WO2023037972A1 - Compressor, and air conditioning device - Google Patents

Compressor, and air conditioning device Download PDF

Info

Publication number
WO2023037972A1
WO2023037972A1 PCT/JP2022/033072 JP2022033072W WO2023037972A1 WO 2023037972 A1 WO2023037972 A1 WO 2023037972A1 JP 2022033072 W JP2022033072 W JP 2022033072W WO 2023037972 A1 WO2023037972 A1 WO 2023037972A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
injection
refrigerant
compressor
Prior art date
Application number
PCT/JP2022/033072
Other languages
French (fr)
Japanese (ja)
Inventor
絵夢 加藤
ちひろ 遠藤
遼介 和田
裕也 砂原
洪一 入川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023037972A1 publication Critical patent/WO2023037972A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-17464
  • a scroll compressor having an injection passage for supplying refrigerant having a pressure between a low pressure and a high pressure in a refrigeration cycle to a compression chamber.
  • the injection passage is provided with a check valve for closing the injection passage when the pressure of the injected refrigerant is lower than the pressure of the compression chamber.
  • valve body of the check valve repeatedly collides with the member that restricts the movement of the valve body, which may damage the valve body.
  • the compressor of the first aspect includes a compression mechanism, an injection valve, and an injection pipe.
  • the compression mechanism has a compression chamber in which refrigerant is compressed.
  • the injection valve is arranged in the injection passage communicating with the compression chamber.
  • the injection pipe supplies coolant to the injection passage.
  • the injection valve has a valve body, a valve guard, and a valve seat.
  • the valve body is arranged movably along the first direction.
  • the valve guard is arranged closer to the injection pipe than the valve body, and restricts movement of the valve body toward the injection pipe.
  • the valve seat is arranged closer to the compression chamber than the valve body, and restricts movement of the valve body toward the compression chamber.
  • the valve guard is formed with a first hole that is opened and closed by the valve body.
  • a first distance that is the amount of movement of the valve body in the first direction when the valve body moves from the first state in which the valve body contacts the valve guard and closes the first hole to the second state in which the valve body separates from the valve guard and contacts the valve seat. is less than the first dimension, which is the dimension of the valve body in the first direction.
  • the compressor of the second aspect is the compressor of the first aspect, where L is the first distance and t is the first dimension, satisfying the relational expression 0.2 mm ⁇ L ⁇ t ⁇ 1.8 mm .
  • the compressor of the third aspect is the compressor of the first aspect or the second aspect, wherein S1 is the area of the valve body when viewed along the first direction, and S1 is the area of the valve body when viewed along the first direction.
  • S1 is the area of the valve body when viewed along the first direction
  • S1 is the area of the valve body when viewed along the first direction.
  • the compressor of the fourth aspect is the compressor of any one of the first to third aspects, and the valve body is made of spring steel.
  • the compressor of the fifth aspect is the compressor of any one of the first to fourth aspects, and the compression mechanism has a piston and vanes.
  • the vane contacts the piston and divides the compression chamber into a first chamber and a second chamber.
  • the vanes are held reciprocally while the refrigerant is compressed in the compression chamber.
  • a compressor according to the sixth aspect is the compressor according to any one of the first to fourth aspects, and the compression mechanism has a vane and a pair of bushes.
  • a vane partitions the compression chamber into a first chamber and a second chamber. The vane is held between the pair of bushes so as to be able to move forward and backward while the refrigerant is compressed in the compression chamber.
  • the air conditioner of the seventh aspect comprises any one of the compressors of the first to sixth aspects.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 of an embodiment
  • FIG. 2 is a vertical cross-sectional view of a compressor 21
  • FIG. FIG. 3 is a cross-sectional view of the compression mechanism 15 taken along line AA in FIG. 2
  • 8 is an external view of a cylinder 84
  • FIG. 4 is a cross-sectional view showing the configuration of an injection valve 93 in a first state
  • FIG. 4 is a cross-sectional view showing the configuration of an injection valve 93 in a second state
  • 4 is a plan view of the valve body 94 when viewed along the first direction D1.
  • FIG. 11 is a plan view of the valve guard 95 when viewed along the first direction D1 from the side of the cylinder inner peripheral surface 86c; 4 is a cross-sectional view of the compression mechanism 15 when the piston 81 is positioned at top dead center; FIG. 4 is a cross-sectional view of the compression mechanism 15 when the piston 81 closes the suction hole 84b; FIG. 8 is a cross-sectional view of the compression mechanism 15 when the piston 81 blocks the injection passage 84g; FIG. It is a sectional view of compression mechanism 15 in the 1st modification.
  • an air conditioner 1 is capable of cooling and heating a room such as a building by performing a vapor compression refrigeration cycle. It is a possible device.
  • the air conditioner 1 mainly includes an outdoor unit 2 , an indoor unit 3 , a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5 .
  • the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 connect the outdoor unit 2 and the indoor unit 3 .
  • the vapor compression refrigerant circuit 6 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 .
  • the indoor unit 3 is installed indoors (a living room, a space above the ceiling, etc.) and constitutes a part of the refrigerant circuit 6 .
  • the indoor unit 3 mainly has an indoor heat exchanger 31 .
  • the indoor heat exchanger 31 functions as a refrigerant heat absorber (evaporator) to cool indoor air during cooling operation, and functions as a refrigerant radiator (condenser) to heat indoor air during heating operation.
  • the liquid side of the indoor heat exchanger 31 is connected to the liquid refrigerant communication pipe 4 .
  • the gas side of the indoor heat exchanger 31 is connected to the gas refrigerant communication pipe 5 .
  • the outdoor unit 2 is installed outdoors (on the roof of the building, near the wall of the building, etc.) and forms part of the refrigerant circuit 6 .
  • the outdoor unit 2 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an accumulator 25, a liquid closing valve 26, a gas closing valve 27, and an economizer heat. It has an exchange 28 and a control unit 29 .
  • the compressor 21 compresses the low-pressure gas refrigerant in the compression chamber 40 into high-pressure gas refrigerant.
  • the compressor 21 is driven by a compressor motor.
  • Compressor 21 is a rotary compressor. In the compressor 21, intermediate injection is performed in which part of the refrigerant flowing from the outdoor heat exchanger 23 toward the outdoor expansion valve 24 is supplied to the compression chamber 40 compressing the refrigerant.
  • the four-way switching valve 22 switches the connection state of the internal piping of the outdoor unit 2 .
  • the four-way switching valve 22 realizes the connection state indicated by the dashed line in FIG.
  • the four-way switching valve 22 realizes the connection state indicated by the solid line in FIG.
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant circulating in the refrigerant circuit 6 and the outdoor air.
  • the outdoor heat exchanger 23 has a refrigerant channel through which refrigerant flows, and heat transfer fins in contact with outdoor air.
  • the outdoor heat exchanger 23 functions as a refrigerant radiator (condenser) during cooling operation, and functions as a refrigerant heat absorber (evaporator) during heating operation.
  • the outdoor expansion valve 24 is an electrically operated valve or an electromagnetic valve whose opening degree can be adjusted.
  • the outdoor expansion valve 24 reduces the pressure of the refrigerant flowing through the internal piping of the outdoor unit 2 .
  • the outdoor expansion valve 24 controls the flow rate of refrigerant flowing through the internal piping of the outdoor unit 2 .
  • the accumulator 25 is installed in the piping on the suction side of the compressor 21 .
  • the accumulator 25 separates the gas-liquid mixed refrigerant flowing through the refrigerant circuit 6 into gas refrigerant and liquid refrigerant, and stores the liquid refrigerant. Gas refrigerant separated by the accumulator 25 is sent to the suction port of the compressor 21 .
  • the liquid shutoff valve 26 and the gas shutoff valve 27 are valves capable of shutting off the refrigerant flow path.
  • the liquid closing valve 26 is arranged between the indoor heat exchanger 31 and the outdoor expansion valve 24 .
  • a gas shutoff valve 27 is arranged between the indoor heat exchanger 31 and the four-way switching valve 22 .
  • the liquid shutoff valve 26 and the gas shutoff valve 27 are opened and closed by an operator, for example, when installing the air conditioner 1 or the like.
  • the economizer heat exchanger 28 is arranged between the outdoor heat exchanger 23 and the outdoor expansion valve 24 .
  • the economizer heat exchanger 28 exchanges heat between the refrigerant flowing from the outdoor heat exchanger 23 toward the outdoor expansion valve 24 and the refrigerant flowing through the economizer pipe 90 .
  • the economizer pipe 90 is a pipe branched from between the economizer heat exchanger 28 and the outdoor expansion valve 24 in the refrigerant circuit 6 .
  • An economizer valve 91 is attached to the economizer pipe 90 . Refrigerant flowing through economizer pipe 90 is decompressed by economizer valve 91 before being heat-exchanged by economizer heat exchanger 28 .
  • the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are constructed on site when the air conditioner 1 including the refrigerant circuit 6 is installed in a building or the like. Refrigerant piping. The length and diameter of the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are determined according to installation conditions such as the installation location of the air conditioner 1 and the combination of the outdoor unit 2 and the indoor unit 3 .
  • the refrigerant flowing through the liquid refrigerant communication pipe 4 may be liquid or may be gas-liquid two-phase.
  • the liquid refrigerant condensed in the indoor heat exchanger 31 is sent to the outdoor expansion valve 24 through the liquid refrigerant communication pipe 4 and the liquid closing valve 26 .
  • the refrigerant sent to the outdoor expansion valve 24 is decompressed by the outdoor expansion valve 24 to the low pressure of the refrigeration cycle.
  • the low-pressure refrigerant decompressed by the outdoor expansion valve 24 is sent to the outdoor heat exchanger 23 .
  • the low-pressure refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air in the outdoor heat exchanger 23 and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 again through the four-way switching valve 22 and the accumulator 25 .
  • the liquid refrigerant condensed in the outdoor heat exchanger 23 is depressurized to the low pressure of the refrigeration cycle by the outdoor expansion valve 24 .
  • the low-pressure refrigerant decompressed by the outdoor expansion valve 24 is sent to the indoor heat exchanger 31 through the liquid closing valve 26 and the liquid refrigerant connecting pipe 4 .
  • the refrigerant sent to the indoor heat exchanger 31 exchanges heat with the room air in the indoor heat exchanger 31 and evaporates to become a low-pressure gas refrigerant. This cools the indoor air.
  • the gas refrigerant evaporated in the indoor heat exchanger 31 is sucked into the compressor 21 again through the gas refrigerant communication pipe 5 , the gas shutoff valve 27 , the four-way switching valve 22 and the accumulator 25 .
  • the casing 10 is composed of a cylindrical body 11 , a bowl-shaped top 12 and a bowl-shaped bottom 13 .
  • the top portion 12 is airtightly connected to the upper end portion of the body portion 11 .
  • the bottom portion 13 is airtightly connected to the lower end portion of the body portion 11 .
  • the casing 10 is made of a rigid member that is resistant to deformation and breakage due to changes in pressure and temperature in the internal and external spaces of the casing 10 .
  • the casing 10 is installed so that the cylindrical axial direction of the trunk
  • a lower portion of the internal space of the casing 10 is an oil reservoir 10a in which lubricating oil is reserved.
  • the lubricating oil is refrigerating machine oil used to improve the lubricating properties of sliding parts inside the casing 10 .
  • the casing 10 mainly houses the compression mechanism 15, the drive motor 16, and the crankshaft 17.
  • Compression mechanism 15 is connected to drive motor 16 via crankshaft 17 .
  • the suction pipe 19 , the discharge pipe 20 and the injection pipe 92 are airtightly connected to the casing 10 so as to pass through the casing 10 .
  • the compression mechanism 15 is mainly composed of a front head 83, a cylinder 84, a rear head 85, a piston 81, and a bush 82. be.
  • the front head 83, cylinder 84 and rear head 85 are integrally fastened with bolts or the like.
  • a space above the compression mechanism 15 is a high-pressure space HS into which refrigerant compressed by the compression mechanism 15 is discharged.
  • the compression mechanism 15 is immersed in lubricating oil stored in the oil storage portion 10a.
  • the lubricating oil in the oil reservoir 10a is supplied to the sliding portion inside the compression mechanism 15 by differential pressure or the like. Next, each component of the compression mechanism 15 will be described.
  • the cylinder 84 mainly includes a cylinder hole 84a, a suction hole 84b, a discharge cutout 84c, a bush accommodation hole 84d, and a vane accommodation hole 84e. and an injection passage 84g.
  • Cylinder 84 is positioned between front head 83 and rear head 85 .
  • a first cylinder end face 86 a which is the upper end face of the cylinder 84 , contacts the lower face of the front head 83 .
  • a second cylinder end face 86 b which is the lower end face of the cylinder 84 , contacts the upper surface of the rear head 85 .
  • the cylinder hole 84a is a columnar hole penetrating the cylinder 84 in the vertical direction from the first cylinder end face 86a toward the second cylinder end face 86b.
  • the cylinder hole 84 a is a space surrounded by a cylinder inner peripheral surface 86 c that is the inner peripheral surface of the cylinder 84 .
  • the cylinder hole 84 a accommodates the eccentric shaft portion 17 a of the crankshaft 17 and the piston 81 .
  • the suction hole 84b is a hole penetrating along the radial direction of the cylinder 84 from the cylinder outer peripheral surface 86d, which is the outer peripheral surface of the cylinder 84, toward the cylinder inner peripheral surface 86c.
  • the discharge cutout 84c is a space formed without penetrating the cylinder 84 in the vertical direction by cutting out a part of the cylinder inner peripheral surface 86c.
  • the discharge notch 84c is formed on the side of the first cylinder end face 86a.
  • the bush accommodation hole 84d is a hole that penetrates the cylinder 84 in the vertical direction and is arranged between the suction hole 84b and the discharge notch 84c when the cylinder 84 is viewed along the vertical direction. A portion of the vane 81b and the bush 82 are accommodated in the bush accommodation hole 84d.
  • the vane accommodation hole 84e is a hole that penetrates the cylinder 84 in the vertical direction and communicates with the bush accommodation hole 84d.
  • the vane accommodation hole 84e accommodates a portion of the vane 81b.
  • the injection passage 84g is a hole penetrating along the radial direction of the cylinder 84 from the cylinder outer peripheral surface 86d toward the cylinder inner peripheral surface 86c. As shown in FIG. 3, when the cylinder 84 is viewed along the vertical direction, the bush accommodation hole 84d is arranged between the suction hole 84b and the injection passage 84g. An injection valve 93 is arranged in the injection passage 84g.
  • the injection passage 84g communicates with the injection pipe 92 on the side of the cylinder outer peripheral surface 86d, and communicates with the compression chamber 40 on the side of the cylinder inner peripheral surface 86c.
  • the piston 81 is a substantially cylindrical member that is inserted into the cylinder hole 84 a of the cylinder 84 .
  • An upper end surface of the piston 81 contacts the lower surface of the front head 83 .
  • a lower end surface of the piston 81 contacts the upper surface of the rear head 85 .
  • the piston 81 is inserted into the cylinder hole 84a of the cylinder 84 while being fitted on the eccentric shaft portion 17a of the crankshaft 17. As shown in FIG. As a result, the piston 81 is eccentrically rotated by the axial rotation of the crankshaft 17 and performs revolving motion around the rotation axis 17g of the crankshaft 17 . The piston 81 revolves clockwise when the compression mechanism 15 is viewed from above.
  • the vane 81b is accommodated in the bush accommodation hole 84d and the vane accommodation hole 84e of the cylinder 84.
  • the vane 81 b is formed integrally with the piston 81 .
  • the vane 81b extends along the radial direction of the piston 81 so as to protrude radially outward of the piston 81 .
  • the bush 82 supports the vane 81b while rotating in the bush accommodation hole 84d.
  • the compression mechanism 15 has a compression chamber 40 that is a space surrounded by a cylinder 84, a piston 81, vanes 81b, a front head 83, and a rear head 85.
  • the compression chamber 40 is a part of the cylinder hole 84a, and is a space in which the refrigerant is compressed as the volume changes as the piston 81 revolves. Lubricating oil in the oil reservoir 10 a is supplied to the compression chamber 40 .
  • the compression chamber 40 is divided by the piston 81 and the vane 81b into a low pressure chamber 40a communicating with the suction hole 84b and a high pressure chamber 40b communicating with the discharge cutout 84c and the injection passage 84g.
  • the low pressure chamber 40 a and the high pressure chamber 40 b are areas surrounded by a cylinder inner peripheral surface 86 c and a piston outer peripheral surface 81 c that is the outer peripheral surface of the piston 81 .
  • the volumes of the low-pressure chamber 40 a and the high-pressure chamber 40 b change according to the position of the piston 81 .
  • the bush 82 is a pair of substantially semi-cylindrical members.
  • the bush 82 is accommodated in the bush accommodation hole 84d of the cylinder 84 so as to sandwich the vane 81b.
  • Bushing 82 is slidable with cylinder 84 .
  • the front head 83 is a member that covers the first cylinder end surface 86 a of the cylinder 84 .
  • the front head 83 is fastened to the casing 10 with bolts or the like.
  • the front head 83 has an upper bearing portion 23 a for supporting the crankshaft 17 .
  • the front head 83 has a discharge port 23b.
  • the discharge port 23b is a cylindrical hole penetrating the front head 83 in the vertical direction.
  • the discharge port 23b communicates with the discharge notch 84c and the compression chamber 40 (high pressure chamber 40b) on the vertically lower side.
  • the discharge port 23b communicates with the high-pressure space HS on the upper side in the vertical direction.
  • the discharge port 23b is a channel for sending the refrigerant compressed by the compression mechanism 15 from the high pressure chamber 40b to the high pressure space HS.
  • a discharge valve 23c is attached to the upper surface of the front head 83 to block the discharge port 23b.
  • the discharge valve 23c is a valve for preventing reverse flow of refrigerant from the high-pressure space HS to the high-pressure chamber 40b.
  • the discharge valve 23c is lifted upward by the pressure of the refrigerant inside the discharge port 23b. As a result, the discharge port 23b is opened, and the discharge port 23b communicates with the high pressure space HS.
  • Rear Head 85 is a member that covers the second cylinder end face 86b of the cylinder 84. As shown in FIG. Rear head 85 has a lower bearing portion 25 a for supporting crankshaft 17 . A cylinder hole 84 a of the cylinder 84 is closed by a front head 83 and a rear head 85 .
  • the drive motor 16 is a brushless DC motor housed inside the casing 10 and arranged above the compression mechanism 15 .
  • the drive motor 16 is mainly composed of a stator 51 fixed to the inner wall surface of the casing 10 and a rotor 52 rotatably accommodated inside the stator 51 .
  • An air gap is provided between the stator 51 and the rotor 52 .
  • the outer surface of the stator 51 is provided with a plurality of core cut portions (not shown) cut out from the upper end surface to the lower end surface of the stator 51 at predetermined intervals in the circumferential direction.
  • the core cut forms a motor cooling passage extending vertically between the body 11 and the stator 51 .
  • the rotor 52 has a rotor core 52a composed of a plurality of vertically stacked metal plates, and a plurality of magnets 52b embedded in the rotor core 52a.
  • the magnets 52b are arranged at regular intervals along the circumferential direction of the rotor core 52a.
  • the rotor 52 is connected to the crankshaft 17 that vertically extends through its center of rotation. Rotor 52 is connected to compression mechanism 15 via crankshaft 17 .
  • crankshaft 17 (2-1-4) Crankshaft
  • the crankshaft 17 is accommodated inside the casing 10, and is arranged so that its axial direction is along the vertical direction.
  • Crankshaft 17 is connected to rotor 52 of drive motor 16 and piston 81 of compression mechanism 15 .
  • the crankshaft 17 has an eccentric shaft portion 17a.
  • the eccentric shaft portion 17a is connected to the piston 81 inserted into the cylinder hole 84a of the cylinder 84 .
  • the upper end of crankshaft 17 is connected to rotor 52 of drive motor 16 .
  • the crankshaft 17 is supported by the upper bearing portion 23 a of the front head 83 and the lower bearing portion 25 a of the rear head 85 .
  • the crankshaft 17 rotates around a rotation axis 17g.
  • the suction pipe 19 is a pipe passing through the body portion 11 of the casing 10 .
  • the end of the suction pipe 19 inside the casing 10 is fitted into the suction hole 84 b of the cylinder 84 .
  • the end of the intake pipe 19 outside the casing 10 is connected to the refrigerant circuit 6 .
  • the suction pipe 19 supplies refrigerant from the refrigerant circuit 6 to the compression mechanism 15 .
  • the discharge pipe 20 is a pipe passing through the top portion 12 of the casing 10 .
  • the end of the discharge pipe 20 inside the casing 10 is located in the space above the drive motor 16 .
  • the end of the discharge pipe 20 outside the casing 10 is connected to the refrigerant circuit 6 .
  • the discharge pipe 20 supplies the refrigerant compressed by the compression mechanism 15 to the refrigerant circuit 6 .
  • the injection pipe 92 is a pipe passing through the body portion 11 of the casing 10 .
  • An end of the injection pipe 92 inside the casing 10 is connected to an injection valve 93 arranged inside the injection passage 84 g of the cylinder 84 .
  • the end of injection pipe 92 outside casing 10 is connected to economizer pipe 90 .
  • the injection pipe 92 supplies the refrigerant in the economizer pipe 90 to the injection passage 84g.
  • the injection valve 93 mainly has a valve body 94, a valve guard 95, and a valve seat 96.
  • the valve guard 95 and the valve seat 96 are fixed to the cylinder 84 by being press-fitted into the injection passage 84g.
  • the valve guard 95 and the valve seat 96 are arranged apart from each other along the first direction D1 in which the injection passage 84g extends.
  • a space between the valve guard 95 and the valve seat 96 is a first space 97 arranged so that the valve body 94 can move in the first direction D1.
  • the valve guard 95 is arranged closer to the injection pipe 92 than the valve main body 94 .
  • the valve seat 96 is arranged closer to the compression chamber 40 than the valve body 94 .
  • the injection passage 84g is a circular hole with different inner diameters along the first direction D1.
  • the injection passage 84g has the largest inner diameter at the end on the cylinder outer peripheral surface 86d side and the smallest inner diameter at the end on the cylinder inner peripheral surface 86c side. Specifically, the inner diameter of the injection passage 84g increases from the cylinder inner peripheral surface 86c side toward the cylinder outer peripheral surface 86d side.
  • the valve body 94 is a circular flat plate.
  • the valve body 94 is made of spring steel such as GIN6 (hardened stainless steel manufactured by Hitachi Metals, Ltd.).
  • GIN6 hardened stainless steel manufactured by Hitachi Metals, Ltd.
  • the central portion of the valve body 94 is formed with a circular central hole 94a.
  • the valve body 94 has an annular peripheral edge 94b positioned around the central bore 94a. In FIG. 7, the peripheral portion 94b is shown as a hatched area.
  • the valve guard 95 is press-fitted on the cylinder outer peripheral surface 86d side of the injection passage 84g.
  • the valve guard 95 has a shape with an outer diameter that varies along the first direction D1. A portion of the valve guard 95 protrudes outward from the cylinder outer peripheral surface 86d.
  • An injection pipe 92 is inserted into the valve guard 95 from the cylinder outer peripheral surface 86d side.
  • the injection pipe 92 is fixed to the valve guard 95 .
  • an O-ring 92a attached to the injection pipe 92 separates the injection passage 84g from the high pressure space HS.
  • the valve guard 95 has a first hole 95a and a closing portion 95b.
  • the first hole 95a penetrates the valve guard 95 along the first direction D1.
  • the closing portion 95b is a circular area positioned in the center of the valve guard 95, and has a plurality of openings.
  • the first hole 95a of is formed around the closing portion 95b.
  • the closure 95b is shown as a hatched area.
  • twelve first holes 95a are arranged in a circle.
  • the outer diameter of the closing portion 95b is larger than the diameter of the central hole 94a of the valve body 94 .
  • the diameter of the first hole 95a is smaller than the width of the peripheral portion 94b of the valve body 94 (the radial dimension of the valve body 94).
  • the valve guard 95 restricts movement of the valve body 94 toward the injection pipe 92 side. In other words, when the valve body 94 moves toward the injection pipe 92 in the first direction D ⁇ b>1 , it can move until it hits the valve guard 95 .
  • the first hole 95 a of the valve guard 95 is closed by the peripheral edge portion 94 b of the valve body 94 .
  • the central hole 94 a of the valve body 94 is closed by the closing portion 95 b of the valve guard 95 .
  • the first hole 95 a of the valve guard 95 is not blocked by the peripheral edge portion 94 b of the valve body 94 .
  • the central hole 94a of the valve body 94 is not blocked by the closing portion 95b of the valve guard 95.
  • the first hole 95a of the valve guard 95 is opened and closed by the valve body 94. Specifically, when the valve body 94 is in contact with the valve guard 95, the central hole 94a of the valve body 94 and the first hole 95a of the valve guard 95 are closed, so the injection valve 93 is closed. in a state. On the other hand, when the valve main body 94 is separated from the valve guard 95, the central hole 94a of the valve main body 94 and the first hole 95a of the valve guard 95 are not blocked, so the injection valve 93 is open. It is in.
  • the valve seat 96 is press-fitted on the cylinder inner peripheral surface 86c side of the injection passage 84g.
  • the valve seat 96 has a shape with substantially the same outer diameter along the first direction D1.
  • the valve seat 96 has a second hole 96a.
  • the second hole 96a penetrates the valve seat 96 along the first direction D1.
  • the diameter of the second hole 96 a is substantially the same as the diameter of the central hole 94 a of the valve body 94 .
  • the second hole 96a always communicates with the compression chamber 40 via the injection passage 84g.
  • the valve seat 96 restricts movement of the valve body 94 toward the compression chamber 40 side. In other words, the valve body 94 is movable until it hits the valve seat 96 when moving in the first direction D1 toward the compression chamber 40 .
  • the central hole 94 a of the valve body 94 communicates with the second hole 96 a of the valve seat 96 . Since the valve body 94 is separated from the valve guard 95 when the valve body 94 is in contact with the valve seat 96, the injection valve 93 is in an open state.
  • the central hole 94a of the valve body 94 and the first hole 95a of the valve guard 95 are closed, so the central hole 94a communicates with the first hole 95a. not. Therefore, the refrigerant in the injection pipe 92 cannot flow into the compression chamber 40 through the first hole 95a and the central hole 94a.
  • the central hole 94a and the first hole 95a are not blocked, so the central hole 94a communicates with the first hole 95a through the first space 97. ing. Therefore, the refrigerant in the injection pipe 92 can flow into the compression chamber 40 through the first hole 95a and the central hole 94a.
  • the amount of movement of the valve body 94 in the first direction D1 when shifting from the first state to the second state is defined as a first distance L
  • the valve body 94 is defined as a first dimension t in the first direction D1.
  • the first distance L and the first dimension t satisfy the following relational expression (IV). 0.2 mm ⁇ L ⁇ t ⁇ 1.8 mm (IV)
  • the first distance L and the first dimension t satisfy the following relational expression (V). 0.6mm ⁇ L ⁇ t ⁇ 1.0mm (V)
  • the first distance L and the first dimension t satisfy the following relational expression (VI). 1.2 ⁇ t/L ⁇ 2.0 (VI)
  • the area of the valve body 94 when viewed along the first direction D1 is defined as the first area S1
  • the area of the first hole 95a of the valve guard 95 when viewed along the first direction D1 is defined as the first area S1.
  • 2 area is defined as S2.
  • the first area S1 is the area of the peripheral portion 94b and does not include the area of the central hole 94a.
  • the second area S2 is the total area of all the first holes 95a of the valve guard 95. As shown in FIG.
  • the area of the central hole 94a and the first hole 95a is the area when viewed along the first direction D1.
  • the first area S1 and the second area S2 satisfy the following relational expression (VII). 4.1 ⁇ S1/S2 ⁇ 4.9 (VII)
  • Relational expression (VII) is equivalent to the following relational expression (VIII). 4.1 ⁇ (i 2 ⁇ j 2 )/(n ⁇ k 2 ) ⁇ 4.9 (VIII)
  • the first area S1 and the second area S2 can be represented by the following relational expressions (IX) and (X) using variables i, j, n, and k.
  • S1 (i/2) 2 ⁇ (j/2) 2 ⁇ (IX)
  • S2 n ⁇ (k/2) 2 ⁇ (X)
  • the compression chamber 40 (low pressure chamber 40a) communicating with the suction hole 84b gradually increases in volume. At this time, low-pressure refrigerant flows into the low-pressure chamber 40 a from the outside of the casing 10 via the suction pipe 19 .
  • the low-pressure chamber 40a becomes a high-pressure chamber 40b that communicates with the discharge notch 84c.
  • the high-pressure chamber 40b gradually decreases in volume and disappears. .
  • the low-pressure refrigerant flowing into the low-pressure chamber 40a from the suction pipe 19 through the suction hole 84b is compressed in the compression chamber 40 (high-pressure chamber 40b). While the refrigerant is compressed in the compression chamber 40, the vane 81b is held between the pair of bushes so as to be able to move forward and backward.
  • the high-pressure refrigerant compressed in the high-pressure chamber 40b is discharged into the high-pressure space HS via the discharge notch 84c and the discharge port 23b.
  • the refrigerant discharged into the high-pressure space HS flows upward through the motor cooling passage of the drive motor 16 and is then discharged from the discharge pipe 20 to the outside of the casing 10 .
  • intermediate injection is performed in which intermediate pressure refrigerant flowing through the refrigerant circuit 6 is supplied to the high pressure chamber 40b.
  • Intermediate injection is performed by supplying intermediate-pressure refrigerant from the injection passage 84g to the high-pressure chamber 40b while the injection valve 93 is open.
  • Intermediate injection is performed when the pressure in the compression chamber 40 (high pressure chamber 40b) is lower than the injection pressure, and is not performed when the pressure in the compression chamber 40 (high pressure chamber 40b) is equal to or higher than the injection pressure.
  • the injection valve 93 is repeatedly opened and closed while the piston 81 is revolving. As shown in FIG. 9, the entire vane 81b is supported by the pair of bushes 82 when the piston 81 is at the top dead center. At this time, the compression chamber 40 is not divided into the low pressure chamber 40a and the high pressure chamber 40b by the piston 81, and the compression chamber 40 communicates with both the suction hole 84b and the injection passage 84g. Therefore, the compression chamber 40 is filled with low-pressure refrigerant flowing from the suction hole 84b. Since the pressure in the compression chamber 40 is lower than the injection pressure, the injection pressure causes the valve body 94 to move toward and strike the valve seat 96 . As a result, the injection valve 93 opens.
  • the piston 81 When the piston 81 revolves from the state shown in FIG. 9, the piston 81 closes the opening of the suction hole 84b in the cylinder inner peripheral surface 86c as shown in FIG. At this time, the compression chamber 40 is divided into a low pressure chamber 40a and a high pressure chamber 40b by the piston 81, and the high pressure chamber 40b communicates with the injection passage 84g. After that, when the piston 81 revolves further and the pressure in the high pressure chamber 40b rises, the pressure in the high pressure chamber 40b becomes equal to or higher than the injection pressure. As a result, the valve main body 94 is moved toward the valve guard 95 by the pressure in the high pressure chamber 40b and comes into contact with the valve guard 95 . As a result, the injection valve 93 is closed.
  • the injection valve 93 opens and closes due to the pressure difference between the refrigerant in the compression chamber 40 and the intermediate pressure refrigerant in the injection pipe 92 .
  • the compressor 21 transitions from the first state (FIG. 5) in which the injection valve 93 is closed to the second state (FIG. 6) in which the injection valve 93 is open. , the transition from the second state to the first state is repeated. Therefore, while the compressor 21 is compressing the refrigerant, the valve body 94 collides with the valve seat 96 each time the injection valve 93 opens, and collides with the valve guard 95 each time the injection valve 93 closes.
  • the valve opens due to the pressure difference between the refrigerant with a pressure higher than the lowest pressure in the refrigerant circuit and the refrigerant with an intermediate pressure. Therefore, in the scroll type compressor, the pressure difference, which is the driving force for opening and closing the valve, tends to be smaller than in the rotary type compressor, so the speed of the valve body when opening and closing the valve is also small. The greater the speed of the valve body, the greater the impact load when the valve body collides with other members, so the valve body is more likely to be damaged. In addition, the higher the intermediate pressure, the greater the pressure difference, which is the driving force for opening and closing the valve, and the faster the valve body.
  • the amount of movement of the valve body 94 in the first direction D1 (first distance L) while the compressor 21 is compressing the refrigerant is the dimension of the valve body 94 in the first direction D1 (first dimension t). Since the upper limit of the first distance L is set, the speed of the valve body 94 is regulated, and the impact load of the valve body 94 when it hits the valve guard 95 and the valve seat 96 is reduced. In addition, since the lower limit value of the first dimension t is set, the thickness of the valve body 94 can be ensured to be equal to or greater than a predetermined value, and a drop in the fatigue strength of the valve body 94 can be suppressed.
  • the valve body 94 comes into contact with the valve guard 95 and the valve seat 96, the local load applied to the valve body 94 is suppressed. Therefore, in the present embodiment, even if the pressure difference that is the driving force for opening and closing the injection valve 93 is relatively large, damage to the valve body 94 is suppressed, and the reliability of the compressor 21 is improved.
  • a pressure difference that serves as a driving force for opening and closing a valve such as the injection valve 93 of the present embodiment is greater than that of a scroll compressor. Since it tends to be large, it is highly effective in suppressing damage to the valve and improving reliability.
  • valve body 94 and the valve guard 95 are designed so that the above relationships (VII) and (VIII) are satisfied. Thereby, the sealing performance of the injection valve 93 is appropriately ensured.
  • valve body 94 is made of spring steel. This effectively suppresses damage to the valve body 94 .
  • the movable scroll revolves around the fixed scroll, thereby reducing the volume of the compression chamber formed by the fixed scroll and the movable scroll, thereby compressing the refrigerant in the compression chamber.
  • the movable scroll revolves at least twice with respect to the fixed scroll until the low-pressure refrigerant is compressed into high-pressure refrigerant. Therefore, when the scroll compressor is provided with a valve such as the injection valve 93, the valve opens and closes once every time the orbiting scroll makes at least two revolutions.
  • the injection valve 93 opens and closes once each time the piston 81 revolves once. Therefore, rotary compressors tend to open and close valves such as the injection valve 93 more often than scroll compressors. Therefore, in a rotary compressor such as the compressor 21 of this embodiment, valves such as the injection valve 93 of this embodiment are more likely to be damaged than in a scroll compressor. The effect of suppressing and improving reliability is large.
  • the air conditioner 1 includes a compressor 21 .
  • the reliability of the air conditioner 1 is improved.
  • the capacity of the air conditioner 1 can be improved.
  • the compressor 21 is a rotary compressor.
  • the injection valve 93 can also be applied to compressors other than rotary compressors.
  • the injection valve 93 can also be applied to scroll compressors.
  • compression mechanism 15 may have a configuration that does not have bush 82 .
  • the compression mechanism 15 may have a piston 81, a vane 81b, and a spring 87, as shown in FIG.
  • Piston 81 and vane 81b are members separate from each other.
  • the spring 87 is accommodated in a spring accommodation hole 84f penetrating the cylinder 84 in the vertical direction.
  • a spring 87 presses the vane 81 b toward the piston 81 revolving within the cylinder hole 84 a of the cylinder 84 .
  • the vane 81b partitions the compression chamber 40 into a low-pressure chamber 40a and a high-pressure chamber 40b while being in contact with the revolving piston 81 . While the refrigerant is compressed in the compression chamber 40, the vane 81b is held by the spring housing hole 84f so as to be able to advance and retreat.
  • the injection valve 93 may further have an elastic body arranged between the valve body 94 and the valve seat 96 .
  • the elastic body is, for example, a spring.
  • the elastic body is configured to press the valve body 94 against the valve guard 95 when the pressure in the compression chamber 40 exceeds a pressure lower than the injection pressure by a predetermined value.
  • Air conditioner 15 Compression mechanism 21: Compressor 40: Compression chamber 40a: Low pressure chamber (first chamber) 40b: high pressure chamber (second chamber) 81: Piston 81b: Vane 82: Pair of bushes 84g: Injection passage 92: Injection pipe 93: Injection valve 94: Valve body 95: Valve retainer 95a: First hole 96: Valve seat D1: First direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Provided is a compressor in which damage to a valve main body is suppressed. A compressor (21) is provided with a compressing mechanism (15), an injection valve (93), and an injection pipe (92). A compression chamber (40) is formed in the compressing mechanism (15). The injection valve (93) is disposed in an injection passage (84g) that communicates with the compression chamber (40). The injection pipe (92) supplies a refrigerant to the injection passage (84g). The injection valve (93) includes a valve main body (94), a valve guard (95), and a valve seat (96). The valve main body (94) is disposed so as to be movable in a first direction (D1). The valve guard (95) restricts movement of the valve main body (94) toward the injection pipe (92). The valve seat (96) restricts movement of the valve main body (94) toward the compression chamber (40). A first hole (95a) that is opened and closed by means of the valve main body (94) is formed in the valve guard (95). A first distance (L), which is an amount of movement of the valve main body (94) in the first direction (D1), is less than a first dimension (t), which is a dimension of the valve main body (94) in the first direction (D1).

Description

圧縮機、および、空気調和装置Compressor and air conditioner
 圧縮機、および、空気調和装置に関する。 Regarding compressors and air conditioners.
 特許文献1(特開2016-17464号公報)に記載のように、冷凍サイクルにおける低圧と高圧との間の圧力の冷媒を圧縮室に供給するためのインジェクション通路を有するスクロール圧縮機が知られている。インジェクション通路には、圧縮室の圧力よりもインジェクションされる冷媒の圧力が低い場合にインジェクション通路を閉じるための逆止弁が配置されている。 As described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2016-17464), a scroll compressor having an injection passage for supplying refrigerant having a pressure between a low pressure and a high pressure in a refrigeration cycle to a compression chamber is known. there is The injection passage is provided with a check valve for closing the injection passage when the pressure of the injected refrigerant is lower than the pressure of the compression chamber.
 圧縮室における冷媒の圧縮過程において、逆止弁の弁本体が、弁本体の移動を制限するための部材との衝突を繰り返して、弁本体が破損するおそれがある。 During the process of compressing the refrigerant in the compression chamber, the valve body of the check valve repeatedly collides with the member that restricts the movement of the valve body, which may damage the valve body.
 第1観点の圧縮機は、圧縮機構と、インジェクション弁と、インジェクション配管とを備える。圧縮機構は、冷媒が圧縮される圧縮室が形成される。インジェクション弁は、圧縮室と連通するインジェクション通路に配置される。インジェクション配管は、インジェクション通路に冷媒を供給する。インジェクション弁は、弁本体と、弁押さえと、弁座とを有する。弁本体は、第1方向に沿って移動可能に配置される。弁押さえは、弁本体よりもインジェクション配管側に配置され、弁本体のインジェクション配管側への移動を規制する。弁座は、弁本体よりも圧縮室側に配置され、弁本体の圧縮室側への移動を規制する。弁押さえは、弁本体により開閉される第1孔が形成される。弁本体が弁押さえに当たって第1孔を塞ぐ第1状態から、弁本体が弁押さえから離れて弁座に当たる第2状態に移行する際における、弁本体の第1方向の移動量である第1距離は、弁本体の第1方向の寸法である第1寸法より小さい。 The compressor of the first aspect includes a compression mechanism, an injection valve, and an injection pipe. The compression mechanism has a compression chamber in which refrigerant is compressed. The injection valve is arranged in the injection passage communicating with the compression chamber. The injection pipe supplies coolant to the injection passage. The injection valve has a valve body, a valve guard, and a valve seat. The valve body is arranged movably along the first direction. The valve guard is arranged closer to the injection pipe than the valve body, and restricts movement of the valve body toward the injection pipe. The valve seat is arranged closer to the compression chamber than the valve body, and restricts movement of the valve body toward the compression chamber. The valve guard is formed with a first hole that is opened and closed by the valve body. A first distance that is the amount of movement of the valve body in the first direction when the valve body moves from the first state in which the valve body contacts the valve guard and closes the first hole to the second state in which the valve body separates from the valve guard and contacts the valve seat. is less than the first dimension, which is the dimension of the valve body in the first direction.
 この圧縮機では、弁本体の衝撃負荷を低減し、かつ、弁本体の疲労強度を増加させることで、弁本体の破損が抑制され、圧縮機の信頼性が向上する。 In this compressor, by reducing the impact load on the valve body and increasing the fatigue strength of the valve body, damage to the valve body is suppressed and the reliability of the compressor is improved.
 第2観点の圧縮機は、第1観点の圧縮機であって、第1距離をLとし、第1寸法をtとする場合、0.2mm≦L<t≦1.8mmの関係式を満たす。 The compressor of the second aspect is the compressor of the first aspect, where L is the first distance and t is the first dimension, satisfying the relational expression 0.2 mm ≤ L < t ≤ 1.8 mm .
 この圧縮機では、弁本体の破損が抑制される。 With this compressor, damage to the valve body is suppressed.
 第3観点の圧縮機は、第1観点または第2観点の圧縮機であって、第1方向に沿って見た場合における弁本体の面積をS1とし、第1方向に沿って見た場合における第1孔の面積をS2とする場合、4.1≦S1/S2≦4.9の関係式を満たす。 The compressor of the third aspect is the compressor of the first aspect or the second aspect, wherein S1 is the area of the valve body when viewed along the first direction, and S1 is the area of the valve body when viewed along the first direction. When the area of the first hole is S2, the relational expression 4.1≤S1/S2≤4.9 is satisfied.
 この圧縮機では、インジェクション弁のシール性能が適切に確保される。  In this compressor, the sealing performance of the injection valve is properly ensured.
 第4観点の圧縮機は、第1乃至第3観点のいずれか1つの圧縮機であって、弁本体は、ばね鋼で成形される。 The compressor of the fourth aspect is the compressor of any one of the first to third aspects, and the valve body is made of spring steel.
 この圧縮機では、弁本体の破損が抑制される。 With this compressor, damage to the valve body is suppressed.
 第5観点の圧縮機は、第1乃至第4観点のいずれか1つの圧縮機であって、圧縮機構は、ピストンと、ベーンとを有する。ベーンは、ピストンに接して圧縮室を第1室と第2室とに仕切る。ベーンは、圧縮室で冷媒が圧縮される間、進退可能に保持される。 The compressor of the fifth aspect is the compressor of any one of the first to fourth aspects, and the compression mechanism has a piston and vanes. The vane contacts the piston and divides the compression chamber into a first chamber and a second chamber. The vanes are held reciprocally while the refrigerant is compressed in the compression chamber.
 この圧縮機では、インジェクション弁の前後の圧力差が比較的高くても、弁本体の破損が抑制される。 With this compressor, even if the pressure difference before and after the injection valve is relatively high, damage to the valve body is suppressed.
 第6観点の圧縮機は、第1乃至第4観点のいずれか1つの圧縮機であって、圧縮機構は、ベーンと、一対のブッシュとを有する。ベーンは、圧縮室を第1室と第2室とに仕切る。ベーンは、圧縮室で冷媒が圧縮される間、一対のブッシュの間で進退可能に保持される。 A compressor according to the sixth aspect is the compressor according to any one of the first to fourth aspects, and the compression mechanism has a vane and a pair of bushes. A vane partitions the compression chamber into a first chamber and a second chamber. The vane is held between the pair of bushes so as to be able to move forward and backward while the refrigerant is compressed in the compression chamber.
 この圧縮機では、インジェクション弁の前後の圧力差が比較的高くても、弁本体の破損が抑制される。 With this compressor, even if the pressure difference before and after the injection valve is relatively high, damage to the valve body is suppressed.
 第7観点の空気調和装置は、第1乃至第6観点のいずれか1つの圧縮機を備える。 The air conditioner of the seventh aspect comprises any one of the compressors of the first to sixth aspects.
 この空気調和装置では、圧縮機のインジェクション弁の破損が抑制されるので、空気調和装置の寿命が向上する。 In this air conditioner, damage to the injection valve of the compressor is suppressed, so the life of the air conditioner is improved.
実施形態の空気調和装置1の概略構成図である。1 is a schematic configuration diagram of an air conditioner 1 of an embodiment; FIG. 圧縮機21の縦断面図である。2 is a vertical cross-sectional view of a compressor 21; FIG. 図2の線分A―Aにおける圧縮機構15の断面図である。FIG. 3 is a cross-sectional view of the compression mechanism 15 taken along line AA in FIG. 2; シリンダ84の外観図である。8 is an external view of a cylinder 84; FIG. 第1状態におけるインジェクション弁93の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of an injection valve 93 in a first state; 第2状態におけるインジェクション弁93の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of an injection valve 93 in a second state; 第1方向D1に沿って見た場合の弁本体94の平面図である。4 is a plan view of the valve body 94 when viewed along the first direction D1. FIG. シリンダ内周面86c側から第1方向D1に沿って見た場合の弁押さえ95の平面図である。Fig. 11 is a plan view of the valve guard 95 when viewed along the first direction D1 from the side of the cylinder inner peripheral surface 86c; ピストン81が上死点に位置する時の圧縮機構15の断面図である。4 is a cross-sectional view of the compression mechanism 15 when the piston 81 is positioned at top dead center; FIG. ピストン81が吸入孔84bを塞いでいる時の圧縮機構15の断面図である。4 is a cross-sectional view of the compression mechanism 15 when the piston 81 closes the suction hole 84b; FIG. ピストン81がインジェクション通路84gを塞いでいる時の圧縮機構15の断面図である。8 is a cross-sectional view of the compression mechanism 15 when the piston 81 blocks the injection passage 84g; FIG. 第1変形例における圧縮機構15の断面図である。It is a sectional view of compression mechanism 15 in the 1st modification.
 本開示の一実施形態の圧縮機21を備える空気調和装置1について、図面を参照しながら説明する。 An air conditioner 1 including a compressor 21 according to an embodiment of the present disclosure will be described with reference to the drawings.
 (1)空気調和装置
 (1-1)全体構成
 図1に示されるように、空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房および暖房を行うことが可能な装置である。空気調和装置1は、主として、室外ユニット2と、室内ユニット3と、液冷媒連絡管4と、ガス冷媒連絡管5とを備える。液冷媒連絡管4およびガス冷媒連絡管5は、室外ユニット2と室内ユニット3とを接続する。空気調和装置1の蒸気圧縮式の冷媒回路6は、室外ユニット2と室内ユニット3とが液冷媒連絡管4およびガス冷媒連絡管5を介して接続されることによって構成される。
(1) Air Conditioner (1-1) Overall Configuration As shown in FIG. 1, an air conditioner 1 is capable of cooling and heating a room such as a building by performing a vapor compression refrigeration cycle. It is a possible device. The air conditioner 1 mainly includes an outdoor unit 2 , an indoor unit 3 , a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5 . The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 connect the outdoor unit 2 and the indoor unit 3 . The vapor compression refrigerant circuit 6 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 .
 (1-2)詳細構成
 (1-2-1)室内ユニット
 室内ユニット3は、室内(居室および天井裏空間等)に設置され、冷媒回路6の一部を構成する。室内ユニット3は、主として、室内熱交換器31を有する。室内熱交換器31は、冷房運転時には冷媒の吸熱器(蒸発器)として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器(凝縮器)として機能して室内空気を加熱する。室内熱交換器31の液側は、液冷媒連絡管4に接続される。室内熱交換器31のガス側は、ガス冷媒連絡管5に接続される。
(1-2) Detailed Configuration (1-2-1) Indoor Unit The indoor unit 3 is installed indoors (a living room, a space above the ceiling, etc.) and constitutes a part of the refrigerant circuit 6 . The indoor unit 3 mainly has an indoor heat exchanger 31 . The indoor heat exchanger 31 functions as a refrigerant heat absorber (evaporator) to cool indoor air during cooling operation, and functions as a refrigerant radiator (condenser) to heat indoor air during heating operation. The liquid side of the indoor heat exchanger 31 is connected to the liquid refrigerant communication pipe 4 . The gas side of the indoor heat exchanger 31 is connected to the gas refrigerant communication pipe 5 .
 (1-2-2)室外ユニット
 室外ユニット2は、室外(建物の屋上、および、建物の壁面近傍等)に設置され、冷媒回路6の一部を構成する。室外ユニット2は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、アキュムレータ25と、液閉鎖弁26と、ガス閉鎖弁27と、エコノマイザ熱交換器28と、制御部29とを有する。
(1-2-2) Outdoor Unit The outdoor unit 2 is installed outdoors (on the roof of the building, near the wall of the building, etc.) and forms part of the refrigerant circuit 6 . The outdoor unit 2 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an accumulator 25, a liquid closing valve 26, a gas closing valve 27, and an economizer heat. It has an exchange 28 and a control unit 29 .
 圧縮機21は、低圧のガス冷媒を圧縮室40で圧縮して高圧のガス冷媒にする。圧縮機21は、圧縮機用モータによって駆動される。圧縮機21は、回転式の圧縮機である。圧縮機21では、室外熱交換器23から室外膨張弁24に向かって流れる冷媒の一部を、冷媒を圧縮している圧縮室40に供給する、中間インジェクションが行われる。 The compressor 21 compresses the low-pressure gas refrigerant in the compression chamber 40 into high-pressure gas refrigerant. The compressor 21 is driven by a compressor motor. Compressor 21 is a rotary compressor. In the compressor 21, intermediate injection is performed in which part of the refrigerant flowing from the outdoor heat exchanger 23 toward the outdoor expansion valve 24 is supplied to the compression chamber 40 compressing the refrigerant.
 四路切換弁22は、室外ユニット2の内部配管の接続状態を切り替える。空気調和装置1が冷房運転を行う場合、四路切換弁22は、図1の破線で示される接続状態を実現する。空気調和装置1が暖房運転を行う場合、四路切換弁22は、図1の実線で示される接続状態を実現する。 The four-way switching valve 22 switches the connection state of the internal piping of the outdoor unit 2 . When the air conditioner 1 performs cooling operation, the four-way switching valve 22 realizes the connection state indicated by the dashed line in FIG. When the air conditioner 1 performs heating operation, the four-way switching valve 22 realizes the connection state indicated by the solid line in FIG.
 室外熱交換器23は、冷媒回路6を循環する冷媒と、室外空気との熱交換を行う。室外熱交換器23は、冷媒が流れる冷媒流路と、室外空気と接する伝熱フィンとを有する。室外熱交換器23は、冷房運転時には冷媒の放熱器(凝縮器)として機能し、暖房運転時には冷媒の吸熱器(蒸発器)として機能する。 The outdoor heat exchanger 23 exchanges heat between the refrigerant circulating in the refrigerant circuit 6 and the outdoor air. The outdoor heat exchanger 23 has a refrigerant channel through which refrigerant flows, and heat transfer fins in contact with outdoor air. The outdoor heat exchanger 23 functions as a refrigerant radiator (condenser) during cooling operation, and functions as a refrigerant heat absorber (evaporator) during heating operation.
 室外膨張弁24は、開度調整が可能な電動弁または電磁弁である。室外膨張弁24は、室外ユニット2の内部配管を流れる冷媒を減圧させる。室外膨張弁24は、室外ユニット2の内部配管を流れる冷媒の流量を制御する。 The outdoor expansion valve 24 is an electrically operated valve or an electromagnetic valve whose opening degree can be adjusted. The outdoor expansion valve 24 reduces the pressure of the refrigerant flowing through the internal piping of the outdoor unit 2 . The outdoor expansion valve 24 controls the flow rate of refrigerant flowing through the internal piping of the outdoor unit 2 .
 アキュムレータ25は、圧縮機21の吸入側の配管に設置される。アキュムレータ25は、冷媒回路6を流れる気液混合冷媒を、ガス冷媒と液冷媒とに分離して、液冷媒を貯留する。アキュムレータ25で分離されたガス冷媒は、圧縮機21の吸入ポートに送られる。 The accumulator 25 is installed in the piping on the suction side of the compressor 21 . The accumulator 25 separates the gas-liquid mixed refrigerant flowing through the refrigerant circuit 6 into gas refrigerant and liquid refrigerant, and stores the liquid refrigerant. Gas refrigerant separated by the accumulator 25 is sent to the suction port of the compressor 21 .
 液閉鎖弁26およびガス閉鎖弁27は、冷媒流路を遮断することが可能な弁である。液閉鎖弁26は、室内熱交換器31と室外膨張弁24との間に配置される。ガス閉鎖弁27は、室内熱交換器31と四路切換弁22との間に配置される。液閉鎖弁26およびガス閉鎖弁27は、例えば、空気調和装置1の設置時等において、作業者によって開閉される。 The liquid shutoff valve 26 and the gas shutoff valve 27 are valves capable of shutting off the refrigerant flow path. The liquid closing valve 26 is arranged between the indoor heat exchanger 31 and the outdoor expansion valve 24 . A gas shutoff valve 27 is arranged between the indoor heat exchanger 31 and the four-way switching valve 22 . The liquid shutoff valve 26 and the gas shutoff valve 27 are opened and closed by an operator, for example, when installing the air conditioner 1 or the like.
 エコノマイザ熱交換器28は、室外熱交換器23と室外膨張弁24との間に配置される。エコノマイザ熱交換器28は、室外熱交換器23から室外膨張弁24に向かって流れる冷媒と、エコノマイザ配管90を流れる冷媒との熱交換を行う。エコノマイザ配管90は、冷媒回路6において、エコノマイザ熱交換器28と室外膨張弁24との間から分岐する管である。エコノマイザ配管90には、エコノマイザ弁91が取り付けられている。エコノマイザ配管90を流れる冷媒は、エコノマイザ熱交換器28で熱交換される前に、エコノマイザ弁91により減圧される。 The economizer heat exchanger 28 is arranged between the outdoor heat exchanger 23 and the outdoor expansion valve 24 . The economizer heat exchanger 28 exchanges heat between the refrigerant flowing from the outdoor heat exchanger 23 toward the outdoor expansion valve 24 and the refrigerant flowing through the economizer pipe 90 . The economizer pipe 90 is a pipe branched from between the economizer heat exchanger 28 and the outdoor expansion valve 24 in the refrigerant circuit 6 . An economizer valve 91 is attached to the economizer pipe 90 . Refrigerant flowing through economizer pipe 90 is decompressed by economizer valve 91 before being heat-exchanged by economizer heat exchanger 28 .
 制御部29は、室外ユニット2の構成機器を制御するコンピュータである。制御部29は、主として、演算装置と記憶装置とを備える。演算装置は、例えば、CPUまたはGPUである。演算装置は、記憶装置に記憶されるプログラムを読み出し、このプログラムに従って所定の演算処理を行う。演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶される情報を読み出したりする。 The control unit 29 is a computer that controls the components of the outdoor unit 2 . The control unit 29 mainly includes an arithmetic device and a storage device. A computing device is, for example, a CPU or a GPU. The arithmetic device reads a program stored in the storage device and performs predetermined arithmetic processing according to the program. The computing device writes computation results to a storage device and reads information stored in the storage device according to a program.
 (1-2-3)冷媒連絡管
 液冷媒連絡管4およびガス冷媒連絡管5は、冷媒回路6を備える空気調和装置1をビル等の設置場所に設置する際に、現地にて施工される冷媒配管である。液冷媒連絡管4およびガス冷媒連絡管5の長さおよび管径は、空気調和装置1の設置場所、および、室外ユニット2と室内ユニット3との組み合わせ等の設置条件に応じて決定される。液冷媒連絡管4を流れる冷媒は、液体であってもよく、気液二相であってもよい。
(1-2-3) Refrigerant Connection Pipe The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are constructed on site when the air conditioner 1 including the refrigerant circuit 6 is installed in a building or the like. Refrigerant piping. The length and diameter of the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are determined according to installation conditions such as the installation location of the air conditioner 1 and the combination of the outdoor unit 2 and the indoor unit 3 . The refrigerant flowing through the liquid refrigerant communication pipe 4 may be liquid or may be gas-liquid two-phase.
 (1-3)動作
 図1を参照しながら、空気調和装置1の冷房運転および暖房運転時の動作について説明する。
(1-3) Operation The operation of the air conditioner 1 during cooling operation and heating operation will be described with reference to FIG.
 (1-3-1)暖房運転
 空気調和装置1が暖房運転を行う場合、四路切換弁22は、図1の実線で示される状態に切り換えられる。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22、ガス閉鎖弁27およびガス冷媒連絡管5を通じて、室内熱交換器31に送られる。室内熱交換器31に送られた高圧のガス冷媒は、室内熱交換器31において、室内空気と熱交換を行って凝縮して、高圧の液冷媒になる。これにより、室内空気が加熱される。室内熱交換器31で凝縮した液冷媒は、液冷媒連絡管4および液閉鎖弁26を通じて、室外膨張弁24に送られる。室外膨張弁24に送られた冷媒は、室外膨張弁24によって冷凍サイクルの低圧まで減圧される。室外膨張弁24で減圧された低圧の冷媒は、室外熱交換器23に送られる。室外熱交換器23に送られた低圧の冷媒は、室外熱交換器23において、室外空気と熱交換を行って蒸発して、低圧のガス冷媒となる。室外熱交換器23で蒸発した低圧の冷媒は、四路切換弁22およびアキュムレータ25を通じて、再び、圧縮機21に吸入される。
(1-3-1) Heating Operation When the air conditioner 1 performs heating operation, the four-way switching valve 22 is switched to the state indicated by the solid line in FIG. In the refrigerant circuit 6, the low-pressure gas refrigerant of the refrigerating cycle is sucked into the compressor 21, compressed to a high pressure of the refrigerating cycle, and then discharged. A high-pressure gas refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 31 through the four-way switching valve 22 , the gas shut-off valve 27 and the gas refrigerant communication pipe 5 . The high-pressure gas refrigerant sent to the indoor heat exchanger 31 exchanges heat with the indoor air in the indoor heat exchanger 31 and is condensed to become a high-pressure liquid refrigerant. This heats the indoor air. The liquid refrigerant condensed in the indoor heat exchanger 31 is sent to the outdoor expansion valve 24 through the liquid refrigerant communication pipe 4 and the liquid closing valve 26 . The refrigerant sent to the outdoor expansion valve 24 is decompressed by the outdoor expansion valve 24 to the low pressure of the refrigeration cycle. The low-pressure refrigerant decompressed by the outdoor expansion valve 24 is sent to the outdoor heat exchanger 23 . The low-pressure refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air in the outdoor heat exchanger 23 and evaporates to become a low-pressure gas refrigerant. The low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 again through the four-way switching valve 22 and the accumulator 25 .
 (1-3-2)冷房運転
 空気調和装置1が冷房運転を行う場合、四路切換弁22は、図1の破線で示される状態に切り換えられる。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を通じて、室外熱交換器23に送られる。室外熱交換器23に送られた高圧のガス冷媒は、室外熱交換器23において、室外空気と熱交換を行って凝縮して、高圧の液冷媒となる。室外熱交換器23で凝縮した液冷媒は、室外膨張弁24によって冷凍サイクルの低圧まで減圧される。室外膨張弁24で減圧された低圧の冷媒は、液閉鎖弁26および液冷媒連絡管4を通じて、室内熱交換器31に送られる。室内熱交換器31に送られた冷媒は、室内熱交換器31において、室内空気と熱交換を行って蒸発して、低圧のガス冷媒になる。これにより、室内空気は冷却される。室内熱交換器31で蒸発したガス冷媒は、ガス冷媒連絡管5、ガス閉鎖弁27、四路切換弁22およびアキュムレータ25を通じて、再び、圧縮機21に吸入される。
(1-3-2) Cooling Operation When the air conditioner 1 performs cooling operation, the four-way switching valve 22 is switched to the state indicated by the dashed lines in FIG. In the refrigerant circuit 6, the low-pressure gas refrigerant of the refrigerating cycle is sucked into the compressor 21, compressed to a high pressure of the refrigerating cycle, and then discharged. A high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the four-way switching valve 22 . The high-pressure gas refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air in the outdoor heat exchanger 23 and is condensed to become a high-pressure liquid refrigerant. The liquid refrigerant condensed in the outdoor heat exchanger 23 is depressurized to the low pressure of the refrigeration cycle by the outdoor expansion valve 24 . The low-pressure refrigerant decompressed by the outdoor expansion valve 24 is sent to the indoor heat exchanger 31 through the liquid closing valve 26 and the liquid refrigerant connecting pipe 4 . The refrigerant sent to the indoor heat exchanger 31 exchanges heat with the room air in the indoor heat exchanger 31 and evaporates to become a low-pressure gas refrigerant. This cools the indoor air. The gas refrigerant evaporated in the indoor heat exchanger 31 is sucked into the compressor 21 again through the gas refrigerant communication pipe 5 , the gas shutoff valve 27 , the four-way switching valve 22 and the accumulator 25 .
 (2)圧縮機
 (2-1)全体構成
 図2に示されるように、圧縮機21は、主として、ケーシング10と、圧縮機構15と、駆動モータ16と、クランクシャフト17と、吸入管19と、吐出管20と、インジェクション配管92と、インジェクション弁93とを備える。
(2) Compressor (2-1) Overall Configuration As shown in FIG. , a discharge pipe 20 , an injection pipe 92 and an injection valve 93 .
 (2-1-1)ケーシング
 ケーシング10は、円筒形の胴部11と、ボウル形の頂部12と、ボウル形の底部13とから構成される。頂部12は、胴部11の上端部と気密状に連結される。底部13は、胴部11の下端部と気密状に連結される。
(2-1-1) Casing The casing 10 is composed of a cylindrical body 11 , a bowl-shaped top 12 and a bowl-shaped bottom 13 . The top portion 12 is airtightly connected to the upper end portion of the body portion 11 . The bottom portion 13 is airtightly connected to the lower end portion of the body portion 11 .
 ケーシング10は、ケーシング10の内部空間および外部空間の圧力および温度の変化によって変形および破損が起こりにくい剛性部材で成形される。ケーシング10は、胴部11の円筒形の軸方向が鉛直方向に沿うように設置される。ケーシング10の内部空間の下部は、潤滑油が貯留される油貯留部10aである。潤滑油は、ケーシング10の内部の摺動部の潤滑性を向上させるために用いられる冷凍機油である。 The casing 10 is made of a rigid member that is resistant to deformation and breakage due to changes in pressure and temperature in the internal and external spaces of the casing 10 . The casing 10 is installed so that the cylindrical axial direction of the trunk|drum 11 may follow a vertical direction. A lower portion of the internal space of the casing 10 is an oil reservoir 10a in which lubricating oil is reserved. The lubricating oil is refrigerating machine oil used to improve the lubricating properties of sliding parts inside the casing 10 .
 ケーシング10は、主として、圧縮機構15と、駆動モータ16と、クランクシャフト17とを収容する。圧縮機構15は、クランクシャフト17を介して駆動モータ16と連結される。吸入管19、吐出管20およびインジェクション配管92は、ケーシング10を貫通するように、ケーシング10と気密状に連結される。 The casing 10 mainly houses the compression mechanism 15, the drive motor 16, and the crankshaft 17. Compression mechanism 15 is connected to drive motor 16 via crankshaft 17 . The suction pipe 19 , the discharge pipe 20 and the injection pipe 92 are airtightly connected to the casing 10 so as to pass through the casing 10 .
 (2-1-2)圧縮機構
 図2および図3に示されるように、圧縮機構15は、主として、フロントヘッド83と、シリンダ84と、リアヘッド85と、ピストン81と、ブッシュ82とから構成される。フロントヘッド83、シリンダ84およびリアヘッド85は、ボルト等によって一体的に締結される。圧縮機構15の上方の空間は、圧縮機構15によって圧縮された冷媒が吐出される高圧空間HSである。
(2-1-2) Compression Mechanism As shown in FIGS. 2 and 3, the compression mechanism 15 is mainly composed of a front head 83, a cylinder 84, a rear head 85, a piston 81, and a bush 82. be. The front head 83, cylinder 84 and rear head 85 are integrally fastened with bolts or the like. A space above the compression mechanism 15 is a high-pressure space HS into which refrigerant compressed by the compression mechanism 15 is discharged.
 圧縮機構15は、油貯留部10aに貯留される潤滑油に浸漬される。油貯留部10aの潤滑油は、差圧等によって、圧縮機構15の内部の摺動部に供給される。次に、圧縮機構15の各構成要素について説明する。 The compression mechanism 15 is immersed in lubricating oil stored in the oil storage portion 10a. The lubricating oil in the oil reservoir 10a is supplied to the sliding portion inside the compression mechanism 15 by differential pressure or the like. Next, each component of the compression mechanism 15 will be described.
 (2-1-2-1)シリンダ
 図4に示されるように、シリンダ84は、主として、シリンダ孔84aと、吸入孔84bと、吐出切り欠き84cと、ブッシュ収容孔84dと、ベーン収容孔84eと、インジェクション通路84gとを有する。シリンダ84は、フロントヘッド83とリアヘッド85との間に位置する。シリンダ84の上側の端面である第1シリンダ端面86aは、フロントヘッド83の下面と接する。シリンダ84の下側の端面である第2シリンダ端面86bは、リアヘッド85の上面と接する。
(2-1-2-1) Cylinder As shown in FIG. 4, the cylinder 84 mainly includes a cylinder hole 84a, a suction hole 84b, a discharge cutout 84c, a bush accommodation hole 84d, and a vane accommodation hole 84e. and an injection passage 84g. Cylinder 84 is positioned between front head 83 and rear head 85 . A first cylinder end face 86 a , which is the upper end face of the cylinder 84 , contacts the lower face of the front head 83 . A second cylinder end face 86 b , which is the lower end face of the cylinder 84 , contacts the upper surface of the rear head 85 .
 シリンダ孔84aは、第1シリンダ端面86aから第2シリンダ端面86bに向かって、鉛直方向にシリンダ84を貫通する円柱状の孔である。シリンダ孔84aは、シリンダ84の内周面であるシリンダ内周面86cによって囲まれる空間である。シリンダ孔84aは、クランクシャフト17の偏心軸部17a、および、ピストン81を収容する。 The cylinder hole 84a is a columnar hole penetrating the cylinder 84 in the vertical direction from the first cylinder end face 86a toward the second cylinder end face 86b. The cylinder hole 84 a is a space surrounded by a cylinder inner peripheral surface 86 c that is the inner peripheral surface of the cylinder 84 . The cylinder hole 84 a accommodates the eccentric shaft portion 17 a of the crankshaft 17 and the piston 81 .
 吸入孔84bは、シリンダ84の外周面であるシリンダ外周面86dからシリンダ内周面86cに向かって、シリンダ84の径方向に沿って貫通する孔である。 The suction hole 84b is a hole penetrating along the radial direction of the cylinder 84 from the cylinder outer peripheral surface 86d, which is the outer peripheral surface of the cylinder 84, toward the cylinder inner peripheral surface 86c.
 吐出切り欠き84cは、シリンダ内周面86cの一部が切り欠かれることによって、鉛直方向にシリンダ84を貫通することなく形成される空間である。吐出切り欠き84cは、第1シリンダ端面86aの側に形成される。 The discharge cutout 84c is a space formed without penetrating the cylinder 84 in the vertical direction by cutting out a part of the cylinder inner peripheral surface 86c. The discharge notch 84c is formed on the side of the first cylinder end face 86a.
 ブッシュ収容孔84dは、鉛直方向にシリンダ84を貫通し、かつ、シリンダ84を鉛直方向に沿って見た場合において吸入孔84bと吐出切り欠き84cとの間に配置される孔である。ブッシュ収容孔84dは、ベーン81bの一部、および、ブッシュ82を収容する。 The bush accommodation hole 84d is a hole that penetrates the cylinder 84 in the vertical direction and is arranged between the suction hole 84b and the discharge notch 84c when the cylinder 84 is viewed along the vertical direction. A portion of the vane 81b and the bush 82 are accommodated in the bush accommodation hole 84d.
 ベーン収容孔84eは、鉛直方向にシリンダ84を貫通し、かつ、ブッシュ収容孔84dと連通する孔である。ベーン収容孔84eは、ベーン81bの一部を収容する。 The vane accommodation hole 84e is a hole that penetrates the cylinder 84 in the vertical direction and communicates with the bush accommodation hole 84d. The vane accommodation hole 84e accommodates a portion of the vane 81b.
 インジェクション通路84gは、シリンダ外周面86dからシリンダ内周面86cに向かって、シリンダ84の径方向に沿って貫通する孔である。図3に示されるように、シリンダ84を鉛直方向に沿って見た場合において、ブッシュ収容孔84dは、吸入孔84bとインジェクション通路84gとの間に配置される。インジェクション通路84gには、インジェクション弁93が配置される。インジェクション通路84gは、シリンダ外周面86dの側においてインジェクション配管92と連通し、シリンダ内周面86cの側において圧縮室40と連通している。 The injection passage 84g is a hole penetrating along the radial direction of the cylinder 84 from the cylinder outer peripheral surface 86d toward the cylinder inner peripheral surface 86c. As shown in FIG. 3, when the cylinder 84 is viewed along the vertical direction, the bush accommodation hole 84d is arranged between the suction hole 84b and the injection passage 84g. An injection valve 93 is arranged in the injection passage 84g. The injection passage 84g communicates with the injection pipe 92 on the side of the cylinder outer peripheral surface 86d, and communicates with the compression chamber 40 on the side of the cylinder inner peripheral surface 86c.
 (2-1-2-2)ピストン
 ピストン81は、シリンダ84のシリンダ孔84aに挿入される略円筒状の部材である。ピストン81の上側の端面は、フロントヘッド83の下面と接する。ピストン81の下側の端面は、リアヘッド85の上面と接する。
(2-1-2-2) Piston The piston 81 is a substantially cylindrical member that is inserted into the cylinder hole 84 a of the cylinder 84 . An upper end surface of the piston 81 contacts the lower surface of the front head 83 . A lower end surface of the piston 81 contacts the upper surface of the rear head 85 .
 ピストン81は、クランクシャフト17の偏心軸部17aに嵌め込まれた状態で、シリンダ84のシリンダ孔84aに挿入される。これにより、ピストン81は、クランクシャフト17の軸回転によって偏心回転して、クランクシャフト17の回転軸17gを中心とする公転運動を行う。ピストン81は、圧縮機構15を上面視した場合に、時計回りに公転する。 The piston 81 is inserted into the cylinder hole 84a of the cylinder 84 while being fitted on the eccentric shaft portion 17a of the crankshaft 17. As shown in FIG. As a result, the piston 81 is eccentrically rotated by the axial rotation of the crankshaft 17 and performs revolving motion around the rotation axis 17g of the crankshaft 17 . The piston 81 revolves clockwise when the compression mechanism 15 is viewed from above.
 ベーン81bは、シリンダ84のブッシュ収容孔84dおよびベーン収容孔84eに収容される。ベーン81bは、ピストン81と一体に形成される。ベーン81bは、ピストン81の径方向外側に突出するように、ピストン81の径方向に沿って延びる。ピストン81が公転することで、ベーン81bは、揺動しながら、その長手方向に沿って進退する。このとき、ブッシュ82は、ブッシュ収容孔84dにおいて回転しながらベーン81bを支持する。 The vane 81b is accommodated in the bush accommodation hole 84d and the vane accommodation hole 84e of the cylinder 84. The vane 81 b is formed integrally with the piston 81 . The vane 81b extends along the radial direction of the piston 81 so as to protrude radially outward of the piston 81 . As the piston 81 revolves, the vane 81b advances and retreats along its longitudinal direction while swinging. At this time, the bush 82 supports the vane 81b while rotating in the bush accommodation hole 84d.
 圧縮機構15は、シリンダ84と、ピストン81と、ベーン81bと、フロントヘッド83と、リアヘッド85とによって囲まれる空間である圧縮室40を有する。圧縮室40は、シリンダ孔84aの一部であって、ピストン81の公転に伴い容積が変化することで冷媒が圧縮される空間である。圧縮室40には、油貯留部10aの潤滑油が供給される。 The compression mechanism 15 has a compression chamber 40 that is a space surrounded by a cylinder 84, a piston 81, vanes 81b, a front head 83, and a rear head 85. The compression chamber 40 is a part of the cylinder hole 84a, and is a space in which the refrigerant is compressed as the volume changes as the piston 81 revolves. Lubricating oil in the oil reservoir 10 a is supplied to the compression chamber 40 .
 圧縮室40は、ピストン81およびベーン81bによって、吸入孔84bと連通する低圧室40aと、吐出切り欠き84cおよびインジェクション通路84gと連通する高圧室40bとに区画される。図3において、低圧室40aおよび高圧室40bは、シリンダ内周面86cと、ピストン81の外周面であるピストン外周面81cとによって囲まれる領域である。低圧室40aおよび高圧室40bの容積は、ピストン81の位置に応じて変化する。 The compression chamber 40 is divided by the piston 81 and the vane 81b into a low pressure chamber 40a communicating with the suction hole 84b and a high pressure chamber 40b communicating with the discharge cutout 84c and the injection passage 84g. In FIG. 3 , the low pressure chamber 40 a and the high pressure chamber 40 b are areas surrounded by a cylinder inner peripheral surface 86 c and a piston outer peripheral surface 81 c that is the outer peripheral surface of the piston 81 . The volumes of the low-pressure chamber 40 a and the high-pressure chamber 40 b change according to the position of the piston 81 .
 (2-1-2-3)ブッシュ
 ブッシュ82は、一対の略半円柱状の部材である。ブッシュ82は、ベーン81bを挟み込むようにして、シリンダ84のブッシュ収容孔84dに収容される。ブッシュ82は、シリンダ84と摺動可能である。
(2-1-2-3) Bush The bush 82 is a pair of substantially semi-cylindrical members. The bush 82 is accommodated in the bush accommodation hole 84d of the cylinder 84 so as to sandwich the vane 81b. Bushing 82 is slidable with cylinder 84 .
 (2-1-2-4)フロントヘッド
 フロントヘッド83は、シリンダ84の第1シリンダ端面86aを覆う部材である。フロントヘッド83は、ボルト等によって、ケーシング10に締結される。フロントヘッド83は、クランクシャフト17を支持するための上部軸受部23aを有する。
(2-1-2-4) Front Head The front head 83 is a member that covers the first cylinder end surface 86 a of the cylinder 84 . The front head 83 is fastened to the casing 10 with bolts or the like. The front head 83 has an upper bearing portion 23 a for supporting the crankshaft 17 .
 フロントヘッド83は、吐出ポート23bを有する。吐出ポート23bは、フロントヘッド83を鉛直方向に貫通する円筒形状の孔である。吐出ポート23bは、鉛直方向下側において、吐出切り欠き84cおよび圧縮室40(高圧室40b)と連通する。吐出ポート23bは、鉛直方向上側において、高圧空間HSと連通する。吐出ポート23bは、圧縮機構15によって圧縮された冷媒を、高圧室40bから高圧空間HSに送るための流路である。 The front head 83 has a discharge port 23b. The discharge port 23b is a cylindrical hole penetrating the front head 83 in the vertical direction. The discharge port 23b communicates with the discharge notch 84c and the compression chamber 40 (high pressure chamber 40b) on the vertically lower side. The discharge port 23b communicates with the high-pressure space HS on the upper side in the vertical direction. The discharge port 23b is a channel for sending the refrigerant compressed by the compression mechanism 15 from the high pressure chamber 40b to the high pressure space HS.
 フロントヘッド83の上面には、吐出ポート23bを塞ぐ吐出弁23cが取り付けられる。吐出弁23cは、高圧空間HSから高圧室40bへの冷媒の逆流を防ぐための弁である。吐出弁23cは、吐出ポート23b内部の冷媒の圧力によって上方に持ち上げられる。これにより、吐出ポート23bが開き、吐出ポート23bは、高圧空間HSと連通する。 A discharge valve 23c is attached to the upper surface of the front head 83 to block the discharge port 23b. The discharge valve 23c is a valve for preventing reverse flow of refrigerant from the high-pressure space HS to the high-pressure chamber 40b. The discharge valve 23c is lifted upward by the pressure of the refrigerant inside the discharge port 23b. As a result, the discharge port 23b is opened, and the discharge port 23b communicates with the high pressure space HS.
 (2-1-2-5)リアヘッド
 リアヘッド85は、シリンダ84の第2シリンダ端面86bを覆う部材である。リアヘッド85は、クランクシャフト17を支持するための下部軸受部25aを有する。シリンダ84のシリンダ孔84aは、フロントヘッド83およびリアヘッド85によって閉塞される。
(2-1-2-5) Rear Head The rear head 85 is a member that covers the second cylinder end face 86b of the cylinder 84. As shown in FIG. Rear head 85 has a lower bearing portion 25 a for supporting crankshaft 17 . A cylinder hole 84 a of the cylinder 84 is closed by a front head 83 and a rear head 85 .
 (2-1-3)駆動モータ
 駆動モータ16は、ケーシング10の内部に収容され、圧縮機構15の上方に配置されるブラシレスDCモータである。駆動モータ16は、主として、ケーシング10の内壁面に固定されるステータ51と、ステータ51の内側に回転自在に収容されるロータ52とから構成される。ステータ51とロータ52との間には、エアギャップが設けられる。
(2-1-3) Drive Motor The drive motor 16 is a brushless DC motor housed inside the casing 10 and arranged above the compression mechanism 15 . The drive motor 16 is mainly composed of a stator 51 fixed to the inner wall surface of the casing 10 and a rotor 52 rotatably accommodated inside the stator 51 . An air gap is provided between the stator 51 and the rotor 52 .
 ステータ51は、ステータコア61と、ステータコア61の鉛直方向の両端面に取り付けられる一対のインシュレータ62とを有する。ステータコア61は、円筒部と、円筒部の内周面から径方向内側に向かって突出する複数のティース(図示せず)とを有する。ステータコア61のティースは、一対のインシュレータ62と共に、導線が巻き付けられる。これにより、ステータコア61の各ティースには、コイル72aが形成される。 The stator 51 has a stator core 61 and a pair of insulators 62 attached to both vertical end surfaces of the stator core 61 . Stator core 61 has a cylindrical portion and a plurality of teeth (not shown) protruding radially inward from an inner peripheral surface of the cylindrical portion. Conducting wires are wound around the teeth of the stator core 61 together with a pair of insulators 62 . Thereby, a coil 72 a is formed on each tooth of the stator core 61 .
 ステータ51の外側面には、ステータ51の上端面から下端面に亘り、かつ、周方向に所定間隔をおいて、切欠形成される複数のコアカット部(図示せず)が設けられる。コアカット部は、胴部11とステータ51との間を鉛直方向に延びるモータ冷却通路を形成する。 The outer surface of the stator 51 is provided with a plurality of core cut portions (not shown) cut out from the upper end surface to the lower end surface of the stator 51 at predetermined intervals in the circumferential direction. The core cut forms a motor cooling passage extending vertically between the body 11 and the stator 51 .
 ロータ52は、鉛直方向に積層される複数の金属板から構成されるロータコア52aと、ロータコア52aに埋め込まれる複数の磁石52bとを有する。磁石52bは、ロータコア52aの周方向に沿って、等間隔に配置される。ロータ52は、その回転中心を鉛直方向に貫通するクランクシャフト17に連結される。ロータ52は、クランクシャフト17を介して、圧縮機構15と接続される。 The rotor 52 has a rotor core 52a composed of a plurality of vertically stacked metal plates, and a plurality of magnets 52b embedded in the rotor core 52a. The magnets 52b are arranged at regular intervals along the circumferential direction of the rotor core 52a. The rotor 52 is connected to the crankshaft 17 that vertically extends through its center of rotation. Rotor 52 is connected to compression mechanism 15 via crankshaft 17 .
 (2-1-4)クランク軸
 クランクシャフト17は、ケーシング10の内部に収容され、その軸方向が鉛直方向に沿うように配置される。クランクシャフト17は、駆動モータ16のロータ52、および、圧縮機構15のピストン81に連結される。クランクシャフト17は、偏心軸部17aを有する。偏心軸部17aは、シリンダ84のシリンダ孔84aに挿入されるピストン81に連結される。クランクシャフト17の上側の端部は、駆動モータ16のロータ52に連結される。クランクシャフト17は、フロントヘッド83の上部軸受部23a、および、リアヘッド85の下部軸受部25aによって支持される。クランクシャフト17は、回転軸17gを中心として回転する。
(2-1-4) Crankshaft The crankshaft 17 is accommodated inside the casing 10, and is arranged so that its axial direction is along the vertical direction. Crankshaft 17 is connected to rotor 52 of drive motor 16 and piston 81 of compression mechanism 15 . The crankshaft 17 has an eccentric shaft portion 17a. The eccentric shaft portion 17a is connected to the piston 81 inserted into the cylinder hole 84a of the cylinder 84 . The upper end of crankshaft 17 is connected to rotor 52 of drive motor 16 . The crankshaft 17 is supported by the upper bearing portion 23 a of the front head 83 and the lower bearing portion 25 a of the rear head 85 . The crankshaft 17 rotates around a rotation axis 17g.
 (2-1-5)吸入管
 吸入管19は、ケーシング10の胴部11を貫通する管である。ケーシング10の内部にある吸入管19の端部は、シリンダ84の吸入孔84bに嵌め込まれる。ケーシング10の外部にある吸入管19の端部は、冷媒回路6に接続される。吸入管19は、冷媒回路6から圧縮機構15に冷媒を供給する。
(2-1-5) Suction Pipe The suction pipe 19 is a pipe passing through the body portion 11 of the casing 10 . The end of the suction pipe 19 inside the casing 10 is fitted into the suction hole 84 b of the cylinder 84 . The end of the intake pipe 19 outside the casing 10 is connected to the refrigerant circuit 6 . The suction pipe 19 supplies refrigerant from the refrigerant circuit 6 to the compression mechanism 15 .
 (2-1-6)吐出管
 吐出管20は、ケーシング10の頂部12を貫通する管である。ケーシング10の内部にある吐出管20の端部は、駆動モータ16の上方の空間に位置する。ケーシング10の外部にある吐出管20の端部は、冷媒回路6に接続される。吐出管20は、圧縮機構15によって圧縮された冷媒を冷媒回路6に供給する。
(2-1-6) Discharge Pipe The discharge pipe 20 is a pipe passing through the top portion 12 of the casing 10 . The end of the discharge pipe 20 inside the casing 10 is located in the space above the drive motor 16 . The end of the discharge pipe 20 outside the casing 10 is connected to the refrigerant circuit 6 . The discharge pipe 20 supplies the refrigerant compressed by the compression mechanism 15 to the refrigerant circuit 6 .
 (2-1-7)インジェクション配管
 インジェクション配管92は、ケーシング10の胴部11を貫通する管である。ケーシング10の内部にあるインジェクション配管92の端部は、シリンダ84のインジェクション通路84g内に配置されるインジェクション弁93に接続される。ケーシング10の外部にあるインジェクション配管92の端部は、エコノマイザ配管90に接続される。インジェクション配管92は、エコノマイザ配管90内の冷媒を、インジェクション通路84gに供給する。
(2-1-7) Injection Pipe The injection pipe 92 is a pipe passing through the body portion 11 of the casing 10 . An end of the injection pipe 92 inside the casing 10 is connected to an injection valve 93 arranged inside the injection passage 84 g of the cylinder 84 . The end of injection pipe 92 outside casing 10 is connected to economizer pipe 90 . The injection pipe 92 supplies the refrigerant in the economizer pipe 90 to the injection passage 84g.
 (2-2)詳細構成
 圧縮機21では、冷媒回路6を流れる中間圧の冷媒が、エコノマイザ配管90およびインジェクション配管92を経由して、インジェクション通路84gに供給される。中間圧とは、圧縮機21に吸入される低圧の冷媒の圧力と、圧縮機21から吐出される高圧の冷媒の圧力との間の圧力である。空気調和装置1の能力を向上させるためには、インジェクション通路84gから圧縮室40(高圧室40b)に、十分な量の中間圧の冷媒が供給されることが好ましい。しかし、圧縮室40(高圧室40b)からインジェクション通路84gに向かって冷媒が逆流すると、空気調和装置1の能力が低下するおそれがある。
(2-2) Detailed Configuration In the compressor 21, intermediate-pressure refrigerant flowing through the refrigerant circuit 6 is supplied to the injection passage 84g via the economizer pipe 90 and the injection pipe 92. As shown in FIG. The intermediate pressure is the pressure between the pressure of the low-pressure refrigerant sucked into the compressor 21 and the pressure of the high-pressure refrigerant discharged from the compressor 21 . In order to improve the performance of the air conditioner 1, it is preferable to supply a sufficient amount of intermediate pressure refrigerant from the injection passage 84g to the compression chamber 40 (high pressure chamber 40b). However, if the refrigerant flows backward from the compression chamber 40 (high-pressure chamber 40b) toward the injection passage 84g, the performance of the air conditioner 1 may decrease.
 インジェクション通路84gには、インジェクション弁93が配置される。圧縮室40の圧力が、インジェクション配管92内の中間圧の冷媒の圧力であるインジェクション圧力よりも低い場合に、インジェクション弁93は開く。圧縮室40の圧力が、インジェクション圧力以上の場合に、インジェクション弁93は閉じる。インジェクション弁93が開いている時は、インジェクション通路84gから圧縮室40に向かって中間圧の冷媒が流入することが許可される。インジェクション弁93が閉じている時は、圧縮室40からインジェクション通路84gに向かって圧縮室40内の冷媒が流入することが抑制される。これにより、インジェクション弁93は、圧縮室40からインジェクション通路84gへの冷媒の逆流を抑制する。 An injection valve 93 is arranged in the injection passage 84g. When the pressure in the compression chamber 40 is lower than the injection pressure, which is the pressure of the medium-pressure refrigerant in the injection pipe 92, the injection valve 93 opens. The injection valve 93 closes when the pressure in the compression chamber 40 is equal to or higher than the injection pressure. When the injection valve 93 is open, the medium-pressure refrigerant is allowed to flow from the injection passage 84g toward the compression chamber 40 . When the injection valve 93 is closed, the refrigerant in the compression chamber 40 is restrained from flowing from the compression chamber 40 toward the injection passage 84g. As a result, the injection valve 93 prevents the refrigerant from flowing back from the compression chamber 40 to the injection passage 84g.
 図5および図6に示されるように、インジェクション弁93は、主として、弁本体94と、弁押さえ95と、弁座96とを有する。弁押さえ95および弁座96は、インジェクション通路84gに圧入されることにより、シリンダ84に固定されている。インジェクション通路84gが延びる第1方向D1に沿って、弁押さえ95および弁座96は、互いに離れるように配置されている。弁押さえ95と弁座96との間の空間は、弁本体94が第1方向D1に移動可能なように配置される第1空間97である。弁押さえ95は、弁本体94よりもインジェクション配管92側に配置される。弁座96は、弁本体94よりも圧縮室40側に配置される。 As shown in FIGS. 5 and 6, the injection valve 93 mainly has a valve body 94, a valve guard 95, and a valve seat 96. The valve guard 95 and the valve seat 96 are fixed to the cylinder 84 by being press-fitted into the injection passage 84g. The valve guard 95 and the valve seat 96 are arranged apart from each other along the first direction D1 in which the injection passage 84g extends. A space between the valve guard 95 and the valve seat 96 is a first space 97 arranged so that the valve body 94 can move in the first direction D1. The valve guard 95 is arranged closer to the injection pipe 92 than the valve main body 94 . The valve seat 96 is arranged closer to the compression chamber 40 than the valve body 94 .
 インジェクション通路84gは、第1方向D1に沿って内径が異なる円形の孔である。インジェクション通路84gは、シリンダ外周面86d側の端部において最も大きな内径を有し、シリンダ内周面86c側の端部において最も小さな内径を有する。具体的には、インジェクション通路84gの内径は、シリンダ内周面86c側からシリンダ外周面86d側に向かって大きくなっている。 The injection passage 84g is a circular hole with different inner diameters along the first direction D1. The injection passage 84g has the largest inner diameter at the end on the cylinder outer peripheral surface 86d side and the smallest inner diameter at the end on the cylinder inner peripheral surface 86c side. Specifically, the inner diameter of the injection passage 84g increases from the cylinder inner peripheral surface 86c side toward the cylinder outer peripheral surface 86d side.
 弁本体94は、円形の平板である。弁本体94は、GIN6(日立金属社製のステンレス焼き入れ鋼)等のばね鋼で成形される。図7に示されるように、弁本体94の中央部には、円形の中央孔94aが形成されている。弁本体94は、中央孔94aの周囲に位置する環状の周縁部94bを有する。図7では、周縁部94bは、ハッチングされた領域として示されている。 The valve body 94 is a circular flat plate. The valve body 94 is made of spring steel such as GIN6 (hardened stainless steel manufactured by Hitachi Metals, Ltd.). As shown in FIG. 7, the central portion of the valve body 94 is formed with a circular central hole 94a. The valve body 94 has an annular peripheral edge 94b positioned around the central bore 94a. In FIG. 7, the peripheral portion 94b is shown as a hatched area.
 弁押さえ95は、インジェクション通路84gのシリンダ外周面86d側において圧入される。弁押さえ95は、第1方向D1に沿って外径が異なる形状を有する。弁押さえ95の一部は、シリンダ外周面86dよりも外側に突出している。弁押さえ95には、シリンダ外周面86d側からインジェクション配管92が挿入されている。インジェクション配管92は、弁押さえ95に固定されている。図5および図6に示されるように、インジェクション配管92に取り付けられるOリング92aによって、インジェクション通路84gと高圧空間HSとが隔てられている。 The valve guard 95 is press-fitted on the cylinder outer peripheral surface 86d side of the injection passage 84g. The valve guard 95 has a shape with an outer diameter that varies along the first direction D1. A portion of the valve guard 95 protrudes outward from the cylinder outer peripheral surface 86d. An injection pipe 92 is inserted into the valve guard 95 from the cylinder outer peripheral surface 86d side. The injection pipe 92 is fixed to the valve guard 95 . As shown in FIGS. 5 and 6, an O-ring 92a attached to the injection pipe 92 separates the injection passage 84g from the high pressure space HS.
 弁押さえ95は、第1孔95aと閉鎖部95bとを有する。第1孔95aは、第1方向D1に沿って弁押さえ95を貫通する。図8に示されるように、シリンダ内周面86c側から第1方向D1に沿って弁押さえ95を見た場合、閉鎖部95bは、弁押さえ95の中央に位置する円形の領域であり、複数の第1孔95aは、閉鎖部95bの周囲に形成されている。図8では、閉鎖部95bは、ハッチングされた領域として示されている。図8に示される弁押さえ95では、12個の第1孔95aが円形に配置される。閉鎖部95bの外径は、弁本体94の中央孔94aの径よりも大きい。第1孔95aの径は、弁本体94の周縁部94bの幅(弁本体94の径方向の寸法)よりも小さい。 The valve guard 95 has a first hole 95a and a closing portion 95b. The first hole 95a penetrates the valve guard 95 along the first direction D1. As shown in FIG. 8, when the valve guard 95 is viewed along the first direction D1 from the cylinder inner peripheral surface 86c side, the closing portion 95b is a circular area positioned in the center of the valve guard 95, and has a plurality of openings. The first hole 95a of is formed around the closing portion 95b. In FIG. 8, the closure 95b is shown as a hatched area. In the valve guard 95 shown in FIG. 8, twelve first holes 95a are arranged in a circle. The outer diameter of the closing portion 95b is larger than the diameter of the central hole 94a of the valve body 94 . The diameter of the first hole 95a is smaller than the width of the peripheral portion 94b of the valve body 94 (the radial dimension of the valve body 94).
 弁押さえ95は、弁本体94のインジェクション配管92側への移動を規制する。言い換えると、弁本体94は、インジェクション配管92に向かって第1方向D1に移動する場合、弁押さえ95に当たるまで移動可能である。弁本体94が弁押さえ95に当たっている状態では、弁押さえ95の第1孔95aは、弁本体94の周縁部94bによって塞がれている。このとき、弁本体94の中央孔94aは、弁押さえ95の閉鎖部95bによって塞がれている。弁本体94が弁押さえ95から離れている状態では、弁押さえ95の第1孔95aは、弁本体94の周縁部94bによって塞がれていない。このとき、弁本体94の中央孔94aは、弁押さえ95の閉鎖部95bによって塞がれていない。 The valve guard 95 restricts movement of the valve body 94 toward the injection pipe 92 side. In other words, when the valve body 94 moves toward the injection pipe 92 in the first direction D<b>1 , it can move until it hits the valve guard 95 . When the valve body 94 is in contact with the valve guard 95 , the first hole 95 a of the valve guard 95 is closed by the peripheral edge portion 94 b of the valve body 94 . At this time, the central hole 94 a of the valve body 94 is closed by the closing portion 95 b of the valve guard 95 . When the valve body 94 is separated from the valve guard 95 , the first hole 95 a of the valve guard 95 is not blocked by the peripheral edge portion 94 b of the valve body 94 . At this time, the central hole 94a of the valve body 94 is not blocked by the closing portion 95b of the valve guard 95. As shown in FIG.
 このように、弁押さえ95の第1孔95aは、弁本体94により開閉される。具体的には、弁本体94が弁押さえ95に当たっている状態では、弁本体94の中央孔94a、および、弁押さえ95の第1孔95aは塞がれているので、インジェクション弁93は閉じている状態にある。一方、弁本体94が弁押さえ95から離れている状態では、弁本体94の中央孔94a、および、弁押さえ95の第1孔95aは塞がれていないので、インジェクション弁93は開いている状態にある。 Thus, the first hole 95a of the valve guard 95 is opened and closed by the valve body 94. Specifically, when the valve body 94 is in contact with the valve guard 95, the central hole 94a of the valve body 94 and the first hole 95a of the valve guard 95 are closed, so the injection valve 93 is closed. in a state. On the other hand, when the valve main body 94 is separated from the valve guard 95, the central hole 94a of the valve main body 94 and the first hole 95a of the valve guard 95 are not blocked, so the injection valve 93 is open. It is in.
 弁座96は、インジェクション通路84gのシリンダ内周面86c側において圧入される。弁座96は、第1方向D1に沿って外径がほぼ同じである形状を有する。弁座96は、第2孔96aを有する。第2孔96aは、第1方向D1に沿って弁座96を貫通する。第2孔96aの径は、弁本体94の中央孔94aの径とほぼ同じである。第2孔96aは、インジェクション通路84gを介して、圧縮室40と常に連通している。 The valve seat 96 is press-fitted on the cylinder inner peripheral surface 86c side of the injection passage 84g. The valve seat 96 has a shape with substantially the same outer diameter along the first direction D1. The valve seat 96 has a second hole 96a. The second hole 96a penetrates the valve seat 96 along the first direction D1. The diameter of the second hole 96 a is substantially the same as the diameter of the central hole 94 a of the valve body 94 . The second hole 96a always communicates with the compression chamber 40 via the injection passage 84g.
 弁座96は、弁本体94の圧縮室40側への移動を規制する。言い換えると、弁本体94は、圧縮室40に向かって第1方向D1に移動する場合、弁座96に当たるまで移動可能である。弁本体94が弁座96に当たっている状態では、弁本体94の中央孔94aは、弁座96の第2孔96aと連通している。弁本体94が弁座96に当たっている時、弁本体94は弁押さえ95から離れているので、インジェクション弁93は開いている状態にある。 The valve seat 96 restricts movement of the valve body 94 toward the compression chamber 40 side. In other words, the valve body 94 is movable until it hits the valve seat 96 when moving in the first direction D1 toward the compression chamber 40 . When the valve body 94 is in contact with the valve seat 96 , the central hole 94 a of the valve body 94 communicates with the second hole 96 a of the valve seat 96 . Since the valve body 94 is separated from the valve guard 95 when the valve body 94 is in contact with the valve seat 96, the injection valve 93 is in an open state.
 弁本体94が弁押さえ95に当たって第1孔95aを塞ぐ第1状態(図5)から、弁本体94が弁押さえ95から離れて弁座96に当たる第2状態(図6)に移行する際に、弁本体94は、第1方向D1に沿って移動する。 When shifting from the first state (FIG. 5) in which the valve body 94 contacts the valve guard 95 and closes the first hole 95a to the second state (FIG. 6) in which the valve body 94 separates from the valve guard 95 and contacts the valve seat 96, The valve body 94 moves along the first direction D1.
 第1状態では、図5に示されるように、弁本体94の中央孔94a、および、弁押さえ95の第1孔95aが塞がれているので、中央孔94aは、第1孔95aと連通していない。そのため、インジェクション配管92内の冷媒は、第1孔95aおよび中央孔94aを通過して、圧縮室40に流入できない。一方、第2状態では、図6に示されるように、中央孔94aおよび第1孔95aが塞がれていないので、中央孔94aは、第1空間97を介して第1孔95aと連通している。そのため、インジェクション配管92内の冷媒は、第1孔95aおよび中央孔94aを通過して、圧縮室40に流入できる。 In the first state, as shown in FIG. 5, the central hole 94a of the valve body 94 and the first hole 95a of the valve guard 95 are closed, so the central hole 94a communicates with the first hole 95a. not. Therefore, the refrigerant in the injection pipe 92 cannot flow into the compression chamber 40 through the first hole 95a and the central hole 94a. On the other hand, in the second state, as shown in FIG. 6, the central hole 94a and the first hole 95a are not blocked, so the central hole 94a communicates with the first hole 95a through the first space 97. ing. Therefore, the refrigerant in the injection pipe 92 can flow into the compression chamber 40 through the first hole 95a and the central hole 94a.
 以下において、図5および図6に示されるように、第1状態から第2状態に移行する際における、弁本体94の第1方向D1の移動量を第1距離Lと定義し、弁本体94の第1方向D1の寸法を第1寸法tと定義する。 Hereinafter, as shown in FIGS. 5 and 6, the amount of movement of the valve body 94 in the first direction D1 when shifting from the first state to the second state is defined as a first distance L, and the valve body 94 is defined as a first dimension t in the first direction D1.
 第1距離Lおよび第1寸法tは、次の関係式(I)を満たす。
 L<t  (I)
The first distance L and the first dimension t satisfy the following relational expression (I).
L<t (I)
 図5および図6に示されるように、第1空間97の第1方向D1の寸法を第2寸法sと定義すると、次の関係式(II)および(III)が満たされる。
 L<t<s  (II)
 s=L+t  (III)
As shown in FIGS. 5 and 6, when the dimension of the first space 97 in the first direction D1 is defined as the second dimension s, the following relational expressions (II) and (III) are satisfied.
L<t<s (II)
s=L+t (III)
 第1距離Lおよび第1寸法tは、次の関係式(IV)を満たすことが好ましい。
 0.2mm≦L<t≦1.8mm  (IV)
Preferably, the first distance L and the first dimension t satisfy the following relational expression (IV).
0.2 mm≦L<t≦1.8 mm (IV)
 第1距離Lおよび第1寸法tは、次の関係式(V)を満たすことがより好ましい。
 0.6mm≦L<t≦1.0mm  (V)
More preferably, the first distance L and the first dimension t satisfy the following relational expression (V).
0.6mm≦L<t≦1.0mm (V)
 第1距離Lおよび第1寸法tは、次の関係式(VI)を満たすことがより好ましい。
 1.2≦t/L≦2.0  (VI)
More preferably, the first distance L and the first dimension t satisfy the following relational expression (VI).
1.2≤t/L≤2.0 (VI)
 また、第1方向D1に沿って見た場合における弁本体94の面積を第1面積S1と定義し、第1方向D1に沿って見た場合における弁押さえ95の第1孔95aの面積を第2面積S2と定義する。第1面積S1は、周縁部94bの面積であり、中央孔94aの面積を含まない。第2面積S2は、弁押さえ95の全ての第1孔95aの面積の合計である。中央孔94aおよび第1孔95aの面積とは、第1方向D1に沿って見た場合の面積である。 Further, the area of the valve body 94 when viewed along the first direction D1 is defined as the first area S1, and the area of the first hole 95a of the valve guard 95 when viewed along the first direction D1 is defined as the first area S1. 2 area is defined as S2. The first area S1 is the area of the peripheral portion 94b and does not include the area of the central hole 94a. The second area S2 is the total area of all the first holes 95a of the valve guard 95. As shown in FIG. The area of the central hole 94a and the first hole 95a is the area when viewed along the first direction D1.
 第1面積S1および第2面積S2は、次の関係式(VII)を満たす。
 4.1≦S1/S2≦4.9  (VII)
The first area S1 and the second area S2 satisfy the following relational expression (VII).
4.1≦S1/S2≦4.9 (VII)
 関係式(VII)は、次の関係式(VIII)と同値である。
 4.1≦(i―j)/(n×k)≦4.9  (VIII)
Relational expression (VII) is equivalent to the following relational expression (VIII).
4.1≦(i 2 −j 2 )/(n×k 2 )≦4.9 (VIII)
 ここで、
  i:弁本体94の外径
  j:弁本体94の中央孔94aの直径
  n:弁押さえ95の第1孔95aの数
  k:弁押さえ95の第1孔95aの直径
 である(図7および図8)。図8において、nは12である。
here,
i: outer diameter of valve body 94 j: diameter of central hole 94a of valve body 94 n: number of first holes 95a of valve guard 95 k: diameter of first hole 95a of valve guard 95 (Figs. 8). In FIG. 8, n is twelve.
 第1面積S1および第2面積S2は、変数i,j,n,kを用いて、次の関係式(IX)および(X)のように表せる。
 S1=(i/2)×π-(j/2)×π  (IX)
 S2=n×(k/2)×π  (X)
The first area S1 and the second area S2 can be represented by the following relational expressions (IX) and (X) using variables i, j, n, and k.
S1=(i/2) 2 ×π−(j/2) 2 ×π (IX)
S2=n×(k/2) 2 ×π(X)
 関係式(VII)に、関係式(IX)および(X)を代入することで、関係式(VIII)が導かれる。 By substituting the relational expressions (IX) and (X) into the relational expression (VII), the relational expression (VIII) is derived.
 (2-3)圧縮機の動作
 駆動モータ16が始動すると、クランクシャフト17の偏心軸部17aは、クランクシャフト17の回転軸17gを中心に偏心回転する。これにより、偏心軸部17aに連結されるピストン81は、シリンダ84のシリンダ孔84a内で公転する。ピストン81が公転している間、ピストン外周面81cは、シリンダ内周面86cと接する。ピストン81の公転によって、ベーン81bは、その両側面をブッシュ82に挟まれながら進退する。
(2-3) Operation of Compressor When the drive motor 16 is started, the eccentric shaft portion 17a of the crankshaft 17 rotates eccentrically around the rotary shaft 17g of the crankshaft 17. As shown in FIG. Thereby, the piston 81 connected to the eccentric shaft portion 17 a revolves within the cylinder hole 84 a of the cylinder 84 . While the piston 81 is revolving, the piston outer peripheral surface 81c is in contact with the cylinder inner peripheral surface 86c. Due to the revolution of the piston 81, the vane 81b advances and retreats while being sandwiched between the bushes 82 on both sides thereof.
 ピストン81の公転に伴い、吸入孔84bと連通する圧縮室40(低圧室40a)は、徐々に容積を増加させる。このとき、ケーシング10の外部から吸入管19を経由して、低圧室40aに低圧の冷媒が流入する。ピストン81の公転に伴い、低圧室40aは、吐出切り欠き84cと連通する高圧室40bとなり、高圧室40bは、徐々に容積を減少させて消滅し、その後、新たな低圧室40aが形成される。これにより、吸入管19から吸入孔84bを経由して低圧室40aに流入した低圧の冷媒は、圧縮室40(高圧室40b)で圧縮される。圧縮室40において冷媒が圧縮されている間、ベーン81bは、一対のブッシュの間で進退可能に保持される。 As the piston 81 revolves, the compression chamber 40 (low pressure chamber 40a) communicating with the suction hole 84b gradually increases in volume. At this time, low-pressure refrigerant flows into the low-pressure chamber 40 a from the outside of the casing 10 via the suction pipe 19 . As the piston 81 revolves, the low-pressure chamber 40a becomes a high-pressure chamber 40b that communicates with the discharge notch 84c. The high-pressure chamber 40b gradually decreases in volume and disappears. . As a result, the low-pressure refrigerant flowing into the low-pressure chamber 40a from the suction pipe 19 through the suction hole 84b is compressed in the compression chamber 40 (high-pressure chamber 40b). While the refrigerant is compressed in the compression chamber 40, the vane 81b is held between the pair of bushes so as to be able to move forward and backward.
 高圧室40bで圧縮された高圧の冷媒は、吐出切り欠き84cおよび吐出ポート23bを経由して、高圧空間HSに吐出される。高圧空間HSに吐出された冷媒は、駆動モータ16のモータ冷却通路を通過して上方に向かって流れた後、吐出管20からケーシング10の外部に吐出される。 The high-pressure refrigerant compressed in the high-pressure chamber 40b is discharged into the high-pressure space HS via the discharge notch 84c and the discharge port 23b. The refrigerant discharged into the high-pressure space HS flows upward through the motor cooling passage of the drive motor 16 and is then discharged from the discharge pipe 20 to the outside of the casing 10 .
 圧縮室40において冷媒が圧縮されている間、冷媒回路6を流れる中間圧の冷媒が高圧室40bに供給される中間インジェクションが行われる。中間インジェクションは、インジェクション弁93が開いている状態において、インジェクション通路84gから高圧室40bに中間圧の冷媒が供給されることにより行われる。中間インジェクションは、圧縮室40(高圧室40b)の圧力がインジェクション圧力よりも低い場合に行われ、圧縮室40(高圧室40b)の圧力がインジェクション圧力以上の場合には行われない。 While the refrigerant is being compressed in the compression chamber 40, intermediate injection is performed in which intermediate pressure refrigerant flowing through the refrigerant circuit 6 is supplied to the high pressure chamber 40b. Intermediate injection is performed by supplying intermediate-pressure refrigerant from the injection passage 84g to the high-pressure chamber 40b while the injection valve 93 is open. Intermediate injection is performed when the pressure in the compression chamber 40 (high pressure chamber 40b) is lower than the injection pressure, and is not performed when the pressure in the compression chamber 40 (high pressure chamber 40b) is equal to or higher than the injection pressure.
 次に説明するように、ピストン81が公転している間、インジェクション弁93は開閉を繰り返す。図9に示されるように、ピストン81が上死点に位置している時、ベーン81b全体が一対のブッシュ82によって支持されている。この時、圧縮室40は、ピストン81によって低圧室40aと高圧室40bとに区画されておらず、圧縮室40は、吸入孔84bおよびインジェクション通路84gの両方と連通している。そのため、圧縮室40は、吸入孔84bから流入する低圧の冷媒で満たされている。圧縮室40の圧力はインジェクション圧力よりも低いので、インジェクション圧力によって弁本体94は弁座96に向かって移動して弁座96に当たる。その結果、インジェクション弁93が開く。 As described below, the injection valve 93 is repeatedly opened and closed while the piston 81 is revolving. As shown in FIG. 9, the entire vane 81b is supported by the pair of bushes 82 when the piston 81 is at the top dead center. At this time, the compression chamber 40 is not divided into the low pressure chamber 40a and the high pressure chamber 40b by the piston 81, and the compression chamber 40 communicates with both the suction hole 84b and the injection passage 84g. Therefore, the compression chamber 40 is filled with low-pressure refrigerant flowing from the suction hole 84b. Since the pressure in the compression chamber 40 is lower than the injection pressure, the injection pressure causes the valve body 94 to move toward and strike the valve seat 96 . As a result, the injection valve 93 opens.
 図9に示される状態からピストン81が公転すると、図10に示されるように、ピストン81は、シリンダ内周面86cにおける吸入孔84bの開口を塞ぐ。この時、圧縮室40は、ピストン81によって低圧室40aと高圧室40bとに区画され、高圧室40bは、インジェクション通路84gと連通している。その後、ピストン81がさらに公転して高圧室40bの圧力が上昇すると、高圧室40bの圧力はインジェクション圧力以上になる。これにより、高圧室40bの圧力によって弁本体94は弁押さえ95に向かって移動して弁押さえ95に当たる。その結果、インジェクション弁93が閉じる。 When the piston 81 revolves from the state shown in FIG. 9, the piston 81 closes the opening of the suction hole 84b in the cylinder inner peripheral surface 86c as shown in FIG. At this time, the compression chamber 40 is divided into a low pressure chamber 40a and a high pressure chamber 40b by the piston 81, and the high pressure chamber 40b communicates with the injection passage 84g. After that, when the piston 81 revolves further and the pressure in the high pressure chamber 40b rises, the pressure in the high pressure chamber 40b becomes equal to or higher than the injection pressure. As a result, the valve main body 94 is moved toward the valve guard 95 by the pressure in the high pressure chamber 40b and comes into contact with the valve guard 95 . As a result, the injection valve 93 is closed.
 次に、ピストン81がさらに公転すると、図11に示されるように、ピストン81は、シリンダ内周面86cにおけるインジェクション通路84gの開口を塞ぐ。この時、圧縮室40は、ピストン81によって低圧室40aと高圧室40bとに区画され、低圧室40aは、吸入孔84bと連通している。そのため、低圧室40aは、吸入孔84bから流入する低圧の冷媒で満たされている。その後、ピストン81がさらに公転して、低圧室40aがインジェクション通路84gと連通すると、低圧室40aの圧力はインジェクション圧力よりも低いので、インジェクション圧力によって弁本体94は弁座96に向かって移動して弁座96に当たる。その結果、インジェクション弁93が開く。その後、ピストン81がさらに公転すると、図9に示されるように、ピストン81は上死点に位置する。 Next, when the piston 81 revolves further, as shown in FIG. 11, the piston 81 closes the opening of the injection passage 84g in the cylinder inner peripheral surface 86c. At this time, the compression chamber 40 is divided into a low-pressure chamber 40a and a high-pressure chamber 40b by the piston 81, and the low-pressure chamber 40a communicates with the suction hole 84b. Therefore, the low-pressure chamber 40a is filled with low-pressure refrigerant flowing from the suction hole 84b. Thereafter, when the piston 81 revolves further and the low pressure chamber 40a communicates with the injection passage 84g, the pressure in the low pressure chamber 40a is lower than the injection pressure, so the injection pressure causes the valve body 94 to move toward the valve seat 96. It hits the valve seat 96 . As a result, the injection valve 93 opens. After that, when the piston 81 revolves further, the piston 81 is positioned at the top dead center as shown in FIG.
 従って、ピストン81が公転している間、インジェクション弁93は、圧縮室40内の冷媒と、インジェクション配管92内の中間圧の冷媒との間の圧力差によって開閉する。これにより、圧縮機21では、ピストン81が公転している間、インジェクション弁93が閉じている第1状態(図5)から、インジェクション弁93が開いている第2状態(図6)に移行し、第2状態から第1状態に移行することを繰り返す。そのため、圧縮機21が冷媒を圧縮している間、弁本体94は、インジェクション弁93が開く度に弁座96に衝突し、インジェクション弁93が閉じる度に弁押さえ95に衝突する。 Therefore, while the piston 81 is revolving, the injection valve 93 opens and closes due to the pressure difference between the refrigerant in the compression chamber 40 and the intermediate pressure refrigerant in the injection pipe 92 . As a result, while the piston 81 is revolving, the compressor 21 transitions from the first state (FIG. 5) in which the injection valve 93 is closed to the second state (FIG. 6) in which the injection valve 93 is open. , the transition from the second state to the first state is repeated. Therefore, while the compressor 21 is compressing the refrigerant, the valve body 94 collides with the valve seat 96 each time the injection valve 93 opens, and collides with the valve guard 95 each time the injection valve 93 closes.
 (3)特徴
 (3-1)
 圧縮機21が冷媒を圧縮している間、弁本体94は、弁押さえ95および弁座96との衝突を繰り返す。圧縮機21のような回転式の圧縮機の場合、上述したように、インジェクション弁93は、圧縮室40内の冷媒と、インジェクション配管92内の中間圧の冷媒との間の圧力差によって開く。圧縮室40と連通する吸入孔84b内の冷媒の圧力は、冷媒回路6において最も低い。そのため、回転式の圧縮機の場合、インジェクション弁93を開閉する駆動力となる圧力差が比較的大きいので、弁押さえ95および弁座96と衝突する時の弁本体94の速さが大きくなりやすい。
(3) Features (3-1)
While the compressor 21 is compressing the refrigerant, the valve body 94 repeatedly collides with the valve guard 95 and the valve seat 96 . In the case of a rotary compressor such as the compressor 21 , the injection valve 93 is opened by the pressure difference between the refrigerant in the compression chamber 40 and the intermediate pressure refrigerant in the injection pipe 92 as described above. The pressure of the refrigerant inside the suction hole 84 b communicating with the compression chamber 40 is the lowest in the refrigerant circuit 6 . Therefore, in the case of a rotary compressor, since the pressure difference that is the driving force for opening and closing the injection valve 93 is relatively large, the speed of the valve body 94 when it collides with the valve guard 95 and the valve seat 96 tends to increase. .
 一方、例えば、スクロール式の圧縮機の場合、冷媒回路において最も低い圧力より高い圧力の冷媒と、中間圧の冷媒との間の圧力差によって弁が開く。そのため、スクロール式の圧縮機において、弁を開閉する駆動力となる圧力差は、回転式の圧縮機よりも小さい傾向があるので、弁の開閉時における弁本体の速さも小さい。弁本体の速さが大きいほど、弁本体が他の部材と衝突する時の衝撃負荷が大きいので、弁本体が破損しやすい。また、中間圧が高くなるほど、弁を開閉する駆動力となる圧力差が大きく、弁本体の速さも大きくなるので、弁本体が破損しやすい。 On the other hand, for example, in the case of a scroll compressor, the valve opens due to the pressure difference between the refrigerant with a pressure higher than the lowest pressure in the refrigerant circuit and the refrigerant with an intermediate pressure. Therefore, in the scroll type compressor, the pressure difference, which is the driving force for opening and closing the valve, tends to be smaller than in the rotary type compressor, so the speed of the valve body when opening and closing the valve is also small. The greater the speed of the valve body, the greater the impact load when the valve body collides with other members, so the valve body is more likely to be damaged. In addition, the higher the intermediate pressure, the greater the pressure difference, which is the driving force for opening and closing the valve, and the faster the valve body.
 本実施形態では、圧縮機21が冷媒を圧縮している間の弁本体94の第1方向D1の移動量(第1距離L)は、弁本体94の第1方向D1の寸法(第1寸法t)よりも短い。第1距離Lの上限値が設定されているため、弁本体94の速さが規制され、弁押さえ95および弁座96と当たる時の弁本体94の衝撃負荷が低減される。また、第1寸法tの下限値が設定されているため、弁本体94の厚みを所定値以上確保することができ、弁本体94の疲労強度の低下が抑制される。さらに、第1寸法tと第1距離Lとの比t/Lが大きいほど、弁本体94の移動時に弁本体94が第1方向D1に対して傾くことが抑制される。これにより、弁本体94が弁押さえ95および弁座96と当たる時に、弁本体94に局所的な負荷がかかることが抑制される。従って、本実施形態では、インジェクション弁93を開閉する駆動力となる圧力差が比較的大きくても、弁本体94の破損が抑制され、圧縮機21の信頼性が向上する。また、本実施形態の圧縮機21のような回転式の圧縮機では、スクロール式の圧縮機と比較して、本実施形態のインジェクション弁93のような弁を開閉する駆動力となる圧力差が大きくなりやすいので、弁の破損を抑制して信頼性を向上させる効果が大きい。 In the present embodiment, the amount of movement of the valve body 94 in the first direction D1 (first distance L) while the compressor 21 is compressing the refrigerant is the dimension of the valve body 94 in the first direction D1 (first dimension t). Since the upper limit of the first distance L is set, the speed of the valve body 94 is regulated, and the impact load of the valve body 94 when it hits the valve guard 95 and the valve seat 96 is reduced. In addition, since the lower limit value of the first dimension t is set, the thickness of the valve body 94 can be ensured to be equal to or greater than a predetermined value, and a drop in the fatigue strength of the valve body 94 can be suppressed. Furthermore, the larger the ratio t/L between the first dimension t and the first distance L, the more the valve body 94 is prevented from tilting with respect to the first direction D1 when the valve body 94 moves. As a result, when the valve body 94 comes into contact with the valve guard 95 and the valve seat 96, the local load applied to the valve body 94 is suppressed. Therefore, in the present embodiment, even if the pressure difference that is the driving force for opening and closing the injection valve 93 is relatively large, damage to the valve body 94 is suppressed, and the reliability of the compressor 21 is improved. Further, in a rotary compressor such as the compressor 21 of the present embodiment, a pressure difference that serves as a driving force for opening and closing a valve such as the injection valve 93 of the present embodiment is greater than that of a scroll compressor. Since it tends to be large, it is highly effective in suppressing damage to the valve and improving reliability.
 (3-2)
 圧縮機21では、インジェクション弁93は、第1距離Lおよび第1寸法tが上述の関係式(IV)~(VI)を満たすように設計される。これにより、弁本体94の破損が効果的に抑制される。
(3-2)
In the compressor 21, the injection valve 93 is designed such that the first distance L and the first dimension t satisfy the above relationships (IV)-(VI). This effectively suppresses damage to the valve body 94 .
 (3-3)
 圧縮機21では、弁本体94および弁押さえ95は、上述の関係式(VII)および(VIII)が満たされるように設計される。これにより、インジェクション弁93のシール性能が適切に確保される。
(3-3)
In the compressor 21, the valve body 94 and the valve guard 95 are designed so that the above relationships (VII) and (VIII) are satisfied. Thereby, the sealing performance of the injection valve 93 is appropriately ensured.
 (3-4)
 圧縮機21では、弁本体94は、ばね鋼で成形される。これにより、弁本体94の破損が効果的に抑制される。
(3-4)
In the compressor 21, the valve body 94 is made of spring steel. This effectively suppresses damage to the valve body 94 .
 (3-5)
 上述のスクロール式の圧縮機では、固定スクロールに対して可動スクロールが公転することで、固定スクロールと可動スクロールとにより形成される圧縮室の容積が減少して、圧縮室内の冷媒が圧縮される。一般に、スクロール式の圧縮機では、低圧の冷媒が高圧の冷媒に圧縮されるまで、固定スクロールに対して可動スクロールは少なくとも2回公転する。そのため、スクロール式の圧縮機に、インジェクション弁93のような弁が設けられている場合、可動スクロールが少なくとも2回公転する度に、弁が1回開閉する。
(3-5)
In the scroll compressor described above, the movable scroll revolves around the fixed scroll, thereby reducing the volume of the compression chamber formed by the fixed scroll and the movable scroll, thereby compressing the refrigerant in the compression chamber. Generally, in scroll compressors, the movable scroll revolves at least twice with respect to the fixed scroll until the low-pressure refrigerant is compressed into high-pressure refrigerant. Therefore, when the scroll compressor is provided with a valve such as the injection valve 93, the valve opens and closes once every time the orbiting scroll makes at least two revolutions.
 一方、本実施形態の圧縮機21のような回転式の圧縮機では、ピストン81が1回公転する度に、インジェクション弁93が1回開閉する。従って、回転式の圧縮機は、スクロール式の圧縮機と比較して、インジェクション弁93のような弁が開閉する回数が多くなる傾向がある。従って、本実施形態の圧縮機21のような回転式の圧縮機では、スクロール式の圧縮機と比較して、本実施形態のインジェクション弁93のような弁が破損しやすいので、弁の破損を抑制して信頼性を向上させる効果が大きい。 On the other hand, in a rotary compressor like the compressor 21 of this embodiment, the injection valve 93 opens and closes once each time the piston 81 revolves once. Therefore, rotary compressors tend to open and close valves such as the injection valve 93 more often than scroll compressors. Therefore, in a rotary compressor such as the compressor 21 of this embodiment, valves such as the injection valve 93 of this embodiment are more likely to be damaged than in a scroll compressor. The effect of suppressing and improving reliability is large.
 (3-6)
 空気調和装置1は、圧縮機21を備える。圧縮機21の弁本体94の破損が抑制されることにより、空気調和装置1の信頼性が向上する。また、中間インジェクションによって圧縮室40に供給される中間圧の冷媒の量を増加させることにより、空気調和装置1の能力を向上させることができる。
(3-6)
The air conditioner 1 includes a compressor 21 . By suppressing damage to the valve body 94 of the compressor 21, the reliability of the air conditioner 1 is improved. Further, by increasing the amount of the intermediate-pressure refrigerant supplied to the compression chamber 40 by intermediate injection, the capacity of the air conditioner 1 can be improved.
 (4)変形例
 (4-1)第1変形例
 実施形態において、圧縮機21は、回転式の圧縮機である。しかし、インジェクション弁93は、回転式の圧縮機以外の圧縮機にも適用できる。例えば、インジェクション弁93は、スクロール式の圧縮機にも適用できる。
(4) Modifications (4-1) First Modification In the embodiment, the compressor 21 is a rotary compressor. However, the injection valve 93 can also be applied to compressors other than rotary compressors. For example, the injection valve 93 can also be applied to scroll compressors.
 また、圧縮機21が回転式の圧縮機である場合、圧縮機構15の構成は特に限定されない。例えば、圧縮機構15は、ブッシュ82を有さない構成を有してもよい。具体的には、圧縮機構15は、図12に示されるように、ピストン81と、ベーン81bと、スプリング87とを有してもよい。ピストン81およびベーン81bは、互いに別々の部材である。スプリング87は、鉛直方向にシリンダ84を貫通するスプリング収容孔84fに収容される。スプリング87は、シリンダ84のシリンダ孔84a内で公転するピストン81に向かってベーン81bを押し付ける。ベーン81bは、公転するピストン81に接しながら、圧縮室40を低圧室40aと高圧室40bとに仕切る。ベーン81bは、圧縮室40で冷媒が圧縮される間、スプリング収容孔84fによって進退可能に保持される。 Further, when the compressor 21 is a rotary compressor, the configuration of the compression mechanism 15 is not particularly limited. For example, compression mechanism 15 may have a configuration that does not have bush 82 . Specifically, the compression mechanism 15 may have a piston 81, a vane 81b, and a spring 87, as shown in FIG. Piston 81 and vane 81b are members separate from each other. The spring 87 is accommodated in a spring accommodation hole 84f penetrating the cylinder 84 in the vertical direction. A spring 87 presses the vane 81 b toward the piston 81 revolving within the cylinder hole 84 a of the cylinder 84 . The vane 81b partitions the compression chamber 40 into a low-pressure chamber 40a and a high-pressure chamber 40b while being in contact with the revolving piston 81 . While the refrigerant is compressed in the compression chamber 40, the vane 81b is held by the spring housing hole 84f so as to be able to advance and retreat.
 (4-2)第2変形例
 インジェクション弁93は、弁本体94と弁座96との間に配置される弾性体をさらに有してもよい。弾性体は、例えば、バネである。弾性体は、圧縮室40の圧力が、インジェクション圧力よりも所定の値だけ小さい圧力を超えている場合に、弁本体94を弁押さえ95に押し付けるように構成される。
(4-2) Second Modification The injection valve 93 may further have an elastic body arranged between the valve body 94 and the valve seat 96 . The elastic body is, for example, a spring. The elastic body is configured to press the valve body 94 against the valve guard 95 when the pressure in the compression chamber 40 exceeds a pressure lower than the injection pressure by a predetermined value.
 本変形例では、弾性体により弁本体94が弁押さえ95に向かって押し付けられることにより、弁本体94のチャタリングが抑制される。また、圧縮室40の圧力がインジェクション圧力よりもわずかに小さい場合でも、圧縮室40からインジェクション通路84gに冷媒が逆流することが抑制される。 In this modified example, chattering of the valve body 94 is suppressed by pressing the valve body 94 toward the valve guard 95 with an elastic body. Moreover, even when the pressure in the compression chamber 40 is slightly lower than the injection pressure, the refrigerant is prevented from flowing back from the compression chamber 40 to the injection passage 84g.
 ―むすび―
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
- Conclusion -
Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
  1  :空気調和装置
 15  :圧縮機構
 21  :圧縮機
 40  :圧縮室
 40a :低圧室(第1室)
 40b :高圧室(第2室)
 81  :ピストン
 81b :ベーン
 82  :一対のブッシュ
 84g :インジェクション通路
 92  :インジェクション配管
 93  :インジェクション弁
 94  :弁本体
 95  :弁押さえ
 95a :第1孔
 96  :弁座
 D1  :第1方向
Reference Signs List 1: Air conditioner 15: Compression mechanism 21: Compressor 40: Compression chamber 40a: Low pressure chamber (first chamber)
40b: high pressure chamber (second chamber)
81: Piston 81b: Vane 82: Pair of bushes 84g: Injection passage 92: Injection pipe 93: Injection valve 94: Valve body 95: Valve retainer 95a: First hole 96: Valve seat D1: First direction
特開2016-17464号公報JP 2016-17464 A

Claims (7)

  1.  冷媒が圧縮される圧縮室(40)が形成される圧縮機構(15)と、
     前記圧縮室と連通するインジェクション通路(84g)に配置されるインジェクション弁(93)と、
     前記インジェクション通路に冷媒を供給するインジェクション配管(92)と、
    を備え、
     前記インジェクション弁は、
      第1方向(D1)に沿って移動可能に配置される弁本体(94)と、
      前記弁本体よりも前記インジェクション配管側に配置され、前記弁本体の前記インジェクション配管側への移動を規制する弁押さえ(95)と、
      前記弁本体よりも前記圧縮室側に配置され、前記弁本体の前記圧縮室側への移動を規制する弁座(96)と、
     を有し、
     前記弁押さえは、前記弁本体により開閉される第1孔(95a)が形成され、
     前記弁本体が前記弁押さえに当たって前記第1孔を塞ぐ第1状態から、前記弁本体が前記弁押さえから離れて前記弁座に当たる第2状態に移行する際における、前記弁本体の前記第1方向の移動量である第1距離は、前記弁本体の前記第1方向の寸法である第1寸法より小さい、
    圧縮機(21)。
    a compression mechanism (15) having a compression chamber (40) in which refrigerant is compressed;
    an injection valve (93) arranged in an injection passage (84g) communicating with the compression chamber;
    an injection pipe (92) for supplying coolant to the injection passage;
    with
    The injection valve is
    a valve body (94) arranged movably along a first direction (D1);
    a valve retainer (95) arranged closer to the injection pipe than the valve body and restricting movement of the valve body toward the injection pipe;
    a valve seat (96) disposed closer to the compression chamber than the valve body and restricting movement of the valve body toward the compression chamber;
    has
    The valve guard is formed with a first hole (95a) that is opened and closed by the valve body,
    The first direction of the valve body when transitioning from a first state in which the valve body abuts on the valve guard to block the first hole to a second state in which the valve body separates from the valve guard and abuts on the valve seat. is smaller than the first dimension, which is the dimension of the valve body in the first direction,
    Compressor (21).
  2.  前記第1距離をLとし、前記第1寸法をtとする場合、0.2mm≦L<t≦1.8mmの関係式を満たす、
    請求項1に記載の圧縮機。
    If the first distance is L and the first dimension is t, a relational expression of 0.2 mm ≤ L < t ≤ 1.8 mm is satisfied;
    A compressor according to claim 1 .
  3.  前記第1方向に沿って見た場合における前記弁本体の面積をS1とし、前記第1方向に沿って見た場合における前記第1孔の面積をS2とする場合、4.1≦S1/S2≦4.9の関係式を満たす、
    請求項1または2に記載の圧縮機。
    When the area of the valve body when viewed along the first direction is S1 and the area of the first hole when viewed along the first direction is S2, 4.1≦S1/S2 satisfies the relation of ≦4.9,
    A compressor according to claim 1 or 2.
  4.  前記弁本体は、ばね鋼で成形される、
    請求項1から3のいずれか1項に記載の圧縮機。
    wherein the valve body is made of spring steel;
    A compressor according to any one of claims 1 to 3.
  5.  前記圧縮機構は、ピストン(81)と、前記ピストンに接して前記圧縮室を第1室(40a)と第2室(40b)とに仕切るベーン(81b)とを有し、
     前記ベーンは、前記圧縮室で冷媒が圧縮される間、進退可能に保持される、
    請求項1から4のいずれか1項に記載の圧縮機。
    The compression mechanism has a piston (81) and a vane (81b) that is in contact with the piston and divides the compression chamber into a first chamber (40a) and a second chamber (40b),
    The vane is held reciprocally while the refrigerant is compressed in the compression chamber,
    A compressor according to any one of claims 1 to 4.
  6.  前記圧縮機構は、前記圧縮室を第1室(40a)と第2室(40b)とに仕切るベーン(81b)と、一対のブッシュ(82)とを有し、
     前記ベーンは、前記圧縮室で冷媒が圧縮される間、前記一対のブッシュの間で進退可能に保持される、
    請求項1から4のいずれか1項に記載の圧縮機。
    The compression mechanism has a vane (81b) that divides the compression chamber into a first chamber (40a) and a second chamber (40b), and a pair of bushes (82),
    The vane is movably held between the pair of bushes while the refrigerant is compressed in the compression chamber,
    A compressor according to any one of claims 1 to 4.
  7.  請求項1から6のいずれか1項に記載の圧縮機を備える、
    空気調和装置(1)。
    A compressor according to any one of claims 1 to 6,
    An air conditioner (1).
PCT/JP2022/033072 2021-09-10 2022-09-02 Compressor, and air conditioning device WO2023037972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147914A JP2023040761A (en) 2021-09-10 2021-09-10 Compressor and air conditioner
JP2021-147914 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023037972A1 true WO2023037972A1 (en) 2023-03-16

Family

ID=85507582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033072 WO2023037972A1 (en) 2021-09-10 2022-09-02 Compressor, and air conditioning device

Country Status (2)

Country Link
JP (1) JP2023040761A (en)
WO (1) WO2023037972A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175208A (en) * 1974-12-25 1976-06-29 Hitachi Ltd OFUKUSHIKIATSUSHUKUKI
JPS5815777A (en) * 1981-07-21 1983-01-29 Toshiba Corp Injection device of reciprocating compressor
JPH11107950A (en) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd Injection device of compressor
CN201992143U (en) * 2011-02-16 2011-09-28 广东美芝制冷设备有限公司 Jet valve and air jet enthalpy-gain type rotary compressor
CN105041653A (en) * 2015-08-06 2015-11-11 广东美芝制冷设备有限公司 Rotary type enhanced vapor injection compressor
JP2017194064A (en) * 2017-07-19 2017-10-26 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle
WO2019171508A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Rotary compressor
WO2021039080A1 (en) * 2019-08-30 2021-03-04 ダイキン工業株式会社 Rotary compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082338A (en) * 1999-09-20 2001-03-27 Toyota Autom Loom Works Ltd Flow passage opening and closing device for compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175208A (en) * 1974-12-25 1976-06-29 Hitachi Ltd OFUKUSHIKIATSUSHUKUKI
JPS5815777A (en) * 1981-07-21 1983-01-29 Toshiba Corp Injection device of reciprocating compressor
JPH11107950A (en) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd Injection device of compressor
CN201992143U (en) * 2011-02-16 2011-09-28 广东美芝制冷设备有限公司 Jet valve and air jet enthalpy-gain type rotary compressor
CN105041653A (en) * 2015-08-06 2015-11-11 广东美芝制冷设备有限公司 Rotary type enhanced vapor injection compressor
JP2017194064A (en) * 2017-07-19 2017-10-26 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle
WO2019171508A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Rotary compressor
WO2021039080A1 (en) * 2019-08-30 2021-03-04 ダイキン工業株式会社 Rotary compressor

Also Published As

Publication number Publication date
JP2023040761A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US7290994B2 (en) Rotary hermetic compressor and refrigeration cycle system
US8857200B2 (en) Compressor having capacity modulation or fluid injection systems
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
US7618245B2 (en) Fluid machine
JP4796073B2 (en) Variable capacity rotary compressor
EP1215449A1 (en) Multi-stage compression refrigerating device
JP2004301114A (en) Rotary type closed compressor and refrigerating cycle device
JP2009127902A (en) Refrigerating device and compressor
JP4151120B2 (en) 2-stage compressor
JP5760836B2 (en) Rotary compressor
US20100054978A1 (en) Injectible two-stage compression rotary compressor
US11906060B2 (en) Rotary compressor with backflow suppresion mechanism for an introduction path
JPH10141270A (en) Two stage gas compressor
WO2023037972A1 (en) Compressor, and air conditioning device
JP7398289B2 (en) Reciprocating expander and Rankine cycle device
KR100724452B1 (en) Modulation type rotary compressor
JP2008508473A (en) Volume variable type rotary compressor, method of operating the same, and method of operating an air conditioner including the same
JP7401804B2 (en) Compressors and air conditioners
JP2023013210A (en) rotary compressor and air conditioner
KR100677525B1 (en) Modulation apparatus for rotary compressor
KR100724450B1 (en) Capacity modulation type rotary compressor
JP2517346B2 (en) Compressor control device
JP2023014507A (en) rotary compressor
JP3469845B2 (en) Multi-stage compression refrigeration equipment
KR20230173540A (en) Rotary compressor and home appliance including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE