pH of the second 10% skim milk medium containing lactic acid bacteria
  • the pH of the culture solution after storage at 10°C for 35 days is 4.2 or higher (preferably 4.3 or higher, more preferably 4.4 or higher). is more preferred.
  • lactic acid bacteria that are said to be cold-sensitive may not lower the pH of the culture solution even after long-term storage at low temperatures.
  • conventionally known cold-sensitive lactic acid bacteria such as those described in Patent Document 2
  • the present inventors have newly discovered that. This is because, like the bacterium described in Patent Document 3, in conventionally known cold-sensitive lactic acid bacteria, when the pH drops, H + is not excreted out of the cell, and the pH inside the cell drops and the growth is suppressed. The present inventors presume that this is because apoptosis is induced.
  • condition (a3) or condition (b1) lactic acid bacteria satisfying b1) exist.
  • the number of viable bacteria in the culture solution after storage at 10 ° C. for 10 days must be 1 ⁇ 10 8 cfu / g or more, and after storage at 10 ° C. for 16 days It is particularly preferable that the viable cell count in the culture solution is 1 ⁇ 10 8 cfu/g or more, and more preferably the viable cell count in the culture solution after storage at 10° C. for 20 days is 1 ⁇ 10 8 cfu/g or more.
  • the viable cell count in the culture solution after storage at 10°C for 35 days is 1 x 108 cfu/g or more.
  • Conventionally known cold-sensitive lactic acid bacteria do not satisfy at least the conditions (a1) and (b3) and/or the conditions (b1) and (a3).
  • the lactic acid bacteria of the present invention which are thermophilus and satisfy the above conditions (a) and/or (b) may be used singly or in combination of two or more.
  • the lactic acid bacteria of the present invention more specifically, for example, Streptococcus thermophilus OLS4801 (hereinafter sometimes referred to as "OLS4801 strain") specified by Accession No. NITE BP-03504, Accession No.
  • the OLS4801 strain has (1) identification indication: Streptococcus thermophilus OLS4801, (2) accession number: NITE BP-03504, (3) acceptance date: August 4, 2021, and the OLS4802 strain has (1) identification Indication: Streptococcus thermophilus OLS4802, (2) Accession number: NITE BP-03505, (3) Accession date: August 4, 2021, OLS4803 strain is (1) Identification indication: Streptococcus thermophilus OLS4803, (2) Accession number: NITE BP-03506, (3) Accession date: August 4, 2021, the OLS4823 strain has (1) Identification: Streptococcus thermophilus OLS4823, (2) Accession number: NITE BP-03507, (3) Acceptance date: August 4, 2021, OLS4824 strain is (1) Identification: Streptococcus thermophilus OLS4824, (2) Acceptance number: NITE BP-03508, (3) Acceptance date: August 2021 On the 4th of the month, (4) Depositary organization: National Institute of Technology and Evaluation,
  • ⁇ Screening method for lactic acid bacteria Lactic acid bacteria that satisfy the above condition (a) and / or condition (b) have a small amount of acid production during low-temperature storage, and the number of viable bacteria does not decrease even with the low-temperature storage. It is possible to screen lactic acid bacteria suitable for producing fermented milk in which the pH drop during storage is suppressed and the number of viable lactic acid bacteria is sufficiently maintained even by the low-temperature storage. Accordingly, the present invention is directed to S.M.
  • a screening method for lactic acid bacteria comprising a selection step of selecting low-acid-producing lactic acid bacteria that are Thermophilus and satisfy at least one condition selected from the group consisting of conditions (a) and (b) as an indicator. also provide.
  • the term "low-acid-producing lactic acid bacteria” refers to lactic acid bacteria capable of suppressing a decrease in pH during low-temperature storage and maintaining the number of viable bacteria in fermented milk obtained using the same. .
  • the lactic acid bacteria of the present invention are cultured (and optionally the first culture) and stored under the conditions described in the second culture and storage, and the condition (a) and / or Lactic acid bacteria that satisfy the condition (b) are determined to be the low-acid-producing lactic acid bacteria and selected.
  • the conditions (a) and (b), including their preferred embodiments, are as described for the lactic acid bacteria of the present invention.
  • S it is preferable to select a lactic acid bacterium that is thermophilus and satisfies the condition (a) as the low-acid-producing lactic acid bacterium. It is preferable, and it is more preferable to satisfy the condition (b).
  • lactic acid bacterium composition refers to a composition containing lactic acid bacteria, but is not particularly limited. lactic acid bacteria of the present invention), and may consist of only the lactic acid bacteria of the present invention (including a combination of two or more of the lactic acid bacteria of the present invention).
  • the lactic acid bacteria composition of the present invention includes, for example, the following lactic acid bacteria starter and fermented milk.
  • the lactic acid bacterium composition of the present invention may further contain components other than the lactic acid bacterium of the present invention.
  • Examples of the other components include, but are not limited to, a solvent such as water; culture of the lactic acid bacterium; A culture that is the supernatant of the culture solution after completion, a medium component, etc.; It may be a combination of species or more.
  • a solvent such as water
  • culture of the lactic acid bacterium A culture that is the supernatant of the culture solution after completion, a medium component, etc.; It may be a combination of species or more.
  • the lactic acid bacterium starter of the present invention contains at least the lactic acid bacterium of the present invention, and can be suitably used for the following method for producing fermented milk of the present invention.
  • Such a lactic acid bacterium starter of the present invention may consist of only the lactic acid bacterium of the present invention, or may further contain the other ingredients, other lactic acid bacteria, and yeast.
  • the other lactic acid bacteria and yeast include lactic acid bacteria and yeast that are conventionally known to be contained in fermented milk.
  • the other lactic acid bacterium includes S. lactis strain other than the lactic acid bacterium of the present invention.
  • Thermophilus, Lactobacillus lactic acid bacteria e.g., Lactobacillus delbrueckii (particularly Lactobacillus delbrueckii subspecies bulgaricus (Bacillus bulgaricus), Lactobacillus delbrueckii subspecies delbrueckii, Lactobacillus delbrueckii) Lactobacillus delbrueckii subspecies lactis, Lactobacillus delbrueckii subspecies indicus, Lactobacillus delbrueckii subspecies sunki, Lactobacillus delbrueckii subspecies Jacobseni, etc.), Lactobacillus helveticus, Lactobacillus acidophilus, Lac
  • the lactic acid bacteria starter of the present invention may be liquid or solid such as a frozen state or dry powder, and may further contain other ingredients.
  • Other components that can be contained in the lactic acid bacteria starter include, for example, fermentation promoters (formic acid, nucleic acids, etc.); protective agents (sugars); medium components (milk, whey, etc.). It may be one of or a combination of two or more.
  • the content of the lactic acid bacteria of the present invention in the lactic acid bacteria starter of the present invention is not particularly limited, but is preferably 0.01 to 100% by mass, more preferably 0.1 to 90% by mass.
  • the viable count is preferably 1 ⁇ 10 7 cfu/g or more, more preferably 1 ⁇ 10 7 to 1 ⁇ 10 11 cfu/g.
  • the ratio between the content of the lactic acid bacteria of the present invention and the content of the other lactic acid bacteria in the lactic acid bacteria starter is The ratio is preferably 1:0.1 to 1:100, more preferably 1:1 to 1:10 in terms of conversion (the same shall apply hereinafter).
  • the lactic acid bacteria starter of the present invention can be used, for example, in combination with the composition containing the other lactic acid bacteria (second lactic acid bacteria composition) as a lactic acid bacteria starter kit containing the lactic acid bacteria starter of the present invention and the second lactic acid bacteria composition. good.
  • additives for producing fermented milk Fermentation promoting substance, protective agent, etc.
  • a container, instructions for use of the lactic acid bacteria starter, etc. may be combined to form a lactic acid bacteria starter kit.
  • the fermented milk of the present invention contains at least the lactic acid bacterium of the present invention, and can be obtained, for example, by the following method for producing fermented milk of the present invention.
  • a decrease in pH during low-temperature storage is suppressed, and the number of viable bacteria contained is sufficiently maintained even by the low-temperature storage.
  • the fermented milk of the present invention is not particularly limited. 0% or more, and the number of lactic acid bacteria or yeast (preferably the number of lactic acid bacteria (more preferably the number of lactic acid bacteria of the present invention), hereinafter the same) of 10 million/mL or more).
  • the fermented milk of the present invention satisfies the standards of "dairy lactic acid bacteria beverage" according to the milk ministerial ordinance (more specifically, the content of non-fat milk solids is 3.0% or more, the number of lactic acid bacteria Or those with a yeast count of 10 million / mL or more); 1,000,000/mL or more) are also included.
  • the non-fat milk solids content refers to the remaining components (mainly protein, lactose, minerals, etc.) after subtracting the fat content from the whole milk solids.
  • the number of viable bacteria measured by a predetermined test method, the method using the BCP-added plate count agar medium, but when the fermented milk is sterilized, it is measured by the test method before the sterilization. It is a viable cell count conversion.
  • the fermented milk of the present invention may be a fermented product after the fermentation step in the method for producing fermented milk described below, or may be a fermented product that has been sterilized (pulverized, heat-treated, etc.). Alternatively, they may be concentrated, diluted, dried, frozen, or the like. In addition, in this invention, when the said fermented milk is pasteurized, the number of lactic acid bacteria in the said fermented milk is conversion of viable count.
  • the lactic acid bacteria contained in the fermented milk of the present invention include not only live bacteria but also dead bacteria, crushed products and heat-treated products of lactic acid bacteria, concentrates, diluted products, dried products, and frozen products thereof.
  • the fermented milk of the invention preferably contains at least live lactic acid bacteria, and more preferably contains the lactic acid bacteria of the present invention as live bacteria.
  • the fermented milk of the present invention contains ingredients derived from the lactic acid bacterium of the present invention and the following raw material milk (preferably emulsion liquid).
  • the lactic acid bacteria starter, other lactic acid bacteria, and yeast may be further contained within a range that does not impair the effects of the present invention.
  • it may contain various components that can be contained in food and drink.
  • fermented milk examples include sugars, sugar alcohols, minerals, vitamins, proteins, peptides, amino acids, organic acids, pH adjusters, starch and Modified starch, dietary fiber, fruits/vegetables and their processed products, animal and plant crude drug extracts, naturally derived polymers (collagen, hyaluronic acid, chondroitin, etc.), fats and oils, thickeners, emulsifiers, solvents, surfactants, gelling agents, stabilizers, buffers, suspending agents, thickening agents, excipients, disintegrating agents, binders, fluidizing agents, preservatives, coloring agents, flavoring agents, flavoring agents, sweetening agents and the like. It may be one of or a combination of two or more.
  • Yogurt, cheese, fermented cream, fermented butter, etc. are preferable as such fermented milk, and yogurt is particularly preferable.
  • Specific examples of the yogurt include set-type yogurt (solid fermented milk) such as plain yogurt, soft-type yogurt (paste-like fermented milk), and drink-type yogurt (liquid fermented milk). It may be frozen yogurt used as.
  • the fermented milk of the present invention can also be used as a material for fermented foods such as cheese, fermented cream, fermented butter and kefir.
  • the fermented milk of the present invention can also be used as a lactic acid bacteria starter in a method for producing fermented milk, provided that it has not been pasteurized.
  • the lactic acid bacterium of the present invention (including the lactic acid bacterium selected by the screening method for lactic acid bacteria of the present invention) or the lactic acid bacterium composition of the present invention is added to a milk formula containing raw material milk. and fermented to obtain fermented milk.
  • the method for producing fermented milk of the present invention may include the selection step. only.
  • the production method of the present invention by fermenting the raw material milk using the lactic acid bacterium of the present invention, the decrease in pH during low-temperature storage is suppressed, and the number of viable bacteria contained even by the low-temperature storage is sufficiently high. It becomes possible to produce fermented milk that is maintained. Furthermore, the production method of the present invention also makes it possible to sufficiently shorten the time until completion of fermentation.
  • the emulsion liquid according to the present invention contains raw material milk.
  • the raw material milk preferably contains lactose, for example, raw milk (e.g., milk of cow, buffalo, sheep, goat, etc.), pasteurized milk, whole milk, skim milk, whey, and these Processed products (e.g. whole milk powder, whole milk concentrate, skim milk powder, skim concentrate, condensed milk, whey powder, buttermilk, butter, cream, cheese, whey protein concentrate (WPC), whey protein isolate (WPI ), ⁇ -lactalbumin ( ⁇ -La), ⁇ -lactoglobulin ( ⁇ -Lg)), and one of them or a mixture of two or more thereof may be used.
  • raw milk e.g., milk of cow, buffalo, sheep, goat, etc.
  • WPC whey protein concentrate
  • WPI whey protein isolate
  • ⁇ -La ⁇ -lactoglobulin
  • ⁇ -Lg ⁇ -Lg
  • the emulsion liquid according to the present invention may consist of only the raw material milk, or may be an aqueous solution, a diluted solution, or a concentrated liquid of the raw material milk. It may further contain other components. Such other ingredients include water; soymilk, sugars and other sugars, sweeteners, flavorings, fruit juices, pulp, vitamins, minerals, fats and oils, ceramides, collagen, milk phospholipids, foods such as polyphenols, food ingredients, or food additives; pectin, soybean polysaccharides, CMC (carboxymethylcellulose), agar, gelatin, carrageenan, stabilizers such as gums, thickeners, gelling agents, etc., and one of these It may be one or a mixture of two or more.
  • the liquid formula can be prepared by mixing the ingredients, optionally with heating and/or while optionally homogenizing.
  • heat sterilized or sterilized liquid can also be used as the emulsion liquid.
  • the fermentation step of adding the lactic acid bacterium of the present invention or the lactic acid bacterium composition of the present invention to the emulsion preparation and fermenting the mixture a conventionally known method can be appropriately employed, and is not particularly limited.
  • the amount of the lactic acid bacterium of the present invention or the lactic acid bacterium composition of the present invention to be added can be appropriately set according to the amount of the lactic acid bacterium starter to be added that is employed in conventionally known methods for producing fermented milk.
  • the viable cell count of the lactic acid bacteria of the present invention is preferably 1 ⁇ 10 7 to 5 ⁇ 10 9 cfu/g, more preferably 1 ⁇ 10 8 to 2 ⁇ 10 9 cfu/g, relative to the mass of the emulsion. is more preferred.
  • the other lactic acid bacteria and yeast may be added to the emulsion preparation.
  • the ratio of the added amount of the lactic acid bacterium of the present invention to the added amount of the other lactic acid bacterium is preferably 1:0.1 to 1:100, more preferably 1:1 to 1:10.
  • the conditions for the fermentation are not particularly limited, and can be appropriately selected according to the growth conditions of the lactic acid bacteria of the present invention to be added, the amount of the emulsion preparation, and the like.
  • the pH of the emulsion liquid to which the lactic acid bacterium of the present invention or the lactic acid bacterium composition of the present invention is added is 4.7 or less, more preferably 4.0 to 4.5. It is preferable to leave or stir (preferably leave) for 2 to 24 hours, more preferably 3 to 8 hours, and still more preferably 4 to 6 hours until the mixture becomes solid.
  • the anaerobic conditions for example, fermentation under nitrogen aeration conditions can be employed.
  • the fermented milk of the present invention can be obtained by the above fermentation.
  • the fermented product after the fermentation step can be used as the fermented milk of the present invention as it is or by concentrating, diluting, drying, freezing, or the like as necessary.
  • the fermented milk of the present invention may be obtained by crushing or heat-treating the lactic acid bacteria in the fermented product, or by concentrating, diluting, drying, freezing, or the like as necessary. Therefore, the method for producing fermented milk of the present invention may further include these steps (concentration step, dilution step, drying step, freezing step, crushing step, heat treatment step, etc.).
  • thermophilus S. cerevisiae harboring the prtS gene.
  • Strain OLS4801 Example 1: S. cerevisiae identified by accession number NITE BP-03504.
  • thermophilus. prtS gene; and OLS4802 strain Example 2: S. cerevisiae identified by accession number NITE BP-03505. thermophilus.
  • a strain carrying the prtS gene was used.
  • the presence or absence of the prtS gene in each lactic acid bacteria strain was confirmed by the following method. That is, first, five strains of S. cerevisiae whose genome sequences are known were isolated. The prtS gene sequence of Thermophilus was obtained from the NCBI database, and primers (Fprimer: SEQ ID NO: 1, Rprimer: SEQ ID NO: 2) were prepared from highly conserved sequences. Genomic DNA was also extracted from the M17 culture medium of each strain using InstaGeneMatrix (manufactured by BioRad).
  • the mass of the culture solution after activation is 2% by mass (live lactic acid bacteria count: 1 ⁇ 10 7 to 2 ⁇ 10 7 cfu/g). and static culture (fermentation) at 43° C., and the time from the inoculation (fermentation time) until the pH of the culture solution decreased to reach 4.7 was measured. Furthermore, when the pH reached 4.7, the culture was terminated, immediately cooled to 10° C., sealed to prevent air from entering, and left to stand for 10 days, 17 days, or 35 days. The pH (10°C pH) after storage was measured. Separately from the stored one, after the inoculation, culture (fermentation) was performed at 43° C., and the pH of the culture solution (43° C. pH) was measured when the culture was continued for 24 hours. The results are shown in Table 1 below.
  • Test example 2 In order to confirm the relationship between pH after long-term culture at 43 ° C. and acid production during low-temperature storage, the following two strains of lactic acid bacteria: P2101201 strain (Comparative Example 1); and OLS4803 strain (Example 3): S. cerevisiae identified by accession number NITE BP-03506. Thermophilus, all 8 strains of lactic acid bacteria including those carrying the prtS gene (S. thermophilus each carrying the prtS gene) were sterilized at 121 ° C. for 7 minutes in a 10% skim milk medium, 37 ° C., anaerobic conditions. The cells were activated by static culture overnight under low temperature.
  • the mass of the culture solution after activation is 2% by mass (live lactic acid bacteria count: 1 ⁇ 10 7 to 2 ⁇ 10 7 cfu/g).
  • the cells were inoculated in the same manner as above, and subjected to stationary culture (fermentation) at 43° C., and the time (fermentation time) until the pH of the culture solution decreased to reach 4.7 was measured. Furthermore, when the pH reached 4.7, the culture was terminated, immediately cooled to 10° C., sealed to prevent air from entering, and left to stand for 10 days, 20 days, or 35 days. The pH (10°C pH) after storage was measured.
  • the OLS4803 strain also completed fermentation (pH reached 4.7) within 5 hours. Regarding the change in pH over time due to storage at 10° C., the OLS4803 strain did not drop below pH 4.5 even after storage for 35 days. Furthermore, the OLS4803 strain also showed a pH of 4.1 or higher after culturing at 43°C for 20 hours and 24 hours. In addition, among all eight strains of lactic acid bacteria, one strain other than the OLS4803 strain completed fermentation within 5 hours and had a pH of 4.2 or more even after storage at 10 ° C. for 35 days. In addition, the pH became 4.1 or higher after culturing at 43°C for 20 hours and 24 hours.
  • Test example 3 Changes over time in the number of viable cells of strain OLS4802 (Example 2), strain OLS4803 (Example 3), and strain P2101201 (Comparative Example 1) during storage at 10°C were examined. That is, each strain was cultured (fermented) in the same manner as in Test Examples 1 and 2, and the culture was terminated when the pH reached 4.7.
  • OLS4496 strain (Comparative Example 2): S. cerevisiae identified by accession number NITE BP-02875. thermophilus. (1) Identification mark: Streptococcus thermophilus OLS4496, (2) Accession number: NITE BP-02875, and (3) Accession date: February 5, 2019, (4) Depository: Independent Administrative Agency Product Evaluation Technology Platform It has been deposited at the Patent Microorganism Depositary Center of the Organization (Zip code 292-0818, Room 122, Kazusa Kamatari, Kisarazu City, Chiba Prefecture, 2-5-8). carrying the prtS gene; Strain OLS4823 (Example 4): S.
  • the mass of the culture solution after activation is 2% by mass (live lactic acid bacteria count: 1 ⁇ 10 7 to 2 ⁇ 10 7 cfu/g). and cultured (fermented) at 43° C., and the time (fermentation time) until the pH of the culture solution decreased and reached 4.7 was measured. Furthermore, when the pH reaches 4.7, the culture is terminated, immediately cooled to 10° C., sealed to prevent air from entering, and left to stand for 1 day, 12 days, 24 days, or 40 days for storage. The pH (10°C pH) after each storage was measured.
  • both the OLS4823 strain and the OLS4824 strain completed fermentation (pH reached 4.7) within 7 hours, and the pH fell below 4.4 even after storage for 40 days. never happened.
  • the pH became 4.1 or more after culturing at 43° C. for 24 hours.
  • one strain other than the above two strains completed fermentation within 7 hours and had a pH of 4.2 or more even after storage at 10 ° C. for 40 days.
  • the pH after culturing at 43° C. for 24 hours was 4.1 or higher.
  • Test Example 5 First, the following six strains of lactic acid bacteria: P2101201 strain (Comparative Example 1); OLS4801 strain (Example 1); OLS4802 strain (Example 2); OLS4803 strain (Example 3); SBT0144 strain (Comparative Example 3): S. cerevisiae identified by accession number FERM P-16638 described in Patent Document 2. thermophilus; 1131 strain (Comparative Example 4): S. cerevisiae isolated from Meiji Bulgaria Yogurt LB81 (manufactured by Meiji Co., Ltd.).
  • thermophilus was activated by static culture overnight at 37°C under anaerobic conditions in a 10% non-fat dry milk medium sterilized at 121°C for 7 minutes.
  • the mass of the culture solution after activation is 2% by mass (live lactic acid bacteria count: 1 ⁇ 10 7 to 2 ⁇ 10 7 cfu/g).
  • statically cultured (fermented) at 43° C., and the time (fermentation time) until the pH of the culture solution decreased and reached 4.7 was measured.
  • the pH reached 4.7 the culture was terminated, immediately cooled to 10° C., sealed to prevent air from entering, and left to stand for 10 days, 17 days, or 36 days.
  • the pH (10°C pH) after storage was measured.
  • the number of viable bacteria (cfu/g) in the culture solution (g) after each storage was measured in the same manner as in Test Example 3. The results are shown in Table 4 below.
  • both the 1131 strain and the SBT0144 strain which was conventionally known to be cold-sensitive, had a pH of 4.4 or higher when stored at 10°C for up to 36 days, but required 16 hours or longer to complete fermentation. Moreover, it was confirmed that the viable cell count of 1 ⁇ 10 8 cfu/g or more could not be maintained after storage at 10° C. for at least 10 days.
  • strain OLS4823 (Example 4), strain OLS4824 (Example 5), strain SBT0144 (Comparative Example 3), and strain 1131 (Comparative Example 4) were each sterilized at 121°C for 7 minutes. It was activated by static culture overnight at 37° C. under anaerobic conditions in a 10% skim milk powder medium. Next, with respect to 10% skim milk sterilized at 75° C. for 15 minutes, the mass of the culture solution after activation is 2% by mass (live lactic acid bacteria count: 1 ⁇ 10 7 to 2 ⁇ 10 7 cfu/g).
  • both the OLS4823 strain and the OLS4824 strain completed fermentation within 7 hours (the pH reached 4.7), and after storage at 10°C for 36 days, Even if there was, pH was 4.4 or more. Moreover, the viable cell count was maintained at 1 ⁇ 10 8 cfu/g or more even after storage for up to 36 days.
  • both the 1131 strain and the SBT0144 strain which was conventionally known to be cold-sensitive, had a pH of 4.2 or more when stored at 10 ° C. for up to 36 days, It took 16 hours or more, and it was confirmed that the viable cell count of 1 ⁇ 10 8 cfu/g or more could not be maintained after storage at 10° C. for at least 10 days.
  • a lactic acid bacterium capable of obtaining fermented milk in which a decrease in pH during low-temperature storage is suppressed and the number of viable lactic acid bacteria is sufficiently maintained even by the low-temperature storage, It is possible to provide a lactic acid bacteria starter and fermented milk containing, a method for producing fermented milk, and a screening method for lactic acid bacteria.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Dairy Products (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)に属する乳酸菌であり、下記(a)及び(b): (a)10%脱脂粉乳培地において43℃で培養をしたとき、(a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、(a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、及び (b)10%脱脂粉乳培地において43℃で培養液のpHが4.7以下となるまで培養をした後、10℃で10日間保存したとき、(b1)前記保存後の培養液における生菌数が1×108cfu/g以上となり、かつ、(b2)前記保存後の培養液のpHが4.2以上となる、 からなる群から選択される少なくとも1種の条件を満たす、乳酸菌。

Description

乳酸菌、乳酸菌スターター、発酵乳、発酵乳の製造方法、及び乳酸菌のスクリーニング方法
 本発明は、乳酸菌、乳酸菌スターター、発酵乳、及び発酵乳の製造方法に関し、より詳細には、乳酸菌、これを含有する乳酸菌スターター及び発酵乳、並びに、発酵乳の製造方法、さらには、乳酸菌のスクリーニング方法に関する。
 発酵乳は、例えば、日本の「乳及び乳製品の成分規格等に関する省令(乳等省令)」において、「乳又はこれと同等以上の無脂乳固形分を含む乳等を乳酸菌又は酵母で発酵させ、糊状又は液状にしたもの、又はこれらを凍結したもの」と定義されている。かかる発酵乳の代表例としては、例えば、セットタイプヨーグルト(固形状発酵乳)、ソフトタイプヨーグルト(糊状発酵乳)、及びドリンクタイプヨーグルト(液状発酵乳)といったヨーグルトが挙げられる。なお、ヨーグルトは、例えば、国際社会で共有されている食品規格である「Codex規格(FAO(国連食糧農業機関)/WHO(世界保健機関))」において、「ラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクス(Lactobacillus delbrueckii subsp. bulgaricus)及びストレプトコッカス・サーモフィルス(Streptococcus thermophilus、S.サーモフィルス)の2種類で乳酸発酵しているもの」と定義されている。従来より、ヨーグルトといえば一般に、これら2種の菌をスターターとして原料乳に添加し、当該原料乳中の乳糖を発酵させたものを示し、主に前記発酵で産生された乳酸によって酸味を有することを特徴とする。
 しかしながら、ストレプトコッカス・サーモフィルス等の乳酸菌は低温においても発酵により乳酸を産生することが可能であるため、前記発酵後の発酵物(例えば、ヨーグルト等の発酵乳)では、保存中に、低温条件下であっても、乳酸の産生量が過剰となって酸度が上昇(すなわちpHが低下)してしまい、その風味が害されてしまうという課題を有していた。
 そのためこれまで、このような乳酸菌の低温における酸産生を抑制することを目的とした研究がいくつかなされている。例えば、特開平7-236416号公報(特許文献1)には、低温保存下において酸度の上昇が少ない発酵乳を得ることを目的として、ラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクスの酸生成抑制株とストレプトコッカス・サリバリウス・サブスピーシズ・サーモフィルスの粘性物生産株とを用いることが記載されている。また、特許第4331309号公報(特許文献2)では、37~43℃で0.05%酵母エキス添加12%還元脱脂乳を3時間以内に凝固させ、15~25℃で0.05%酵母エキス添加12%還元脱脂乳を3日間以内に凝固させない低温感受性のストレプトコッカス・サーモフィルスに属する乳酸菌株が特許許可されており、前記乳酸菌株としてストレプトコッカス・サーモフィルスSBT0144が記載されている。さらに、特開2001-95561号公報(特許文献3)には、細胞膜結合性アデノシントリホスファターゼ(ATPase)活性が低下しているラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクス変異株が記載されており、同変異株では、発酵過程においてpHが低下すると、Hが菌体外に排出されずに菌体内のpHが低下して生育が抑制される(すなわち、所謂アポトーシスが引き起こされる)ため、その結果として、乳酸の産生量が低下することが記載されている。
特開平7-236416号公報 特許第4331309号公報 特開2001-95561号公報
 発酵乳の風味(酸味、ミルク感、甘味等)は主に各乳酸菌の特性に拠るものであるため、特許文献1に記載のように特定の菌株を組み合わせる必要がある発酵乳では、限られた風味の発酵乳しか得られないといった課題を有している。また、本発明者らが発酵乳及びその製造のための乳酸菌について研究を行ったところ、特許文献2に記載のストレプトコッカス・サーモフィルスSBT0144(以下、場合により「SBT0144株」という)を用いた場合には、確かに得られた発酵乳における低温での酸産生量が低減してpHの低下は抑制されるものの、発酵が完了(例えばpHが4.7以下に到達)するまでに時間を要し、また、特許文献3に記載の変異株のように低温保存中に乳酸菌の生菌数が減少してしまうという課題があることを見出した。
 本発明は、上記従来技術が有する課題に鑑みてなされたものであり、低温保存中のpH低下が抑制され、かつ、前記低温保存によっても乳酸菌の生菌数が十分に維持される発酵乳を得ることができる乳酸菌、これを含有する乳酸菌スターター及び発酵乳、並びに、発酵乳の製造方法、さらには、乳酸菌のスクリーニング方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を行った結果、特定の条件、すなわち、(a)10%脱脂粉乳培地において、43℃で培養をしたとき、(a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、(a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、及び/又は、(b)10%脱脂粉乳培地において、43℃で培養液のpHが4.7以下となるまで培養をした後に10℃で10日間保存したとき、(b1)前記保存後の培養液中の生菌数が1×10cfu/g以上となり、かつ、(b2)前記保存後の培養液のpHが4.2以上となる、の条件を満たす乳酸菌によって得られた発酵乳においては、低温保存中のpH低下が抑制され、かつ、前記低温保存によっても生菌数が十分に維持されることを見出し、本発明を完成するに至った。
 かかる知見により得られた本発明の態様は以下のとおりである。
[1]
 ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)に属する乳酸菌であり、下記(a)及び(b):
(a)10%脱脂粉乳培地において43℃で培養をしたとき、(a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、(a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、及び
(b)10%脱脂粉乳培地において43℃で培養液のpHが4.7以下となるまで培養をした後、10℃で10日間保存したとき、(b1)前記保存後の培養液における生菌数が1×10cfu/g以上となり、かつ、(b2)前記保存後の培養液のpHが4.2以上となる、
からなる群から選択される少なくとも1種の条件を満たす乳酸菌。
[2]
 前記(a)の条件を満たし、かつ、下記(a3)又は(a4):
(a3)前記培養で培養液のpHが4.7以下となるまで培養した後、10℃で10日間保存後の培養液における生菌数が1×10cfu/g以上となる、又は
(a4)前記培養で培養液のpHが4.7以下となるまで培養した後、10℃で10日間保存後の培養液のpHが4.2以上となる、
の条件を満たす、[1]に記載の乳酸菌。
[3]
 前記(b)の条件を満たし、かつ、下記(b3)又は(b4):
(b3)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となる、又は
(b4)前記培養開始から20時間後の培養液のpHが4.1以上となる、
の条件を満たす、[1]に記載の乳酸菌。
[4]
 PrtS遺伝子を保有する、[1]~[3]のうちのいずれか一項に記載の乳酸菌。
[5]
 ストレプトコッカス・サーモフィルス OLS4801(受託番号:NITE BP-03504)、ストレプトコッカス・サーモフィルス OLS4802(受託番号:NITE BP-03505)、ストレプトコッカス・サーモフィルス OLS4803(受託番号:NITE BP-03506)、ストレプトコッカス・サーモフィルス OLS4823(受託番号:NITE BP-03507)、及びストレプトコッカス・サーモフィルス OLS4824(受託番号:NITE BP-03508)からなる群から選択される少なくとも1種である、[1]~[4]のうちのいずれか一項に記載の乳酸菌。
[6]
 [1]~[5]のうちのいずれか一項に記載の乳酸菌を含有する、乳酸菌組成物。
[7]
 ラクトバチルス属(Lactobacillus)乳酸菌をさらに含有する、[6]に記載の乳酸菌組成物。
[8]
 乳酸菌スターターである、[6]又は[7]に記載の乳酸菌組成物。
[9]
 発酵乳である、[6]又は[7]に記載の乳酸菌組成物。
[10]
 [1]~[5]のうちのいずれか一項に記載の乳酸菌又は[6]~[9]のうちのいずれか一項に記載の乳酸菌組成物を、原料乳を含有する調乳液に添加して発酵させ、発酵乳を得る発酵工程を含む、発酵乳の製造方法。
[11]
 前記調乳液にラクトバチルス属(Lactobacillus)乳酸菌をさらに添加する、[10]に記載の発酵乳の製造方法。
[12]
 ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)に属する乳酸菌であり、下記(a):
(a)10%脱脂粉乳培地において43℃で培養をしたとき、(a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、(a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、
の条件を満たすことを指標として、低酸産生の乳酸菌を選択する選択工程を含む、乳酸菌のスクリーニング方法。
[13]
 [12]に記載の乳酸菌のスクリーニング方法で選択された乳酸菌を、原料乳を含有する調乳液に添加して発酵させ、発酵乳を得る発酵工程を含む、発酵乳の製造方法。
 本発明によれば、低温(例えば10℃)保存中のpH低下が抑制され、かつ、前記低温保存によっても乳酸菌の生菌数が十分に維持される発酵乳を得ることができる乳酸菌、これを含有する乳酸菌スターター及び発酵乳、並びに、発酵乳の製造方法、さらには、乳酸菌のスクリーニング方法を提供することが可能となる。
試験例3における、OLS4802株(実施例2)、OLS4803株(実施例3)、及びP2101201株(比較例1)の10℃保存時の生菌数の経時変化を示すグラフである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 <乳酸菌>
 本発明において、「乳酸菌」とは、ブドウ糖を資化して対糖収率で50%以上の乳酸を生産可能な微生物の総称であり、生理学的性質としては、グラム陽性菌の球菌又は桿菌であって、運動性なし、多くの場合胞子形成能なし(バシラス・コアギュランスのように胞子形成能のある乳酸菌もある)、カタラーゼ陰性等の特徴を有する。本発明の乳酸菌は、このうち、ストレプトコッカス・サーモフィルスに属する乳酸菌である。
 (ストレプトコッカス・サーモフィルス)
 ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)は、サーモフィルス菌とも呼称される連鎖球菌であり、乳糖から乳酸を産生することが可能な乳酸菌である。本明細書において、ストレプトコッカス・サーモフィルスに属する乳酸菌を、場合により「S.サーモフィルス」という。
 本発明の乳酸菌であるS.サーモフィルスとしては、prtS遺伝子を保有するものであることが好ましい。prtS遺伝子を保有するS.サーモフィルスを用いることにより、発酵完了までの時間をより短縮することができ、さらに、より好ましい風味の発酵乳を得られる傾向にある。本発明において、「prtS遺伝子」とは、カゼインを分解する細胞壁結合型セリンプロテアーゼをコードする遺伝子を示す。また、本発明において、S.サーモフィルスがprtS遺伝子を保有することは、例えば、公共のデータベース(Genbank等)から取得できるS.サーモフィルスのprtS遺伝子間で保存性の高い配列を選択し、その配列に基づいて作製したプライマーセットを用いてprtS遺伝子の一部をPCR法によって増幅し、所望のPCR産物が得られることによって判定することができる。前記プライマーセットとしては、例えば、下記の実施例に記載のFprimer及びRprimerからなるプライマーセットが挙げられるが、これに限定されるものではない。
 (条件(a)及び条件(b))
 本発明の乳酸菌は、下記(a)及び(b):
(a)10%脱脂粉乳培地において43℃で培養をしたとき、
 (a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、
 (a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、及び
(b)10%脱脂粉乳培地において43℃で培養液のpHが4.7以下となるまで培養をした後、10℃で10日間保存したとき、
 (b1)前記保存後の培養液における生菌数が1×10cfu/g以上となり、かつ、
 (b2)前記保存後の培養液のpHが4.2以上となる、
からなる群から選択される少なくとも1種の条件を満たすことが必要である。乳酸菌が上記の条件(a)及び/又は条件(b)を満たすことにより、かかる乳酸菌を用いて得られる発酵乳において、低温保存中の酸産生量を低減させてpH低下を抑制し、かつ、前記低温保存によっても乳酸菌の生菌数を十分に維持することが可能となる。特に、本発明者らは、43℃での培養における培養液のpH変化と10℃で保存中の培養液のpH変化との間には驚くべきことに互いに関係があり、条件(a)を満たす乳酸菌によれば、上記の本発明の効果が奏されることを見出した。
 乳酸菌が上記の条件(a)のみ(すなわち条件(a1)及び条件(a2))を満たす場合、かかる条件(a)としては、さらに、下記(a3)及び/又は(a4):
 (a3)前記培養で培養液のpHが4.7以下となるまで培養した後、10℃で10日間保存後の培養液における生菌数が1×10cfu/g以上となる、及び/又は
 (a4)前記培養で培養液のpHが4.7以下となるまで培養した後、10℃で10日間保存後の培養液のpHが4.2以上となる、
の条件を満たすことが好ましい。
 また、乳酸菌が上記の条件(b)のみ(すなわち条件(b1)及び条件(b2))を満たす場合、かかる条件(b)としては、さらに、下記(b3)及び/又は(b4):
 (b3)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となる、及び/又は
 (b4)前記培養開始から20時間後の培養液のpHが4.1以上となる、
の条件を満たすことが好ましい。
 〔脱脂粉乳培地〕
 条件(a)及び条件(b)において、「10%脱脂粉乳培地」とは、脱脂粉乳を10質量%含有する培地を示す。本発明に係る脱脂粉乳とは、獣乳(好ましくは牛乳)から脂肪分を除いた脱脂乳を粉末状に乾燥させたものを示し、例えば、日本の「乳及び乳製品の成分規格等に関する省令(以下、場合により「乳等省令」という)」において、乳固形分95.0%以上、水分5.0%以下と定められているものが挙げられる。このような脱脂粉乳の組成としては、例えば、「日本食品標準成分表2015年版(七訂)」に記載の組成を含む組成、すなわち、100g中、エネルギー300~400(好ましくは359)kcal、水分3~5(好ましくは3.8)g、タンパク質30~40(好ましくは34.0)g、脂質0.2~2(好ましくは1.0)g、炭水化物(乳糖を含む)45~60(好ましくは53.3)g、カルシウム900~2000(好ましくは1100)mg、ビタミンA 3~10(好ましくは6)μg、ビタミンB 0.5~2(好ましくは1.60)mg、コレステロール10~30(好ましくは25)mg、食塩相当量0.5~2(好ましくは1.4)gの組成が挙げられる。このような10%脱脂粉乳培地のpHとしては、通常、6~7である。
 条件(a)及び条件(b)に係る10%脱脂粉乳培地としては、前記脱脂粉乳以外の他の成分を含有していてもよいが、その場合であっても当該他の成分の含有量が0.1質量%以下であることが好ましく、0.01質量%以下であることがより好ましく、10質量%の脱脂粉乳と90質量%の水(好ましくは飲適用の水)とからなることが特に好ましい。前記他の成分としては、例えば、酵母エキス、ペプチドが挙げられるが、特に、条件(a)及び条件(b)に係る10%脱脂粉乳培地としては、前記酵母エキスを実質的に含有しないことが好ましい。なお、本発明において、「実質的に含有しない」とは、例えば、全質量に対して0.001質量%以下であることをいう。本発明の乳酸菌は、前記酵母エキスを含有しない培地においても、条件(a)及び/又は条件(b)を満たすことができる。
 条件(a)及び条件(b)に係る10%脱脂粉乳培地としては、滅菌処理又は殺菌処理が施されものであることが好ましい。これらの条件としては、特に限定されないが、例えば、前記滅菌処理の条件としては、70~130℃において1分~1時間の条件が挙げられ、前記殺菌処理の条件としては、75~125℃において10分~30分間の条件が挙げられる。また、前記10%脱脂粉乳培地としては、下記の第1の10%脱脂粉乳培地と第2の10%脱脂粉乳培地とで同じ組成、及び/又は、同じ滅菌処理若しくは殺菌処理を施されたものであってもよく、互いに異なる組成及び/又は処理を施されたものであってもよい。また、下記の賦活培養を行う場合、第2の10%脱脂粉乳培地には第1の培養後の培養液の一部又は全部が含まれていてもよい。
 〔賦活培養(第1の培養)〕
 条件(a)及び条件(b)では、乳酸菌が低温や冷凍で保存されていた場合等には、先ず、当該乳酸菌に対し、賦活培養を行うことが好ましい。かかる賦活培養(以下、場合により「第1の培養」という)としては、10%脱脂粉乳培地(以下、第1の培養用の培地を場合により「第1の10%脱脂粉乳培地」という)において、37℃、嫌気で16~18時間(好ましくは16時間)、培養を行うことが好ましい。このとき、第1の培養に供する乳酸菌量としては、第1の10%脱脂粉乳培地に対して、生菌数で1×10~2×10cfu/gとなる量であることが好ましく、1×10~1×10cfu/gとなる量であることがより好ましい。
 なお、本発明において、生菌数の測定は、例えば、適当に希釈した乳酸菌含有液(例えば、第1の培養の場合には第1の培養の培養液(乳酸菌及び第1の10%脱脂粉乳培地))の希釈液を、好適な寒天培地、例えば、乳等省令で定められた公定培地であるBCP加プレートカウント寒天培地に広げて培養し、出現するコロニー数をカウントすることにより測定することができる。このときの生菌数の値(cfu/g)は、前記乳酸菌含有液(g)中の生菌数であるため、これより、例えば前記第1の培養の培養液中の生菌数を算出する。
 前記嫌気での培養方法としては、特に限定されないが、従来乳酸菌の嫌気培養方法として知られている方法、例えば、酸素濃度調節剤(例えば、アネロパック・ケンキ(三菱ガス化学社製))の存在下での静置培養が挙げられる。本発明においては、上記培養後の培養液を再度第1の脱脂粉乳培地に接種して、第1の培養を複数回(例えば、2回以下)繰り返してもよい。
 〔培養(第2の培養)〕
 条件(a)及び条件(b)では、乳酸菌又は第1の培養後の培養液(すなわち、賦活乳酸菌を含む第1の10%脱脂粉乳培地)を用いて培養(以下、場合により「第2の培養」という)を行う。第2の培養では、10%脱脂粉乳培地(以下、第2の培養用の培地を場合により「第2の10%脱脂粉乳培地」という)において、43℃で培養を行う。このとき、第2の培養に供する乳酸菌量としては、第2の10%脱脂粉乳培地に対して、生菌数で2×10~5×10cfu/gとなる量であることが好ましく、4×10~4×10cfu/gとなる量であることがより好ましく、1×10~2×10cfu/gとなる量であることがより好ましい。第2の培養での培養方法としては、特に限定されないが、従来乳酸菌による発酵乳の発酵方法として知られている方法、例えば、静置培養等を適宜採用することができる。
 第2の培養では、第2の10%脱脂粉乳培地に含まれる乳糖から乳酸菌の代謝によって乳酸が生じる発酵が行われると、前記乳酸によって培養液のpHが低下する。条件(a)及び条件(b)に係る第2の培養において、この発酵の完了は、培養液のpH(すなわち、乳酸菌を含む第2の10%脱脂粉乳培地のpH)が4.7以下となることを基準とする。
 条件(a1)及び条件(b3)では、前記発酵の完了(すなわち、pHが4.7に達する)までの時間が、第2の培養開始から7時間以下であることが必要であり、6時間以下であることが特に好ましく、5時間以下であることがさらに好ましい。前記発酵の完了までの時間が前記上限を超える乳酸菌では、発酵乳の製造に用いたときに製造に時間を要するため製造効率上好ましくなく、また、低温保存によって発酵乳における生菌数が少なくなる。前記発酵の完了までの時間の下限としては、特に制限されないが、例えば、1時間以上であることが好ましく、2時間以上であることがより好ましい。
 第2の培養を20時間以上続けると、通常、前記乳酸の産生が続くため、当該乳酸の産生量の増加に伴って培養液のpHはさらに低下する。これに対して、条件(a2)及び条件(b4)では、第2の培養開始から20時間後の培養液のpHが4.1以上となることが必要であり、24時間後の培養液のpHが4.1以上となることが特に好ましい。また、pHを4.1以上に維持できる第2の培養開始からの時間の上限としては、特に制限されないが、例えば、30時間以下であることが好ましい。本発明者らは、このような43℃で長時間培養後のpHを4.1以上に維持できる乳酸菌によれば、得られる発酵乳における低温(例えば10℃)保存中のpH低下も抑制できることを見出した。なお、発酵能の低い乳酸菌によっても、43℃で長時間培養後のpHが4.1以上に維持される場合があるが、この場合には、少なくとも、条件(a1)及び条件(b3)、及び/又は、条件(b1)及び条件(a3)を満たさない。
 〔保存〕
 条件(a3)、条件(a4)、条件(b1)、及び条件(b2)では、前記発酵が完了した後(すなわち、pHが4.7に到達後)の培養液を速やかに冷却して保存する。前記保存の条件としては、特に限定されないが、従来発酵乳の保存方法として知られている方法、例えば、前記培養液を容器に封入(好ましくは密封)して静置する方法が挙げられる。
 条件(a3)、条件(a4)、条件(b1)、及び条件(b2)に係る保存温度としては、低温であることが必要であり、より具体的には、10℃であることが必要である。また、これら条件に係る保存期間としては、それぞれ独立に、10日間以上であることが必要であり、16日間以上であることが特に好ましく、20日間以上であることがより好ましく、35日間以上であることがさらに好ましい。本発明の乳酸菌では、このように低温条件下で長期間保存されても、酸産生量が十分に少なく、かつ、生菌数が十分に維持される。
 乳酸菌は、通常、低温においても前記乳酸を産生することが可能なため、上記のように発酵完了後の培養液を長時間保存すると、低温条件下であっても、当該乳酸の産生量の増加に伴って当該培養液のpHはさらに低下する。これに対して、条件(a4)及び条件(b2)では、10℃で10日間保存後の培養液のpH(すなわち、乳酸菌を含む第2の10%脱脂粉乳培地のpH)が4.2以上(好ましくは4.3以上、より好ましくは4.4以上)となることが必要であり、10℃で16日間保存後の培養液のpHが4.2以上(好ましくは4.3以上、より好ましくは4.4以上)となることが特に好ましく、10℃で35日間保存後の培養液のpHが4.2以上(好ましくは4.3以上、より好ましくは4.4以上)となることがさらに好ましい。
 従来の乳酸菌の中でも、低温感受性と言われる乳酸菌では、低温において長時間保存しても、培養液のpHが低下しない場合がある。しかしながら、例えば、特許文献2に記載されているような従来公知の低温感受性の乳酸菌では、発酵が完了するまでに時間を要したり、また、低温保存によって生菌数が低減するという課題を有することを本発明者らは新たに見出した。これは、特許文献3に記載の細菌のように、従来公知の低温感受性の乳酸菌では、pHが低下すると、Hが菌体外に排出されずに菌体内のpHが低下して生育が抑制されるといったアポトーシスが惹き起こされるためと本発明者らは推察する。これに対して、本発明者らは、低温保存中のpH低下を抑制する乳酸菌であっても、同低温保存中の生菌数を十分に維持できる乳酸菌、すなわち、条件(a3)又は条件(b1)を満たす乳酸菌が存在することを見出した。条件(a3)及び条件(b1)では、10℃で10日間保存後の培養液における生菌数が1×10cfu/g以上となることが必要であり、10℃で16日間保存後の培養液における生菌数が1×10cfu/g以上となることが特に好ましく、10℃で20日間保存後の培養液における生菌数が1×10cfu/g以上となることがより好ましく、10℃で35日間保存後の培養液における生菌数が1×10cfu/g以上となることがさらに好ましい。なお、従来公知の低温感受性の乳酸菌では、少なくとも、条件(a1)及び条件(b3)、及び/又は、条件(b1)及び条件(a3)を満たさない。
 S.サーモフィルスであり、上記の条件(a)及び/又は(b)を満たす本発明の乳酸菌としては、1種を単独であっても、2種以上の組み合わせであってもよい。本発明の乳酸菌として、より具体的には、例えば、受託番号NITE BP-03504号で特定されるストレプトコッカス・サーモフィルス OLS4801(以下、場合により「OLS4801株」という)、受託番号NITE BP-03505号で特定されるストレプトコッカス・サーモフィルス OLS4802(以下、場合により「OLS4802株」という)、受託番号NITE BP-03506号で特定されるストレプトコッカス・サーモフィルス OLS4803(以下、場合により「OLS4803株」という)、受託番号NITE BP-03507号で特定されるストレプトコッカス・サーモフィルス OLS4823(以下、場合により「OLS4823株」という)、受託番号NITE BP-03508号で特定されるストレプトコッカス・サーモフィルス OLS4824(以下、場合により「OLS4824株」という)が挙げられる。これらの例示した乳酸菌はいずれも、S.サーモフィルスであり、PrtS遺伝子を保有し、かつ、上記の条件(a)及び条件(b)を満たす。
 OLS4801株は、(1)識別の表示:Streptococcus thermophilus OLS4801、(2)受託番号:NITE BP-03504号、(3)受託日:2021年8月4日で、OLS4802株は、(1)識別の表示:Streptococcus thermophilus OLS4802、(2)受託番号:NITE BP-03505号、(3)受託日:2021年8月4日で、OLS4803株は、(1)識別の表示:Streptococcus thermophilus OLS4803、(2)受託番号:NITE BP-03506号、(3)受託日:2021年8月4日で、OLS4823株は、(1)識別の表示:Streptococcus thermophilus OLS4823、(2)受託番号:NITE BP-03507号、(3)受託日:2021年8月4日で、OLS4824株は、(1)識別の表示:Streptococcus thermophilus OLS4824、(2)受託番号:NITE BP-03508号、(3)受託日:2021年8月4日で、それぞれ、(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託されている。なお、これらの受託番号で特定されるS.サーモフィルスとしては、同株の継代株、又は本発明の効果を阻害しない範囲内において、同株又はその継代株の人工変異株、自然変異株、遺伝子組み換え株、又は派生株等であってよい。
 <乳酸菌のスクリーニング方法>
 上記の条件(a)及び/又は条件(b)を満たす乳酸菌では、低温保存中の酸産生量が少なく、かつ、前記低温保存によっても生菌数が減少しないため、これら条件を指標として、低温保存中のpH低下が抑制され、かつ、前記低温保存によっても乳酸菌の生菌数が十分に維持される発酵乳を製造するために好適な乳酸菌をスクリーニングすることが可能となる。したがって、本発明は、S.サーモフィルスであり、条件(a)及び条件(b)からなる群から選択される少なくとも1種の条件を満たすことを指標として、低酸産生の乳酸菌を選択する選択工程を含む、乳酸菌のスクリーニング方法も提供する。本発明において、「低酸産生の乳酸菌」とは、これを用いて得られた発酵乳において、低温保存中のpH低下を抑制し、かつ、生菌数を維持することが可能な乳酸菌を示す。
 前記選択工程では、上記本発明の乳酸菌において第2の培養、及び保存で述べた各条件によって培養(及び必要に応じて第1の培養)、及び保存を実施し、条件(a)及び/又は条件(b)を満たす乳酸菌を、前記低酸産生の乳酸菌であると判定して選択する。条件(a)及び条件(b)としては、その好ましい態様も含めて、上記本発明の乳酸菌において述べたとおりである。これらの中でも、本発明に係る選択工程としては、S.サーモフィルスであり、条件(a)を満たす乳酸菌を、前記低酸産生の乳酸菌として選択することが好ましく、条件(a)としては、さらに条件(a3)及び/又は条件(a4)を満たすことが好ましく、さらに条件(b)を満たすことがより好ましい。
 <乳酸菌組成物>
 「乳酸菌組成物」とは、乳酸菌を含有する組成物を示すが、特に限定されず、本発明の乳酸菌組成物としては、少なくとも前記本発明の乳酸菌(前記本発明の乳酸菌のスクリーニング方法で選択された乳酸菌を含む)を含有するものであればよく、本発明の乳酸菌のみ(2種以上の本発明の乳酸菌の組み合わせを含む)からなるものであってもよい。本発明の乳酸菌組成物には、例えば、下記の乳酸菌スターター及び発酵乳が包含される。本発明の乳酸菌組成物としては、本発明の乳酸菌以外の他の成分をさらに含有していてもよく、前記他の成分としては、特に制限されないが、例えば、水等の溶媒;前記乳酸菌の培養終了後の培養液の上清や培地成分等である培養物;前記培養物の濃縮物、希釈物、乾燥物、凍結物等が含まれ、これらのうちの1種を単独であっても2種以上の組み合わせであってもよい。
 (乳酸菌スターター)
 本発明の乳酸菌スターターは、前記本発明の乳酸菌を少なくとも含有し、下記の本発明の発酵乳の製造方法のために好適に用いることができる。このような本発明の乳酸菌スターターとしては、前記本発明の乳酸菌のみからなるものであっても、前記他の成分や他の乳酸菌、酵母をさらに含有するものであってもよい。
 前記他の乳酸菌及び酵母としては、従来から発酵乳に含有させることが公知の乳酸菌や酵母が挙げられる。例えば、前記他の乳酸菌としては、本発明の乳酸菌以外のS.サーモフィルス、ラクトバチルス属(Lactobacillus)乳酸菌(例えば、ラクトバチルス・デルブルッキー(特に、ラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクス(ブルガリア菌)、ラクトバチルス・デルブルッキー・サブスピーシズ・デルブルッキー、ラクトバチルス・デルブルッキー・サブスピーシズ・ラクティス、ラクトバチルス・デルブルッキー・サブスピーシズ・インディカス、ラクトバチルス・デルブルッキー・サブスピーシズ・スンキ、ラクトバチルス・デルブルッキー・サブスピーシズ・ヤコブセニ等)、ラクトバチルス・ヘルベティカス、ラクトバチルス・アシドフィルス、ラクトバチルス・ジョンソニー、ラクトバチルス・ガセリ、ラクトバチルス・パラガセリ、ラクトバチルス・アミロボロス、ラクトバチルス・クリスパータス等)、ラクチカゼイバチルス属(Lacticaseibacillus)乳酸菌、ラクチプランチバチルス属(Lactiplantibacillus)乳酸菌、リコリラクトバチルス属(Liquorilactobacillus)乳酸菌、ラチラクトバチルス属(Latilactobacillus)乳酸菌、リギラクトバチルス属(Ligilactobacillus)乳酸菌、リモシラクトバチルス属(Limosilactobacillus)乳酸菌、レンチラクトバチルス属(Lentilactobacillus)乳酸菌、レビラクトバチルス属(Levilactobacillus)乳酸菌、ペディオコッカス属(Pediococcus)乳酸菌、ロイコノストック属(Leuconostoc)乳酸菌、ラクトコッカス属(Lactococcus)乳酸菌が挙げられ、これらのうちの1種を単独であっても2種以上の組み合わせであってもよい。これらの中でも、本発明の乳酸菌スターターとしては、ラクトバチルス属乳酸菌を含有することが好ましく、ラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクスに属する乳酸菌を含有することがより好ましい。
 本発明の乳酸菌スターターとしては、液体であっても凍結状態や乾燥粉末等の固体であってもよく、さらに他の成分を含有していてもよい。乳酸菌スターターに含有させることが可能な、さらなる他の成分としては、例えば、発酵促進物質(ギ酸、核酸等);保護剤(糖類糖);培地成分(乳又は乳清等)が挙げられ、これらのうちの1種であっても2種以上の組み合わせであってもよい。
 本発明の乳酸菌スターターにおける本発明の乳酸菌の含有量としては、特に制限されないが、0.01~100質量%であることが好ましく、0.1~90質量%であることがより好ましい。また、生菌数量で、1×10cfu/g以上であることが好ましく、1×10~1×1011cfu/gであることがより好ましい。また、他の乳酸菌(好ましくはラクトバチルス属乳酸菌)をさらに含有する場合、当該乳酸菌スターターにおける本発明の乳酸菌の含有量と前記他の乳酸菌の含有量との比としては、菌数(生菌数換算、以下同じ)比で、1:0.1~1:100であることが好ましく、1:1~1:10であることがより好ましい。
 本発明の乳酸菌スターターは、例えば、前記他の乳酸菌を含有する組成物(第2の乳酸菌組成物)と組み合わせて、本発明の乳酸菌スターターと第2の乳酸菌組成物とを含む乳酸菌スターターキットとしてもよい。また、例えば、発酵乳製造のための添加物(前記発酵促進物質、保護剤等)、容器、乳酸菌スターターの使用説明書等を組み合わせて、乳酸菌スターターキットとしてもよい。
 (発酵乳)
 本発明の発酵乳は、前記本発明の乳酸菌を少なくとも含有し、例えば、下記の本発明の発酵乳の製造方法によって得ることができる。本発明の発酵乳においては、低温保存中のpH低下が抑制され、かつ、前記低温保存によっても含有される生菌数が十分に維持される。
 本発明の発酵乳としては、特に限定されるものではなく、例えば、前記乳等省令による「発酵乳」の規格を満たす発酵乳(より具体的には、無脂乳固形分の含有量が8.0%以上、乳酸菌数又は酵母数(好ましくは乳酸菌数(より好ましくは本発明の乳酸菌の数)、以下同じ)が1,000万/mL以上のもの)が挙げられる。また、本発明の発酵乳には、前記乳等省令による「乳製品乳酸菌飲料」の規格を満たすもの(より具体的には、無脂乳固形分の含有量が3.0%以上、乳酸菌数又は酵母数が1000万/mL以上のもの);「乳酸菌飲料」の規格を満たすもの(より具体的には、無脂乳固形分の含有量が3.0%未満、乳酸菌数又は酵母数が100万/mL以上のもの)も含む。なお、前記無脂乳固形分とは、全乳固形分から脂肪分を差引いた残りの成分(主に、タンパク質、乳糖、及びミネラル等)を示し、前記乳酸菌及び酵母数は、前記乳等省令で定められた検査法、前記BCP加プレートカウント寒天培地を用いた方法により測定される生菌数であるが、発酵乳が殺菌されたものである場合には当該殺菌前において前記検査法により測定される生菌数換算である。
 本発明の発酵乳としては、下記の発酵乳の製造方法の発酵工程後の発酵物であっても、若しくは前記発酵物を殺菌処理(粉砕処理、加熱処理等)したものであってもよく、又はこれらを濃縮、希釈、乾燥、若しくは凍結等したものであってもよい。なお、本発明において、前記発酵乳が殺菌処理したものである場合、当該発酵乳における乳酸菌数は、生菌数換算である。本発明の発酵乳に含有される乳酸菌には、生菌の他、死菌も含み、乳酸菌の破砕物及び加熱処理物、これらの濃縮物、希釈物、乾燥物、凍結物も含むが、本発明の発酵乳には、少なくとも乳酸菌の生菌が含有されていることが好ましく、本発明の乳酸菌が生菌として含有されていることがより好ましい。
 本発明の発酵乳は、本発明の乳酸菌及び下記の原料乳(好ましくは調乳液)に由来する成分を含む。また、本発明の効果を阻害しない範囲内において、上記の乳酸菌スターターに挙げた他の成分や、他の乳酸菌や酵母をさらに含有していてもよい。さらに、飲食品に含有させることが可能な各種成分を含有してもよい。発酵乳に含有させることが可能な、さらなる成分としては、特に制限されず、例えば、糖類、糖アルコール類、ミネラル類、ビタミン類、タンパク質、ペプチド、アミノ酸類、有機酸、pH調整剤、澱粉及び加工澱粉、食物繊維、果実・野菜及びその加工品、動物及び植物生薬エキス、天然由来高分子(コラーゲン、ヒアルロン酸、コンドロイチン等)、油脂、増粘剤、乳化剤、溶剤、界面活性剤、ゲル化剤、安定剤、緩衝剤、懸濁化剤、粘稠剤、賦形剤、崩壊剤、結合剤、流動化剤、保存料、着色料、香料、矯味剤、甘味剤等が挙げられ、これらのうちの1種であっても2種以上の組み合わせであってもよい。
 このような発酵乳としては、ヨーグルト、チーズ、発酵クリーム、発酵バター等が好ましく、特にヨーグルトが好ましい。前記ヨーグルトとしては、具体的には、プレーンヨーグルト等のセットタイプヨーグルト(固形状発酵乳)、ソフトタイプヨーグルト(糊状発酵乳)、及びドリンクタイプヨーグルト(液状発酵乳)が挙げられ、これらを材料として用いたフローズンヨーグルトであってもよい。また、本発明の発酵乳は、チーズ、発酵クリーム、発酵バター、ケフィア等の発酵食品の材料として用いることもできる。さらに、本発明の発酵乳は、殺菌処理されていなければ、発酵乳の製造方法において、乳酸菌スターターとしても用いることもできる。
 <発酵乳の製造方法>
 本発明の発酵乳の製造方法は、前記本発明の乳酸菌(前記本発明の乳酸菌のスクリーニング方法で選択された乳酸菌を含む)又は本発明の乳酸菌組成物を、原料乳を含有する調乳液に添加して発酵させ、発酵乳を得る発酵工程を含む。なお、前記本発明の乳酸菌のスクリーニング方法で選択された乳酸菌を用いる場合、本発明の発酵乳の製造方法としては、前記選択工程を含んでいてもよいが、当該選択工程としては最初の1回のみでよい。本発明の製造方法によれば、本発明の乳酸菌を用いて原料乳を発酵させることにより、低温保存中のpH低下が抑制され、かつ、前記低温保存によっても含有される生菌数が十分に維持される発酵乳を製造することが可能となる。さらに、本発明の製造方法では、発酵完了までの時間を十分に短くすることも可能となる。
 (調乳液)
 本発明に係る調乳液は、原料乳を含有する。前記原料乳としては、乳糖を含有するものであることが好ましく、例えば、生乳(例えば、ウシ、スイギュウ、ヒツジ、ヤギ等の乳)、殺菌乳、全脂乳、脱脂乳、ホエイ、及びこれらの加工品(例えば、全脂粉乳、全脂濃縮乳、脱脂粉乳、脱脂濃縮乳、練乳、ホエイ粉、バターミルク、バター、クリーム、チーズ、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α-ラクトアルブミン(α-La)、β-ラクトグロブリン(β-Lg))が挙げられ、これらのうちの1種であっても2種以上の混合物であってもよい。
 本発明に係る調乳液としては、前記原料乳のみからなるものであっても、前記原料乳の水溶液、希釈液、又は濃縮液であってもよく、前記原料乳の他に、必要に応じて他の成分をさらに含有するものであってもよい。このような他の成分としては、水;豆乳、砂糖を始めとする糖類や甘味料、香料、果汁、果肉、ビタミン、ミネラル、油脂、セラミド、コラーゲン、ミルクリン脂質、ポリフェノール等の食品、食品成分、又は食品添加物;ペクチン、大豆多糖類、CMC(カルボキシメチルセルロース)、寒天、ゼラチン、カラギーナン、ガム類などの安定化剤、増粘剤、ゲル化剤等が挙げられ、これらのうちの1種であっても2種以上の混合物であってもよい。前記調乳液は、必要に応じて加温しながら、及び/又は、必要に応じて均質化させながら、前記成分を混合することにより調製することができる。また、前記調乳液としては、加熱滅菌又は殺菌したものを用いることもできる。
 (発酵)
 前記調乳液に、本発明の乳酸菌又は本発明の乳酸菌組成物を添加して発酵させる発酵工程としては、従来公知の方法を適宜採用することができ、特に制限されない。また、本発明の乳酸菌又は本発明の乳酸菌組成物の添加量は、従来公知の発酵乳の製造方法において採用されている乳酸菌スターターの添加量に従って、適宜設定することができるが、例えば、前記調乳液の質量に対して、本発明の乳酸菌の生菌数で、1×10~5×10cfu/gであることが好ましく、1×10~2×10cfu/gであることがより好ましい。
 前記調乳液には、本発明の乳酸菌又は本発明の乳酸菌組成物に加えて、前記他の乳酸菌及び酵母を添加してもよい。これらの中でも、本発明の発酵乳の製造方法としては、ラクトバチルス属(Lactobacillus)乳酸菌をさらに添加することが好ましく、ラクトバチルス・デルブルッキー・サブスピーシズ・ブルガリクスに属する乳酸菌をさらに添加することがより好ましい。また、他の乳酸菌(好ましくはラクトバチルス属乳酸菌)をさらに添加する場合、本発明の乳酸菌の添加量と前記他の乳酸菌の添加量との比としては、菌数(生菌数換算、以下同じ)比で、1:0.1~1:100であることが好ましく、1:1~1:10であることがより好ましい。
 前記発酵の条件としては、添加される本発明の乳酸菌の生育条件、前記調乳液の量等に応じて適宜選択することができ、特に制限されないが、例えば、温度35~45℃、より好ましくは温度38~43℃において、好気又は嫌気条件下で、本発明の乳酸菌又は本発明の乳酸菌組成物を添加した調乳液のpHが4.7以下、より好ましくは4.0~4.5になるまで、通常、2~24時間、より好ましくは3~8時間、さらに好ましくは4~6時間、静置又は撹拌(好ましくは静置)することが好ましい。本発明によれば、発酵にかかる時間を十分に短くすることが可能である。また、前記嫌気条件としては、例えば、窒素通気条件下での発酵を採用することができる。
 上記発酵により、本発明の発酵乳を得ることができる。前記発酵工程後の発酵物は、そのまま、又は必要に応じて濃縮、希釈、乾燥、若しくは凍結等することにより、本発明の発酵乳とすることができる。また、前記発酵物における乳酸菌を破砕若しくは加熱処理等して、又は必要に応じてこれを濃縮、希釈、乾燥、若しくは凍結等することにより、本発明の発酵乳としてもよい。したがって、本発明の発酵乳の製造方法としては、これらの工程(濃縮工程、希釈工程、乾燥工程、凍結工程、破砕工程、加熱処理工程等)をさらに含んでいてもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (試験例1)
 (1)下記の3株の乳酸菌:
 P2101201株(比較例1):prtS遺伝子を保有するS.サーモフィルス。株式会社明治の明治イノベーションセンター(郵便番号192-0919 日本国東京都八王子市七国1-29-1)により保管されている菌株;
 OLS4801株(実施例1):受託番号NITE BP-03504号で特定されるS.サーモフィルス。prtS遺伝子を保有する;及び
 OLS4802株(実施例2):受託番号NITE BP-03505号で特定されるS.サーモフィルス。prtS遺伝子を保有する
を用いた。本明細書に記載の試験例において、各乳酸菌株のprtS遺伝子保有の有無の確認は、次の方法でおこなった。すなわち、先ず、ゲノム配列が既知である5株のS.サーモフィルスのprtS遺伝子配列をNCBIデータベースより取得し、保存性の高い配列からプライマー(Fprimer:配列番号1、Rprimer:配列番号2)を作製した。また、InstaGeneMatrix(BioRad社製)を用いて、各菌株のM17培養液からゲノムDNAを抽出した。抽出したゲノムDNA(テンプレート)0.5μL、作製したプライマー(5μM)各1μL、Phusion high fidelity DNA polymerase0.1μL、5×HFバッファー2μL、2.5mM dNTP0.8μL、及び超純水4.6μLを混合し(全10μL)、次の条件:98℃で30秒;98℃で5秒、63℃で20秒、72℃で20秒を30サイクル;72℃で5分;4℃にて静置;にてPCRを行った。得られたPCR産物をアガロースゲル電気泳動し、684bpの位置にバンドが確認された菌株はprtS遺伝子を保有すると判定し、同バンドが確認されなかった菌株はprtS遺伝子を保有しないと判定した。
 (2)前記3株の乳酸菌をそれぞれ、121℃で7分間滅菌した10%脱脂粉乳培地(脱脂粉乳10質量部及び蒸留水90質量部(10質量%脱脂粉乳)、pH:6~7、以下同じ)において、37℃、嫌気条件下(酸素濃度調節剤(アネロパックケンキ、三菱ガス化学社製)使用、以下同じ)で終夜(16時間、以下同じ)静置培養することにより、賦活した。なお、賦活後の培養液の菌数は、5×10~1×10cfu/gであった。次いで、75℃で15分間殺菌した10%脱脂粉乳培地に対して、賦活後の培養液の質量が2質量%(乳酸菌生菌数:1×10~2×10cfu/g)となるように接種し、43℃で静置培養(発酵)し、培養液のpHが低下して4.7に達するまでの前記接種からの時間(発酵時間)を測定した。さらに、pHが4.7に達した時点で培養を終了し、直ちに10℃に冷却して空気が入らないように封入し、10日間、17日間、又は35日間静置して保存し、各保存後のpH(10℃ pH)を測定した。また、前記保存したものとは別に、前記接種後、43℃で培養(発酵)し、24時間まで培養を続けたときの培養液のpH(43℃ pH)を測定した。結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、いずれの乳酸菌においても5時間以内に発酵が完了(pHが4.7に到達)した。他方、10℃保存によるpHの経時変化については、OLS4801株及びOLS4802株では、35日間保存後であってもpHが4.4を下回ることがなかったのに比べて、P2101201株ではpHが低下し、17日間の保存でpHが4.11まで低下した。ここで、OLS4801株及びOLS4802株では、43℃で24時間培養後のpHがいずれも4.1以上であったのに対して、P2101201株では、43℃で24時間培養後のpHが4.00まで低下したことから、43℃で長時間(例えば24時間)培養後のpHが4.1以上となる乳酸菌によれば、低温(例えば10℃)における酸産生が十分に抑制されることが示唆された。
 (試験例2)
 43℃で長時間培養後のpHと低温保存中における酸産生との関係を確認するため、下記の2株の乳酸菌:
 P2101201株(比較例1);及び
 OLS4803株(実施例3):受託番号NITE BP-03506号で特定されるS.サーモフィルス、prtS遺伝子を保有する
を含む全8株の乳酸菌(いずれもprtS遺伝子を保有するS.サーモフィルス)をそれぞれ、121℃で7分間滅菌した10%脱脂粉乳培地において、37℃、嫌気条件下で終夜静置培養することにより、賦活した。次いで、75℃で15分間殺菌した10%脱脂粉乳培地に対して、賦活後の培養液の質量が2質量%(乳酸菌生菌数:1×10~2×10cfu/g)となるように接種し、43℃で静置培養(発酵)し、培養液のpHが低下して4.7に達するまでの時間(発酵時間)を測定した。さらに、pHが4.7に達した時点で培養を終了し、直ちに10℃に冷却して空気が入らないように封入し、10日間、20日間、又は35日間静置して保存し、各保存後のpH(10℃ pH)を測定した。また、前記保存したものとは別に、前記接種後、43℃で培養(発酵)し、20時間又は24時間まで培養を続けたときの培養液のpH(43℃ pH)を測定した。試験を行った乳酸菌のうち、上記2株の結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、OLS4803株においても5時間以内に発酵が完了(pHが4.7に到達)した。10℃保存によるpHの経時変化についても、OLS4803株では、35日間保存後であってもpHが4.5を下回ることがなかった。さらに、かかるOLS4803株においても、43℃で20時間及び24時間培養後のpHが4.1以上となった。また、全8株の乳酸菌のうち、OLS4803株の他の1株の乳酸菌で、5時間以内に発酵が完了し、10℃で35日間保存後であってもpHが4.2以上であり、かつ、43℃で20時間及び24時間培養後のpHが4.1以上となった。これに対して、P2101201株、及び、残りの5株の乳酸菌においてはいずれも、5時間以内に発酵は完了したものの、10℃で長時間保存後にはpHが4.2を下回り、かつ、43℃で20時間及び24時間培養後のpHも4.1を下回った。これらの結果より、43℃で少なくとも20時間培養後のpHが4.1以上となる乳酸菌によれば、低温(例えば10℃)における酸産生が抑制されるといえる。
 (試験例3)
 OLS4802株(実施例2)、OLS4803株(実施例3)、及びP2101201株(比較例1)の10℃保存時の生菌数の経時変化を調べた。すなわち、各株を試験例1及び試験例2と同様に培養(発酵)して、pHが4.7に達した時点で培養を終了し、培養終了時(0日間)、及び、培養終了後直ちに10℃に冷却して空気が入らないように封入し、4日間、11日間、20日間、又は35日間静置して保存したときの、各保存後の培養液を希釈した懸濁液を、BCP加プレートカウント寒天培地(栄研化学社製)に広げて培養し、出現するコロニー数をカウントすることによって、各培養液(g)中の生菌数(cfu/g)を測定した。結果を図1に示す。
 図1に示したように、OLS4803株は35日間の保存で他の株に比べて生菌数がやや減少したものの、いずれの乳酸菌においても35日間保存後に生菌数が1×10cfu/g(1.E+08cfu/g、以下同様)を下回ることはなく、「乳及び乳製品の成分規格等に関する省令(乳等省令)」による発酵乳の規格を担保する発酵乳製造への適性を有することが確認された。また、従来、低温における乳酸菌の酸産生抑制のメカニズムとして、特許文献3に記載されているようなATPase活性の低下等によるアポトーシスが知られていたが、本発明の乳酸菌(例えば、OLS4802株、OLS4803株)は、このように低温においても生菌数が十分に維持されることから、従来とは別のメカニズムで低温における酸産生の抑制機構を獲得しているといえる。
 (試験例4)
 先ず、下記の3株の乳酸菌:
 OLS4496株(比較例2):受託番号NITE BP-02875号で特定されるS.サーモフィルス。(1)識別の表示:Streptococcus thermophilus OLS4496、(2)受託番号:NITE BP-02875、及び(3)受託日:2019年2月5日で、(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号292-0818 千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託されている。prtS遺伝子を保有する;
 OLS4823株(実施例4):受託番号NITE BP-03507号で特定されるS.サーモフィルス。prtS遺伝子を保有する;及び
 OLS4824株(実施例5):受託番号NITE BP-03508号で特定されるS.サーモフィルス。prtS遺伝子を保有する
を含む全7株の乳酸菌(いずれもprtS遺伝子を保有するS.サーモフィルス)をそれぞれ、121℃で7分間滅菌した10%脱脂粉乳培地において、37℃、嫌気条件下で終夜静置培養することにより、賦活した。次いで、75℃で15分間殺菌した10%脱脂粉乳に対して、賦活後の培養液の質量が2質量%(乳酸菌生菌数:1×10~2×10cfu/g)となるように接種し、43℃で培養(発酵)し、培養液のpHが低下して4.7に達するまでの時間(発酵時間)を測定した。さらに、pHが4.7に達した時点で培養を終了し、直ちに10℃に冷却して空気が入らないように封入し、1日間、12日間、24日間、又は40日間静置して保存し、各保存後のpH(10℃ pH)を測定した。また、前記保存したものとは別に、前記接種後、43℃で静置培養(発酵)し、24時間まで培養を続けたときの培養液のpH(43℃ pH)を測定した。試験を行った乳酸菌のうち、上記3株の結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、OLS4823株及びOLS4824株ではいずれも、7時間以内に発酵が完了(pHが4.7に到達)し、40日間保存後であってもpHが4.4を下回ることがなかった。また、かかるOLS4823株及びOLS4824株のいずれにおいても、43℃で24時間培養後のpHが4.1以上となった。さらに、全7株の乳酸菌のうち、上記2株の他の1株の乳酸菌で、7時間以内に発酵が完了し、10℃で40日間保存後であってもpHが4.2以上であり、かつ、43℃で24時間培養後のpHが4.1以上となった。これに対して、OLS4496株、及び、残りの3株の乳酸菌においてはいずれも、7時間以内に発酵は完了したものの、10℃で長時間保存後にはpHが4.2を下回り、かつ、43℃で24時間培養後のpHが4.1を下回った。これらの結果からも、43℃で長時間(例えば24時間)培養後のpHが4.1以上となる乳酸菌によれば、低温(例えば10℃)における酸産生が抑制されることが確認された。
 (試験例5)
 先ず、下記の6株の乳酸菌:
 P2101201株(比較例1);OLS4801株(実施例1);OLS4802株(実施例2);OLS4803株(実施例3);
 SBT0144株(比較例3):特許文献2に記載の受託番号FERM P-16638号で特定されるS.サーモフィルス;
 1131株(比較例4):明治ブルガリアヨーグルトLB81(株式会社明治製)より分離したS.サーモフィルス
をそれぞれ、121℃で7分間滅菌した10%脱脂粉乳培地において、37℃、嫌気条件下で終夜静置培養することにより、賦活した。次いで、75℃で15分間殺菌した10%脱脂粉乳に対して、賦活後の培養液の質量が2質量%(乳酸菌生菌数:1×10~2×10cfu/g)となるように接種し、43℃で静置培養(発酵)し、培養液のpHが低下して4.7に達するまでの時間(発酵時間)を測定した。さらに、pHが4.7に達した時点で培養を終了して直ちに10℃に冷却して空気が入らないように封入し、10日間、17日間、又は36日間静置して保存し、各保存後のpH(10℃ pH)を測定した。また、各保存後の培養液(g)中の生菌数(cfu/g)を、試験例3と同様にして測定した。結果を下記の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、試験例1~3と同様に、OLS4801株、OLS4802株、及びOLS4803株ではいずれも、5時間以内に発酵が完了(pHが4.7に到達)し、10℃で36日間保存後であってもpHが4.4以上であった。また、36日間まで保存しても、生菌数が1×10cfu/g以上を維持していた。他方、P2101201株では、5時間以内に発酵は完了し、また、36日間まで保存しても、生菌数が1×10cfu/gを下回ることはなかったものの、10℃で少なくとも10日間保存後にはpHが4.2未満となった。また、1131株、及び従来低温感受性として知られていたSBT0144株ではいずれも、10℃で36日間まで保存したpHは4.4以上であったものの、発酵完了までに16時間以上を要し、また、10℃で少なくとも10日間保存後から1×10cfu/g以上の生菌数は維持できないことが確認された。
 (試験例6)
 先ず、次の4株の乳酸菌:OLS4823株(実施例4)、OLS4824株(実施例5)、SBT0144株(比較例3)、及び1131株(比較例4)をそれぞれ、121℃で7分間滅菌した10%脱脂粉乳培地において、37℃、嫌気条件下で終夜静置培養することにより、賦活した。次いで、75℃で15分間殺菌した10%脱脂粉乳に対して、賦活後の培養液の質量が2質量%(乳酸菌生菌数:1×10~2×10cfu/g)となるように接種し、43℃で静置培養(発酵)し、培養液のpHが低下して4.7に達するまでの時間(発酵時間)を測定した。さらに、pHが4.7に達した時点で培養を終了し、直ちに10℃に冷却して空気が入らないように封入し、10日間、17日間、又は36日間静置して保存し、各保存後のpH(10℃ pH)を測定した。また、各保存後の培養液(g)中の生菌数(cfu/g)を、試験例3と同様にして測定した。結果を下記の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示したように、試験例4と同様に、OLS4823株及びOLS4824株ではいずれも、7時間以内に発酵が完了(pHが4.7に到達)し、10℃で36日間保存後であってもpHが4.4以上であった。また、36日間まで保存しても、生菌数が1×10cfu/g以上を維持していた。他方、試験例5と同様に、1131株、及び従来低温感受性として知られていたSBT0144株ではいずれも、10℃で36日間まで保存したpHは4.2以上であったものの、発酵完了までに16時間以上を要し、また、10℃で少なくとも10日間保存後から1×10cfu/g以上の生菌数は維持できないことが確認された。
 以上説明したように、本発明によれば、低温保存中のpH低下が抑制され、かつ、前記低温保存によっても乳酸菌の生菌数が十分に維持される発酵乳を得ることができる乳酸菌、これを含有する乳酸菌スターター及び発酵乳、並びに、発酵乳の製造方法、さらには、乳酸菌のスクリーニング方法を提供することが可能となる。
1.
(1)識別の表示:Streptococcus thermophilus OLS4801
(2)受託番号:NITE BP-03504
(3)受託日:2021年8月4日
(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
2.
(1)識別の表示:Streptococcus thermophilus OLS4802
(2)受託番号:NITE BP-03505
(3)受託日:2021年8月4日
(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
3.
(1)識別の表示:Streptococcus thermophilus OLS4803
(2)受託番号:NITE BP-03506
(3)受託日:2021年8月4日
(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
4.
(1)識別の表示:Streptococcus thermophilus OLS4823
(2)受託番号:NITE BP-03507
(3)受託日:2021年8月4日
(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
5.
(1)識別の表示:Streptococcus thermophilus OLS4824
(2)受託番号:NITE BP-03508
(3)受託日:2021年8月4日
(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
6.
(1)識別の表示:Streptococcus thermophilus OLS4496
(2)受託番号:NITE BP-02875
(3)受託日:2019年2月5日
(4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター

Claims (13)

  1.  ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)に属する乳酸菌であり、下記(a)及び(b):
    (a)10%脱脂粉乳培地において43℃で培養をしたとき、(a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、(a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、及び
    (b)10%脱脂粉乳培地において43℃で培養液のpHが4.7以下となるまで培養をした後、10℃で10日間保存したとき、(b1)前記保存後の培養液における生菌数が1×10cfu/g以上となり、かつ、(b2)前記保存後の培養液のpHが4.2以上となる、
    からなる群から選択される少なくとも1種の条件を満たす、乳酸菌。
  2.  前記(a)の条件を満たし、かつ、下記(a3)又は(a4):
    (a3)前記培養で培養液のpHが4.7以下となるまで培養した後、10℃で10日間保存後の培養液における生菌数が1×10cfu/g以上となる、又は
    (a4)前記培養で培養液のpHが4.7以下となるまで培養した後、10℃で10日間保存後の培養液のpHが4.2以上となる、
    の条件を満たす、請求項1に記載の乳酸菌。
  3.  前記(b)の条件を満たし、かつ、下記(b3)又は(b4):
    (b3)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となる、又は
    (b4)前記培養開始から20時間後の培養液のpHが4.1以上となる、
    の条件を満たす、請求項1に記載の乳酸菌。
  4.  PrtS遺伝子を保有する、請求項1に記載の乳酸菌。
  5.  ストレプトコッカス・サーモフィルス OLS4801(受託番号:NITE BP-03504)、ストレプトコッカス・サーモフィルス OLS4802(受託番号:NITE BP-03505)、ストレプトコッカス・サーモフィルス OLS4803(受託番号:NITE BP-03506)、ストレプトコッカス・サーモフィルス OLS4823(受託番号:NITE BP-03507)、及びストレプトコッカス・サーモフィルス OLS4824(受託番号:NITE BP-03508)からなる群から選択される少なくとも1種である、請求項1に記載の乳酸菌。
  6.  請求項1に記載の乳酸菌を含有する、乳酸菌組成物。
  7.  ラクトバチルス属(Lactobacillus)乳酸菌をさらに含有する、請求項6に記載の乳酸菌組成物。
  8.  乳酸菌スターターである、請求項6に記載の乳酸菌組成物。
  9.  発酵乳である、請求項6に記載の乳酸菌組成物。
  10.  請求項1に記載の乳酸菌又は請求項6に記載の乳酸菌組成物を、原料乳を含有する調乳液に添加して発酵させ、発酵乳を得る発酵工程を含む、発酵乳の製造方法。
  11.  前記調乳液にラクトバチルス属(Lactobacillus)乳酸菌をさらに添加する、請求項10に記載の発酵乳の製造方法。
  12.  ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)に属する乳酸菌であり、下記(a):
    (a)10%脱脂粉乳培地において43℃で培養をしたとき、(a1)培養液のpHが4.7以下となるまでの時間が前記培養開始から7時間以下となり、かつ、(a2)前記培養開始から20時間後の培養液のpHが4.1以上となる、
    の条件を満たすことを指標として、低酸産生の乳酸菌を選択する選択工程を含む、乳酸菌のスクリーニング方法。
  13.  請求項12に記載の乳酸菌のスクリーニング方法で選択された乳酸菌を、原料乳を含有する調乳液に添加して発酵させ、発酵乳を得る発酵工程を含む、発酵乳の製造方法。
PCT/JP2022/033646 2021-09-09 2022-09-08 乳酸菌、乳酸菌スターター、発酵乳、発酵乳の製造方法、及び乳酸菌のスクリーニング方法 WO2023038072A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280060920.5A CN117916358A (zh) 2021-09-09 2022-09-08 乳酸菌、乳酸菌酵种、发酵乳、发酵乳的制造方法、及乳酸菌的筛选方法
JP2023546975A JPWO2023038072A1 (ja) 2021-09-09 2022-09-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147151 2021-09-09
JP2021-147151 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023038072A1 true WO2023038072A1 (ja) 2023-03-16

Family

ID=85506413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033646 WO2023038072A1 (ja) 2021-09-09 2022-09-08 乳酸菌、乳酸菌スターター、発酵乳、発酵乳の製造方法、及び乳酸菌のスクリーニング方法

Country Status (3)

Country Link
JP (1) JPWO2023038072A1 (ja)
CN (1) CN117916358A (ja)
WO (1) WO2023038072A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236416A (ja) 1994-03-02 1995-09-12 Snow Brand Milk Prod Co Ltd 保存中の酸度上昇を抑制した発酵乳の製造法
JP2000270844A (ja) * 1999-03-23 2000-10-03 Snow Brand Milk Prod Co Ltd 低温感受性乳酸菌株
JP2001095561A (ja) 1999-09-30 2001-04-10 Snow Brand Milk Prod Co Ltd 新規乳酸菌株
WO2014192905A1 (ja) * 2013-05-31 2014-12-04 株式会社明治 酸度上昇が抑制された発酵乳およびその製造方法
WO2018151249A1 (ja) * 2017-02-17 2018-08-23 株式会社明治 低酸味発酵乳の製造方法
JP2020137517A (ja) * 2019-02-22 2020-09-03 株式会社明治 発酵食品の製造方法、発酵食品、乳酸菌、及び乳酸菌組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236416A (ja) 1994-03-02 1995-09-12 Snow Brand Milk Prod Co Ltd 保存中の酸度上昇を抑制した発酵乳の製造法
JP2000270844A (ja) * 1999-03-23 2000-10-03 Snow Brand Milk Prod Co Ltd 低温感受性乳酸菌株
JP4331309B2 (ja) 1999-03-23 2009-09-16 雪印乳業株式会社 低温感受性乳酸菌株
JP2001095561A (ja) 1999-09-30 2001-04-10 Snow Brand Milk Prod Co Ltd 新規乳酸菌株
WO2014192905A1 (ja) * 2013-05-31 2014-12-04 株式会社明治 酸度上昇が抑制された発酵乳およびその製造方法
WO2018151249A1 (ja) * 2017-02-17 2018-08-23 株式会社明治 低酸味発酵乳の製造方法
JP2020137517A (ja) * 2019-02-22 2020-09-03 株式会社明治 発酵食品の製造方法、発酵食品、乳酸菌、及び乳酸菌組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DELGADO-FERNáNDEZ PALOMA, CORZO NIEVES, OLANO AGUSTíN, HERNáNDEZ-HERNáNDEZ OSWALDO, MORENO F. JAVIER: "Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts", INTERNATIONAL DAIRY JOURNAL, ELSEVIER APPLIED SCIENCE, BARKING,, GB, vol. 89, 10 October 2018 (2018-10-10), GB , pages 77 - 85, XP055823699, ISSN: 0958-6946, DOI: 10.1016/j.idairyj.2018.09.003 *
HAMAOKA, NAOHIRO: "Efficient Evaluation and Selection Scheme of Lactic Acid Bacteria for Yoghurt Production", BULLETIN OF THE FOOD PROCESSING RESEARCH CENTER HOKKAIDO RESEARCH ORGANIZATION, no. 15, 22 December 2020 (2020-12-22), pages 11 - 20, XP009544335, ISSN: 2185-8667 *

Also Published As

Publication number Publication date
CN117916358A (zh) 2024-04-19
JPWO2023038072A1 (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
US20170298457A1 (en) Lactic bacterium with modified galactokinase expression for texturizing food products by overexpression of exopolysaccharide
EP3845069B1 (en) Sucrose negative streptococcus thermophilus for use in preparation of fermented products
KR20180103140A (ko) 락토바실러스 카제이를 이용한 발효유제품의 생산 방법
CN107567280A (zh) 具有稳定的乳糖含量的酸乳清
US20200323227A1 (en) Fermented dairy compositions and methods of preparing the same
US8945641B2 (en) Use of gum arabic for improving the growth and survival of bifidobacteria
US11166473B2 (en) Lactobacillus rhamnosus for use in preparation of fermented products
US11160289B2 (en) Streptococcus thermophilus for use in preparation of fermented products
WO2023038072A1 (ja) 乳酸菌、乳酸菌スターター、発酵乳、発酵乳の製造方法、及び乳酸菌のスクリーニング方法
JP2022136018A (ja) 保形性が改善された発酵組成物、及びその製造方法
US20220256872A1 (en) Process for producing a fermented milk product with an enhanced level of probiotics
Suwannaphan Quality evaluation of non-fat goat milk yogurt supplemented with purple sweet potato flour.
CA3020355C (en) Lactobacillus rhamnosus for use in preparation of fermented products
WO2024048595A1 (ja) 乳酸菌組成物及び発酵乳の製造方法
US20200359640A1 (en) Methods for producing fermented milk and lactic acid bacteria starter
JP2024062865A (ja) 発酵促進効果を有する乳酸菌株を用いた発酵組成物の製造方法
WO2024004139A1 (ja) 発酵乳及び発酵乳の製造方法
WO2023275331A1 (en) Bifidobacteria for use in preparation of fermented products
JP2022120417A (ja) 香味が改善された発酵組成物、及びその製造方法
US20240023591A1 (en) Acetobacter for use in preparation of fermented products
JP2019058139A (ja) 乳酸菌の生残性向上方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546975

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060920.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022867393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867393

Country of ref document: EP

Effective date: 20240409