WO2019171508A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2019171508A1
WO2019171508A1 PCT/JP2018/008815 JP2018008815W WO2019171508A1 WO 2019171508 A1 WO2019171508 A1 WO 2019171508A1 JP 2018008815 W JP2018008815 W JP 2018008815W WO 2019171508 A1 WO2019171508 A1 WO 2019171508A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
compression chamber
refrigerant
injection flow
valve body
Prior art date
Application number
PCT/JP2018/008815
Other languages
French (fr)
Japanese (ja)
Inventor
祐策 石部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880090508.1A priority Critical patent/CN111788391B/en
Priority to JP2020504564A priority patent/JP6910534B2/en
Priority to PCT/JP2018/008815 priority patent/WO2019171508A1/en
Publication of WO2019171508A1 publication Critical patent/WO2019171508A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a rotary compressor having a function of injecting (injecting) a refrigerant into a compression chamber.
  • Compressor compresses refrigerant sucked into the compression chamber from the suction port.
  • a rotary compressor in which a rotary type compression mechanism is accommodated in a sealed container is known.
  • a conventional rotary compressor includes a compressor in which an injection flow path communicating with the compression chamber at a position different from the suction port is provided in the compression mechanism section. .
  • the injection flow path is connected to an injection pipe provided outside the rotary compressor.
  • coolant supplied to the injection flow path from the inside of a refrigerant circuit via injection piping is injected (inject
  • a compressor having a compression mechanism having two compression chambers is also known as a conventional rotary compressor.
  • a rotary compressor in which the compression mechanism unit has two compression chambers will be referred to as a twin rotary compressor.
  • an injection flow path is provided in a compression mechanism section.
  • the injection flow path communicates with each of the two compression chambers. That is, the refrigerant supplied from the refrigerant circuit to the injection flow path via the injection pipe is injected into each of the two compression chambers.
  • a conventional twin rotary compressor having an injection flow path in the compression mechanism section also includes a compressor having a check valve for restricting the flow of refrigerant flowing out of the compression chamber into the injection flow path. It has been proposed (see Patent Document 1).
  • the twin rotary compressor described in Patent Document 1 includes a check valve that regulates the flow of the refrigerant flowing out of the compression chamber into the injection flow path inside the sealed container.
  • the injection flow path is closed by the check valve in a state where the refrigerant is not injected from the injection flow path into the compression chamber. Therefore, by providing the check valve in this manner, the space upstream of the check valve in the injection pipe and the injection flow path does not become dead volume, and thus it is possible to suppress a decrease in the compression efficiency of the compressor. .
  • the upstream side of the check valve in the injection pipe and the injection flow path is a portion on the upstream side of the check valve in the refrigerant flow during the refrigerant injection in the injection pipe and the injection flow path. That is, the upstream side of the check pipe in the injection pipe and the injection flow path indicates a portion of the injection pipe and the injection flow path that is on the side farther from the compression chamber than the check valve.
  • the check valve opens the injection flow path when the pressure of the refrigerant existing in the injection flow path portion on the upstream side of the check valve becomes equal to or higher than the specified pressure.
  • the injection flow path and the compression chamber both communicate with each other.
  • the check valve of the twin rotary compressor described in Patent Document 1 is configured such that when the pressure of the refrigerant existing in the injection flow path portion on the upstream side of the check valve becomes equal to or higher than the specified pressure, Open regardless of the refrigerant pressure.
  • the present invention has been made in order to solve the above-described problem, and is a twin rotary compressor having an injection flow path in a compression mechanism and a check valve in the injection flow path, and a refrigerant from a compression chamber It aims at proposing the twin rotary compressor which can suppress leakage more than before.
  • a rotary compressor includes a hermetic container and a rotary-type compression mechanism portion accommodated in the hermetic container, and the compression mechanism part sucks from the first suction port and the first suction port.
  • a first injection flow path for injecting refrigerant into the first compression chamber, and the second compression chamber at a position different from the second suction port, and injecting the refrigerant into the second compression chamber.
  • the pressure of the refrigerant acts in the direction to open the first injection flow path, and the pressure of the refrigerant in the first compression chamber acts in the direction to close the first injection flow path, and the second check valve Has a second valve body that is reciprocally movable and opens and closes the second injection flow path, and the second valve body includes the second valve body in the second injection flow path than the second valve body.
  • the pressure of the refrigerant existing on the side away from the compression chamber The second acts in the direction of opening the injection flow passage, the pressure of refrigerant in the second compression chamber, has a structure which acts in a direction to close the second injection channel.
  • the rotary compressor according to the present invention is a twin rotary compressor provided with an injection flow path in the compression mechanism and a check valve in the injection flow path.
  • the pressure of the refrigerant in the first compression chamber is higher than the pressure of the refrigerant existing on the side farther from the first compression chamber than the first valve body in the first injection flow path. Then, the first injection flow path and the first compression chamber are not communicated.
  • the pressure of the refrigerant in the second compression chamber is higher than the pressure of the refrigerant existing on the side farther from the second compression chamber than the second valve body in the second injection flow path. When the state is reached, the second injection flow path and the second compression chamber are not in communication with each other. Therefore, the rotary compressor which concerns on this invention can suppress the refrigerant
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery of the rotary compressor which concerns on embodiment of this invention.
  • It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery of the rotary compressor which concerns on embodiment of this invention.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus including a rotary compressor according to an embodiment of the present invention.
  • a refrigeration cycle apparatus 100 according to the present embodiment includes a rotary compressor 1, an evaporator 2, an expansion device 4, and a condenser 3.
  • the rotary compressor 1 compresses the sucked refrigerant into a high-temperature and high-pressure gaseous refrigerant. Details of the rotary compressor 1 will be described later.
  • the evaporator 2 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, a plate heat exchanger, or the like. Can be configured.
  • the evaporator 2 is connected to the discharge pipe 21 of the rotary compressor 1 and the expansion device 4 by a refrigerant pipe.
  • the expansion device 4 can be constituted by, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant.
  • the expansion device 4 is connected to the evaporator 2 and the condenser 3 by refrigerant piping.
  • the expansion device 4 expands the high-pressure liquid refrigerant that has flowed out of the evaporator 2 into a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • a mechanical expansion valve or a capillary tube that employs a diaphragm for the pressure receiving portion can be applied.
  • an injection pipe 5 is connected between the evaporator 2 and the expansion device 4.
  • the injection pipe 5 is also connected to a first injection flow path 31 and a second injection flow path 32 described later of the rotary compressor 1.
  • the rotary compressor 1 according to the present embodiment includes an injection pipe 6 connected to the first injection flow path 31 and the second injection flow path 32 outside the sealed container 8 described later.
  • the injection pipe 5 is connected to the injection pipe 6. That is, the injection pipe 5 is connected to the first injection flow path 31 and the second injection flow path 32 via the injection pipe 6.
  • the condenser 3 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, a plate heat exchanger, or the like. Can be configured.
  • the condenser 3 is connected to the expansion device 4 and the suction muffler 7 of the rotary compressor 1 by refrigerant piping.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the expansion device 4 evaporates by being heated by a heat exchange target such as air supplied to the condenser 3 when flowing through the refrigerant flow path of the condenser 3.
  • a refrigerant is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, a plate heat exchanger, or the like. Can be configured.
  • the condenser 3
  • This gaseous refrigerant is sucked into the rotary compressor 1 from the suction muffler 7.
  • the suction muffler 7 separates into a gaseous refrigerant and a liquid refrigerant inside and performs a function of supplying the gaseous refrigerant to a compression mechanism unit 11 described later. Is.
  • FIG. 2 is a longitudinal sectional view showing a rotary compressor according to the embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view taken along the line BB of FIG. 5 and 6 are enlarged views of the main part showing the vicinity of the first injection channel and the second injection channel of the rotary compressor according to the embodiment of the present invention.
  • FIG. 5 the flow path in the first check valve 40 provided in the first injection flow path 31 is closed, and the flow path in the second check valve 50 provided in the second injection flow path 32. Indicates a closed state.
  • FIG. 6 shows a flow path in the first check valve 40 provided in the first injection flow path 31 and a flow path in the second check valve 50 provided in the second injection flow path 32. Indicates the opened state.
  • 3 and 4 are different from FIG. 2 in the positions of some components. This is to facilitate recognition of these configurations.
  • the rotary compressor 1 includes a first compression chamber 14a and a second compression chamber 15a as described later. That is, the rotary compressor 1 is a twin rotary compressor.
  • the rotary compressor 1 includes a sealed container 8. Inside the sealed container 8 are housed a compression mechanism 11, a motor 9 that is a drive source of the compression mechanism 11, and a crankshaft 10 that transmits the driving force of the motor 9 to the compression mechanism 11.
  • the motor 9 includes a stator 9a and a rotor 9b.
  • the stator 9 a is fixed to the inner peripheral surface of the sealed container 8.
  • the rotor 9b is installed inside the stator 9a with a specified gap.
  • a crankshaft 10 is fixed to the rotor 9b. That is, when the rotor 9b rotates, the crankshaft 10 also rotates together with the rotor 9b.
  • the compression mechanism 11 includes an upper bearing 12, a lower bearing 13, an upper cylinder 14, a lower cylinder 15, an intermediate plate 17, and the like.
  • the upper cylinder 14 has a substantially cylindrical first compression chamber 14a.
  • the lower cylinder 15 has a substantially cylindrical second compression chamber 15a.
  • An intermediate plate 17 is disposed between the upper cylinder 14 and the lower cylinder 15.
  • the upper bearing 12 is provided on the upper surface of the upper cylinder 14 and closes the upper opening of the first compression chamber 14a. That is, the first compression chamber 14 a of the upper cylinder 14 is secured by the upper bearing 12 and the intermediate plate 17.
  • the lower bearing 13 is provided in the lower surface part of the lower cylinder 15, and obstruct
  • the crankshaft 10 passes through the upper bearing 12, the upper cylinder 14, the intermediate plate 17, the lower cylinder 15 and the lower bearing 13 that are sequentially stacked.
  • the crankshaft 10 is rotatably supported by an upper bearing 12 and a lower bearing 13. Further, the crankshaft 10 is formed with a first eccentric portion 10a at a position corresponding to the first compression chamber 14a of the upper cylinder 14, and at a position corresponding to the second compression chamber 15a of the lower cylinder 15, the second eccentric portion 10b. Is formed.
  • the first eccentric portion 10a is provided with a substantially cylindrical first piston 16a
  • the second eccentric portion 10b is provided with a substantially cylindrical second piston 16b.
  • a first vane 24a is slidably provided on the upper cylinder 14.
  • the first piston 16a rotates in the first compression chamber 14a of the upper cylinder 14.
  • the first vane 24a is urged toward the first piston 16a by a spring (not shown) so that the first vane 24a follows the outer peripheral portion of the first piston 16a.
  • the second cylinder 24 is slidably provided in the lower cylinder 15.
  • the second piston 16b rotates in the second compression chamber 15a of the lower cylinder 15.
  • the second vane 24b is urged toward the second piston 16b by a spring (not shown) so that the second vane 24b follows the outer peripheral portion of the second piston 16b.
  • a first suction port 25a communicates with the first compression chamber 14a of the upper cylinder 14.
  • the suction muffler 7 is connected to the first suction port 25a via the first suction pipe 27a.
  • a first discharge port 26 a communicates with the first compression chamber 14 a of the upper cylinder 14. That is, when the first piston 16a rotates in the first compression chamber 14a of the upper cylinder 14, the refrigerant flowing into the suction muffler 7 is sucked into the first compression chamber 14a from the first suction port 25a. At this time, when the first piston 16a rotates in the first compression chamber 14a of the upper cylinder 14, the space surrounded by the first vane 24a and the outer peripheral surface of the first piston 16a in the first compression chamber 14a is The volume gradually decreases. Thereby, the refrigerant in the first compression chamber 14a is compressed. Then, the refrigerant compressed in the first compression chamber 14a is discharged from the first discharge port 26a.
  • the discharge side end of the first discharge port 26a opens, for example, in the flange portion of the upper bearing 12.
  • the upper discharge muffler 18 is provided so as to cover the discharge side end of the first discharge port 26a. That is, the refrigerant discharged from the first discharge port 26 a once enters the upper discharge muffler 18 and is then discharged from the upper discharge muffler 18 into the internal space of the sealed container 8.
  • noise amplified by resonance in the internal space of the sealed container 8 can be reduced.
  • the second suction port 25b communicates with the second compression chamber 15a of the lower cylinder 15.
  • the suction muffler 7 is connected to the second suction port 25b via the second suction pipe 27b.
  • the second discharge port 26 b communicates with the second compression chamber 15 a of the lower cylinder 15. That is, when the second piston 16b rotates in the second compression chamber 15a of the lower cylinder 15, the refrigerant flowing into the suction muffler 7 is sucked into the second compression chamber 15a from the second suction port 25b.
  • the discharge side end of the second discharge port 26b opens, for example, in the flange portion of the lower bearing 13.
  • the lower discharge muffler 19 is provided so as to cover the discharge side end of the second discharge port 26b. That is, the refrigerant discharged from the second discharge port 26 b once enters the lower discharge muffler 19, and then is discharged from the lower discharge muffler 19 to the internal space of the sealed container 8.
  • the lower discharge muffler 19 it is possible to reduce noise amplified by resonance of the internal space of the sealed container 8.
  • the refrigerant released into the internal space of the sealed container 8 passes between the stator 9a and the rotor 9b of the motor 9 and flows out from the discharge pipe 21 to the outside of the sealed container 8.
  • each sliding portion of the compression mechanism 11 is, for example, between the crankshaft 10 and the first piston 16a, between the first piston 16a and the upper cylinder 14, between the first piston 16a and the intermediate plate 17, These are between the crankshaft 10 and the second piston 16 b, between the second piston 16 b and the lower cylinder 15, and between the second piston 16 b and the intermediate plate 17.
  • the refrigerating machine oil seals the sliding part by supplying the refrigerating machine oil to each sliding part of the compression mechanism part 11, it is also possible to prevent refrigerant leakage from the sliding part.
  • a passage (not shown) is formed in the crankshaft 10. Due to the rotation of the crankshaft 10, the refrigerating machine oil stored at the bottom of the hermetic container 8 is sucked into the flow path in the crankshaft 10 in the manner of a centrifugal pump, and the refrigerating machine oil flows to each sliding part of the compression mechanism 11. Supplied.
  • the rotary compressor 1 includes an oil separator 20 in order to prevent the refrigeration oil from going out of the rotary compressor 1 from the discharge pipe 21.
  • the oil separator 20 is fixed to the crankshaft 10 so that the refrigerant discharged from the first compression chamber 14a and the second compression chamber 15a blocks the flow path toward the discharge pipe 21.
  • the oil separator 20 By providing the oil separator 20, the mixed fluid of the refrigerant and the refrigerating machine oil collides with the oil separator 20, the refrigerant and the refrigerating machine oil are separated, and the refrigerating machine oil can be returned to the bottom of the sealed container 8. For this reason, by providing the oil separator 20, it can suppress that refrigeration oil goes out of the rotary compressor 1 from the discharge piping 21. FIG.
  • the compression mechanism 11 of the rotary compressor 1 includes an injection flow path for injecting a refrigerant into the first compression chamber 14a and the second compression chamber 15a.
  • the compression mechanism unit 11 includes a first injection flow path 31 and a second injection flow path 32.
  • the first injection flow path 31 is connected to the injection pipe 5 via the injection pipe 6 as described above.
  • the first injection flow path 31 communicates with the first compression chamber 14a at a position different from the first suction port 25a. That is, the 1st injection flow path 31 is a flow path which injects the refrigerant
  • the first injection flow path 31 is connected to the injection pipe 6, and a check valve installation portion 31a in which the first check valve 40 is provided, a recess 31b communicating with the check valve installation portion 31a, and In addition, a communication hole 31c that communicates the recess 31b and the first compression chamber 14a is provided.
  • the first injection flow path 31 is formed in the upper bearing 12.
  • the first check valve 40 is provided in the check valve installation portion 31 a of the first injection flow path 31. That is, the first check valve 40 is provided in the sealed container 8.
  • the first check valve 40 regulates the flow of the refrigerant flowing out from the first compression chamber 14a to the first injection flow path 31.
  • the first check valve 40 includes a casing 41 and a first valve body 44 provided in the casing 41 so as to reciprocate.
  • the first valve body 44 has, for example, a substantially cylindrical shape whose central axis is in the reciprocating direction.
  • the first valve body 44 is formed with a first through hole 44a penetrating in the reciprocating direction.
  • the casing 41 has, for example, a substantially cylindrical shape, and has an end portion 42 and an end portion 43 in the reciprocating direction of the first valve body 44.
  • the end portion 42 is an end portion disposed on the side farther from the first compression chamber 14 a than the first valve body 44 in the first injection flow path 31.
  • the end 42 is on the upstream side of the first valve body 44.
  • the end portion 42 is formed with a through hole 42a. Therefore, the refrigerant in the injection pipe 5 flows into the casing 41 from the through hole 42a.
  • the pressure of the refrigerant supplied from the injection pipe 5 to the first check valve 40 acts on the end of the first valve body 44 on the end 42 side.
  • the through hole 42 a is disposed at a position that does not face the first through hole 44 a of the first valve body 44. For this reason, when the first valve body 44 comes into contact with the end portion 42, the through hole 42 a is closed by the first valve body 44. That is, when the first valve body 44 comes into contact with the end portion 42, the flow path in the first check valve 40 is closed. In other words, when the first valve body 44 comes into contact with the end portion 42, the first injection flow path 31 is closed.
  • the end portion 43 is an end portion that is disposed closer to the first compression chamber 14 a than the first valve body 44 in the first injection flow path 31.
  • the end 43 is on the downstream side of the first valve body 44.
  • a through hole 43 a is formed in the end portion 43. Therefore, the pressure of the refrigerant in the first compression chamber 14a acts on the end portion on the end portion 42 side of the first valve body 44 through the communication hole 31c and the recess 31b.
  • the through hole 43 a is disposed at a position facing the first through hole 44 a of the first valve body 44.
  • the through hole 43 a is not blocked by the first valve body 44. That is, even if the first valve body 44 contacts the end portion 43, the flow path in the first check valve 40 is not closed. In other words, even if the first valve body 44 contacts the end portion 43, the first injection flow path 31 is in an open state.
  • the first valve body 44 opens and closes the first injection flow path 31.
  • the pressure of the refrigerant existing in the first injection flow path 31 on the side farther from the first compression chamber 14 a than the first valve body 44 opens the first injection flow path 31. Acts on direction. Further, the pressure of the refrigerant in the first compression chamber 14 a acts on the first valve body 44 in the direction in which the first injection flow path 31 is closed. Therefore, when the pressure of the refrigerant in the first compression chamber 14a is higher than the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31, the first valve body 44 moves to the end 42 side of the casing 41.
  • the 1st valve body 44 contacts the edge part 42, and the 1st injection flow path 31 is closed. Further, when the pressure of the refrigerant in the first compression chamber 14a is lower than the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31, the first valve body 44 moves to the end 43 side of the casing 41. That is, the 1st valve body 44 will be in the state which left
  • the first valve body 44 receives the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31.
  • the area of the 1 pressure receiving part 45 is larger than the area of the 2nd pressure receiving part 46 which receives the pressure of the refrigerant
  • the first The injection flow path 31 is easy to open.
  • the first through hole 44a of the first valve body 44 has a diameter that decreases toward the first compression chamber 14a. In other words, the diameter of the first through hole 44a increases from the end 43 side toward the end 42 side.
  • the second pressure receiving portion 46 becomes an end portion on the end portion 43 side of the first valve body 44.
  • the first pressure receiving portion 45 becomes an end portion on the end portion 42 side of the first valve body 44 and an inner peripheral surface of the first through hole 44a. Therefore, the area of the first pressure receiving part 45 can be made larger than the area of the second pressure receiving part 46.
  • the configuration of the first check valve 40 is merely an example.
  • the diameter of the first through hole 44a of the first valve body 44 is smoothly reduced toward the first compression chamber 14a.
  • the first through hole 44a of the first valve body 44 may have a stepped diameter that decreases toward the first compression chamber 14a.
  • the area of the first pressure receiving part 45 may be made larger than the area of the second pressure receiving part 46 by forming a convex part at the end of the first valve body 44 on the end part 42 side.
  • the configuration in which the area of the first pressure receiving portion 45 is larger than the area of the second pressure receiving portion 46 is not an essential configuration in the first check valve 40.
  • the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 acts in the direction to open the first injection flow path 31, and the refrigerant in the first compression chamber 14a. If the pressure acts in the direction in which the first injection flow path 31 is closed, the configuration of the first check valve 40 may be changed as appropriate.
  • the first injection flow path 31 described above is merely an example.
  • at least a part of the first injection flow path 31 may be formed in a component part of the compression mechanism unit 11 other than the upper bearing 12.
  • the arrangement position of the first check valve 40 is not limited to the above position. If the second injection flow path 32 is not joined between the end of the first injection flow path 31 on the first compression chamber 14a side and the first check valve 40, an arbitrary position of the first injection flow path 31 The first check valve 40 can be disposed at the end.
  • the second injection flow path 32 is connected to the injection pipe 5 via the injection pipe 6 as described above.
  • the second injection flow path 32 communicates with the second compression chamber 15a at a position different from the second suction port 25b. That is, the 2nd injection flow path 32 is a flow path which injects the refrigerant
  • the second injection flow path 32 is connected to the injection pipe 6 and has a check valve installation portion 32a provided with the second check valve 50, a recess 32b communicating with the check valve installation portion 32a, and In addition, a communication hole 32c that communicates the recess 32b and the second compression chamber 15a is provided.
  • the second injection flow path 32 is formed in the lower bearing 13.
  • the second check valve 50 is provided in the check valve installation portion 32 a of the second injection flow path 32. That is, the second check valve 50 is provided in the sealed container 8.
  • the second check valve 50 regulates the flow of the refrigerant flowing out from the second compression chamber 15a to the second injection flow path 32.
  • the second check valve 50 includes a casing 51 and a second valve body 54 provided in the casing 51 so as to freely reciprocate.
  • the second valve body 54 has, for example, a substantially cylindrical shape whose central axis is in the reciprocating direction.
  • the second valve body 54 is formed with a second through hole 54a penetrating in the reciprocating direction.
  • the casing 51 has, for example, a substantially cylindrical shape, and has an end 52 and an end 53 in the reciprocating direction of the second valve body 54.
  • the end 52 is an end disposed on the side farther from the second compression chamber 15 a than the second valve body 54 in the second injection flow path 32.
  • the end 52 is upstream of the second valve body 54.
  • the end 52 is formed with a through hole 52a. Therefore, the refrigerant in the injection pipe 5 flows into the casing 51 from the through hole 52a.
  • the pressure of the refrigerant supplied from the injection pipe 5 to the second check valve 50 acts on the end of the second valve body 54 on the end 52 side.
  • the through hole 52a is disposed at a position that does not face the second through hole 54a of the second valve body 54.
  • the end portion 53 is an end portion that is disposed closer to the second compression chamber 15 a than the second valve body 54 in the second injection flow path 32.
  • the end portion 53 is on the downstream side of the second valve body 54.
  • a through hole 53 a is formed in the end portion 53. Therefore, the pressure of the refrigerant in the second compression chamber 15a acts on the end of the second valve body 54 on the end 52 side via the communication hole 32c and the recess 32b.
  • the through hole 53a is disposed at a position facing the second through hole 54a of the second valve body 54.
  • the second valve body 54 opens and closes the second injection flow path 32.
  • the pressure of the refrigerant existing in the second injection flow path 32 on the side farther from the second compression chamber 15 a than the second valve body 54 opens the second injection flow path 32. Acts on direction. Further, the pressure of the refrigerant in the second compression chamber 15a acts on the second valve body 54 in the direction in which the second injection flow path 32 is closed. Therefore, when the pressure of the refrigerant in the second compression chamber 15a is higher than the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32, the second valve body. 54 moves to the end 52 side of the casing 51.
  • the 2nd valve body 54 contacts the edge part 52, and the 2nd injection flow path 32 is closed.
  • the second valve body 54 moves to the end 53 side of the casing 51. That is, the second valve body 54 is separated from the end 52, and the second injection flow path 32 is opened.
  • the second valve body 54 receives the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32.
  • the area of the 3 pressure receiving part 55 is larger than the area of the 4th pressure receiving part 56 which receives the pressure of the refrigerant
  • the second The injection flow path 32 is easy to open.
  • the diameter of the second through hole 54a of the second valve element 54 decreases toward the second compression chamber 15a.
  • the diameter of the second through hole 54a increases from the end 53 side toward the end 52 side.
  • the fourth pressure receiving portion 56 is an end portion on the end portion 53 side of the second valve body 54.
  • the 3rd pressure receiving part 55 becomes the edge part by the side of the edge part 52 of the 2nd valve body 54, and the internal peripheral surface of the 2nd through-hole 54a. Therefore, the area of the third pressure receiving part 55 can be made larger than the area of the fourth pressure receiving part 56.
  • the configuration of the second check valve 50 is merely an example.
  • the diameter of the second through hole 54a of the second valve body 54 is smoothly reduced toward the second compression chamber 15a.
  • the 2nd through-hole 54a of the 2nd valve body 54 may become small in step shape as it goes to the 2nd compression chamber 15a.
  • the area of the third pressure receiving part 55 may be made larger than the area of the fourth pressure receiving part 56 by forming a convex part at the end of the second valve body 54 on the end 52 side.
  • the configuration in which the area of the third pressure receiving portion 55 is larger than the area of the fourth pressure receiving portion 56 is not an essential configuration in the second check valve 50.
  • the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 acts in the direction of opening the second injection flow path 32, and the refrigerant in the second compression chamber 15a. If the pressure acts in the direction in which the second injection flow path 32 is closed, the configuration of the second check valve 50 may be changed as appropriate.
  • the above-described second injection flow path 32 is merely an example.
  • at least a part of the second injection flow path 32 may be formed in a component part of the compression mechanism unit 11 other than the lower bearing 13.
  • the arrangement position of the second check valve 50 is not limited to the above-described position. If the first injection flow path 31 is not joined between the end of the second injection flow path 32 on the second compression chamber 15a side and the second check valve 50, an arbitrary position of the second injection flow path 32
  • the second check valve 50 can be arranged in
  • the operation of the rotary compressor 1 according to the present embodiment will be described.
  • operation of the conventional twin rotary compressor in which the injection flow path is provided in the compression mechanism section will be described so that the effect of the rotary compressor 1 according to the present embodiment can be easily understood. And after that, operation
  • the conventional twin rotary compressor in which the injection flow path is provided in the compression mechanism section will be referred to as a conventional rotary compressor.
  • each component of the conventional rotary compressor is denoted by reference numerals of the components of the rotary compressor 1 according to the present embodiment corresponding to these components.
  • a reference numeral added with “200” is attached.
  • a reference numeral “217” is attached to an intermediate plate of a conventional rotary compressor.
  • FIG. 7 is an enlarged view of a main part showing the vicinity of a first injection flow path and a second injection flow path of an example of a conventional rotary compressor.
  • the first injection flow path 231 and the second injection flow path 232 of the conventional rotary compressor 201 shown in FIG. 7 are provided in the intermediate plate 217.
  • the first injection flow path 231 includes a recess 231b and a communication hole 231c.
  • the recess 231b is a place connected to the injection pipe 206.
  • the communication hole 231c is a place where the recess 231b communicates with the first compression chamber 214a of the upper cylinder 214.
  • the second injection flow path 232 includes a recess 231b and a communication hole 232c.
  • the communication hole 232c is a place where the recess 231b communicates with the second compression chamber 215a of the lower cylinder 215. That is, the concave portion 231 b functions as a part of the first injection flow path 231 and also functions as a part of the second injection flow path 232.
  • the first injection flow path 231 and the second injection flow path 232 merge at the recess 231b and branch off at the communication hole 231c and the communication hole 232c.
  • the first compression chamber 214a is always in communication with the first injection flow path 231 and the injection pipe 206. For this reason, the refrigerant in the middle of compression in the first compression chamber 214a leaks into the first injection flow path 231 and the injection pipe 206.
  • the second compression chamber 215a is always in communication with the second injection flow path 232 and the injection pipe 206. For this reason, the refrigerant being compressed in the second compression chamber 215a leaks into the second injection flow path 232 and the injection pipe 206.
  • the first compression chamber 214a and the second compression chamber 215a are always in communication. For this reason, the refrigerant in the middle of compression leaks from the compression chamber having the higher refrigerant pressure to the compression chamber having the lower refrigerant pressure.
  • the first compression chamber 214a is moved from the first compression chamber 214a to the second compression chamber 215a as shown by an arrow in FIG.
  • the refrigerant in the middle of compression leaks out in the compression chamber 214a.
  • the conventional rotary compressor 201 shown in FIG. 7 has a reduced refrigerant compression performance.
  • FIG. 8 is an enlarged view of a main part showing the vicinity of a first injection flow path and a second injection flow path of another example of a conventional rotary compressor.
  • a first injection flow path 231 of the conventional rotary compressor 201 shown in FIG. 8 is provided in the upper bearing 212.
  • the first injection flow path 231 includes a recess 231b and a communication hole 231c.
  • the recess 231b is a place connected to the injection pipe 206.
  • the communication hole 231c is a place where the recess 231b communicates with the first compression chamber 214a of the upper cylinder 214.
  • the second injection flow path 232 of the conventional rotary compressor 201 shown in FIG. 8 is provided in the lower bearing 213.
  • the second injection flow path 232 includes a recess 232b and a communication hole 231c.
  • the recess 232b is a portion connected to the injection pipe 206.
  • the communication hole 232c is a place where the recess 232b communicates with the second compression chamber 215a of the lower cylinder 215.
  • a first check valve 240 for regulating the flow of the refrigerant flowing out from the first compression chamber 214a to the first injection flow path 231 is provided. Is provided.
  • a second check valve 250 for regulating the flow of the refrigerant flowing out from the second compression chamber 215a to the second injection flow path 232 is provided. Is provided.
  • the first injection flow path 231 is closed by the first check valve 240 in a state where the refrigerant is not injected from the first injection flow path 231 into the first compression chamber 214 a.
  • the second injection flow path 232 has the second check valve 250 in the state where the refrigerant is not injected from the second injection flow path 232 into the second compression chamber 215a. It is closed with. For this reason, the conventional rotary compressor 201 shown in FIG. 8 can reduce dead volume.
  • the first check valve 240 is configured to open the first injection flow path 231 when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure.
  • the first check valve 240 opens regardless of the refrigerant pressure in the first compression chamber 214a when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure.
  • the first reverse The stop valve 240 opens. In such a state, in the rotary compressor 201 shown in FIG. 8, the refrigerant being compressed in the first compression chamber 214a leaks from the first compression chamber 214a to the first injection flow path 231.
  • the second check valve 250 has a second injection flow path 232. Is configured to open.
  • the second check valve 250 is configured to open the second injection flow path 232 when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure.
  • the second check valve 250 opens regardless of the refrigerant pressure in the second compression chamber 215a when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure.
  • the second reverse The stop valve 250 opens. In such a state, in the rotary compressor 201 shown in FIG. 8, the refrigerant being compressed in the second compression chamber 215a leaks from the second compression chamber 215a to the second injection flow path 232.
  • the first valve body 44 of the first check valve 40 according to the present embodiment is more first than the first valve body 44 in the pressure of the refrigerant in the first compression chamber 14a and the first injection flow path 31. It operates by the difference with the pressure of the refrigerant existing on the side away from the compression chamber 14a. That is, the first valve body 44 of the first check valve 40 according to the present embodiment operates by the difference between the refrigerant pressure in the first compression chamber 14 a and the refrigerant pressure supplied from the injection pipe 6.
  • the second valve body 54 of the second check valve 50 according to the present embodiment has a second pressure higher than the second valve body 54 in the second compression passage 15 and the pressure of the refrigerant in the second compression chamber 15a.
  • the second valve body 54 of the second check valve 50 operates by the difference between the refrigerant pressure in the second compression chamber 15 a and the refrigerant pressure supplied from the injection pipe 6. Therefore, the first check valve 40 and the second check valve 50 have the pressure of the refrigerant in the first compression chamber 14a, the pressure of the refrigerant in the second compression chamber 15a, and the pressure of the refrigerant supplied from the injection pipe 6. The operation is as shown in FIG.
  • FIG. 9 is a diagram for explaining the operation of the first check valve and the second check valve in the rotary compressor according to the embodiment of the present invention.
  • the first check valve 40 is opened. That is, the first injection flow path 31 is opened.
  • coolant supplied to the 1st injection flow path 31 from the injection piping 6 is injected into the 1st compression chamber 14a.
  • the first check valve 40 is closed.
  • the rotary compressor 1 can suppress the refrigerant being compressed in the first compression chamber 14 a from leaking into the first injection flow path 31.
  • the second check valve 50 is opened. That is, the second injection flow path 32 is opened. Thereby, the refrigerant
  • the second check valve 50 is closed. That is, when the refrigerant that is being compressed in the second compression chamber 15a leaks into the second injection flow path 32, the second injection flow path 32 is closed. For this reason, the rotary compressor 1 according to the present embodiment can suppress the refrigerant being compressed in the second compression chamber 15a from leaking into the second injection flow path 32.
  • first check valve 40 and the second check valve 50 shown in the present embodiment are examples.
  • another example of the first check valve 40 and another example of the second check valve 50 are introduced in FIGS. 10 and 11.
  • FIGS. 10 and 11 are enlarged views of the main part showing the vicinity of the first injection flow path and the second injection flow path in another example of the rotary compressor according to the embodiment of the present invention.
  • the flow path in the first check valve 40 provided in the first injection flow path 31 is closed, and the flow path in the second check valve 50 provided in the second injection flow path 32. Indicates a closed state.
  • FIG. 11 shows a flow path in the first check valve 40 provided in the first injection flow path 31 and a flow path in the second check valve 50 provided in the second injection flow path 32. Indicates the opened state.
  • the first check valve 40 shown in FIGS. 10 and 11 includes a spring 47 in addition to the configuration described in FIGS. 5 and 6.
  • the spring 47 biases the first valve body 44 in a direction in which the flow path in the first check valve 40 is closed, in other words, in a direction in which the first injection flow path 31 is closed. That is, the spring 47 urges the first valve body 44 in a direction in which the pressure of the refrigerant in the first compression chamber 14 a acts on the first valve body 44.
  • the pressure of the refrigerant supplied from the injection pipe 6 corresponds to the urging force of the spring 47 with respect to the pressure of the refrigerant in the first compression chamber 14a. When it becomes only high, the 1st injection flow path 31 will be opened.
  • the second check valve 50 shown in FIGS. 10 and 11 includes a spring 57 in addition to the configuration described in FIGS. 5 and 6.
  • the spring 57 urges the second valve body 54 in a direction in which the flow path in the second check valve 50 is closed, in other words, in a direction in which the second injection flow path 32 is closed. That is, the spring 57 urges the second valve body 54 in a direction in which the pressure of the refrigerant in the second compression chamber 15 a acts on the second valve body 54.
  • the pressure of the refrigerant supplied from the injection pipe 6 corresponds to the urging force of the spring 57 with respect to the pressure of the refrigerant in the second compression chamber 15a. When it becomes only high, the 2nd injection flow path 32 will be opened.
  • the rotary compressor 1 includes the sealed container 8 and the rotary-type compression mechanism unit 11 accommodated in the sealed container 8.
  • the compression mechanism unit 11 includes a first suction port 25a, a first compression chamber 14a, a second suction port 25b, a second compression chamber 15a, a first injection flow channel 31, a second injection flow channel 32, A first check valve 40 and a second check valve 50 are provided.
  • the first compression chamber 14a is a compression chamber that compresses the refrigerant sucked from the first suction port 25a.
  • the second compression chamber 15a is a compression chamber that compresses the refrigerant sucked from the second suction port 25b.
  • the first injection flow path 31 is a flow path that communicates with the first compression chamber 14a at a position different from the first suction port 25a and injects refrigerant into the first compression chamber 14a.
  • the second injection flow path 32 is a flow path that communicates with the second compression chamber 15a at a position different from the second suction port 25b and injects refrigerant into the second compression chamber 15a.
  • the first check valve 40 is a check valve that is provided in the first injection flow path 31 and regulates the flow of the refrigerant that flows out from the first compression chamber 14 a to the first injection flow path 31.
  • the second check valve 50 is a check valve that is provided in the second injection flow path 32 and restricts the flow of the refrigerant flowing out from the second compression chamber 15a to the second injection flow path 32.
  • the first check valve 40 is provided so as to freely reciprocate and has a first valve body 44 that opens and closes the first injection flow path 31.
  • the pressure of the refrigerant existing on the side farther from the first compression chamber 14 a than the first valve body 44 in the first injection flow path 31 opens the first injection flow path 31. Act on. Further, the pressure of the refrigerant in the first compression chamber 14 a acts on the first valve body 44 in the direction in which the first injection flow path 31 is closed.
  • the second check valve 50 is provided so as to freely reciprocate, and has a second valve body 54 that opens and closes the second injection flow path 32.
  • the pressure of the refrigerant existing on the side farther from the second compression chamber 15 a than the second valve body 54 in the second injection flow path 32 opens the second injection flow path 32. Act on. Further, the pressure of the refrigerant in the second compression chamber 15a acts on the second valve body 54 in the direction in which the second injection flow path 32 is closed.
  • the rotary compressor 1 configured as described above is a refrigerant in which the pressure of the refrigerant in the first compression chamber 14a exists on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31. When the pressure is higher than the first pressure, the first injection flow path 31 and the first compression chamber 14a are not in communication with each other. Further, in the rotary compressor 1 configured in this way, the pressure of the refrigerant in the second compression chamber 15a is on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32. When the pressure is higher than the pressure of the existing refrigerant, the second injection flow path 32 and the second compression chamber 15a are not communicated with each other.
  • the rotary compressor 1 according to the present embodiment can suppress refrigerant leakage from the first compression chamber 14a and the second compression chamber 15a as compared with the conventional case. Moreover, since the rotary compressor 1 which concerns on this Embodiment is equipped with the 1st check valve 40 and the 2nd check valve 50 in the compression mechanism part 11, it can also reduce dead volume. Therefore, the rotary compressor 1 according to the present embodiment has improved compression performance than before.
  • the rotary compressor 1 which concerns on this Embodiment which can suppress the refrigerant

Abstract

Provided is a rotary compressor according to the present invention comprising a first injection flow path for injecting a refrigerant into a first compression chamber, a second injection flow path for injecting a refrigerant into a second compression chamber, a first check valve provided in the first injection flow path, and a second check valve provided in the second injection flow path. In the first valve body of the first check valve, the pressure of the refrigerant present on the side farther from the first compression chamber than the first valve body in the first injection flow path acts in the direction to open the first injection flow path, and the pressure of the refrigerant in the first compression chamber acts in the direction to close the first injection channel. In the second valve body of the second check valve, the pressure of the refrigerant present on the side farther from the second compression chamber than the second valve body in the second injection flow path acts in the direction to open the second injection flow path, and the pressure of the refrigerant in the second compression chamber acts in the direction to close the second injection flow path.

Description

ロータリ圧縮機Rotary compressor
 本発明は、圧縮室に冷媒をインジェクション(注入)する機能を有するロータリ圧縮機に関する。 The present invention relates to a rotary compressor having a function of injecting (injecting) a refrigerant into a compression chamber.
 圧縮機は、吸入口から圧縮室内に吸入された冷媒を圧縮する。このような圧縮機の一つとして、密閉容器にロータリ型の圧縮機構部を収容したロータリ圧縮機が知られている。また、従来のロータリ圧縮機には、冷凍サイクル装置の効率の向上等を目的として、吸入口とは異なる位置で圧縮室と連通するインジェクション流路が圧縮機構部に設けられた圧縮機も存在する。インジェクション流路は、ロータリ圧縮機の外部に設けられたインジェクション配管と接続される。そして、インジェクション配管を介して冷媒回路内からインジェクション流路に供給された冷媒は、圧縮室にインジェクション(注入)される。 Compressor compresses refrigerant sucked into the compression chamber from the suction port. As one of such compressors, a rotary compressor in which a rotary type compression mechanism is accommodated in a sealed container is known. In addition, for the purpose of improving the efficiency of the refrigeration cycle apparatus, a conventional rotary compressor includes a compressor in which an injection flow path communicating with the compression chamber at a position different from the suction port is provided in the compression mechanism section. . The injection flow path is connected to an injection pipe provided outside the rotary compressor. And the refrigerant | coolant supplied to the injection flow path from the inside of a refrigerant circuit via injection piping is injected (inject | pouring) into a compression chamber.
 また、従来のロータリ圧縮機には、圧縮機構部が2つの圧縮室を有する圧縮機も知られている。以下、圧縮機構部が2つの圧縮室を有するロータリ圧縮機を、ツインロータリ圧縮機と称することとする。従来のツインロータリ圧縮機においても、インジェクション流路が圧縮機構部に設けられた圧縮機も存在する。ツインロータリ圧縮機の場合、インジェクション流路は、2つの圧縮室のそれぞれに連通している。すなわち、インジェクション配管を介して冷媒回路内からインジェクション流路に供給された冷媒は、2つの圧縮室のそれぞれにインジェクションされる。 Further, a compressor having a compression mechanism having two compression chambers is also known as a conventional rotary compressor. Hereinafter, a rotary compressor in which the compression mechanism unit has two compression chambers will be referred to as a twin rotary compressor. Even in a conventional twin rotary compressor, there is a compressor in which an injection flow path is provided in a compression mechanism section. In the case of a twin rotary compressor, the injection flow path communicates with each of the two compression chambers. That is, the refrigerant supplied from the refrigerant circuit to the injection flow path via the injection pipe is injected into each of the two compression chambers.
 ここで、インジェクション配管内及びインジェクション流路内は死容積となるため、圧縮機の圧縮効率が低下してしまう。なお、死容積とは、冷媒を圧縮途中の圧縮室と連通する空間であり、圧縮室から流出した冷媒が再膨張する空間である。そこで、圧縮機構部にインジェクション流路を備えた従来のツインロータリ圧縮機には、インジェクション流路に、圧縮室からインジェクション流路に流出する冷媒の流れを規制する逆止弁を備えた圧縮機も提案されている(特許文献1参照)。換言すると、特許文献1に記載のツインロータリ圧縮機は、密閉容器の内部に、圧縮室からインジェクション流路に流出する冷媒の流れを規制する逆止弁を備えている。すなわち、特許文献1に記載のツインロータリ圧縮機は、インジェクション流路から圧縮室に冷媒をインジェクションしていない状態においては、インジェクション流路が逆止弁で閉じられる。したがって、このように逆止弁を設けることにより、インジェクション配管内及びインジェクション流路内のうち、逆止弁よりも上流側の空間が死容積とならないため、圧縮機の圧縮効率の低下を抑制できる。なお、インジェクション配管及びインジェクション流路のうちの逆止弁よりも上流側とは、インジェクション配管及びインジェクション流路のうち、冷媒インジェクション時の冷媒流れにおいて逆止弁よりも上流側となる部分である。すなわち、インジェクション配管及びインジェクション流路のうちの逆止弁よりも上流側とは、インジェクション配管及びインジェクション流路のうち、逆止弁よりも圧縮室から離れた側に存在する部分を示している。 Here, since the dead volume is in the injection pipe and the injection flow path, the compression efficiency of the compressor is lowered. The dead volume is a space where the refrigerant communicates with the compression chamber in the middle of compression, and is a space where the refrigerant flowing out of the compression chamber is re-expanded. Therefore, a conventional twin rotary compressor having an injection flow path in the compression mechanism section also includes a compressor having a check valve for restricting the flow of refrigerant flowing out of the compression chamber into the injection flow path. It has been proposed (see Patent Document 1). In other words, the twin rotary compressor described in Patent Document 1 includes a check valve that regulates the flow of the refrigerant flowing out of the compression chamber into the injection flow path inside the sealed container. That is, in the twin rotary compressor described in Patent Document 1, the injection flow path is closed by the check valve in a state where the refrigerant is not injected from the injection flow path into the compression chamber. Therefore, by providing the check valve in this manner, the space upstream of the check valve in the injection pipe and the injection flow path does not become dead volume, and thus it is possible to suppress a decrease in the compression efficiency of the compressor. . In addition, the upstream side of the check valve in the injection pipe and the injection flow path is a portion on the upstream side of the check valve in the refrigerant flow during the refrigerant injection in the injection pipe and the injection flow path. That is, the upstream side of the check pipe in the injection pipe and the injection flow path indicates a portion of the injection pipe and the injection flow path that is on the side farther from the compression chamber than the check valve.
特開2013-36442号公報JP 2013-36442 A
 特許文献1に記載のツインロータリ圧縮機は、逆止弁よりも上流側となるインジェクション流路部分に存在する冷媒の圧力が規定圧力以上になった際、逆止弁がインジェクション流路を開いて、インジェクション流路と圧縮室の双方とが連通する状態となる。この際、特許文献1に記載のツインロータリ圧縮機の逆止弁は、逆止弁よりも上流側となるインジェクション流路部分に存在する冷媒の圧力が規定圧力以上になった際、圧縮室内の冷媒の圧力にかかわらず開く。このため、特許文献1に記載のツインロータリ圧縮機は、2つの圧縮室のうち、逆止弁よりも上流側の冷媒よりも内部の冷媒の圧力が高くなっている圧縮室がある場合、当該圧縮室から圧縮途中の冷媒がインジェクション流路へ漏れてしまう。そして、この冷媒漏れにより、ツインロータリ圧縮機の圧縮性能が低下してしまう。すなわち、圧縮機構部にインジェクション流路を備え、インジェクション流路に逆止弁を備えた従来のツインロータリ圧縮機は、圧縮室からの冷媒漏れにより、圧縮性能が低下してしまうという課題があった。 In the twin rotary compressor described in Patent Document 1, the check valve opens the injection flow path when the pressure of the refrigerant existing in the injection flow path portion on the upstream side of the check valve becomes equal to or higher than the specified pressure. The injection flow path and the compression chamber both communicate with each other. At this time, the check valve of the twin rotary compressor described in Patent Document 1 is configured such that when the pressure of the refrigerant existing in the injection flow path portion on the upstream side of the check valve becomes equal to or higher than the specified pressure, Open regardless of the refrigerant pressure. For this reason, in the twin rotary compressor described in Patent Document 1, when there is a compression chamber in which the pressure of the internal refrigerant is higher than that of the refrigerant upstream of the check valve among the two compression chambers, The refrigerant that is being compressed from the compression chamber leaks into the injection flow path. And the compression performance of a twin rotary compressor will fall by this refrigerant | coolant leak. That is, the conventional twin rotary compressor provided with an injection flow path in the compression mechanism section and a check valve in the injection flow path has a problem that the compression performance deteriorates due to refrigerant leakage from the compression chamber. .
 本発明は、上述の課題を解決するためになされたもので、圧縮機構部にインジェクション流路を備え、インジェクション流路に逆止弁を備えたツインロータリ圧縮機であって、圧縮室からの冷媒漏れを従来よりも抑制できるツインロータリ圧縮機を提案することを目的とする。 The present invention has been made in order to solve the above-described problem, and is a twin rotary compressor having an injection flow path in a compression mechanism and a check valve in the injection flow path, and a refrigerant from a compression chamber It aims at proposing the twin rotary compressor which can suppress leakage more than before.
 本発明に係るロータリ圧縮機は、密閉容器と、該密閉容器に収容されたロータリ型の圧縮機構部と、を備え、前記圧縮機構部は、第1吸入口と、前記第1吸入口から吸入した冷媒を圧縮する第1圧縮室と、第2吸入口と、前記第2吸入口から吸入した冷媒を圧縮する第2圧縮室と、前記第1吸入口とは異なる位置で前記第1圧縮室と連通し、前記第1圧縮室に冷媒をインジェクションする第1インジェクション流路と、前記第2吸入口とは異なる位置で前記第2圧縮室と連通し、前記第2圧縮室に冷媒をインジェクションする第2インジェクション流路と、前記第1インジェクション流路に設けられ、前記第1圧縮室から前記第1インジェクション流路に流出する冷媒の流れを規制する第1逆止弁と、前記第2インジェクション流路に設けられ、前記第2圧縮室から前記第2インジェクション流路に流出する冷媒の流れを規制する第2逆止弁と、を備え、前記第1逆止弁は、往復動自在に設けられ、前記第1インジェクション流路を開閉する第1弁体を有し、該第1弁体には、前記第1インジェクション流路において該第1弁体よりも前記第1圧縮室から離れた側に存在する冷媒の圧力が、前記第1インジェクション流路を開く方向に作用し、前記第1圧縮室の冷媒の圧力が、前記第1インジェクション流路を閉じる方向に作用する構成であり、前記第2逆止弁は、往復動自在に設けられ、前記第2インジェクション流路を開閉する第2弁体を有し、該第2弁体には、前記第2インジェクション流路において該第2弁体よりも前記第2圧縮室から離れた側に存在する冷媒の圧力が、前記第2インジェクション流路を開く方向に作用し、前記第2圧縮室の冷媒の圧力が、前記第2インジェクション流路を閉じる方向に作用する構成となっている。 A rotary compressor according to the present invention includes a hermetic container and a rotary-type compression mechanism portion accommodated in the hermetic container, and the compression mechanism part sucks from the first suction port and the first suction port. A first compression chamber for compressing the refrigerant, a second suction port, a second compression chamber for compressing the refrigerant sucked from the second suction port, and the first compression chamber at a position different from the first suction port. A first injection flow path for injecting refrigerant into the first compression chamber, and the second compression chamber at a position different from the second suction port, and injecting the refrigerant into the second compression chamber. A second injection flow path; a first check valve provided in the first injection flow path for regulating the flow of refrigerant flowing from the first compression chamber to the first injection flow path; and the second injection flow On the road And a second check valve that regulates a flow of the refrigerant flowing out from the second compression chamber to the second injection flow path, the first check valve being provided in a reciprocating manner, A first valve body that opens and closes one injection flow path, and the first valve body includes a refrigerant that is present on a side farther from the first compression chamber than the first valve body in the first injection flow path. The pressure of the refrigerant acts in the direction to open the first injection flow path, and the pressure of the refrigerant in the first compression chamber acts in the direction to close the first injection flow path, and the second check valve Has a second valve body that is reciprocally movable and opens and closes the second injection flow path, and the second valve body includes the second valve body in the second injection flow path than the second valve body. 2 The pressure of the refrigerant existing on the side away from the compression chamber The second acts in the direction of opening the injection flow passage, the pressure of refrigerant in the second compression chamber, has a structure which acts in a direction to close the second injection channel.
 本発明に係るロータリ圧縮機は、圧縮機構部にインジェクション流路を備え、インジェクション流路に逆止弁を備えたツインロータリ圧縮機である。本発明に係るロータリ圧縮機においては、第1圧縮室の冷媒の圧力が第1インジェクション流路において第1弁体よりも第1圧縮室から離れた側に存在する冷媒の圧力よりも高い状態になると、第1インジェクション流路と第1圧縮室とが連通しない状態となる。また、本発明に係るロータリ圧縮機においては、第2圧縮室内の冷媒の圧力が第2インジェクション流路において第2弁体よりも第2圧縮室から離れた側に存在する冷媒の圧力よりも高い状態になると、第2インジェクション流路と第2圧縮室とが連通しない状態となる。したがって、本発明に係るロータリ圧縮機は、圧縮室からの冷媒漏れを従来よりも抑制できる。 The rotary compressor according to the present invention is a twin rotary compressor provided with an injection flow path in the compression mechanism and a check valve in the injection flow path. In the rotary compressor according to the present invention, the pressure of the refrigerant in the first compression chamber is higher than the pressure of the refrigerant existing on the side farther from the first compression chamber than the first valve body in the first injection flow path. Then, the first injection flow path and the first compression chamber are not communicated. In the rotary compressor according to the present invention, the pressure of the refrigerant in the second compression chamber is higher than the pressure of the refrigerant existing on the side farther from the second compression chamber than the second valve body in the second injection flow path. When the state is reached, the second injection flow path and the second compression chamber are not in communication with each other. Therefore, the rotary compressor which concerns on this invention can suppress the refrigerant | coolant leakage from a compression chamber rather than before.
本発明の実施の形態に係るロータリ圧縮機を備えた冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure showing an example of the refrigerating cycle device provided with the rotary compressor concerning an embodiment of the invention. 本発明の実施の形態に係るロータリ圧縮機を示す縦断面図である。It is a longitudinal section showing a rotary compressor concerning an embodiment of the invention. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図2のB-B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 本発明の実施の形態に係るロータリ圧縮機の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery of the rotary compressor which concerns on embodiment of this invention. 本発明の実施の形態に係るロータリ圧縮機の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery of the rotary compressor which concerns on embodiment of this invention. 従来のロータリ圧縮機の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery of an example of the conventional rotary compressor. 従来のロータリ圧縮機の別の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery of another example of the conventional rotary compressor. 本発明の実施の形態に係るロータリ圧縮機における第1逆止弁及び第2逆止弁の動作を説明するための図である。It is a figure for demonstrating operation | movement of the 1st check valve and the 2nd check valve in the rotary compressor which concerns on embodiment of this invention. 本発明の実施の形態に係るロータリ圧縮機の別の一例における第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery in another example of the rotary compressor which concerns on embodiment of this invention. 本発明の実施の形態に係るロータリ圧縮機の別の一例における第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。It is a principal part enlarged view which shows the 1st injection flow path and 2nd injection flow path periphery in another example of the rotary compressor which concerns on embodiment of this invention.
実施の形態.
 図1は、本発明の実施の形態に係るロータリ圧縮機を備えた冷凍サイクル装置の一例を示す冷媒回路図である。
 本実施の形態に係る冷凍サイクル装置100は、ロータリ圧縮機1と、蒸発器2と、膨張装置4と、凝縮器3とを備えている。
Embodiment.
FIG. 1 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus including a rotary compressor according to an embodiment of the present invention.
A refrigeration cycle apparatus 100 according to the present embodiment includes a rotary compressor 1, an evaporator 2, an expansion device 4, and a condenser 3.
 ロータリ圧縮機1は、吸入した冷媒を高温高圧のガス状冷媒に圧縮するものである。ロータリ圧縮機1の詳細は後述する。蒸発器2は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器又はプレート熱交換器等で構成することができる。蒸発器2は、ロータリ圧縮機1の吐出配管21と、膨張装置4とに、冷媒配管で接続されている。ロータリ圧縮機1から吐出された高温高圧のガス状冷媒は、蒸発器2の冷媒流路を流れる際、蒸発器2に供給された空気等の熱交換対象に放熱して凝縮し、高圧の液状冷媒となる。 The rotary compressor 1 compresses the sucked refrigerant into a high-temperature and high-pressure gaseous refrigerant. Details of the rotary compressor 1 will be described later. The evaporator 2 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, a plate heat exchanger, or the like. Can be configured. The evaporator 2 is connected to the discharge pipe 21 of the rotary compressor 1 and the expansion device 4 by a refrigerant pipe. When the high-temperature and high-pressure gaseous refrigerant discharged from the rotary compressor 1 flows through the refrigerant flow path of the evaporator 2, it dissipates heat to the heat exchange target such as air supplied to the evaporator 2 to condense, and the high-pressure liquid refrigerant Becomes a refrigerant.
 膨張装置4は、例えば、冷媒の流量を調整可能な電動膨張弁等で構成することができる。膨張装置4は、蒸発器2と、凝縮器3とに、冷媒配管で接続されている。膨張装置4は、蒸発器2から流出した高圧の液状冷媒を膨張させて、低温低圧の気液二相冷媒にする。なお、膨張装置4としては、受圧部にダイアフラムを採用した機械式膨張弁又はキャピラリーチューブ等を適用することも可能である。 The expansion device 4 can be constituted by, for example, an electric expansion valve capable of adjusting the flow rate of the refrigerant. The expansion device 4 is connected to the evaporator 2 and the condenser 3 by refrigerant piping. The expansion device 4 expands the high-pressure liquid refrigerant that has flowed out of the evaporator 2 into a low-temperature and low-pressure gas-liquid two-phase refrigerant. As the expansion device 4, a mechanical expansion valve or a capillary tube that employs a diaphragm for the pressure receiving portion can be applied.
 また、蒸発器2と膨張装置4との間には、インジェクション配管5が接続されている。このインジェクション配管5は、ロータリ圧縮機1の後述する第1インジェクション流路31及び第2インジェクション流路32とも接続されている。なお、本実施の形態に係るロータリ圧縮機1は、後述する密閉容器8の外部に、第1インジェクション流路31及び第2インジェクション流路32と接続されたインジェクション配管6を備えている。そして、インジェクション配管5は、このインジェクション配管6に接続されている。すなわち、インジェクション配管5は、インジェクション配管6を介して、第1インジェクション流路31及び第2インジェクション流路32と接続されている。 Further, an injection pipe 5 is connected between the evaporator 2 and the expansion device 4. The injection pipe 5 is also connected to a first injection flow path 31 and a second injection flow path 32 described later of the rotary compressor 1. The rotary compressor 1 according to the present embodiment includes an injection pipe 6 connected to the first injection flow path 31 and the second injection flow path 32 outside the sealed container 8 described later. The injection pipe 5 is connected to the injection pipe 6. That is, the injection pipe 5 is connected to the first injection flow path 31 and the second injection flow path 32 via the injection pipe 6.
 凝縮器3は、例えば、フィンアンドチューブ型熱交換器、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器又はプレート熱交換器等で構成することができる。凝縮器3は、膨張装置4と、ロータリ圧縮機1の吸入マフラ7とに、冷媒配管で接続されている。膨張装置4から流出した低温低圧の気液二相冷媒は、凝縮器3の冷媒流路を流れる際、凝縮器3に供給された空気等の熱交換対象に加熱されて蒸発し、低圧のガス状冷媒となる。このガス状冷媒は、吸入マフラ7からロータリ圧縮機1に吸入される。なお、吸入マフラ7は、凝縮器3から気液二相冷媒が流出した場合、内部でガス状冷媒と液状冷媒とに分離し、ガス状冷媒を後述の圧縮機構部11に供給する機能を果たすものである。 The condenser 3 is, for example, a fin and tube heat exchanger, a microchannel heat exchanger, a shell and tube heat exchanger, a heat pipe heat exchanger, a double pipe heat exchanger, a plate heat exchanger, or the like. Can be configured. The condenser 3 is connected to the expansion device 4 and the suction muffler 7 of the rotary compressor 1 by refrigerant piping. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the expansion device 4 evaporates by being heated by a heat exchange target such as air supplied to the condenser 3 when flowing through the refrigerant flow path of the condenser 3. A refrigerant. This gaseous refrigerant is sucked into the rotary compressor 1 from the suction muffler 7. In addition, when the gas-liquid two-phase refrigerant flows out of the condenser 3, the suction muffler 7 separates into a gaseous refrigerant and a liquid refrigerant inside and performs a function of supplying the gaseous refrigerant to a compression mechanism unit 11 described later. Is.
 図2は、本発明の実施の形態に係るロータリ圧縮機を示す縦断面図である。図3は、図2のA-A断面図である。図4は、図2のB-B断面図である。また、図5及び図6は、本発明の実施の形態に係るロータリ圧縮機の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
 なお、図5は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が閉じられ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が閉じられた状態を示している。また、図6は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が開かれ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が開かれた状態を示している。また、図3及び図4と、図2とでは、一部の構成の位置が異なっている。これらの構成の認識を容易とするためである。
FIG. 2 is a longitudinal sectional view showing a rotary compressor according to the embodiment of the present invention. 3 is a cross-sectional view taken along the line AA in FIG. 4 is a cross-sectional view taken along the line BB of FIG. 5 and 6 are enlarged views of the main part showing the vicinity of the first injection channel and the second injection channel of the rotary compressor according to the embodiment of the present invention.
In FIG. 5, the flow path in the first check valve 40 provided in the first injection flow path 31 is closed, and the flow path in the second check valve 50 provided in the second injection flow path 32. Indicates a closed state. FIG. 6 shows a flow path in the first check valve 40 provided in the first injection flow path 31 and a flow path in the second check valve 50 provided in the second injection flow path 32. Indicates the opened state. 3 and 4 are different from FIG. 2 in the positions of some components. This is to facilitate recognition of these configurations.
 ロータリ圧縮機1は、後述のように、第1圧縮室14a及び第2圧縮室15aを備えている。すなわち、ロータリ圧縮機1は、ツインロータリ圧縮機となっている。このロータリ圧縮機1は、密閉容器8を備えている。密閉容器8の内部には、圧縮機構部11と、圧縮機構部11の駆動源であるモータ9と、モータ9の駆動力を圧縮機構部11に伝達するクランクシャフト10とが収容されている。 The rotary compressor 1 includes a first compression chamber 14a and a second compression chamber 15a as described later. That is, the rotary compressor 1 is a twin rotary compressor. The rotary compressor 1 includes a sealed container 8. Inside the sealed container 8 are housed a compression mechanism 11, a motor 9 that is a drive source of the compression mechanism 11, and a crankshaft 10 that transmits the driving force of the motor 9 to the compression mechanism 11.
 モータ9は、固定子9aと、回転子9bとを備えている。固定子9aは、密閉容器8の内周面に固定されている。回転子9bは、固定子9aの内側に規定の空隙を空けて設置されている。この回転子9bには、クランクシャフト10が固定されている。すなわち、回転子9bが回転すると、回転子9bと共にクランクシャフト10も回転する。 The motor 9 includes a stator 9a and a rotor 9b. The stator 9 a is fixed to the inner peripheral surface of the sealed container 8. The rotor 9b is installed inside the stator 9a with a specified gap. A crankshaft 10 is fixed to the rotor 9b. That is, when the rotor 9b rotates, the crankshaft 10 also rotates together with the rotor 9b.
 圧縮機構部11は、上軸受12、下軸受13、上シリンダ14、下シリンダ15、及び中間板17等を備えている。詳しくは、上シリンダ14は、略円筒状の第1圧縮室14aを有している。また、下シリンダ15は、略円筒状の第2圧縮室15aを有している。これら上シリンダ14及び下シリンダ15の間には、中間板17が配置されている。 The compression mechanism 11 includes an upper bearing 12, a lower bearing 13, an upper cylinder 14, a lower cylinder 15, an intermediate plate 17, and the like. Specifically, the upper cylinder 14 has a substantially cylindrical first compression chamber 14a. The lower cylinder 15 has a substantially cylindrical second compression chamber 15a. An intermediate plate 17 is disposed between the upper cylinder 14 and the lower cylinder 15.
 上軸受12は、上シリンダ14の上面部に設けられており、第1圧縮室14aの上部開口を閉塞している。つまり、上シリンダ14の第1圧縮室14aは、上軸受12と中間板17とによって、機密性が確保されている。また、下軸受13は、下シリンダ15の下面部に設けられており、第2圧縮室15aの下部開口を閉塞する。つまり、下シリンダ15の第2圧縮室15aは、下軸受13と中間板17とによって、機密性が確保されている。 The upper bearing 12 is provided on the upper surface of the upper cylinder 14 and closes the upper opening of the first compression chamber 14a. That is, the first compression chamber 14 a of the upper cylinder 14 is secured by the upper bearing 12 and the intermediate plate 17. Moreover, the lower bearing 13 is provided in the lower surface part of the lower cylinder 15, and obstruct | occludes the lower opening of the 2nd compression chamber 15a. That is, the second compression chamber 15 a of the lower cylinder 15 is secured by the lower bearing 13 and the intermediate plate 17.
 順次積層された上軸受12、上シリンダ14、中間板17、下シリンダ15及び下軸受13には、クランクシャフト10が貫通している。このクランクシャフト10は、上軸受12及び下軸受13によって回転自在に支持されている。また、クランクシャフト10には、上シリンダ14の第1圧縮室14aと対応する位置に第1偏心部10aが形成され、下シリンダ15の第2圧縮室15aと対応する位置に第2偏心部10bが形成されている。また、第1偏心部10aには略円筒状の第1ピストン16aが設けられ、第2偏心部10bには略円筒状の第2ピストン16bが設けられている。 The crankshaft 10 passes through the upper bearing 12, the upper cylinder 14, the intermediate plate 17, the lower cylinder 15 and the lower bearing 13 that are sequentially stacked. The crankshaft 10 is rotatably supported by an upper bearing 12 and a lower bearing 13. Further, the crankshaft 10 is formed with a first eccentric portion 10a at a position corresponding to the first compression chamber 14a of the upper cylinder 14, and at a position corresponding to the second compression chamber 15a of the lower cylinder 15, the second eccentric portion 10b. Is formed. The first eccentric portion 10a is provided with a substantially cylindrical first piston 16a, and the second eccentric portion 10b is provided with a substantially cylindrical second piston 16b.
 上シリンダ14には、第1ベーン24aが摺動自在に設けられている。モータ9によってクランクシャフト10が回転すると、上シリンダ14の第1圧縮室14a内を第1ピストン16aが回転する。このとき第1ベーン24aが第1ピストン16aの外周部に追従するように、第1ベーン24aは、図示せぬスプリングによって第1ピストン16aに向かって付勢されている。同様に、下シリンダ15には、第2ベーン24bが摺動自在に設けられている。モータ9によってクランクシャフト10が回転すると、下シリンダ15の第2圧縮室15a内を第2ピストン16bが回転する。このとき第2ベーン24bが第2ピストン16bの外周部に追従するように、第2ベーン24bは、図示せぬスプリングによって第2ピストン16bに向かって付勢されている。 A first vane 24a is slidably provided on the upper cylinder 14. When the crankshaft 10 is rotated by the motor 9, the first piston 16a rotates in the first compression chamber 14a of the upper cylinder 14. At this time, the first vane 24a is urged toward the first piston 16a by a spring (not shown) so that the first vane 24a follows the outer peripheral portion of the first piston 16a. Similarly, the second cylinder 24 is slidably provided in the lower cylinder 15. When the crankshaft 10 is rotated by the motor 9, the second piston 16b rotates in the second compression chamber 15a of the lower cylinder 15. At this time, the second vane 24b is urged toward the second piston 16b by a spring (not shown) so that the second vane 24b follows the outer peripheral portion of the second piston 16b.
 上シリンダ14の第1圧縮室14aには、第1吸入口25aが連通している。そして、第1吸入口25aには、第1吸入配管27aを介して、吸入マフラ7が接続されている。また、上シリンダ14の第1圧縮室14aには、第1吐出口26aが連通している。つまり、上シリンダ14の第1圧縮室14a内を第1ピストン16aが回転すると、吸入マフラ7に流入した冷媒は、第1吸入口25aから第1圧縮室14aに吸入される。この際、上シリンダ14の第1圧縮室14a内を第1ピストン16aが回転することにより、第1圧縮室14aにおける第1ベーン24aと第1ピストン16aの外周面とで囲まれた空間は、容積が徐々に縮小していく。これにより、第1圧縮室14a内の冷媒は、圧縮される。そして、第1圧縮室14aで圧縮された冷媒は、第1吐出口26aから吐出される。 A first suction port 25a communicates with the first compression chamber 14a of the upper cylinder 14. The suction muffler 7 is connected to the first suction port 25a via the first suction pipe 27a. A first discharge port 26 a communicates with the first compression chamber 14 a of the upper cylinder 14. That is, when the first piston 16a rotates in the first compression chamber 14a of the upper cylinder 14, the refrigerant flowing into the suction muffler 7 is sucked into the first compression chamber 14a from the first suction port 25a. At this time, when the first piston 16a rotates in the first compression chamber 14a of the upper cylinder 14, the space surrounded by the first vane 24a and the outer peripheral surface of the first piston 16a in the first compression chamber 14a is The volume gradually decreases. Thereby, the refrigerant in the first compression chamber 14a is compressed. Then, the refrigerant compressed in the first compression chamber 14a is discharged from the first discharge port 26a.
 なお、第1吐出口26aの吐出側端部は、例えば上軸受12のフランジ部に開口している。そして、本実施の形態では、第1吐出口26aの吐出側端部を覆うように、上吐出マフラ18が設けられている。すなわち、第1吐出口26aから吐出された冷媒は、一旦上吐出マフラ18に入り、その後上吐出マフラ18から密閉容器8の内部空間に放出される。上吐出マフラ18を設けることにより、密閉容器8の内部空間の共振により増幅される騒音を低減させることができる。 It should be noted that the discharge side end of the first discharge port 26a opens, for example, in the flange portion of the upper bearing 12. In the present embodiment, the upper discharge muffler 18 is provided so as to cover the discharge side end of the first discharge port 26a. That is, the refrigerant discharged from the first discharge port 26 a once enters the upper discharge muffler 18 and is then discharged from the upper discharge muffler 18 into the internal space of the sealed container 8. By providing the upper discharge muffler 18, noise amplified by resonance in the internal space of the sealed container 8 can be reduced.
 同様に、下シリンダ15の第2圧縮室15aには、第2吸入口25bが連通している。そして、第2吸入口25bには、第2吸入配管27bを介して、吸入マフラ7が接続されている。また、下シリンダ15の第2圧縮室15aには、第2吐出口26bが連通している。つまり、下シリンダ15の第2圧縮室15a内を第2ピストン16bが回転すると、吸入マフラ7に流入した冷媒は、第2吸入口25bから第2圧縮室15aに吸入される。この際、下シリンダ15の第2圧縮室15a内を第2ピストン16bが回転することにより、第2圧縮室15aにおける第2ベーン24bと第2ピストン16bの外周面とで囲まれた空間は、容積が徐々に縮小していく。これにより、第2圧縮室15a内の冷媒は、圧縮される。そして、第2圧縮室15aで圧縮された冷媒は、第2吐出口26bから吐出される。 Similarly, the second suction port 25b communicates with the second compression chamber 15a of the lower cylinder 15. The suction muffler 7 is connected to the second suction port 25b via the second suction pipe 27b. Further, the second discharge port 26 b communicates with the second compression chamber 15 a of the lower cylinder 15. That is, when the second piston 16b rotates in the second compression chamber 15a of the lower cylinder 15, the refrigerant flowing into the suction muffler 7 is sucked into the second compression chamber 15a from the second suction port 25b. At this time, when the second piston 16b rotates in the second compression chamber 15a of the lower cylinder 15, the space surrounded by the second vane 24b and the outer peripheral surface of the second piston 16b in the second compression chamber 15a is The volume gradually decreases. Thereby, the refrigerant in the second compression chamber 15a is compressed. Then, the refrigerant compressed in the second compression chamber 15a is discharged from the second discharge port 26b.
 なお、第2吐出口26bの吐出側端部は、例えば下軸受13のフランジ部に開口している。そして、本実施の形態では、第2吐出口26bの吐出側端部を覆うように、下吐出マフラ19が設けられている。すなわち、第2吐出口26bから吐出された冷媒は、一旦下吐出マフラ19に入り、その後下吐出マフラ19から密閉容器8の内部空間に放出される。下吐出マフラ19を設けることにより、密閉容器8の内部空間の共振により増幅される騒音を低減させることができる。 It should be noted that the discharge side end of the second discharge port 26b opens, for example, in the flange portion of the lower bearing 13. In the present embodiment, the lower discharge muffler 19 is provided so as to cover the discharge side end of the second discharge port 26b. That is, the refrigerant discharged from the second discharge port 26 b once enters the lower discharge muffler 19, and then is discharged from the lower discharge muffler 19 to the internal space of the sealed container 8. By providing the lower discharge muffler 19, it is possible to reduce noise amplified by resonance of the internal space of the sealed container 8.
 密閉容器8の内部空間に放出された冷媒は、モータ9の固定子9aと回転子9bとの間等を通過し、吐出配管21から密閉容器8外へ流出する。 The refrigerant released into the internal space of the sealed container 8 passes between the stator 9a and the rotor 9b of the motor 9 and flows out from the discharge pipe 21 to the outside of the sealed container 8.
 ところで、密閉容器8の底部には、冷凍機油が貯留されている。この冷凍機油は、圧縮機構部11の各摺動部へ供給される。圧縮機構部11の各摺動部とは、例えば、クランクシャフト10と第1ピストン16aとの間、第1ピストン16aと上シリンダ14との間、第1ピストン16aと中間板17との間、クランクシャフト10と第2ピストン16bとの間、第2ピストン16bと下シリンダ15との間、及び、第2ピストン16bと中間板17との間である。圧縮機構部11の各摺動部へ冷凍機油を供給することにより、圧縮機構部11の構成部品同士が直接接触することを防止でき、構成部品が損傷することを防止できる。また、圧縮機構部11の各摺動部へ冷凍機油を供給することにより、冷凍機油が摺動部をシールするため、摺動部からの冷媒漏れを防止することもできる。なお、本実施の形態に係るロータリ圧縮機1では、クランクシャフト10内に図示せぬ流路が形成されている。クランクシャフト10の回転によって、遠心ポンプの要領で、密閉容器8の底部に貯留されている冷凍機油がクランクシャフト10内の流路に吸い上げられ、圧縮機構部11の各摺動部へ冷凍機油が供給される。 Incidentally, refrigeration oil is stored at the bottom of the sealed container 8. This refrigerating machine oil is supplied to each sliding part of the compression mechanism part 11. Each sliding portion of the compression mechanism 11 is, for example, between the crankshaft 10 and the first piston 16a, between the first piston 16a and the upper cylinder 14, between the first piston 16a and the intermediate plate 17, These are between the crankshaft 10 and the second piston 16 b, between the second piston 16 b and the lower cylinder 15, and between the second piston 16 b and the intermediate plate 17. By supplying refrigerating machine oil to each sliding part of the compression mechanism part 11, it can prevent that the components of the compression mechanism part 11 contact directly, and it can prevent that a component is damaged. Moreover, since the refrigerating machine oil seals the sliding part by supplying the refrigerating machine oil to each sliding part of the compression mechanism part 11, it is also possible to prevent refrigerant leakage from the sliding part. In the rotary compressor 1 according to the present embodiment, a passage (not shown) is formed in the crankshaft 10. Due to the rotation of the crankshaft 10, the refrigerating machine oil stored at the bottom of the hermetic container 8 is sucked into the flow path in the crankshaft 10 in the manner of a centrifugal pump, and the refrigerating machine oil flows to each sliding part of the compression mechanism 11. Supplied.
 圧縮機構部11の各摺動部へ供給された冷凍機油の一部は、圧縮された冷媒と共に、第1圧縮室14a及び第2圧縮室15aから吐出される。このため、冷凍機油が吐出配管21からロータリ圧縮機1外へ出て行くことを抑制するため、本実施の形態に係るロータリ圧縮機1は、油分離器20を備えている。油分離器20は、第1圧縮室14a及び第2圧縮室15aから吐出された冷媒が吐出配管21へ向かう流路を遮るように、クランクシャフト10に固定されている。油分離器20を設けることにより、冷媒と冷凍機油との混合流体が油分離器20に衝突し、冷媒と冷凍機油とが分離し、冷凍機油を密閉容器8の底部に戻すことができる。このため、油分離器20を設けることにより、冷凍機油が吐出配管21からロータリ圧縮機1外へ出て行くことを抑制できる。 A part of the refrigerating machine oil supplied to each sliding portion of the compression mechanism unit 11 is discharged from the first compression chamber 14a and the second compression chamber 15a together with the compressed refrigerant. For this reason, the rotary compressor 1 according to the present embodiment includes an oil separator 20 in order to prevent the refrigeration oil from going out of the rotary compressor 1 from the discharge pipe 21. The oil separator 20 is fixed to the crankshaft 10 so that the refrigerant discharged from the first compression chamber 14a and the second compression chamber 15a blocks the flow path toward the discharge pipe 21. By providing the oil separator 20, the mixed fluid of the refrigerant and the refrigerating machine oil collides with the oil separator 20, the refrigerant and the refrigerating machine oil are separated, and the refrigerating machine oil can be returned to the bottom of the sealed container 8. For this reason, by providing the oil separator 20, it can suppress that refrigeration oil goes out of the rotary compressor 1 from the discharge piping 21. FIG.
 ここで、本実施の形態に係るロータリ圧縮機1の圧縮機構部11は、第1圧縮室14a及び第2圧縮室15aに冷媒をインジェクションするインジェクション流路を備えている。具体的には、圧縮機構部11は、第1インジェクション流路31と第2インジェクション流路32とを備えている。 Here, the compression mechanism 11 of the rotary compressor 1 according to the present embodiment includes an injection flow path for injecting a refrigerant into the first compression chamber 14a and the second compression chamber 15a. Specifically, the compression mechanism unit 11 includes a first injection flow path 31 and a second injection flow path 32.
 第1インジェクション流路31は、上述のように、インジェクション配管6を介してインジェクション配管5と接続されている。また、第1インジェクション流路31は、第1吸入口25aとは異なる位置で、第1圧縮室14aと連通している。すなわち、第1インジェクション流路31は、第1圧縮室14aに、インジェクション配管5から供給された冷媒をインジェクションする流路である。本実施の形態では、第1インジェクション流路31は、インジェクション配管6と接続され、第1逆止弁40が設けられる逆止弁設置部31a、逆止弁設置部31aと連通する凹部31b、及び、凹部31bと第1圧縮室14aとを連通する連通孔31cを備えている。また、本実施の形態では、第1インジェクション流路31は、上軸受12に形成されている。 The first injection flow path 31 is connected to the injection pipe 5 via the injection pipe 6 as described above. The first injection flow path 31 communicates with the first compression chamber 14a at a position different from the first suction port 25a. That is, the 1st injection flow path 31 is a flow path which injects the refrigerant | coolant supplied from the injection piping 5 to the 1st compression chamber 14a. In the present embodiment, the first injection flow path 31 is connected to the injection pipe 6, and a check valve installation portion 31a in which the first check valve 40 is provided, a recess 31b communicating with the check valve installation portion 31a, and In addition, a communication hole 31c that communicates the recess 31b and the first compression chamber 14a is provided. In the present embodiment, the first injection flow path 31 is formed in the upper bearing 12.
 第1逆止弁40は、第1インジェクション流路31の逆止弁設置部31aに設けられている。すなわち、第1逆止弁40は、密閉容器8内に設けられている。第1逆止弁40は、第1圧縮室14aから第1インジェクション流路31に流出する冷媒の流れを規制するものである。この第1逆止弁40は、ケーシング41と、ケーシング41内に往復動自在に設けられた第1弁体44とを備えている。第1弁体44は、例えば、中心軸が往復動方向の略円筒形状をしている。第1弁体44には、往復動方向に貫通する第1貫通孔44aが形成されている。ケーシング41は、例えば略円筒形状をしており、第1弁体44の往復動方向に端部42及び端部43を有している。 The first check valve 40 is provided in the check valve installation portion 31 a of the first injection flow path 31. That is, the first check valve 40 is provided in the sealed container 8. The first check valve 40 regulates the flow of the refrigerant flowing out from the first compression chamber 14a to the first injection flow path 31. The first check valve 40 includes a casing 41 and a first valve body 44 provided in the casing 41 so as to reciprocate. The first valve body 44 has, for example, a substantially cylindrical shape whose central axis is in the reciprocating direction. The first valve body 44 is formed with a first through hole 44a penetrating in the reciprocating direction. The casing 41 has, for example, a substantially cylindrical shape, and has an end portion 42 and an end portion 43 in the reciprocating direction of the first valve body 44.
 端部42は、第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に配置されている端部である。換言すると、第1インジェクション流路31から第1圧縮室14aへ冷媒をインジェクションする際の冷媒流れにおいて、端部42は、第1弁体44よりも上流側となる。この端部42には、貫通孔42aが形成されている。したがって、インジェクション配管5の冷媒は、貫通孔42aからケーシング41内に流入することとなる。そして、第1弁体44における端部42側の端部には、インジェクション配管5から第1逆止弁40に供給された冷媒の圧力が作用することとなる。なお、貫通孔42aは、第1弁体44の第1貫通孔44aと対向しない位置に配置されている。このため、第1弁体44が端部42に接触した際、貫通孔42aは、第1弁体44によって塞がれる。すなわち、第1弁体44が端部42に接触した際、第1逆止弁40内の流路が閉じられる。換言すると、第1弁体44が端部42に接触した際、第1インジェクション流路31が閉じられる。 The end portion 42 is an end portion disposed on the side farther from the first compression chamber 14 a than the first valve body 44 in the first injection flow path 31. In other words, in the refrigerant flow when the refrigerant is injected from the first injection flow path 31 to the first compression chamber 14 a, the end 42 is on the upstream side of the first valve body 44. The end portion 42 is formed with a through hole 42a. Therefore, the refrigerant in the injection pipe 5 flows into the casing 41 from the through hole 42a. The pressure of the refrigerant supplied from the injection pipe 5 to the first check valve 40 acts on the end of the first valve body 44 on the end 42 side. The through hole 42 a is disposed at a position that does not face the first through hole 44 a of the first valve body 44. For this reason, when the first valve body 44 comes into contact with the end portion 42, the through hole 42 a is closed by the first valve body 44. That is, when the first valve body 44 comes into contact with the end portion 42, the flow path in the first check valve 40 is closed. In other words, when the first valve body 44 comes into contact with the end portion 42, the first injection flow path 31 is closed.
 端部43は、第1インジェクション流路31において第1弁体44よりも第1圧縮室14aに近い側に配置されている端部である。換言すると、第1インジェクション流路31から第1圧縮室14aへ冷媒をインジェクションする際の冷媒流れにおいて、端部43は、第1弁体44よりも下流側となる。この端部43には、貫通孔43aが形成されている。したがって、第1弁体44における端部42側の端部には、連通孔31c及び凹部31bを介して、第1圧縮室14aの冷媒の圧力が作用することとなる。なお、貫通孔43aは、第1弁体44の第1貫通孔44aと対向する位置に配置されている。このため、第1弁体44が端部43に接触しても、貫通孔43aは、第1弁体44によって塞がれない。すなわち、第1弁体44が端部43に接触しても、第1逆止弁40内の流路が閉じられない。換言すると、第1弁体44が端部43に接触しても、第1インジェクション流路31は開かれた状態となっている。 The end portion 43 is an end portion that is disposed closer to the first compression chamber 14 a than the first valve body 44 in the first injection flow path 31. In other words, in the refrigerant flow when the refrigerant is injected from the first injection flow path 31 to the first compression chamber 14 a, the end 43 is on the downstream side of the first valve body 44. A through hole 43 a is formed in the end portion 43. Therefore, the pressure of the refrigerant in the first compression chamber 14a acts on the end portion on the end portion 42 side of the first valve body 44 through the communication hole 31c and the recess 31b. The through hole 43 a is disposed at a position facing the first through hole 44 a of the first valve body 44. For this reason, even if the first valve body 44 contacts the end portion 43, the through hole 43 a is not blocked by the first valve body 44. That is, even if the first valve body 44 contacts the end portion 43, the flow path in the first check valve 40 is not closed. In other words, even if the first valve body 44 contacts the end portion 43, the first injection flow path 31 is in an open state.
 すなわち、第1弁体44は、第1インジェクション流路31を開閉するものである。そして、第1弁体44には、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が、第1インジェクション流路31を開く方向に作用する。また、第1弁体44には、第1圧縮室14aの冷媒の圧力が、第1インジェクション流路31を閉じる方向に作用する。したがって、第1圧縮室14aの冷媒の圧力が第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力よりも高い場合、第1弁体44はケーシング41の端部42側へ移動する。そして、第1弁体44が端部42に接触し、第1インジェクション流路31が閉じられる。また、第1圧縮室14aの冷媒の圧力が第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力よりも低い場合、第1弁体44はケーシング41の端部43側へ移動する。すなわち、第1弁体44が端部42から離れた状態となり、第1インジェクション流路31が開かれた状態となる。 That is, the first valve body 44 opens and closes the first injection flow path 31. In the first valve body 44, the pressure of the refrigerant existing in the first injection flow path 31 on the side farther from the first compression chamber 14 a than the first valve body 44 opens the first injection flow path 31. Acts on direction. Further, the pressure of the refrigerant in the first compression chamber 14 a acts on the first valve body 44 in the direction in which the first injection flow path 31 is closed. Therefore, when the pressure of the refrigerant in the first compression chamber 14a is higher than the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31, the first valve body 44 moves to the end 42 side of the casing 41. And the 1st valve body 44 contacts the edge part 42, and the 1st injection flow path 31 is closed. Further, when the pressure of the refrigerant in the first compression chamber 14a is lower than the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31, the first valve body 44 moves to the end 43 side of the casing 41. That is, the 1st valve body 44 will be in the state which left | separated from the edge part 42, and will be in the state in which the 1st injection flow path 31 was opened.
 ここで、本実施の形態に係る第1弁体44においては、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力を受ける第1受圧部45の面積が、第1圧縮室14aの冷媒の圧力を受ける第2受圧部46の面積よりも大きい構成となっている。このように第1弁体44を構成することにより、第1弁体44の端部43側への移動が容易となる。すなわち、第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が第1圧縮室14aの冷媒の圧力よりも高くなった際、第1インジェクション流路31が開きやすくなる。 Here, in the first valve body 44 according to the present embodiment, the first valve body 44 receives the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31. The area of the 1 pressure receiving part 45 is larger than the area of the 2nd pressure receiving part 46 which receives the pressure of the refrigerant | coolant of the 1st compression chamber 14a. By configuring the first valve body 44 in this way, the movement of the first valve body 44 toward the end 43 is facilitated. That is, when the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31 becomes higher than the pressure of the refrigerant in the first compression chamber 14a, the first The injection flow path 31 is easy to open.
 具体的には、本実施の形態では、第1弁体44の第1貫通孔44aは、第1圧縮室14aに向かうにしたがって直径が小さくなっている。換言すると、第1貫通孔44aは、端部43側から端部42側へ向かうにしたがって直径が大きくなっている。この様に第1貫通孔44aを形成した場合、第2受圧部46は、第1弁体44の端部43側の端部となる。また、第1受圧部45は、第1弁体44の端部42側の端部と、第1貫通孔44aの内周面とになる。したがって、第1受圧部45の面積を第2受圧部46の面積よりも大きくすることができる。 Specifically, in the present embodiment, the first through hole 44a of the first valve body 44 has a diameter that decreases toward the first compression chamber 14a. In other words, the diameter of the first through hole 44a increases from the end 43 side toward the end 42 side. When the first through hole 44 a is formed in this manner, the second pressure receiving portion 46 becomes an end portion on the end portion 43 side of the first valve body 44. Further, the first pressure receiving portion 45 becomes an end portion on the end portion 42 side of the first valve body 44 and an inner peripheral surface of the first through hole 44a. Therefore, the area of the first pressure receiving part 45 can be made larger than the area of the second pressure receiving part 46.
 なお、第1逆止弁40の構成は、あくまでも一例である。例えば、本実施の形態では、第1弁体44の第1貫通孔44aは、第1圧縮室14aに向かうにしたがって、滑らかに直径が小さくなっている。これに限らず、第1弁体44の第1貫通孔44aは、第1圧縮室14aに向かうにしたがって、階段状に直径が小さくなっていてもよい。また例えば、第1弁体44の端部42側の端部に凸部を形成する等により、第1受圧部45の面積を第2受圧部46の面積よりも大きくしてもよい。また、第1受圧部45の面積が第2受圧部46の面積よりも大きいという構成は、第1逆止弁40において必須の構成ではない。第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が第1インジェクション流路31を開く方向に作用し、第1圧縮室14aの冷媒の圧力が第1インジェクション流路31を閉じる方向に作用すれば、第1逆止弁40の構成を適宜変更してもよい。 Note that the configuration of the first check valve 40 is merely an example. For example, in the present embodiment, the diameter of the first through hole 44a of the first valve body 44 is smoothly reduced toward the first compression chamber 14a. Not limited to this, the first through hole 44a of the first valve body 44 may have a stepped diameter that decreases toward the first compression chamber 14a. Further, for example, the area of the first pressure receiving part 45 may be made larger than the area of the second pressure receiving part 46 by forming a convex part at the end of the first valve body 44 on the end part 42 side. Further, the configuration in which the area of the first pressure receiving portion 45 is larger than the area of the second pressure receiving portion 46 is not an essential configuration in the first check valve 40. In the first injection flow path 31, the pressure of the refrigerant existing on the side farther from the first compression chamber 14a than the first valve body 44 acts in the direction to open the first injection flow path 31, and the refrigerant in the first compression chamber 14a. If the pressure acts in the direction in which the first injection flow path 31 is closed, the configuration of the first check valve 40 may be changed as appropriate.
 また、上述した第1インジェクション流路31も、あくまでも一例である。例えば、第1インジェクション流路31の少なくとも一部が、上軸受12以外の圧縮機構部11の構成部品に形成されていてもよい。また、第1逆止弁40の配置位置も、上述の位置に限定されない。第1インジェクション流路31における第1圧縮室14a側の端部と第1逆止弁40との間に第2インジェクション流路32が合流していなければ、第1インジェクション流路31の任意の位置に第1逆止弁40を配置することができる。 Also, the first injection flow path 31 described above is merely an example. For example, at least a part of the first injection flow path 31 may be formed in a component part of the compression mechanism unit 11 other than the upper bearing 12. Further, the arrangement position of the first check valve 40 is not limited to the above position. If the second injection flow path 32 is not joined between the end of the first injection flow path 31 on the first compression chamber 14a side and the first check valve 40, an arbitrary position of the first injection flow path 31 The first check valve 40 can be disposed at the end.
 第2インジェクション流路32は、上述のように、インジェクション配管6を介してインジェクション配管5と接続されている。また、第2インジェクション流路32は、第2吸入口25bとは異なる位置で、第2圧縮室15aと連通している。すなわち、第2インジェクション流路32は、第2圧縮室15aに、インジェクション配管5から供給された冷媒をインジェクションする流路である。本実施の形態では、第2インジェクション流路32は、インジェクション配管6と接続され、第2逆止弁50が設けられる逆止弁設置部32a、逆止弁設置部32aと連通する凹部32b、及び、凹部32bと第2圧縮室15aとを連通する連通孔32cを備えている。また、本実施の形態では、第2インジェクション流路32は、下軸受13に形成されている。 The second injection flow path 32 is connected to the injection pipe 5 via the injection pipe 6 as described above. The second injection flow path 32 communicates with the second compression chamber 15a at a position different from the second suction port 25b. That is, the 2nd injection flow path 32 is a flow path which injects the refrigerant | coolant supplied from the injection piping 5 to the 2nd compression chamber 15a. In the present embodiment, the second injection flow path 32 is connected to the injection pipe 6 and has a check valve installation portion 32a provided with the second check valve 50, a recess 32b communicating with the check valve installation portion 32a, and In addition, a communication hole 32c that communicates the recess 32b and the second compression chamber 15a is provided. In the present embodiment, the second injection flow path 32 is formed in the lower bearing 13.
 第2逆止弁50は、第2インジェクション流路32の逆止弁設置部32aに設けられている。すなわち、第2逆止弁50は、密閉容器8内に設けられている。第2逆止弁50は、第2圧縮室15aから第2インジェクション流路32に流出する冷媒の流れを規制するものである。この第2逆止弁50は、ケーシング51と、ケーシング51内に往復動自在に設けられた第2弁体54とを備えている。第2弁体54は、例えば、中心軸が往復動方向の略円筒形状をしている。第2弁体54には、往復動方向に貫通する第2貫通孔54aが形成されている。ケーシング51は、例えば略円筒形状をしており、第2弁体54の往復動方向に端部52及び端部53を有している。 The second check valve 50 is provided in the check valve installation portion 32 a of the second injection flow path 32. That is, the second check valve 50 is provided in the sealed container 8. The second check valve 50 regulates the flow of the refrigerant flowing out from the second compression chamber 15a to the second injection flow path 32. The second check valve 50 includes a casing 51 and a second valve body 54 provided in the casing 51 so as to freely reciprocate. The second valve body 54 has, for example, a substantially cylindrical shape whose central axis is in the reciprocating direction. The second valve body 54 is formed with a second through hole 54a penetrating in the reciprocating direction. The casing 51 has, for example, a substantially cylindrical shape, and has an end 52 and an end 53 in the reciprocating direction of the second valve body 54.
 端部52は、第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に配置されている端部である。換言すると、第2インジェクション流路32から第2圧縮室15aへ冷媒をインジェクションする際の冷媒流れにおいて、端部52は、第2弁体54よりも上流側となる。この端部52には、貫通孔52aが形成されている。したがって、インジェクション配管5の冷媒は、貫通孔52aからケーシング51内に流入することとなる。そして、第2弁体54における端部52側の端部には、インジェクション配管5から第2逆止弁50に供給された冷媒の圧力が作用することとなる。なお、貫通孔52aは、第2弁体54の第2貫通孔54aと対向しない位置に配置されている。このため、第2弁体54が端部52に接触した際、貫通孔52aは、第2弁体54によって塞がれる。すなわち、第2弁体54が端部52に接触した際、第2逆止弁50内の流路が閉じられる。換言すると、第2弁体54が端部52に接触した際、第2インジェクション流路32が閉じられる。 The end 52 is an end disposed on the side farther from the second compression chamber 15 a than the second valve body 54 in the second injection flow path 32. In other words, in the refrigerant flow when the refrigerant is injected from the second injection flow path 32 to the second compression chamber 15 a, the end 52 is upstream of the second valve body 54. The end 52 is formed with a through hole 52a. Therefore, the refrigerant in the injection pipe 5 flows into the casing 51 from the through hole 52a. The pressure of the refrigerant supplied from the injection pipe 5 to the second check valve 50 acts on the end of the second valve body 54 on the end 52 side. The through hole 52a is disposed at a position that does not face the second through hole 54a of the second valve body 54. For this reason, when the 2nd valve body 54 contacts the edge part 52, the through-hole 52a is obstruct | occluded by the 2nd valve body 54. FIG. That is, when the second valve body 54 comes into contact with the end 52, the flow path in the second check valve 50 is closed. In other words, the second injection flow path 32 is closed when the second valve body 54 comes into contact with the end portion 52.
 端部53は、第2インジェクション流路32において第2弁体54よりも第2圧縮室15aに近い側に配置されている端部である。換言すると、第2インジェクション流路32から第2圧縮室15aへ冷媒をインジェクションする際の冷媒流れにおいて、端部53は、第2弁体54よりも下流側となる。この端部53には、貫通孔53aが形成されている。したがって、第2弁体54における端部52側の端部には、連通孔32c及び凹部32bを介して、第2圧縮室15aの冷媒の圧力が作用することとなる。なお、貫通孔53aは、第2弁体54の第2貫通孔54aと対向する位置に配置されている。このため、第2弁体54が端部53に接触しても、貫通孔53aは、第2弁体54によって塞がれない。すなわち、第2弁体54が端部53に接触しても、第2逆止弁50内の流路が閉じられない。換言すると、第2弁体54が端部53に接触しても、第2インジェクション流路32は開かれた状態となっている。 The end portion 53 is an end portion that is disposed closer to the second compression chamber 15 a than the second valve body 54 in the second injection flow path 32. In other words, in the refrigerant flow when the refrigerant is injected from the second injection flow path 32 to the second compression chamber 15 a, the end portion 53 is on the downstream side of the second valve body 54. A through hole 53 a is formed in the end portion 53. Therefore, the pressure of the refrigerant in the second compression chamber 15a acts on the end of the second valve body 54 on the end 52 side via the communication hole 32c and the recess 32b. The through hole 53a is disposed at a position facing the second through hole 54a of the second valve body 54. For this reason, even if the second valve body 54 contacts the end portion 53, the through hole 53 a is not blocked by the second valve body 54. That is, even if the second valve body 54 contacts the end portion 53, the flow path in the second check valve 50 is not closed. In other words, even if the second valve body 54 contacts the end portion 53, the second injection flow path 32 is in an open state.
 すなわち、第2弁体54は、第2インジェクション流路32を開閉するものである。そして、第2弁体54には、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が、第2インジェクション流路32を開く方向に作用する。また、第2弁体54には、第2圧縮室15aの冷媒の圧力が、第2インジェクション流路32を閉じる方向に作用する。したがって、第2圧縮室15aの冷媒の圧力が第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力よりも高い場合、第2弁体54はケーシング51の端部52側へ移動する。そして、第2弁体54が端部52に接触し、第2インジェクション流路32が閉じられる。また、第2圧縮室15aの冷媒の圧力が第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力よりも低い場合、第2弁体54はケーシング51の端部53側へ移動する。すなわち、第2弁体54が端部52から離れた状態となり、第2インジェクション流路32が開かれた状態となる。 That is, the second valve body 54 opens and closes the second injection flow path 32. In the second valve body 54, the pressure of the refrigerant existing in the second injection flow path 32 on the side farther from the second compression chamber 15 a than the second valve body 54 opens the second injection flow path 32. Acts on direction. Further, the pressure of the refrigerant in the second compression chamber 15a acts on the second valve body 54 in the direction in which the second injection flow path 32 is closed. Therefore, when the pressure of the refrigerant in the second compression chamber 15a is higher than the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32, the second valve body. 54 moves to the end 52 side of the casing 51. And the 2nd valve body 54 contacts the edge part 52, and the 2nd injection flow path 32 is closed. When the pressure of the refrigerant in the second compression chamber 15a is lower than the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32, the second valve body 54 moves to the end 53 side of the casing 51. That is, the second valve body 54 is separated from the end 52, and the second injection flow path 32 is opened.
 ここで、本実施の形態に係る第2弁体54においては、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力を受ける第3受圧部55の面積が、第2圧縮室15aの冷媒の圧力を受ける第4受圧部56の面積よりも大きい構成となっている。このように第2弁体54を構成することにより、第2弁体54の端部53側への移動が容易となる。すなわち、第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が第2圧縮室15aの冷媒の圧力よりも高くなった際、第2インジェクション流路32が開きやすくなる。 Here, in the second valve body 54 according to the present embodiment, the second valve body 54 receives the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32. The area of the 3 pressure receiving part 55 is larger than the area of the 4th pressure receiving part 56 which receives the pressure of the refrigerant | coolant of the 2nd compression chamber 15a. By configuring the second valve body 54 in this manner, the movement of the second valve body 54 toward the end 53 is facilitated. That is, when the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32 becomes higher than the pressure of the refrigerant in the second compression chamber 15a, the second The injection flow path 32 is easy to open.
 具体的には、本実施の形態では、第2弁体54の第2貫通孔54aは、第2圧縮室15aに向かうにしたがって直径が小さくなっている。換言すると、第2貫通孔54aは、端部53側から端部52側へ向かうにしたがって直径が大きくなっている。この様に第2貫通孔54aを形成した場合、第4受圧部56は、第2弁体54の端部53側の端部となる。また、第3受圧部55は、第2弁体54の端部52側の端部と、第2貫通孔54aの内周面とになる。したがって、第3受圧部55の面積を第4受圧部56の面積よりも大きくすることができる。 Specifically, in the present embodiment, the diameter of the second through hole 54a of the second valve element 54 decreases toward the second compression chamber 15a. In other words, the diameter of the second through hole 54a increases from the end 53 side toward the end 52 side. When the second through hole 54 a is formed in this manner, the fourth pressure receiving portion 56 is an end portion on the end portion 53 side of the second valve body 54. Moreover, the 3rd pressure receiving part 55 becomes the edge part by the side of the edge part 52 of the 2nd valve body 54, and the internal peripheral surface of the 2nd through-hole 54a. Therefore, the area of the third pressure receiving part 55 can be made larger than the area of the fourth pressure receiving part 56.
 なお、第2逆止弁50の構成は、あくまでも一例である。例えば、本実施の形態では、第2弁体54の第2貫通孔54aは、第2圧縮室15aに向かうにしたがって、滑らかに直径が小さくなっている。これに限らず、第2弁体54の第2貫通孔54aは、第2圧縮室15aに向かうにしたがって、階段状に直径が小さくなっていてもよい。また例えば、第2弁体54の端部52側の端部に凸部を形成する等により、第3受圧部55の面積を第4受圧部56の面積よりも大きくしてもよい。また、第3受圧部55の面積が第4受圧部56の面積よりも大きいという構成は、第2逆止弁50において必須の構成ではない。第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が第2インジェクション流路32を開く方向に作用し、第2圧縮室15aの冷媒の圧力が第2インジェクション流路32を閉じる方向に作用すれば、第2逆止弁50の構成を適宜変更してもよい。 Note that the configuration of the second check valve 50 is merely an example. For example, in the present embodiment, the diameter of the second through hole 54a of the second valve body 54 is smoothly reduced toward the second compression chamber 15a. Not only this but the 2nd through-hole 54a of the 2nd valve body 54 may become small in step shape as it goes to the 2nd compression chamber 15a. Further, for example, the area of the third pressure receiving part 55 may be made larger than the area of the fourth pressure receiving part 56 by forming a convex part at the end of the second valve body 54 on the end 52 side. Further, the configuration in which the area of the third pressure receiving portion 55 is larger than the area of the fourth pressure receiving portion 56 is not an essential configuration in the second check valve 50. In the second injection flow path 32, the pressure of the refrigerant existing on the side farther from the second compression chamber 15a than the second valve body 54 acts in the direction of opening the second injection flow path 32, and the refrigerant in the second compression chamber 15a. If the pressure acts in the direction in which the second injection flow path 32 is closed, the configuration of the second check valve 50 may be changed as appropriate.
 また、上述した第2インジェクション流路32も、あくまでも一例である。例えば、第2インジェクション流路32の少なくとも一部が、下軸受13以外の圧縮機構部11の構成部品に形成されていてもよい。また、第2逆止弁50の配置位置も、上述の位置に限定されない。第2インジェクション流路32における第2圧縮室15a側の端部と第2逆止弁50との間に第1インジェクション流路31が合流していなければ、第2インジェクション流路32の任意の位置に第2逆止弁50を配置することができる。 Further, the above-described second injection flow path 32 is merely an example. For example, at least a part of the second injection flow path 32 may be formed in a component part of the compression mechanism unit 11 other than the lower bearing 13. Further, the arrangement position of the second check valve 50 is not limited to the above-described position. If the first injection flow path 31 is not joined between the end of the second injection flow path 32 on the second compression chamber 15a side and the second check valve 50, an arbitrary position of the second injection flow path 32 The second check valve 50 can be arranged in
 続いて、本実施の形態に係るロータリ圧縮機1の動作について説明する。ここで、以下では、本実施の形態に係るロータリ圧縮機1の効果がわかりやすくなるように、まず、インジェクション流路が圧縮機構部に設けられた従来のツインロータリ圧縮機の動作について説明する。そして、その後に、本実施の形態に係るロータリ圧縮機1の動作について説明する。なお、以下では、インジェクション流路が圧縮機構部に設けられた従来のツインロータリ圧縮機を、従来のロータリ圧縮機と称することとする。また、以下では、従来のロータリ圧縮機を説明する際、従来のロータリ圧縮機の各構成には、これらの構成に対応する本実施の形態に係るロータリ圧縮機1の各構成の符号に、「200」を加えた符号を付すこととする。例えば、従来のロータリ圧縮機の中間板には、符号「217」を付す。 Subsequently, the operation of the rotary compressor 1 according to the present embodiment will be described. Here, below, operation of the conventional twin rotary compressor in which the injection flow path is provided in the compression mechanism section will be described so that the effect of the rotary compressor 1 according to the present embodiment can be easily understood. And after that, operation | movement of the rotary compressor 1 which concerns on this Embodiment is demonstrated. Hereinafter, the conventional twin rotary compressor in which the injection flow path is provided in the compression mechanism section will be referred to as a conventional rotary compressor. Further, in the following description, when describing a conventional rotary compressor, each component of the conventional rotary compressor is denoted by reference numerals of the components of the rotary compressor 1 according to the present embodiment corresponding to these components. A reference numeral added with “200” is attached. For example, a reference numeral “217” is attached to an intermediate plate of a conventional rotary compressor.
 図7は、従来のロータリ圧縮機の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
 図7に示す従来のロータリ圧縮機201の第1インジェクション流路231及び第2インジェクション流路232は、中間板217に設けられている。
FIG. 7 is an enlarged view of a main part showing the vicinity of a first injection flow path and a second injection flow path of an example of a conventional rotary compressor.
The first injection flow path 231 and the second injection flow path 232 of the conventional rotary compressor 201 shown in FIG. 7 are provided in the intermediate plate 217.
 詳しくは、第1インジェクション流路231は、凹部231b及び連通孔231cで構成されている。凹部231bは、インジェクション配管206と接続されている箇所である。連通孔231cは、凹部231bと、上シリンダ214の第1圧縮室214aとを連通している箇所である。また、第2インジェクション流路232は、凹部231b及び連通孔232cで構成されている。連通孔232cは、凹部231bと、下シリンダ215の第2圧縮室215aとを連通している箇所である。すなわち、凹部231bは、第1インジェクション流路231の一部として機能すると共に、第2インジェクション流路232の一部としても機能している。換言すると、第1インジェクション流路231と第2インジェクション流路232とは、凹部231bで合流しており、連通孔231c及び連通孔232cで分岐している。 Specifically, the first injection flow path 231 includes a recess 231b and a communication hole 231c. The recess 231b is a place connected to the injection pipe 206. The communication hole 231c is a place where the recess 231b communicates with the first compression chamber 214a of the upper cylinder 214. The second injection flow path 232 includes a recess 231b and a communication hole 232c. The communication hole 232c is a place where the recess 231b communicates with the second compression chamber 215a of the lower cylinder 215. That is, the concave portion 231 b functions as a part of the first injection flow path 231 and also functions as a part of the second injection flow path 232. In other words, the first injection flow path 231 and the second injection flow path 232 merge at the recess 231b and branch off at the communication hole 231c and the communication hole 232c.
 このように構成された図7に示す従来のロータリ圧縮機201においては、第1圧縮室214aは、常に、第1インジェクション流路231及びインジェクション配管206と連通している。このため、第1圧縮室214aで圧縮途中の冷媒が、第1インジェクション流路231及びインジェクション配管206に漏れ出てしまう。また、図7に示す従来のロータリ圧縮機201においては、第2圧縮室215aは、常に、第2インジェクション流路232及びインジェクション配管206と連通している。このため、第2圧縮室215aで圧縮途中の冷媒が、第2インジェクション流路232及びインジェクション配管206に漏れ出てしまう。 In the conventional rotary compressor 201 shown in FIG. 7 configured as above, the first compression chamber 214a is always in communication with the first injection flow path 231 and the injection pipe 206. For this reason, the refrigerant in the middle of compression in the first compression chamber 214a leaks into the first injection flow path 231 and the injection pipe 206. In the conventional rotary compressor 201 shown in FIG. 7, the second compression chamber 215a is always in communication with the second injection flow path 232 and the injection pipe 206. For this reason, the refrigerant being compressed in the second compression chamber 215a leaks into the second injection flow path 232 and the injection pipe 206.
 ここで、第1インジェクション流路231内、第2インジェクション流路232内及びインジェクション配管206内は、死容積となる。このため、図7に示す従来のロータリ圧縮機201は、冷媒の圧縮性能が低下してしまう。 Here, the inside of the first injection channel 231, the second injection channel 232, and the injection pipe 206 becomes dead volume. For this reason, the conventional rotary compressor 201 shown in FIG.
 また、図7に示す従来のロータリ圧縮機201においては、第1圧縮室214aと第2圧縮室215aとは、常に連通している。このため、冷媒の圧力が高い側の圧縮室から冷媒の圧力が低い側の圧縮室へ、圧縮途中の冷媒が漏れ出してしまう。例えば、第1圧縮室214aの冷媒の圧力が第2圧縮室215aの冷媒の圧力よりも高い場合、図7に矢印で示すように、第1圧縮室214aから第2圧縮室215aへ、第1圧縮室214aで圧縮途中の冷媒が漏れ出してしまう。この点においても、図7に示す従来のロータリ圧縮機201は、冷媒の圧縮性能が低下してしまう。 In the conventional rotary compressor 201 shown in FIG. 7, the first compression chamber 214a and the second compression chamber 215a are always in communication. For this reason, the refrigerant in the middle of compression leaks from the compression chamber having the higher refrigerant pressure to the compression chamber having the lower refrigerant pressure. For example, when the pressure of the refrigerant in the first compression chamber 214a is higher than the pressure of the refrigerant in the second compression chamber 215a, the first compression chamber 214a is moved from the first compression chamber 214a to the second compression chamber 215a as shown by an arrow in FIG. The refrigerant in the middle of compression leaks out in the compression chamber 214a. Also in this respect, the conventional rotary compressor 201 shown in FIG. 7 has a reduced refrigerant compression performance.
 図8は、従来のロータリ圧縮機の別の一例の第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
 図8に示す従来のロータリ圧縮機201の第1インジェクション流路231は、上軸受212に設けられている。詳しくは、第1インジェクション流路231は、凹部231b及び連通孔231cで構成されている。凹部231bは、インジェクション配管206と接続されている箇所である。連通孔231cは、凹部231bと、上シリンダ214の第1圧縮室214aとを連通している箇所である。また、図8に示す従来のロータリ圧縮機201の第2インジェクション流路232は、下軸受213に設けられている。詳しくは、第2インジェクション流路232は、凹部232b及び連通孔231cで構成されている。凹部232bは、インジェクション配管206と接続されている箇所である。連通孔232cは、凹部232bと、下シリンダ215の第2圧縮室215aとを連通している箇所である。
FIG. 8 is an enlarged view of a main part showing the vicinity of a first injection flow path and a second injection flow path of another example of a conventional rotary compressor.
A first injection flow path 231 of the conventional rotary compressor 201 shown in FIG. 8 is provided in the upper bearing 212. Specifically, the first injection flow path 231 includes a recess 231b and a communication hole 231c. The recess 231b is a place connected to the injection pipe 206. The communication hole 231c is a place where the recess 231b communicates with the first compression chamber 214a of the upper cylinder 214. Further, the second injection flow path 232 of the conventional rotary compressor 201 shown in FIG. 8 is provided in the lower bearing 213. Specifically, the second injection flow path 232 includes a recess 232b and a communication hole 231c. The recess 232b is a portion connected to the injection pipe 206. The communication hole 232c is a place where the recess 232b communicates with the second compression chamber 215a of the lower cylinder 215.
 また、図8に示す従来のロータリ圧縮機201の第1インジェクション流路231には、第1圧縮室214aから第1インジェクション流路231に流出する冷媒の流れを規制する第1逆止弁240が設けられている。また、図8に示す従来のロータリ圧縮機201の第2インジェクション流路232には、第2圧縮室215aから第2インジェクション流路232に流出する冷媒の流れを規制する第2逆止弁250が設けられている。図8に示す従来のロータリ圧縮機201は、第1インジェクション流路231から第1圧縮室214aに冷媒をインジェクションしていない状態においては、第1インジェクション流路231が第1逆止弁240で閉じられる。また、図8に示す従来のロータリ圧縮機201は、第2インジェクション流路232から第2圧縮室215aに冷媒をインジェクションしていない状態においては、第2インジェクション流路232が第2逆止弁250で閉じられる。このため、図8に示す従来のロータリ圧縮機201は、死容積を低減することができる。 Further, in the first injection flow path 231 of the conventional rotary compressor 201 shown in FIG. 8, a first check valve 240 for regulating the flow of the refrigerant flowing out from the first compression chamber 214a to the first injection flow path 231 is provided. Is provided. Further, in the second injection flow path 232 of the conventional rotary compressor 201 shown in FIG. 8, a second check valve 250 for regulating the flow of the refrigerant flowing out from the second compression chamber 215a to the second injection flow path 232 is provided. Is provided. In the conventional rotary compressor 201 shown in FIG. 8, the first injection flow path 231 is closed by the first check valve 240 in a state where the refrigerant is not injected from the first injection flow path 231 into the first compression chamber 214 a. It is done. Further, in the conventional rotary compressor 201 shown in FIG. 8, the second injection flow path 232 has the second check valve 250 in the state where the refrigerant is not injected from the second injection flow path 232 into the second compression chamber 215a. It is closed with. For this reason, the conventional rotary compressor 201 shown in FIG. 8 can reduce dead volume.
 しかしながら、図8に示すように、第1逆止弁240は、該第1逆止弁240よりも第1圧縮室214aから離れた側に存在する冷媒の圧力が規定圧力以上になった際、第1インジェクション流路231を開く構成となっている。換言すると、第1逆止弁240は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第1インジェクション流路231を開く構成となっている。この際、第1逆止弁240は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第1圧縮室214aの冷媒の圧力にかかわらず開く。すなわち、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第1圧縮室214aの冷媒の圧力がインジェクション配管206から供給される冷媒の圧力よりも高い場合でも、第1逆止弁240が開く。このような状態では、図8に示すロータリ圧縮機201は、第1圧縮室214aから第1インジェクション流路231へ、第1圧縮室214aで圧縮途中の冷媒が漏れ出してしまう。 However, as shown in FIG. 8, when the pressure of the refrigerant existing on the side farther from the first compression chamber 214a than the first check valve 240 becomes equal to or higher than the first check valve 240, The first injection flow path 231 is opened. In other words, the first check valve 240 is configured to open the first injection flow path 231 when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure. At this time, the first check valve 240 opens regardless of the refrigerant pressure in the first compression chamber 214a when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure. That is, when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure, even if the pressure of the refrigerant in the first compression chamber 214a is higher than the pressure of the refrigerant supplied from the injection pipe 206, the first reverse The stop valve 240 opens. In such a state, in the rotary compressor 201 shown in FIG. 8, the refrigerant being compressed in the first compression chamber 214a leaks from the first compression chamber 214a to the first injection flow path 231.
 同様に、第2逆止弁250は、該第2逆止弁250よりも第2圧縮室215aから離れた側に存在する冷媒の圧力が規定圧力以上になった際、第2インジェクション流路232を開く構成となっている。換言すると、第2逆止弁250は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第2インジェクション流路232を開く構成となっている。この際、第2逆止弁250は、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第2圧縮室215aの冷媒の圧力にかかわらず開く。すなわち、インジェクション配管206から供給される冷媒の圧力が規定圧力以上になった際、第2圧縮室215aの冷媒の圧力がインジェクション配管206から供給される冷媒の圧力よりも高い場合でも、第2逆止弁250が開く。このような状態では、図8に示すロータリ圧縮機201は、第2圧縮室215aから第2インジェクション流路232へ、第2圧縮室215aで圧縮途中の冷媒が漏れ出してしまう。 Similarly, when the pressure of the refrigerant existing on the side farther from the second compression chamber 215a than the second check valve 250 becomes equal to or higher than the specified pressure, the second check valve 250 has a second injection flow path 232. Is configured to open. In other words, the second check valve 250 is configured to open the second injection flow path 232 when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure. At this time, the second check valve 250 opens regardless of the refrigerant pressure in the second compression chamber 215a when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure. That is, when the pressure of the refrigerant supplied from the injection pipe 206 becomes equal to or higher than the specified pressure, even if the pressure of the refrigerant in the second compression chamber 215a is higher than the pressure of the refrigerant supplied from the injection pipe 206, the second reverse The stop valve 250 opens. In such a state, in the rotary compressor 201 shown in FIG. 8, the refrigerant being compressed in the second compression chamber 215a leaks from the second compression chamber 215a to the second injection flow path 232.
 このため、図8に示すロータリ圧縮機201もまた、圧縮室からの冷媒漏れにより、圧縮性能が低下してしまう。 For this reason, the compression performance of the rotary compressor 201 shown in FIG. 8 also deteriorates due to refrigerant leakage from the compression chamber.
 一方、本実施の形態に係る第1逆止弁40の第1弁体44は、第1圧縮室14aの冷媒の圧力と、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力との差によって動作する。すなわち、本実施の形態に係る第1逆止弁40の第1弁体44は、第1圧縮室14aの冷媒の圧力と、インジェクション配管6から供給される冷媒の圧力との差によって動作する。また、本実施の形態に係る第2逆止弁50の第2弁体54は、第2圧縮室15aの冷媒の圧力と、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力との差によって動作する。すなわち、本実施の形態に係る第2逆止弁50の第2弁体54は、第2圧縮室15aの冷媒の圧力と、インジェクション配管6から供給される冷媒の圧力との差によって動作する。したがって、第1逆止弁40及び第2逆止弁50は、第1圧縮室14aの冷媒の圧力、第2圧縮室15aの冷媒の圧力、及びインジェクション配管6から供給される冷媒の圧力により、図9のように動作することとなる。 On the other hand, the first valve body 44 of the first check valve 40 according to the present embodiment is more first than the first valve body 44 in the pressure of the refrigerant in the first compression chamber 14a and the first injection flow path 31. It operates by the difference with the pressure of the refrigerant existing on the side away from the compression chamber 14a. That is, the first valve body 44 of the first check valve 40 according to the present embodiment operates by the difference between the refrigerant pressure in the first compression chamber 14 a and the refrigerant pressure supplied from the injection pipe 6. In addition, the second valve body 54 of the second check valve 50 according to the present embodiment has a second pressure higher than the second valve body 54 in the second compression passage 15 and the pressure of the refrigerant in the second compression chamber 15a. It operates by the difference with the pressure of the refrigerant existing on the side away from the compression chamber 15a. That is, the second valve body 54 of the second check valve 50 according to the present embodiment operates by the difference between the refrigerant pressure in the second compression chamber 15 a and the refrigerant pressure supplied from the injection pipe 6. Therefore, the first check valve 40 and the second check valve 50 have the pressure of the refrigerant in the first compression chamber 14a, the pressure of the refrigerant in the second compression chamber 15a, and the pressure of the refrigerant supplied from the injection pipe 6. The operation is as shown in FIG.
 図9は、本発明の実施の形態に係るロータリ圧縮機における第1逆止弁及び第2逆止弁の動作を説明するための図である。
 図9に示すように、インジェクション配管6から供給される冷媒の圧力が第1圧縮室14aの冷媒の圧力よりも大きい場合、第1逆止弁40が開く。すなわち、第1インジェクション流路31が開かれる。これにより、インジェクション配管6から第1インジェクション流路31に供給された冷媒が、第1圧縮室14aへインジェクションされる。一方、第1圧縮室14aの冷媒の圧力がインジェクション配管6から供給される冷媒の圧力よりも大きい場合、第1逆止弁40が閉じる。すなわち、第1圧縮室14aで圧縮途中の冷媒が第1インジェクション流路31に漏れ出す条件になると、第1インジェクション流路31が閉じる。このため、本実施の形態に係るロータリ圧縮機1は、第1圧縮室14aで圧縮途中の冷媒が第1インジェクション流路31に漏れ出すことを抑制できる。
FIG. 9 is a diagram for explaining the operation of the first check valve and the second check valve in the rotary compressor according to the embodiment of the present invention.
As shown in FIG. 9, when the pressure of the refrigerant supplied from the injection pipe 6 is larger than the pressure of the refrigerant in the first compression chamber 14a, the first check valve 40 is opened. That is, the first injection flow path 31 is opened. Thereby, the refrigerant | coolant supplied to the 1st injection flow path 31 from the injection piping 6 is injected into the 1st compression chamber 14a. On the other hand, when the pressure of the refrigerant in the first compression chamber 14a is larger than the pressure of the refrigerant supplied from the injection pipe 6, the first check valve 40 is closed. That is, when the refrigerant in the middle of compression in the first compression chamber 14a is in a condition of leaking into the first injection flow path 31, the first injection flow path 31 is closed. For this reason, the rotary compressor 1 according to the present embodiment can suppress the refrigerant being compressed in the first compression chamber 14 a from leaking into the first injection flow path 31.
 また、図9に示すように、インジェクション配管6から供給される冷媒の圧力が第2圧縮室15aの冷媒の圧力よりも大きい場合、第2逆止弁50が開く。すなわち、第2インジェクション流路32が開かれる。これにより、インジェクション配管6から第2インジェクション流路32に供給された冷媒が、第2圧縮室15aへインジェクションされる。一方、第2圧縮室15aの冷媒の圧力がインジェクション配管6から供給される冷媒の圧力よりも大きい場合、第2逆止弁50が閉じる。すなわち、第2圧縮室15aで圧縮途中の冷媒が第2インジェクション流路32に漏れ出す条件になると、第2インジェクション流路32が閉じる。このため、本実施の形態に係るロータリ圧縮機1は、第2圧縮室15aで圧縮途中の冷媒が第2インジェクション流路32に漏れ出すことを抑制できる。 Further, as shown in FIG. 9, when the pressure of the refrigerant supplied from the injection pipe 6 is larger than the pressure of the refrigerant in the second compression chamber 15a, the second check valve 50 is opened. That is, the second injection flow path 32 is opened. Thereby, the refrigerant | coolant supplied to the 2nd injection flow path 32 from the injection piping 6 is injected into the 2nd compression chamber 15a. On the other hand, when the pressure of the refrigerant in the second compression chamber 15a is larger than the pressure of the refrigerant supplied from the injection pipe 6, the second check valve 50 is closed. That is, when the refrigerant that is being compressed in the second compression chamber 15a leaks into the second injection flow path 32, the second injection flow path 32 is closed. For this reason, the rotary compressor 1 according to the present embodiment can suppress the refrigerant being compressed in the second compression chamber 15a from leaking into the second injection flow path 32.
 なお、上述のように、本実施の形態で示した第1逆止弁40及び第2逆止弁50は、一例である。最後に、図10及び図11にて、第1逆止弁40の別の一例及び第2逆止弁50の別の一例を紹介する。 Note that, as described above, the first check valve 40 and the second check valve 50 shown in the present embodiment are examples. Finally, another example of the first check valve 40 and another example of the second check valve 50 are introduced in FIGS. 10 and 11.
 図10及び図11は、本発明の実施の形態に係るロータリ圧縮機の別の一例における第1インジェクション流路及び第2インジェクション流路周辺を示す要部拡大図である。
 なお、図10は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が閉じられ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が閉じられた状態を示している。また、図11は、第1インジェクション流路31に設けられた第1逆止弁40内の流路が開かれ、第2インジェクション流路32に設けられた第2逆止弁50内の流路が開かれた状態を示している。
FIGS. 10 and 11 are enlarged views of the main part showing the vicinity of the first injection flow path and the second injection flow path in another example of the rotary compressor according to the embodiment of the present invention.
In FIG. 10, the flow path in the first check valve 40 provided in the first injection flow path 31 is closed, and the flow path in the second check valve 50 provided in the second injection flow path 32. Indicates a closed state. FIG. 11 shows a flow path in the first check valve 40 provided in the first injection flow path 31 and a flow path in the second check valve 50 provided in the second injection flow path 32. Indicates the opened state.
 図10及び図11に示す第1逆止弁40は、図5及び図6で説明した構成に加えて、スプリング47を備えている。スプリング47は、第1逆止弁40内の流路を閉じる方向に、換言すると第1インジェクション流路31を閉じる方向に、第1弁体44を付勢している。すなわち、スプリング47は、第1圧縮室14aの冷媒の圧力が第1弁体44に作用する方向に、第1弁体44を付勢している。このため、図10及び図11に示す第1逆止弁40は、インジェクション配管6から供給される冷媒の圧力が第1圧縮室14aの冷媒の圧力に対してスプリング47の付勢力に対応した分だけ高くなった際、第1インジェクション流路31を開くこととなる。 The first check valve 40 shown in FIGS. 10 and 11 includes a spring 47 in addition to the configuration described in FIGS. 5 and 6. The spring 47 biases the first valve body 44 in a direction in which the flow path in the first check valve 40 is closed, in other words, in a direction in which the first injection flow path 31 is closed. That is, the spring 47 urges the first valve body 44 in a direction in which the pressure of the refrigerant in the first compression chamber 14 a acts on the first valve body 44. For this reason, in the first check valve 40 shown in FIGS. 10 and 11, the pressure of the refrigerant supplied from the injection pipe 6 corresponds to the urging force of the spring 47 with respect to the pressure of the refrigerant in the first compression chamber 14a. When it becomes only high, the 1st injection flow path 31 will be opened.
 同様に、図10及び図11に示す第2逆止弁50は、図5及び図6で説明した構成に加えて、スプリング57を備えている。スプリング57は、第2逆止弁50内の流路を閉じる方向に、換言すると第2インジェクション流路32を閉じる方向に、第2弁体54を付勢している。すなわち、スプリング57は、第2圧縮室15aの冷媒の圧力が第2弁体54に作用する方向に、第2弁体54を付勢している。このため、図10及び図11に示す第2逆止弁50は、インジェクション配管6から供給される冷媒の圧力が第2圧縮室15aの冷媒の圧力に対してスプリング57の付勢力に対応した分だけ高くなった際、第2インジェクション流路32を開くこととなる。 Similarly, the second check valve 50 shown in FIGS. 10 and 11 includes a spring 57 in addition to the configuration described in FIGS. 5 and 6. The spring 57 urges the second valve body 54 in a direction in which the flow path in the second check valve 50 is closed, in other words, in a direction in which the second injection flow path 32 is closed. That is, the spring 57 urges the second valve body 54 in a direction in which the pressure of the refrigerant in the second compression chamber 15 a acts on the second valve body 54. For this reason, in the second check valve 50 shown in FIGS. 10 and 11, the pressure of the refrigerant supplied from the injection pipe 6 corresponds to the urging force of the spring 57 with respect to the pressure of the refrigerant in the second compression chamber 15a. When it becomes only high, the 2nd injection flow path 32 will be opened.
 以上、本実施の形態に係るロータリ圧縮機1は、密閉容器8と、該密閉容器8に収容されたロータリ型の圧縮機構部11と、を備えている。圧縮機構部11は、第1吸入口25aと、第1圧縮室14aと、第2吸入口25bと、第2圧縮室15aと、第1インジェクション流路31と、第2インジェクション流路32と、第1逆止弁40と、第2逆止弁50と、を備えている。第1圧縮室14aは、第1吸入口25aから吸入した冷媒を圧縮する圧縮室である。第2圧縮室15aは、第2吸入口25bから吸入した冷媒を圧縮する圧縮室である。第1インジェクション流路31は、第1吸入口25aとは異なる位置で第1圧縮室14aと連通し、第1圧縮室14aに冷媒をインジェクションする流路である。第2インジェクション流路32は、第2吸入口25bとは異なる位置で第2圧縮室15aと連通し、第2圧縮室15aに冷媒をインジェクションする流路である。第1逆止弁40は、第1インジェクション流路31に設けられ、第1圧縮室14aから第1インジェクション流路31に流出する冷媒の流れを規制する逆止弁である。第2逆止弁50は、第2インジェクション流路32に設けられ、第2圧縮室15aから第2インジェクション流路32に流出する冷媒の流れを規制する逆止弁である。第1逆止弁40は、往復動自在に設けられ、第1インジェクション流路31を開閉する第1弁体44を有している。この第1弁体44には、第1インジェクション流路31において該第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力が、第1インジェクション流路31を開く方向に作用する。また、この第1弁体44には、第1圧縮室14aの冷媒の圧力が、第1インジェクション流路31を閉じる方向に作用する。第2逆止弁50は、往復動自在に設けられ、第2インジェクション流路32を開閉する第2弁体54を有している。この第2弁体54には、第2インジェクション流路32において該第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力が、第2インジェクション流路32を開く方向に作用する。また、この第2弁体54には、第2圧縮室15aの冷媒の圧力が、第2インジェクション流路32を閉じる方向に作用する。 As described above, the rotary compressor 1 according to the present embodiment includes the sealed container 8 and the rotary-type compression mechanism unit 11 accommodated in the sealed container 8. The compression mechanism unit 11 includes a first suction port 25a, a first compression chamber 14a, a second suction port 25b, a second compression chamber 15a, a first injection flow channel 31, a second injection flow channel 32, A first check valve 40 and a second check valve 50 are provided. The first compression chamber 14a is a compression chamber that compresses the refrigerant sucked from the first suction port 25a. The second compression chamber 15a is a compression chamber that compresses the refrigerant sucked from the second suction port 25b. The first injection flow path 31 is a flow path that communicates with the first compression chamber 14a at a position different from the first suction port 25a and injects refrigerant into the first compression chamber 14a. The second injection flow path 32 is a flow path that communicates with the second compression chamber 15a at a position different from the second suction port 25b and injects refrigerant into the second compression chamber 15a. The first check valve 40 is a check valve that is provided in the first injection flow path 31 and regulates the flow of the refrigerant that flows out from the first compression chamber 14 a to the first injection flow path 31. The second check valve 50 is a check valve that is provided in the second injection flow path 32 and restricts the flow of the refrigerant flowing out from the second compression chamber 15a to the second injection flow path 32. The first check valve 40 is provided so as to freely reciprocate and has a first valve body 44 that opens and closes the first injection flow path 31. In the first valve body 44, the pressure of the refrigerant existing on the side farther from the first compression chamber 14 a than the first valve body 44 in the first injection flow path 31 opens the first injection flow path 31. Act on. Further, the pressure of the refrigerant in the first compression chamber 14 a acts on the first valve body 44 in the direction in which the first injection flow path 31 is closed. The second check valve 50 is provided so as to freely reciprocate, and has a second valve body 54 that opens and closes the second injection flow path 32. In the second valve body 54, the pressure of the refrigerant existing on the side farther from the second compression chamber 15 a than the second valve body 54 in the second injection flow path 32 opens the second injection flow path 32. Act on. Further, the pressure of the refrigerant in the second compression chamber 15a acts on the second valve body 54 in the direction in which the second injection flow path 32 is closed.
 このように構成されたロータリ圧縮機1は、第1圧縮室14a内の冷媒の圧力が第1インジェクション流路31において第1弁体44よりも第1圧縮室14aから離れた側に存在する冷媒の圧力よりも高い状態になると、第1インジェクション流路31と第1圧縮室14aとが連通しない状態となる。また、このように構成されたロータリ圧縮機1においては、第2圧縮室15a内の冷媒の圧力が第2インジェクション流路32において第2弁体54よりも第2圧縮室15aから離れた側に存在する冷媒の圧力よりも高い状態になると、第2インジェクション流路32と第2圧縮室15aとが連通しない状態となる。したがって、本実施の形態に係るロータリ圧縮機1は、第1圧縮室14a及び第2圧縮室15aからの冷媒漏れを従来よりも抑制できる。
 また、本実施の形態に係るロータリ圧縮機1は、第1逆止弁40及び第2逆止弁50を圧縮機構部11に備えているので、死容積を低減することもできる。
 したがって、本実施の形態に係るロータリ圧縮機1は、従来よりも圧縮性能が向上する。
The rotary compressor 1 configured as described above is a refrigerant in which the pressure of the refrigerant in the first compression chamber 14a exists on the side farther from the first compression chamber 14a than the first valve body 44 in the first injection flow path 31. When the pressure is higher than the first pressure, the first injection flow path 31 and the first compression chamber 14a are not in communication with each other. Further, in the rotary compressor 1 configured in this way, the pressure of the refrigerant in the second compression chamber 15a is on the side farther from the second compression chamber 15a than the second valve body 54 in the second injection flow path 32. When the pressure is higher than the pressure of the existing refrigerant, the second injection flow path 32 and the second compression chamber 15a are not communicated with each other. Therefore, the rotary compressor 1 according to the present embodiment can suppress refrigerant leakage from the first compression chamber 14a and the second compression chamber 15a as compared with the conventional case.
Moreover, since the rotary compressor 1 which concerns on this Embodiment is equipped with the 1st check valve 40 and the 2nd check valve 50 in the compression mechanism part 11, it can also reduce dead volume.
Therefore, the rotary compressor 1 according to the present embodiment has improved compression performance than before.
 ここで、第1圧縮室14a及び第2圧縮室15aから冷媒が漏れ出した際、漏れ出した冷媒によって、第1圧縮室14a内及び第2圧縮室15a内の冷凍機油も、第1圧縮室14a及び第2圧縮室15aから漏れ出す。このため、第1圧縮室14a及び第2圧縮室15aからの冷媒漏れを従来よりも抑制できる本実施の形態に係るロータリ圧縮機1は、第1圧縮室14a及び第2圧縮室15aから冷凍機油が漏れ出すことも従来より抑制できる。したがって、本実施の形態に係るロータリ圧縮機1は、圧縮機構部11の各摺動部において冷凍機油が不足することも抑制でき、圧縮機構部11の故障を従来より抑制することもできる。 Here, when the refrigerant leaks from the first compression chamber 14a and the second compression chamber 15a, the refrigerating machine oil in the first compression chamber 14a and the second compression chamber 15a is also caused by the leaked refrigerant. 14a and the second compression chamber 15a leak out. For this reason, the rotary compressor 1 which concerns on this Embodiment which can suppress the refrigerant | coolant leakage from the 1st compression chamber 14a and the 2nd compression chamber 15a than before is freezing machine oil from the 1st compression chamber 14a and the 2nd compression chamber 15a. Can also be prevented from leaking out. Therefore, the rotary compressor 1 according to the present embodiment can also suppress a shortage of refrigerating machine oil in each sliding portion of the compression mechanism unit 11, and can also suppress a failure of the compression mechanism unit 11 from the prior art.
 1 ロータリ圧縮機、2 蒸発器、3 凝縮器、4 膨張装置、5 インジェクション配管、6 インジェクション配管、7 吸入マフラ、8 密閉容器、9 モータ、9a 固定子、9b 回転子、10 クランクシャフト、10a 第1偏心部、10b 第2偏心部、11 圧縮機構部、12 上軸受、13 下軸受、14 上シリンダ、14a 第1圧縮室、15 下シリンダ、15a 第2圧縮室、16a 第1ピストン、16b 第2ピストン、17 中間板、18 上吐出マフラ、19 下吐出マフラ、20 油分離器、21 吐出配管、24a 第1ベーン、24b 第2ベーン、25a 第1吸入口、25b 第2吸入口、26a 第1吐出口、26b 第2吐出口、27a 第1吸入配管、27b 第2吸入配管、31 第1インジェクション流路、31a 逆止弁設置部、31b 凹部、31c 連通孔、32 第2インジェクション流路、32a 逆止弁設置部、32b 凹部、32c 連通孔、40 第1逆止弁、41 ケーシング、42 端部、42a 貫通孔、43 端部、43a 貫通孔、44 第1弁体、44a 第1貫通孔、45 第1受圧部、46 第2受圧部、47 スプリング、50 第2逆止弁、51 ケーシング、52 端部、52a 貫通孔、53 端部、53a 貫通孔、54 第2弁体、54a 第2貫通孔、55 第3受圧部、56 第4受圧部、57 スプリング、100 冷凍サイクル装置、201 ロータリ圧縮機(従来)、206 インジェクション配管(従来)、212 上軸受(従来)、213 下軸受(従来)、214 上シリンダ(従来)、214a 第1圧縮室(従来)、215 下シリンダ(従来)、215a 第2圧縮室(従来)、217 中間板(従来)、231 第1インジェクション流路(従来)、231b 凹部(従来)、231c 連通孔(従来)、232 第2インジェクション流路(従来)、232b 凹部(従来)、232c 連通孔(従来)、240 第1逆止弁(従来)、250 第2逆止弁(従来)。 1 Rotary compressor, 2 evaporator, 3 condenser, 4 expansion device, 5 injection piping, 6 injection piping, 7 suction muffler, 8 sealed container, 9 motor, 9a stator, 9b rotor, 10 crankshaft, 10a second 1 eccentric part, 10b second eccentric part, 11 compression mechanism part, 12 upper bearing, 13 lower bearing, 14 upper cylinder, 14a first compression chamber, 15 lower cylinder, 15a second compression chamber, 16a first piston, 16b first 2 pistons, 17 intermediate plate, 18 upper discharge muffler, 19 lower discharge muffler, 20 oil separator, 21 discharge pipe, 24a first vane, 24b second vane, 25a first suction port, 25b second suction port, 26a second 1 discharge port, 26b 2nd discharge port, 27a 1st suction piping, 27b 2nd suction piping, 31 First injection flow path, 31a check valve installation part, 31b recess, 31c communication hole, 32 second injection flow path, 32a check valve installation part, 32b recess, 32c communication hole, 40 first check valve, 41 casing 42 end portion, 42a through hole, 43 end portion, 43a through hole, 44 first valve body, 44a first through hole, 45 first pressure receiving portion, 46 second pressure receiving portion, 47 spring, 50 second check valve , 51 casing, 52 end, 52a through hole, 53 end, 53a through hole, 54 second valve body, 54a second through hole, 55 third pressure receiving part, 56 fourth pressure receiving part, 57 spring, 100 refrigeration cycle Equipment, 201 Rotary compressor (conventional), 206 Injection piping (conventional), 212 Upper bearing (conventional), 213 Lower bearing (subordinate) ), 214 Upper cylinder (conventional), 214a First compression chamber (conventional), 215 Lower cylinder (conventional), 215a Second compression chamber (conventional), 217 Intermediate plate (conventional), 231 First injection flow path (conventional) 231b recess (conventional), 231c communication hole (conventional), 232 second injection flow path (conventional), 232b recess (conventional), 232c communication hole (conventional), 240 first check valve (conventional), 250 second Check valve (conventional).

Claims (5)

  1.  密閉容器と、
     該密閉容器に収容されたロータリ型の圧縮機構部と、
     を備え、
     前記圧縮機構部は、
     第1吸入口と、
     前記第1吸入口から吸入した冷媒を圧縮する第1圧縮室と、
     第2吸入口と、
     前記第2吸入口から吸入した冷媒を圧縮する第2圧縮室と、
     前記第1吸入口とは異なる位置で前記第1圧縮室と連通し、前記第1圧縮室に冷媒をインジェクションする第1インジェクション流路と、
     前記第2吸入口とは異なる位置で前記第2圧縮室と連通し、前記第2圧縮室に冷媒をインジェクションする第2インジェクション流路と、
     前記第1インジェクション流路に設けられ、前記第1圧縮室から前記第1インジェクション流路に流出する冷媒の流れを規制する第1逆止弁と、
     前記第2インジェクション流路に設けられ、前記第2圧縮室から前記第2インジェクション流路に流出する冷媒の流れを規制する第2逆止弁と、
     を備え、
     前記第1逆止弁は、往復動自在に設けられ、前記第1インジェクション流路を開閉する第1弁体を有し、
     該第1弁体には、
     前記第1インジェクション流路において該第1弁体よりも前記第1圧縮室から離れた側に存在する冷媒の圧力が、前記第1インジェクション流路を開く方向に作用し、
     前記第1圧縮室の冷媒の圧力が、前記第1インジェクション流路を閉じる方向に作用する構成であり、
     前記第2逆止弁は、往復動自在に設けられ、前記第2インジェクション流路を開閉する第2弁体を有し、
     該第2弁体には、
     前記第2インジェクション流路において該第2弁体よりも前記第2圧縮室から離れた側に存在する冷媒の圧力が、前記第2インジェクション流路を開く方向に作用し、
     前記第2圧縮室の冷媒の圧力が、前記第2インジェクション流路を閉じる方向に作用する構成であるロータリ圧縮機。
    A sealed container;
    A rotary compression mechanism housed in the sealed container;
    With
    The compression mechanism is
    A first inlet,
    A first compression chamber for compressing refrigerant sucked from the first suction port;
    A second inlet,
    A second compression chamber for compressing the refrigerant sucked from the second suction port;
    A first injection flow path communicating with the first compression chamber at a position different from the first suction port, and injecting a refrigerant into the first compression chamber;
    A second injection flow path communicating with the second compression chamber at a position different from the second suction port and injecting a refrigerant into the second compression chamber;
    A first check valve which is provided in the first injection flow path and regulates the flow of the refrigerant flowing out from the first compression chamber to the first injection flow path;
    A second check valve which is provided in the second injection flow path and regulates the flow of the refrigerant flowing out from the second compression chamber to the second injection flow path;
    With
    The first check valve has a first valve body that is reciprocally movable and opens and closes the first injection flow path.
    In the first valve body,
    In the first injection flow path, the pressure of the refrigerant present on the side farther from the first compression chamber than the first valve body acts in the direction of opening the first injection flow path,
    The refrigerant pressure in the first compression chamber is configured to act in the direction of closing the first injection flow path,
    The second check valve has a second valve body that is reciprocally movable and opens and closes the second injection flow path.
    In the second valve body,
    In the second injection flow path, the pressure of the refrigerant existing on the side farther from the second compression chamber than the second valve body acts in the direction of opening the second injection flow path,
    The rotary compressor which is the structure which the pressure of the refrigerant | coolant of a said 2nd compression chamber acts in the direction which closes the said 2nd injection flow path.
  2.  前記第1弁体は、
     前記第1インジェクション流路において該第1弁体よりも前記第1圧縮室から離れた側に存在する冷媒の圧力を受ける第1受圧部の面積が、前記第1圧縮室の冷媒の圧力を受ける第2受圧部の面積よりも大きい請求項1に記載のロータリ圧縮機。
    The first valve body is
    The area of the first pressure receiving portion that receives the pressure of the refrigerant that exists on the side farther from the first compression chamber than the first valve body in the first injection flow path receives the pressure of the refrigerant in the first compression chamber. The rotary compressor according to claim 1, wherein the rotary compressor is larger than an area of the second pressure receiving portion.
  3.  前記第1弁体は、該第1弁体の往復動方向に貫通する第1貫通孔が形成され、
     該第1貫通孔は、前記第1圧縮室に向かうにしたがって直径が小さくなっている請求項2に記載のロータリ圧縮機。
    The first valve body has a first through hole penetrating in a reciprocating direction of the first valve body,
    The rotary compressor according to claim 2, wherein the first through hole has a diameter that decreases toward the first compression chamber.
  4.  前記第2弁体は、
     前記第2インジェクション流路において該第2弁体よりも前記第2圧縮室から離れた側に存在する冷媒の圧力を受ける第3受圧部の面積が、前記第2圧縮室の冷媒の圧力を受ける第4受圧部の面積よりも大きい請求項1~請求項3のいずれか一項に記載のロータリ圧縮機。
    The second valve body is
    The area of the third pressure receiving portion that receives the pressure of the refrigerant that is present on the side farther from the second compression chamber than the second valve body in the second injection flow path receives the pressure of the refrigerant in the second compression chamber. The rotary compressor according to any one of claims 1 to 3, wherein the rotary compressor is larger than an area of the fourth pressure receiving portion.
  5.  前記第2弁体は、該第2弁体の往復動方向に貫通する第2貫通孔が形成され、
     該第2貫通孔は、前記第2圧縮室に向かうにしたがって直径が小さくなっている請求項4に記載のロータリ圧縮機。
    The second valve body is formed with a second through hole penetrating in the reciprocating direction of the second valve body,
    The rotary compressor according to claim 4, wherein the second through hole has a diameter that decreases toward the second compression chamber.
PCT/JP2018/008815 2018-03-07 2018-03-07 Rotary compressor WO2019171508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880090508.1A CN111788391B (en) 2018-03-07 2018-03-07 Rotary compressor
JP2020504564A JP6910534B2 (en) 2018-03-07 2018-03-07 Rotary compressor
PCT/JP2018/008815 WO2019171508A1 (en) 2018-03-07 2018-03-07 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008815 WO2019171508A1 (en) 2018-03-07 2018-03-07 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2019171508A1 true WO2019171508A1 (en) 2019-09-12

Family

ID=67845597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008815 WO2019171508A1 (en) 2018-03-07 2018-03-07 Rotary compressor

Country Status (3)

Country Link
JP (1) JP6910534B2 (en)
CN (1) CN111788391B (en)
WO (1) WO2019171508A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037972A1 (en) * 2021-09-10 2023-03-16 ダイキン工業株式会社 Compressor, and air conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133368A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Two-stage compression refrigerator provided with check valve device
JPH1113664A (en) * 1997-06-27 1999-01-19 Daikin Ind Ltd Rotary compressor
JPH11107950A (en) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd Injection device of compressor
JPH11304037A (en) * 1998-04-22 1999-11-05 Aisin Seiki Co Ltd Valve
WO2018003016A1 (en) * 2016-06-28 2018-01-04 三菱電機株式会社 Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202117924U (en) * 2011-06-13 2012-01-18 广东美芝制冷设备有限公司 Refrigerant jetting type rotary compressor
CN205101227U (en) * 2015-10-26 2016-03-23 艾默生环境优化技术(苏州)有限公司 Rotary compression mechanism and compressor and system comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133368A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Two-stage compression refrigerator provided with check valve device
JPH1113664A (en) * 1997-06-27 1999-01-19 Daikin Ind Ltd Rotary compressor
JPH11107950A (en) * 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd Injection device of compressor
JPH11304037A (en) * 1998-04-22 1999-11-05 Aisin Seiki Co Ltd Valve
WO2018003016A1 (en) * 2016-06-28 2018-01-04 三菱電機株式会社 Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037972A1 (en) * 2021-09-10 2023-03-16 ダイキン工業株式会社 Compressor, and air conditioning device
JP2023040761A (en) * 2021-09-10 2023-03-23 ダイキン工業株式会社 Compressor and air conditioner

Also Published As

Publication number Publication date
CN111788391A (en) 2020-10-16
JP6910534B2 (en) 2021-07-28
JPWO2019171508A1 (en) 2020-12-10
CN111788391B (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP5586537B2 (en) Rotary two-stage compressor
KR20070012547A (en) Rotary compressor
JP2012211520A (en) Screw compressor and chiller unit using the same
JP6067477B2 (en) Cryogenic refrigerator
JP2006070892A (en) Intake muffler for compressor
CN104806522A (en) Rotating compressor and refrigeration device with same
JP6071190B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
WO2019202976A1 (en) Hermetic compressor and refrigeration cycle apparatus
KR101056882B1 (en) Scroll compressor
WO2019171508A1 (en) Rotary compressor
JP6177741B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2005509802A (en) Hermetic compressor
JP6267360B2 (en) Rotary compressor and refrigeration cycle apparatus
CN111065826B (en) Hermetic compressor and refrigeration cycle device
US6336336B1 (en) Rotary piston compressor and refrigerating equipment
KR101044872B1 (en) Scroll compressor
KR102547593B1 (en) Variable displacement swash plate type compressor
WO2022269752A1 (en) Rotary compressor and refrigeration cycle device
KR102547594B1 (en) Variable displacement swash plate type compressor
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
CN112412785B (en) Compressor and refrigeration cycle device
JP6007030B2 (en) Rotary compressor and refrigeration cycle equipment
KR101463826B1 (en) Rotary compressor
JP4024056B2 (en) Rotary compressor
JP5595324B2 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908498

Country of ref document: EP

Kind code of ref document: A1