WO2023036217A1 - 丙烯酰胺类化合物及其应用 - Google Patents

丙烯酰胺类化合物及其应用 Download PDF

Info

Publication number
WO2023036217A1
WO2023036217A1 PCT/CN2022/117709 CN2022117709W WO2023036217A1 WO 2023036217 A1 WO2023036217 A1 WO 2023036217A1 CN 2022117709 W CN2022117709 W CN 2022117709W WO 2023036217 A1 WO2023036217 A1 WO 2023036217A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
synthesis
pharmaceutically acceptable
acceptable salt
add
Prior art date
Application number
PCT/CN2022/117709
Other languages
English (en)
French (fr)
Inventor
沈春莉
金京海
朱玉川
吴成德
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2023036217A1 publication Critical patent/WO2023036217A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/20Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms

Definitions

  • the present invention relates to a class of acrylamide compounds and applications thereof, in particular to compounds represented by formula (I) and pharmaceutically acceptable salts thereof.
  • the transport of specific proteins and RNAs into and out of the nucleus requires specific transporters, and transporters can be divided into nuclear import transporters and nuclear export transporters.
  • Specific proteins capable of entering and exiting the nucleus carry a nuclear localization signal (NLS) or a nuclear export signal (NES) respectively, enabling them to bind to specific transporters.
  • NLS nuclear localization signal
  • NES nuclear export signal
  • the nuclear export of protein depends on nuclear export protein (Exportin 1, XPO1), also known as chromosome region maintenance protein 1 (Chromosome region maintenance 1, CRM1).
  • the XPO1 protein is a component of the Golgi apparatus and one of the nuclear transport receptors.
  • XPO1 and RanGTP can bind to the cargo protein with a hydrophobic nuclear export signal in the nucleus to form a stable It exits the nuclear transport complex and enters the cytoplasm through the central channel of the nuclear pore complex through the action of XPO1 and nucleoporin. Then under the action of RanGAP, RanGTP combined with XPO1 is hydrolyzed to become RanGDP, and the nuclear export complex depolymerizes and releases the cargo protein.
  • XPO1 is responsible for the nuclear export of more than 240 proteins.
  • tumor suppressor gene proteins such as P53, P73 and FOXO1, etc.
  • growth regulatory proteins such as I ⁇ B, Rb1, P21, P27, BRCA1, and APC, etc.
  • anti-apoptotic proteins such as NPM, survivin, and AP-1, etc.
  • the overexpression of XPO1 will cause the above proteins to be excessively exported from the nucleus and transported into the cell, thereby reducing the effective concentration in the nucleus and causing dysfunction, inhibiting the apoptosis process of tumor cells, and promoting the occurrence and development of tumors.
  • XPO1 protein is highly expressed in a variety of tumors, such as prostate cancer, colorectal cancer, ovarian cancer, pancreatic cancer, liver cancer, glioblastoma, lung cancer, multiple myeloma, lymphoma, leukemia and so on. And the high expression of XPO1 is often associated with poor prognosis of tumors. Studies have also shown that XPO1 protein can inhibit the occurrence and development of KRAS mutant tumors by inhibiting the nuclear export of I ⁇ B, inhibiting the NF- ⁇ B pathway, and different subtypes of KRAS mutant cell lines are sensitive to XPO1 inhibitors.
  • Selinexor the first generation XPO1 inhibitor
  • Eltanexor KPT-8602
  • KPT-8602 the second generation XPO1 inhibitor developed by Karyopharm Therapeutic.
  • Selinexor has stronger antitumor activity and lower blood-brain barrier penetration.
  • Eltanexor with its lower CNS penetration, allows for better dosing frequency while attenuating central nausea.
  • the XPO1 inhibitor with a new mechanism has brought a new treatment plan for the treatment of tumors, and has brought new drug options for tumor patients whose last-line medication is very limited.
  • the currently marketed XPO1 inhibitor Eltanexor still has disadvantages such as poor metabolic properties and poor safety.
  • the present invention is committed to developing a new class of XPO1 inhibitors with high activity, better metabolic properties, low brain entry and safer for the treatment of various solid tumors.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • X and Y are independently selected from N and CR 2 ;
  • R 1 are independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , C 1-3 alkyl and -(CH 2 ) n -C 1-3 alkoxy, the C 1 -3 alkyl and -(CH 2 ) n -C 1-3 alkoxy are optionally substituted by 1, 2 or 3 R a ;
  • R 2 is selected from H and C 1-3 alkyl, said C 1-3 alkyl is optionally substituted by 1, 2 or 3 R b ;
  • n 0 or 1
  • Ring B is selected from 6-membered heteroaryl and 8-10-membered heteroaryl, which are optionally substituted by 1, 2 or 3 Rc ;
  • R and R are independently selected from D, F, Cl, Br, I and OH;
  • Each R c is independently selected from F, Cl, Br, I, OH, CN, oxo, C 1-3 alkyl, -(CH 2 ) n -C 1-3 alkoxy and oxetane
  • the C 1-3 alkyl group, -(CH 2 ) n -C 1-3 alkoxy group and oxetanyl group are optionally substituted by 1, 2 or 3 R;
  • Each R is independently selected from F, Br, Cl, I and C 1-3 alkoxy.
  • the present invention also provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • X and Y are independently selected from N and CR 2 ;
  • R 1 are independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , C 1-3 alkyl and -(CH 2 ) n -C 1-3 alkoxy, the C 1 -3 alkyl and C 1-3 alkoxy are optionally substituted by 1, 2 or 3 R a ;
  • R 2 is selected from H and C 1-3 alkyl, said C 1-3 alkyl is optionally substituted by 1, 2 or 3 R b ;
  • n 0 or 1
  • Ring B is selected from 6-membered heteroaryl and 8-10-membered heteroaryl, which are optionally substituted by 1, 2 or 3 Rc ;
  • R and R are independently selected from D, F, Cl, Br, I and OH;
  • Each R c is independently selected from F, Cl, Br, I, OH, CN, oxo, C 1-3 alkyl, -(CH 2 ) n -C 1-3 alkoxy and oxetane
  • the C 1-3 alkyl group, -(CH 2 ) n -C 1-3 alkoxy group and oxetanyl group are optionally substituted by 1, 2 or 3 R;
  • Each R is independently selected from F, Br, Cl, I and C 1-3 alkoxy.
  • R c are independently selected from F, Cl, Br, I, OH, CN, oxo, CH 3 , OCH 3 , CH 2 OCH 3 and The CH 3 , OCH 3 , CH 2 OCH 3 and Optionally substituted with 1, 2 or 3 R, other variables are as defined herein.
  • R c are independently selected from F, Cl, Br, I, OH, CN, oxo, CH 3 , CF 3 , OCH 3 , CH 2 OCH 3 and Other variables are as defined herein.
  • R 1 are independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , CH 3 , CH 2 CH 3 , OCH 3 and CH 2 OCH 3 , the CH 3 , CH 2 CH 3 , OCH 3 and CH 2 OCH 3 are optionally substituted with 1, 2 or 3 R a , other variables are as defined herein.
  • the above R 1 are independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , CH 3 , CD 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , CF 2 CH 3 , OCH 3 and CH 2 OCH 3 , other variables are as defined herein.
  • the above-mentioned R 2 is selected from H and CH 3 , and the CH 3 is optionally substituted by 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 2 is selected from H and CH 3 , and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from 8-10 membered heteroaryl, and the 8-10 membered heteroaryl is optionally substituted by 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from pyrimidyl, pyridyl, pyridazinyl, pyridopyrimidinonyl, quinolinyl, pyrido[2,3-b]pyrazinyl, 2,3-di Hydrogen-[1,4]dioxa[2,3-b]pyridyl, 1,5-naphthyridinyl and pyridopyrazolyl, the pyrimidyl, pyridyl, pyridazinyl, pyridopyrimidinone base, quinolinyl, pyrido[2,3-b]pyrazinyl, 2,3-dihydro-[1,4]dioxa[2,3-b]pyridyl, 1,5-naphthyridine and pyridopyrazolyl are optionally substituted with 1, 2 or 3 Rc , other variables are optionally substituted with 1, 2
  • the above ring B is selected from Other variables are as defined herein.
  • the above ring B is selected from Other variables are as defined herein.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from the group consisting of
  • R 1 and ring B are as defined in the present invention.
  • the present invention also provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • X and Y are independently selected from N and CR 2 ;
  • R 1 is independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , C 1-3 alkyl and -(CH 2 ) n -C 1-3 alkoxy, the C 1- 3 alkyl and C 1-3 alkoxy are optionally substituted by 1, 2 or 3 R ;
  • R 2 is selected from H and C 1-3 alkyl, said C 1-3 alkyl is optionally substituted by 1, 2 or 3 R b ;
  • n 0 or 1
  • Ring B is selected from 6-membered heteroaryl and 10-membered heteroaryl optionally substituted by 1, 2 or 3 Rc ;
  • R and R are independently selected from D, F, Cl, Br, I and OH;
  • Each R c is independently selected from F, Cl, Br, I, OH, CN, oxo, C 1-3 alkyl, C 1-3 alkoxy and oxetanyl, and the C 1-3 Alkyl, C 1-3 alkoxy and oxetanyl are optionally substituted by 1, 2 or 3 R;
  • Each R is independently selected from F, Br, Cl and C 1-3 alkoxy.
  • R c is independently selected from F, Cl, Br, I, OH, CN, oxo, CH 3 , OCH 3 and The CH 3 , OCH 3 and Optionally substituted with 1, 2 or 3 halogens, other variables are as defined herein.
  • R c is independently selected from F, Cl, Br, I, OH, CN, oxo, CH 3 , CF 3 , OCH 3 and Other variables are as defined herein.
  • R 1 is independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , CH 3 , CH 2 CH 3 , OCH 3 and CH 2 OCH 3 , and the CH 3 , CH 2 CH 3 , OCH 3 and CH 2 OCH 3 are optionally substituted by 1, 2 or 3 R a , other variables are as defined in the present invention.
  • R 1 is independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , CH 3 , CD 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3. CF 2 CH 3 , OCH 3 and CH 2 OCH 3 , other variables are as defined in the present invention.
  • R 2 is selected from H and CH 3 , and the CH 3 is optionally substituted by 1, 2 or 3 R b , and other variables are as defined in the present invention.
  • R 2 is selected from H and CH 3 , and other variables are as defined in the present invention.
  • the above-mentioned L is selected from single bond, NH and O, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from pyrimidyl, pyridyl, pyridazinyl, pyridopyrimidinonyl, quinolinyl, pyrido[2,3-b]pyrazinyl, 2,3-di Hydrogen-[1,4]dioxa[2,3-b]pyridyl and 1,5-naphthyridyl, the pyrimidyl, pyridyl, pyridazinyl, pyridopyrimidinonyl, quinolinyl, Pyrido[2,3-b]pyrazinyl, 2,3-dihydro-[1,4]dioxa[2,3-b]pyridinyl and 1,5-naphthyridinyl are optionally replaced by 1, 2 or 3 R c substitutions, other variables are as defined herein.
  • the above ring B is selected from Other variables are as defined herein.
  • the above ring B is selected from Other variables are as defined herein.
  • two R 1 in the compound of formula (I) or compound of formula (P) may be the same or different.
  • the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof,
  • the above compound or a pharmaceutically acceptable salt thereof is selected from:
  • the present invention also provides the application of the above compound or a pharmaceutically acceptable salt thereof in drugs related to XPO1 inhibitors.
  • pharmaceutically acceptable salt refers to a salt of a compound of the present invention, which is prepared from a compound having a specific substituent found in the present invention and a relatively non-toxic acid or base.
  • base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of base, either neat solution or in a suitable inert solvent.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the acid, either neat solution or in a suitable inert solvent.
  • Certain specific compounds of the present invention contain basic and acidic functional groups and can thus be converted into either base or acid addition salts.
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing acid groups or bases by conventional chemical methods.
  • such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of both.
  • the compounds provided herein also exist in prodrug forms.
  • Prodrugs of the compounds described herein readily undergo chemical changes under physiological conditions to convert them to the compounds of the present invention.
  • prodrugs can be converted to the compounds of the invention by chemical or biochemical methods in an in vivo environment.
  • Certain compounds of the present invention can exist in unsolvated or solvated forms, including hydrated forms.
  • the solvated forms are equivalent to unsolvated forms and are within the scope of the present invention.
  • the compounds of the invention may exist in particular geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and their racemic and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which are within the scope of the present invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomer or “optical isomer” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomers or “geometric isomers” arise from the inability to rotate freely due to the double bond or the single bond of the carbon atoms forming the ring.
  • diastereoisomer refers to stereoisomers whose molecules have two or more chiral centers and which are not mirror-image relationships.
  • keys with wedge-shaped solid lines and dotted wedge keys Indicates the absolute configuration of a stereocenter, with a straight solid-line bond and straight dashed keys Indicates the relative configuration of the stereocenter, with a wavy line Indicates wedge-shaped solid-line bond or dotted wedge key or with tilde Indicates a straight solid line key or straight dotted key
  • tautomer or “tautomeric form” means that isomers with different functional groups are in dynamic equilibrium at room temperature and are rapidly interconvertible. If tautomerism is possible (eg, in solution), then chemical equilibrium of the tautomers can be achieved.
  • proton tautomers also called prototropic tautomers
  • proton tautomers include interconversions via migration of a proton, such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence isomers (valence tautomers) involve interconversions by recombination of some bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in an isomer”, “enriched in an isomer”, “enriched in an enantiomer” or “enantiomerically enriched” refer to one of the isomers or enantiomers
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • the terms “isomer excess” or “enantiomeric excess” refer to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the other isomer or enantiomer is 10%, then the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers as well as D and L-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, wherein the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereoisomeric salt is formed with an appropriate optically active acid or base, and then a diastereomeric salt is formed by a conventional method known in the art. Diastereomeric resolution is performed and the pure enantiomers are recovered. Furthermore, the separation of enantiomers and diastereomers is usually accomplished by the use of chromatography using chiral stationary phases, optionally in combination with chemical derivatization methods (e.g. amines to amino groups formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compounds.
  • compounds may be labeled with radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • heavy hydrogen can be used to replace hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All changes in isotopic composition of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
  • oxygen it means that two hydrogen atoms are replaced.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically realizable basis.
  • any variable eg, R
  • its definition is independent at each occurrence.
  • said group may optionally be substituted with up to two R, with independent options for each occurrence of R.
  • substituents and/or variations thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituent When a substituent is vacant, it means that the substituent does not exist. For example, when X in AX is vacant, it means that the structure is actually A. When the enumerated substituent does not indicate which atom it is connected to the substituted group, this substituent can be bonded through any atom, for example, pyridyl as a substituent can be connected to any atom on the pyridine ring. The carbon atom is attached to the group being substituted.
  • linking group listed does not indicate its linking direction
  • its linking direction is arbitrary, for example,
  • the connecting group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right to form It can also be formed by connecting loop A and loop B in the opposite direction to the reading order from left to right
  • C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n - propyl and isopropyl), and the like.
  • C 1-3 alkoxy denotes those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • 6-membered heteroaryl ring and “6-membered heteroaryl” in the present invention can be used interchangeably.
  • the nitrogen and sulfur heteroatoms may be optionally oxidized (ie, NO and S(O) p , where p is 1 or 2).
  • a 6-membered heteroaryl can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • 6-membered heteroaryl group examples include, but are not limited to, pyridyl (including 2-pyridyl, 3-pyridyl and 4-pyridyl, etc.), pyrazinyl or pyrimidyl (including 2-pyrimidyl and 4-pyrimidyl) base, etc.).
  • the terms “8-10 membered heteroaryl ring” and “8-10 membered heteroaryl” in the present invention can be used interchangeably, and the term “8-10 membered heteroaryl” means that there are 8 to 10 ring atoms
  • a cyclic group with a conjugated ⁇ -electron system 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. It may be a fused bicyclic ring system in which at least one ring is aromatic.
  • the nitrogen and sulfur heteroatoms may be optionally oxidized (ie, NO and S(O) p , where p is 1 or 2).
  • the 8-10 membered heteroaryl can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • Examples of the 8-10 membered heteroaryl group include, but are not limited to, isoquinolinyl (including 1-isoquinolinyl and 5-isoquinolinyl, etc.), quinoxalinyl (including 2-quinoxalinyl and 5-quinoxalinyl, etc.) or quinolinyl (including 3-quinolinyl and 6-quinolinyl, etc.).
  • C n-n+m or C n -C n+m includes any specific instance of n to n+m carbons, for example C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range from n to n+m, for example, C 1-12 includes C 1- 3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 etc.; similarly, n to n +m means that the number of atoms on the ring is n to n+m, for example, a 3-12-membered ring includes a 3-membered ring, a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring, an 8-membere
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and the methods well known to those skilled in the art Equivalent alternatives, preferred embodiments include but are not limited to the examples of the present invention.
  • the structure of the compounds of the present invention can be confirmed by conventional methods known to those skilled in the art. If the present invention involves the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, in single crystal X-ray diffraction (SXRD), the cultured single crystal is collected with a Bruker D8 venture diffractometer to collect diffraction intensity data, the light source is CuK ⁇ radiation, and the scanning method is: After scanning and collecting relevant data, the absolute configuration can be confirmed by further analyzing the crystal structure by direct method (Shelxs97).
  • SXRD single crystal X-ray diffraction
  • the solvent used in the present invention is commercially available.
  • the present invention adopts the following abbreviations: aq stands for water; eq stands for equivalent, equivalent; methylene chloride stands for methylene chloride; PE stands for petroleum ether; DMF stands for N,N-dimethylformamide; DMSO stands for dimethylformamide Sulfone; EtOAc stands for ethyl acetate; EtOH stands for ethanol; MeOH stands for methanol; Boc stands for tert-butoxycarbonyl is an amine protecting group; HOAc stands for acetic acid; rt stands for room temperature; O/N stands for overnight; THF stands for tetrahydrofuran; Boc 2 O represents di-tert-butyl dicarbonate; TFA represents trifluoroacetic acid.
  • Xantphos stands for 4,5-bisdiphenylphosphine-9,9-dimethylxanthene; ACN stands for acetonitrile.
  • the compound of the present invention shows better inhibitory activity in the in vitro anti-proliferation activity test of 22Rv1 cells, has excellent pharmacokinetic properties, has lower B/P ratio, shows low brain entry characteristics, and has better CRM1-mediated nuclear export inhibitory capacity.
  • Tridibenzylideneacetone dipalladium (1.5 g, 1.64 mmol) was added to a solution of compound ST-13-2 (5.4 g, 19.64 mmol) and tert-butyl carbazate (3 g, 22.70 mmol) in toluene (50 mL) , Xantphos (2g, 3.46mmol), cesium carbonate (12g, 36.83mmol), nitrogen replacement three times, and stirred at 110°C for 1 hour.
  • the reaction solution was cooled to room temperature and filtered. The filtrate was concentrated.
  • Compound ST-13-3 was obtained by column chromatography purification.
  • compound ST-14-1 (1g, 4.18mmol), tert-butyl carbazate (691mg, 5.23mmol), tridibenzylideneacetone dipalladium (383mg, 418.25 ⁇ mol), Xantphos (484mg , 836.48 ⁇ mol), cesium carbonate (2.73g, 8.37mmol) was dissolved in toluene (20mL), nitrogen replacement was performed three times, and the reaction was carried out at 110°C for 1 hour. The reaction solution was cooled to room temperature and filtered, and the filtrate was concentrated. Compound ST-14-2 was obtained by column chromatography purification.
  • reaction liquid was lowered to room temperature, 100 mL of water was added thereto, filtered, the filtrate was extracted with ethyl acetate (100 mL*2), the organic phases were combined and dried with anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. Purified by column chromatography to obtain compound ST-15-2, LCMS: MS (ESI) m/z [M+H-56] + : 255.0.
  • compound 1-2 (100 mg, 333.16 ⁇ mol) was dissolved in toluene (3 mL), and after adding triethylamine (33.71 mg, 333.16 ⁇ mol) and diphenylphosphoryl azide (91.69 mg, 333.16 ⁇ mol), Slowly raise the temperature to 110°C, and reflux for 16 hours.
  • compound 1-6 (100mg, 210.90 ⁇ mol), 5-pyrimidineboronic acid (39.20mg, 316.35 ⁇ mol), [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride (23.15mg, 31.64 ⁇ mol), potassium acetate (62.10mg, 632.71 ⁇ mol) were dissolved in 1,4-dioxane (4mL) and water (0.5mL), and nitrogen was replaced 3 times, and then the reaction temperature was raised to 100°C and react for 2 hours.
  • reaction solution was extracted with 1M potassium hydroxide aqueous solution (15mL*3), the aqueous phase was collected, and then the pH of the aqueous phase was adjusted to 3 with concentrated hydrochloric acid, and the reaction solution was extracted with ethyl acetate (30mL*3), and the organic phase was collected , the organic phase was washed with saturated brine (40 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated to obtain compound 1-8.
  • the compound in Table 1 was prepared by replacing the 5-pyrimidine boronic acid in step 6 with fragment Y in the table:
  • Gained crude product is analyzed through SFC (chromatographic column: Lux Cellulose-2, 50 * 4.6mm ID, 3 ⁇ m, mobile phase: A: supercritical carbon dioxide, B: the ethanol solution of 0.1% isopropylamine, gradient: B in 0 ⁇ 0.2 minutes Maintain 5%, from 5% to 50% within 1 minute, maintain 50% for 1 minute, from 50% to 5% within 0.4 minutes, maintain 5% for 0.4 minutes.
  • Lithium hydroxide monohydrate (320 mg, 7.63 mmol) was added to a solution of compound 1-6 (1 g, 2.11 mmol) in THF (12 mL) and water (4 mL) at 0°C, and the mixture was raised to room temperature at 15°C for 1 hour.
  • the pH of the reaction solution was adjusted to about 3 with dilute hydrochloric acid (1M), extracted with dichloromethane (20mL*3), the combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain compound 12-1 .
  • reaction liquid was replaced with nitrogen three times, heated to 80°C under nitrogen protection and stirred for 3 hours.
  • Water (15 mL) was added to the reaction solution, extracted with ethyl acetate (15 mL*3), the organic phase was washed with saturated brine (15 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • the concentrate was prepared and separated by high performance liquid chromatography (chromatographic column: Phenomenex C18 80*40mm*3 ⁇ m; mobile phase: [water (NH 3 . H 2 O)-acetonitrile]; gradient (acetonitrile)%: 37%-67%) Purification afforded compound 24.
  • Lithium hydroxide monohydrate (0.15 g, 3.57 mmol) was added to a solution of compound 25-5 (1.15 g, 2.03 mmol) in tetrahydrofuran (36 mL) and water (12 mL), and reacted at room temperature (30° C.) for 0.5 hours.
  • the reaction solution was adjusted to pH ⁇ 3 with 1M hydrochloric acid, extracted with ethyl acetate 30 mL*3, the combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain compound 25-6.
  • Table 3 Test results of antiproliferative activity of compounds of the present invention on 22Rv1 cells in vitro
  • the compound of the present invention shows good inhibitory activity in the anti-proliferation activity test of 22Rv1 cells in vitro.
  • the purpose of this experiment is to study the pharmacokinetics of the test product in plasma of male C57BL/6J mice after intravenous injection and oral administration.
  • the animals were randomly divided into two groups with 2 males in each group.
  • the compound is prepared into the specified preparation, the intravenous injection preparation is a clear solution (the vehicle is 10% DMSO+10% Solutol HS15+80% water), the oral preparation can be a clear or homogeneous suspension (the vehicle is 1% pluronic F-68+ 1% PVP K30 in water).
  • Plasma drug concentration data of compounds were processed in a non-compartmental model using WinNonlin TM Version 6.3.0 (Pharsight, Mountain View, CA) pharmacokinetic software.
  • the peak concentration (C max ) and peak time (T max ) as well as the quantifiable final time were obtained directly from the plasma concentration-time diagram.
  • the following pharmacokinetic parameters were calculated using the log-linear trapezoidal method: plasma clearance (CL), volume of distribution (Vd), half-life (T 1/2 ), area under the time-plasma concentration curve (AUC) from 0 point to terminal time point 0-last ) and bioavailability (F).
  • the compound of the present invention has excellent pharmacokinetic properties.
  • the purpose of this experiment is to study the concentration and ratio (B/P ratio) of the test product in the brain and plasma of male CD-1 mice at a specific time point (Tmax) after oral administration.
  • the animals were randomly divided into two groups with 3 males in each group.
  • the compound is prepared as a specified preparation (10mpk), and the oral preparation can be a clear or homogeneous suspension, and the solvent is an aqueous solution of 1% pluronic F-68+1% PVP K30.
  • Animals were given whole blood samples from jugular vein puncture or saphenous vein 1 hour after dosing, while brain samples were collected. Add the whole blood sample into a centrifuge tube containing anticoagulant, centrifuge at 3000g at 4°C for 15min, take the supernatant plasma and freeze it quickly on dry ice, and then store it in a -70 ⁇ 10°C refrigerator until LC-MS/MS analysis. Brains were homogenized and stored in a -70 ⁇ 10°C freezer until LC-MS/MS analysis.
  • the compound of the present invention has lower B/P ratio, and shows the property of low brain entry.
  • Experimental purpose use 293T cells to test the ability of the compound of the present invention to CRM1-mediated nuclear export.
  • Experimental method Plate with Corning pipette, 100 ⁇ L (100 ⁇ l) per well, cell density 0.32*10 6 /mL. Incubate at 37°C for 2-3 hours in a CO 2 incubator. Use a pipette gun to distribute the formulated compound into the corresponding cell plate, 100 ⁇ L per well, and incubate at 37°C for 24 hours. The cell plate was taken out of the incubator, the medium was discarded, and fixed with 4% paraformaldehyde at room temperature for 20 min. Discard the fixative, wash with phosphate buffered saline (PBS) 3 times, 5min each time.
  • PBS phosphate buffered saline
  • Triton X-100 polyethylene glycol octylphenyl ether
  • phosphate buffered saline PBS
  • BSA Bovine Serum Albumin
  • Primary antibody I ⁇ B ⁇ (L35A5) Mouse mAb (Amino-terminal Antigen) was incubated: diluted 1:400, incubated overnight at 4°C. Discard the primary antibody solution, wash 3 times with phosphate buffered solution (PBS), 5min/time.
  • Table 7 The ability of the compounds of the present invention to inhibit nuclear export mediated by CRM1
  • the compound of the present invention has a better ability to inhibit nuclear export mediated by CRM1.

Abstract

一类丙烯酰胺类化合物及其应用,具体涉及式(I)所示化合物及其药学上可接受的盐。

Description

丙烯酰胺类化合物及其应用
本申请主张如下优先权:
CN202111050423.0,申请日:2021年09月08日;
CN202210509481.3,申请日:2022年05月10日。
技术领域
本发明涉及一类丙烯酰胺类化合物及其应用,具体涉及式(I)所示化合物及其药学上可接受的盐。
背景技术
特定的蛋白和RNA的进出细胞核需要特定的转运体来完成,而转运体可以分为入核转运体和出核转运体。能够进出细胞核的特定的蛋白质分别带有入核信号(Nuclear Localization Signal,NLS)或出核信号(Nuclear Export Signal,NES),使其与特定的转运体进行结合。其中,蛋白的出核转运依赖于核输出蛋白(Exportin 1,XPO1)也叫作染色体区域稳定蛋白1(Chromosome region maintenance 1,CRM1)。XPO1蛋白是高尔基体的组成部分,是核转运受体之一,作为一个泛素化的出核转运受体,XPO1和RanGTP能够与核内带有疏水性出核信号的货物蛋白结合,形成稳定的出核转运复合体,并通过XPO1与核孔蛋白的作用,穿越核孔复合体中央通道进入细胞质。然后在RanGAP的作用下,与XPO1结合的RanGTP水解成为RanGDP,出核转运复合体解聚并释放出货物蛋白。
细胞内特定蛋白的正确定位对细胞发挥正常功能尤为重要,而蛋白的核内外转运在稳定和平衡细胞的正常发育中起到了重要的作用。XPO1作为karyopherin-β家族最重要的核受体之一,负责超过240种蛋白的出核转运。人体大部分主要的实体瘤和恶性血液瘤中的细胞表现出不同蛋白的不正常的细胞定位,其中包括了大量的抑癌基因蛋白,如P53、P73和FOXO1等;生长调节蛋白,如IκB、Rb1、P21、P27、BRCA1和APC等;抗凋亡蛋白,如NPM、survivin和AP-1等。在正常生理条件,没有DNA损伤或其他致癌应激时,这些蛋白的核输出转运使核内蛋白浓度降低,避免了这些蛋白质在核内的过度激活。而在特定肿瘤中,XPO1的过表达会使以上蛋白质过度的出核转运至细胞之内,从而降低核内的有效浓度并发生功能紊乱,抑制肿瘤细胞的凋亡进程,促进肿瘤的发生发展。
研究表明XPO1蛋白在多种肿瘤中高表达,如前列腺癌、结直肠癌、卵巢癌、胰腺癌、肝癌、胶质母细胞瘤、肺癌、多发性骨髓瘤、淋巴瘤、白血病等。并且XPO1的高表达常与肿瘤的不良预后相关。也有研究表明XPO1蛋白可以通过抑制IκB的核输出,抑制NF-κB通路,抑制KRAS突变肿瘤的发生和发展,不同亚型的KRAS突变的细胞株对XPO1抑制剂敏感。
目前有且仅有一款XPO1抑制剂Selinexor(第一代XPO1抑制剂)获批上市,Eltanexor(KPT-8602)是Karyopharm Therapeutic公司研发的第二代XPO1抑制剂,在临床前研究中显示出相比Selinexor更强的抗肿瘤活性及更低的血脑屏障渗透。具有更低的中枢神经系统渗透性的Eltanexor可以实现更好的给药频次,同时减轻中枢性恶心。
全新机制的XPO1抑制剂对肿瘤的治疗带来了全新的治疗方案,并为末线用药非常局限的肿瘤患者带来了新的用药选择。然而目前上市的XPO1抑制剂Eltanexor仍存在代谢性质不佳,安全性较差等缺点。本发明致力于发展一类新的具有高活性、代谢性质更佳、低入脑和更安全的XPO1抑制剂,用于治疗多种实 体瘤。
发明内容
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2022117709-appb-000001
其中,
X和Y分别独立地选自N和CR 2
R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、C 1-3烷基和-(CH 2) n-C 1-3烷氧基,所述C 1-3烷基和-(CH 2) n-C 1-3烷氧基任选被1、2或3个R a取代;
R 2选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
n为0或1;
环B选自6元杂芳基和8-10元杂芳基,所述6元杂芳基和8-10元杂芳基任选被1、2或3个R c取代;
R a和R b分别独立地选自D、F、Cl、Br、I和OH;
各R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、C 1-3烷基、-(CH 2) n-C 1-3烷氧基和氧杂环丁基,所述C 1-3烷基、-(CH 2) n-C 1-3烷氧基和氧杂环丁基任选被1、2或3个R取代;
各R分别独立地选自F、Br、Cl、I和C 1-3烷氧基。
本发明还提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2022117709-appb-000002
其中,
X和Y分别独立地选自N和CR 2
R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、C 1-3烷基和-(CH 2) n-C 1-3烷氧基,所述C 1-3烷基和C 1- 3烷氧基任选被1、2或3个R a取代;
R 2选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
n为0或1;
环B选自6元杂芳基和8-10元杂芳基,所述6元杂芳基和8-10元杂芳基任选被1、2或3个R c取代;
R a和R b分别独立地选自D、F、Cl、Br、I和OH;
各R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、C 1-3烷基、-(CH 2) n-C 1-3烷氧基和氧杂环丁基,所述C 1-3烷基、-(CH 2) n-C 1-3烷氧基和氧杂环丁基任选被1、2或3个R取代;
各R分别独立地选自F、Br、Cl、I和C 1-3烷氧基。
本发明的一些方案中,上述R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、CH 3、OCH 3、CH 2OCH 3
Figure PCTCN2022117709-appb-000003
所述CH 3、OCH 3、CH 2OCH 3
Figure PCTCN2022117709-appb-000004
任选被1、2或3个R取代,其他变量如本发明所定义。
本发明的一些方案中,上述,R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、CH 3、CF 3、OCH 3、CH 2OCH 3
Figure PCTCN2022117709-appb-000005
其他变量如本发明所定义。
本发明的一些方案中,上述R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3、CH 2CH 3、OCH 3和CH 2OCH 3,所述CH 3、CH 2CH 3、OCH 3和CH 2OCH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3、CD 3、CH 2F、CHF 2、CF 3、CH 2CH 3、CF 2CH 3、OCH 3和CH 2OCH 3,其他变量如本发明所定义。本发明的一些方案中,上述R 2选自H和CH 3,所述CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H和CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述环B选自8-10元杂芳基,所述8-10元杂芳基任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述环B选自嘧啶基、吡啶基、哒嗪基、吡啶并嘧啶酮基、喹啉基、吡啶并[2,3-b]吡嗪基、2,3-二氢-[1,4]二氧杂[2,3-b]吡啶基、1,5-萘啶基和吡啶并吡唑基,所述嘧啶基、吡啶基、哒嗪基、吡啶并嘧啶酮基、喹啉基、吡啶并[2,3-b]吡嗪基、2,3-二氢-[1,4]二氧杂[2,3-b]吡啶基、1,5-萘啶基和吡啶并吡唑基任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2022117709-appb-000006
Figure PCTCN2022117709-appb-000007
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2022117709-appb-000008
Figure PCTCN2022117709-appb-000009
Figure PCTCN2022117709-appb-000010
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022117709-appb-000011
选自
Figure PCTCN2022117709-appb-000012
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022117709-appb-000013
选自
Figure PCTCN2022117709-appb-000014
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022117709-appb-000015
选自
Figure PCTCN2022117709-appb-000016
其他变量如本发明所定义。
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2022117709-appb-000017
其中,R 1和环B如本发明所定义。
本发明还提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2022117709-appb-000018
其中,
X和Y分别独立地选自N和CR 2
R 1独立地选自H、F、Cl、Br、I、OH、CN、NH 2、C 1-3烷基和-(CH 2) n-C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1、2或3个R a取代;
R 2选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
n为0或1;
环B选自6元杂芳基和10元杂芳基,所述6元杂芳基和10元杂芳基任选被1、2或3个R c取代;
R a和R b分别独立地选自D、F、Cl、Br、I和OH;
各R c独立地选自F、Cl、Br、I、OH、CN、氧代基、C 1-3烷基、C 1-3烷氧基和氧杂环丁基,所述C 1-3烷基、C 1-3烷氧基和氧杂环丁基任选被1、2或3个R取代;
各R独立地选自F、Br、Cl和C 1-3烷氧基。
本发明的一些方案中,上述R c独立地选自F、Cl、Br、I、OH、CN、氧代基、CH 3、OCH 3
Figure PCTCN2022117709-appb-000019
所述CH 3、OCH 3
Figure PCTCN2022117709-appb-000020
任选被1、2或3个卤素取代,其他变量如本发明所定义。
本发明的一些方案中,上述R c独立地选自F、Cl、Br、I、OH、CN、氧代基、CH 3、CF 3、OCH 3
Figure PCTCN2022117709-appb-000021
其他变量如本发明所定义。
本发明的一些方案中,上述R 1独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3、CH 2CH 3、OCH 3和CH 2OCH 3,所述CH 3、CH 2CH 3、OCH 3和CH 2OCH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3、CD 3、CH 2F、CHF 2、CF 3、CH 2CH 3、CF 2CH 3、OCH 3和CH 2OCH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H和CH 3,所述CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2选自H和CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述L选自单键、NH和O,其他变量如本发明所定义。
本发明的一些方案中,上述环B选自嘧啶基、吡啶基、哒嗪基、吡啶并嘧啶酮基、喹啉基、吡啶并[2,3-b]吡嗪基、2,3-二氢-[1,4]二氧杂[2,3-b]吡啶基和1,5-萘啶基,所述嘧啶基、吡啶基、哒嗪基、吡啶并嘧啶酮基、喹啉基、吡啶并[2,3-b]吡嗪基、2,3-二氢-[1,4]二氧杂[2,3-b]吡啶基和1,5-萘啶基任选被1、2或3个R c取代,其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2022117709-appb-000022
Figure PCTCN2022117709-appb-000023
其他变量如本发明所定义。
本发明的一些方案中,上述环B选自
Figure PCTCN2022117709-appb-000024
Figure PCTCN2022117709-appb-000025
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure PCTCN2022117709-appb-000026
选自
Figure PCTCN2022117709-appb-000027
其他变量如本发明所定义。
本发明的一些方案中,式(I)化合物或式(P)化合物中的两个R 1可以相同,也可以不同。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供了下式所示化合物或其药学上可接受的盐,
Figure PCTCN2022117709-appb-000028
Figure PCTCN2022117709-appb-000029
本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2022117709-appb-000030
本发明还提供了上述化合物或其药学上可接受的盐在XPO1抑制剂相关药物中的应用。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除了盐的形式,本发明所提供的化合物还存在前药形式。本文所描述的化合物的前药容易地在生理条件下发生化学变化从而转化成本发明的化合物。此外,前体药物可以在体内环境中通过化学或生化方法被转换到本发明的化合物。
本发明的某些化合物可以以非溶剂化形式或者溶剂化形式存在,包括水合物形式。一般而言,溶剂化形式与非溶剂化的形式相当,都包含在本发明的范围之内。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系 的立体异构体。
除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。除非另有说明,用楔形实线键
Figure PCTCN2022117709-appb-000031
和楔形虚线键
Figure PCTCN2022117709-appb-000032
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2022117709-appb-000033
和直形虚线键
Figure PCTCN2022117709-appb-000034
表示立体中心的相对构型,用波浪线
Figure PCTCN2022117709-appb-000035
表示楔形实线键
Figure PCTCN2022117709-appb-000036
或楔形虚线键
Figure PCTCN2022117709-appb-000037
或用波浪线
Figure PCTCN2022117709-appb-000038
表示直形实线键
Figure PCTCN2022117709-appb-000039
或直形虚线键
Figure PCTCN2022117709-appb-000040
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个 氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2022117709-appb-000041
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2022117709-appb-000042
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2022117709-appb-000043
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1- 3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,本发明术语“6元杂芳环”和“6元杂芳基”可以互换使用,术语“6元杂芳基”表示由6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述6元杂芳基的实例包括但不限于吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,本发明术语“8-10元杂芳环”和“8-10元杂芳基”可以互换使用,术语“8-10元杂芳基”表示由8至10个环原子组成的具有共轭π电子体系的环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其可以是稠合双环体系,其中至少有一个环为芳香性的。其中氮原子任选 地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。8-10元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述8-10元杂芳基的实例包括但不限于异喹啉基(包括1-异喹啉基和5-异喹啉基等)、喹喔啉基(包括2-喹喔啉基和5-喹喔啉基等)或喹啉基(包括3-喹啉基和6-喹啉基等)。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022117709-appb-000044
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;eq代表当量、等量;二氯甲烷代表二氯甲烷;PE代表石油醚;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;Boc代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸。Xantphos代表4,5-双二苯基膦-9,9-二甲基氧杂蒽;ACN代表乙腈。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022117709-appb-000045
软件命名,市售化合物采用供应商目录名称。
技术效果
本发明化合物在22Rv1细胞体外抗增殖活性实验中表现出较好的抑制活性,具有优异的药代动力学性质,具有较低的B/P ratio,表现出低入脑特性,还具有较好的CRM1介导的核输出抑制能力。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1:ST-1
Figure PCTCN2022117709-appb-000046
合成路线:
Figure PCTCN2022117709-appb-000047
在预先干燥的反应瓶中加入碘化钠(22.92g,152.91mmol)和乙酸(100mL)后将反应液加热至70℃,向反应液中加入化合物ST-1-1(10g,101.94mmol。加毕后,在70℃下继续反应12小时。反应完毕后,反应液降至25℃,加入甲基叔丁基醚(150mL)和水(100mL)。分液,水相使用甲基叔丁基醚(40mL*3)萃取,收集有机相。使用氢氧化钠溶液(3M)中和有机相至pH=7。用10%的硫代硫酸钠水溶液(30mL)洗涤有机相,之后用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,浓缩得到化合物ST-1。
1H NMR(400MHz,CDCl 3)δppm 1.15-1.29(m,3H),4.12(br dd,J=13.43,6.40Hz,2H),6.70-6.89(m,1H),7.35(dt,J=8.60,4.11Hz,1H)。
参考例2:ST-2
Figure PCTCN2022117709-appb-000048
合成路线:
Figure PCTCN2022117709-appb-000049
步骤1:化合物ST-2-3的合成
在干燥的反应瓶中加入化合物ST-2-1(5g,24.98mmol),EtOH(50mL),化合物ST-2-2(4.32g,24.98mmol),氮气保护,20℃反应16小时。将反应液过滤,收集固体减压干燥,得到化合物ST-2-3。 1H NMR(400MHz,CDCl 3)δppm 9.32-9.36(m,1H)8.47-7.48(m,1H)7.85-7.88(m,1H)6.93-6.96(m,1H)1.77(s,6H)。
步骤2:化合物ST-2-4的合成
在干燥的反应瓶中加入化合物ST-2-3(5g,15.28mmol),二苯醚(50mL),氮气保护,220℃反应1小时。反应液降至室温,有固体析出,过滤,滤饼用石油醚(30mL)洗涤,收集固体,减压干燥。向固体残渣中加入15mL甲基叔丁基醚搅拌1小时,过滤,收集固体,减压干燥得到化合物ST-2-4。LCMS:MS(ESI)m/z[M+H] +,M+3H] +:225.0,227.0。
步骤3:化合物ST-2的合成
在干燥的反应瓶中加入化合物ST-2-4(0.2g,888.72μmol),双联频哪醇硼酸酯(451.36mg,1.78mmol,),KOAc(348.88mg,3.55mmol),二氧六环(4mL),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(65.03 mg,88.87μmol),氮气置换后,氮气保护下80℃反应12小时,得化合物ST-2-4的二氧六环溶液,冷却至室温后直接用于下一步。
参考例3:ST-6的合成
Figure PCTCN2022117709-appb-000050
合成路线
Figure PCTCN2022117709-appb-000051
在干燥的反应瓶中加入化合物ST-6-1(0.4g,1.91mmol),双联频哪醇硼酸酯(971.81mg,3.83mmol),醋酸钾(751.16mg,7.65mmol),二氧六环(8mL),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(140.01mg,191.35μmol),氮气置换三次,加热至80℃反应12小时得化合物ST-6的二氧六环溶液,冷却至室温直接用于下一步。
参考例4:ST-9的合成
Figure PCTCN2022117709-appb-000052
合成路线
Figure PCTCN2022117709-appb-000053
在干燥的反应瓶中加入化合物ST-9-1(0.4g,1.90mmol),双联频哪醇硼酸酯(967.24mg,3.81mmol),醋酸钾(747.62mg,7.62mmol),二氧六环(8mL),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(139.35mg,190.45μmol),氮气置换三次后,加热至80℃反应12小时。反应液冷却直接用于下一步。
参考例5:ST-10的合成
Figure PCTCN2022117709-appb-000054
合成路线
Figure PCTCN2022117709-appb-000055
步骤1:化合物ST-10-1的合成
在干燥的反应瓶中加入化合物ST-10-1(2g,10.53mmol),DMF(20mL),碳酸钾(7.27g,52.63mmol),1.2-二溴乙烷(2.97g,15.79mmol,1.19mL),氮气保护,115℃反应2小时。反应液降至室温,加入50mL水,用二氯甲烷(50mL*2)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。使用柱层析纯化得到化合物ST-10-2。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:216.0,218.0。
步骤2:化合物ST-10的合成
在干燥的反应瓶中加入化合物ST-10-2(0.5g,2.31mmol),双联频哪醇硼酸酯(1.18g,4.63mmol),醋酸钾(454.28mg,4.63mmol),二氧六环(10mL),氮气保护,加入[1,1‘-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(189.01mg,231.45μmol),氮气置换三次后加热至80℃反应12小时得化合物ST-10的二氧六环溶液,冷却至室温后直接用于下一步。
参考例6:ST-11的合成
Figure PCTCN2022117709-appb-000056
合成路线:
Figure PCTCN2022117709-appb-000057
步骤1:化合物ST-11-2的合成
在干燥的反应瓶中加入化合物ST-11-1(0.5g,3.04mmol),醋酸(5mL),醋酸钠(501.74mg,6.12mmol,),液溴(3.04mmol,156.60μL),85℃反应3小时。补加液溴(3.04mmol,156.60μL),85℃继续反应3小时。将 反应液降至室温,在冰水浴的条件下向其中缓慢加入20mL 6N NaOH水溶液,搅拌5分钟,过滤,滤饼用30mL(甲醇:水=3:1)洗涤,收集固体,得到化合物ST-11-2。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:243.0,244.9。
步骤2:化合物ST-11-3的合成
在干燥的反应瓶中加入化合物ST-11-2(0.5g,2.05mmol),甲醇(15mL),甲醇钠(1.58g,8.21mmol),氮气保护,80℃反应2小时。反应液直接减压浓缩。使用柱层析纯化得到化合物ST-11-3。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:239.0,241.0。
步骤3:化合物ST-11的合成
在干燥反应瓶中加入化合物ST-11-3(0.2g,836.58μmol),双联频哪醇硼酸酯(424.88mg,1.67mmol),醋酸钾(164.20mg,1.67mmol),二氧六环(4mL),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(61.21mg,83.66μmol),80℃反应16小时。反应液冷却至室温后得到化合物ST-11的二氧六环溶液,直接用于下一步。
参考例7:ST-13的合成
Figure PCTCN2022117709-appb-000058
合成路线
Figure PCTCN2022117709-appb-000059
步骤1:化合物ST-13-2的合成
在0℃,向化合物ST-13-1(5g,19.76mmol)的二氯甲烷(100mL)的溶液中加入二乙胺基三氟化硫(6.10g,37.84mmol),在0℃搅拌1小时。向反应液中滴加水(100ml),二氯甲烷(100ml*2)萃取。有机相无水硫酸钠干燥,过滤,浓缩,得到化合物ST-13-2。 1H NMR(400MHz,CDCl 3)δppm 7.88-7.91(m,2H),7.66(s,1H),6.44-6.82(m,1H)。
步骤2:化合物ST-13-3的合成
向化合物ST-13-2(5.4g,19.64mmol)和肼基甲酸叔丁酯(3g,22.70mmol)的甲苯(50mL)溶液中加入三二亚苄基丙酮二钯(1.5g,1.64mmol),Xantphos(2g,3.46mmol),碳酸铯(12g,36.83mmol),氮气置换三次后后在110℃搅拌1小时。反应液冷却至室温,过滤。滤液浓缩。经柱层析纯化得到化合物ST-13-3。LCMS:MS(ESI)m/z[M+H-56] +:271.0。
步骤3:化合物ST-13的合成
向化合物ST-13-3(4.45g,13.64mmol)的乙酸乙酯(10mL)溶液中加入HCl/EtOAc(4M,20mL),在10℃ 搅拌1小时。将反应液减压浓缩干,得到化合物ST-13的盐酸盐粗品。
参考例8:ST-14的合成
Figure PCTCN2022117709-appb-000060
合成路线
Figure PCTCN2022117709-appb-000061
步骤1:化合物ST-14-2的合成
氮气保护条件下,将化合物ST-14-1(1g,4.18mmol),肼基甲酸叔丁酯(691mg,5.23mmol),三二亚苄基丙酮二钯(383mg,418.25μmol),Xantphos(484mg,836.48μmol),碳酸铯(2.73g,8.37mmol)溶于甲苯(20mL)中,氮气置换3次后,110℃下反应1小时。反应液冷却至室温后过滤,滤液浓缩。经柱层析纯化得到化合物ST-14-2。 1H NMR(400MHz,DMSO-d6)δppm 7.80-7.82(m,1H),7.78-7.79(m,2H),7.63-7.65(m,1H),7.18-7.21(m,1H),2.36(s,1H),1.46(s,9H)。
步骤2:化合物ST-14的合成
预先干燥的反应瓶中加入化合物ST-14-2(0.51g,1.76mmol)和二氯甲烷(5mL)后,加入HCl/二氧六环(4M,5mL),在20℃下搅拌反应16小时,将反应液浓缩得到化合物ST-14的盐酸盐粗品。LCMS:MS(ESI)m/z[M+H] +:190.9。
参考例9:ST-15的合成
Figure PCTCN2022117709-appb-000062
合成路线
Figure PCTCN2022117709-appb-000063
步骤1:化合物ST-15-2的合成
在干净的反应瓶中加入化合物ST-15-1(5g,19.27mmol),肼基甲酸叔丁酯(2.80g,21.20mmol),二氧六环(50mL),Xantphos(1.12g,1.93mmol),碳酸铯(12.56g,38.54mmol),氮气保护,加入三二亚苄基丙酮 二钯(1.76g,1.93mmol),100℃反应3小时。将反应液降至室温,向其中加入100mL水,过滤,滤液用乙酸乙酯(100mL*2)萃取,有机相合并用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-15-2,LCMS:MS(ESI)m/z[M+H-56] +:255.0。
步骤2:化合物ST-15的合成
在干燥的反应瓶中加入化合物ST-15-2(0.9g,2.90mmol),HCl/EtOAc(4M,18.00mL),15℃反应1小时。将反应液减压浓缩,用饱和碳酸氢钠水溶液调节pH=8后用乙酸乙酯(30mL*5)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-15。LCMS:MS(ESI)m/z[M+H] +:211.1。
参考例10:ST-16的合成
Figure PCTCN2022117709-appb-000064
合成路线
Figure PCTCN2022117709-appb-000065
步骤1:化合物ST-16-2的合成
在干净的反应瓶中加入化合物ST-16-1(10g,41.15mmol),肼基甲酸叔丁酯(7.07g,53.50mmol),二氧六环(100mL),Xantphos(2.38g,4.12mmol),碳酸铯(26.82g,82.31mmol),氮气保护,加入三二亚苄基丙酮二钯(3.77g,4.12mmol),100℃反应3小时。将反应液冷却至室温后过滤,滤饼用乙酸乙酯(200mL洗涤),向滤液中加入100mL水,搅拌5分钟,静置分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩干。经柱层析纯化得到化合物ST-16-2,LCMS:MS(ESI)m/z[M+H] +:295.2。
步骤2:化合物ST-16的合成
在干燥的反应瓶中加入化合物ST-16-2(2g,6.80mmol),HCl/EtOAc(4M,50.00mL),15℃反应12小时。将反应液直接减压旋干。向残渣中加入饱和碳酸氢钠水溶液调节pH=8后用乙酸乙酯(20mL*3)萃取,有机相用无水硫酸钠干燥,过滤滤液减压浓缩。经柱层析纯化得到化合物ST-16,LCMS:MS(ESI)m/z[M+H] +:195.1。
参考例11:ST-17的合成
Figure PCTCN2022117709-appb-000066
合成路线
Figure PCTCN2022117709-appb-000067
步骤1:化合物ST-17-2的合成
在干净的反应瓶中加入化合物ST-17-1(6g,19.74mmol),乙烯三氟硼酸钾(2.91g,21.72mmol),四氢呋喃(60mL),水(30mL),碳酸铯(12.87g,39.49mmol),氮气保护,加入1,1'-双二苯基膦二茂铁二氯化钯(1.44g,1.97mmol,80℃反应2小时。将反应液降至室温,向其中加入50mL水,用乙酸乙酯(50mL*2)萃取,有机相合并用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-17-2。 1H NMR(400MHz,CDCl 3)δppm 7.65(s,1H),7.51-7.91(m,2H),6.68(dd,J=17.57,10.92Hz,1H),5.85(d,J=17.57Hz,1H),5.34-5.47(m,1H)。
步骤2:化合物ST-17-3的合成
在干净的反应瓶中加入化合物ST-17-2(3.55g,14.14mmol),四氢呋喃(36mL),水(12mL),醋酸钠(4.64g,56.56mmol),对甲苯磺酰肼(7.90g,42.42mmol),氮气保护,80℃反应12小时。将反应液降至室温,向其中加入20mL水,用乙酸乙酯(20mL*2)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-17-3, 1H NMR(400MHz,CDCl 3)δppm 7.35-7.89(m,3H),2.63-2.75(m,2H),1.24-1.30(m,3H)。
步骤3:化合物ST-17-4的合成
在干净的反应瓶中加入化合物ST-17-3(4.4g,17.39mmol),肼基甲酸叔丁酯(4.60g,34.77mmol),二氧六环(44mL),Xantphos(1.01g,1.74mmol),碳酸铯(11.33g,34.77mmol),氮气保护,加入三二亚苄基丙酮二钯(1.59g,1.74mmol),氮气置换后加热至100℃反应3小时。将反应液冷却后减压浓缩干,经柱层析纯化得到化合物ST-17-4。LCMS:MS(ESI)m/z[M+H-56] +:249.0。
步骤4:化合物ST-17的合成
在反应瓶中加入化合物ST-17-4(1.5g,4.93mmol),HCl/EtOAc(4M,21.43mL),15℃反应12小时。将反应液直接减压浓缩,向残渣中加入饱和碳酸氢钠水溶液调节pH=8后,用乙酸乙酯(20mL*3)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化。得到化合物ST-17。LCMS:MS(ESI)m/z[M+H] +:205.1。
参考例12:ST-18的合成
Figure PCTCN2022117709-appb-000068
合成路线
Figure PCTCN2022117709-appb-000069
步骤1:化合物ST-18-2的合成
在干燥的反应瓶中加入化合物ST-18-1(15g,58.82mmol),DMF(150mL),碳酸铯(38.33g,117.63mmol,),氮气保护,加入碘甲烷(12.52g,88.22mmol,5.49mL),20℃反应2小时。反应液过滤,滤饼用200mL乙酸乙酯洗涤,向滤液中加入200mL水,用乙酸乙酯(100mL*3)萃取,有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-18-2。 1H NMR(400MHz,CDCl 3)δppm 7.68(s,2H),7.53(s,1H),4.48(s,2H),3.43(s,3H)。
步骤2:化合物ST-18-3的合成
在干净的反应瓶中加入化合物ST-18-2(6.9g,25.65mmol),肼基甲酸叔丁酯(4.41g,33.34mmol),二氧六环(70mL),Xantphos(1.48g,2.56mmol),碳酸铯(16.71g,51.29mmol),氮气保护,加入三二亚苄基丙酮二钯(2.35g,2.56mmol),100℃反应3小时。反应液降至室温,过滤,滤饼用200mL乙酸乙酯洗涤,向其中加入100mL水,搅拌2分钟,静置分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-18-3。LCMS:MS(ESI)m/z[M+H-56] +:265.1。
步骤3:化合物ST-18的合成
在干燥的反应瓶中加入化合物ST-18-3(6.4g,19.98mmol),HCl/EtOAc(4M,70mL),15℃反应12小时。将反应液减压浓缩。加入饱和碳酸氢钠水溶液调节pH=8,用二氯甲烷(50mL*3)萃取,有机相用无水硫酸钠干燥,过滤滤液减压浓缩。经柱层析纯化得到化合物ST-18。LCMS:MS(ESI)m/z[M+H-56] +:221.1。
参考例13:ST-19的合成
Figure PCTCN2022117709-appb-000070
合成路线
Figure PCTCN2022117709-appb-000071
步骤1:化合物ST-19-2的合成
在干净的反应瓶中加入化合物ST-19-1(10g,39.21mmol),肼基甲酸叔丁酯(6.74g,50.97mmol),二氧六环(100mL),Xantphos(2.27g,3.92mmol),碳酸铯(25.55g,78.42mmol),氮气保护,加入三二亚苄基丙酮二钯(3.59g,3.92mmol),100℃反应3小时。将反应液降至室温,过滤,滤饼用200mL乙酸乙酯洗涤,向滤液中加入100mL水,搅拌5分钟,静置分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱 层析纯化得到化合物ST-19-2。LCMS:MS(ESI)m/z[M+H-56] +:251.0。
步骤2:化合物ST-19的合成
在干燥的反应瓶中加入化合物ST-19-2(5.4g,17.63mmol),HCl/EtOAc(4M,61.77mL),15℃反应12小时。将反应液直接减压浓缩。加入饱和碳酸氢钠水溶液调节pH=8后用二氯甲烷(40mL*3)萃取,有机相用无水硫酸钠干燥,过滤滤液减压浓缩。经柱层析纯化得到化合物ST-19。LCMS:MS(ESI)m/z[M+H +:207.1。
参考例14:ST-20的合成
Figure PCTCN2022117709-appb-000072
合成路线
Figure PCTCN2022117709-appb-000073
步骤1:化合物ST-20-2的合成
在干净的反应瓶中加入化合物ST-20-1(5g,20.00mmol),肼基甲酸叔丁酯(3.44g,26.00mmol),二氧六环(50mL),Xantphos(1.16g,2.00mmol),碳酸铯(13.03g,40.00mmol),氮气保护,加入三二亚苄基丙酮二钯(1.83g,2.00mmol),100℃反应3小时。将反应液降至室温,向其中加入200mL水,用乙酸乙酯(100mL*2)萃取,有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-20-2。LCMS:MS(ESI)m/z[M+H] +:302。
步骤2:化合物ST-20的合成
在干燥的反应瓶中加入化合物ST-20-2(4.12g,13.68mmol),HCl/EtOAc(4M,50mL),15℃反应5小时。将反应液减压浓缩干。向残渣中加入饱和碳酸氢钠水溶液调节pH=8后用乙酸乙酯(40mL*3)萃取,有机相用无水硫酸钠干燥,过滤滤液减压浓缩。经柱层析纯化得到化合物ST-20。LCMS:MS(ESI)m/z[M+H] +:202.1。
参考例15:ST-21的合成
Figure PCTCN2022117709-appb-000074
合成路线
Figure PCTCN2022117709-appb-000075
步骤1:化合物ST-21-2的合成
在干燥的反应瓶中加入化合物ST-21-1(5.4g,16.98mmol),甲苯(60mL),三苯基膦(4.45g,16.98mmol,),氮气保护,110℃反应6小时。有固体析出,反应液降至室温,过滤。固体用30mL正庚烷洗涤,收集固体,减压干燥。在干燥的反应瓶中加入干燥后的固体,加入THF(60mL)和氘水(22mL),氮气保护,加入氘代氢氧化钠(10.8g,270.02mmol)的氘水(18mL),20℃继续反应12小时得到化合物ST-21-2的反应液直接用于下一步反应。
步骤2:化合物ST-21-3的合成
在干燥的反应瓶中加入参考例15步骤1得到的化合物ST-21-2的反应液,肼基甲酸叔丁酯(2.92g,22.07mmol),碳酸铯(11.06g,33.96mmol),Xantphos(982.49mg,1.70mmol),二氧六环(40mL),氮气保护,加入三二亚苄基丙酮二钯(1.55g,1.70mmol),100℃反应16小时。将反应液降至室温,向其中加入100mL水,用乙酸乙酯(50mL*2)萃取,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-21-3。LCMS:MS(ESI)m/z[M+H-56] +:238.2。
步骤3:化合物ST-21的合成
在干燥的反应瓶中加入化合物ST-21-3(1.48g,5.05mmol),HCl/EtOAc(4M,29.60mL),20℃反应12小时。将反应液减压浓缩干。用饱和碳酸氢钠水溶液调节pH=8后用二氯甲烷(10mL*3)萃取,有机相用无水硫酸钠干燥,过滤滤液减压浓缩。经柱层析纯化得到化合物ST-21。LCMS:MS(ESI)m/z[M+H] +:194.0。
参考例16:ST-22的合成
Figure PCTCN2022117709-appb-000076
合成路线
Figure PCTCN2022117709-appb-000077
步骤1:化合物ST-22-2的合成
在反应瓶中加入化合物ST-22-1(4.5g,16.85mmol),二氯甲烷(45mL),氮气保护,缓慢滴加[双(2-甲氧基乙基)胺]三氟化硫(14.91g,67.41mmol,14.77mL),缓慢升温至45℃反应48小时。将反应液降至室温,将其缓慢倒入盛有200mL水的锥形瓶中,搅拌15min后,向其中加入200mL二氯甲烷,搅拌5min。静置 分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。得到化合物ST-22-2。 1H NMR(400MHz,CDCl 3)δppm 7.85(s,2H),7.70(d,J=0.61Hz,1H),1.95(t,J=18.16Hz,3H)。
步骤2:化合物ST-22-3的合成
在干燥的反应瓶中加入化合物ST-22-2(2.5g,8.65mmol),肼基甲酸叔丁酯(1.49g,11.24mmol),碳酸铯(5.64g,17.30mmol),Xantphos(500.47mg,864.93μmol),二氧六环(25mL),氮气保护,加入三二亚苄基丙酮二钯(792.04mg,864.93μmol),100℃反应12小时。将反应液降至室温,向其中加入30mL水,用乙酸乙酯(40mL*3)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-22-3。LCMS:MS(ESI)m/z[M+H-56] +:285.1。
步骤3:化合物ST-22的合成
在反应瓶中加入化合物ST-22-3(1.1g,3.23mmol),HCl/MeOH(4M,22.00mL),20℃反应4小时。将反应液减压浓缩,向残渣中加入饱和碳酸氢钠水溶液调节pH=8后,用乙酸乙酯(30mL*3)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-22。LCMS:MS(ESI)m/z[M+H] +:241.0。
参考例17:ST-23的合成
Figure PCTCN2022117709-appb-000078
合成路线
Figure PCTCN2022117709-appb-000079
步骤1:化合物ST-23-2的合成
在干燥的反应瓶中加入化合物ST-23-1(3g,17.34mmol),6M盐酸溶液(28.90mL),氮气保护,加入巴豆醛(7.29g,104.04mmol,8.62mL)的甲苯(30mL)溶液,100℃反应5小时。将反应液将至室温,用碳酸氢钠调节pH=8后,用乙酸乙酯(30mL*3)萃取,有机相合并用无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析纯化得到化合物ST-23-2。 1H NMR(400MHz,CDCl 3)δppm 8.85-8.96(m,1H),8.51(d,J=0.88Hz,1H),8.27(d,J=8.99Hz,1H),7.55(d,J=8.77Hz,1H),2.79(s,3H)。
步骤2:化合物ST-23的合成
在干燥反应瓶中加入化合物ST-23-2(0.18g,806.93μmol),双联频哪醇硼酸酯(409.82mg,1.61mmol),醋酸钾(158.38mg,1.61mmol),二氧六环(4mL),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(59.04mg,80.69μmol),80℃反应2小时。将反应液冷却至室温得到化合物ST-23的二氧六环溶液,直接用于下一步反应。
实施例1
Figure PCTCN2022117709-appb-000080
合成路线:
Figure PCTCN2022117709-appb-000081
步骤1:化合物1-2的合成
将化合物1-1(0.5g,2.05mmol)溶于水(3mL)中,后加入盐酸(204.00mg,2.13mmol),之后将乙醛酸(333.58mg,2.25mmol)溶于水(2mL)中加至反应液中,在20℃下搅拌10分钟。反应完成后,反应液过滤,使用水(30mL)洗涤滤饼,收集滤饼得到化合物1-2。LCMS:MS(ESI)m/z[M+1+Na] +:323.9。
步骤2:化合物1-3的合成
氮气条件下,将化合物1-2(100mg,333.16μmol)溶于甲苯(3mL)中,加入三乙胺(33.71mg,333.16μmol)和叠氮磷酸二苯酯(91.69mg,333.16μmol)后,缓慢升温至110℃,回流反应16小时。反应完成后,将反应液倒入到氢氧化钾水溶液(10%,10mL)中,后使用氢氧化钾水溶液(10%,10mL*2)萃取反应液,收集水相后使用浓盐酸调节水相pH至3左右,析出固体,过滤,滤饼使用水(20mL)洗涤,收集滤饼。得到化合物1-3。LCMS:MS(ESI)m/z[M+H] +:298.1。
步骤3:化合物1-4的合成
将化合物1-3(100mg,336.52μmol)溶于N,N-二甲基甲酰胺(3mL)中,加入三乙烯二胺(75.50mg,673.04μmol)在15℃下搅拌反应0.5小时,后加入ST-1(46.09mg,203.93μmol)反应16小时。反应完成后,反应液中加入水(20mL),使用乙酸乙酯(20mL*3)萃取反应液,收集有机相,饱和食盐水(30mL)洗涤有机相,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品使用制备板(石油醚:乙酸乙酯=6:1)分离得到化合物1-4。LCMS:MS(ESI)m/z[M+H] +:396.1。
步骤4:化合物1-5的合成
将化合物1-4(50mg,126.50μmol)溶于二氯甲烷(10mL)中,在0℃下滴加液溴(40.43mg,253.00μmol),后在20℃下反应1小时。反应完成后,向反应液中加入水(20mL),使用二氯甲烷(20mL*3)萃取反应液,收集有机相,再用饱和亚硫酸氢钠水溶液(20mL)洗涤有机相,后使用饱和食盐水(20mL)洗涤有机相,用无水硫酸钠干燥,过滤,滤液浓缩得化合物1-5粗品,直接用于下一步反应。LCMS:MS(ESI)m/z[M+H] +555.9。
步骤5:化合物1-6的合成
0℃下,将化合物1-5(561mg,1.01mmol)溶于四氢呋喃(25mL)中,后加入三乙胺(204.54mg,2.02mmol),升高反应温度至20℃,继续反应16小时。反应完成后,反应液中加入水(40mL),使用乙酸乙酯(40mL*3)萃取反应液,收集有机相,饱和食盐水(40mL)洗涤有机相,无水硫酸钠干燥,过滤,滤液浓缩得化合物1-6。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:473.7,475.7。
步骤6:化合物1-7的合成
氮气条件下,将化合物1-6(100mg,210.90μmol),5-嘧啶硼酸(39.20mg,316.35μmol),[1,1'-双(二苯基膦基)二茂铁]二氯化钯(23.15mg,31.64μmol),乙酸钾(62.10mg,632.71μmol)溶于1,4-二氧六环(4mL)和水(0.5mL)中,再置换3次氮气,后将反应温度升高至100℃,反应2小时。反应完成后,反应液中加入水(20mL),再使用乙酸乙酯(30mL*3)萃取反应液,收集有机相,饱和食盐水(30mL)洗涤有机相,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品通过制备板(石油醚:乙酸乙酯=5:1)分离得到化合物1-7。LCMS:MS(ESI)m/z[M+H] +:474.3。
步骤7:化合物1-8的合成
将化合物1-7(75mg,158.45μmol)溶于四氢呋喃(5mL)和水(5mL)中,0℃下加入氢氧化锂(13.28mg,554.58μmol)后在20℃下反应2小时。反应液使用1M的氢氧化钾水溶液(15mL*3)萃取反应液,收集水相,后使用浓盐酸调节水相pH至3,再使用乙酸乙酯(30mL*3)萃取反应液,收集有机相,饱和食盐水(40mL)洗涤有机相,无水硫酸钠干燥,过滤,滤液浓缩得化合物1-8。LCMS:MS(ESI)m/z[M+H] +:446.1。
步骤8:化合物1的合成
氮气条件下,向三口瓶中加入化合物1-8(28mg,62.88μmol)和四氢呋喃(20mL),后置于0℃下加入氯甲酸异丁酯(34.35mg,251.53μmol)和4-甲基吗啉(19.08mg,188.65μmol),之后在0℃下搅拌反应1小时。后在0℃下通入氨气30分钟。反应完成后,反应液中加入水(20mL),使用乙酸乙酯(30mL*3)萃取反应液,收集有机相,饱和食盐水(30mL)洗涤有机相,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品通过制备高效液相色谱(色谱柱:Agela ASB 150*25mm*5μm;流动相:[水(0.05%HCl)-ACN];ACN%: 44%-74%)分离得化合物1。 1H NMR(400MHz,CD 3OD)δppm 9.23(s,1H),8.83(s,2H),8.51(s,2H),7.85(s,1H),7.80(s,1H),7.57(s,1H);LCMS:MS(ESI)m/z[M+H] +:445.2。
参照化合物1的合成方法,用表格中的片段Y代替步骤6中的5-嘧啶硼酸制备得到表1化合物:
表1:化合物列表1
Figure PCTCN2022117709-appb-000082
Figure PCTCN2022117709-appb-000083
参照化合物1的合成方法,用表格中的片段Z代替起始原料1-1制备得到表2化合物:
表2:化合物列表2
Figure PCTCN2022117709-appb-000084
Figure PCTCN2022117709-appb-000085
Figure PCTCN2022117709-appb-000086
实施例2
Figure PCTCN2022117709-appb-000087
合成路线:
Figure PCTCN2022117709-appb-000088
步骤1:化合物7-2的合成
在干燥的反应瓶中加入三甲基碘化亚砜(23.66g,107.52mmol),DMSO(100mL),氮气保护,缓慢加入NaH(4.30g,107.52mmol,60%纯度),20℃反应0.25小时后,缓慢滴加化合物7-1(10g,53.76mmol)的DMSO(100mL)溶液,继续反应0.25小时。将反应液倒入500mL冰水中,用乙酸乙酯(200mL*3)萃取,有机相合并用饱和食盐水(300mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。经柱层析(硅胶,乙酸乙酯:石油醚=0:1~1:1)纯化得到化合物7-2。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:200.0,202.0。
步骤2:化合物7-3的合成
在干燥的反应瓶中加入三甲基碘化亚砜(5.68g,25.80mmol),叔丁醇(26mL),氮气保护,缓慢加入叔丁醇钾(2.89g,25.80mmol),升温至50℃反应0.5小时,缓慢滴加化合物7-2(2.58g,12.90mmol)的叔丁醇(10mL),继续反应12小时。将反应液减压浓缩。经柱层析(硅胶,乙酸乙酯:石油醚=0:1~1:1)纯化。得到化合物7-3。 1H NMR(400MHz,CDCl 3)δppm 8.62(d,J=2.13Hz,1H),8.52(d,J=1.63Hz,1H),7.99(t,J=1.75Hz,1H),5.83(t,J=7.50Hz,1H),4.87(td,J=7.94,6.13Hz,1H),4.70(dt,J=9.26,5.88Hz,1H),3.01-3.18(m,1H),2.66(ddt,J=11.16,9.16,7.47,7.47Hz,1H)。
步骤3:化合物7-4的合成
在封管中加入化合物7-3(0.38g,1.78mmol),二氧六环(8mL),双联频哪醇硼酸酯(901.59mg,3.55mmol),醋酸钾(696.88mg,7.10mmol),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(129.89mg,177.52μmol),80℃反应12小时。冷却至室温后得到化合物7-4的二氧六环溶液,直接用于下一步。
步骤4:化合物7-5的合成
氮气条件下,将化合物1-6(460mg,1.76mmol),上步得到的化合物7-4的二氧六环反应液,[1,1'-双(二苯基膦基)二茂铁]二氯化钯(128.90mg,176.16μmol),醋酸钾(345.77mg,3.52mmol)溶于二氧六环(4mL)和水(0.5mL)中,氮气置换3次,加热至100℃,反应2小时。反应完成后,反应液中加入水(20mL),用乙酸乙酯(30mL*3)萃取,收集有机相,饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品经制备薄层色谱硅胶板(硅胶,石油醚:乙酸乙酯=5:1)分离得到化合物7-5。LCMS:MS(ESI)m/z[M+H] +:529.1。
步骤5:化合物7-6的合成
在反应瓶中加入化合物7-5(0.32g,605.60μmol),THF(10mL),氮气保护,降温至0℃,缓慢滴加氢氧化锂一水合物(76.24mg,1.82mmol)的水溶液(5mL),继续反应1小时。反应液直接减压浓缩,向残渣中加入稀盐酸(1M)调节pH=3后,用乙酸乙酯(10mL*2)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。得到化合物7-6。LCMS:MS(ESI)m/z[M+H] +:501.0。
步骤6:化合物7和化合物8的合成
在干燥的反应瓶中加入化合物7-6(0.25g,499.65μmol),THF(20mL),氮气保护,降温至0℃,加入氯甲酸异丙酯(136.48mg,999.30μmol,131.23μL),N-甲基吗啉(75.81mg,749.48μmol,),反应1小时,通入氨气,继续反应10min。向反应液中加入20mL水和20mL乙酸乙酯,搅拌5分钟,静置分液,有机相减压浓缩。经柱层析纯化。所得粗产品经过SFC分析(色谱柱:Lux Cellulose-2,50×4.6mm I.D.,3μm,流动相:A:超临界二氧化碳,B:0.1%异丙胺的乙醇溶液,梯度:B在0~0.2分钟维持5%,在1分钟内从5%到50%,50%维持1分钟,在0.4分钟内从50%到5%,5%维持0.4分钟。流速:3.4mL/min,柱温:35℃)确定为消旋化合物,经SFC分离(色谱柱:Phenomenex-Cellulose-2(250mm*30mm,10μm);流动相A:超临界二氧化碳;流动相B:[0.1%NH 3 .H 2O/EtOH];B%:55%-55%)分离得到化合物7和化合物8。
化合物7(保留时间为1.462min,ee=100%): 1H NMR(400MHz,CD 3OD)δppm 8.73(d,J=1.88Hz,1H),8.53(d,J=1.76Hz,3H),8.01(t,J=1.88Hz,1H),7.85(s,1H),7.81(s,1H),7.22(s,1H),5.97(t,J=7.59Hz,1H),4.88(br d,J=2.13Hz,1H),4.71(dt,J=9.29,5.77Hz,1H),3.06-3.22(m,1H),2.68-2.85(m,1H).LCMS:MS(ESI)m/z[M+H] +:500.0。
化合物8(保留时间为1.696min,ee=99.8%): 1H NMR(400MHz,CD 3OD)δppm 8.73(d,J=2.01Hz,1H),8.52(d,J=1.63Hz,3H),8.00(t,J=1.94Hz,1H),7.84(s,1H),7.80(s,1H),7.22(s,1H),5.96(t,J=7.59Hz,1H),4.89(br d,J=5.90Hz,1H),4.67-4.74(m,1H),3.07-3.18(m,1H),2.70-2.82(m,1H).LCMS:MS(ESI)m/z[M+H] +:500.0。
实施例3
Figure PCTCN2022117709-appb-000089
合成路线
Figure PCTCN2022117709-appb-000090
步骤1:化合物12-1的合成
0℃下在化合物1-6(1g,2.11mmol)的THF(12mL)和水(4mL)溶液中加入氢氧化锂一水合物(320mg,7.63mmol,),升至室温15℃反应1小时。用稀盐酸(1M)将反应液调节pH至约为3,用二氯甲烷(20mL*3)萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物12-1。
步骤2:化合物12-2的合成
0℃下在化合物12-1(0.93g,2.08mmol)的THF(20mL)溶液中加入氯甲酸异丁酯(0.58g,4.25mmol)和N-甲基吗啉(0.32g,3.16mmol),继续0℃反应1小时后在-78℃通NH 3 15min后升温至0℃反应1小时。在反应液中加入20mL水,用二氯甲烷(20mL*3)萃取,合并的有机相用饱和食盐水洗涤,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。浓缩物经硅胶柱纯化(硅胶,PE:EA=1:0~2:1),得到化合物12-2。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:445.0,447.0。
步骤3:化合物12-4的合成
在干燥的反应瓶中加入化合物12-3(0.5g,3.83mmol),DMF(10mL),碳酸钾(1.59g,11.49mmol),对甲氧基苯甲基氯(899.83mg,5.75mmol),氮气保护,15℃反应2小时。向反应液中加入50mL水,用乙酸乙酯(50mL*2)萃取,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物经柱层析纯化得到化合物12-4。LCMS:MS(ESI)m/z[M+H] +:251.2。
步骤4:化合物12-5的合成
在干燥的反应瓶中加入化合物12-4(0.5g,1.99mmol),双联频哪醇硼酸酯(1.01g,3.99mmol),醋酸钾(391.49mg,3.99mmol),二氧六环(10mL),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(145.94mg,199.46μmol),80℃反应12小时。将反应液冷却至室温得到化合物12-5的二氧六环溶液,直接用于下一步反应。
步骤5:化合物12-6的合成
在干燥的反应瓶中加入化合物12-2(0.4g,898.65μmol),二氧六环(2mL),水(4mL),化合物12-5的二氧六环溶液(上步反应液),醋酸钾(176.39mg,1.80mmol),氮气保护,加入二氯[1,1'-二(二苯基膦)二茂铁]钯(65.75mg,89.86μmol),80℃反应2小时。反应降至室温,向其中加入50m水和50mL乙酸乙酯,搅拌5分钟,过滤,滤液静置分液,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物经柱层析纯化得到化合物12-4。
步骤6:化合物12的合成
在干燥的反应瓶中加入化合物12-6(120mg,206.74μmol),三氟乙酸(7.70g,67.53mmol),70℃反应12小时。经高效液相色谱制备分离(色谱柱:Waters Xbridge BEH C18 100*30mm*10μm;流动相:[水(NH 4HCO 3)-ACN];梯度(乙腈)%:30%-60%)纯化,得到化合物12。 1H NMR(400MHz,CD 3OD)δppm 8.61(s,2H),8.37(s,1H),8.16(d,J=2.13Hz,1H),7.88(s,1H),7.35(s,1H),6.99(d,J=2.13Hz,1H)。LCMS:MS(ESI)m/z[M+H] +:461.0。
实施例4
Figure PCTCN2022117709-appb-000091
合成路线:
Figure PCTCN2022117709-appb-000092
步骤1:化合物24-2的合成
向化合物24-1(1.0g,5.05mmol)的四氢呋喃(15mL)溶液中加入碳酸铯(2.47g,7.57mmol)和碘甲烷(1.43g,10.10mmol,628.76μL),所得反应液在室温(15℃)搅拌2小时。反应液过滤,滤液减压浓缩。剩余物经柱层析(硅胶,PE:THF=1:0~1:1)纯化得到化合物24-2。 1H NMR(400MHz,CDCl 3)δ8.55(d,J=2.0Hz,1H),8.19(dd,J=0.8,2.0Hz,1H),8.16(s,1H),4.31-4.18(m,3H)。
步骤2:化合物24-3的合成
向化合物24-2(300mg,1.41mmol),双联频哪醇硼酸酯(720mg,2.84mmol),醋酸钾(281mg,2.86mmol,)的二氧六环(5mL)溶液中加入二氯[1,1'-二(二苯基膦)二茂铁]钯(105mg,143.50μmol),所得反应液氮气置换三次,氮气保护下加热到80℃搅拌3小时。反应液冷却至室温得到化合物24-3的二氧六环溶液,直接用于下一步反应。
步骤3:化合物24-4的合成
向化合物24-3的二氧六环溶液(上步反应液)中加入化合物1-6(400mg,843.61μmol),碳酸钾(240mg,1.74mmol),水(2mL)和[1,1’-双(二苯基膦)二茂铁]二氯化钯(II)(62mg,84.73μmol),所得反应液氮气置换三次,氮气保护下加热到80℃搅拌3小时。向反应液中加入水(15mL),用乙酸乙酯(15mL*3)萃取,有机相经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物经柱层析(硅胶,PE:EA=1:0~1:1)纯化得到化合物24-4。LCMS:MS(ESI)m/z(M+H) +:527.1; 1H NMR(400MHz,CDCl 3)δ=8.44(s,3H),8.30(s,1H),8.12(s,1H),8.01(d,J=1.0Hz,1H),7.75(s,1H),6.93(s,1H),4.36-4.31(m,5H),1.33(t,J=7.2Hz,3H)。步骤4:化合物24-5的合成
向化合物24-4(0.3g,569.92μmol)的THF(3mL)溶液中加入氢氧化锂一水合物(72mg,1.72mmol)的水(1mL)溶液,所得反应液室温(15℃)搅拌1小时。向反应液中加入1N HCl溶液至pH约为3,二氯甲烷(20mL*2)萃取。有机相经饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物24-5。LCMS:MS(ESI)m/z(M+H) +:499.0。
步骤5:化合物24的合成
向化合物24-5(120mg,240.80μmol)的DMF(5mL)溶液中加入HATU(110mg,289.30μmol),Et 3N(73mg,721.42μmol,100.41μL)和NH 4Cl(25mg,467.37μmol),所得反应液室温(15℃)搅拌16小时。向反应液倒入水(30mL)中,乙酸乙酯(20mL*3)萃取分液。有机相依次用水(10mL)和饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩干。浓缩物经高效液相色谱制备分离(色谱柱:Phenomenex C18  80*40mm*3μm;流动相:[水(NH 3 .H 2O)-乙腈];梯度(乙腈)%:37%-67%)纯化得到化合物24。
1H NMR(400MHz,DMSO-d 6)δ=8.72(s,1H),8.41(s,2H),8.35(d,J=1.8Hz,1H),8.06(br d,J=13.8Hz,2H),7.56(s,2H),7.47-7.35(m,2H),4.25(s,3H);LCMS:MS(ESI)m/z(M+H) +:498.1。
实施例5
Figure PCTCN2022117709-appb-000093
合成路线
Figure PCTCN2022117709-appb-000094
步骤1:化合物25-2的合成
在化合物25-1(1.31g,5.87mmol)的四氯化碳(26mL)溶液中加入N-溴代琥珀酰亚胺(8.36g,46.98mmol)和过氧化苯甲酰(0.3g,1.24mmol),氮气置换三次,氮气保护下升温至80℃回流反应16小时。反应液过滤,滤饼用20mL乙酸乙酯洗涤,合并的滤液减压浓缩。剩余物经柱层析(硅胶:PE:EA=1:0~9:1)纯化得到化合物25-2。LCMS:MS(ESI)m/z(M+H) +:302.8。
步骤2:化合物25-3的合成
在化合物25-2(3.12g,10.33mmol)的MeOH(60mL)溶液中加入NaOMe(2.25g,41.65mmol),升温至65℃反应2小时。反应液中加入50mL水,用二氯甲烷50mL*3萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物经柱层析(硅胶:PE:EA=1:0~19:1)纯化得到化合物25-3。LCMS:MS(ESI)m/z[M+H] +,[M+3H] +:253.0,255.0。
1H NMR(400MHz,CDCl 3)δ=8.96(d,J=2.25Hz,1H),8.52-8.61(m,1H),8.39(d,J=8.75Hz,1H),7.83(d,J=8.75Hz,1H),4.77(s,2H),3.48-3.60(m,3H)。
步骤3:化合物25-4的合成
在化合物25-3(0.2g,790.22μmol),双联频哪醇硼酸酯(0.4g,1.58mmol)的二氧六环(4mL)溶液中加入醋酸钾(0.16g,1.63mmol)和二氯[1,1'-二(二苯基膦)二茂铁]钯(60mg,82.00μmol),氮气置换三次,氮气保 护下升温至80℃反应2小时。反应液冷却至室温得到化合物25-4的二氧六环溶液,直接用于下一步反应。
步骤4:化合物25-5的合成
向上步的化合物25-4的二氧六环溶液中加入化合物1-6(237mg,789.58μmol)的二氧六环(4mL)溶液,加入水(4mL),醋酸钾(160mg,1.63mmol)和二氯[1,1'-二(二苯基膦)二茂铁]钯(60mg,82.00μmol,)后氮气置换三次,氮气保护下升温至80℃反应2小时。反应液过滤(铺硅藻土),滤饼用10mL乙酸乙酯洗涤,合并的滤液中加入5mL水,分液,水相用乙酸乙酯10mL*2萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物经柱层析(硅胶:PE:EA=1:0~0:1)纯化得到化合物25-5。
1H NMR(400MHz,CDCl 3)δ=8.89(s,1H),8.53(d,J=9.29Hz,1H),8.42(s,3H),8.17(s,1H),7.94(d,J=8.78Hz,1H),7.75(s,1H),6.91(br s,1H),4.83(s,2H),4.35(q,J=7.28Hz,2H),3.57(s,3H),1.33(t,J=7.03Hz,3H)。LCMS:MS(ESI)m/z(M+H) +:568.1。
步骤5:化合物25-6的合成
在化合物25-5(1.15g,2.03mmol)的四氢呋喃(36mL)和水(12mL)溶液中加入氢氧化锂一水合物(0.15g,3.57mmol),室温(30℃)反应0.5小时。将反应液用1M盐酸调节pH至~3,用乙酸乙酯30mL*3萃取,合并的有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物25-6。LCMS:MS(ESI)m/z(M+H)+:540.0。
步骤6:化合物25的合成
0℃下向化合物25-6(1.1g,2.04mmol)的四氢呋喃(22mL)溶液中加入氯甲酸异丁酯(650mg,4.76mmol,625.00μL)和N-甲基吗啡啉(500mg,4.94mmol,543.48μL),氮气置换三次,氮气保护下继续0℃反应1小时后加入NH 3/THF(4M,18mL),继续0℃反应0.5小时。在反应液中加入20mL半饱和食盐水,用乙酸乙酯(40mL*3)萃取,有机相合并用无水硫酸钠干燥,过滤,滤液减压浓缩。剩余物经柱层析(硅胶:DCM:MeOH=1:0~10:1)纯化得到化合物25。
1H NMR(400MHz,DMSO-d6)δ=8.85(s,1H),8.48(br d,J=8.78Hz,1H),8.35-8.43(m,3H),8.02(s,1H),7.87(d,J=8.78Hz,1H),7.41-7.70(m,4H),4.72(s,2H),3.42(s,3H);LCMS:MS(ESI)m/z(M+H) +:538.9。
生物测试数据
实验例1:肿瘤细胞抗增殖活性(IC 50)测试
实验步骤:
把对数生长期的肿瘤(前列腺癌22Rv1)细胞悬液接种于96孔培养板;每孔4000个细胞,每孔加入90μL细胞悬液,37℃,5%CO 2培养箱中培养48小时。待细胞贴壁后,分别加入适当浓度的受试化合物和阳性对照药物,配置八种不同浓度的样品,以空白对照组为阴性对照组,在培养箱中培养72小时。然后每孔加入50μL的CellTiter-Glo工作液,用铝箔纸包裹细胞板以避光。将培养板在轨道摇床上振摇2分钟以诱导细胞裂解,培养板在室温放置10分钟以稳定发光信号。EnVision读板器上检测发光信号,计算抑制率。
实验结果:见表3。
表3:本发明化合物体外22Rv1细胞抗增殖活性测试结果
供试品 IC 50(nM) 供试品 IC 50(nM)
化合物1 119 化合物14 83
化合物5 109 化合物17 9
化合物6 25 化合物21 35
化合物7 128 化合物22 14
化合物8 55 化合物23 42
化合物9 28 化合物24 85
化合物11 36 化合物25 29
结论:本发明化合物在22Rv1细胞体外抗增殖活性实验中表现出较好的抑制活性。
实施例2:化合物小鼠体内药代动力学评价
实验目的:
本实验旨在研究供试品静脉注射和口服给药后在雄性C57BL/6J小鼠血浆中的药代动力学情况。
实验方法:
将动物随机分为两组,每组2只雄性。将化合物配制为指定制剂,静脉注射制剂为澄清溶液(溶媒为10%DMSO+10%Solutol HS15+80%水),口服制剂可以为澄清或者均一混悬液(溶媒为1%pluronic F-68+1%PVP K30的水溶液)。
动物在给药后5、15、30分钟、1、2、4、6、8和24小时从颈静脉穿刺或者隐静脉采集全血样品。将全血样品加入含有抗凝剂的离心管中,4℃,3000g离心15min,取上清血浆于干冰上快速冷冻,然后保存在-70±10℃冰箱中直到进行LC-MS/MS分析。
数据处理:
使用WinNonlin TM Version 6.3.0(Pharsight,Mountain View,CA)药动学软件,以非房室模型对化合物的血浆药物浓度数据进行处理。达峰浓度(C max)和达峰时间(T max)以及可定量末时间,从血药浓度-时间图中直接获得。
使用对数线性梯形法计算下列药代动力学参数:血浆清除率(CL),分布容积(Vd),半衰期(T 1/2),0点到末端时间点时间-血浆浓度曲线下面积(AUC 0-last)和生物利用度(F)。
实验结果:实验结果见表4和表5。
表4:本发明化合物小鼠口服给药药代动力学参数
供试品 剂量 C max(nM) T max(hr) AUC 0-last(nM .hr) F(%)
化合物6 15mg/kg 4630 1.0 9795 65.5
化合物11 15mg/kg 1375 2.0 14748 26.5
化合物24 10mg/kg 2686 3 18449 43.0
化合物25 10mg/kg 1940 1.0 9668 39.1
表5:本发明化合物小鼠静脉注射给药药代动力学参数
供试品 剂量 CL(mL/min/kg) T 1/2(hr) AUC 0-last(nM.hr) Vd(L/kg)
化合物6 1mg/kg 32.7 0.78 994 2.08
化合物11 1mg/kg 8.57 2.85 3708 2.15
化合物24 1mg/kg 8.14 1.9 4089 1.2
化合物25 1mg/kg 12.4 1.2 2471 1.33
结论:本发明化合物具有优异的药代动力学性质。
实施例3:化合物入脑性质评价
实验目的:
本实验旨在研究供试品口服给药后在雄性CD-1小鼠特定时间点(Tmax)大脑和血浆中的浓度及其比值(B/P ratio)。
实验方法:
将动物随机分为两组,每组3只雄性。将化合物配制为指定制剂(10mpk),口服制剂可以为澄清或者均一混悬液,溶媒为1%pluronic F-68+1%PVP K30的水溶液。
动物在给药后1小时从颈静脉穿刺或者隐静脉全血样品,同时采集大脑样品。将全血样品加入含有抗凝剂的离心管中,4℃,3000g离心15min,取上清血浆于干冰上快速冷冻,然后保存在-70±10℃冰箱中直到进行LC-MS/MS分析。将大脑进行脑匀浆然后保存在-70±10℃冰箱中直到进行LC-MS/MS分析。
数据处理:
Micro office Excel软件计算大脑/血浆浓度比。
实验结果:实验结果见表6。
表6:本发明化合物入脑性质评价结果
供试品 B/P ratio
化合物6 0.079
化合物11 0.14
化合物24 0.0755
化合物25 0.0329
结论:本发明化合物具有较低的B/P ratio,表现出低入脑特性。
实施例4:化合物核输出抑制活性测试
实验目的:使用293T细胞测试本发明化合物对CRM1介导的核输出能力。
实验方法:Corning移液器铺板,100μL(100微升)每孔,细胞密度为0.32*10 6/mL。后置CO 2培养箱37℃孵育2-3小时。用移液枪将配置好的化合物分配到对应细胞板中,每孔100μL,37℃孵育24小时。将细胞板从培养箱中取出,弃掉培养基,用4%多聚甲醛室温固定20min。弃掉固定液,用磷酸缓冲液(PBS)洗3次,5min/次。0.3%Triton X-100(聚乙二醇辛基苯基醚)室温作用20min。弃掉透膜液,用磷酸缓冲液(PBS)洗3次,5min/次。5%BSA溶液(牛血清白蛋白(Bovine Serum Albumin,BSA)室温封闭1小时。一抗(IκBα(L35A5)Mouse mAb(Amino-terminal Antigen))孵育:1:400稀释,4℃下过夜孵育。弃掉一抗溶液,用磷酸缓冲液(PBS)洗3次,5min/次。二抗(Anti-mouse IgG(H+L),F(ab')2 Fragment(Alexa
Figure PCTCN2022117709-appb-000095
594 Conjugate))孵育:1:1000稀释,23℃下孵育1h。弃掉二抗,用PBS洗3遍,1:2000稀释,室温孵育15min,用DAPI(4',6- 二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole))进行染色。弃掉DAPI溶液,用磷酸缓冲液(PBS)洗3次,5min/次。用Operetta仪器拍照分析结果。
表7:本发明化合物对CRM1介导的核输出抑制能力
供试品 IC 50(nM)
化合物24 136
化合物25 127
结论:本发明化合物具有较好的CRM1介导的核输出抑制能力。

Claims (15)

  1. 式(I)所示化合物或其药学上可接受的盐,
    Figure PCTCN2022117709-appb-100001
    其中,
    X和Y分别独立地选自N和CR 2
    R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、C 1-3烷基和-(CH 2) n-C 1-3烷氧基,所述C 1-3烷基和-(CH 2) n-C 1-3烷氧基任选被1、2或3个R a取代;
    R 2选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R b取代;
    n为0或1;
    环B选自6元杂芳基和8-10元杂芳基,所述6元杂芳基和8-10元杂芳基任选被1、2或3个R c取代;
    R a和R b分别独立地选自D、F、Cl、Br、I和OH;
    各R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、C 1-3烷基、-(CH 2) n-C 1-3烷氧基和氧杂环丁基,所述C 1-3烷基、-(CH 2) n-C 1-3烷氧基和氧杂环丁基任选被1、2或3个R取代;
    各R分别独立地选自F、Br、Cl、I和C 1-3烷氧基。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、CH 3、OCH 3、CH 2OCH 3
    Figure PCTCN2022117709-appb-100002
    所述CH 3、OCH 3、CH 2OCH 3
    Figure PCTCN2022117709-appb-100003
    任选被1、2或3个R取代。
  3. 根据权利要求2所述化合物或其药学上可接受的盐,其中,R c分别独立地选自F、Cl、Br、I、OH、CN、氧代基、CH 3、CF 3、OCH 3、CH 2OCH 3
    Figure PCTCN2022117709-appb-100004
  4. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3、CH 2CH 3、OCH 3和CH 2OCH 3,所述CH 3、CH 2CH 3、OCH 3和CH 2OCH 3任选被1、2或3个R a取代。
  5. 根据权利要求4所述化合物或其药学上可接受的盐,其中,R 1分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3、CD 3、CH 2F、CHF 2、CF 3、CH 2CH 3、CF 2CH 3、OCH 3和CH 2OCH 3
  6. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 2选自H和CH 3,所述CH 3任选被1、2或3个R b取代。
  7. 根据权利要求6所述化合物或其药学上可接受的盐,R 2选自H和CH 3
  8. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,环B选自嘧啶基、吡啶基、哒嗪基、吡啶并嘧啶酮基、喹啉基、吡啶并[2,3-b]吡嗪基、2,3-二氢-[1,4]二氧杂[2,3-b]吡啶基、1,5-萘啶基和吡啶并吡唑基,所述嘧啶基、吡啶基、哒嗪基、吡啶并嘧啶酮基、喹啉基、吡啶并[2,3-b]吡嗪基、2,3-二氢-[1,4]二氧杂[2,3-b]吡啶基、1,5-萘啶基和吡啶并吡唑基任选被1、2或3个R c取代。
  9. 根据权利要求8所述化合物或其药学上可接受的盐,其中,环B选自
    Figure PCTCN2022117709-appb-100005
    Figure PCTCN2022117709-appb-100006
  10. 根据权利要求9所述化合物或其药学上可接受的盐,其中,其中,环B选自
    Figure PCTCN2022117709-appb-100007
    Figure PCTCN2022117709-appb-100008
  11. 根据权利要求1所述化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022117709-appb-100009
    选自
    Figure PCTCN2022117709-appb-100010
    Figure PCTCN2022117709-appb-100011
  12. 根据权利要求1~11任意一项所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2022117709-appb-100012
    其中,R 1和环B如权利要求1~11任意一项所定义。
  13. 下式化合物或其药学上可接受的盐,
    Figure PCTCN2022117709-appb-100013
    Figure PCTCN2022117709-appb-100014
  14. 根据权利要求13所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2022117709-appb-100015
  15. 根据权利要求1~14任意一项所述化合物或其药学上可接受的盐在XPO1抑制剂相关药物中的应用。
PCT/CN2022/117709 2021-09-08 2022-09-08 丙烯酰胺类化合物及其应用 WO2023036217A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111050423.0 2021-09-08
CN202111050423 2021-09-08
CN202210509481.3 2022-05-10
CN202210509481 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023036217A1 true WO2023036217A1 (zh) 2023-03-16

Family

ID=85506088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117709 WO2023036217A1 (zh) 2021-09-08 2022-09-08 丙烯酰胺类化合物及其应用

Country Status (1)

Country Link
WO (1) WO2023036217A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339358A (zh) * 2013-06-21 2016-02-17 卡尔约药物治疗公司 核转运调节剂及其用途
WO2017117529A1 (en) * 2015-12-31 2017-07-06 Karyopharm Therapeutics Inc. Nuclear transport modulators and uses thereof
WO2019232724A1 (en) * 2018-06-06 2019-12-12 Xw Laboratories, Inc. Compounds as nuclear transport modulators and uses thereof
WO2020051294A1 (en) * 2018-09-07 2020-03-12 Karyopharm Therapeutics Inc. The combination of xpo1 inhibitors and second agents for the treatment of prostate cancer
CN112538069A (zh) * 2020-11-05 2021-03-23 苏州艾和医药科技有限公司 一种氮唑类衍生物或其药物可接受盐及其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339358A (zh) * 2013-06-21 2016-02-17 卡尔约药物治疗公司 核转运调节剂及其用途
WO2017117529A1 (en) * 2015-12-31 2017-07-06 Karyopharm Therapeutics Inc. Nuclear transport modulators and uses thereof
WO2019232724A1 (en) * 2018-06-06 2019-12-12 Xw Laboratories, Inc. Compounds as nuclear transport modulators and uses thereof
CN112566902A (zh) * 2018-06-06 2021-03-26 凯瑞康宁生物工程(武汉)有限公司 作为核转运调节剂的化合物及其用途
WO2020051294A1 (en) * 2018-09-07 2020-03-12 Karyopharm Therapeutics Inc. The combination of xpo1 inhibitors and second agents for the treatment of prostate cancer
CN112538069A (zh) * 2020-11-05 2021-03-23 苏州艾和医药科技有限公司 一种氮唑类衍生物或其药物可接受盐及其制备方法和用途

Similar Documents

Publication Publication Date Title
JP6855477B2 (ja) 血漿カリクレイン阻害薬としてのヘテロアリールカルボキサミド誘導体
US20210163464A1 (en) Pyridine compound
US9809572B2 (en) Deuterated diaminopyrimidine compounds and pharmaceutical compositions comprising such compounds
JP6404332B2 (ja) 新規な、NIK阻害剤としての3−(1H−ピラゾール−4−イル)−1H−ピロロ[2,3−c]ピリジン誘導体
CN112778276A (zh) 作为shp2抑制剂的化合物及其应用
EP3878852A1 (en) Substituted pyrazolo[1,5-a]pyridine compound, composition containing the same and use thereof
EA028584B1 (ru) Пиридинильные и конденсированные пиридинильные производные триазолона
JP2016517859A (ja) 癌を治療するための、nik阻害剤としての3−(2−アミノピリミジン−4−イル)−5−(3−ヒドロキシプロピニル)−1h−ピロロ[2,3−c]ピリジン誘導体
US20220315603A1 (en) Pyridazinyl-thiazolecarboxamide compound
WO2020038457A1 (zh) 作为JAK抑制剂的[1,2,4]三唑并[1,5-a]吡啶类化合物及其应用
CN102256944A (zh) 鞘氨醇-1-磷酸受体拮抗剂
WO2020035065A1 (zh) 作为ret抑制剂的吡唑衍生物
US20130274242A1 (en) Substituted pyrimidine compounds and their use as syk inhibitors
CN113993860A (zh) 作为kras g12c突变蛋白抑制剂的七元杂环类衍生物
WO2021159372A1 (zh) Jak抑制剂在制备治疗jak激酶相关疾病药物中的应用
TW201605832A (zh) 作為p97錯合物之抑制劑之單環嘧啶/吡啶化合物
CN111315750B (zh) 作为mTORC1/2双激酶抑制剂的吡啶并嘧啶类化合物
WO2023036217A1 (zh) 丙烯酰胺类化合物及其应用
CN110582495B (zh) 作为tnf活性的调节剂的稠合五环咪唑衍生物
TW201718552A (zh) 作為p97複合體抑制劑之單及雙環酸、酯及鹽化合物
US20230303534A1 (en) Preparation method for novel rho-related protein kinase inhibitor and intermediate in preparation method
CN113766914B (zh) 戊烷脒的类似物和其用途
EP3766883B1 (en) Imidaxopyrolone compound and application thereof
CN115443274A (zh) 含苯基并内磺酰胺的化合物
EP4177247A1 (en) Heterocyclic immunomodulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866680

Country of ref document: EP

Kind code of ref document: A1