WO2023037683A1 - Diagnostic system, diagnostic method, diagnostic program, and air conditioner - Google Patents
Diagnostic system, diagnostic method, diagnostic program, and air conditioner Download PDFInfo
- Publication number
- WO2023037683A1 WO2023037683A1 PCT/JP2022/023815 JP2022023815W WO2023037683A1 WO 2023037683 A1 WO2023037683 A1 WO 2023037683A1 JP 2022023815 W JP2022023815 W JP 2022023815W WO 2023037683 A1 WO2023037683 A1 WO 2023037683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- value
- sensors
- detection
- values
- Prior art date
Links
- 238000002405 diagnostic procedure Methods 0.000 title description 3
- 238000001514 detection method Methods 0.000 claims abstract description 120
- 238000012545 processing Methods 0.000 claims abstract description 33
- 239000003507 refrigerant Substances 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 22
- 238000012937 correction Methods 0.000 claims description 8
- 230000005856 abnormality Effects 0.000 description 96
- 238000003745 diagnosis Methods 0.000 description 20
- 239000003921 oil Substances 0.000 description 16
- 238000012546 transfer Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000004378 air conditioning Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000010721 machine oil Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/38—Failure diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
Definitions
- the present disclosure relates to diagnostic systems, diagnostic methods, diagnostic programs, and air conditioners.
- Patent Document 1 there is known an air conditioner that includes a refrigerant circuit having a compressor, a heat exchanger, a four-way switching valve, an expansion valve, etc., and performs cooling operation and heating operation (see Patent Document 1).
- the air conditioner described in Patent Document 1 is provided with temperature sensors for detecting the temperature of the refrigerant and the temperature of the air, and the detected values of these temperature sensors are used for controlling the operation of the air conditioner.
- Various sensors such as a temperature sensor installed in an air conditioner may gradually deviate from normal values ("detection deviation"). There is a risk of impeding driving. Therefore, it is desirable to grasp the detection state of such sensors.
- An object of the present disclosure is to provide a diagnostic system and an air conditioner capable of diagnosing the detection state of the sensor.
- the diagnostic system of the present disclosure acquires a detection value of a sensor provided in the air conditioner while the air conditioner is stopped, and obtains the detection value or a calculated value obtained from the detection value and a predetermined reference value and a processing unit for diagnosing the detection state of the sensor based on the comparison with.
- a detected value of a sensor to be diagnosed is obtained while the air conditioner is stopped, and the detected value or a calculated value obtained from the detected value, and a value (reference value) that is considered to converge.
- comparing it is possible to grasp how much the sensor deviates from the normal state, and the detection state of the sensor can be diagnosed from the magnitude of the deviation.
- the senor is a temperature sensor. While the air conditioner is stopped, the detected value of the temperature sensor provided in the air conditioner converges to the ambient temperature. , it is possible to grasp how much the temperature sensor deviates from the normal state.
- the reference value is obtained from detection values of a plurality of temperature sensors provided in the air conditioner. According to this configuration, by obtaining the reference value from the detection value of the temperature sensor provided in the air conditioner, it is possible to set an appropriate reference value according to the surrounding environment of the installation location of the air conditioner.
- the reference value is a median value of detection values of a plurality of temperature sensors provided in the air conditioner. According to the above configuration, by using the median value of the detected values of the plurality of temperature sensors as the reference value, even if the detected values include an abnormal value, it is possible to suppress the adverse effect of the value on the reference value. can do.
- the reference value is an average value of detection values of a plurality of temperature sensors provided in the air conditioner.
- the average value is obtained by omitting the maximum and minimum values among the detected values of the plurality of temperature sensors. According to this configuration, when abnormally large or small values are included in the detection values of the plurality of temperature sensors, it is possible to prevent the values from adversely affecting the reference value.
- the senor to be diagnosed is one of the plurality of temperature sensors.
- the sensor itself to be diagnosed can be used as a temperature sensor for obtaining the reference value.
- the reference value is a detected value of an ambient temperature sensor that detects the ambient temperature of the air conditioner
- the sensor to be diagnosed is a temperature sensor other than the ambient temperature sensor.
- the senor is a pressure sensor that detects the pressure of the refrigerant. While the air conditioner is stopped, the detected value of the pressure sensor provided in the air conditioner converges to a value according to the surrounding environment. Therefore, by comparing the detected value of the pressure sensor or the calculated value obtained from the detected value with the reference value according to the surrounding environment, it is possible to grasp how much deviation the pressure sensor has from the normal state. can do.
- the processing unit obtains a pressure-equivalent saturation temperature as the calculated value from the detected value of the sensor.
- the reference value is obtained from detection values of a plurality of temperature sensors provided in the air conditioner.
- the processing unit obtains a correction value according to the difference, Instructs operation control using the correction value. According to this configuration, the operation of the air conditioner can be continued as an emergency measure even when there is a deviation in the detection value of the sensor.
- the air conditioner of the present disclosure includes the diagnostic system according to any one of (1) to (12) above.
- the diagnostic method of the present disclosure includes the step of acquiring a detection value of a sensor provided in the air conditioner while the air conditioner is stopped, and based on the detection value or a calculated value obtained from the detection value and diagnosing the detection state of the sensor.
- the diagnostic program of the present disclosure includes a procedure of acquiring a detection value of a sensor provided in the air conditioner while the air conditioner is stopped; and a step of diagnosing the detection state of the sensor based on the detected value or a calculated value obtained from the detected value.
- FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present disclosure
- FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner
- FIG. It is a block diagram of an outdoor control part.
- 4 is a table exemplifying contents of abnormality information, retry information, and predictive information stored in a storage unit;
- 4 is a table showing detection examples of signs of abnormality.
- 4 is a table illustrating contents of abnormality information displayed on a display unit; 7 is a table illustrating the contents of retry information displayed on the display unit; It is a table
- 4 is a flow chart showing a procedure for diagnosing detection deviation of a temperature sensor;
- 4 is a flow chart showing a procedure for diagnosing a detection deviation of a pressure sensor;
- FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present disclosure.
- the air conditioning system has an air conditioner 11, a central control device 50, and a control server 62.
- the air conditioner 11 adjusts the temperature of the indoor air, which is the space to be air-conditioned, to a predetermined target temperature.
- the air conditioner 11 of this embodiment cools and heats the room.
- the air conditioner 11 includes an indoor unit 21 and an outdoor unit 22.
- This air conditioner 11 is, for example, a multi-type air conditioner 11 in which a plurality of indoor units 21 are connected in parallel to an outdoor unit 22 .
- the air conditioner 11 may include one outdoor unit 22 and one indoor unit 21 .
- FIG. 2 is a schematic refrigerant circuit diagram of an air conditioner.
- the air conditioner 11 has a refrigerant circuit 23 .
- the refrigerant circuit 23 circulates refrigerant between the indoor unit 21 and the outdoor unit 22 .
- the refrigerant circuit 23 includes a compressor 30, an oil separator 31, a four-way switching valve 32, an outdoor heat exchanger (heat source heat exchanger) 33, an outdoor expansion valve 34, a supercooler 35, a liquid closing valve 36, and an indoor expansion valve. 24, an indoor heat exchanger (utilizing heat exchanger) 25, a gas shutoff valve 37, an accumulator 38, and refrigerant pipes 40L and 40G connecting these.
- the indoor unit 21 includes an indoor expansion valve 24 and an indoor heat exchanger 25 that form a refrigerant circuit 23 .
- the indoor expansion valve 24 is composed of an electric valve capable of adjusting the refrigerant flow rate.
- the indoor heat exchanger 25 is a cross-fin tube type or microchannel type heat exchanger, and is used to exchange heat with indoor air.
- the indoor unit 21 further includes an indoor fan 26 and an indoor temperature sensor 27.
- the indoor fan 26 is configured to take indoor air into the interior of the indoor unit 21, cause heat exchange between the taken air and the indoor heat exchanger 25, and then blow the air indoors. .
- the indoor fan 26 has a motor whose operating speed can be adjusted by inverter control.
- the indoor temperature sensor 27 detects the indoor temperature.
- the outdoor unit 22 includes a compressor 30, an oil separator 31, a four-way switching valve 32, an outdoor heat exchanger 33, an outdoor expansion valve 34, a supercooler 35, a liquid closing valve 36, and a gas closing valve. 37 and an accumulator 38 .
- the compressor 30 sucks in low-pressure gas refrigerant and discharges high-pressure gas refrigerant.
- the compressor 30 has a motor whose operating speed can be adjusted by inverter control.
- the compressor 30 is of a variable capacity type (capacity variable type) whose capacity (capacity) can be changed by inverter-controlling the motor.
- the compressor 30 may be of a constant capacity type.
- a plurality of compressors 30 may be provided. In this case, the variable capacity compressor 30 and the constant capacity compressor 30 may be mixed.
- the oil separator 31 separates refrigerating machine oil contained in the refrigerant discharged from the compressor 30 from the refrigerant.
- the refrigerator oil separated by the oil separator 31 is returned to the compressor 30 via the oil return pipe 41 .
- An on-off valve 42 is provided on the oil return pipe 41 .
- the on-off valve 42 consists of an electromagnetic valve. When the on-off valve 42 is opened, the refrigerator oil in the oil separator 31 passes through the oil return pipe 41 and is sucked into the compressor 30 together with the refrigerant flowing through the suction pipe 44 .
- the four-way switching valve 32 reverses the flow of the refrigerant in the refrigerant piping, and switches the refrigerant discharged from the compressor 30 to either the outdoor heat exchanger 33 or the indoor heat exchanger 25 to supply the refrigerant.
- the air conditioner 11 can switch between the cooling operation and the heating operation.
- the outdoor heat exchanger 33 is, for example, a cross-fin tube type or micro-channel type heat exchanger, and uses air as a heat source to exchange heat with the refrigerant to condense or evaporate the refrigerant.
- the outdoor expansion valve 34 is composed of an electrically operated valve capable of adjusting the refrigerant flow rate.
- the supercooler 35 supercools the refrigerant condensed in the outdoor heat exchanger 33 .
- the supercooler 35 has a first heat transfer tube 35a and a second heat transfer tube 35b.
- One end of the first heat transfer pipe 35 a is connected to a refrigerant pipe extending to the outdoor expansion valve 34 .
- the other end of the first heat transfer pipe 35 a is connected to a refrigerant pipe extending to the liquid closing valve 36 .
- One end of the second heat transfer pipe 35 b is connected to a branch pipe 35 c that branches from the refrigerant pipe between the first heat transfer pipe 35 a and the outdoor expansion valve 34 .
- An expansion valve 43 is provided in the branch pipe 35c.
- the other end of the second heat transfer pipe 35 b is connected to a suction pipe 44 for returning the refrigerant to the compressor 30 .
- the subcooler 35 combines the refrigerant that flows from the compressor 30 through the outdoor heat exchanger 33 and the expansion valve 34 and flows through the first heat transfer tube 35a, and the refrigerant that is decompressed by the expansion valve 43 and flows through the second heat transfer tube 35b. Heat is exchanged between them, and the refrigerant flowing through the first heat transfer tubes 35a is supercooled. The refrigerant flowing through the second heat transfer pipe 35 b passes through the suction pipe 44 and is sucked into the compressor 30 via the accumulator 38 .
- the accumulator 38 temporarily stores the low-pressure refrigerant sucked into the compressor 30 and separates the gas refrigerant and the liquid refrigerant.
- the accumulator 38 is provided in the suction pipe 44 .
- One end of an oil return pipe 45 is connected to the accumulator 38 .
- the other end of the oil return pipe 45 is connected to the suction pipe 44 .
- the oil return pipe 45 is a pipe for returning refrigerating machine oil from the accumulator 38 to the compressor 30 .
- An on-off valve 46 is provided on the oil return pipe 45 .
- the on-off valve 46 consists of an electromagnetic valve. When the on-off valve 46 is opened, the refrigerator oil in the accumulator 38 passes through the oil return pipe 45 and is sucked into the compressor 30 together with the refrigerant flowing through the suction pipe 44 .
- the liquid closing valve 36 is a manual opening/closing valve.
- the gas shutoff valve 37 is also a manual open/close valve.
- the liquid shutoff valve 36 and the gas shutoff valve 37 block the flow of refrigerant in the refrigerant pipes 40L and 40G by closing, and allow the flow of refrigerant in the refrigerant pipes 40L and 40G by opening.
- the outdoor unit 22 further includes an outdoor fan 39, pressure sensors 51 and 52, temperature sensors 53-59, a current sensor 60, and the like.
- the outdoor fan 39 has a motor whose operating speed can be adjusted by inverter control.
- the outdoor fan 39 takes in outdoor air into the outdoor unit 22, causes heat exchange between the taken in air and the outdoor heat exchanger 33, and then blows out the air to the outside of the outdoor unit 22. It is configured.
- the pressure sensors 51 and 52 include a suction pressure sensor 51 and a discharge pressure sensor 52.
- a suction pressure sensor 51 detects the pressure of the refrigerant sucked into the compressor 30 .
- a discharge pressure sensor 52 detects the pressure of the refrigerant discharged from the compressor 30 .
- the temperature sensors 53-59 include refrigerant temperature sensors 53-57 that detect the temperature of the refrigerant, an outside air temperature sensor 58 that detects the temperature of the outside air, and a temperature sensor 59 that detects the surface temperature of the compressor 30.
- Refrigerant temperature sensor 53 detects the temperature of the refrigerant sucked into compressor 30 .
- Refrigerant temperature sensor 54 detects the temperature of the refrigerant discharged from compressor 30 .
- a refrigerant temperature sensor 55 detects the temperature of the refrigerant on the liquid side of the outdoor heat exchanger 33 .
- a refrigerant temperature sensor 56 detects the temperature of the refrigerant between the supercooler 35 and the liquid closing valve 36 .
- the refrigerant temperature sensor 57 detects the temperature of the refrigerant flowing out from the second heat transfer tube 35 b of the subcooler 35 .
- the evaporation temperature and condensation temperature of the refrigerant in the outdoor heat exchanger 33 and the indoor heat exchanger 25 are obtained.
- the rotational speed of the compressor 30, the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 24, and the like are controlled so as to adjust these values.
- the four-way switching valve 32 When the air conditioner 11 configured as described above performs cooling operation, the four-way switching valve 32 is held in the state indicated by the solid line in FIG.
- the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 30 flows through the four-way switching valve 32 into the outdoor heat exchanger 33, where the outdoor fan 39 operates to exchange heat with outdoor air to condense and liquefy.
- the liquefied refrigerant flows into the indoor unit 21 through the fully open outdoor expansion valve 34 and the supercooler 35 .
- the refrigerant In the indoor unit 21, the refrigerant is decompressed to a predetermined low pressure by the indoor expansion valve 24, and further heat-exchanged with the indoor air by the indoor heat exchanger 25 to evaporate.
- the indoor air cooled by the evaporation of the refrigerant is blown into the room by the indoor fan 26 to cool the room.
- the refrigerant evaporated in the indoor heat exchanger 25 returns to the outdoor unit 22 through the gas refrigerant pipe 40G and is sucked into the compressor 30 through the four-way switching valve 32 .
- the air conditioner 11 also operates in the same manner as in the cooling operation when performing the defrost operation for removing frost adhered to the outdoor heat exchanger 33 .
- the four-way switching valve 32 When the air conditioner 11 performs heating operation, the four-way switching valve 32 is held in the state indicated by the dashed line in FIG.
- the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 30 passes through the four-way switching valve 32 and flows into the indoor heat exchanger 25 of the indoor unit 21 .
- the indoor heat exchanger 25 In the indoor heat exchanger 25, the refrigerant exchanges heat with the indoor air and is condensed and liquefied.
- the indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 26 to heat the room.
- the refrigerant liquefied in the indoor heat exchanger 25 returns to the outdoor unit 22 through the liquid refrigerant pipe 40L, is decompressed to a predetermined low pressure by the outdoor expansion valve 34, and is heat-exchanged with the outdoor air by the outdoor heat exchanger 33. Evaporate.
- the refrigerant evaporated and vaporized in the outdoor heat exchanger 33 is sucked into the compressor 30 through the four-way switching valve 32 .
- the indoor unit 21 further has an indoor controller 29 and a remote controller (remote controller) 29A.
- the indoor control unit 29 is composed of a microcomputer or the like having a calculation unit such as a CPU and a storage unit such as RAM and ROM.
- the indoor controller 29 may be provided with an integrated circuit such as FPGA or ASIC. Detected values of the sensors provided in the indoor unit 21 are input to the indoor controller 29 .
- the indoor controller 29 controls the operation of the indoor expansion valve 24 and the indoor fan 26 based on the values detected by the indoor temperature sensor 27 and the like.
- the remote controller 29A is used for inputting instructions to start and stop operation of the air conditioner 11, inputting operation modes such as cooling and heating, and inputting the set temperature in the room.
- the remote control 29A has a display section 29A1 (see FIG. 3) for displaying settings and the like.
- the display section 29A1 also functions as a notification section for notifying the user of the occurrence of an abnormality, as will be described later.
- the outdoor unit 22 further has an outdoor control unit 70.
- the outdoor control unit 70 is configured by a microcomputer or the like having a calculation unit such as a CPU and a storage unit such as RAM and ROM.
- the outdoor control unit 70 exhibits a predetermined function by executing the program stored in the storage unit by the calculation unit.
- the outdoor control unit 70 may include an integrated circuit such as FPGA or ASIC. Detected values of various sensors 51 to 60 provided in the outdoor unit 22 are input to the outdoor controller 70 .
- the outdoor control unit 70 controls the operations of the compressor 30, the outdoor fan 39, the expansion valves 34, 43, etc. based on the detection values of the various sensors 51-60.
- the outdoor control unit 70 also functions as an abnormality diagnosis system for diagnosing whether the air conditioner 11 has an abnormality, as will be described later.
- the indoor controller 29, the outdoor controller 70, and the centralized control device 50 are connected via a local communication network such as a LAN (local area network). Specifically, the indoor controller 29 and the outdoor controller 70 are connected to communicate with each other via a transmission line. The indoor controller 29 and the outdoor controller 70 are connected to the central control device 50 via a transmission line so as to be able to communicate with each other.
- a local communication network such as a LAN (local area network).
- LAN local area network
- the centralized control device 50 includes a control section 50a such as a microcomputer having a calculation section such as a CPU and a storage section such as ROM and RAM.
- the control unit 50a exhibits a predetermined function when the arithmetic unit executes a program stored in the storage unit.
- the control unit 50a may include an integrated circuit such as FPGA or ASIC.
- the central control device 50 is installed, for example, in a central control room of a building.
- the central control device 50 manages the outdoor units 22 and the indoor units 21 . Specifically, the central control device 50 monitors the operation status of the outdoor unit 22 and the indoor unit 21, sets the air conditioning temperature, controls operation/stop, etc., by means of the control unit 50a.
- the management server 62 is provided in a remote location away from the building where the air conditioner 11 is installed.
- the management server 62 is composed of, for example, a personal computer including a control section 62a having a calculation section such as a CPU and a storage section such as ROM and RAM.
- the control unit 62a exhibits a predetermined function when the arithmetic unit executes the program stored in the storage unit.
- the control unit 62a may include an integrated circuit such as FPGA or ASIC.
- the central control device 50 and the control server 62 are communicably connected via a wide area communication network 63 such as the Internet.
- the central control device 50 and the control server 62 may be omitted.
- the outdoor control unit 70 constitutes an abnormality diagnosis system that detects the occurrence of an "abnormality” occurring in the air conditioner 11 and the occurrence of a "sign of abnormality” (hereinafter also simply referred to as a "sign"). ing.
- the outdoor control unit 70 acquires detection values of various sensors 51 to 60 and control data of the compressor 30, the outdoor fan 39, the expansion valves 34 and 43, etc. as operation data.
- the outdoor control unit 70 uses the acquired operation data to control the operation of various devices such as the compressor 30 and detects an abnormality and a sign of the air conditioner 11 .
- Devices that are subject to detection of occurrence of anomalies and signs are, for example, the compressor 30, the outdoor fan 39, the expansion valves 34 and 43, the temperature sensors 53 to 59, the pressure sensors 51 and 52, and the like.
- the outdoor control unit 70 stops the air conditioner 11 when detecting the occurrence of “abnormality” in the air conditioner 11 .
- the outdoor control unit 70 continues the operation of the air conditioner 11 when detecting the occurrence of the “prediction of abnormality” of the air conditioner 11 .
- the outdoor control unit 70 executes retry operation in which the air conditioner 11 is temporarily stopped when a predetermined abnormality occurs, and is restarted after a predetermined period of time has elapsed. If an abnormality occurs even after the retry operation is performed a predetermined number of times, the outdoor control unit 70 confirms the abnormality as a formal "abnormality".
- the method shown in FIG. 5 can be applied to detect signs of anomalies. Details of FIG. 5 will be described later.
- FIG. 3 is a configuration diagram of an outdoor control unit.
- the outdoor control unit 70 has a processing unit 71 , a storage unit 72 , a display unit 73 and an output unit 74 .
- the processing unit 71 is composed of an arithmetic unit such as a CPU, and performs processing for controlling the operation of the compressor 30 as described above, as well as processing for abnormality diagnosis.
- the processing unit 71 When the processing unit 71 detects that “abnormality”, “retry operation”, and “prediction of abnormality” have occurred, the processing unit 71 stores such information “abnormality information”, “retry information”, and “prediction information” in the storage unit. 72 is stored. The processing unit 71 executes processing for displaying the “abnormality information”, “retry information”, and “prediction information” stored in the storage unit 72 on the display unit 73 . Further, the processing unit 71 performs processing for displaying “abnormality information” among the information stored in the storage unit 72 on the display unit 29A1 of the remote controller 29A. The processing unit 71 causes the display unit 29A1 to display only the "abnormality information" without displaying the "prediction information” and the "retry information”.
- the storage unit 72 stores detection data of various sensors of the air conditioner 11 and control data of the compressor 30 and the like. Further, when the processing unit 71 detects the occurrence of "abnormality”, “retry operation”, and “prediction”, the storage unit 72 stores the "abnormality information", “retry information”, and "prediction information”.
- Abnormality information includes information about the content of the abnormality and the time of occurrence.
- the "prediction information” includes the content of the prediction and information on the occurrence time.
- the “retry information” includes information on the content of the abnormality that caused the retry operation and the time of occurrence of the abnormality.
- FIG. 4 is a table illustrating contents of abnormality information, retry information, and predictive information stored in a storage unit.
- the storage unit 72 stores the type of abnormality (abnormality, retry operation, sign), the details of the abnormality, and the accumulated energization time when the abnormality occurred (simply referred to as "energization time”). ) and the accumulated compressor operation time when the abnormality occurred are stored in a state of being associated with each other.
- the integrated compressor operating time is substantially the operating time during which the air conditioner 11 performs air conditioning.
- “abnormality”, “prediction”, and “retry operation” are listed in order of occurrence from the bottom.
- the storage unit 72 can store the latest information and the past n items of information. For example, n can be 83 cases, and a total of 84 cases of information can be stored in the storage unit 72 .
- the 6A to 6C are tables exemplifying the content of abnormality information, retry information, and predictive information displayed on the display unit of the outdoor control unit.
- the display unit 73 displays “abnormality information”, “retry information”, and “prediction information” stored in the storage unit 72 .
- the display unit 73 is, for example, a 7-segment digital display, and the abnormality information, the retry information, and the predictive information are displayed on the display unit 73 in a coded state using numbers, alphabets, or the like.
- the contents of the abnormality, the contents of the retry operation, and the contents of the symptom are coded as the abnormality information, the retry information, and the symptom information, respectively, and displayed on the display unit 73 .
- the display unit 73 displays three items of "latest”, "past 1", and “past 2" for each of the anomaly information, retry information, and predictive information. Therefore, when the air conditioner 11 stops due to an abnormality, a serviceman or the like who is in charge of restoration can obtain not only the content of the actually occurred abnormality but also information on the retry operation and the sign of the recent occurrence by looking at the display section 73. The retry information and predictive information can be used to investigate the cause of the abnormality. However, the display unit 73 only displays three pieces of each of the abnormality information, the retry information, and the sign information individually, and it is difficult to grasp the mutual relationship. Therefore, the outdoor control unit 70 of this embodiment is configured to output such information in a form that allows understanding of the mutual relationship between them.
- the output unit 74 of the outdoor control unit 70 outputs the abnormality information, retry information, and predictive information stored in the storage unit 72 to an external device such as a PC or a smartphone possessed by a serviceman.
- Output to the terminal 100 (hereinafter also referred to as "service terminal").
- the output unit 74 is provided, for example, on a control board or the like that constitutes the outdoor control unit 70, and is configured by an output interface or the like to which the service terminal 100 is connected by wire.
- the output unit 74 may be a communication device that wirelessly outputs abnormality information and the like.
- the abnormality information, the retry information, and the sign information stored in the storage unit 72 include the energization time and operating time of the air conditioner 11 at the time when each of them occurred, and the output unit 74 outputs the abnormality information, the retry information, and the sign information to the outside while including the information on the occurrence time. Therefore, for example, as shown in FIG. 4, it is possible to check the abnormality information, the retry information, and the sign information in chronological order. Therefore, based on the output information, the serviceman can confirm what kind of retry operation was performed before the abnormality occurred or what kind of sign there was. Therefore, the serviceman can easily estimate the cause of the abnormality from the retry information and the predictive information, and can appropriately and quickly recover from the abnormality (repair or replace parts).
- the anomaly information, retry information, and predictive information include the energization time and operating time of the air conditioner 11 as information related to the time of occurrence. From this energization time, it can be determined whether or not the cause of occurrence of the abnormality, the retry operation, and the sign is due to wear and deterioration due to the operation of the air conditioner 11 . Similarly, from the energization time, it is possible to determine whether or not the cause of the abnormality, the retry operation, and the sign is due to the service life.
- the output unit 74 may output the abnormality information, the retry information, and the predictive information to the display unit 73 of the outdoor control unit 70 in chronological order so that they can be confirmed.
- FIG. 5 is a table illustrating contents of abnormality information, retry information, and predictor information stored in a storage unit.
- FIG. 5 exemplifies a state in which the parts constituting the air conditioner 11, the details of the signs of abnormality that may occur in the parts, and the methods for detecting the details are associated with each other. For example, “current value”, “wetness”, and “overheating” are exemplified as the content of signs of abnormality that can occur in the compressor 30.
- FIG. 5 is a table illustrating contents of abnormality information, retry information, and predictor information stored in a storage unit.
- FIG. 5 exemplifies a state in which the parts constituting the air conditioner 11, the details of the signs of abnormality that may occur in the parts, and the methods for detecting the details are associated with each other. For example, “current value”, “wetness”, and “overheating” are exemplified as the content of signs of abnormality that can occur in the compressor 30.
- FIG. 5
- “Current value” means that a state in which the current value flowing through the motor of the compressor 30 is higher than a predetermined value is detected. As the current value in this case, a moving average value from the present to a predetermined period ago is adopted, and an abnormality in the current value in the long term is detected. “Wet” means that the wet state of the refrigerant discharged from the compressor 30 (the degree of superheat is less than a predetermined value) is detected. “Overheating” means that the refrigerant discharged from the compressor 30 is detected to be in a superheated state (the degree of superheating is equal to or greater than a predetermined value). When these states are detected, the outdoor control unit 70 diagnoses that the compressor 30 has a "symptom of abnormality". However, even if these states are detected, the operation of the air conditioner 11 is not immediately hindered, so the operation of the air conditioner 11 is continued.
- FIG. 5 exemplifies "leakage” as an indication of abnormality that may occur in the expansion valve 34. This means that the wet state of the refrigerant is detected by the refrigerant temperature sensor arranged downstream of the expansion valve 34 . When this state is detected, the outdoor control unit 70 diagnoses that the expansion valve 34 has a "symptom of abnormality".
- FIG. 5 exemplifies "unmelted frost" as a sign of abnormality that may occur in the outdoor heat exchanger 33.
- FIG. This means that the number of times the predetermined completion condition is not satisfied exceeds the predetermined number while the air conditioner 11 is performing the defrost operation.
- the outdoor control unit 70 diagnoses that the outdoor heat exchanger 33 has a “symptom of abnormality”. However, even if these states are detected, the operation of the air conditioner 11 is not immediately hindered, so the operation of the air conditioner 11 is continued.
- FIG. 5 exemplifies "detection deviation" as a sign of abnormality of the temperature sensors 53-59. This means that a discrepancy in detection values is detected between the temperature sensor to be diagnosed and another temperature sensor. When this state is detected, the outdoor controller 70 diagnoses that the temperature sensor has a "prediction of abnormality".
- FIG. 5 exemplifies "detection deviation” as a sign of abnormality in the pressure sensors 51 and 52. This means that a deviation is detected between the pressure-equivalent saturation temperature (calculated value) obtained from the detection values of the pressure sensors 51 and 52 to be diagnosed and the detection values of the other temperature sensors. When this state is detected, the outdoor control unit 70 diagnoses that the pressure sensors 51 and 52 have “signs of abnormality”.
- Diagnosis of "detection deviation" of the temperature sensors 53 to 59 and the pressure sensors 51, 52 is performed when the operation of the air conditioner 11 is stopped.
- the outdoor control unit 70 compares a calculated value obtained from the detection values of the temperature sensors 53 to 59 and the detection values of the pressure sensors 51 and 52 with a predetermined reference value, and determines if there is a deviation from the reference value. When the large state continues for a predetermined time or longer, the sensor is diagnosed as having "detection deviation".
- the outdoor control unit 70 sets a value corresponding to the outside air temperature as a “reference value”, and this reference value, the detection values of the temperature sensors 53 to 59, and the detection values of the pressure sensors 51 and 52 Diagnosis of "detection deviation" is performed by comparing with the pressure-equivalent saturation temperature (calculated value) obtained from
- FIG. 7 is a flow chart showing a procedure for diagnosing detection deviation of the temperature sensor. A procedure for diagnosing "detection deviation" of the temperature sensors 53 to 59 will be described below with reference to a flow chart.
- the outdoor control unit 70 determines whether or not the air conditioner 11 is stopped in step S1. When the determination in step S1 is affirmative (Yes), the outdoor control unit 70 advances the process to step S2.
- the outdoor control unit 70 acquires the detection values of the temperature sensors 53 to 59 in step S2.
- the outdoor controller 70 calculates a reference value using the detection values of the plurality of temperature sensors 53-59.
- the median value of a plurality of detected values among the detected values of the plurality of temperature sensors 53 to 59 is used as the reference value. Using the median value as the reference value reduces the possibility of being affected by abnormally high or low values even if the values detected by multiple temperature sensors are abnormally high or low, and improves the reproducibility of the outside air temperature. Because you can.
- the number of temperature sensors used to obtain the reference value is 3 or more. If there is an even number of temperature sensors used to determine the reference value, the average value of two values close to the median value can be taken as the reference value.
- the temperature sensors 54 and 59 arranged around the compressor 30 are easily affected by the heat of the compressor 30, so they are not used for calculating the reference value.
- step S4 the outdoor control unit 70 determines whether the difference between the detection value of each temperature sensor 53-58 and the reference value exceeds a predetermined threshold. If the determination in step S4 is affirmative (Yes), the outdoor control unit 70 determines in step S5 whether or not a predetermined period of time has elapsed after the air conditioner 11 stopped. This predetermined time can be, for example, eight hours. If the determination in step S5 is affirmative (Yes), the outdoor control unit 70 diagnoses that "detection deviation" has occurred in the temperature sensors 53 to 59, and stores it in the storage unit 72 as abnormality sign information. and terminate the process.
- step S4 determines whether the determination in step S4 is negative (No) or not. If the determination in step S4 is negative (No), the outdoor control unit 70 advances the process to step S8, diagnoses that there is no "detection deviation" in the temperature sensors 53 to 59, and ends the process. .
- the predetermined threshold used in step S4 can be set according to the type of temperature sensor to be diagnosed. For example, since the compressor 30 is warmed by the crankcase heater while the air conditioner 11 is stopped, the temperature sensors 54, 59 arranged around the compressor 30 detect more than the other temperature sensors 53, 55-58. higher value. Therefore, a predetermined threshold value is set high for these temperature sensors 54 and 59 .
- the reason why the time for diagnosing "detection deviation" was set to a long time of 8 hours is that it takes a certain amount of time for the detected value of the temperature sensor to converge to the ambient temperature (outside air temperature). However, this time is not particularly limited.
- FIG. 8 is a flow chart showing a procedure for diagnosing detection deviation of the pressure sensor. The procedure for diagnosing "detection deviation" of the pressure sensors 51 and 52 will be described below with reference to a flow chart.
- step S11 the outdoor controller 70 determines whether the air conditioner 11 is stopped. When the determination in step S1 is affirmative (Yes), the outdoor control unit 70 advances the process to step S12.
- the outdoor control unit 70 acquires the detection values of the pressure sensors 51 and 52 and the temperature sensors 53-59 in step S12. Next, in step S13, the outdoor controller 70 calculates a reference value using a plurality of detected values among the detected values of the plurality of temperature sensors 53-59.
- the median value of a plurality of detected values is used as the reference value. The median value is used as the reference value because even if the detected values of multiple temperature sensors include abnormally high or abnormally low values, it will be less affected and the reproducibility of the outside air temperature will be improved. for it can be raised.
- the number of temperature sensors used to obtain the reference value is 3 or more. If there is an even number of temperature sensors used to determine the reference value, the average value of the two values closest to the center can be taken as the reference value.
- the temperature sensors 54 and 59 arranged around the compressor 30 are easily affected by the heat of the compressor 30, so it is preferable not to use them for calculating the reference value.
- step S14 the outdoor control unit 70 uses the detection values of the pressure sensors 51 and 52 to calculate the pressure-equivalent saturation temperature of the refrigerant. Then, in step S15, the outdoor controller 70 determines whether the difference between the pressure-equivalent saturation temperature obtained from the detection values of the pressure sensors 51 and 52 and the reference value exceeds a predetermined threshold. If the determination in step S15 is affirmative, the outdoor control unit 70 determines in step S16 whether or not a predetermined time has passed since the air conditioner 11 stopped. This predetermined time can be, for example, eight hours. If the determination in step S16 is affirmative (Yes), the outdoor control unit 70 diagnoses that "detection deviation" has occurred in the pressure sensors 51 and 52 (step S17), and stores it as abnormality sign information. It is stored in the unit 72 (step S18) and the process ends.
- step S15 If the determination in step S15 is negative (No), the outdoor control unit 70 advances the process to step S19, diagnoses that "detection deviation" has not occurred in the pressure sensors 51 and 52, and ends the process. .
- the reference value calculated in step S3 of FIG. 7 and step S13 of FIG. 8 is not limited to the median value of the detection values of the plurality of temperature sensors, and may be an average value. In this case, it is more preferable to calculate the average value using other detection values other than the maximum value and the minimum value among the plurality of detection values.
- the temperature sensor for calculating the reference value may use the detected value of a temperature sensor that is not subject to diagnosis. Since the air conditioner 11 is provided with a temperature sensor 58 that detects the temperature of the outside air, the detected value of this temperature sensor 58 can also be used as the reference value. However, in this case, if a "detection deviation" occurs in the temperature sensor 58 itself, the detection deviations of the other temperature sensors 53 to 57 and 59 cannot be detected. More preferably, a value or average value is used to set the reference value.
- the processing unit 71 in the outdoor control unit 70 diagnoses that there is a “detection deviation” in the temperature sensors 53 to 59 and the pressure sensors 51 and 52, the detection value of the temperature sensor or the detection value of the pressure sensor A correction value corresponding to the difference between the calculated value (pressure equivalent saturation temperature) and the reference value may be obtained, and the operation of the air conditioner 11 may be controlled using this correction value.
- the processing unit 71 in the outdoor control unit 70 may transmit the results of the abnormality diagnosis to the central control device 50, and the central control device 50 may manage the abnormality information, retry information, and predictor information.
- the processing unit 71 in the outdoor control unit 70 may transmit the result of the abnormality diagnosis to the management server 62, and the management server 62 may manage the result of the abnormality diagnosis.
- the management server 62 manages the results of abnormality diagnosis, the management server 62 manages the abnormality information, the retry information, and the predictive information in order to eliminate the inconvenience that the outdoor control unit 70 cannot refer to the abnormal information, the retry information, and the predictive information. It is more preferable to have a transmission unit that transmits information to the service terminal 100, the central control device 50, etc. via the wide area communication network 63. FIG.
- the air conditioner 11 is provided with an abnormality diagnosis system (outdoor control unit 70), but the central control device 50 may be provided with an abnormality diagnosis system.
- the operation data of the air conditioner 11 is transmitted from the air conditioner 11 to the central control device 50, and the control unit 50a of the central control device 50 diagnoses the abnormality.
- the operation data is transmitted from the air conditioner 11 to the central control device 50 only at predetermined time intervals, which limits the amount of operation data that can be used for abnormality diagnosis. In doing so, it is more preferable that the air conditioner 11 is provided with an abnormality diagnosis system.
- the management server 62 may be provided with an abnormality diagnosis system.
- the operating data of the air conditioner 11 is transmitted from the centralized control device 50 or the air conditioner 11 to the management server 62, and the controller 62a of the management server 62 diagnoses the abnormality.
- the air conditioner 11 or the central control device 50 is provided with an abnormality diagnosis system.
- the management server 62 When the management server 62 manages the results of abnormality diagnosis, the management server 62 is configured to It is more preferable to include a transmission unit that transmits information, retry information, and predictive information to the service terminal 100, the central control device 50, etc. via the wide area communication network 63.
- FIG. 1 A transmission unit that transmits information, retry information, and predictive information to the service terminal 100, the central control device 50, etc. via the wide area communication network 63.
- the processing unit 71, the storage unit 72, and the output unit 74 constituting the abnormality diagnosis system are all one device (the outdoor control unit 70 of the air conditioner 11, the control unit 50a of the central control device 50, Or, although it was provided in the control unit 62 a) of the management server 62, these may be provided in separate devices, for example, different control units (computers), and these different control units cooperate with each other to detect abnormalities.
- a diagnostic system may be configured.
- the plurality of temperature sensors 53 to 59 and the plurality of pressure sensors 51 and 52 are diagnostic targets for "detection deviation", but at least one of these sensors is diagnostic target for detection deviation. It is good if it is.
- the outdoor control unit (diagnostic system) 70 acquires the detection values of the sensors 51 to 59 provided in the air conditioner 11 while the air conditioner 11 is stopped, A processing unit 71 is provided for diagnosing the detection state of the sensors 51 to 59 based on a calculated value (for example, pressure-equivalent saturation temperature) obtained from the detected value. While the air conditioner 11 is stopped, the detected values of the sensors 51 to 59 provided in the air conditioner 11 converge to a certain value according to the surrounding environment, for example, the outside air temperature or a value corresponding to the outside air temperature. It is thought that it will continue.
- a calculated value for example, pressure-equivalent saturation temperature
- the detection values of the sensors 51 to 59 to be diagnosed while the air conditioner 11 is stopped are acquired, and the detection values or the calculated values obtained from the detection values and the values that are considered to converge ( By comparing with the reference value), it is possible to grasp how much deviation the sensors 51 to 59 have from the normal state, and the detection state of the sensors 51 to 59 can be determined from the magnitude of the deviation. can be diagnosed.
- the sensors 51-59 are the temperature sensors 53-59.
- the processing unit 71 diagnoses the detection state based on the comparison between the detection value and a predetermined reference value.
- the reference value is obtained from the detection values of a plurality of temperature sensors 53, 55-58 provided in the air conditioner 11. FIG. By obtaining the reference value from the detection values of the temperature sensors 53, 55 to 58 provided in the air conditioner 11 in this way, an appropriate reference value corresponding to the surrounding environment of the installation location of the air conditioner 11 is set. can do.
- the reference value is the median value of the detection values of the plurality of temperature sensors 53, 55-58 provided in the air conditioner 11.
- the reference value is the average value of the detection values of the plurality of temperature sensors 53 and 55 to 58 provided in the air conditioner 11 .
- the average value is obtained by omitting the maximum and minimum values among the detection values of the plurality of temperature sensors 53, 55-58.
- the reference value is obtained using the detected values of the sensors 53 to 58 to be diagnosed. Further, in the other embodiment described above, the reference value is the detection value of the outside air temperature sensor (ambient temperature sensor) 58 that detects the air temperature around the air conditioner 11, and the sensor to be diagnosed is the ambient temperature sensor. temperature sensors 53 to 57 and 59 other than 58; By using the detected value of the ambient temperature sensor 58 as the reference value, the calculation of the median value, the average value, etc. becomes unnecessary, and the processing of the processing unit 71 can be reduced.
- the outside air temperature sensor ambient temperature sensor
- the sensors to be diagnosed are the pressure sensors 51 and 52 that detect the pressure of the refrigerant. While the air conditioner 11 is stopped, the detected values of the pressure sensors 51 and 52 provided in the air conditioner 11 converge to values according to the surrounding environment. Therefore, by comparing the detected value of the pressure sensors 51 and 52 or the calculated value obtained from the detected constant value with the reference value according to the surrounding environment, it is possible to determine the degree of detection deviation from the normal state of the pressure sensors 51 and 52. You can find out if you have
- the processing unit 71 of the outdoor control unit (diagnostic system) 70 obtains the pressure-equivalent saturation temperature from the detection values of the pressure sensors 51 and 52 as the calculated value to be compared with the reference value. Therefore, detection deviation of the pressure sensors 51 and 52 can be diagnosed by comparison with a reference value which is temperature.
- Air conditioner 50 Central control device (first control device) 50a: Control unit (diagnostic system) 51: pressure sensor 52: pressure sensor 53: temperature sensor 54: temperature sensor 55: temperature sensor 56: temperature sensor 57: temperature sensor 58: temperature sensor (ambient temperature sensor) 59: temperature sensor 62: management server 62a: control unit (diagnostic system) 70: Outdoor control unit (diagnostic system) 71: processing unit 72: storage unit 73: display unit 74: output unit
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
Abstract
This diagnostic system comprises a processing unit (71) that, while an air conditioner (11) is stopped, acquires the detection values of sensors (51-59) provided to the air conditioner (11), and diagnoses the detection state of the sensors (51-59) on the basis of the detection values or computed values calculated from the detection values.
Description
本開示は、診断システム、診断方法、診断プログラム、及び、空気調和機に関する。
The present disclosure relates to diagnostic systems, diagnostic methods, diagnostic programs, and air conditioners.
従来、圧縮機、熱交換器、四路切換弁、及び膨張弁等を有する冷媒回路を備え、冷房運転及び暖房運転を行う空気調和機が知られている(特許文献1参照)。この特許文献1記載の空気調和機には、冷媒の温度や空気の温度を検出する温度センサが設けられ、これら温度センサの検出値は空気調和機の運転制御のために用いられる。
Conventionally, there is known an air conditioner that includes a refrigerant circuit having a compressor, a heat exchanger, a four-way switching valve, an expansion valve, etc., and performs cooling operation and heating operation (see Patent Document 1). The air conditioner described in Patent Document 1 is provided with temperature sensors for detecting the temperature of the refrigerant and the temperature of the air, and the detected values of these temperature sensors are used for controlling the operation of the air conditioner.
空気調和機に設けられる温度センサ等の各種センサは、次第に正常な値からずれ(「検知ずれ」)が生じてくることがあり、このずれが大きくなり過ぎると、空気調和機が適切に制御されず運転に支障を来たすおそれがある。そのため、このようなセンサの検出状態を把握しておくことが望まれる。
Various sensors such as a temperature sensor installed in an air conditioner may gradually deviate from normal values ("detection deviation"). There is a risk of impeding driving. Therefore, it is desirable to grasp the detection state of such sensors.
本開示は、センサの検出状態を診断することができる診断システム及び空気調和機を提供することを目的とする。
An object of the present disclosure is to provide a diagnostic system and an air conditioner capable of diagnosing the detection state of the sensor.
(1)本開示の診断システムは、空気調和機の停止中、前記空気調和機に設けられたセンサの検出値を取得し、当該検出値又は当該検出値から求められる演算値と所定の基準値との比較に基づいて、前記センサの検出状態を診断する処理部を備えている。
(1) The diagnostic system of the present disclosure acquires a detection value of a sensor provided in the air conditioner while the air conditioner is stopped, and obtains the detection value or a calculated value obtained from the detection value and a predetermined reference value and a processing unit for diagnosing the detection state of the sensor based on the comparison with.
空気調和機が停止している間、空気調和装置に設けられたセンサの検出値は、周囲の環境に応じてある値に収束していくと考えられる。本開示では、空気調和装置の停止中に診断対象となるセンサの検出値を取得し、その検出値又は当該検出値から求められる演算値と、収束していくと考えられる値(基準値)とを比較することによって、当該センサが正常な状態からどの程度のずれを持っているのかを把握することができ、そのずれの大きさからセンサの検出状態を診断することができる。
While the air conditioner is stopped, the detected value of the sensor installed in the air conditioner is thought to converge to a certain value depending on the surrounding environment. In the present disclosure, a detected value of a sensor to be diagnosed is obtained while the air conditioner is stopped, and the detected value or a calculated value obtained from the detected value, and a value (reference value) that is considered to converge. By comparing , it is possible to grasp how much the sensor deviates from the normal state, and the detection state of the sensor can be diagnosed from the magnitude of the deviation.
(2)好ましくは、前記センサは、温度センサである。
空気調和機の停止中、空気調和装置に設けられた温度センサの検出値は、周囲の温度に収束していくので、温度センサの検出値を周囲の温度に対応する基準値と比較することによって、当該温度センサが正常な状態からどの程度のずれを持っているのかを把握することができる。 (2) Preferably, the sensor is a temperature sensor.
While the air conditioner is stopped, the detected value of the temperature sensor provided in the air conditioner converges to the ambient temperature. , it is possible to grasp how much the temperature sensor deviates from the normal state.
空気調和機の停止中、空気調和装置に設けられた温度センサの検出値は、周囲の温度に収束していくので、温度センサの検出値を周囲の温度に対応する基準値と比較することによって、当該温度センサが正常な状態からどの程度のずれを持っているのかを把握することができる。 (2) Preferably, the sensor is a temperature sensor.
While the air conditioner is stopped, the detected value of the temperature sensor provided in the air conditioner converges to the ambient temperature. , it is possible to grasp how much the temperature sensor deviates from the normal state.
(3)好ましくは、前記基準値は、前記空気調和機に設けられた複数の温度センサの検出値から求められる。
この構成によれば、空気調和機に設けられた温度センサの検出値から基準値を求めることによって、空気調和機の設置場所の周囲の環境に応じた適切な基準値を設定することができる。 (3) Preferably, the reference value is obtained from detection values of a plurality of temperature sensors provided in the air conditioner.
According to this configuration, by obtaining the reference value from the detection value of the temperature sensor provided in the air conditioner, it is possible to set an appropriate reference value according to the surrounding environment of the installation location of the air conditioner.
この構成によれば、空気調和機に設けられた温度センサの検出値から基準値を求めることによって、空気調和機の設置場所の周囲の環境に応じた適切な基準値を設定することができる。 (3) Preferably, the reference value is obtained from detection values of a plurality of temperature sensors provided in the air conditioner.
According to this configuration, by obtaining the reference value from the detection value of the temperature sensor provided in the air conditioner, it is possible to set an appropriate reference value according to the surrounding environment of the installation location of the air conditioner.
(4)好ましくは、前記基準値は、前記空気調和機に設けられた複数の温度センサの検出値の中央値である。
上記構成によれば、複数の温度センサの検出値の中央値を基準値とすることによって、検出値に異常な値が含まれていた場合に、その値が基準値に悪影響を与えるのを抑制することができる。 (4) Preferably, the reference value is a median value of detection values of a plurality of temperature sensors provided in the air conditioner.
According to the above configuration, by using the median value of the detected values of the plurality of temperature sensors as the reference value, even if the detected values include an abnormal value, it is possible to suppress the adverse effect of the value on the reference value. can do.
上記構成によれば、複数の温度センサの検出値の中央値を基準値とすることによって、検出値に異常な値が含まれていた場合に、その値が基準値に悪影響を与えるのを抑制することができる。 (4) Preferably, the reference value is a median value of detection values of a plurality of temperature sensors provided in the air conditioner.
According to the above configuration, by using the median value of the detected values of the plurality of temperature sensors as the reference value, even if the detected values include an abnormal value, it is possible to suppress the adverse effect of the value on the reference value. can do.
(5)好ましくは、前記基準値は、前記空気調和機に設けられた複数の温度センサの検出値の平均値である。
(5) Preferably, the reference value is an average value of detection values of a plurality of temperature sensors provided in the air conditioner.
(6)好ましくは、前記平均値は、前記複数の温度センサの検出値のうちの最大値と最小値とを省いて求められる。
この構成によれば、複数の温度センサの検出値に異常に大きな値や小さな値が含まれていた場合に、その値が基準値に悪影響を与えるのを抑制することができる。 (6) Preferably, the average value is obtained by omitting the maximum and minimum values among the detected values of the plurality of temperature sensors.
According to this configuration, when abnormally large or small values are included in the detection values of the plurality of temperature sensors, it is possible to prevent the values from adversely affecting the reference value.
この構成によれば、複数の温度センサの検出値に異常に大きな値や小さな値が含まれていた場合に、その値が基準値に悪影響を与えるのを抑制することができる。 (6) Preferably, the average value is obtained by omitting the maximum and minimum values among the detected values of the plurality of temperature sensors.
According to this configuration, when abnormally large or small values are included in the detection values of the plurality of temperature sensors, it is possible to prevent the values from adversely affecting the reference value.
(7)好ましくは、診断対象となる前記センサが、前記複数の温度センサのいずれかである。
この構成によれば、診断対象となるセンサ自身を、基準値を求めるための温度センサとして利用することができる。 (7) Preferably, the sensor to be diagnosed is one of the plurality of temperature sensors.
According to this configuration, the sensor itself to be diagnosed can be used as a temperature sensor for obtaining the reference value.
この構成によれば、診断対象となるセンサ自身を、基準値を求めるための温度センサとして利用することができる。 (7) Preferably, the sensor to be diagnosed is one of the plurality of temperature sensors.
According to this configuration, the sensor itself to be diagnosed can be used as a temperature sensor for obtaining the reference value.
(8)好ましくは、前記基準値が、空気調和機の周囲の気温を検出する周囲温度センサの検出値であり、
診断対象となる前記センサが、前記周囲温度センサ以外の温度センサである。 (8) Preferably, the reference value is a detected value of an ambient temperature sensor that detects the ambient temperature of the air conditioner,
The sensor to be diagnosed is a temperature sensor other than the ambient temperature sensor.
診断対象となる前記センサが、前記周囲温度センサ以外の温度センサである。 (8) Preferably, the reference value is a detected value of an ambient temperature sensor that detects the ambient temperature of the air conditioner,
The sensor to be diagnosed is a temperature sensor other than the ambient temperature sensor.
(9)好ましくは、前記センサは、冷媒の圧力を検出する圧力センサである。
空気調和機の停止中、空気調和装置に設けられた圧力センサの検出値は、周囲の環境に応じた値に収束していく。したがって、圧力センサの検出値又は検出値から求められる演算値を、周囲の環境に応じた基準値と比較することによって、当該圧力センサが正常な状態からどの程度のずれを持っているのかを把握することができる。 (9) Preferably, the sensor is a pressure sensor that detects the pressure of the refrigerant.
While the air conditioner is stopped, the detected value of the pressure sensor provided in the air conditioner converges to a value according to the surrounding environment. Therefore, by comparing the detected value of the pressure sensor or the calculated value obtained from the detected value with the reference value according to the surrounding environment, it is possible to grasp how much deviation the pressure sensor has from the normal state. can do.
空気調和機の停止中、空気調和装置に設けられた圧力センサの検出値は、周囲の環境に応じた値に収束していく。したがって、圧力センサの検出値又は検出値から求められる演算値を、周囲の環境に応じた基準値と比較することによって、当該圧力センサが正常な状態からどの程度のずれを持っているのかを把握することができる。 (9) Preferably, the sensor is a pressure sensor that detects the pressure of the refrigerant.
While the air conditioner is stopped, the detected value of the pressure sensor provided in the air conditioner converges to a value according to the surrounding environment. Therefore, by comparing the detected value of the pressure sensor or the calculated value obtained from the detected value with the reference value according to the surrounding environment, it is possible to grasp how much deviation the pressure sensor has from the normal state. can do.
(10)好ましくは、前記処理部は、前記センサの検出値から圧力相当飽和温度を前記演算値として求める。
(10) Preferably, the processing unit obtains a pressure-equivalent saturation temperature as the calculated value from the detected value of the sensor.
(11)好ましくは、前記基準値は、前記空気調和機に設けられた複数の温度センサの検出値から求められる。
(11) Preferably, the reference value is obtained from detection values of a plurality of temperature sensors provided in the air conditioner.
(12)好ましくは、前記処理部は、前記センサの検出値又は前記演算値と前記基準値との差分が閾値を超えた場合に、その差分に応じた補正値を求め、前記空気調和機に補正値を用いた運転制御を指示する。
この構成によれば、センサの検知値にずれがある場合でも、応急処置的に空気調和機の運転を継続することができる。 (12) Preferably, when a difference between the detected value of the sensor or the calculated value and the reference value exceeds a threshold value, the processing unit obtains a correction value according to the difference, Instructs operation control using the correction value.
According to this configuration, the operation of the air conditioner can be continued as an emergency measure even when there is a deviation in the detection value of the sensor.
この構成によれば、センサの検知値にずれがある場合でも、応急処置的に空気調和機の運転を継続することができる。 (12) Preferably, when a difference between the detected value of the sensor or the calculated value and the reference value exceeds a threshold value, the processing unit obtains a correction value according to the difference, Instructs operation control using the correction value.
According to this configuration, the operation of the air conditioner can be continued as an emergency measure even when there is a deviation in the detection value of the sensor.
(13)本開示の空気調和機は、上記(1)~(12)のいずれか1つに記載の診断システムを備える。
(13) The air conditioner of the present disclosure includes the diagnostic system according to any one of (1) to (12) above.
(14)本開示の診断方法は、空気調和機の停止中、前記空気調和機に設けられたセンサの検出値を取得する工程と、当該検出値又は当該検出値から求められる演算値に基づいて、前記センサの検出状態を診断する工程と、を含む。
(14) The diagnostic method of the present disclosure includes the step of acquiring a detection value of a sensor provided in the air conditioner while the air conditioner is stopped, and based on the detection value or a calculated value obtained from the detection value and diagnosing the detection state of the sensor.
(15)本開示の診断プログラムは、空気調和機の停止中、前記空気調和機に設けられたセンサの検出値を取得する手順と、
当該検出値又は当該検出値から求められる演算値に基づいて、前記センサの検出状態を診断する手順と、をコンピュータに実行させる。 (15) The diagnostic program of the present disclosure includes a procedure of acquiring a detection value of a sensor provided in the air conditioner while the air conditioner is stopped;
and a step of diagnosing the detection state of the sensor based on the detected value or a calculated value obtained from the detected value.
当該検出値又は当該検出値から求められる演算値に基づいて、前記センサの検出状態を診断する手順と、をコンピュータに実行させる。 (15) The diagnostic program of the present disclosure includes a procedure of acquiring a detection value of a sensor provided in the air conditioner while the air conditioner is stopped;
and a step of diagnosing the detection state of the sensor based on the detected value or a calculated value obtained from the detected value.
以下、添付図面を参照しつつ、空気調和システムの実施形態を詳細に説明する。
図1は、本開示の一実施形態に係る空気調和システムの構成図である。
図1に示すように、空気調和システムは、空気調和機11と、集中管理装置50と、管理サーバー62とを有している。空気調和機11は、空調対象空間である室内の空気の温度を所定の目標温度に調整する。本実施形態の空気調和機11は、室内の冷房と暖房とを行う。 Hereinafter, embodiments of an air conditioning system will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present disclosure.
As shown in FIG. 1, the air conditioning system has anair conditioner 11, a central control device 50, and a control server 62. The air conditioner 11 adjusts the temperature of the indoor air, which is the space to be air-conditioned, to a predetermined target temperature. The air conditioner 11 of this embodiment cools and heats the room.
図1は、本開示の一実施形態に係る空気調和システムの構成図である。
図1に示すように、空気調和システムは、空気調和機11と、集中管理装置50と、管理サーバー62とを有している。空気調和機11は、空調対象空間である室内の空気の温度を所定の目標温度に調整する。本実施形態の空気調和機11は、室内の冷房と暖房とを行う。 Hereinafter, embodiments of an air conditioning system will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present disclosure.
As shown in FIG. 1, the air conditioning system has an
空気調和機11は、室内機21と室外機22とを備えている。この空気調和機11は、例えば、室外機22に対して複数台の室内機21が並列に接続されるマルチタイプの空気調和機11である。ただし、空気調和機11は、室外機22及び室内機21を1台ずつ備えていてもよい。
The air conditioner 11 includes an indoor unit 21 and an outdoor unit 22. This air conditioner 11 is, for example, a multi-type air conditioner 11 in which a plurality of indoor units 21 are connected in parallel to an outdoor unit 22 . However, the air conditioner 11 may include one outdoor unit 22 and one indoor unit 21 .
図2は、空気調和機の概略的な冷媒回路図である。
図2に示すように、空気調和機11は、冷媒回路23を有している。冷媒回路23は、室内機21と室外機22との間で冷媒を循環させる。冷媒回路23は、圧縮機30、油分離器31、四路切換弁32、室外熱交換器(熱源熱交換器)33、室外膨張弁34、過冷却器35、液閉鎖弁36、室内膨張弁24、室内熱交換器(利用熱交換器)25、ガス閉鎖弁37、アキュムレータ38、及びこれらを接続する冷媒配管40L、40G等を備える。 FIG. 2 is a schematic refrigerant circuit diagram of an air conditioner.
As shown in FIG. 2 , theair conditioner 11 has a refrigerant circuit 23 . The refrigerant circuit 23 circulates refrigerant between the indoor unit 21 and the outdoor unit 22 . The refrigerant circuit 23 includes a compressor 30, an oil separator 31, a four-way switching valve 32, an outdoor heat exchanger (heat source heat exchanger) 33, an outdoor expansion valve 34, a supercooler 35, a liquid closing valve 36, and an indoor expansion valve. 24, an indoor heat exchanger (utilizing heat exchanger) 25, a gas shutoff valve 37, an accumulator 38, and refrigerant pipes 40L and 40G connecting these.
図2に示すように、空気調和機11は、冷媒回路23を有している。冷媒回路23は、室内機21と室外機22との間で冷媒を循環させる。冷媒回路23は、圧縮機30、油分離器31、四路切換弁32、室外熱交換器(熱源熱交換器)33、室外膨張弁34、過冷却器35、液閉鎖弁36、室内膨張弁24、室内熱交換器(利用熱交換器)25、ガス閉鎖弁37、アキュムレータ38、及びこれらを接続する冷媒配管40L、40G等を備える。 FIG. 2 is a schematic refrigerant circuit diagram of an air conditioner.
As shown in FIG. 2 , the
室内機21は、冷媒回路23を構成する室内膨張弁24と室内熱交換器25とを備えている。室内膨張弁24は、冷媒流量の調節を行うことが可能な電動弁により構成されている。室内熱交換器25は、クロスフィンチューブ式又はマイクロチャネル式の熱交換器とされ、室内の空気と熱交換するために用いられる。
The indoor unit 21 includes an indoor expansion valve 24 and an indoor heat exchanger 25 that form a refrigerant circuit 23 . The indoor expansion valve 24 is composed of an electric valve capable of adjusting the refrigerant flow rate. The indoor heat exchanger 25 is a cross-fin tube type or microchannel type heat exchanger, and is used to exchange heat with indoor air.
室内機21は、さらに室内ファン26及び室内温度センサ27を備えている。室内ファン26は、室内の空気を室内機21の内部に取り込み、取り込んだ空気と室内熱交換器25との間で熱交換を行わせた後、当該空気を室内に吹き出すように構成されている。室内ファン26は、インバータ制御によって運転回転数を調整可能なモータを備えている。室内温度センサ27は、室内の温度を検出する。
The indoor unit 21 further includes an indoor fan 26 and an indoor temperature sensor 27. The indoor fan 26 is configured to take indoor air into the interior of the indoor unit 21, cause heat exchange between the taken air and the indoor heat exchanger 25, and then blow the air indoors. . The indoor fan 26 has a motor whose operating speed can be adjusted by inverter control. The indoor temperature sensor 27 detects the indoor temperature.
室外機22は、冷媒回路23を構成する圧縮機30、油分離器31、四路切換弁32、室外熱交換器33、室外膨張弁34、過冷却器35、液閉鎖弁36、ガス閉鎖弁37、及びアキュムレータ38を備えている。
The outdoor unit 22 includes a compressor 30, an oil separator 31, a four-way switching valve 32, an outdoor heat exchanger 33, an outdoor expansion valve 34, a supercooler 35, a liquid closing valve 36, and a gas closing valve. 37 and an accumulator 38 .
圧縮機30は、低圧のガス冷媒を吸引し高圧のガス冷媒を吐出する。圧縮機30は、インバータ制御によって運転回転数を調整可能なモータを備えている。圧縮機30は、モータがインバータ制御されることによって容量(能力)を変更可能な可変容量型(能力可変型)である。ただし、圧縮機30は一定容量型であってもよい。圧縮機30は複数台設けられていてもよい。この場合、容量可変型の圧縮機30と一定容量形の圧縮機30とが混在していてもよい。
The compressor 30 sucks in low-pressure gas refrigerant and discharges high-pressure gas refrigerant. The compressor 30 has a motor whose operating speed can be adjusted by inverter control. The compressor 30 is of a variable capacity type (capacity variable type) whose capacity (capacity) can be changed by inverter-controlling the motor. However, the compressor 30 may be of a constant capacity type. A plurality of compressors 30 may be provided. In this case, the variable capacity compressor 30 and the constant capacity compressor 30 may be mixed.
油分離器31は、圧縮機30から吐出された冷媒に含まれる冷凍機油を冷媒から分離する。油分離器31で分離された冷凍機油は、油戻し管41を介して圧縮機30に戻される。油戻し管41には開閉弁42が設けられている。開閉弁42は電磁弁からなる。開閉弁42を開くと、油分離器31内の冷凍機油が油戻し管41を通り、吸入配管44を流れる冷媒とともに圧縮機30へ吸入される。
The oil separator 31 separates refrigerating machine oil contained in the refrigerant discharged from the compressor 30 from the refrigerant. The refrigerator oil separated by the oil separator 31 is returned to the compressor 30 via the oil return pipe 41 . An on-off valve 42 is provided on the oil return pipe 41 . The on-off valve 42 consists of an electromagnetic valve. When the on-off valve 42 is opened, the refrigerator oil in the oil separator 31 passes through the oil return pipe 41 and is sucked into the compressor 30 together with the refrigerant flowing through the suction pipe 44 .
四路切換弁32は、冷媒配管における冷媒の流れを反転させ、圧縮機30から吐出される冷媒を室外熱交換器33と室内熱交換器25との一方に切り換えて供給する。これにより、空気調和機11は、冷房運転と暖房運転とを切り換えて行うことができる。
The four-way switching valve 32 reverses the flow of the refrigerant in the refrigerant piping, and switches the refrigerant discharged from the compressor 30 to either the outdoor heat exchanger 33 or the indoor heat exchanger 25 to supply the refrigerant. As a result, the air conditioner 11 can switch between the cooling operation and the heating operation.
室外熱交換器33は、例えばクロスフィンチューブ式又はマイクロチャネル式の熱交換器であり、空気を熱源として冷媒と熱交換し、冷媒を凝縮又は蒸発させる。
室外膨張弁34は、冷媒流量の調節等を行うことが可能な電動弁により構成されている。 Theoutdoor heat exchanger 33 is, for example, a cross-fin tube type or micro-channel type heat exchanger, and uses air as a heat source to exchange heat with the refrigerant to condense or evaporate the refrigerant.
Theoutdoor expansion valve 34 is composed of an electrically operated valve capable of adjusting the refrigerant flow rate.
室外膨張弁34は、冷媒流量の調節等を行うことが可能な電動弁により構成されている。 The
The
過冷却器35は、室外熱交換器33において凝縮された冷媒を過冷却する。過冷却器35は、第1伝熱管35aと第2伝熱管35bとを有する。第1伝熱管35aの一端は、室外膨張弁34まで延びる冷媒配管に接続されている。第1伝熱管35aの他端は、液閉鎖弁36まで延びる冷媒配管に接続されている。第2伝熱管35bの一端は、第1伝熱管35aと室外膨張弁34との間の冷媒配管から分岐する分岐管35cに接続されている。分岐管35cには、膨張弁43が設けられている。第2伝熱管35bの他端は、圧縮機30へ冷媒を戻すための吸入配管44に接続されている。
The supercooler 35 supercools the refrigerant condensed in the outdoor heat exchanger 33 . The supercooler 35 has a first heat transfer tube 35a and a second heat transfer tube 35b. One end of the first heat transfer pipe 35 a is connected to a refrigerant pipe extending to the outdoor expansion valve 34 . The other end of the first heat transfer pipe 35 a is connected to a refrigerant pipe extending to the liquid closing valve 36 . One end of the second heat transfer pipe 35 b is connected to a branch pipe 35 c that branches from the refrigerant pipe between the first heat transfer pipe 35 a and the outdoor expansion valve 34 . An expansion valve 43 is provided in the branch pipe 35c. The other end of the second heat transfer pipe 35 b is connected to a suction pipe 44 for returning the refrigerant to the compressor 30 .
過冷却器35は、圧縮機30から室外熱交換器33及び膨張弁34を通過して第1伝熱管35aを流れる冷媒と、膨張弁43により減圧されて第2伝熱管35bを流れる冷媒との間で熱交換を行い、第1伝熱管35aを流れる冷媒を過冷却する。第2伝熱管35bを流れる冷媒は、吸入配管44を通り、アキュムレータ38を経て圧縮機30に吸入される。
The subcooler 35 combines the refrigerant that flows from the compressor 30 through the outdoor heat exchanger 33 and the expansion valve 34 and flows through the first heat transfer tube 35a, and the refrigerant that is decompressed by the expansion valve 43 and flows through the second heat transfer tube 35b. Heat is exchanged between them, and the refrigerant flowing through the first heat transfer tubes 35a is supercooled. The refrigerant flowing through the second heat transfer pipe 35 b passes through the suction pipe 44 and is sucked into the compressor 30 via the accumulator 38 .
アキュムレータ38は、圧縮機30に吸入される低圧冷媒を一時的に貯留し、ガス冷媒と液冷媒とを分離する。アキュムレータ38は、吸入配管44に設けられている。アキュムレータ38には、油戻し管45の一端が接続されている。油戻し管45の他端は、吸入配管44に接続されている。油戻し管45は、アキュムレータ38から圧縮機30への冷凍機油を戻すための管である。油戻し管45には開閉弁46が設けられている。開閉弁46は電磁弁からなる。開閉弁46を開くと、アキュムレータ38内の冷凍機油が油戻し管45を通り、吸入配管44を流れる冷媒とともに圧縮機30へ吸入される。
The accumulator 38 temporarily stores the low-pressure refrigerant sucked into the compressor 30 and separates the gas refrigerant and the liquid refrigerant. The accumulator 38 is provided in the suction pipe 44 . One end of an oil return pipe 45 is connected to the accumulator 38 . The other end of the oil return pipe 45 is connected to the suction pipe 44 . The oil return pipe 45 is a pipe for returning refrigerating machine oil from the accumulator 38 to the compressor 30 . An on-off valve 46 is provided on the oil return pipe 45 . The on-off valve 46 consists of an electromagnetic valve. When the on-off valve 46 is opened, the refrigerator oil in the accumulator 38 passes through the oil return pipe 45 and is sucked into the compressor 30 together with the refrigerant flowing through the suction pipe 44 .
液閉鎖弁36は、手動の開閉弁である。ガス閉鎖弁37も手動の開閉弁である。液閉鎖弁36及びガス閉鎖弁37は、閉じることによって冷媒配管40L,40Gにおける冷媒の流れを遮蔽し、開くことによって、冷媒配管40L,40Gにおける冷媒の流れを許容する。
The liquid closing valve 36 is a manual opening/closing valve. The gas shutoff valve 37 is also a manual open/close valve. The liquid shutoff valve 36 and the gas shutoff valve 37 block the flow of refrigerant in the refrigerant pipes 40L and 40G by closing, and allow the flow of refrigerant in the refrigerant pipes 40L and 40G by opening.
室外機22は、さらに室外ファン39、圧力センサ51,52、温度センサ53~59、電流センサ60等を備えている。室外ファン39は、インバータ制御によって運転回転数を調整可能なモータを備えている。室外ファン39は、屋外の空気を室外機22の内部に取り込み、取り込んだ空気と室外熱交換器33との間で熱交換を行わせた後、当該空気を室外機22の外部に吹き出すように構成されている。
The outdoor unit 22 further includes an outdoor fan 39, pressure sensors 51 and 52, temperature sensors 53-59, a current sensor 60, and the like. The outdoor fan 39 has a motor whose operating speed can be adjusted by inverter control. The outdoor fan 39 takes in outdoor air into the outdoor unit 22, causes heat exchange between the taken in air and the outdoor heat exchanger 33, and then blows out the air to the outside of the outdoor unit 22. It is configured.
圧力センサ51,52は、吸入圧力センサ51と、吐出圧力センサ52とを含む。吸入圧力センサ51は、圧縮機30に吸入される冷媒の圧力を検出する。吐出圧力センサ52は、圧縮機30から吐出される冷媒の圧力を検出する。
The pressure sensors 51 and 52 include a suction pressure sensor 51 and a discharge pressure sensor 52. A suction pressure sensor 51 detects the pressure of the refrigerant sucked into the compressor 30 . A discharge pressure sensor 52 detects the pressure of the refrigerant discharged from the compressor 30 .
温度センサ53~59は、冷媒の温度を検出する冷媒温度センサ53~57と、外気の温度を検出する外気温度センサ58と、圧縮機30の表面温度を検出する温度センサ59とを含む。冷媒温度センサ53は、圧縮機30に吸入される冷媒の温度を検出する。冷媒温度センサ54は、圧縮機30から吐出される冷媒の温度を検出する。冷媒温度センサ55は、室外熱交換器33の液側の冷媒の温度を検出する。冷媒温度センサ56は、過冷却器35と液閉鎖弁36との間の冷媒の温度を検出する。冷媒温度センサ57は、過冷却器35の第2伝熱管35bから流出した冷媒の温度を検出する。
The temperature sensors 53-59 include refrigerant temperature sensors 53-57 that detect the temperature of the refrigerant, an outside air temperature sensor 58 that detects the temperature of the outside air, and a temperature sensor 59 that detects the surface temperature of the compressor 30. Refrigerant temperature sensor 53 detects the temperature of the refrigerant sucked into compressor 30 . Refrigerant temperature sensor 54 detects the temperature of the refrigerant discharged from compressor 30 . A refrigerant temperature sensor 55 detects the temperature of the refrigerant on the liquid side of the outdoor heat exchanger 33 . A refrigerant temperature sensor 56 detects the temperature of the refrigerant between the supercooler 35 and the liquid closing valve 36 . The refrigerant temperature sensor 57 detects the temperature of the refrigerant flowing out from the second heat transfer tube 35 b of the subcooler 35 .
吸入圧力センサ51、吐出圧力センサ52、冷媒温度センサ53,54の検出値を用いて、室外熱交換器33及び室内熱交換器25における冷媒の蒸発温度及び凝縮温度、冷媒の過熱度等が求められ、これらの値を調整するように圧縮機30の回転数や室外膨張弁34、室内膨張弁24の開度等が制御される。
Using the detection values of the suction pressure sensor 51, the discharge pressure sensor 52, and the refrigerant temperature sensors 53 and 54, the evaporation temperature and condensation temperature of the refrigerant in the outdoor heat exchanger 33 and the indoor heat exchanger 25, the degree of superheat of the refrigerant, and the like are obtained. The rotational speed of the compressor 30, the opening degrees of the outdoor expansion valve 34 and the indoor expansion valve 24, and the like are controlled so as to adjust these values.
上記構成の空気調和機11が冷房運転を行う場合、四路切換弁32が図1において実線で示す状態に保持される。圧縮機30から吐出された高温高圧のガス状冷媒は、四路切換弁32を経て室外熱交換器33に流入し、室外ファン39の作動により室外空気と熱交換して凝縮・液化する。液化した冷媒は、全開状態の室外膨張弁34及び過冷却器35を通過して室内機21に流入する。室内機21において、冷媒は、室内膨張弁24で所定の低圧に減圧され、さらに室内熱交換器25で室内空気と熱交換して蒸発する。冷媒の蒸発によって冷却された室内空気は、室内ファン26によって室内に吹き出され、当該室内を冷房する。室内熱交換器25で蒸発した冷媒は、ガス冷媒配管40Gを通って室外機22に戻り、四路切換弁32を経て圧縮機30に吸い込まれる。空気調和機11は、室外熱交換器33に付着した霜を取り除くデフロスト運転を行う場合にも、冷房運転と同様に動作する。
When the air conditioner 11 configured as described above performs cooling operation, the four-way switching valve 32 is held in the state indicated by the solid line in FIG. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 30 flows through the four-way switching valve 32 into the outdoor heat exchanger 33, where the outdoor fan 39 operates to exchange heat with outdoor air to condense and liquefy. The liquefied refrigerant flows into the indoor unit 21 through the fully open outdoor expansion valve 34 and the supercooler 35 . In the indoor unit 21, the refrigerant is decompressed to a predetermined low pressure by the indoor expansion valve 24, and further heat-exchanged with the indoor air by the indoor heat exchanger 25 to evaporate. The indoor air cooled by the evaporation of the refrigerant is blown into the room by the indoor fan 26 to cool the room. The refrigerant evaporated in the indoor heat exchanger 25 returns to the outdoor unit 22 through the gas refrigerant pipe 40G and is sucked into the compressor 30 through the four-way switching valve 32 . The air conditioner 11 also operates in the same manner as in the cooling operation when performing the defrost operation for removing frost adhered to the outdoor heat exchanger 33 .
空気調和機11が暖房運転を行う場合、四路切換弁32が図1において破線で示す状態に保持される。圧縮機30から吐出された高温高圧のガス状冷媒は、四路切換弁32を通過して室内機21の室内熱交換器25に流入する。室内熱交換器25において、冷媒は室内空気と熱交換して凝縮・液化する。冷媒の凝縮によって加熱された室内空気は、室内ファン26によって室内に吹き出され、当該室内を暖房する。室内熱交換器25において液化した冷媒は、液冷媒配管40Lを通って室外機22に戻り、室外膨張弁34で所定の低圧に減圧され、さらに室外熱交換器33で室外空気と熱交換して蒸発する。室外熱交換器33で蒸発して気化した冷媒は、四路切換弁32を経て圧縮機30に吸い込まれる。
When the air conditioner 11 performs heating operation, the four-way switching valve 32 is held in the state indicated by the dashed line in FIG. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 30 passes through the four-way switching valve 32 and flows into the indoor heat exchanger 25 of the indoor unit 21 . In the indoor heat exchanger 25, the refrigerant exchanges heat with the indoor air and is condensed and liquefied. The indoor air heated by the condensation of the refrigerant is blown into the room by the indoor fan 26 to heat the room. The refrigerant liquefied in the indoor heat exchanger 25 returns to the outdoor unit 22 through the liquid refrigerant pipe 40L, is decompressed to a predetermined low pressure by the outdoor expansion valve 34, and is heat-exchanged with the outdoor air by the outdoor heat exchanger 33. Evaporate. The refrigerant evaporated and vaporized in the outdoor heat exchanger 33 is sucked into the compressor 30 through the four-way switching valve 32 .
室内機21は、室内制御部29と、リモートコントローラ(リモコン)29Aとをさらに有している。室内制御部29は、CPU等の演算部及びRAM,ROM等の記憶部を有するマイクロコンピュータ等により構成されている。室内制御部29は、FPGAやASIC等の集積回路を備えたものであってもよい。室内機21に設けられた各センサの検出値は、室内制御部29に入力される。室内制御部29は、室内温度センサ27等の検出値に基づいて室内膨張弁24や室内ファン26の動作を制御する。
The indoor unit 21 further has an indoor controller 29 and a remote controller (remote controller) 29A. The indoor control unit 29 is composed of a microcomputer or the like having a calculation unit such as a CPU and a storage unit such as RAM and ROM. The indoor controller 29 may be provided with an integrated circuit such as FPGA or ASIC. Detected values of the sensors provided in the indoor unit 21 are input to the indoor controller 29 . The indoor controller 29 controls the operation of the indoor expansion valve 24 and the indoor fan 26 based on the values detected by the indoor temperature sensor 27 and the like.
リモコン29Aは、空気調和機11に対する運転の開始及び停止の指示の入力、冷房及び暖房等の運転モードの入力、室内の設定温度の入力等のために用いられる。リモコン29Aは、設定内容等を表示する表示部29A1(図3参照)を有している。この表示部29A1は、後述するようにユーザに異常の発生を知らせるための報知部としても機能する。
The remote controller 29A is used for inputting instructions to start and stop operation of the air conditioner 11, inputting operation modes such as cooling and heating, and inputting the set temperature in the room. The remote control 29A has a display section 29A1 (see FIG. 3) for displaying settings and the like. The display section 29A1 also functions as a notification section for notifying the user of the occurrence of an abnormality, as will be described later.
室外機22は、室外制御部70をさらに有している。室外制御部70は、CPU等の演算部及びRAM,ROM等の記憶部を有するマイクロコンピュータ等により構成されている。室外制御部70は、記憶部に記憶されたプログラムを演算部が実行することによって所定の機能を発揮する。室外制御部70は、FPGAやASIC等の集積回路を備えたものであってもよい。室外機22に設けられた各種センサ51~60の検出値は、室外制御部70に入力される。室外制御部70は、各種センサ51~60の検出値等に基づいて、圧縮機30、室外ファン39、膨張弁34,43等の動作を制御する。室外制御部70は、後述するように、空気調和機11の異常の有無を診断する異常診断システムとしても機能する。
The outdoor unit 22 further has an outdoor control unit 70. The outdoor control unit 70 is configured by a microcomputer or the like having a calculation unit such as a CPU and a storage unit such as RAM and ROM. The outdoor control unit 70 exhibits a predetermined function by executing the program stored in the storage unit by the calculation unit. The outdoor control unit 70 may include an integrated circuit such as FPGA or ASIC. Detected values of various sensors 51 to 60 provided in the outdoor unit 22 are input to the outdoor controller 70 . The outdoor control unit 70 controls the operations of the compressor 30, the outdoor fan 39, the expansion valves 34, 43, etc. based on the detection values of the various sensors 51-60. The outdoor control unit 70 also functions as an abnormality diagnosis system for diagnosing whether the air conditioner 11 has an abnormality, as will be described later.
室内制御部29と室外制御部70と集中管理装置50とは、LAN(ローカルエリアネットワーク)等のローカルな通信ネットワークを介して接続されている。具体的に、室内制御部29と室外制御部70とは、伝送線を介して相互に通信可能に接続されている。室内制御部29と室外制御部70とは、伝送線を介して相互に通信可能に集中管理装置50に接続されている。
The indoor controller 29, the outdoor controller 70, and the centralized control device 50 are connected via a local communication network such as a LAN (local area network). Specifically, the indoor controller 29 and the outdoor controller 70 are connected to communicate with each other via a transmission line. The indoor controller 29 and the outdoor controller 70 are connected to the central control device 50 via a transmission line so as to be able to communicate with each other.
集中管理装置50は、CPU等の演算部及びROM,RAM等の記憶部を有するマイクロコンピュータ等の制御部50aを備える。制御部50aは、記憶部に記憶されたプログラムを演算部が実行することによって所定の機能を発揮する。制御部50aは、FPGAやASIC等の集積回路を備えたものであってもよい。集中管理装置50は、例えばビルの中央管理室に設置される。集中管理装置50は、室外機22及び室内機21を管理する。具体的に、集中管理装置50は、制御部50aによって室外機22及び室内機21の稼働状況の監視、空調温度の設定、運転・停止の制御等を行う。
The centralized control device 50 includes a control section 50a such as a microcomputer having a calculation section such as a CPU and a storage section such as ROM and RAM. The control unit 50a exhibits a predetermined function when the arithmetic unit executes a program stored in the storage unit. The control unit 50a may include an integrated circuit such as FPGA or ASIC. The central control device 50 is installed, for example, in a central control room of a building. The central control device 50 manages the outdoor units 22 and the indoor units 21 . Specifically, the central control device 50 monitors the operation status of the outdoor unit 22 and the indoor unit 21, sets the air conditioning temperature, controls operation/stop, etc., by means of the control unit 50a.
管理サーバー62は、空気調和機11が設置される建物とは離れた遠隔地に設けられている。管理サーバー62は、例えば、CPU等の演算部及びROM,RAM等の記憶部を有する制御部62aを含むパーソナルコンピュータにより構成されている。制御部62aは、記憶部に記憶されたプログラムを演算部が実行することによって所定の機能を発揮する。制御部62aは、FPGAやASIC等の集積回路を備えたものであってもよい。集中管理装置50と管理サーバー62とは、インターネット等の広域通信ネットワーク63を介して通信可能に接続されている。
The management server 62 is provided in a remote location away from the building where the air conditioner 11 is installed. The management server 62 is composed of, for example, a personal computer including a control section 62a having a calculation section such as a CPU and a storage section such as ROM and RAM. The control unit 62a exhibits a predetermined function when the arithmetic unit executes the program stored in the storage unit. The control unit 62a may include an integrated circuit such as FPGA or ASIC. The central control device 50 and the control server 62 are communicably connected via a wide area communication network 63 such as the Internet.
本実施形態の空気調和システムにおいて、集中管理装置50及び管理サーバー62は省略されていてもよい。
In the air conditioning system of this embodiment, the central control device 50 and the control server 62 may be omitted.
[異常診断システム]
室外制御部70は、空気調和機11に発生した「異常」の発生の検知、及び、「異常の予兆」(以下、単に「予兆」ともいう)の発生の検知を行う異常診断システムを構成している。室外制御部70は、各種センサ51~60の検出値や圧縮機30、室外ファン39、膨張弁34,43等の制御データを運転データとして取得する。室外制御部70は、取得した運転データを用いて、圧縮機30等の各種機器の動作を制御するとともに、空気調和機11の異常及び予兆の検知を行う。 [Abnormal diagnosis system]
Theoutdoor control unit 70 constitutes an abnormality diagnosis system that detects the occurrence of an "abnormality" occurring in the air conditioner 11 and the occurrence of a "sign of abnormality" (hereinafter also simply referred to as a "sign"). ing. The outdoor control unit 70 acquires detection values of various sensors 51 to 60 and control data of the compressor 30, the outdoor fan 39, the expansion valves 34 and 43, etc. as operation data. The outdoor control unit 70 uses the acquired operation data to control the operation of various devices such as the compressor 30 and detects an abnormality and a sign of the air conditioner 11 .
室外制御部70は、空気調和機11に発生した「異常」の発生の検知、及び、「異常の予兆」(以下、単に「予兆」ともいう)の発生の検知を行う異常診断システムを構成している。室外制御部70は、各種センサ51~60の検出値や圧縮機30、室外ファン39、膨張弁34,43等の制御データを運転データとして取得する。室外制御部70は、取得した運転データを用いて、圧縮機30等の各種機器の動作を制御するとともに、空気調和機11の異常及び予兆の検知を行う。 [Abnormal diagnosis system]
The
異常及び予兆の発生の検知対象となる機器は、例えば、圧縮機30、室外ファン39、膨張弁34,43、温度センサ53~59、圧力センサ51,52等である。室外制御部70は、空気調和機11の「異常」の発生を検知したとき、空気調和機11を停止させる。室外制御部70は、空気調和機11の「異常の予兆」の発生を検知したとき、空気調和機11の運転を継続して行う。
Devices that are subject to detection of occurrence of anomalies and signs are, for example, the compressor 30, the outdoor fan 39, the expansion valves 34 and 43, the temperature sensors 53 to 59, the pressure sensors 51 and 52, and the like. The outdoor control unit 70 stops the air conditioner 11 when detecting the occurrence of “abnormality” in the air conditioner 11 . The outdoor control unit 70 continues the operation of the air conditioner 11 when detecting the occurrence of the “prediction of abnormality” of the air conditioner 11 .
室外制御部70は、所定の異常が発生した場合に空気調和機11を一旦停止し、所定時間経過後に再度運転させるリトライ運転を実行する。室外制御部70は、所定回数のリトライ運転を実行しても異常が発生する場合には、その異常を正式な「異常」として確定する。
The outdoor control unit 70 executes retry operation in which the air conditioner 11 is temporarily stopped when a predetermined abnormality occurs, and is restarted after a predetermined period of time has elapsed. If an abnormality occurs even after the retry operation is performed a predetermined number of times, the outdoor control unit 70 confirms the abnormality as a formal "abnormality".
異常の検知には、従来公知の方法を適用することができる。例えば、圧縮機30に関しては、モータを流れる電流値が所定の閾値よりも高い場合、吸入圧力センサ51及び吐出圧力センサ52の検出値が所定の閾値よりも高い又は低い場合、両圧力センサ51,52の検出値の差が所定の閾値よりも小さい場合等に異常と判断することができる。
Conventionally known methods can be applied to detect anomalies. For example, regarding the compressor 30, if the current value flowing through the motor is higher than a predetermined threshold, if the detection values of the suction pressure sensor 51 and the discharge pressure sensor 52 are higher or lower than the predetermined threshold, both pressure sensors 51, When the difference between the detection values of 52 is smaller than a predetermined threshold value, it can be determined that there is an abnormality.
異常の予兆の検知には、例えば、図5に示される方法を適用することができる。図5の詳細については、後述する。
For example, the method shown in FIG. 5 can be applied to detect signs of anomalies. Details of FIG. 5 will be described later.
図3は、室外制御部の構成図である。
室外制御部70は、処理部71と、記憶部72と、表示部73と、出力部74とを有する。処理部71は、CPU等の演算装置により構成され、前述したような圧縮機30の動作制御の処理を行うとともに異常診断の処理を行う。 FIG. 3 is a configuration diagram of an outdoor control unit.
Theoutdoor control unit 70 has a processing unit 71 , a storage unit 72 , a display unit 73 and an output unit 74 . The processing unit 71 is composed of an arithmetic unit such as a CPU, and performs processing for controlling the operation of the compressor 30 as described above, as well as processing for abnormality diagnosis.
室外制御部70は、処理部71と、記憶部72と、表示部73と、出力部74とを有する。処理部71は、CPU等の演算装置により構成され、前述したような圧縮機30の動作制御の処理を行うとともに異常診断の処理を行う。 FIG. 3 is a configuration diagram of an outdoor control unit.
The
処理部71は、「異常」、「リトライ運転」、及び「異常の予兆」が発生したことを検知すると、それらの情報である「異常情報」、「リトライ情報」、「予兆情報」を記憶部72に記憶させる処理を実行する。処理部71は、記憶部72に記憶された「異常情報」、「リトライ情報」、「予兆情報」を表示部73に表示させる処理を実行する。さらに、処理部71は、記憶部72に記憶された各情報のうち、「異常情報」をリモコン29Aの表示部29A1に表示させる処理を実行する。処理部71は、「予兆情報」及び「リトライ情報」を表示部29A1には表示させず、「異常情報」のみを表示させる。
When the processing unit 71 detects that “abnormality”, “retry operation”, and “prediction of abnormality” have occurred, the processing unit 71 stores such information “abnormality information”, “retry information”, and “prediction information” in the storage unit. 72 is stored. The processing unit 71 executes processing for displaying the “abnormality information”, “retry information”, and “prediction information” stored in the storage unit 72 on the display unit 73 . Further, the processing unit 71 performs processing for displaying “abnormality information” among the information stored in the storage unit 72 on the display unit 29A1 of the remote controller 29A. The processing unit 71 causes the display unit 29A1 to display only the "abnormality information" without displaying the "prediction information" and the "retry information".
記憶部72は、空気調和機11の各種センサの検出データや圧縮機30等の制御データを記憶する。また、記憶部72は、処理部71によって「異常」、「リトライ運転」、及び「予兆」の発生が検知された場合、それらの「異常情報」、「リトライ情報」、及び「予兆情報」を記憶する。
The storage unit 72 stores detection data of various sensors of the air conditioner 11 and control data of the compressor 30 and the like. Further, when the processing unit 71 detects the occurrence of "abnormality", "retry operation", and "prediction", the storage unit 72 stores the "abnormality information", "retry information", and "prediction information". Remember.
「異常情報」は、異常の内容と、その発生時間に関する情報とを含む。「予兆情報」は、予兆の内容と、その発生時間に関する情報とを含む。「リトライ情報」は、リトライ運転の原因となった異常の内容と、その発生時間に関する情報とを含む。
"Abnormality information" includes information about the content of the abnormality and the time of occurrence. The "prediction information" includes the content of the prediction and information on the occurrence time. The "retry information" includes information on the content of the abnormality that caused the retry operation and the time of occurrence of the abnormality.
図4は、記憶部に記憶される異常情報、リトライ情報、及び予兆情報の内容を例示する表である。
記憶部72には、図4に示されるように、異常の形態(異常、リトライ運転、予兆)と、異常の内容と、異常が発生したときの積算通電時間(単に、「通電時間」ともいう)と、異常が発生したときの積算圧縮機運転時間とが対応付けられた状態で記憶される。積算圧縮機運転時間は、実質的に空気調和機11が空調を行っている運転時間である。図4には、「異常」、「予兆」、及び「リトライ運転」が、発生順に下から並べて記載されている。記憶部72には、最新の情報と、過去n件の情報とを記憶することができる。nは、例えば83件とすることができ、合計で84件の情報を記憶部72に記憶することができる。 FIG. 4 is a table illustrating contents of abnormality information, retry information, and predictive information stored in a storage unit.
As shown in FIG. 4, thestorage unit 72 stores the type of abnormality (abnormality, retry operation, sign), the details of the abnormality, and the accumulated energization time when the abnormality occurred (simply referred to as "energization time"). ) and the accumulated compressor operation time when the abnormality occurred are stored in a state of being associated with each other. The integrated compressor operating time is substantially the operating time during which the air conditioner 11 performs air conditioning. In FIG. 4, "abnormality", "prediction", and "retry operation" are listed in order of occurrence from the bottom. The storage unit 72 can store the latest information and the past n items of information. For example, n can be 83 cases, and a total of 84 cases of information can be stored in the storage unit 72 .
記憶部72には、図4に示されるように、異常の形態(異常、リトライ運転、予兆)と、異常の内容と、異常が発生したときの積算通電時間(単に、「通電時間」ともいう)と、異常が発生したときの積算圧縮機運転時間とが対応付けられた状態で記憶される。積算圧縮機運転時間は、実質的に空気調和機11が空調を行っている運転時間である。図4には、「異常」、「予兆」、及び「リトライ運転」が、発生順に下から並べて記載されている。記憶部72には、最新の情報と、過去n件の情報とを記憶することができる。nは、例えば83件とすることができ、合計で84件の情報を記憶部72に記憶することができる。 FIG. 4 is a table illustrating contents of abnormality information, retry information, and predictive information stored in a storage unit.
As shown in FIG. 4, the
図6A~図6Cは、室外制御部の表示部に表示される異常情報、リトライ情報、及び予兆情報の内容を例示する表である。
表示部73は、記憶部72に記憶されている「異常情報」、「リトライ情報」、及び「予兆情報」を表示する。表示部73は、例えば7セグメントによるデジタル表示であり、異常情報、リトライ情報、及び予兆情報が、数字やアルファベット等によりコード化された状態で表示部73に表示される。本実施形態では、異常情報、リトライ情報、及び予兆情報として、それぞれ異常の内容、リトライ運転の内容、及び予兆の内容がそれぞれコード化され、表示部73に表示される。 6A to 6C are tables exemplifying the content of abnormality information, retry information, and predictive information displayed on the display unit of the outdoor control unit.
Thedisplay unit 73 displays “abnormality information”, “retry information”, and “prediction information” stored in the storage unit 72 . The display unit 73 is, for example, a 7-segment digital display, and the abnormality information, the retry information, and the predictive information are displayed on the display unit 73 in a coded state using numbers, alphabets, or the like. In this embodiment, the contents of the abnormality, the contents of the retry operation, and the contents of the symptom are coded as the abnormality information, the retry information, and the symptom information, respectively, and displayed on the display unit 73 .
表示部73は、記憶部72に記憶されている「異常情報」、「リトライ情報」、及び「予兆情報」を表示する。表示部73は、例えば7セグメントによるデジタル表示であり、異常情報、リトライ情報、及び予兆情報が、数字やアルファベット等によりコード化された状態で表示部73に表示される。本実施形態では、異常情報、リトライ情報、及び予兆情報として、それぞれ異常の内容、リトライ運転の内容、及び予兆の内容がそれぞれコード化され、表示部73に表示される。 6A to 6C are tables exemplifying the content of abnormality information, retry information, and predictive information displayed on the display unit of the outdoor control unit.
The
表示部73には、異常情報、リトライ情報、及び予兆情報のそれぞれについて、「最新」、「過去1」、「過去2」で示す3件分が表示される。そのため、空気調和機11が異常により停止したとき、その復旧にあたるサービスマン等は表示部73を見ることによって、実際に発生した異常の内容だけでなく、最近発生したリトライ運転及び予兆の情報をも知ることができ、異常の発生原因の究明のためにリトライ情報及び予兆情報を活用することができる。ただし、表示部73には、異常情報、リトライ情報、及び予兆情報がそれぞれ個別に3件ずつ表示されるだけで、相互の関係性を把握することは困難である。そのため、本実施形態の室外制御部70は、これらの情報の相互の関係を把握することができる形態で出力するように構成されている。
The display unit 73 displays three items of "latest", "past 1", and "past 2" for each of the anomaly information, retry information, and predictive information. Therefore, when the air conditioner 11 stops due to an abnormality, a serviceman or the like who is in charge of restoration can obtain not only the content of the actually occurred abnormality but also information on the retry operation and the sign of the recent occurrence by looking at the display section 73. The retry information and predictive information can be used to investigate the cause of the abnormality. However, the display unit 73 only displays three pieces of each of the abnormality information, the retry information, and the sign information individually, and it is difficult to grasp the mutual relationship. Therefore, the outdoor control unit 70 of this embodiment is configured to output such information in a form that allows understanding of the mutual relationship between them.
室外制御部70の出力部74は、図3に示すように、記憶部72に記憶された異常情報、リトライ情報、及び予兆情報を、外部の機器、例えばサービスマンが所持するPCやスマートフォン等の端末100(以下、「サービス端末」ともいう)に出力する。出力部74は、例えば室外制御部70を構成する制御基板等に設けられ、サービス端末100が有線接続される出力インタフェース等により構成される。出力部74は、異常情報等を無線で出力する通信装置であってもよい。
As shown in FIG. 3, the output unit 74 of the outdoor control unit 70 outputs the abnormality information, retry information, and predictive information stored in the storage unit 72 to an external device such as a PC or a smartphone possessed by a serviceman. Output to the terminal 100 (hereinafter also referred to as "service terminal"). The output unit 74 is provided, for example, on a control board or the like that constitutes the outdoor control unit 70, and is configured by an output interface or the like to which the service terminal 100 is connected by wire. The output unit 74 may be a communication device that wirelessly outputs abnormality information and the like.
前述したように、記憶部72に記憶される異常情報、リトライ情報、及び予兆情報には、それぞれが発生した時点における空気調和機11の通電時間と運転時間とが含まれており、出力部74は、これらの発生時間の情報を含めた状態で異常情報、リトライ情報、及び予兆情報を外部に出力する。そのため、例えば図4に示すように、異常情報、リトライ情報、及び予兆情報を時系列に確認することが可能となっている。したがって、サービスマンは、出力された情報をもとに、異常が発生する前にどのようなリトライ運転が行われていたのか、或いはどのような予兆があったのかを確認することができる。したがって、サービスマンは、リトライ情報や予兆情報から異常の発生原因を容易に推定することができ、異常からの復旧(部品の修理や交換)を適切かつ迅速に行うことが可能となる。
As described above, the abnormality information, the retry information, and the sign information stored in the storage unit 72 include the energization time and operating time of the air conditioner 11 at the time when each of them occurred, and the output unit 74 outputs the abnormality information, the retry information, and the sign information to the outside while including the information on the occurrence time. Therefore, for example, as shown in FIG. 4, it is possible to check the abnormality information, the retry information, and the sign information in chronological order. Therefore, based on the output information, the serviceman can confirm what kind of retry operation was performed before the abnormality occurred or what kind of sign there was. Therefore, the serviceman can easily estimate the cause of the abnormality from the retry information and the predictive information, and can appropriately and quickly recover from the abnormality (repair or replace parts).
異常情報、リトライ情報、及び予兆情報には、発生時間に関する情報として、空気調和機11の通電時間と運転時間とが含まれている。この通電時間から、異常、リトライ運転、及び予兆の発生原因が空気調和機11の運転による消耗や劣化によるものか否かを判断することができる。同様に、通電時間から、異常、リトライ運転、及び予兆の発生原因が寿命によるものか否かを判断することができる。なお、出力部74は、室外制御部70の表示部73に異常情報、リトライ情報、及び予兆情報を時系列に確認可能な状態で出力するものであってもよい。
The anomaly information, retry information, and predictive information include the energization time and operating time of the air conditioner 11 as information related to the time of occurrence. From this energization time, it can be determined whether or not the cause of occurrence of the abnormality, the retry operation, and the sign is due to wear and deterioration due to the operation of the air conditioner 11 . Similarly, from the energization time, it is possible to determine whether or not the cause of the abnormality, the retry operation, and the sign is due to the service life. The output unit 74 may output the abnormality information, the retry information, and the predictive information to the display unit 73 of the outdoor control unit 70 in chronological order so that they can be confirmed.
[異常の予兆の例示]
図5は、記憶部に記憶される異常情報、リトライ情報、及び予兆情報の内容を例示する表である。
図5には、空気調和機11を構成する部品と、その部品に生じ得る異常の予兆の内容と、その内容を検知するための方法とが対応付けられた状態で例示されている。例えば、圧縮機30で発生し得る異常の予兆の内容として、「電流値」、「湿り」、「過熱」が例示されている。 [Examples of signs of abnormality]
FIG. 5 is a table illustrating contents of abnormality information, retry information, and predictor information stored in a storage unit.
FIG. 5 exemplifies a state in which the parts constituting theair conditioner 11, the details of the signs of abnormality that may occur in the parts, and the methods for detecting the details are associated with each other. For example, "current value", "wetness", and "overheating" are exemplified as the content of signs of abnormality that can occur in the compressor 30. FIG.
図5は、記憶部に記憶される異常情報、リトライ情報、及び予兆情報の内容を例示する表である。
図5には、空気調和機11を構成する部品と、その部品に生じ得る異常の予兆の内容と、その内容を検知するための方法とが対応付けられた状態で例示されている。例えば、圧縮機30で発生し得る異常の予兆の内容として、「電流値」、「湿り」、「過熱」が例示されている。 [Examples of signs of abnormality]
FIG. 5 is a table illustrating contents of abnormality information, retry information, and predictor information stored in a storage unit.
FIG. 5 exemplifies a state in which the parts constituting the
「電流値」は、圧縮機30のモータを流れる電流値が所定値よりも高い状態が検知されることを意味している。この場合の電流値は、現在から所定期間前までの移動平均値が採用され、長期的にみた場合の電流値の異常が検知される。「湿り」は、圧縮機30が吐出する冷媒の湿り状態(過熱度が所定値未満)が検知されることを意味している。「過熱」は、圧縮機30が吐出する冷媒の過熱状態(過熱度が所定値以上)が検知されることを意味している。これらの状態が検知された場合、室外制御部70は、圧縮機30に「異常の予兆」がある、と診断する。しかしながら、これらの状態が検知されたとしても、直ちに空気調和機11の運転に支障が生じる訳ではないので、空気調和機11の運転は継続される。
"Current value" means that a state in which the current value flowing through the motor of the compressor 30 is higher than a predetermined value is detected. As the current value in this case, a moving average value from the present to a predetermined period ago is adopted, and an abnormality in the current value in the long term is detected. “Wet” means that the wet state of the refrigerant discharged from the compressor 30 (the degree of superheat is less than a predetermined value) is detected. "Overheating" means that the refrigerant discharged from the compressor 30 is detected to be in a superheated state (the degree of superheating is equal to or greater than a predetermined value). When these states are detected, the outdoor control unit 70 diagnoses that the compressor 30 has a "symptom of abnormality". However, even if these states are detected, the operation of the air conditioner 11 is not immediately hindered, so the operation of the air conditioner 11 is continued.
図5には、膨張弁34で発生し得る異常の予兆の内容として、「漏れ」が例示されている。これは、膨張弁34の下流側に配置された冷媒温度センサによって冷媒の湿り状態が検知されることを意味する。この状態が検知された場合、室外制御部70は、膨張弁34に「異常の予兆」がある、と診断する。
FIG. 5 exemplifies "leakage" as an indication of abnormality that may occur in the expansion valve 34. This means that the wet state of the refrigerant is detected by the refrigerant temperature sensor arranged downstream of the expansion valve 34 . When this state is detected, the outdoor control unit 70 diagnoses that the expansion valve 34 has a "symptom of abnormality".
図5には、室外熱交換器33で発生し得る異常の予兆の内容として、「霜の溶け残り」が例示されている。これは、空気調和機11がデフロスト運転を行っているときに、所定の完了条件を満たさない回数が所定数を超えることを意味している。この状態が検知された場合、室外制御部70は、室外熱交換器33に「異常の予兆」がある、と診断する。しかしながら、これらの状態が検知されたとしても、直ちに空気調和機11の運転に支障が生じる訳ではないので、空気調和機11の運転は継続される。
FIG. 5 exemplifies "unmelted frost" as a sign of abnormality that may occur in the outdoor heat exchanger 33. FIG. This means that the number of times the predetermined completion condition is not satisfied exceeds the predetermined number while the air conditioner 11 is performing the defrost operation. When this state is detected, the outdoor control unit 70 diagnoses that the outdoor heat exchanger 33 has a “symptom of abnormality”. However, even if these states are detected, the operation of the air conditioner 11 is not immediately hindered, so the operation of the air conditioner 11 is continued.
図5には、温度センサ53~59の異常の予兆として、「検知ずれ」が例示されている。これは、診断対象となる温度センサと他の温度センサとの間に検出値の乖離が検知されることを意味する。この状態が検出された場合、室外制御部70は、その温度センサに「異常の予兆」がある、と診断する。
FIG. 5 exemplifies "detection deviation" as a sign of abnormality of the temperature sensors 53-59. This means that a discrepancy in detection values is detected between the temperature sensor to be diagnosed and another temperature sensor. When this state is detected, the outdoor controller 70 diagnoses that the temperature sensor has a "prediction of abnormality".
図5には、圧力センサ51,52の異常の予兆として、「検知ずれ」が例示されている。これは、診断対象となる圧力センサ51,52の検出値から求められる圧力相当飽和温度(演算値)と、その他の温度センサの検出値との間に乖離が検知されることを意味する。この状態が検知された場合、室外制御部70は、その圧力センサ51,52に「異常の予兆」がある、と診断する。
FIG. 5 exemplifies "detection deviation" as a sign of abnormality in the pressure sensors 51 and 52. This means that a deviation is detected between the pressure-equivalent saturation temperature (calculated value) obtained from the detection values of the pressure sensors 51 and 52 to be diagnosed and the detection values of the other temperature sensors. When this state is detected, the outdoor control unit 70 diagnoses that the pressure sensors 51 and 52 have "signs of abnormality".
室外制御部70は、以上のような予兆の発生を検知したとしても、直ちに空気調和機11の運転に支障が生じる訳ではないので、空気調和機11を停止せずに運転を継続して実行する。図5に示す異常の予兆のうち、圧縮機30の「電流値」、膨張弁の「漏れ」、熱交換器33の「霜溶け残り」、温度センサ53~59の「検知ずれ」、圧力センサ51,52の「検知ずれ」は、空気調和機11を停止するまでもない軽微な異常を検出することができるように、異常の発生を検知する方法とは異なる方法が採用されている。
Even if the outdoor control unit 70 detects the occurrence of a sign as described above, the operation of the air conditioner 11 is not immediately hindered, so the operation is continued without stopping the air conditioner 11. do. Among the signs of abnormality shown in FIG. 5, the “current value” of the compressor 30, the “leakage” of the expansion valve, the “residue of frost melting” of the heat exchanger 33, the “detection deviation” of the temperature sensors 53 to 59, and the pressure sensor For the "detection deviation" of 51 and 52, a method different from the method of detecting the occurrence of an abnormality is adopted so that a minor abnormality that does not require stopping the air conditioner 11 can be detected.
(予兆の検知の具体的処理)
上記の「異常の予兆」のうち、温度センサ53~59と圧力センサ51,52の「検知ずれ」について詳細に説明する。
空気調和機11に設けられる各種センサは、次第に検出値が正常な値からずれる「検知ずれ」を生じることがあり、この「検知ずれ」が大きくなると空気調和機11が適切に制御されず運転に支障を来たすおそれがある。そのため、本実施形態の空気調和機11では、温度センサ53~59及び圧力センサ51,52について、「検知ずれ」がある場合には、異常の予兆があるものと診断する。 (Specific processing of sign detection)
Of the above-mentioned "signs of abnormality", the "detection deviation" of thetemperature sensors 53 to 59 and the pressure sensors 51, 52 will be described in detail.
Various sensors provided in theair conditioner 11 may cause "detection deviation" in which the detected value gradually deviates from the normal value. It may cause trouble. Therefore, in the air conditioner 11 of the present embodiment, when there is a "detection deviation" in the temperature sensors 53 to 59 and the pressure sensors 51, 52, it is diagnosed that there is a sign of abnormality.
上記の「異常の予兆」のうち、温度センサ53~59と圧力センサ51,52の「検知ずれ」について詳細に説明する。
空気調和機11に設けられる各種センサは、次第に検出値が正常な値からずれる「検知ずれ」を生じることがあり、この「検知ずれ」が大きくなると空気調和機11が適切に制御されず運転に支障を来たすおそれがある。そのため、本実施形態の空気調和機11では、温度センサ53~59及び圧力センサ51,52について、「検知ずれ」がある場合には、異常の予兆があるものと診断する。 (Specific processing of sign detection)
Of the above-mentioned "signs of abnormality", the "detection deviation" of the
Various sensors provided in the
温度センサ53~59及び圧力センサ51,52の「検知ずれ」の診断は、空気調和機11の運転を停止しているときに行われる。室外制御部70は、各温度センサ53~59の検出値、及び、各圧力センサ51,52の検出値から求められる演算値と、所定の基準値とを比較し、この基準値との乖離が大きい状態が所定時間以上継続したときに、そのセンサに「検知ずれ」があると診断する。
Diagnosis of "detection deviation" of the temperature sensors 53 to 59 and the pressure sensors 51, 52 is performed when the operation of the air conditioner 11 is stopped. The outdoor control unit 70 compares a calculated value obtained from the detection values of the temperature sensors 53 to 59 and the detection values of the pressure sensors 51 and 52 with a predetermined reference value, and determines if there is a deviation from the reference value. When the large state continues for a predetermined time or longer, the sensor is diagnosed as having "detection deviation".
空気調和機11が停止しているときは、空気調和機11に設けられた温度センサ53~59の検出値は、次第に外気温度に収束していくことになる。また、空気調和機11に設けられた圧力センサ51,52の検出値から求められる圧力相当飽和温度は、次第に外気温度に収束していくことになる。本実施形態では、室外制御部70が、外気温度に相当する値を「基準値」として設定し、この基準値と、温度センサ53~59の検出値、及び、圧力センサ51,52の検出値から求められる圧力相当飽和温度(演算値)とを比較することによって、「検知ずれ」の診断を行う。
When the air conditioner 11 is stopped, the detected values of the temperature sensors 53 to 59 provided in the air conditioner 11 gradually converge to the outside air temperature. Also, the pressure-equivalent saturation temperature obtained from the detection values of the pressure sensors 51 and 52 provided in the air conditioner 11 gradually converges to the outside air temperature. In this embodiment, the outdoor control unit 70 sets a value corresponding to the outside air temperature as a “reference value”, and this reference value, the detection values of the temperature sensors 53 to 59, and the detection values of the pressure sensors 51 and 52 Diagnosis of "detection deviation" is performed by comparing with the pressure-equivalent saturation temperature (calculated value) obtained from
図7は、温度センサの検知ずれを診断する手順を示すフローチャートである。
以下、温度センサ53~59の「検知ずれ」の診断手順をフローチャートを参照して説明する。
室外制御部70は、ステップS1において、空気調和機11が停止中であるか否かを判断する。室外制御部70は、ステップS1における判断が肯定的(Yes)である場合、ステップS2に処理を進める。 FIG. 7 is a flow chart showing a procedure for diagnosing detection deviation of the temperature sensor.
A procedure for diagnosing "detection deviation" of thetemperature sensors 53 to 59 will be described below with reference to a flow chart.
Theoutdoor control unit 70 determines whether or not the air conditioner 11 is stopped in step S1. When the determination in step S1 is affirmative (Yes), the outdoor control unit 70 advances the process to step S2.
以下、温度センサ53~59の「検知ずれ」の診断手順をフローチャートを参照して説明する。
室外制御部70は、ステップS1において、空気調和機11が停止中であるか否かを判断する。室外制御部70は、ステップS1における判断が肯定的(Yes)である場合、ステップS2に処理を進める。 FIG. 7 is a flow chart showing a procedure for diagnosing detection deviation of the temperature sensor.
A procedure for diagnosing "detection deviation" of the
The
室外制御部70は、ステップS2において、温度センサ53~59の検出値を取得する。次いで、室外制御部70は、ステップS3において、複数の温度センサ53~59の検出値を用いて基準値を算出する。本実施形態では、複数の温度センサ53~59の検出値のうち、いずれか複数の検出値の中央値を基準値とする。中央値を基準値とするのは、複数の温度センサの検出値に異常に高い値や低い値が含まれていたとしても、その影響を受ける可能性を低くし、外気温度の再現性を高めることができるからである。
The outdoor control unit 70 acquires the detection values of the temperature sensors 53 to 59 in step S2. Next, in step S3, the outdoor controller 70 calculates a reference value using the detection values of the plurality of temperature sensors 53-59. In this embodiment, the median value of a plurality of detected values among the detected values of the plurality of temperature sensors 53 to 59 is used as the reference value. Using the median value as the reference value reduces the possibility of being affected by abnormally high or low values even if the values detected by multiple temperature sensors are abnormally high or low, and improves the reproducibility of the outside air temperature. Because you can.
基準値を求めるために使用する温度センサは、3個以上であることが好ましい。基準値を求めるために使用する温度センサが偶数個ある場合は、中央値に近い2つの値の平均値を基準値に採用することができる。本実施形態では、圧縮機30の周囲に配置された温度センサ54,59は、圧縮機30の熱影響を受けやすいので、基準値の算出に用いない。
It is preferable that the number of temperature sensors used to obtain the reference value is 3 or more. If there is an even number of temperature sensors used to determine the reference value, the average value of two values close to the median value can be taken as the reference value. In this embodiment, the temperature sensors 54 and 59 arranged around the compressor 30 are easily affected by the heat of the compressor 30, so they are not used for calculating the reference value.
室外制御部70は、ステップS4において、各温度センサ53~58の検出値と基準値との差分が、所定の閾値を超えているか否かを判断する。ステップS4の判断が肯定的(Yes)である場合、室外制御部70は、ステップS5において、空気調和機11の停止後、所定時間が経過したか否かを判断する。この所定時間は、例えば8時間とすることができる。ステップS5における判断が肯定的(Yes)である場合、室外制御部70は、その温度センサ53~59に「検知ずれ」が発生していると診断し、異常の予兆情報として記憶部72に記憶し、処理を終了する。
In step S4, the outdoor control unit 70 determines whether the difference between the detection value of each temperature sensor 53-58 and the reference value exceeds a predetermined threshold. If the determination in step S4 is affirmative (Yes), the outdoor control unit 70 determines in step S5 whether or not a predetermined period of time has elapsed after the air conditioner 11 stopped. This predetermined time can be, for example, eight hours. If the determination in step S5 is affirmative (Yes), the outdoor control unit 70 diagnoses that "detection deviation" has occurred in the temperature sensors 53 to 59, and stores it in the storage unit 72 as abnormality sign information. and terminate the process.
ステップS4における判断が否定的(No)である場合、室外制御部70は、ステップS8に処理を進め、温度センサ53~59には「検知ずれ」が生じていないと診断し、処理を終了する。
If the determination in step S4 is negative (No), the outdoor control unit 70 advances the process to step S8, diagnoses that there is no "detection deviation" in the temperature sensors 53 to 59, and ends the process. .
ステップS4で用いる所定の閾値は、診断対象となる温度センサの種類に応じて設定することができる。例えば、圧縮機30は空気調和機11の停止中にクランクケースヒータによって温められるため、圧縮機30の周りに配置される温度センサ54,59は他の温度センサ53,55~58に比べて検出値が高くなる。そのため、これらの温度センサ54,59については所定の閾値が高めに設定される。
The predetermined threshold used in step S4 can be set according to the type of temperature sensor to be diagnosed. For example, since the compressor 30 is warmed by the crankcase heater while the air conditioner 11 is stopped, the temperature sensors 54, 59 arranged around the compressor 30 detect more than the other temperature sensors 53, 55-58. higher value. Therefore, a predetermined threshold value is set high for these temperature sensors 54 and 59 .
なお、「検知ずれ」を診断する時間を8時間という長い時間に設定したのは、温度センサの検出値が周囲の温度(外気温度)に収束するまでにある程度の時間が必要だからである。ただし、この時間は特に限定されるものではない。
The reason why the time for diagnosing "detection deviation" was set to a long time of 8 hours is that it takes a certain amount of time for the detected value of the temperature sensor to converge to the ambient temperature (outside air temperature). However, this time is not particularly limited.
図8は、圧力センサの検知ずれを診断する手順を示すフローチャートである。
以下、圧力センサ51,52の「検知ずれ」の診断手順をフローチャートを参照して説明する。
室外制御部70は、ステップS11において、空気調和機11が停止中であるか否かを判断する。室外制御部70は、ステップS1における判断が肯定的(Yes)である場合、ステップS12に処理を進める。 FIG. 8 is a flow chart showing a procedure for diagnosing detection deviation of the pressure sensor.
The procedure for diagnosing "detection deviation" of the pressure sensors 51 and 52 will be described below with reference to a flow chart.
In step S11, theoutdoor controller 70 determines whether the air conditioner 11 is stopped. When the determination in step S1 is affirmative (Yes), the outdoor control unit 70 advances the process to step S12.
以下、圧力センサ51,52の「検知ずれ」の診断手順をフローチャートを参照して説明する。
室外制御部70は、ステップS11において、空気調和機11が停止中であるか否かを判断する。室外制御部70は、ステップS1における判断が肯定的(Yes)である場合、ステップS12に処理を進める。 FIG. 8 is a flow chart showing a procedure for diagnosing detection deviation of the pressure sensor.
The procedure for diagnosing "detection deviation" of the
In step S11, the
室外制御部70は、ステップS12において、圧力センサ51,52及び温度センサ53~59の検出値を取得する。次いで、室外制御部70は、ステップS13において、複数の温度センサ53~59の検出値のうちいずれか複数の検出値を用いて基準値を算出する。本実施形態では、複数の検出値の中央値を基準値とする。中央値を基準値とするのは、複数の温度センサの検出値に異常に高い値や異常に低い値が含まれていたとしても、その影響を受けることが少なくなり、外気温度の再現性を高めることができるからである。
The outdoor control unit 70 acquires the detection values of the pressure sensors 51 and 52 and the temperature sensors 53-59 in step S12. Next, in step S13, the outdoor controller 70 calculates a reference value using a plurality of detected values among the detected values of the plurality of temperature sensors 53-59. In this embodiment, the median value of a plurality of detected values is used as the reference value. The median value is used as the reference value because even if the detected values of multiple temperature sensors include abnormally high or abnormally low values, it will be less affected and the reproducibility of the outside air temperature will be improved. for it can be raised.
基準値を求めるために使用する温度センサは、3個以上であることが好ましい。基準値を求めるために使用する温度センサが偶数個ある場合は、中央に近い2つの値の平均値を基準値に採用することができる。圧縮機30の周囲に配置された温度センサ54,59は、圧縮機30の熱影響を受けやすいので、基準値の算出に用いないことが好ましい。
It is preferable that the number of temperature sensors used to obtain the reference value is 3 or more. If there is an even number of temperature sensors used to determine the reference value, the average value of the two values closest to the center can be taken as the reference value. The temperature sensors 54 and 59 arranged around the compressor 30 are easily affected by the heat of the compressor 30, so it is preferable not to use them for calculating the reference value.
室外制御部70は、ステップS14において、圧力センサ51,52の検出値を用いて、冷媒の圧力相当飽和温度を算出する。そして、室外制御部70は、ステップS15において、各圧力センサ51,52の検出値から求められた圧力相当飽和温度と基準値との差分が、所定の閾値を超えているか否かを判断する。ステップS15の判断が肯定的である場合、室外制御部70は、ステップS16において、空気調和機11が停止してから所定時間が経過したか否かを判断する。この所定時間は、例えば8時間とすることができる。ステップS16における判断が肯定的(Yes)である場合、室外制御部70は、その圧力センサ51,52には「検知ずれ」が発生している診断し(ステップS17)、異常の予兆情報として記憶部72に記憶して(ステップS18)処理を終了する。
In step S14, the outdoor control unit 70 uses the detection values of the pressure sensors 51 and 52 to calculate the pressure-equivalent saturation temperature of the refrigerant. Then, in step S15, the outdoor controller 70 determines whether the difference between the pressure-equivalent saturation temperature obtained from the detection values of the pressure sensors 51 and 52 and the reference value exceeds a predetermined threshold. If the determination in step S15 is affirmative, the outdoor control unit 70 determines in step S16 whether or not a predetermined time has passed since the air conditioner 11 stopped. This predetermined time can be, for example, eight hours. If the determination in step S16 is affirmative (Yes), the outdoor control unit 70 diagnoses that "detection deviation" has occurred in the pressure sensors 51 and 52 (step S17), and stores it as abnormality sign information. It is stored in the unit 72 (step S18) and the process ends.
ステップS15における判断が否定的(No)である場合、室外制御部70は、ステップS19に処理を進め、圧力センサ51,52には「検知ずれ」が生じていないと診断し、処理を終了する。
If the determination in step S15 is negative (No), the outdoor control unit 70 advances the process to step S19, diagnoses that "detection deviation" has not occurred in the pressure sensors 51 and 52, and ends the process. .
[他の実施形態]
上記実施形態において、図7のステップS3、図8のステップS13で算出される基準値は、複数の温度センサの検出値の中央値に限らず、平均値を採用してもよい。この場合、複数の検出値のうち、最大値と最小値とを除いた他の検出値を用いて平均値を算出することがより好ましい。 [Other embodiments]
In the above embodiment, the reference value calculated in step S3 of FIG. 7 and step S13 of FIG. 8 is not limited to the median value of the detection values of the plurality of temperature sensors, and may be an average value. In this case, it is more preferable to calculate the average value using other detection values other than the maximum value and the minimum value among the plurality of detection values.
上記実施形態において、図7のステップS3、図8のステップS13で算出される基準値は、複数の温度センサの検出値の中央値に限らず、平均値を採用してもよい。この場合、複数の検出値のうち、最大値と最小値とを除いた他の検出値を用いて平均値を算出することがより好ましい。 [Other embodiments]
In the above embodiment, the reference value calculated in step S3 of FIG. 7 and step S13 of FIG. 8 is not limited to the median value of the detection values of the plurality of temperature sensors, and may be an average value. In this case, it is more preferable to calculate the average value using other detection values other than the maximum value and the minimum value among the plurality of detection values.
図7及び図8に示すフローチャートにおいて、基準値を算出するための温度センサは、診断対象にはならない温度センサの検出値を用いてもよい。空気調和機11には、外気の温度を検出する温度センサ58が設けられているので、この温度センサ58の検出値を基準値として用いることもできる。ただし、この場合、温度センサ58自体に「検知ずれ」が生じていると、他の温度センサ53~57,59の検知ずれを検出することができなくため、複数の温度センサの検出値の中央値又は平均値を用いて基準値を設定することがより好ましい。
In the flowcharts shown in FIGS. 7 and 8, the temperature sensor for calculating the reference value may use the detected value of a temperature sensor that is not subject to diagnosis. Since the air conditioner 11 is provided with a temperature sensor 58 that detects the temperature of the outside air, the detected value of this temperature sensor 58 can also be used as the reference value. However, in this case, if a "detection deviation" occurs in the temperature sensor 58 itself, the detection deviations of the other temperature sensors 53 to 57 and 59 cannot be detected. More preferably, a value or average value is used to set the reference value.
室外制御部70における処理部71は、温度センサ53~59及び圧力センサ51,52に「検知ずれ」があるとの診断を行った場合、その温度センサの検出値又は圧力センサの検出値から求められる演算値(圧力相当飽和温度)と、基準値との差分に応じた補正値を求め、この補正値を用いて空気調和機11の運転を制御してもよい。
When the processing unit 71 in the outdoor control unit 70 diagnoses that there is a “detection deviation” in the temperature sensors 53 to 59 and the pressure sensors 51 and 52, the detection value of the temperature sensor or the detection value of the pressure sensor A correction value corresponding to the difference between the calculated value (pressure equivalent saturation temperature) and the reference value may be obtained, and the operation of the air conditioner 11 may be controlled using this correction value.
室外制御部70における処理部71は、異常診断の結果を集中管理装置50に送信し、この集中管理装置50が、異常情報、リトライ情報、及び予兆情報を管理してもよい。また、室外制御部70における処理部71は、異常診断の結果を管理サーバー62に送信し、管理サーバー62において異常診断の結果を管理してもよい。空気調和機11の運転データではなく異常診断の結果のみを送信することで、通信量の増大を抑制することができる。管理サーバー62において異常診断の結果を管理する場合、室外制御部70で異常情報、リトライ情報、及び予兆情報を参照できなくなる不都合を解消するため、管理サーバー62は、異常情報、リトライ情報、及び予兆情報を広域通信ネットワーク63を介してサービス端末100や集中管理装置50等に送信する送信部を備えることがより好ましい。
The processing unit 71 in the outdoor control unit 70 may transmit the results of the abnormality diagnosis to the central control device 50, and the central control device 50 may manage the abnormality information, retry information, and predictor information. In addition, the processing unit 71 in the outdoor control unit 70 may transmit the result of the abnormality diagnosis to the management server 62, and the management server 62 may manage the result of the abnormality diagnosis. By transmitting only the result of abnormality diagnosis instead of the operation data of the air conditioner 11, an increase in communication traffic can be suppressed. When the management server 62 manages the results of abnormality diagnosis, the management server 62 manages the abnormality information, the retry information, and the predictive information in order to eliminate the inconvenience that the outdoor control unit 70 cannot refer to the abnormal information, the retry information, and the predictive information. It is more preferable to have a transmission unit that transmits information to the service terminal 100, the central control device 50, etc. via the wide area communication network 63. FIG.
上記実施形態では、空気調和機11に異常診断システム(室外制御部70)が設けられていたが、集中管理装置50に異常診断システムが設けられていてもよい。この場合、空気調和機11の運転データは、空気調和機11から集中管理装置50に送信され、集中管理装置50の制御部50aにおいて異常の診断が行われる。ただし、空気調和機11から集中管理装置50へは、所定時間毎にしか運転データが送信されず、異常の診断に用いることができる運転データの量に制限が生じるため、より正確な異常診断を行ううえでは、空気調和機11に異常診断システムが設けられることがより好ましい。
In the above embodiment, the air conditioner 11 is provided with an abnormality diagnosis system (outdoor control unit 70), but the central control device 50 may be provided with an abnormality diagnosis system. In this case, the operation data of the air conditioner 11 is transmitted from the air conditioner 11 to the central control device 50, and the control unit 50a of the central control device 50 diagnoses the abnormality. However, the operation data is transmitted from the air conditioner 11 to the central control device 50 only at predetermined time intervals, which limits the amount of operation data that can be used for abnormality diagnosis. In doing so, it is more preferable that the air conditioner 11 is provided with an abnormality diagnosis system.
同様に、管理サーバー62に異常診断システムが設けられていてもよい。この場合、空気調和機11の運転データは、集中管理装置50又は空気調和機11から管理サーバー62に送信され、この管理サーバー62の制御部62aにおいて異常の診断が行われる。この場合、大量の空気調和機11の運転データを広域通信ネットワーク63を介して管理サーバー62に送信する必要があるため、通信コストが多大となる。したがって、空気調和機11又は集中管理装置50に異常診断システムが設けられることがより好ましい。
Similarly, the management server 62 may be provided with an abnormality diagnosis system. In this case, the operating data of the air conditioner 11 is transmitted from the centralized control device 50 or the air conditioner 11 to the management server 62, and the controller 62a of the management server 62 diagnoses the abnormality. In this case, it is necessary to transmit a large amount of operation data of the air conditioner 11 to the management server 62 via the wide area communication network 63, resulting in a large communication cost. Therefore, it is more preferable that the air conditioner 11 or the central control device 50 is provided with an abnormality diagnosis system.
なお、管理サーバー62において異常診断の結果を管理する場合、室外制御部70や集中管理装置50で異常情報、リトライ情報、及び予兆情報を参照できなくなる不都合を解消するため、管理サーバー62は、異常情報、リトライ情報、及び予兆情報を広域通信ネットワーク63を介してサービス端末100や集中管理装置50等に送信する送信部を備えることがより好ましい。
When the management server 62 manages the results of abnormality diagnosis, the management server 62 is configured to It is more preferable to include a transmission unit that transmits information, retry information, and predictive information to the service terminal 100, the central control device 50, etc. via the wide area communication network 63. FIG.
上記実施形態では、異常診断システムを構成する処理部71、記憶部72、及び出力部74が、いずれも1つの装置(空気調和機11の室外制御部70、集中管理装置50の制御部50a、又は管理サーバー62の制御部62a)に備わっていたが、これらは別々の装置、例えば、互いに異なる制御部(コンピュータ)に備わっていてもよく、これらの異なる制御部が、互いに連携することによって異常診断システムが構成されていてもよい。
In the above embodiment, the processing unit 71, the storage unit 72, and the output unit 74 constituting the abnormality diagnosis system are all one device (the outdoor control unit 70 of the air conditioner 11, the control unit 50a of the central control device 50, Or, although it was provided in the control unit 62 a) of the management server 62, these may be provided in separate devices, for example, different control units (computers), and these different control units cooperate with each other to detect abnormalities. A diagnostic system may be configured.
上記実施形態においては、複数の温度センサ53~59、及び、複数の圧力センサ51,52が「検知ずれ」の診断対象となっていたが、このうち少なくとも1つのセンサが検知ずれの診断対象となっていればよい。
In the above embodiment, the plurality of temperature sensors 53 to 59 and the plurality of pressure sensors 51 and 52 are diagnostic targets for "detection deviation", but at least one of these sensors is diagnostic target for detection deviation. It is good if it is.
[実施形態の作用効果]
(1)上記実施形態では、室外制御部(診断システム)70が、空気調和機11の停止中、空気調和機11に設けられたセンサ51~59の検出値を取得し、当該検出値又は当該検出値から求められる演算値(例えば、圧力相当飽和温度)に基づいて、センサ51~59の検出状態を診断する処理部71を備えている。空気調和機11が停止している間、空気調和機11に設けられたセンサ51~59の検出値は、周囲の環境に応じてある値、例えば、外気温度や外気温度に対応する値に収束していくと考えられる。本開示では、空気調和機11の停止中に診断対象となるセンサ51~59の検出値を取得し、その検出値又は当該検出値から求められる演算値と、収束していくと考えられる値(基準値)とを比較することによって、当該センサ51~59が正常な状態からどの程度のずれを持っているのかを把握することができ、そのずれの大きさからセンサ51~59の検出状態を診断することができる。 [Action and effect of the embodiment]
(1) In the above embodiment, the outdoor control unit (diagnostic system) 70 acquires the detection values of thesensors 51 to 59 provided in the air conditioner 11 while the air conditioner 11 is stopped, A processing unit 71 is provided for diagnosing the detection state of the sensors 51 to 59 based on a calculated value (for example, pressure-equivalent saturation temperature) obtained from the detected value. While the air conditioner 11 is stopped, the detected values of the sensors 51 to 59 provided in the air conditioner 11 converge to a certain value according to the surrounding environment, for example, the outside air temperature or a value corresponding to the outside air temperature. It is thought that it will continue. In the present disclosure, the detection values of the sensors 51 to 59 to be diagnosed while the air conditioner 11 is stopped are acquired, and the detection values or the calculated values obtained from the detection values and the values that are considered to converge ( By comparing with the reference value), it is possible to grasp how much deviation the sensors 51 to 59 have from the normal state, and the detection state of the sensors 51 to 59 can be determined from the magnitude of the deviation. can be diagnosed.
(1)上記実施形態では、室外制御部(診断システム)70が、空気調和機11の停止中、空気調和機11に設けられたセンサ51~59の検出値を取得し、当該検出値又は当該検出値から求められる演算値(例えば、圧力相当飽和温度)に基づいて、センサ51~59の検出状態を診断する処理部71を備えている。空気調和機11が停止している間、空気調和機11に設けられたセンサ51~59の検出値は、周囲の環境に応じてある値、例えば、外気温度や外気温度に対応する値に収束していくと考えられる。本開示では、空気調和機11の停止中に診断対象となるセンサ51~59の検出値を取得し、その検出値又は当該検出値から求められる演算値と、収束していくと考えられる値(基準値)とを比較することによって、当該センサ51~59が正常な状態からどの程度のずれを持っているのかを把握することができ、そのずれの大きさからセンサ51~59の検出状態を診断することができる。 [Action and effect of the embodiment]
(1) In the above embodiment, the outdoor control unit (diagnostic system) 70 acquires the detection values of the
(2)上記実施形態では、センサ51~59が温度センサ53~59である。処理部71は、検出値と所定の基準値との比較に基づいて検出状態を診断する。基準値は、空気調和機11に設けられた複数の温度センサ53、55~58の検出値から求められる。このように、空気調和機11に設けられた温度センサ53、55~58の検出値から基準値を求めることによって、空気調和機11の設置場所の周囲の環境に応じた適切な基準値を設定することができる。
(2) In the above embodiment, the sensors 51-59 are the temperature sensors 53-59. The processing unit 71 diagnoses the detection state based on the comparison between the detection value and a predetermined reference value. The reference value is obtained from the detection values of a plurality of temperature sensors 53, 55-58 provided in the air conditioner 11. FIG. By obtaining the reference value from the detection values of the temperature sensors 53, 55 to 58 provided in the air conditioner 11 in this way, an appropriate reference value corresponding to the surrounding environment of the installation location of the air conditioner 11 is set. can do.
(3)上記実施形態では、基準値が、空気調和機11に設けられた複数の温度センサ53、55~58の検出値の中央値である。このように、複数の温度センサ53、55~58の検出値の中央値を基準値とすることによって、検出値に異常な値が含まれていた場合に、その値が基準値に悪影響を与えるのを抑制することができる。
(3) In the above embodiment, the reference value is the median value of the detection values of the plurality of temperature sensors 53, 55-58 provided in the air conditioner 11. By using the median value of the detection values of the plurality of temperature sensors 53, 55 to 58 as the reference value in this way, if the detection values include an abnormal value, that value will adversely affect the reference value. can be suppressed.
(4)上記他の実施形態では、基準値は、空気調和機11に設けられた複数の温度センサ53、55~58の検出値の平均値である。この場合、平均値は、複数の温度センサ53、55~58の検出値のうちの最大値と最小値とを省いて求められる。これによって、複数の温度センサ53、55~58の検出値に異常に大きな値や小さな値が含まれていた場合に、その値が基準値に悪影響を与えるのを抑制することができる。
(4) In the other embodiment described above, the reference value is the average value of the detection values of the plurality of temperature sensors 53 and 55 to 58 provided in the air conditioner 11 . In this case, the average value is obtained by omitting the maximum and minimum values among the detection values of the plurality of temperature sensors 53, 55-58. As a result, when the detection values of the plurality of temperature sensors 53, 55 to 58 include abnormally large or small values, it is possible to prevent the values from adversely affecting the reference value.
(5)上記実施形態では、診断対象となるセンサ53~58の検出値を用いて基準値が求められる。また、上記の他の実施形態では、基準値が、空気調和機11の周囲の気温を検出する外気温度センサ(周囲温度センサ)58の検出値であり、診断対象となるセンサが、周囲温度センサ58以外の温度センサ53~57,59である。周囲温度センサ58の検出値を基準値として用いることで、中央値や平均値等の演算が不要となり、処理部71の処理を軽減することができる。
(5) In the above embodiment, the reference value is obtained using the detected values of the sensors 53 to 58 to be diagnosed. Further, in the other embodiment described above, the reference value is the detection value of the outside air temperature sensor (ambient temperature sensor) 58 that detects the air temperature around the air conditioner 11, and the sensor to be diagnosed is the ambient temperature sensor. temperature sensors 53 to 57 and 59 other than 58; By using the detected value of the ambient temperature sensor 58 as the reference value, the calculation of the median value, the average value, etc. becomes unnecessary, and the processing of the processing unit 71 can be reduced.
(6)上記実施形態では、診断対象となるセンサは、冷媒の圧力を検出する圧力センサ51,52である。空気調和機11の停止中、空気調和機11に設けられた圧力センサ51,52の検出値は、周囲の環境に応じた値に収束していく。したがって、圧力センサ51,52の検出値又は検出定値から求められる演算値を、周囲の環境に応じた基準値と比較することによって、当該圧力センサ51,52が正常な状態からどの程度の検知ずれを持っているのかを把握することができる。
(6) In the above embodiment, the sensors to be diagnosed are the pressure sensors 51 and 52 that detect the pressure of the refrigerant. While the air conditioner 11 is stopped, the detected values of the pressure sensors 51 and 52 provided in the air conditioner 11 converge to values according to the surrounding environment. Therefore, by comparing the detected value of the pressure sensors 51 and 52 or the calculated value obtained from the detected constant value with the reference value according to the surrounding environment, it is possible to determine the degree of detection deviation from the normal state of the pressure sensors 51 and 52. You can find out if you have
(7)上記実施形態では、室外制御部(診断システム)70の処理部71が、基準値と比較する演算値として、圧力センサ51,52の検出値から圧力相当飽和温度を求める。そのため、温度である基準値との比較で、圧力センサ51,52の検知ずれを診断することができる。
(7) In the above embodiment, the processing unit 71 of the outdoor control unit (diagnostic system) 70 obtains the pressure-equivalent saturation temperature from the detection values of the pressure sensors 51 and 52 as the calculated value to be compared with the reference value. Therefore, detection deviation of the pressure sensors 51 and 52 can be diagnosed by comparison with a reference value which is temperature.
(8)上記他の実施形態では、処理部71が、センサ51~59の検出値又は検出値から求められる演算値と、基準値との差分が所定の閾値を超えた場合に、その差分に応じた補正値を求め、その補正値によって空気調和機11の運転制御を行う。これにより、センサの検知ずれがある場合でも、応急処置的に空気調和機11の運転を継続することができる。
(8) In the other embodiment, when the difference between the detection values of the sensors 51 to 59 or the calculated value obtained from the detection values and the reference value exceeds a predetermined threshold, the difference A corresponding correction value is obtained, and the operation of the air conditioner 11 is controlled based on the correction value. As a result, even if there is a sensor detection error, the operation of the air conditioner 11 can be continued as an emergency measure.
なお、本開示は、以上の例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
It should be noted that the present disclosure is not limited to the above examples, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
11 :空気調和機
50 :集中管理装置(第1管理装置)
50a :制御部(診断システム)
51 :圧力センサ
52 :圧力センサ
53 :温度センサ
54 :温度センサ
55 :温度センサ
56 :温度センサ
57 :温度センサ
58 :温度センサ(周囲温度センサ)
59 :温度センサ
62 :管理サーバー
62a :制御部(診断システム)
70 :室外制御部(診断システム)
71 :処理部
72 :記憶部
73 :表示部
74 :出力部 11: Air conditioner 50: Central control device (first control device)
50a: Control unit (diagnostic system)
51: pressure sensor 52: pressure sensor 53: temperature sensor 54: temperature sensor 55: temperature sensor 56: temperature sensor 57: temperature sensor 58: temperature sensor (ambient temperature sensor)
59: temperature sensor 62:management server 62a: control unit (diagnostic system)
70: Outdoor control unit (diagnostic system)
71: processing unit 72: storage unit 73: display unit 74: output unit
50 :集中管理装置(第1管理装置)
50a :制御部(診断システム)
51 :圧力センサ
52 :圧力センサ
53 :温度センサ
54 :温度センサ
55 :温度センサ
56 :温度センサ
57 :温度センサ
58 :温度センサ(周囲温度センサ)
59 :温度センサ
62 :管理サーバー
62a :制御部(診断システム)
70 :室外制御部(診断システム)
71 :処理部
72 :記憶部
73 :表示部
74 :出力部 11: Air conditioner 50: Central control device (first control device)
50a: Control unit (diagnostic system)
51: pressure sensor 52: pressure sensor 53: temperature sensor 54: temperature sensor 55: temperature sensor 56: temperature sensor 57: temperature sensor 58: temperature sensor (ambient temperature sensor)
59: temperature sensor 62:
70: Outdoor control unit (diagnostic system)
71: processing unit 72: storage unit 73: display unit 74: output unit
Claims (15)
- 空気調和機(11)の停止中、前記空気調和機(11)に設けられたセンサ(51~59)の検出値を取得し、当該検出値又は当該検出値から求められる演算値に基づいて、前記センサ(51~59)の検出状態を診断する処理部(71)を備えている、診断システム。 While the air conditioner (11) is stopped, the detection values of the sensors (51 to 59) provided in the air conditioner (11) are acquired, and based on the detection values or the calculated values obtained from the detection values, A diagnostic system comprising a processing unit (71) for diagnosing detection states of the sensors (51-59).
- 前記センサ(53~59)は、温度センサである、請求項1に記載の診断システム。 The diagnostic system according to claim 1, wherein said sensors (53-59) are temperature sensors.
- 前記処理部(71)は、前記検出値と所定の基準値との比較に基づいて前記検出状態を診断し、
前記基準値は、前記空気調和機(11)に設けられた複数の温度センサ(53,55~58)の検出値から求められる、請求項2に記載の診断システム。 The processing unit (71) diagnoses the detection state based on a comparison between the detection value and a predetermined reference value,
The diagnostic system according to claim 2, wherein said reference value is obtained from detection values of a plurality of temperature sensors (53, 55-58) provided in said air conditioner (11). - 前記基準値は、前記空気調和機(11)に設けられた複数の温度センサ(53,55~58)の検出値の中央値である、請求項3に記載の診断システム。 The diagnostic system according to claim 3, wherein said reference value is a median value of detection values of a plurality of temperature sensors (53, 55-58) provided in said air conditioner (11).
- 前記基準値は、前記空気調和機(11)に設けられた複数の温度センサ(53,55~58)の検出値の平均値である、請求項3に記載の診断システム。 The diagnostic system according to claim 3, wherein said reference value is an average value of detection values of a plurality of temperature sensors (53, 55-58) provided in said air conditioner (11).
- 前記平均値は、前記複数の温度センサ(53,55~58)の検出値のうちの最大値と最小値とを省いて求められる、請求項5に記載の診断システム。 The diagnostic system according to claim 5, wherein the average value is obtained by omitting the maximum and minimum values among the detection values of the plurality of temperature sensors (53, 55-58).
- 診断対象となる前記センサが、前記複数の温度センサ(53,55~58)のいずれかである、請求項3~6のいずれか1項に記載の診断システム。 The diagnostic system according to any one of claims 3 to 6, wherein the sensor to be diagnosed is any one of the plurality of temperature sensors (53, 55 to 58).
- 前記処理部(71)は、前記検出値と所定の基準値との比較に基づいて前記検出状態を診断し、
前記基準値が、空気調和機(11)の周囲の気温を検出する周囲温度センサ(58)の検出値であり、
診断対象となる前記センサが、前記周囲温度センサ(58)以外の温度センサである、請求項2に記載の診断システム。 The processing unit (71) diagnoses the detection state based on a comparison between the detection value and a predetermined reference value,
the reference value is a value detected by an ambient temperature sensor (58) that detects the ambient temperature of the air conditioner (11);
The diagnostic system of claim 2, wherein the sensor to be diagnosed is a temperature sensor other than the ambient temperature sensor (58). - 前記センサ(51,52)は、冷媒の圧力を検出する圧力センサである、請求項1に記載の診断システム。 The diagnostic system according to claim 1, wherein the sensors (51, 52) are pressure sensors that detect the pressure of refrigerant.
- 前記処理部(71)は、前記センサ(51,52)の検出値から圧力相当飽和温度を前記演算値として求める、請求項9に記載の診断システム。 The diagnostic system according to claim 9, wherein the processing unit (71) obtains the pressure-equivalent saturation temperature as the calculated value from the values detected by the sensors (51, 52).
- 前記処理部(71)は、前記演算値と所定の基準値との比較に基づいて前記検出状態を診断し、
前記基準値は、前記空気調和機(11)に設けられた複数の温度センサ(53,55~58)の検出値から求められる、請求項10に記載の診断システム。 The processing unit (71) diagnoses the detection state based on a comparison between the calculated value and a predetermined reference value,
The diagnostic system according to claim 10, wherein said reference value is obtained from detection values of a plurality of temperature sensors (53, 55-58) provided in said air conditioner (11). - 前記処理部(71)は、前記センサ(51~59)の検出値又は前記演算値と前記基準値との差分が閾値を超えた場合に、その差分に応じた補正値を求め、前記空気調和機(11)に補正値を用いた運転制御を指示する、請求項3~8及び11のいずれか1項に記載の診断システム。 The processing unit (71) obtains a correction value corresponding to the difference when the difference between the detected value or the calculated value of the sensor (51 to 59) and the reference value exceeds a threshold, The diagnostic system according to any one of claims 3 to 8 and 11, which instructs the machine (11) to control operation using the correction value.
- 請求項1~12のいずれか1項に記載の診断システムを備える、空気調和機。 An air conditioner comprising the diagnostic system according to any one of claims 1 to 12.
- 空気調和機(11)の停止中、前記空気調和機(11)に設けられたセンサ(51~59)の検出値を取得する工程と、
当該検出値又は当該検出値から求められる演算値に基づいて、前記センサ(51~59)の検出状態を診断する工程と、を含む、診断方法。 a step of acquiring detection values of sensors (51 to 59) provided in the air conditioner (11) while the air conditioner (11) is stopped;
and diagnosing the detection state of the sensors (51 to 59) based on the detected values or calculated values obtained from the detected values. - 空気調和機(11)の停止中、前記空気調和機(11)に設けられたセンサ(51~59)の検出値を取得する手順と、
前記検出値又は当該検出値から求められる演算値に基づいて、前記センサ(51~59)の検出状態を診断する手順と、をコンピュータに実行させる、診断プログラム。 A procedure for acquiring detection values of sensors (51 to 59) provided in the air conditioner (11) while the air conditioner (11) is stopped;
A diagnostic program for causing a computer to execute a procedure for diagnosing the detection state of the sensors (51 to 59) based on the detected values or calculated values obtained from the detected values.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-146023 | 2021-09-08 | ||
JP2021146023A JP7348538B2 (en) | 2021-09-08 | 2021-09-08 | Diagnostic system, diagnostic method, diagnostic program, and air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037683A1 true WO2023037683A1 (en) | 2023-03-16 |
Family
ID=85506310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023815 WO2023037683A1 (en) | 2021-09-08 | 2022-06-14 | Diagnostic system, diagnostic method, diagnostic program, and air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7348538B2 (en) |
WO (1) | WO2023037683A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01137175A (en) * | 1987-11-24 | 1989-05-30 | Mitsubishi Heavy Ind Ltd | Method of diagnosing trouble of pressure sensor in refrigerator |
JP2001227792A (en) * | 2000-02-16 | 2001-08-24 | Daikin Ind Ltd | Method of estimating air-conditioning load, and its device |
JP2008202911A (en) * | 2007-02-22 | 2008-09-04 | Mitsubishi Heavy Ind Ltd | Refrigerating apparatus |
JP2012137276A (en) * | 2010-12-06 | 2012-07-19 | Panasonic Corp | Air conditioning apparatus |
JP2020133966A (en) * | 2019-02-15 | 2020-08-31 | シャープ株式会社 | Information processing device, information processing device control method, control program and recording medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5405161B2 (en) | 2009-03-23 | 2014-02-05 | 三洋電機株式会社 | Air conditioner and energy equipment |
JP5287653B2 (en) * | 2009-10-20 | 2013-09-11 | 三菱電機株式会社 | Air conditioner |
WO2021171448A1 (en) | 2020-02-27 | 2021-09-02 | 三菱電機株式会社 | Refrigeration cycle device |
-
2021
- 2021-09-08 JP JP2021146023A patent/JP7348538B2/en active Active
-
2022
- 2022-06-14 WO PCT/JP2022/023815 patent/WO2023037683A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01137175A (en) * | 1987-11-24 | 1989-05-30 | Mitsubishi Heavy Ind Ltd | Method of diagnosing trouble of pressure sensor in refrigerator |
JP2001227792A (en) * | 2000-02-16 | 2001-08-24 | Daikin Ind Ltd | Method of estimating air-conditioning load, and its device |
JP2008202911A (en) * | 2007-02-22 | 2008-09-04 | Mitsubishi Heavy Ind Ltd | Refrigerating apparatus |
JP2012137276A (en) * | 2010-12-06 | 2012-07-19 | Panasonic Corp | Air conditioning apparatus |
JP2020133966A (en) * | 2019-02-15 | 2020-08-31 | シャープ株式会社 | Information processing device, information processing device control method, control program and recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP2023039065A (en) | 2023-03-20 |
JP7348538B2 (en) | 2023-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10712035B2 (en) | Air conditioner with refrigerant leakage control | |
JP6120979B2 (en) | Air conditioner | |
US11346570B2 (en) | Refrigerant leakage determination system and refrigeration cycle apparatus | |
US11703241B2 (en) | Environmental control unit including maintenance prediction | |
JP6433598B2 (en) | Air conditioning system | |
JP6641376B2 (en) | Abnormality detection system, refrigeration cycle device, and abnormality detection method | |
JP4372514B2 (en) | Air conditioner for vehicles | |
JP2015212594A (en) | Degradation diagnostic method of compressor and refrigeration cycle device having the degradation diagnostic method | |
JP6141217B2 (en) | Compressor deterioration diagnosis device and compressor deterioration diagnosis method | |
WO2008069265A1 (en) | Air-conditioner | |
WO2023037683A1 (en) | Diagnostic system, diagnostic method, diagnostic program, and air conditioner | |
WO2023037701A1 (en) | Abnormality diagnosis system, air conditioner, and air-conditioning system | |
JP2008039388A (en) | Multi-type air conditioner | |
JP2021055956A (en) | Refrigeration cycle device and determination system | |
JP4105413B2 (en) | Multi-type air conditioner | |
JP2017227412A (en) | Air conditioner | |
WO2023037678A1 (en) | Air conditioning system | |
JP6636193B2 (en) | Abnormality detection system, refrigeration cycle device, and abnormality detection method | |
JP6678785B2 (en) | Abnormality detection system, refrigeration cycle device, and abnormality detection method | |
JP2002188874A (en) | Refrigerator | |
JPH0571832A (en) | Air-conditioner | |
JP4290025B2 (en) | Air conditioning refrigeration apparatus and control method of air conditioning refrigeration apparatus | |
JP6636192B2 (en) | Abnormality detection system, refrigeration cycle device, and abnormality detection method | |
JP2023148485A (en) | Refrigeration cycle equipment and notification method for refrigerant leak | |
JP2023148361A (en) | Refrigeration cycle device and refrigerant leakage determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867013 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/06/2024) |