WO2023037801A1 - 自動分析支援ロボット及び自動分析システム - Google Patents

自動分析支援ロボット及び自動分析システム Download PDF

Info

Publication number
WO2023037801A1
WO2023037801A1 PCT/JP2022/029848 JP2022029848W WO2023037801A1 WO 2023037801 A1 WO2023037801 A1 WO 2023037801A1 JP 2022029848 W JP2022029848 W JP 2022029848W WO 2023037801 A1 WO2023037801 A1 WO 2023037801A1
Authority
WO
WIPO (PCT)
Prior art keywords
computer
automatic analysis
detergent
support robot
analysis module
Prior art date
Application number
PCT/JP2022/029848
Other languages
English (en)
French (fr)
Inventor
光 滝澤
健太 今井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to CN202280058416.1A priority Critical patent/CN117881969A/zh
Publication of WO2023037801A1 publication Critical patent/WO2023037801A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present invention relates to an automatic analysis support robot and an automatic analysis system that support automatic analysis of specimens (biological samples) by an automatic analyzer for clinical testing.
  • Patent Document 1 discloses a transport robot that transports liquid with low vibration in an inspection room where people enter and exit.
  • Patent Literature 2 discloses the configuration and operation of a robot arm that transports sample containers and racks between a plurality of measuring devices.
  • Patent Document 3 in a sample pretreatment apparatus, a sample pretreatment apparatus that transports a sample is determined from a plurality of sample pretreatment apparatuses according to the contents of a measurement request, and a robot arm is attached to the determined sample pretreatment apparatus. Techniques are disclosed for transporting specimens using.
  • automatic analyzers require various types of maintenance to ensure that inspections and analyses are performed properly.
  • the number of maintenance items tends to increase as the number of items automatically performed by automatic analyzers increases, and it is also important to reduce the user's maintenance burden.
  • An object of the present invention is to provide an automatic analysis support robot and an automatic analysis system that can reduce the maintenance burden of automatic analysis equipment.
  • the present invention provides an automatic analysis support robot for inspecting an analysis module that automatically analyzes a biological sample, comprising a vehicle body, a camera mounted on the vehicle body, and the analysis module.
  • a communication device for direct or indirect communication, and a computer for controlling the vehicle body and the camera, wherein the computer moves to a predetermined working position to face an inspection object provided in the analysis module.
  • an automatic analysis support robot that controls a vehicle body, photographs the inspection target with the camera, processes the image of the inspection target, and calculates management data relating to the inspection target.
  • FIG. 1 is a side view of an automatic analysis support robot according to one embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a method for opening and closing the opening/closing cover of the analysis module by the automatic analysis support robot according to one embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a method for opening and closing the opening/closing cover of the analysis module by the automatic analysis support robot according to one embodiment of the present invention; Explanatory diagram of the detergent liquid surface detection operation of the automatic analysis support robot according to one embodiment of the present invention. Explanatory diagram of the detergent liquid surface detection operation of the automatic analysis support robot according to one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a method for calculating the actual amount of detergent remaining in the automatic analysis support robot according to one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a method for calculating the actual amount of detergent remaining in the automatic analysis support robot according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a display screen of the amount of detergent remaining inspected by the automatic analysis support robot according to one embodiment of the present invention
  • FIG. 4 is an explanatory diagram of a method for reflecting the actual amount of detergent remaining inspected by the automatic analysis support robot according to one embodiment of the present invention to the management data of the computer of the analysis module
  • Explanatory diagram of the pump pressure reading operation of the automatic analysis support robot according to one embodiment of the present invention Explanatory diagram of the pump pressure reading operation of the automatic analysis support robot according to one embodiment of the present invention.
  • FIG. 4 is a diagram showing chronological changes in pump pressure over a certain period of time calculated from images captured by an automatic analysis support robot according to an embodiment of the present invention
  • FIG. 4 is a diagram showing chronological changes in pump pressure over a certain period of time calculated from images captured by an automatic analysis support robot according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of a display screen of pump pressures inspected by the automatic analysis support robot according to one embodiment of the present invention
  • FIG. 4 is a diagram showing an example of a display of a trend of pump pressures inspected by the automatic analysis support robot according to one embodiment of the present invention
  • FIG. 1 is a schematic diagram showing the entire automatic analysis system according to one embodiment of the present invention.
  • the automatic analysis system shown in the figure includes automatic analyzers 10A and 10B, an automatic analysis support robot 20 (hereinafter referred to as robot 20), a computer 30, and a communication device 40.
  • robot 20 an automatic analysis support robot 20
  • computer 30 a communication device 40.
  • the automatic analyzer 10A is a modular automatic analyzer consisting of a plurality of analysis modules 11 and 12, and the automatic analyzer 10B is a standalone automatic analyzer consisting of a single analysis module 11.
  • the analysis modules 11 and 12 are devices for automatically analyzing (for example, measuring specific components) samples (biological samples such as blood and urine).
  • An analysis module may be called an automatic analyzer, but in this embodiment, in order to distinguish between the automatic analyzers 10A and 10B, each automatic analyzer constituting the automatic analyzers 10A and 10B is described as an analysis module.
  • the analysis module 11 is, for example, a biochemical automatic analyzer
  • the analysis module 12 is, for example, an immunological automatic analyzer.
  • the types and combinations of analysis modules that constitute the automatic analyzers 10A and 10B can be changed as appropriate.
  • the robot 20 is an autonomous robot that inspects the automatic analyzers 10A and 10B and supports automatic analysis by the automatic analyzers 10A and 10B.
  • the computer 30 is a control device that controls the robot 20, and the communication device 40 is a device that directly or indirectly communicates with the automatic analyzers 10A and 10B (strictly speaking, their computers).
  • the communication device 40 may be configured to communicate with the automatic analyzers 10A and 10B by wire communication, but preferably has a configuration to communicate with the dynamic analyzers 10A and 10B by wireless communication.
  • the computer 30 and the communication device 40 are mounted on the robot 20 will be described.
  • the analysis modules 11 and 12 and the robot 20 will be described later, but here an outline of the entire automatic analysis system will be described with reference to FIG.
  • the automatic analyzers 10A and 10B are arranged inside an examination room L, and a predetermined space is provided around them so that the user can easily operate, maintain, and pass through the automatic analyzers 10A and 10B. secured and placed.
  • This space also serves as a passage along which the robot 20 runs.
  • a default work place Y where the robot 20 works is set in each of the analysis modules 11 and 12 .
  • the work place Y is, for example, a position facing the pressure gauge 18 (FIG. 2A) and the detergent container 17 (FIG. 2A) in the analysis modules 11 and 12 with the opening/closing cover 19 (FIG. 2A) interposed therebetween.
  • a waiting place X for the robot 20 is set.
  • the position of the waiting place X is set so as not to interfere with the actions of the user (human), avoiding the assumed flow line of the user.
  • the robot 20 waits at the waiting place X except when performing maintenance.
  • a charger (not shown) is installed at the waiting place X, and the battery (not shown) of the robot 20 is charged while waiting at the waiting place X.
  • the waiting place X and each work place Y are connected by a predetermined route R, and the robot 20 moves between the waiting place X and the work place Y along the predetermined route R.
  • the route R can employ a configuration in which a physical route such as a rail, a magnetic line, or a white line is drawn, and the robot 20 moves along the route.
  • the positional relationship between the standby place X and each work place Y may be stored in the memory of the computer 30 as traveling direction and distance data, and the robot 20 may be moved by the computer 30 based on the data.
  • the position coordinates of the standby place X and each work place Y may be stored in the memory of the computer 30, and the robot 20 may travel between specified coordinates in the local coordinate system of the inspection room L.
  • a stand 51 is installed at the standby location X, and a console 50 is provided on the stand 51.
  • the console 50 is an operation terminal operated by a user, and various computers equipped with (or externally attached to) an input device, a monitor, and a communication device such as a tablet PC, a notebook PC, and a desktop PC can be used.
  • the console 50 is configured to be wirelessly communicable with the robot 20 .
  • the communication device provided in the console 50 directly or indirectly communicates with the communication device 40 provided in the robot 20 by a communication method such as Wi-Fi (registered trademark), ZigBee (registered trademark), or Bluetooth (registered trademark). It can be configured to exchange data.
  • the results of maintenance performed by the robot 20 can be viewed on the monitor of the console 50. Further, the type of maintenance performed by the robot 20, the timing of performing maintenance, and the like can be set on the console 50 for each of the analysis modules 11 and 12. FIG. According to this setting, the robot 20 moves to the work place Y of the target analysis module and performs the set maintenance according to the preset procedure. As for the timing of the inspection by the robot 20, for example, in addition to a set time interval or set time, the inspection can be performed when the user manually instructs.
  • each of the automatic analyzers 10A and 10B is equipped with a computer 13 and a communication device 14.
  • the computer 13 is both an operation terminal for operating the automatic analyzer and a controller for controlling the corresponding automatic analyzer.
  • the computer 13 is equipped with (or connected to) a communication device 14 .
  • the computer 13 is configured to be able to wirelessly communicate with the robot 20 via the communication device 14 .
  • the results of sample analysis by the analysis module can be viewed on the monitor of the computer 13, and the computer 13 can be used to set an analysis request for the automatic analyzer.
  • the type, number, and layout of the automatic analyzers, analysis modules, robots 20, and waiting areas X placed in the examination room L are not limited to the example in FIG.
  • data such as positions and types of analysis modules to be maintained by the robot 20 are registered in advance.
  • FIG. 2A is a front view schematically showing the appearance of an analysis module provided in an automatic analysis system according to one embodiment of the present invention
  • FIG. 2B is an enlarged view of the IIB section in FIG. 2A
  • FIG. 2C is the analysis module of FIG. 2A. is a diagram showing a modification of the cover of the body.
  • the analysis module 11 shown in FIG. 2A dispenses the sample and the reagent into a plurality of reaction containers (not shown) using the dispensing device 15 or the like, and measures the liquid resulting from the reaction between the sample and the reagent.
  • the analysis module 11 is equipped with a waste liquid aspirator 16 for cleaning the reaction container in the sample analysis process.
  • the waste liquid suction device 16 and the dispensing device 15 have the same configuration, and the nozzles 15a and 16a are moved by turning the arm to suck and discharge the liquid with the nozzles 15a and 16a.
  • a detergent cleaning liquid
  • a detergent container 17 containing detergent is set inside the body of the analysis module 11 .
  • the detergent container 17 is made of a material that transmits visible light, so that the detergent inside can be seen through.
  • the analysis module 11 also includes a plurality of sensors for adjusting the suction power (vacuum pressure) of the waste liquid and the discharge power (liquid pressure) of the detergent of the waste liquid suction device 16 for washing the nozzle 15a of the pipetting device 15 and the reaction container.
  • a system pump (not shown) is provided. These pumps have many moving parts such as gears, bearings, diaphragm valves, etc. If these moving parts wear out or deteriorate, the required pump pressure cannot be output. The pump pressure affects the amount of pipetted, etc., and if the precision drops, it becomes impossible to properly analyze the sample.
  • the analysis module 11 is equipped with a pressure gauge 18 for each pump for the purpose of allowing the user to check the pump pressure.
  • each pressure gauge 18 has an indicator 18a that indicates the measured value of pressure, and the user checks the pump pressure by reading the scale indicated by the indicator 18a.
  • These pressure gauges 18 are also arranged inside the body of the analysis module 11 .
  • the detergent container 17 is a device that requires replacement by the user
  • the pressure gauge 18 is a device that requires visual confirmation by the user.
  • a plurality of detergent containers 17 and pressure gauges 18 are provided in each analysis module 11 .
  • the detergent container 17 and the pressure gauge 18 are inspected by the robot 20 .
  • the front surface of the body of the analysis module 11 is covered with an opaque opening/closing cover 19, and the detergent container 17 and the pressure gauge 18 to be inspected are covered with the opening/closing cover 19.
  • the detergent container By opening the opening/closing cover 19, the detergent container can be opened. 17 and pressure gauge 18 are accessible.
  • the opening/closing cover 19 is a replacement of the original cover of the analysis module 11, and as indicated by the arrows in FIG. It is configured to open and close.
  • the opening/closing cover 19 is provided with a user handle 19A on which the user holds a hand, and a robot handle 19B on which the hand 23a of the robot 20 is held.
  • the user handle 19A is positioned on the upper side of the opening/closing cover 19 on the opposite side of the rotating shaft.
  • the robot handle 19B is located on the opposite side of the rotating shaft in the lower part of the opening/closing cover 19. As shown in FIG.
  • the robot handle 19B has a configuration in which a part of the opening of a depression provided in the opening/closing cover 19 is closed with a plate-like handle 19b.
  • the front surface of the analysis module 11 may be covered with a partially transparent fixed cover 19' as shown in FIG. 2C.
  • the cover 19' has a window 19C fitted with a transparent member such as acrylic or glass, covers the detergent container 17 and the pressure gauge 18, and allows the detergent container 17 and pressure from the work place Y to pass through the window 19C. A total of 18 are visible.
  • the cover 19' may be made entirely of a transparent member such as acrylic.
  • the cover 19 ′ may be detachable, or may be configured to open and close like the opening/closing cover 19 . When the cover 19' is detachable, the user handle 19A and the robot handle 19B of the cover 19' can be omitted.
  • the analysis module 11 has been described above, but the analysis module 12 also has a detergent and a pump, and the detergent container 17 and the pressure gauge 18 are laid out behind the opening/closing cover 19 or the cover 19' for easy access by the user. The point is the same.
  • the analysis modules 11 and 12 cannot perform normal analysis when the detergent runs out, it is often configured to stop the analysis operation when the detergent required for the analysis cannot be supplied. If the analysis operation stops abruptly, the samples and reagents being analyzed will be wasted.
  • the computer 13 calculates the remaining amount of detergent from the amount of detergent consumed based on the number of times the analysis is performed for each detergent container 17 of the analysis modules 11 and 12, and when the remaining amount of detergent falls below a predetermined value, the user A function of recommending replacement of the detergent container 17 may be provided.
  • the remaining amount of detergent calculated by this function is an estimated value, and there is an error in the actual remaining amount of detergent. must be underestimated. Therefore, if the remaining amount of detergent calculated by the computer 13 is excessively smaller than the actual amount of detergent, a surplus of detergent is generated, which increases the waste of the detergent and its purchase cost, and also increases the environmental cost associated with the disposal of the detergent. It is conceivable to collect surplus detergents for secondary use, but in this case there is a concern that the quality of the detergents will deteriorate and affect the accuracy of analysis. Therefore, it is important to accurately grasp the remaining amount of detergent in real time and use up the detergent.
  • the user needs to operate the computer 13 of the analysis modules 11 and 12 to reset the calculated data of the detergent remaining amount. If this operation is forgotten, the computer 13 erroneously recognizes that the remaining amount of detergent remains low even though the detergent container 17 has just been replaced, and the analysis modules 11 and 12 perform analysis operations with a large amount of detergent remaining. stops due to lack of detergent remaining.
  • the analysis module 11 it is conceivable to provide the analysis module 11 with an optical or contact sensor for measuring the liquid level of the detergent in each detergent container 17 .
  • the analysis module 11 since it is necessary to install a sensor for each detergent container 17 and the user needs to replace the detergent container 17 frequently, there is a concern that the replacement work of the detergent container 17 will become difficult if the sensor is attached. be.
  • the aforementioned pressure gauge 18 is an indicator for the user to visually confirm the pump pressure.
  • the analysis module 11 does not have a transducer that converts the pump pressure measured by the pressure gauge 18 into an electrical signal. Therefore, the computer 13 of the analysis module 11 cannot acquire the pump pressure measured by the pressure gauge 18 as data.
  • the analysis module 11 generally has a plurality of pumps, and even if a transducer is provided, it is necessary for each pump, which increases the manufacturing cost of the analysis module 11 . As illustrated in FIG. 1, many analysis modules 11 and 12 are often installed in the examination room L, so if the price per unit of the analysis modules 11 and 12 rises, the economic burden on the user also increases.
  • FIG. 3A is a side view of an automatic analysis support robot according to one embodiment of the present invention
  • FIG. 3B is a front view. 3A are the front and rear of the robot 20, and the right and left of FIG. 3B are the left and right of the robot 20.
  • FIG. 3A are the front and rear of the robot 20, and the right and left of FIG. 3B are the left and right of the robot 20.
  • the robot 20 is an autonomous robot that inspects the remaining amount of detergent and the pump pressure of the analysis modules 11 and 12 on behalf of the user. consists of
  • the vehicle body 21 is a wheel-type traveling device having left and right front wheels 21a and left and right rear wheels 21b, but may be replaced with a crawler-type traveling device having left and right crawlers.
  • the front wheels 21a and the rear wheels 21b can independently control the rotation speed and rotation direction of the left and right wheels, respectively, so that the traveling distance and azimuth angle of the robot 20 can be controlled by combining forward, backward and turning motions. ing.
  • the robot 20 is equipped with magnetic or optical sensors for detecting the route R.
  • the camera 22 is mounted on the vehicle body 21 via a vertically extending post 26 .
  • the post 26 can rotate with respect to the vehicle body 21 around the central axis.
  • a camera 22 is arranged above the post 26 with its optical axis substantially horizontal, and the field of view of the camera 22 can be rotated horizontally with respect to the vehicle body 21 together with the post 26 .
  • Still image and moving image data captured by the camera 22 are recorded in the memory provided in the camera 22 or in the memory of the computer 30 .
  • the manipulator 23 is a working arm for opening and closing the opening/closing covers 19 of the analysis modules 11 and 12, and extends horizontally.
  • a hand 23a to be hooked to the robot handle 19B of the opening/closing cover 19 is provided.
  • the hand 23a rotates in a vertical plane around a rotating shaft (not shown) extending in the extending direction of the manipulator 23 (body arm).
  • a configuration in which the hand 23a rotates alone or a configuration in which the entire manipulator 23 rotates may be used.
  • the rotation axis of the hand 23a is offset with respect to the center of the hand 23a and has an asymmetrical shape with respect to the rotation axis.
  • the manipulator 23 can move up and down along rails 23b extending vertically, and even if the height of the robot handle 19B from the ground changes, the height of the manipulator 23 can be controlled to control the height of the robot handle 19B.
  • the position of the hand 23a is adjustable.
  • the communication device 40 is a device for communicating directly or indirectly with the computers 13 of the analysis modules 11 and 12 .
  • a communication method of the communication device 40 for example, a wireless communication method such as Wi-Fi (registered trademark), ZigBee (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the computer 30 is a control device that controls the post 26 and the manipulator 23 in addition to the vehicle body 21 and the camera 22, and is also an arithmetic device that processes the image of the camera 22.
  • FIG. When inspecting the detergent container 17 or the pressure gauge 18, the computer 30 first moves the robot 20 along the route R to the target work place Y and moves the vehicle body so that it faces the detergent container 17 or the pressure gauge 18 to be inspected. 21.
  • the computer 30 is provided with a CPU that serves as both an arithmetic device and a control device, and a memory that is a storage device.
  • various volatile and nonvolatile storage devices such as RAM, ROM, HDD and SSD are collectively referred to as memory.
  • the computer 30 takes an image of the detergent container 17 or the pressure gauge 18 with the camera 22, processes the image of the detergent container 17 or the pressure gauge 18, and calculates management data regarding the inspection object (that is, reads from the image).
  • the management data relating to the object to be inspected includes the actual remaining amount of detergent inside the detergent container 17 and the display value of the pressure gauge 18 .
  • the computer 30 transmits the management data to the computer 13 of the corresponding analysis module via the communication device 40 .
  • the robot 20 has a function of measuring the distance to an obstacle using a distance sensor such as an ultrasonic sensor, or a function of detecting a person using a human sensor.
  • a distance sensor such as an ultrasonic sensor
  • a human sensor it can be configured to stop running when a user (human) is detected within a predetermined distance in the traveling direction during running. Since the robot 20 works in the same inspection room L as the user, the robot 20 may interfere with the user's flow line and interfere with the user's work. By doing so, it is possible to avoid interfering with the work of the user.
  • -Cover opening/closing operation- 4A and 4B are explanatory diagrams of how the robot 20 opens and closes the opening/closing cover of the analysis module. Although these figures show the analysis module 11 as the target, the cover opening/closing operation is the same when the analysis module 12 is the target.
  • the computer 30 controls the vehicle body 21 to move the robot 20 to the target work place Y and face the robot handle 19B as shown in FIG. 4A.
  • the computer 30 controls the manipulator 23 so that the hand 23a is hooked to the robot handle 19B. Specifically, the computer 30 first adjusts the height of the manipulator 23 to the height of the robot handle 19B based on the height data of the robot handle 19B from the ground, which is recorded in advance in the memory for each analysis module. match. Then, the computer 30 controls the vehicle body 21 to move the robot 20 straight toward the opening/closing cover 19, and inserts the hand 23a into the robot handle 19B (left view in FIG. 4B). After inserting the hand 23a into the robot handle 19B, the computer 30 rotates the hand 23a inside the robot handle 19B and hangs it on the handle 19b (the right figure in FIG. 4B).
  • the computer 30 moves (backwards in an arc) a set distance along the predetermined opening/closing trajectory of the opening/closing cover 19 with the hand 23a hooked to the robot handle 19B. Then, the vehicle body 21 is controlled and the opening/closing cover 19 is opened. While the opening/closing cover 19 is being opened, the computer 30 controls the vehicle body 21 so that the manipulator 23 maintains a vertical posture with respect to the opening/closing cover 19 .
  • the computer 30 After opening the opening/closing cover 19 to a predetermined angle, the computer 30 rotates the hand 23a to remove it from the handle 19b of the robot handle 19B, moves to the work place Y again, and removes the detergent container 17 and the pressure gauge 18. to face the robot 20.
  • the computer 30 closes the opening/closing cover 19 by executing the procedure in reverse to the above procedure, and moves to the next work location Y or standby location X.
  • the angle of the opening/closing cover 19 may have changed from when it was opened.
  • the robot starts moving forward from an angle position larger than the angle of the opening/closing cover 19 when opened, recognizes the robot handle 19B from the photographed image of the camera 22, or measures the distance to the opening/closing cover 19 with a distance sensor. This can be dealt with by adopting a configuration in which the preparatory operation is executed.
  • FIGS. 5A and 5B are explanatory diagrams of the detergent liquid level detection operation of the robot 20.
  • FIG. 5A the body of the analysis module 11 is partially cut away, and the detergent container 17 inside is illustrated by solid lines.
  • FIG. 5B shows both an image of the detergent container 17 (left figure) and an image processing image (right figure).
  • FIGS. 5A and 5B show the analysis module 11 as the target, the detergent level detection operation is the same when the analysis module 12 is the target.
  • the computer 30 controls the camera 22 to display an image showing the entire detergent container 17 (Fig. 5A). still images or moving images) and record them in the memory.
  • the memory of the computer 30 records the position, type and quantity data of the detergent container 17 set in the analysis module 11 . Based on these data, the computer 30 moves to a position suitable for photographing the target detergent container 17 in the work place Y, faces the target detergent container 17 and photographs the detergent container 17 .
  • the detergent container 17 may be photographed one by one, or may be photographed collectively.
  • various aberrations such as distortion aberration affect image processing depending on the angle of view of the camera 22, these aberrations can be corrected and stored in memory.
  • the image captured by the robot 20 is an image of the detergent container 17 taken from the front.
  • an image processing determination range J is set in advance for each type of detergent container 17 for the image of the detergent container 17 .
  • the image processing determination range J is an image area that vertically traverses the detergent container 17, and is set so as to avoid irregularities such as the opening 17a so as to be an image area of only the outer wall surface of the detergent container 17 as much as possible.
  • the computer 30 performs edge processing on the image processing determination range J using the magnitude of the rate of change in brightness of the image as the signal strength, and acquires signal strength and height data G.
  • a strong edge detection signal S is obtained.
  • the upper and lower ends of the detergent container 17 and the bent portion of the outer wall surface are known for each type of the detergent container 17, except for the liquid surface of the detergent, and the height position or relative positional relationship data of these is stored in the memory. pre-recorded.
  • the range J1 of the possible height of the liquid surface of the detergent in the image processing determination range J is also set in advance for each type of detergent container 17 and stored in the memory. In the example of FIG. 5B, the range J1 is set between the height of the lower end of the detergent container 17 and the height of the bent portion of the outer wall surface. That is, the edge detection signal S detected in the range J1 becomes the level position of the detergent.
  • the computer 30 calculates the vertical distance (height difference) between the position where the edge detection signal S is detected in the range J1 and the position where the edge detection signal S corresponding to the lower end of the detergent container 17 is detected. It is calculated as height H and recorded in the memory.
  • a plurality of edge detection signals may appear in the aforementioned range J1.
  • the same empty detergent container 17 is imaged in advance and image-processed (obtained in the same manner as the data G) is stored in the memory as reference data. Then, by finding the difference between the data G obtained for the detergent container 17 to be inspected for the remaining amount of detergent and the reference data, the level position of the detergent can be detected.
  • FIG. 6A and 6B are explanatory diagrams of a method of calculating the actual amount of detergent remaining in the robot 20.
  • FIG. These figures represent data defining the relationship between the detergent liquid level (horizontal axis) and the remaining amount of detergent (vertical axis). Since the detergent container 17 has a different shape (that is, a change in cross-sectional area due to height) depending on the type of detergent container 17, such data is defined in advance for each type of detergent container 17 and recorded in the memory. That is, the data illustrated in FIG. 6A represents the data of type A of the detergent container 17, and the data illustrated in FIG. 6B represents the data of type B of the detergent container 17.
  • FIG. 6A represents the data of type A of the detergent container 17
  • FIG. 6B represents the data of type B of the detergent container 17.
  • the computer 30 converts the detergent liquid level height H calculated by detecting the detergent liquid level into the remaining amount of detergent based on the relational data illustrated in FIGS. 6A and 6B.
  • FIG. 7 is a diagram showing an example of a display screen for the actual amount of detergent remaining inspected by the automatic analysis support robot according to one embodiment of the present invention.
  • the computer 30 communicates with the console 50 and displays on the console 50 the latest actual amount of detergent remaining inspected by the method described above and the inspection time for each detergent type (or detergent container 17). Further, the computer 30 reads out the inspection history of each detergent container 17 from the memory, and determines the time when the remaining amount of detergent becomes 0 based on the actual amount of detergent remaining in a plurality of inspections and the consumption pace of the detergent obtained from the inspection times. The estimated time is calculated and displayed on the console 50 together.
  • the estimated detergent disappearance time t3 can be obtained by, for example, the following arithmetic expression.
  • t3 (V2 ⁇ t1 ⁇ V1 ⁇ t2)/(V2 ⁇ V1)
  • t2 detergent inspection time of the latest inspection
  • t1 detergent inspection time of the previous inspection
  • V2 actual detergent remaining amount of the latest inspection
  • V1 actual detergent remaining amount of the previous inspection.
  • the expected detergent disappearance time t3 cannot be calculated, so the expected detergent disappearance time is displayed on the actual detergent remaining amount screen of the console 50. [-] shall be displayed.
  • the computer 30 stores inspection data of the actual remaining amount of each detergent container 17 (or each type of detergent) for all the analysis modules 11 and 12 arranged in the inspection room L. For example, by operating the console 50 (selecting the tabs labeled "Module A", “Module B”, etc. in the example of FIG. 7), the inspection data of the actual amount of detergent remaining in each analysis module is switched to the console 50 and displayed. 7, a request signal is transmitted from the console 50 to the computer 30, and data of the selected analysis module is transmitted from the computer 30 to the console 50. displayed.
  • FIG. 8 is an explanatory diagram of a method of reflecting the actual amount of detergent remaining inspected by the robot 20 in the management data of the computer 13 of the analysis module. Although the figure shows the case of the analysis module 11 as the object, the detergent level detection operation is the same when the analysis module 12 is the object. 8 is exchanged between the computer 30 mounted on the robot 20 and the computer 13 that manages the analysis module 11 via the mutual communication devices 40 and 14 .
  • the robot 20 After inspecting the actual amount of detergent remaining as described above, the robot 20 transmits a detergent information reception request signal to the computer 13 that manages the amount of detergent remaining in the analysis module whose data is to be updated.
  • the analysis module subject to data update is, for example, the analysis module 11 that has finished inspecting the actual amount of detergent remaining, and can be exemplified by the analysis module 11 that the robot 20 is currently facing.
  • the computer 13 Upon receiving the request signal, the computer 13 transmits a detergent information receivable response signal to the computer 30 of the robot 20 when the detergent information of the target analysis module can be transmitted.
  • the computer 30 when the computer 30 is stopped, or when the analysis module 11 is powered off or in a similar situation, the computer 13 on the analysis module side may not be able to receive the signal or may not be able to respond even if it receives it. .
  • the computer 30 mounted on the robot 20 terminates the processing as a communication error.
  • the computer 30 When receiving a detergent information receivable response signal from the computer 13 on the analysis module side, the computer 30 transmits the latest actual remaining detergent amount data to the computer 13 on the analysis module side as the detergent information.
  • the computer 13 on the analysis module side reflects the received data on the actual amount of detergent remaining in the management data of the target analysis module, and updates the management data on the remaining amount of detergent managed by itself.
  • the computer 13 updates the remaining amount of detergent management data by estimating the amount of detergent consumed based on the number of times the analysis is performed until the opportunity to update the actual remaining amount of detergent inspected by the robot 20 arrives again. go.
  • the computer 30 on the robot 20 side cannot grasp the actual value of the remaining detergent amount of the target analysis module until the next opportunity for the robot 20 to inspect the actual remaining amount of detergent, and the computer 30 cannot grasp the actual value of the remaining detergent amount of the target analysis module.
  • the actual remaining amount of detergent data deviates from the actual remaining amount of detergent.
  • the value of the detergent actual remaining amount screen displayed on the console 50 deviates from the actual value.
  • the computer 30 transmits a detergent information transmission request signal to the analysis module side computer 13 at regular time intervals or in response to the user's operation of the console 50 .
  • the computer 13 Upon receiving the signal, the computer 13 transmits the remaining amount of detergent data, which is continuously updated by estimation calculation based on the number of analyzes performed as described above, to the computer 30 on the robot side as detergent information.
  • the computer 30 records the received data in its self-stored detergent remaining amount management data.
  • FIGS. 9A and 9B are explanatory diagrams of the pump pressure reading operation of the automatic analysis support robot according to one embodiment of the present invention.
  • FIG. 9A the body of the analysis module 11 is partially cut away and the internal pressure gauge 18 is illustrated by solid lines.
  • FIG. 9B also shows an image of the pressure gauge 18 (left figure) and data (right figure) defining the relationship between the angle of the pointer 18a and the pump pressure.
  • FIGS. 9A and 9B show the analysis module 11 as the target, the pump pressure reading operation is the same when the analysis module 12 is the target.
  • the computer 30 controls the camera 22 to control the image of the pressure gauge 18 (still image or movie) and record it in memory.
  • the memory of the computer 30 records data on the position, type and quantity of the pressure gauges 18 provided in the analysis module 11 . Based on these data, the computer 30 moves to a position suitable for photographing the target pressure gauge 18 at the work place Y, faces the target pressure gauge 18, and shoots the pressure gauge 18 for a certain period of time.
  • the pressure gauges 18 may be configured to capture images one by one, or may be configured to collectively capture a plurality of pressure gauges 18 . When photographing a plurality of pressure gauges 18 collectively, if various aberrations such as distortion aberration affect image processing depending on the angle of view of the camera 22, these aberrations can be corrected and stored in memory.
  • the video shooting time is set to a predetermined number of cycles based on the analysis cycle time of the analysis module 11 .
  • the predetermined number of cycles is set in advance in consideration of the amplitude and swing of the pointer 18a.
  • the shooting sampling frames of the moving image can sufficiently complement the movement of the pointer 18a.
  • a large number of still images that constitute a captured moving image are stored in a memory together with their respective shooting times. The contents of a series of image processing will be described below.
  • the image captured by the robot 20 is an image showing the pressure gauge 18 from the front.
  • an image processing determination range K is set in advance so that the entire pressure gauge 18 is included in the image of the pressure gauge 18 .
  • a pointer tracking point K1 is set inside the image processing determination range K.
  • the pointer tracking point K1 is the tip of the pointer 18a searched by the computer 30 based on the shape characteristic points of the pointer 18a stored in advance in the memory. Data of the XY coordinates of the pointer tracking point K1 within the image processing determination range K are specified for each still image constituting the captured moving image and recorded in the memory.
  • the computer 30 obtains the origin O (corresponding to the center of rotation of the pointer 18a) from the coordinate data of the pointer tracking point K1 of the three still images selected according to a predetermined algorithm.
  • a triangle is assumed with the needle tracking point K1 of the three images as the apex angle, and the intersection of the perpendicular bisectors of the two sides of the assumed triangle excluding the longest side is set as the origin O. can ask.
  • the computer 30 converts the XY coordinate system (rectangular coordinate system) of each still image into a polar coordinate system with the origin O as the origin, and draws a line connecting the pointer tracking point K1 and the origin O in each still image.
  • the angle ⁇ of the minute (corresponding to the pointer 18a) is calculated and recorded in the memory.
  • the memory of the computer 30 stores data defining the relationship between the angle of the pointer 18a and the pump pressure as shown on the right side of FIG. 9B. Since the scale of the pressure gauge 18 differs depending on the type, such data is defined in advance for each type of the pressure gauge 18 and recorded in the memory.
  • the computer 30 converts the angle of the pointer 18a into pump pressure based on the relational data illustrated in FIG. 9B, and reads the pump pressure indicated by the pointer tracking point K1 in each still image.
  • FIG. 10 is a diagram showing changes in pump pressure over time calculated from images captured by the robot 20 .
  • each still image that makes up a video is associated with the data of the shooting time, and the pressure and time data of each image are plotted in a coordinate system with the horizontal axis as the time axis and the vertical axis as the pressure axis. Then, the data (FIG. 10) of the change over time of the pump pressure (the actual display value of the pressure gauge 18) is obtained.
  • the computer 30 stores the analysis cycle time CT of the analysis module 11 in a memory, and calculates the maximum pressure Pmax, minimum pressure Pmin and stable pressure Pst for each analysis cycle time CT based on the pump pressure and time data of each image. Calculate.
  • the video shooting time is set to a predetermined number of cycles (eg, 10 cycles) based on the analysis cycle time CT.
  • the minimum pressure Pmin and the stable pressure Pst are calculated.
  • the maximum pressure Pmax and minimum pressure Pmin are the maximum and minimum values of the pump pressure for one cycle time CT.
  • the stable pressure Pst is, for example, the mode of the histogram analysis of the pump pressure for one cycle time CT.
  • the computer 30 thus obtains the maximum pressure Pmax, minimum pressure Pmin and stable pressure Pst for each analysis cycle time CT, and calculates the average values of the maximum pressure Pmax, minimum pressure Pmin and stable pressure Pst.
  • Each average value of the maximum pressure Pmax, minimum pressure Pmin, and stable pressure Pst is recorded in the memory in association with the inspection date and time as the pump pressure inspection value (read value displayed on the pressure gauge 18).
  • FIG. 11A is a diagram showing an example of a display screen of pump pressures inspected by the automatic analysis support robot according to one embodiment of the present invention.
  • the computer 30 communicates with the console 50 and displays on the console 50 the latest pump pressure inspected by the method described above and the inspection time for each pressure gauge 18 (or the pump corresponding to the pressure gauge 18).
  • the stable pressure Pst is displayed as the pump pressure. This is because it is common to use the stable pressure as an index in the operation of the analysis module. However, the maximum pressure Pmax and the minimum pressure Pmin can also be displayed by a predetermined operation.
  • the computer 30 stores the inspection data of the pump pressure of each pressure gauge 18 (or the pump corresponding to the pressure gauge 18) for all the analysis modules 11 and 12 arranged in the inspection room L. For example, by operating the console 50 (in the example of FIG. 11A, selecting the tabs labeled “Module A”, “Module B”, etc.), the inspection data of the pump pressure of each analysis module can be switched and displayed on the console 50. 11A, a request signal is transmitted from the console 50 to the computer 30, and data of the analysis module selected from the computer 30 is transmitted to the console 50. Is displayed.
  • the computer 30 also stores a history of pump pressure inspection data in its memory.
  • the display screen of the pump pressure of the present embodiment displays a display button Bt for displaying the trend of the inspection value of the pump pressure over a long period of time.
  • this display button Bt is operated, based on the historical data stored in the computer 30, the pump data for a specified period (for example, the last several months) is displayed with time (for example, date) on the horizontal axis and pump pressure on the vertical axis.
  • a screen displaying pressure trends (FIG. 11B) is displayed. The user can infer signs of abnormality or deterioration of the pump from the screen of FIG. 11B.
  • the difference between the pump pressure data shown in FIG. It is also possible to evaluate the state of In addition, it is conceivable to incorporate the evaluation of the Mahalanobis distance by the Mahalanobis Taguchi method for the inspection value of the pump pressure and the inspection time data.
  • the pump pressure data acquired by the inspection by the robot 20 is associated with data such as the model of the analysis module, the environment of the inspection room L, operation information, etc., and accumulated as big data. In this case, by applying data analysis by AI to big data, it is useful to search for a method of operating the analysis modules 11 and 12 and the examination room L with higher accuracy and efficiency.
  • the robot 20 captures images of inspection objects such as the detergent container 17 and the pressure gauge 18 with the camera 22 , processes the captured images with the computer 30 , and collects management data such as the amount of actual detergent remaining and the display value of the pressure gauge 18 . can be read on behalf of the user. As a result, it is possible to reduce the burden on the user regarding the maintenance of the automatic analyzer.
  • the robot 20 takes over the user's work such as visual confirmation of the detergent container 17 and the pressure gauge 18 .
  • the inspection of the detergent container 17 and the pressure gauge 18, which may or may not be performed depending on the user's convenience, can be performed daily at mechanically stable timing (for example, every hour).
  • the robot 20 can be made to perform the inspection without interfering with the user's work.
  • the robot 20 that can be introduced at a low cost, there is no need to provide a liquid level sensor for each detergent container 17 or a transducer for each pressure sensor, and automatic analysis can be performed while suppressing an increase in the cost of the automatic analyzer.
  • the operating rate of the device can be improved.
  • the robot 20 uses the manipulator 23 to open/close the opening/closing cover 19 by itself. be able to. This eliminates the need for the user to perform preparation work such as opening and closing the opening/closing cover 19 for inspection by the robot 20 .
  • the configuration in which the robot 20 is equipped with the computer 30 that performs control and image processing of the robot 20 has been described as an example.
  • the computer 30 may be the first computer
  • the computer e.g. console 50
  • the robot 20 may be the second computer
  • the functions may be shared by these two computers.
  • the first computer mounted on the robot 20 takes an image of the inspection target such as the detergent container 17 with the camera 22 in response to a command from the second computer, and the communication module (communication device 40) does not execute image processing. ) to the second computer.
  • the image of the inspection object is processed to calculate management data (residual amount of detergent, etc.) related to the inspection object, and the management data is transmitted to the computer 13 of the analysis module via the communication device.
  • the first computer controls the vehicle body 21 and the like in response to a trigger signal from the second computer, and the first computer responds to the control command value from the second computer. Both configurations for driving the vehicle body 21 and the like are applicable.
  • the pump pressure is managed by the computer 13 that manages the analysis modules 11 and 12
  • the data of the pump pressure inspected using the robot 20 may be sent to the computer 13.

Abstract

生体試料を自動的に分析する分析モジュールの検査を実施する自動分析支援ロボットであって、車体と、前記車体に搭載したカメラと、前記分析モジュールと直接的又は間接的に通信する通信装置と、前記車体及び前記カメラを制御するコンピュータとを備え、前記コンピュータは、既定の作業位置に移動して前記分析モジュールに備わった検査対象に臨むように前記車体を制御し、前記検査対象を前記カメラで撮影し、前記検査対象の映像を処理して前記検査対象に関する管理データを演算する自動分析支援ロボットを提供する。

Description

自動分析支援ロボット及び自動分析システム
 本発明は、臨床検査用の自動分析装置による検体(生体試料)の自動分析を支援する自動分析支援ロボット及び自動分析システムに関する。
 自動分析装置は、血液や尿等の検体に含まれる特定成分を自動的に分析し、医療分野において検査や分析の業務を効率化に貢献している。近年では、検査や分析の業務を支援するロボットの開発も進められている。例えば、検体等の搬送も検査や分析の業務の一部であるところ、この搬送をサポートするロボットが例に挙がる。
 例えば特許文献1には、人間が出入りする検査室において液体を低振動で搬送する搬送ロボットが開示されている。また、特許文献2には、複数の測定装置の間で検体容器やラックを搬送するロボットアームの構成や動作が開示されている。特許文献3には、検体前処理装置において、測定依頼の内容に応じて検体を搬送する検体前処理装置を複数の検体前処理装置の中から決定し、決定した検体前処理装置にロボットアームを用いて検体を搬送する技術が開示されている。
特開2016-68233号公報 特開2019-197021号公報 特開2019-174369号公報
 ところで、自動分析装置においては、検査や分析が適正に実行されるようにする上で様々なメンテナンスが必要である。検査や分析の業務効率の更なる向上のためには、自動分析装置の稼働率を高水準に維持することが重要であり、稼働率の低下に繋がる不具合が発生する前に適切なタイミングでメンテナンスを行う必要がある。しかし、メンテナンス項目は自動分析装置が自動で行う項目の増加に伴って増加傾向にあり、ユーザのメンテナンスの負担を軽減することも重要である。
 本発明は、自動分析装置のメンテナンスの負担を軽減することができる自動分析支援ロボット及び自動分析システムを提供することを目的とする。
 上記目的を達成するために、本発明は、生体試料を自動的に分析する分析モジュールの検査を実施する自動分析支援ロボットであって、車体と、前記車体に搭載したカメラと、前記分析モジュールと直接的又は間接的に通信する通信装置と、前記車体及び前記カメラを制御するコンピュータとを備え、前記コンピュータは、既定の作業位置に移動して前記分析モジュールに備わった検査対象に臨むように前記車体を制御し、前記検査対象を前記カメラで撮影し、前記検査対象の映像を処理して前記検査対象に関する管理データを演算する自動分析支援ロボットを提供する。
 本発明によれば、自動分析装置のメンテナンスの負担を軽減することができる。
本発明の一実施形態に係る自動分析システムの全体を表す模式図 本発明の一実施形態に係る自動分析システムに備わった分析モジュールの外観を模式的に表す正面図 図2A中のIIB部の拡大図 図2Aの分析モジュールのボディのカバーの変形例を表す図 本発明の一実施形態に係る自動分析支援ロボットの側面図 本発明の一実施形態に係る自動分析支援ロボットの正面図 本発明の一実施形態に係る自動分析支援ロボットが分析モジュールの開閉カバーを開閉する方法の説明図 本発明の一実施形態に係る自動分析支援ロボットが分析モジュールの開閉カバーを開閉する方法の説明図 本発明の一実施形態に係る自動分析支援ロボットの洗剤液面検知動作の説明図 本発明の一実施形態に係る自動分析支援ロボットの洗剤液面検知動作の説明図 本発明の一実施形態に係る自動分析支援ロボットの洗剤実残量の演算方法の説明図 本発明の一実施形態に係る自動分析支援ロボットの洗剤実残量の演算方法の説明図 本発明の一実施形態に係る自動分析支援ロボットが検査した洗剤実残量の表示画面の一例を表す図 本発明の一実施形態に係る自動分析支援ロボットが検査した洗剤実残量を分析モジュールのコンピュータの管理データに反映する方法の説明図 本発明の一実施形態に係る自動分析支援ロボットのポンプ圧力読取動作の説明図 本発明の一実施形態に係る自動分析支援ロボットのポンプ圧力読取動作の説明図 本発明の一実施形態に係る自動分析支援ロボットが撮影した画像から演算した一定時間のポンプ圧力の計時変化を表す図 本発明の一実施形態に係る自動分析支援ロボットが検査したポンプ圧力の表示画面の一例を表す図 本発明の一実施形態に係る自動分析支援ロボットが検査したポンプ圧力のトレンドの表示の一例を表す図
 以下に図面を用いて本発明の実施の形態を説明する。
 -自動分析システム-
 図1は本発明の一実施形態に係る自動分析システムの全体を表す模式図である。同図に示した自動分析システムは、自動分析装置10A,10Bと、自動分析支援ロボット20(以下、ロボット20)と、コンピュータ30と、通信装置40とを備えている。
 自動分析装置10Aは複数の分析モジュール11,12からなるモジュール型の自動分析装置、自動分析装置10Bは単一の分析モジュール11からなるスタンドアローン型の自動分析装置である。分析モジュール11,12は、検体(血液や尿等の生体試料)を自動的に分析(例えば特定成分を測定)する装置である。分析モジュールを自動分析装置と呼ぶ場合もあるが、本実施形態では、自動分析装置10A,10Bと呼び分けるために、自動分析装置10A,10Bを構成する個々の自動分析装置を分析モジュールと記載する。分析モジュール11は例えば生化学自動分析装置であり、分析モジュール12は例えば免疫分析自動分析装置である。自動分析装置10A,10Bを構成する分析モジュールのタイプや組み合わせは適宜変更可能である。
 ロボット20は、自動分析装置10A,10Bの検査を実施し、自動分析装置10A,10Bによる自動分析を支援する自律型のロボットである。コンピュータ30は、ロボット20を制御する制御装置であり、通信装置40は、自動分析装置10A,10B(厳密にはそのコンピュータ)と直接的又は間接的に通信する装置である。通信装置40は、有線通信で自動分析装置10A,10Bと通信する構成としても良いが、無線通信で動分析装置10A,10Bと通信する構成が望ましい。本実施形態では、コンピュータ30及び通信装置40をロボット20に搭載する例を説明する。分析モジュール11,12及びロボット20については後述するが、ここでは図1を用いて自動分析システムの全体について概略を説明する。
 同図の例において、自動分析装置10A,10Bは、検査室Lの内部に配置され、自動分析装置10A,10Bの操作やメンテナンス、通行等をユーザがし易いように、周囲に所定のスペースを確保して配置される。このスペースは、ロボット20が走行する通路を兼用する。各分析モジュール11,12には、ロボット20の作業する既定の作業場所Yが設定されている。作業場所Yは、例えば分析モジュール11,12における圧力計18(図2A)や洗剤容器17(図2A)に開閉カバー19(図2A)を挟んで対面する位置である。
 また、検査室Lには、ロボット20の待機場所Xが設定されている。待機場所Xの位置は、ユーザ(人間)の行動の邪魔にならないように、想定されるユーザの動線を避けて設定される。ロボット20は、メンテナンス実施時以外は待機場所Xで待機する。待機場所Xには充電器(不図示)が設置されており、待機場所Xで待機している間にロボット20のバッテリー(不図示)が充電される。待機場所Xと各作業場所Yは予め定められたルートRで結ばれており、ロボット20は既定のルートRを通って待機場所Xと作業場所Yとの間を移動する。ここでルートRは、レールや磁気ライン、白線等の物理的に経路を引き、その経路に沿ってロボット20が移動する構成を採用することができる。また、待機場所Xと各作業場所Yとの位置関係を進行方向及び距離のデータとしてコンピュータ30のメモリに記憶しておき、データに基づいてコンピュータ30によりロボット20を走行させるようにしても良い。また、待機場所Xと各作業場所Yとの位置座標をコンピュータ30のメモリに記憶しておき、検査室Lのローカル座標系で規定の座標間をロボット20が走行するようにしても良い。
 また、待機場所Xにはスタンド51が設置されており、スタンド51にはコンソール50が備え付けられている。コンソール50は、ユーザが操作する操作端末であり、タブレット型PC、ノート型PC、デスクトップ型PC等、入力装置、モニタ及び通信装置が備わった(又は外付けされた)各種コンピュータを用いることができる。コンソール50は、ロボット20と無線通信可能に構成されている。コンソール50に備わった通信装置は、ロボット20に備わった通信装置40と、例えばWi-Fi(登録商標)、ZigBee(登録商標)、Bluetooth(登録商標)等の通信方式で直接的又は間接的にデータを授受する構成とすることができる。
 コンソール50のモニタにより、ロボット20によるメンテナンスの実施結果を閲覧することができる。また、ロボット20によるメンテナンスの種類やメンテナンスの実施のタイミング等を分析モジュール11,12毎にコンソール50で設定することができる。この設定に従って、ロボット20が、対象の分析モジュールの作業場所Yへ移動し、設定されたメンテナンスを予め設定された手順で実施する。ロボット20による検査のタイミングとしては、例えば設定された時間間隔や設定時刻の他、ユーザが手動で指示した際に検査を実行する構成とすることができる。
 また、各自動分析装置10A,10Bには、コンピュータ13及び通信装置14が備わっている。コンピュータ13は、自動分析装置を操作する操作端末であると同時に、対応する自動分析装置を制御する制御装置である。コンピュータ13には、通信装置14が備わっている(又は接続されている)。コンピュータ13は、通信装置14を介してロボット20と無線通信可能に構成されている。分析モジュールによる検体の分析結果をコンピュータ13のモニタで閲覧したり、自動分析装置に対する分析依頼をコンピュータ13で設定したりすることができる。
 検査室Lに配置する自動分析装置や分析モジュール、ロボット20や待機場所Xの種類や数、レイアウトは図1の例に限定されない。コンピュータ30には、ロボット20がメンテナンスを実施する分析モジュールの位置、種類等のデータが予め登録される。
 以上が検査室内の自動分析システムの全体配置の説明である。
 -分析モジュール-
 図2Aは本発明の一実施形態に係る自動分析システムに備わった分析モジュールの外観を模式的に表す正面図、図2Bは図2A中のIIB部の拡大図、図2Cは図2Aの分析モジュールのボディのカバーの変形例を表す図である。
 図2Aに示した分析モジュール11は、複数の反応容器(不図示)に検体と試薬とを分注装置15等により各々分注し、検体と試薬とを反応させた液体を測定する。また、検体分析プロセスで反応容器を洗浄するために、分析モジュール11には、廃液吸引装置16が備わっている。廃液吸引装置16と分注装置15は同様の構成であり、アームの旋回によりノズル15a,16aを移動させ、ノズル15a,16aで液体を吸引したり吐出したりする。
 分析モジュール11では、検体分析プロセスで反応容器を洗浄するために洗剤(洗浄液)が消耗品として用いられている。洗剤が入った洗剤容器17は分析モジュール11のボディの内部にセットされる。洗剤容器17は可視光線を透過する材料で形成されており、内部の洗剤が透けて見えるものである。
 また、分析モジュール11には、分注装置15のノズル15aや反応容器の洗浄のために、廃液吸引装置16の廃液の吸引力(真空圧)や洗剤の吐出力(液圧)を調整する複数系統のポンプ(不図示)が備わっている。これらポンプは、ギアやベアリング、ダイヤフラム弁等の多数の可動部品を備えており、これら可動部品が摩耗したり劣化したりすると必要なポンプ圧力が出力できなくなる。ポンプ圧力は分注量等に影響し、精度が落ちると検体の分析を適正に実施することができなくなる。
 そこで、ユーザがポンプ圧力を確認できるように、分析モジュール11には、ユーザがポンプ圧力を確認する目的でポンプ毎に圧力計18が備わっている。各圧力計18は、図2Bに示す通り圧力の計測値を示す指示針18aを備えており、ユーザは指示針18aが指し示す目盛りを読み取ってポンプ圧力を確認する。これら圧力計18も分析モジュール11のボディの内部に配置されている。
 洗剤容器17はユーザによる交換、圧力計18はユーザによる目視確認を要する機器であるため、分析モジュール11の前面でユーザがアクセスし易い位置に配置されている。前述した通り洗剤容器17及び圧力計18は共に分析モジュール11に複数ずつ備わっている。本実施形態では、洗剤容器17と圧力計18がロボット20による検査対象である。
 分析モジュール11のボディの前面は不透明な開閉カバー19で覆われており、検査対象である洗剤容器17及び圧力計18は開閉カバー19で覆われているが、開閉カバー19を開くことで洗剤容器17と圧力計18にアクセス可能である。開閉カバー19は、分析モジュール11のオリジナルのカバーと換装したものであり、図2Aに矢印で示した通り、左右の一端に設けた鉛直な回転軸を中心に円弧軌道を描いて回転運動して開閉する構成である。
 この開閉カバー19には、ユーザが手を掛けるユーザ用把手19Aの他、ロボット20のハンド23aを掛けるロボット用把手19Bが備わっている。ユーザ用把手19Aは、開閉カバー19の上部において回転軸と反対側に位置している。ロボット用把手19Bは、開閉カバー19の下部において回転軸と反対側に位置している。ロボット用把手19Bは、開閉カバー19に設けた窪みの開口部の一部を板状の引手19bで塞いだような構成をしている。
 また、開閉カバー19に代えて、分析モジュール11の前面を、図2Cに示したような一部が透明な固定式のカバー19’で覆う構成としても良い。カバー19’はアクリルやガラス等の透明な部材を嵌め込んだ窓19Cを備えており、洗剤容器17及び圧力計18をカバーすると共に、作業場所Yから窓19Cを透過して洗剤容器17及び圧力計18が視認できるようになっている。カバー19’は全体をアクリル等の透明な部材で構成しても良い。カバー19’は取り外し式としても良いし、開閉カバー19のように開閉する構成としても良い。取り外し式とした場合は、カバー19’のユーザ用把手19Aやロボット用把手19Bは省略可能である。
 以上、分析モジュール11について説明したが、分析モジュール12でも洗剤やポンプが備わっており、これら洗剤容器17や圧力計18はユーザがアクセスし易いように開閉カバー19又はカバー19’の背後にレイアウトされている点は同様である。
 以上が分析モジュール11,12の概略構成、洗剤容器17や圧力計18の配置の説明である。
 -分析モジュールにおける洗剤残量管理に関して-
 ここで、分析モジュール11,12は、洗剤がなくなると正常な分析をすることができないため、分析に必要な洗剤が供給できなくなった時点で分析動作が停止するように構成される場合が多い。唐突に分析動作が停止すると分析中の検体や試薬が無駄になる。これに対し、コンピュータ13は、分析モジュール11,12の洗剤容器17毎に、分析の実施回数に基づき洗剤消費量から洗剤残量を演算し、洗剤残量が所定値を下回った場合にユーザに洗剤容器17の交換を推奨する機能が備えられる場合がある。
 しかし、この機能で演算される洗剤残量は推定値であって洗剤の実残量に対して誤差があるため、分析中に洗剤が不足することを避けるため、マージンを設定して洗剤残量を少なく見積もる必要がある。そのため、コンピュータ13で演算される洗剤残量が実残量よりも過度に少ないと、余剰の洗剤が発生し洗剤及びその購入コストの無駄が増え、また洗剤の処理に関し環境コストも増大する。余剰の洗剤を集めて二次使用することも考えられるが、この場合には洗剤の品質の低下により分析精度に影響が及ぶ懸念がある。従って、残量をリアルタイムに精度良く把握して洗剤を使い切ることは重要である。
 また、ユーザは、洗剤容器17の交換後に分析モジュール11,12のコンピュータ13を操作して洗剤残量の演算データをリセットする必要がある。この操作を失念すると、洗剤容器17の交換直後にも関わらず、コンピュータ13は洗剤残量が少ないままであると誤って認識し、多くの洗剤を残した状態で分析モジュール11,12の分析動作が洗剤の残量不足により停止してしまう。この対策として、分析モジュール11に各洗剤容器17の洗剤の液面高さを測定する光学式又は接触式のセンサを設けることが考えられる。しかし、洗剤容器17毎にセンサを設置する必要がある他、ユーザは洗剤容器17を頻繁に交換する必要があることから、センサを取り付けると洗剤容器17の交換作業がし難くなることが懸念される。
 -分析モジュールにおけるポンプ圧力管理に関して-
 前述した圧力計18は、ポンプ圧力をユーザが目視確認するためのインジケータである。この圧力計18で計測されるポンプ圧力を電気的な信号に変換するトランスデューサは、分析モジュール11には備わっていない。そのため、分析モジュール11のコンピュータ13は、圧力計18で測定されるポンプ圧力をデータとして取得することができない。前述した通り分析モジュール11に備わったポンプは一般に複数であり、トランスデューサを設けるにしても、ポンプ毎に必要であることから分析モジュール11の製造コストが増大する。図1に例示した通り、検査室Lには多数の分析モジュール11,12を配置することも多いため、分析モジュール11,12の1台当たりの価格が上がるとユーザの経済的負担も増す。
 -自動分析支援ロボット-
 図3Aは本発明の一実施形態に係る自動分析支援ロボットの側面図、図3Bは正面図である。これらの図において、図3Aの右左をロボット20の前後、図3Bの右左をロボット20の左右とする。
 ロボット20は、分析モジュール11,12の洗剤残量やポンプ圧力の検査をユーザに代行して実施する自律型のロボットであり、車体21、カメラ22、マニピュレータ23、通信装置40、コンピュータ30を含んで構成されている。
 ・車体
 車体21は、左右の前輪21a及び左右の後輪21bを持つホイール式の走行装置であるが、左右のクローラを有するクローラ式の走行装置に代えても良い。前輪21a及び後輪21bはそれぞれ左右で回転速度及び回転方向を独立して制御でき、これにより前進、後進及び転向の動作を組み合わせてロボット20が走行する距離や方位角を制御できるように構成されている。必要な場合、ロボット20には、ルートRを検知するための磁気的又は光学的なセンサが備えられる。
 ・カメラ
 カメラ22は、鉛直に延在するポスト26を介して車体21に搭載されている。ポスト26は、中心軸周りに車体21に対して自転可能である。このポスト26の上部に、光軸を概ね水平にした姿勢でカメラ22が配置されており、カメラ22の視野はポスト26と共に車体21に対して水平方向に回転可能である。カメラ22で撮影した静止画像及び動画のデータは、カメラ22に備わったメモリ又はコンピュータ30のメモリに記録される。
 ・マニピュレータ
 マニピュレータ23は、分析モジュール11,12の開閉カバー19を開閉するための作業腕であり、水平に延在する。開閉カバー19のロボット用把手19Bに掛けるハンド23aを備えている。ハンド23aは、マニピュレータ23(本体アーム)の延在方向に延びる回転軸(不図示)を支点にして鉛直面内で回転する。ハンド23aが単独で回転する構成であっても、マニピュレータ23の全体が回転する構成であっても良い。ハンド23aの回転軸はハンド23aの中心に対してオフセットしており、回転軸に対して非対称な形状をしている。
 また、マニピュレータ23は、上下に延在するレール23bに沿って昇降可能であり、ロボット用把手19Bの地上からの高さが変わっても、マニピュレータ23の高さを制御してロボット用把手19Bに対するハンド23aの位置が調整可能である。
 ・通信装置
 通信装置40は、分析モジュール11,12のコンピュータ13と直接的又は間接的に通信するための機器である。通信装置40の通信方式としては、例えばWi-Fi(登録商標)、ZigBee(登録商標)、Bluetooth(登録商標)等の無線通信方式を採用することができる。
 ・コンピュータ
 コンピュータ30は、車体21及びカメラ22の他、ポスト26やマニピュレータ23を制御する制御装置であると同時に、カメラ22の映像を処理する演算装置である。洗剤容器17又は圧力計18を検査する際、コンピュータ30は、まずロボット20がルートRに沿って目的の作業場所Yに移動して検査対象である洗剤容器17又は圧力計18に臨むように車体21を制御する。コンピュータ30には、演算装置及び制御装置を兼ねるCPU、記憶装置であるメモリが備わっている。本願明細書では、RAM、ROM、HDD、SSD等の揮発性及び不揮発性の各種記憶装置を総称してメモリと記載する。
 次に、コンピュータ30は、洗剤容器17又は圧力計18をカメラ22で撮影し、洗剤容器17又は圧力計18の映像を処理して検査対象に関する管理データを演算する(つまり画像から読み取る)。検査対象に関する管理データとは、洗剤容器17の内部の洗剤の実残量、圧力計18の表示値である。管理データを演算したら、コンピュータ30は、通信装置40を介して管理データを対応する分析モジュールのコンピュータ13に送信する。
 なお、ロボット20には、超音波センサ等の距離センサによって障害物までの距離を測定する機能、或いは人感センサにより人間を検知する機能が備わっている。人感センサを備える場合、走行時に進行方向の所定距離以内の領域にユーザ(人間)を検知したら走行を停止する構成とすることができる。ロボット20がユーザと同じ検査室Lで作業することで、ユーザの動線にロボット20が干渉してユーザの業務を邪魔し得るが、人感センサを活用してユーザを避けて動作する構成とすることでユーザの作業の妨げになることを避けることができる。
 以上がロボット20の構成の説明である。
 -カバー開閉動作-
 図4A及び図4Bはロボット20が分析モジュールの開閉カバーを開閉する方法の説明図である。これらの図では分析モジュール11を対象とした場合を図示しているが、分析モジュール12を対象とした場合もカバー開閉動作は同じである。
 図2Bに示したカバー19’と異なり、図2Aに示した開閉カバー19を採用した分析モジュールの場合、検査対象である洗剤容器17や圧力計18に臨む前に、洗剤容器17又は圧力計18を撮影するために開閉カバー19を開放する必要がある。この開閉カバー19の開放動作を実行するに当たり、コンピュータ30は、車体21を制御してロボット20を目的の作業場所Yに移動させ、図4Aに示すようにロボット用把手19Bに対面させる。
 その後、コンピュータ30は、ハンド23aがロボット用把手19Bに掛かるようにマニピュレータ23を制御する。具体的に説明すると、コンピュータ30は、まず分析モジュール毎に予めメモリに記録されたロボット用把手19Bの地上からの高さのデータに基づき、マニピュレータ23の高さをロボット用把手19Bの高さに合わせる。そして、コンピュータ30は、車体21を制御してロボット20を開閉カバー19に向かって直進させ、ハンド23aをロボット用把手19Bに挿入する(図4B左図)。ハンド23aをロボット用把手19Bに挿入したら、コンピュータ30は、ロボット用把手19Bの内部でハンド23aを回転させて引手19bに掛ける(図4B右図)。
 ロボット用把手19Bにハンド23aを掛けたら、コンピュータ30は、ロボット用把手19Bにハンド23aが掛かった状態で開閉カバー19の既定の開閉軌道に沿って設定距離だけ走行(円弧状に後進)するように車体21を制御し、開閉カバー19を開放する。この開閉カバー19を開放する間、コンピュータ30は、マニピュレータ23が開閉カバー19に対して垂直になる姿勢を保つように車体21を制御する。
 予め定められた所定の角度まで開閉カバー19を開放したら、コンピュータ30は、ハンド23aを回転させてロボット用把手19Bの引手19bから外し、再び作業場所Yへ移動して洗剤容器17及び圧力計18にロボット20を対面させる。
 洗剤残量又はポンプ圧力の検査後に開閉カバー19を閉める際、コンピュータ30は、上記手順と逆の手順を実行することで開閉カバー19を閉め、次の作業場所Y又は待機場所Xに移動する。このとき、開閉カバー19を閉じるに当たり、開閉カバー19の角度が開放時から変わっている可能性がある。これに関しては、開放時の開閉カバー19の角度よりも大きな角度位置から前進を開始する、カメラ22の撮影画像からロボット用把手19Bを認識する、又は距離センサで開閉カバー19までの距離を測る等の予備動作を実行する構成とすることで対応できる。
 以上がロボット20による分析モジュール11,12の開閉カバー19の開閉動作の説明である。
 -洗剤液面検知-
 図5A及び図5Bはロボット20の洗剤液面検知動作の説明図である。図5Aでは分析モジュール11のボディを一部破断して内部の洗剤容器17を実線で図示してある。図5Bには、洗剤容器17の画像(左図)と画像処理イメージ(右図)を併せて図示してある。図5A及び図5Bでは分析モジュール11を対象とした場合を図示しているが、分析モジュール12を対象とした場合も洗剤液面検知動作は同じである。
 必要に応じて開閉カバー19を開け、ロボット20が分析モジュール11にセットされた洗剤容器17に対面したら(図5A)、コンピュータ30は、カメラ22を制御して洗剤容器17の全体が映る映像(静止画像又は動画)を撮影し、メモリに記録する。この際、コンピュータ30のメモリには、分析モジュール11にセットされた洗剤容器17の位置、種類及び数量のデータが記録されている。コンピュータ30は、これらデータに基づき、作業場所Yにおいて目的の洗剤容器17の撮影に適した位置へ移動し、目的の洗剤容器17に対面し洗剤容器17を撮影する。洗剤容器17は1つずつ撮影する構成としても良いし、複数をまとめて撮影する構成としても良い。複数の洗剤容器17をまとめて撮影する場合、カメラ22の画角によって歪曲収差等の各種収差が画像処理に影響する場合、これら収差を補正してメモリに保存するようにすることもできる。
 図5Bに示すように、ロボット20により撮影された画像は、洗剤容器17を正面から写した画像となる。洗剤容器17の画像を処理して液面画像処理を行うために、洗剤容器17の画像には、洗剤容器17の種類毎に予め画像処理判定範囲Jが設定されている。画像処理判定範囲Jは、洗剤容器17を鉛直に縦断する画像領域であり、できるだけ洗剤容器17の外壁面のみの画像領域となるように口17a等の凹凸を避けて設定される。コンピュータ30は、この画像処理判定範囲Jに対し画像の明度の変化率の大きさを信号強度とするエッジ処理を施し、信号強度と高さのデータGを取得する。図5Bに示したデータGでは、横軸が信号強度、縦軸が高さ位置を表している。
 エッジ処理を行うと、画像の明度が大きく変化する高さで強い信号が得られるため、同図に示したように洗剤容器17の上端や下端、外壁面の折れ曲がった部分、洗剤の液面で強いエッジ検出信号Sが得られる。洗剤の液面を除き、洗剤容器17の上端や下端、外壁面の折れ曲がった部分は、洗剤容器17の種類毎に既知であり、これらの高さ位置或いは相対的な位置関係のデータがメモリに予め記録されている。また、画像処理判定範囲Jで洗剤の液面が取り得る高さの範囲J1も洗剤容器17の種類毎に予め設定されてメモリに記憶されている。図5Bの例において、範囲J1は、洗剤容器17の下端の高さから外壁面の折れ曲がった部分の高さの間に設定されている。つまり、範囲J1で検出されたエッジ検出信号Sが洗剤の液面位置になる。
 コンピュータ30は、範囲J1でエッジ検出信号Sが検出された位置と、洗剤容器17の下端に対応するエッジ検出信号Sが検出された位置との鉛直方向の距離(高低差)を、洗剤液面高さHとして演算してメモリに記録する。
 なお、洗剤容器17の形状によっては、前述した範囲J1に複数のエッジ検出信号が現れる可能性がある。この場合、空の状態の同一の洗剤容器17を予め撮影して画像処理したデータ(データGと同様に取得)をリファレンスデータとしてメモリに格納しておく。そして、洗剤残量の検査対象の洗剤容器17について得られたデータGとリファレンスデータとの差分をとれば、洗剤の液面位置を検出することができる。
 以上が分析モジュール11,12の洗剤容器17の内部の洗剤液面検知動作の説明である。
 -洗剤実残量演算-
 図6A及び図6Bはロボット20の洗剤実残量の演算方法の説明図である。これらの図は、洗剤液面高さ(横軸)と洗剤残量(縦軸)との関係を規定したデータを表している。洗剤容器17は種類により形状(つまり高さによる断面積の変化)が異なるため、このようなデータが洗剤容器17の種類毎に予め規定されてメモリに記録されている。つまり、図6Aに例示したデータは洗剤容器17の種類Aのデータ、図6Bに例示したデータは洗剤容器17の種類Bのデータを表している。これらデータは、洗剤容器17の既知の形状データから演算して作成しても良いし、実際に洗剤容器17に液体を入れて実験的に作成してもよい。図6Aや図6Bに示したデータを演算により規定する場合、次の演算式で規定することができる。
 V=∫[0,H]Da(h)dh/1000
 但し、V:洗剤残量[mL]、H:洗剤液面高さ[mm]、Da(h):高さhにおける洗剤容器の断面積[mm]である。
 コンピュータ30は、図6A及び図6Bに例示した関係データに基づき、洗剤液面検知で演算した洗剤液面高さHを洗剤残量に換算する。
 以上が洗剤容器液面高さから洗剤実残量を演算する方法の説明である。
 -洗剤残量表示-
 図7は本発明の一実施形態に係る自動分析支援ロボットが検査した洗剤実残量の表示画面の一例を表す図である。
 コンピュータ30は、コンソール50と通信し、前述した方法で検査した最新の洗剤実残量及びその検査時刻を洗剤の種類(又は洗剤容器17)毎にコンソール50に表示する。また、コンピュータ30は、各洗剤容器17の検査履歴をメモリから読み出し、複数の検査の洗剤実残量及びその検査時刻から求めた洗剤の消費ペースに基づき洗剤残量が0となる時刻を洗剤消失予想時刻として演算し、コンソール50に併せて表示する。洗剤消失予想時刻t3は、例えば次の演算式で求めることができる。
 t3=(V2×t1-V1×t2)/(V2-V1)
 但し、t2:最新検査の洗剤検査時刻、t1:前回検査の洗剤検査時刻、V2:最新検査の洗剤実残量、V1:前回検査の洗剤実残量である。
 最新検査の洗剤実残量V2が前回検査の洗剤実残量V1以上(V2≧V1)である場合、洗剤消失予想時刻t3は演算できないため、コンソール50の洗剤実残量画面の洗剤消失予想時刻には[-]が表示されることとする。
 なお、コンピュータ30は、検査室Lに配置された全ての分析モジュール11,12について各洗剤容器17(又は各種類の洗剤)の実残量の検査データを記憶している。例えばコンソール50を操作(図7の例では「モジュールA」「モジュールB]…と表示されたタブを選択)することで、個々の分析モジュールの洗剤実残量の検査データをコンソール50に切り換え表示可能である。例えば図7の状態で「モジュールB」を選択操作すると、コンソール50からコンピュータ30にリクエスト信号が送信され、これに応じてコンピュータ30から選択された分析モジュールのデータがコンソール50に送信されて表示される。
 以上がロボット20により検査した洗剤実残量の表示画面の説明である。
 -洗剤残量データ更新-
 図8はロボット20が検査した洗剤実残量を分析モジュールのコンピュータ13の管理データに反映する方法の説明図である。同図では分析モジュール11を対象とした場合を図示しているが、分析モジュール12を対象とした場合も洗剤液面検知動作は同じである。図8のデータの授受は、ロボット20に搭載されたコンピュータ30と分析モジュール11を管理するコンピュータ13との間で互いの通信装置40,14を介して行われる。
 ロボット20は、上記のように洗剤実残量を検査した後、データ更新対象の分析モジュールの洗剤残量を管理するコンピュータ13に対して洗剤情報受信リクエストの信号を送信する。データ更新対象の分析モジュールは、例えば洗剤実残量を検査し終えた分析モジュール11であり、現在ロボット20が対面している分析モジュール11を例示することができる。
 リクエストの信号を受信したコンピュータ13は、目的の分析モジュールの洗剤情報を送信可能な状態の場合、洗剤情報受信可能返答の信号をロボット20のコンピュータ30に送信する。但し、コンピュータ30が停止している場合、又は分析モジュール11が電源オフであるかそれに類する状況である場合等、分析モジュール側のコンピュータ13が信号を受信できないか受信しても返答できない場合がある。例えばこのような場合において、分析ユニット側のコンピュータ13からの信号が一定時間の間に受信されなければ、ロボット20に搭載されたコンピュータ30は、通信エラーとして処理を終了する。
 分析モジュール側のコンピュータ13から洗剤情報受信可能返答の信号を受信した場合、コンピュータ30は、洗剤情報として最新の洗剤実残量データを分析モジュール側のコンピュータ13に送信する。分析モジュール側のコンピュータ13は、対象の分析モジュールの管理データに受信した洗剤実残量のデータを反映し、自己が管理する洗剤残量の管理データを更新する。コンピュータ13は、ロボット20により検査された洗剤実残量の更新の機会が再び到来するまでの間、分析実施回数に基づく洗剤消費量の推定演算の方法で洗剤残量の管理データを更新していく。
 また、ロボット20側のコンピュータ30においては、次回にロボット20が洗剤実残量を検査する機会までの間、対象の分析モジュールの洗剤残量の実際値を把握することができず、自己の保持する洗剤実残量のデータは実際の洗剤残量と乖離していく。この場合、コンソール50に表示させる洗剤実残量画面の値が実際値と乖離してしまう。
 そこで、ロボット20が洗剤実残量の検査を終えてから次回の検査機会までの間、分析モジュール側のコンピュータ13の洗剤残量についての管理データとの同期処理を実行する。一定時間毎に又はユーザによるコンソール50の操作に応じて、コンピュータ30は洗剤情報送信リクエストの信号を分析モジュール側のコンピュータ13に送信する。信号を受信したコンピュータ13は、上記の通り分析実施数に基づく推定演算により更新を続けている洗剤残量のデータを、洗剤情報としてロボット側のコンピュータ30に送信する。コンピュータ30は、受信したデータを自己の保存する洗剤残量の管理データに記録する。
 以上がロボット20の検査した洗剤実残量を分析モジュールのコンピュータ13の管理データに反映する方法の説明である。
 -ポンプ圧力読取-
 図9A及び図9Bは本発明の一実施形態に係る自動分析支援ロボットのポンプ圧力読取動作の説明図である。図9Aでは分析モジュール11のボディを一部破断して内部の圧力計18を実線で図示してある。図9Bには、圧力計18の画像(左図)と指示針18aの角度及びポンプ圧力の関係を規定したデータ(右図)とを併せて図示してある。図9A及び図9Bでは分析モジュール11を対象とした場合を図示しているが、分析モジュール12を対象とした場合もポンプ圧力読取動作は同じである。
 必要に応じて開閉カバー19を開け、ロボット20が分析モジュール11に備わった圧力計18に対面したら(図9A)、コンピュータ30は、カメラ22を制御して圧力計18が映る映像(静止画像又は動画)を撮影し、メモリに記録する。この際、コンピュータ30のメモリには、分析モジュール11に備わった圧力計18の位置、種類及び数量のデータが記録されている。コンピュータ30は、これらデータに基づき、作業場所Yにおいて目的の圧力計18の撮影に適した位置へ移動し、目的の圧力計18に対面し圧力計18を一定時間撮影する。圧力計18は1つずつ撮影する構成としても良いし、複数をまとめて撮影する構成としても良い。複数の圧力計18をまとめて撮影する場合、カメラ22の画角によって歪曲収差等の各種収差が画像処理に影響する場合、これら収差を補正してメモリに保存するようにすることもできる。
 分析モジュール11の動作中は圧力計18の指示針18aが動くため、コンピュータ30は、必要な情報を得るためにカメラ22により動画を撮影する。動画の撮影時間は、分析モジュール11の分析サイクル時間を基準として、既定のサイクル数分の時間に設定する。例えば分析モジュール11の分析サイクル時間が1.8秒、既定のサイクル数を10サイクルに設定した場合、撮影時間は18秒になる。既定のサイクル数は、指示針18aの振幅や振れ方等を考慮して予め設定される。また、動画の撮影サンプリングフレームは指示針18aの動作を十分に補足できるものとする。撮影された動画を構成する多数の静止画像は、各々撮影時間と共にメモリに保存される。下記に一連の画像処理の内容を説明する。
 図9Bに示すように、ロボット20により撮影された画像は、圧力計18を正面から映した画像となる。圧力計18の画像を処理してポンプ圧力を読み取るために、圧力計18を映した画像には、圧力計18の全体が収まるように予め画像処理判定範囲Kが設定されている。画像処理判定範囲Kには、その内側に指示針追跡ポイントK1が設定されている。指示針追跡ポイントK1は、コンピュータ30により、予めメモリに記憶された指示針18aの形状的特徴点を基に探索された指示針18aの先端である。画像処理判定範囲Kの中における指示針追跡ポイントK1のXY座標のデータが、撮影した動画を構成する静止画像毎に特定されてメモリに記録される。
 次に、コンピュータ30は、既定のアルゴリズムに従って選択された3枚の静止画像の指示針追跡ポイントK1の座標データから原点O(指示針18aの回転中心に相当)を求める。具体的には、3枚の画像の指示針追跡ポイントK1を頂角とする三角形を仮想し、仮想した三角形の最長の辺を除く2辺のそれぞれの垂直二等分線の交点を原点Oとして求めることができる。3枚の静止画像は、原点Oの座標の演算精度を確保する上では、上記の仮想三角形の2辺がなるべく長くなるように選択されるようにアルゴリズムを規定することが望ましい。また、より多くの静止画像を選択して原点Oの座標を複数演算し、それら原点Oの座標を平均することで原点Oの演算精度がより向上し得る。原点Oを求めたら、コンピュータ30は、各静止画像のXY座標系(直交座標系)を原点Oが原点の極座標系に変換し、各静止画像において指示針追跡ポイントK1と原点Oとを結ぶ線分(指示針18aに相当)の角度θを演算してメモリに記録する。
 コンピュータ30のメモリには、図9Bの右側に示したような指示針18aの角度とポンプ圧力の関係を規定したデータが格納されている。圧力計18は種類により目盛が異なるため、このようなデータが圧力計18の種類毎に予め規定されてメモリに記録されている。コンピュータ30は、図9Bに例示した関係データに基づき、指示針18aの角度をポンプ圧力に換算し、各静止画像において指示針追跡ポイントK1が指し示すポンプ圧力を読み取る。
 以上が圧力計18の指示針18aの検知と指示針18aの指し示すポンプ圧力の読取の説明である。
 -ポンプ圧力演算-
 図10はロボット20が撮影した画像から演算した一定時間のポンプ圧力の計時変化を表す図である。
 前述した通り、動画を構成する各静止画像には撮影時刻のデータが紐づけられており、横軸を時間軸、縦軸を圧力軸とする座標系で各画像の圧力と時刻のデータをプロットすると、ポンプ圧力(圧力計18の実表示値)の計時変化のデータ(図10)が得られる。コンピュータ30は、分析モジュール11の分析サイクル時間CTをメモリに記憶しており、各画像のポンプ圧力及び時刻のデータから、分析サイクル時間CT毎に、最大圧力Pmax、最小圧力Pmin及び安定圧力Pstを演算する。
 前述した通り、動画の撮影時間は、分析サイクル時間CTを基準に既定のサイクル数(例えば10サイクル)分の時間に設定されているので、それぞれ既定のサイクル数(例えば10個)の最大圧力Pmax、最小圧力Pmin及び安定圧力Pstが演算される。最大圧力Pmax及び最小圧力Pminは、1サイクル時間CTのポンプ圧力の最大値及び最小値である。安定圧力Pstは、例えば1サイクル時間CTのポンプ圧力をヒストグラム分析した際の最頻値である。コンピュータ30は、こうして分析サイクル時間CT毎の最大圧力Pmax、最小圧力Pmin及び安定圧力Pstを求め、最大圧力Pmax、最小圧力Pmin及び安定圧力Pstの各平均値を演算する。これら最大圧力Pmax、最小圧力Pmin及び安定圧力Pstの各平均値が、ポンプ圧力の検査値(圧力計18の表示の読取値)として検査日時と紐づけられてメモリに記録される。
 以上がロボット20の撮影した画像からポンプ圧力を演算する方法の説明である。
 -ポンプ圧力表示-
 図11Aは本発明の一実施形態に係る自動分析支援ロボットが検査したポンプ圧力の表示画面の一例を表す図である。
 コンピュータ30は、コンソール50と通信し、前述した方法で検査した最新のポンプ圧力及びその検査時刻を圧力計18(又は圧力計18に対応するポンプ)毎にコンソール50に表示する。図11Aでは、ポンプ圧力として安定圧力Pstを表示している。分析モジュールの運用では、安定圧力を指標とすることが一般的であるためである。但し、所定の操作により最大圧力Pmaxや最小圧力Pminも表示できるようにすることができる。
 なお、コンピュータ30は、検査室Lに配置された全ての分析モジュール11,12について各圧力計18(又は圧力計18に対応するポンプ)のポンプ圧力の検査データを記憶している。例えばコンソール50を操作(図11Aの例では「モジュールA」「モジュールB]…と表示されたタブを選択)することで、個々の分析モジュールのポンプ圧力の検査データをコンソール50に切り換え表示可能である。例えば図11Aの状態で「モジュールB」を選択操作すると、コンソール50からコンピュータ30にリクエスト信号が送信され、これに応じてコンピュータ30から選択された分析モジュールのデータがコンソール50に送信されて表示される。
 また、コンピュータ30には、ポンプ圧力の検査データの履歴がメモリに保存されている。図11Aに示したように、本実施形態のポンプ圧力の表示画面には、ポンプ圧力の検査値の長期間におけるトレンドを表示させる表示ボタンBtが表示されている。この表示ボタンBtを操作すると、コンピュータ30に保存されている履歴データに基づき、時間(例えば日付)を横軸、ポンプ圧力を縦軸とする、指定した期間(例えば直近の数か月)のポンプ圧力のトレンドを表示する画面(図11B)が表示される。ユーザは図11Bの画面からポンプの異常や劣化の予兆を推測することができる。
 なお、ポンプの異常や劣化の予兆をより精度良く知るために、図10に示したポンプ圧力のデータに対して、正常なポンプについて予め取得しておいたポンプ圧力のリファレンスデータとの差分によりポンプの状態を評価することも考えられる。また、ポンプ圧力の検査値や検査時刻のデータについて、マハラノビスタグチメソッドによるマハラノビス距離の評価を取り入れることも考えられる。また、ロボット20による検査で取得されるポンプ圧力のデータを分析モジュールの機種や検査室Lの環境、運用情報等のデータと関連付けてビッグデータとして蓄積する。この場合、AIによるデータ分析をビッグデータに適用することにより、分析モジュール11,12や検査室Lのより高精度で高効率な運用方法の模索に役立つ。
 以上がロボット20により検査したポンプ圧力の表示の説明である。
 -効果-
 (1)以上の通り、ロボット20が洗剤容器17や圧力計18といった検査対象をカメラ22で撮影し、撮影した画像をコンピュータ30で処理し洗剤実残量や圧力計18の表示値といった管理データをユーザに代行して読み取ることができる。これにより、自動分析装置のメンテナンスに関するユーザの負担を軽減することができる。
 また、洗剤容器17や圧力計18の目視確認といったユーザの作業をロボット20が代行する。これにより、ユーザの都合で実施されたりされなかったりする洗剤容器17や圧力計18の検査を日々機械的に安定したタイミングで(例えば1時間毎に)実行することができる。
 また、ロボット20による検査のタイミングをユーザの業務時期を考慮して設定することで、ユーザの業務の邪魔になることなくロボット20に検査を実行させることができる。低コストで導入可能なロボット20を活用することで、洗剤容器17毎に液面センサを設けたり圧力センサ毎にトランスデューサを設けたりする必要がなく、自動分析装置のコストの増加を抑えつつ自動分析装置の稼働率を向上させることができる。
 (2)また、検査対象となる洗剤容器17や圧力計18が分析モジュール11,12の開閉カバー19でカバーされて撮影できない場合でも、ロボット20がマニピュレータ23を用いて自ら開閉カバー19を開閉することができる。これにより、ロボット20による検査のために開閉カバー19を開け閉めするといったユーザの準備作業も不要である。
 (3)ロボット20が検査した洗剤実残量を分析モジュール11,12のコンピュータ13に送信しフィードバックすることで、分析モジュール側では取得できない洗剤の実残量を管理データに適宜反映することができる。これによりコンピュータ13が管理する洗剤残量と実残量との乖離を抑制することができる。
 (4)分析モジュール11,12のボディの既存のカバーがロボット20による開閉に不向きな構造である場合、既存のカバーをロボット用把手19Bのある開閉カバー19(図2A)に換装することで、ロボット20の自律構造をサポートすることができる。また、図2Bに示したようなカバー19’に換装することにより、検査対象の撮影にカバーの開閉が不要となり、ロボット20の自律構造をサポートできると共に、ロボット20のマニピュレータ23を省略可能としロボット20の低廉化にも繋がる。
 -変形例-
 上記実施形態では、ロボット20の制御や画像処理を実行するコンピュータ30をロボット20に搭載した構成を例に挙げて説明したが、コンピュータ30の機能を複数のコンピュータで分担する構成とすることもできる。例えば、コンピュータ30を第1コンピュータ、自動分析装置10A,10Bやロボット20とは別に設置されたコンピュータ(例えばコンソール50)を第2コンピュータとし、これら2台のコンピュータで機能を分担する構成とすることができる。この場合、ロボット20に搭載された第1コンピュータは、第2コンピュータからの指令に応じて洗剤容器17等の検査対象をカメラ22で撮影し、画像処理を実行せずに通信モジュール(通信装置40)を介して検査対象の映像を第2コンピュータに送信する。そして、第2コンピュータにおいて、検査対象の映像を処理して検査対象に関する管理データ(洗剤実残量等)を演算し、通信装置を介して管理データを分析モジュールのコンピュータ13に送信する。この間のロボット20の走行や撮影の動作に関しては、第2コンピュータからのトリガ信号に応じて第1コンピュータが車体21等を制御する構成、第2コンピュータからの制御指令値に応じて第1コンピュータが車体21等を駆動する構成の双方が適用可能である。
 また、分析モジュール11,12を管理するコンピュータ13でポンプ圧力の管理をする場合、ロボット20を用いて検査したポンプ圧力のデータをコンピュータ13に送信する構成としても良い。
 また、例えば分析モジュール11,12のボディのオリジナルの開閉カバーのユーザ用の把手にハンド23aの位置が合わせられるようにロボット20を構成する場合、分析モジュール11,12のボディカバーを専用の開閉カバー19に換装する必要はない。
11,12…分析モジュール、17…洗剤容器(検査対象)、18…圧力計(検査対象)、19…開閉カバー、19’…カバー、19B…ロボット用把手(把手)、20…自動分析支援ロボット、21…車体、22…カメラ、23…マニピュレータ、23a…ハンド、30…コンピュータ(コンピュータ、第1コンピュータ)、40…通信装置(通信装置、通信モジュール)、50…コンソール(第2コンピュータ、通信装置)、Y…作業位置

Claims (10)

  1.  生体試料を自動的に分析する分析モジュールの検査を実施する自動分析支援ロボットであって、
     車体と、
     前記車体に搭載したカメラと、
     前記分析モジュールと直接的又は間接的に通信する通信装置と、
     前記車体及び前記カメラを制御するコンピュータとを備え、
     前記コンピュータは、
     既定の作業位置に移動して前記分析モジュールに備わった検査対象に臨むように前記車体を制御し、
     前記検査対象を前記カメラで撮影し、
     前記検査対象の映像を処理して前記検査対象に関する管理データを演算する
    ことを特徴とする自動分析支援ロボット。
  2.  請求項1の自動分析支援ロボットにおいて、
     前記検査対象をカバーする前記分析モジュールの開閉カバーの把手に掛けるハンドを持つマニピュレータを備え、
     前記コンピュータは、
     前記検査対象に臨む前に、
     前記作業位置に移動するように前記車体を制御し、
     前記ハンドが前記把手に掛かるように前記マニピュレータを制御し、
     前記把手に前記ハンドが掛かった状態で前記開閉カバーの開閉軌道に沿って走行するように前記車体を制御して前記開閉カバーを開放する
    ことを特徴とする自動分析支援ロボット。
  3.  請求項1の自動分析支援ロボットにおいて、
     前記コンピュータは、前記通信装置を介して前記管理データを前記分析モジュールに送信することを特徴とする自動分析支援ロボット。
  4.  請求項1の自動分析支援ロボットにおいて、
     前記管理データが、前記分析モジュールに備わった洗剤容器内の洗剤の実残量であることを特徴とする自動分析支援ロボット。
  5.  請求項1の自動分析支援ロボットにおいて、
     前記管理データが、前記分析モジュールに備わった圧力計の表示値であることを特徴とする自動分析支援ロボット。
  6.  生体試料を自動的に分析する分析モジュールと、
     前記分析モジュールの検査を実施する自動分析支援ロボットと、
     前記自動分析支援ロボットを制御するコンピュータと
     前記分析モジュールと直接的又は間接的に通信する通信装置と
    を備えた自動分析システムであって、
     前記自動分析支援ロボットは、
     車体と、
     前記車体に搭載したカメラとを備え、
     前記コンピュータは、
     前記自動分析支援ロボットが既定の作業位置に移動して前記分析モジュールに備わった検査対象に臨むように前記車体を制御し、
     前記検査対象を前記カメラで撮影し、
     前記検査対象の映像を処理して前記検査対象に関する管理データを演算する
    ことを特徴とする自動分析システム。
  7.  請求項6の自動分析システムにおいて、
     前記分析モジュールは、前記検査対象をカバーする開閉カバーを備え、
     前記自動分析支援ロボットは、前記開閉カバーの把手に掛けるハンドを持つマニピュレータを備え、
     前記コンピュータは、
     前記検査対象に臨む前に、
     前記自動分析支援ロボットが前記作業位置に移動するように前記車体を制御し、
     前記ハンドが前記把手に掛かるように前記マニピュレータを制御し、
     前記把手に前記ハンドが掛かった状態で前記開閉カバーの開閉軌道に沿って走行するように前記車体を制御して前記開閉カバーを開放する
    ことを特徴とする自動分析システム。
  8.  請求項6の自動分析システムにおいて、
     前記分析モジュールは、前記検査対象をカバーすると共に、前記検査対象が視認できるように少なくとも一部が透明なカバーを備えていることを特徴とする自動分析システム。
  9.  請求項6の自動分析システムにおいて、
     前記コンピュータ及び前記通信装置は、前記自動分析支援ロボットに搭載されていることを特徴とする自動分析システム。
  10.  請求項6の自動分析システムにおいて、
     前記コンピュータは、前記自動分析支援ロボットに搭載された第1コンピュータと、前記分析モジュール及び前記自動分析支援ロボットとは別に設置された第2コンピュータとで構成されており、
     前記自動分析支援ロボットは、前記第2コンピュータと通信する通信モジュールを備えており、
     前記第1コンピュータは、前記第2コンピュータからの指令に応じて前記検査対象を前記カメラで撮影し、前記通信モジュールを介して前記検査対象の映像を前記第2コンピュータに送信し、
     前記第2コンピュータは、前記検査対象の映像を処理して前記検査対象に関する管理データを演算する
    ことを特徴とする自動分析システム。
PCT/JP2022/029848 2021-09-10 2022-08-03 自動分析支援ロボット及び自動分析システム WO2023037801A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058416.1A CN117881969A (zh) 2021-09-10 2022-08-03 自动分析辅助机器人以及自动分析系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147443 2021-09-10
JP2021-147443 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023037801A1 true WO2023037801A1 (ja) 2023-03-16

Family

ID=85507517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029848 WO2023037801A1 (ja) 2021-09-10 2022-08-03 自動分析支援ロボット及び自動分析システム

Country Status (2)

Country Link
CN (1) CN117881969A (ja)
WO (1) WO2023037801A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296284A (ja) * 2001-04-02 2002-10-09 Hitachi Ltd 自動分析装置
JP2005153104A (ja) * 2003-11-27 2005-06-16 Nec Fielding Ltd コンピュータメンテナンスロボットシステム及びコールによる保守作業方法及び巡回点検方法及びそのプログラム
JP2007190641A (ja) * 2006-01-19 2007-08-02 Advanced Telecommunication Research Institute International コミュニケーションロボット
JP2016068233A (ja) 2014-10-01 2016-05-09 株式会社日立製作所 搬送ロボット
JP2019174369A (ja) 2018-03-29 2019-10-10 シスメックス株式会社 検体前処理装置、ロボットアームおよび検体前処理方法
JP2019197021A (ja) 2018-05-11 2019-11-14 シスメックス株式会社 搬送用装置、検体測定システムおよび搬送方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296284A (ja) * 2001-04-02 2002-10-09 Hitachi Ltd 自動分析装置
JP2005153104A (ja) * 2003-11-27 2005-06-16 Nec Fielding Ltd コンピュータメンテナンスロボットシステム及びコールによる保守作業方法及び巡回点検方法及びそのプログラム
JP2007190641A (ja) * 2006-01-19 2007-08-02 Advanced Telecommunication Research Institute International コミュニケーションロボット
JP2016068233A (ja) 2014-10-01 2016-05-09 株式会社日立製作所 搬送ロボット
JP2019174369A (ja) 2018-03-29 2019-10-10 シスメックス株式会社 検体前処理装置、ロボットアームおよび検体前処理方法
JP2019197021A (ja) 2018-05-11 2019-11-14 シスメックス株式会社 搬送用装置、検体測定システムおよび搬送方法

Also Published As

Publication number Publication date
CN117881969A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
JP6660937B2 (ja) 点検デバイス
CN206975048U (zh) 制备用于鉴定和抗生素敏感性试验的单样本悬浮液的自动化系统
CN107702653B (zh) 一种机器人涂胶三维信息视觉检测装置及方法
US20110228069A1 (en) Technique for estimating cell conditions and image processor for cell observation
US20060133965A1 (en) Monitoring function-equipped dispensing system and method of monitoring dispensing device
US20110316713A1 (en) Sample processing apparatus, sample container transporting apparatus, sample processing method and sample container transporting method
CN101726611B (zh) 检体分析装置以及检体分析装置的校正方法
WO2009110462A1 (ja) 細胞観察における生細胞の判別手法、細胞観察の画像処理プログラム及び画像処理装置
CN105008920B (zh) 便携式临床分析系统中的空间方位确定
CN104188635A (zh) 一种牲畜活体体测设备及方法
CN107615336A (zh) 视觉系统中托盘槽类型和试管类型的基于位置的检测
JP2012008077A (ja) 自動分析装置
WO2023037801A1 (ja) 自動分析支援ロボット及び自動分析システム
JP2012173226A (ja) 液面検知装置
CN217429994U (zh) 烟酸皮肤反应图像的处理系统
JPH04295764A (ja) 自動化学分析装置
US20080240542A1 (en) Droplet detection system
CN108917595A (zh) 基于机器视觉的玻璃在线检测装置
CN109668547A (zh) 一种桥梁智能化检查系统
JPWO2016017291A1 (ja) 自動分析装置
CN112067832A (zh) 一种便携式尿液分析系统及其分析方法
US20230067353A1 (en) Automatic Analyzer
US20230088751A1 (en) A soil analysis apparatus
CN113776629A (zh) 玻璃量器自动校准系统及控制方法、装置
JP2592837B2 (ja) 自動化学分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867123

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546835

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022867123

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022867123

Country of ref document: EP

Effective date: 20240410