WO2023035881A1 - Led芯片发光器件及其制备方法、显示装置及电子设备 - Google Patents

Led芯片发光器件及其制备方法、显示装置及电子设备 Download PDF

Info

Publication number
WO2023035881A1
WO2023035881A1 PCT/CN2022/112857 CN2022112857W WO2023035881A1 WO 2023035881 A1 WO2023035881 A1 WO 2023035881A1 CN 2022112857 W CN2022112857 W CN 2022112857W WO 2023035881 A1 WO2023035881 A1 WO 2023035881A1
Authority
WO
WIPO (PCT)
Prior art keywords
led chip
emitting device
chip light
layer
light
Prior art date
Application number
PCT/CN2022/112857
Other languages
English (en)
French (fr)
Inventor
朱剑飞
Original Assignee
深圳市瑞丰光电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111051294.7A external-priority patent/CN113921508A/zh
Priority claimed from CN202122173450.9U external-priority patent/CN217214709U/zh
Application filed by 深圳市瑞丰光电子股份有限公司 filed Critical 深圳市瑞丰光电子股份有限公司
Publication of WO2023035881A1 publication Critical patent/WO2023035881A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00

Definitions

  • the invention relates to the technical field of LED display, in particular to an LED chip light-emitting device, a preparation method thereof, a display device and electronic equipment.
  • LED Light Emitting Diode
  • the LED chip is generally arranged on the substrate, and the circuit structure is arranged on the substrate.
  • the LED chip is made by passing through the lead wire or conductive glue. It is electrically connected with the substrate, so its structure is often complex, especially when the circuit structure is complex, the thickness of the LED light source component is often large, and the circuit structure and the LED chip are easily damaged, and the yield rate is low, which greatly improves the quality of the LED light source.
  • the manufacturing cost of the component is often used to set some connected conductive holes, and the LED chip is made by passing through the lead wire or conductive glue.
  • the invention provides an LED chip light-emitting device, a preparation method thereof, a display device and electronic equipment.
  • the solution of the present invention to solve the technical problem is to provide a method for preparing an LED chip light-emitting device, a method for preparing an LED chip light-emitting device, which includes the following steps: arranging a plurality of LED chips so that at least some of the light-emitting surfaces of the LED chips Arranged in the same direction, between a plurality of LED chips and/or covering a plurality of said LED chips to form a first cured layer for fixing the LED chips, the electrodes of the LED chips are exposed to the first cured layer; At least one circuit layer is directly formed on the side of the layer close to the electrode, and the circuit layer is electrically connected to the electrode of the LED chip, so as to obtain the required LED chip light-emitting device.
  • arranging a plurality of LED chips further includes: providing a substrate; arranging LED chips on the substrate, the LED chips including electrodes, and a side of the LED chips away from the electrodes is in contact with the substrate.
  • an adhesive layer is coated on the side of the substrate where the LED chips are arranged; the adhesive layer includes any one of a heat-sensitive adhesive and a photosensitive adhesive.
  • a circuit layer is directly formed on the side of the first cured layer close to the electrodes, the circuit layer is electrically connected to the electrodes of the LED chip, and the LED chip light-emitting device is obtained after removing the substrate.
  • the substrate is removed by light, heat or a chemical initiator.
  • the circuit layer includes a conductive structure and a dielectric structure
  • the conductive structure is formed by printing a conductive material
  • the dielectric structure is formed by printing a dielectric material
  • the conductive material and the dielectric material are directly printed on the surface to be formed of the first cured layer and deposited as a preset printing pattern, and the first layer of the circuit layer is formed after sintering or curing.
  • the sintering includes thermal sintering, photonic sintering or chemical sintering any one or a combination of several; and/or the curing includes the reaction of a crosslinking agent or a curing agent with a crosslinkable functional group to form a cured composition
  • the curing includes the reaction of a crosslinking agent or a curing agent with a crosslinkable functional group to form a cured composition
  • the material of the first cured layer includes any one or a combination of epoxy resin, silica gel, polycarbonate, polyethylene, polypropylene, polystyrene, polyethylene terephthalate .
  • the circuit layer and the first cured layer are made of flexible material and/or transparent material.
  • an LED chip light-emitting device which includes a plurality of LED chips, a first curing layer and at least one circuit layer, the first curing layer fixes the LED chips, so The circuit layer is electrically connected to the electrodes of the LED chip, and the LED chip light-emitting device is prepared based on the above-mentioned preparation method of the LED chip light-emitting device.
  • the LED chip light emitting device has a thickness of 10 ⁇ m-50 ⁇ m.
  • the circuit layer includes a conductive structure, a dielectric structure and a reinforcement structure, a plurality of the conductive structures are distributed in a pattern, and the reinforcement structure is arranged between the conductive structure and the dielectric structure.
  • the present invention also provides the following technical solution: a display device, which includes the above-mentioned LED chip light-emitting device and a display component, the display component is arranged in the direction of light emission of the LED chip light-emitting device Above, the LED chip light-emitting device provides a backlight for the display assembly; or the display device includes the LED chip light-emitting device according to claim 11, and the LED chip light-emitting device includes a plurality of pixel units, each of which The pixel unit includes LED assemblies of at least three colors.
  • an electronic device which includes the above-mentioned LED chip light-emitting device and an electronic device body, the LED chip light-emitting device is embedded in the electronic device body or The LED chip light emitting device is attached to the surface of the main body of the electronic equipment.
  • the LED chip light-emitting device and its preparation method, display device and electronic equipment of the present invention have the following advantages:
  • the prepared LED chip light-emitting device can be made lighter and thinner as a whole, and the packaging integrity is better, and the production efficiency and product yield can be further improved.
  • a plurality of LED chips are arranged so that the light emitting surfaces of at least some of the LED chips are arranged in the same direction, and a first cured layer for fixing the LED chips is formed between the plurality of LED chips and/or covering a plurality of the LED chips, and the LED The electrode of the chip is exposed to the first cured layer; a circuit layer is directly formed on the side of the first cured layer close to the electrode, and the circuit layer is electrically connected to the electrode of the LED chip to obtain the required LED chip light-emitting device.
  • Forming a first cured layer for fixing LED chips between and/or covering a plurality of LED chips, and directly forming a circuit layer on the side of the first cured layer close to the electrodes can improve the performance of the LED.
  • the overall sealing and firmness of the chip light-emitting device improves the yield rate and effectively reduces the manufacturing cost of the LED chip light-emitting device, and is especially suitable for the preparation of large-sized LED chip light-emitting devices.
  • the first cured layer plays the role of fixing the LED chip and the circuit layer.
  • the first cured layer can replace the existing light-emitting device
  • the function of the middle substrate can make the LED chip light-emitting device lighter and thinner, and fix it more firmly. It can also effectively reduce its manufacturing cost and user's use cost, and because it does not have a substrate, it can be applied to more scenarios.
  • the LED chip is prevented from sliding when the first cured layer is filled, so as to avoid affecting the arrangement of the LED chip and the luminous effect of the LED chip light-emitting device.
  • the use of the adhesive layer material can make it easier to separate the LED chip, the first cured layer and the substrate.
  • the preparation process of the first cured layer is related to the specific material selection of the first cured layer and the structural relationship between it and the LED chip, which can further improve the preparation of the obtained LED chip light-emitting device. structural stability and manufacturing yield.
  • At least one circuit layer is directly formed on the side of the first cured layer close to the electrodes, and after the circuit layer is electrically connected to the electrodes of the LED chip, it also includes removing the substrate to obtain the LED chip.
  • Light emitting devices The substrate can provide support for the LED chip arrangement during the preparation process of the LED chip light-emitting device, and remove the base after the preparation is completed, which can make the overall thickness of the LED chip light-emitting device smaller, and without the substrate, the LED chip emits light.
  • the device can still function normally.
  • the removed substrate can be reused in the manufacturing process, thus, the production cost can be further reduced.
  • the circuit layer includes a conductive structure and a dielectric structure
  • the conductive structure is formed by printing a conductive material
  • the dielectric structure is formed by printing a dielectric material. Dividing the circuit layer into conductive materials and dielectric materials can further improve the accuracy and operability of the direct printing of the circuit layer.
  • the conductive material and the dielectric material are directly printed on the surface to be formed of the first cured layer and deposited as a preset printing pattern, and the first layer of the circuit layer is formed after sintering or curing, which has a significant impact on the circuit layer.
  • the direct printing is further limited. After printing the pattern, it is sintered and cured, so the printed pattern can be fixed to facilitate the formation of subsequent circuit layers, and the stability of each circuit layer can be improved.
  • the diversified sintering or curing methods in the present invention can meet the requirements for the selection of different circuit layer materials, and then can realize the preparation requirements of various structures.
  • the material of the first cured layer includes any one of epoxy resin, silica gel, polycarbonate, polyethylene, polypropylene, polystyrene, polyethylene terephthalate or a combination of several.
  • the selection of the corresponding material can fix the LED chip while avoiding affecting its luminous effect.
  • the circuit layer and the first cured layer are made of flexible material and/or transparent material. It can meet the preparation requirements of various LED chip light-emitting devices, so as to expand the application scenarios of LED chip light-emitting devices.
  • the present invention also provides a display device, which adopts the above-mentioned LED chip light-emitting device as a backlight source or as a direct display structure. Since the LED chip light-emitting device with the above structure is adopted, no additional substrate is required, and therefore, the overall thickness of the LED chip light-emitting device is smaller, thereby making the display device more miniaturized and thinner. In addition, it can also effectively reduce the The usage and manufacturing cost of the above-mentioned display device.
  • LED chip light-emitting device as the main component of the display device on electronic equipment can obtain electronic equipment with a smaller thickness, which is beneficial to the design and manufacture of miniaturized and thinner electronic equipment, thereby effectively reducing its small size. Minimize the manufacturing cost of electronic equipment and meet the market demand for thinner and lighter products.
  • Fig. 1 is a schematic front view structural view of an LED chip light emitting device in the first embodiment of the present invention
  • FIG. 2 is a schematic structural view of the light-emitting surface of the LED chip in the first embodiment of the present invention
  • Fig. 3 is a schematic structural view of the LED chip light-emitting device including the first circuit layer in the first embodiment of the present invention
  • Fig. 4 is a schematic structural view when a reflective layer is provided on the LED chip light-emitting device in the first embodiment of the present invention
  • Fig. 5 is a schematic structural view of the LED chip light-emitting device in the first embodiment of the present invention when a uniform layer or a fluorescent layer is provided;
  • Fig. 6 is a schematic structural view of an LED chip light emitting device provided with an optical film layer in the first embodiment of the present invention
  • Fig. 7 is a schematic diagram of the size of the LED chip in the first embodiment of the present invention.
  • Fig. 8 is a schematic structural view when a second cured layer and a second circuit layer are arranged on the LED chip light-emitting device in the first embodiment of the present invention
  • Fig. 9 is a schematic structural diagram of at least one directly formed circuit layer in the LED chip light-emitting device in the first embodiment of the present invention.
  • FIG. 10 is a structural schematic diagram of the conductive structure including the conductive structure and the dielectric structure in the LED chip light emitting device shown in FIG. 9 .
  • FIG. 11 is a schematic structural view of the conductive connectors and isolation layers provided in the LED chip light emitting device shown in FIG. 9 .
  • Fig. 12 is a schematic structural view of a reinforcing structure provided in the LED chip light emitting device shown in Fig. 9 .
  • Fig. 13 is a schematic diagram of the flexible structure of the LED chip light emitting device in the first embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of a method for manufacturing an LED chip light-emitting device according to the second embodiment of the present invention.
  • Fig. 15 is a schematic flow diagram showing the details of step Q1 in a method for manufacturing an LED chip light-emitting device according to the second embodiment of the present invention.
  • Fig. 16 is a schematic flow diagram showing the details of step Q2 in the method for manufacturing an LED chip light-emitting device according to the second embodiment of the present invention.
  • Fig. 17 is a schematic diagram of the detailed flow between step S4 and step S5 in a method for manufacturing an LED chip light-emitting device according to the second embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional structural view of a display device in a third embodiment of the present invention.
  • 19 is a schematic diagram of another module of the display device in the third embodiment of the present invention.
  • FIG. 20 is a schematic diagram of the arrangement of pixel units 241 in the display device provided by the third embodiment of the present invention.
  • Fig. 21 is a schematic structural diagram of an electronic device in a fourth embodiment of the present invention.
  • LED chip light-emitting device 11. First cured layer; 12. LED chip; 13. First circuit layer; 14. Reflective layer; 15. Functional layer; 16. Optical film layer; 17. Second cured layer; 18 , the second circuit layer; 111, the first surface; 112, the second surface; 121, the light-emitting surface; 122, the electrode;
  • Circuit layer 101. Conductive structure; 102. Dielectric structure; 103. Conductive connector; 104. Isolation layer; 105. Enhanced structure;
  • the first embodiment of the present invention provides an LED chip light-emitting device 10, which includes a first cured layer 11 and a plurality of LED chips 12, and a plurality of LED chips 12 are embedded in the first cured layer. on a cured layer 11 .
  • the first cured layer 11 for fixing the LED chips 12 is formed between the plurality of LED chips 12 and/or covering the plurality of LED chips 12 .
  • the LED chip 12 includes a light-emitting surface 121
  • the first cured layer 11 includes a first surface 111
  • the light-emitting surface 121 of the LED chip 12 is parallel to the first surface 111. It can be understood that the light-emitting surface 121 It can be on the same plane as the first surface 111 , or the light-emitting surface 121 is slightly higher than the first surface 111 .
  • An electrode 122 is provided on the side opposite to the light-emitting surface 121 of the LED chip 12, and the electrode 122 can be a part of the LED chip 12, or the electrode 122 is composed of the positive end of the LED chip 12,
  • the electrical connector leading out from the negative terminal can be gold wire, tin wire, etc., for example.
  • the side opposite to the first surface 111 in the first cured layer 11 is defined as the second surface 112, and the end of the electrode 122 away from the contact with the LED chip 12 is on the same plane as the second surface 112, or the electrode 122
  • the end 122 away from the contact with the LED chip 12 is slightly higher than the second surface 112 . So that the electrode 122 can be connected with an external circuit, so that the LED chip 12 is turned on.
  • the LED chip light emitting device 10 does not need an additional substrate. It is sufficient to directly arrange the first cured layer 11 between the plurality of LED chips 12 and the electrodes 122 .
  • the first cured layer 11 can be made of chemical solvent-soluble adhesive material, made of hot-melt glue or other soluble materials, or made of epoxy resin, silica gel, polycarbonate Polyester (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET); can also choose such as optical curing, Heat curing and other materials are prepared.
  • chemical solvent-soluble adhesive material made of hot-melt glue or other soluble materials, or made of epoxy resin, silica gel, polycarbonate Polyester (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET); can also choose such as optical curing, Heat curing and other materials are prepared.
  • the color of the first cured layer 11 includes but not limited to red, yellow, blue, green, black and so on. It can be understood that the first cured layer is also made of a transparent material, which can fix the LED chip and the electrode.
  • the first cured layer 11 can be an insulating layer or a non-insulating layer.
  • the electrode 122 is wrapped with an insulating layer to prevent the electrode 122 from There is electrical conduction between them through the first cured layer 11 , thereby causing a short circuit of the LED chip 12 .
  • the LED chip 12 may be a blue light chip or a purple light chip, or may be an RGB three-color light chip.
  • the LED chip light-emitting device 10 includes RGB three-color light chips, it can be considered that the LED chip light-emitting device 10 includes a plurality of pixel units composed of RGB corresponding chips.
  • the LED chips 12 can be arranged in a matrix according to a certain distance, and the multiple LED chips 12 can also be distributed in a discrete manner, concentric and ring-shaped, etc., and the specific arrangement method can be based on different Use the scene to make adjustments.
  • a single LED chip 12 or multiple LED chips 12 are grouped to realize electrical conduction and circuit control.
  • the LED chip light-emitting device 10 further includes a first circuit layer 13, and the first circuit layer 13 is disposed on the side of the first cured layer 11 close to the electrode 122. , that is, the first circuit layer 13 is disposed on the second surface 112 and is electrically connected to the electrode 122, and the LED chip 12 can be electrically connected to an external circuit through the electrode 122, so as to facilitate external power supply to The LED chip 12 supplies power or implements control.
  • the LED chip light-emitting device 10 further includes a reflective layer 14, and the reflective layer 14 is disposed between the first cured layer 11 and the first circuit layer 13. During this period, the reflective layer 14 can well reflect the light emitted by the LED chip 12 , so as to prevent the light from propagating out from the second surface 112 , resulting in loss of light efficiency of the LED chip 12 .
  • the reflective layer 14 can be made of black glue or white glue.
  • the LED chip light-emitting device 10 also includes a functional layer 15, the functional layer 15 is a uniform light layer or a fluorescent layer, and the functional layer 15 is arranged on the LED chip 12 is away from the side of the electrode 122 , that is, the functional layer 15 is disposed on the side of the first surface 111 , so that the LED chip light-emitting device 10 can obtain a better light-emitting effect.
  • the functional layer 15 is a uniform light layer or a fluorescent layer
  • the functional layer 15 is arranged on the LED chip 12 is away from the side of the electrode 122 , that is, the functional layer 15 is disposed on the side of the first surface 111 , so that the LED chip light-emitting device 10 can obtain a better light-emitting effect.
  • the first cured layer 11 and the functional layer 15 may be integrally provided and made of the same material.
  • the fluorescent layer 15 when the functional layer 15 is a fluorescent layer, the fluorescent layer includes a phosphor composition, colloid, and diffusion particles.
  • the phosphor composition may include, but is not limited to: red phosphor: one or more of nitrogen oxides, fluorides, nitrides, etc.; green phosphor: one of sialon, silicate, etc. yellow powder: one or more of yttrium aluminum garnet, silicate, etc.; blue powder: one or more of barium aluminate, aluminate, etc.
  • the colloid may include, but is not limited to: silica gel, epoxy resin, polymethyl methacrylate (PMMA).
  • the diffusion particles are one or a combination of silicon dioxide, silicone, acrylic or calcium carbonate particles, wherein the particle size of the diffusion particles is 7-20 ⁇ m.
  • the particle size and quantity of the diffusion particles will make the adhesive layer 13 better deflect and diffuse the light source, and at the same time improve the smoothness and light transmittance. More preferably, in order to obtain a better light mixing effect, the diffusion particles may be combined with at least two kinds of particles with different light refractive indices.
  • the mass of the fluorescent powder composition accounts for 3%-50% of the total mass of the fluorescent glue composition and the colloid.
  • the phosphor composition includes yellow phosphor, that is, the phosphor composition includes one or a mixture of yttrium aluminum garnet, silicate, etc. .
  • the phosphor composition may also include a combination of red phosphor and green phosphor, that is, the red phosphor in the phosphor composition may include nitrogen oxide, One or more of fluoride, nitride, etc., and green phosphor include one or more of sialon, silicate, etc.
  • the phosphor composition includes a combination of red phosphors, green phosphors and yellow phosphors, the red phosphors include nitrogen oxides, fluorides, nitrides etc.; the green fluorescent powder includes one or more combinations of halosilicates, sulfides, silicates and nitrogen oxides; yellow fluorescent powder: yttrium aluminum garnet, One or more of silicates, etc.
  • the red fluorescent powder is one or a combination of potassium fluorosilicate and potassium fluorogermanate
  • the green fluorescent powder is Sialon
  • the yellow fluorescent powder is strontium silicate, magnesium silicate and silicic acid One or a combination of strontium and barium.
  • the fluorescent layer composition includes red fluorescent powder, green fluorescent powder and yellow fluorescent powder in a mass ratio of (1-4):(0.5-2):(0.5-2).
  • the mass ratio of the red phosphor, the green phosphor and the yellow phosphor is (1-3):(0.5-1.5):(0.5-1.5).
  • the red phosphor is potassium fluorogermanate
  • the yellow phosphor is silicate
  • the green phosphor is sialon. It may be that the mass of the red light phosphor, green light phosphor and yellow light phosphor accounts for 64%, 16% and 20% of the total mass of the phosphor respectively. Alternatively, the mass of the red phosphor, the green phosphor and the yellow phosphor accounts for 58.4%, 17.2%, and 24.4% of the total mass of the phosphor respectively. It may also be that the mass of the red phosphor, the green phosphor and the yellow phosphor accounts for 68%, 14%, and 18% of the total mass of the phosphor respectively. It may also be that the mass of the red phosphor, the green phosphor and the yellow phosphor accounts for 52%, 22%, and 26% of the total mass of the phosphor respectively.
  • the red phosphor, green phosphor and yellow phosphor account for 60%, 18% and 22% of the total phosphor respectively.
  • the red phosphor is potassium fluorosilicate
  • the yellow phosphor is yttrium aluminum garnet
  • the green phosphor is sialon. It may be that the mass of the red phosphor, the green phosphor and the yellow phosphor accounts for 61.2%, 19.4%, and 19.4% of the total mass of the phosphor respectively.
  • the mass of the red phosphor, the green phosphor and the yellow phosphor account for 58%, 21%, and 21% of the total mass of the phosphor, respectively.
  • the mass of the red phosphor, the green phosphor and the yellow phosphor accounts for 55%, 23%, and 22% of the total mass of the phosphor respectively. It may also be that the mass of the red phosphor, the green phosphor and the yellow phosphor accounts for 67%, 17%, and 16% of the total mass of the phosphor respectively.
  • the red phosphor, green phosphor and yellow phosphor account for 60%, 20% and 20% of the total phosphor respectively.
  • the LED chip light emitting device 10 further includes an optical film layer 16 disposed on the functional layer 15 .
  • the optical film layer 16 may also be one or more of a diffuser, a reflection film, an anti-reflection film, a filter film or a protective film.
  • a length direction and a width direction of an LED chip 12 are defined.
  • the dimension L of the LED chip 12 in the length direction is 10-900 ⁇ m
  • the dimension M in the width direction is 10-700 ⁇ m.
  • the length dimension L of the LED chip 12 is 20-210 ⁇ m, 21-220 ⁇ m, 22-230 ⁇ m, 23-250 ⁇ m, 25-350 ⁇ m, 35-480 ⁇ m, 48-650 ⁇ m, 65-850 ⁇ m, 85-900 ⁇ m, the LED chip 12
  • the length dimension L can also be: 20 ⁇ m, 25 ⁇ m, 21 ⁇ m, 29 ⁇ m, 22 ⁇ m, 250 ⁇ m, 265 ⁇ m, 275 ⁇ m, 295 ⁇ m, 380 ⁇ m, 450 ⁇ m, 600 ⁇ m, 750 ⁇ m, 900 ⁇ m.
  • the width dimension M of the LED chip 12 is 10-105 ⁇ m, 15-110 ⁇ m, 16-130 ⁇ m, 130-260 ⁇ m, 260-350 ⁇ m, 350-450 ⁇ m, 450-550 ⁇ m, 550-650 ⁇ m, 650-730 ⁇ m.
  • the width M of the LED chip 12 can also be: 101 ⁇ m, 106 ⁇ m, 108 ⁇ m, 109 ⁇ m, 113 ⁇ m, 118 ⁇ m, 121 ⁇ m, 125 ⁇ m, 129 ⁇ m, 190 ⁇ m, 280 ⁇ m, 350 ⁇ m, 460 ⁇ m, 560 ⁇ m, 650 ⁇ m, 730 ⁇ m.
  • the aspect ratio of the LED chip 12 is 3:2, 2:1, 2.5:1, 2.4:1, 2.2:1 or 1:1.
  • the dimension H of the LED chip 12 in the thickness direction is: 5um-15um, preferably, the thickness dimension H of the LED chip 12 is 5um-12um, 7um-11um, 8um-13um, 8um -15um, the thickness dimension H of the LED chip 12 can also be 8um, 9um, 10um, 11um, 12um.
  • the thickness D of the LED chip light emitting device 10 can be 10um-50um, preferably, the thickness D of the LED chip light emitting device 10 can be 10um-20um, 10um-30um, 10um-40um, 15um- 30um, 15um-35um, 15um-40um, the thickness D of the LED chip light emitting device 10 can also be 10um, 15um, 20um, 25um, 30um and so on.
  • the LED chip light-emitting device 10 further includes a second cured layer 17 and a second circuit layer 18, and the second cured layer 17 is disposed on the first circuit layer 13 The side away from the first cured layer 11 is connected, the second circuit layer 18 is arranged on the second cured layer 17 away from the side connected to the first circuit layer 13, and the second circuit layer 18 It is electrically connected with the first circuit layer 13 .
  • the LED chip light emitting device 10 may further include a third curing layer (not shown), a third circuit layer (not shown) and a fourth curing layer. layer (not shown), the fourth circuit layer (not shown), etc., wherein the third cured layer is arranged on the side of the second circuit layer 18 away from the second cured layer 17, the third circuit layer, The fourth cured layer and the fourth circuit layer are sequentially arranged on the side of the third cured layer away from the second circuit layer 18 .
  • the arrangement of more curing layers or circuit layers can meet the preparation of the LED chip light-emitting device 10 with various structures or control requirements, so that the LED chip light-emitting device 10 can be better controlled, and Get better results.
  • the LED chip light emitting device 10 may further include at least one circuit layer 100 , as shown in FIG. 9 , the LED chip light emitting device 10 includes two circuit layers 100 .
  • the thickness of a single circuit layer 100 is between 0.1 ⁇ m and 20 ⁇ m, specifically, the thickness of the circuit layer 100 is between 0.1 ⁇ m-1 ⁇ m, 0.5 ⁇ m-5 ⁇ m, 3 ⁇ m-15 ⁇ m, and 7 ⁇ m-20 ⁇ m.
  • the circuit layer 100 may be identical to the first circuit layer 13 .
  • the multiple layers of the circuit layers are sequentially stacked, and the multiple layers of the circuit layers 100 may have an electrical connection relationship.
  • the circuit layer 100 is disposed on a side of the first cured layer 11 close to the electrode 122 .
  • the circuit layer 100 includes a plurality of conductive structures 101 and a plurality of dielectric structures 102, wherein the conductive structures 101 are connected to the electrodes 122, and the dielectric structures 102 are disposed between the conductive structures 101, In order to avoid the problem of short circuit caused by contact between different conductive structures 101 .
  • the plurality of conductive structures 101 can be a continuous structure or divided into a plurality of independently arranged structures.
  • the multiple conductive structures 101 are distributed in a patterned manner, and the specific pattern of the conductive structures 101 is determined based on the number of LED chips 12 and their control methods; for example, multiple conductive structures 101 can make multiple LED chips 12 connected in parallel, A plurality of LED chips can also be connected in series and parallel; the plurality of conductive structures 101 can connect a plurality of LED chips 12 to realize electrical connection with an external circuit, therefore, the patterns of the plurality of conductive structures 101 will also change accordingly.
  • the conductive structure 101 may include conductive particles, and its material may include but not limited to silver, copper, tin and other materials, and the material of the conductive structure 101 and the electrode 122 may be the same or different.
  • a conductive connector 103 is also provided at the connection between the conductive structure 101 and the electrode 122, and the conductive connector 103 can be used to electrically connect the conductive structure 101 and the electrode 122.
  • the connection is more stable.
  • an isolation layer 104 needs to be provided between the circuit layer 100 and the first cured layer 11, and the isolation layer 104 can avoid an unnecessary electrical connection between the conductive structure 101 on the circuit layer 100 and the first cured layer 11 . Further, in order to achieve an effective electrical connection between the electrodes 122 and the conductive structure 101 after the isolation layer 104 is provided, a hole for the electrodes 122 to penetrate or be exposed is also provided on the isolation layer 104. through hole.
  • a reinforcing structure 105 can be provided between the conductive structure 101 and the dielectric structure 102, and the reinforcing structure 105 can be Made of dielectric material, it can be arranged on the edge of the conductive structure 101 , and it can be a construction of a polygonal cross-section such as a cylinder, a hexagonal column, or a combination thereof.
  • the reinforcing structure 105 is a dielectric material whose strength is greater than that of the dielectric structure 102 .
  • the material of the dielectric structure 102 includes, but is not limited to: polyester (PES), polyethylene (PE), polyvinyl alcohol (PVOH), poly(vinyl acetate) (PVA), poly(methyl methacrylate) (PMMA), poly(vinylpyrrolidone), multifunctional acrylates, or combinations comprising mixtures, monomers, oligomers, and copolymers of one or more of the above.
  • PET polyester
  • PE polyethylene
  • PVOH polyvinyl alcohol
  • PVA poly(vinyl acetate)
  • PMMA poly(methyl methacrylate)
  • multifunctional acrylates or combinations comprising mixtures, monomers, oligomers, and copolymers of one or more of the above.
  • two adjacent circuit layers 100 may be directly stacked and formed. 9-12, it can be understood that the first layer of the circuit layer 100 is directly formed on the side of the first cured layer 11 away from the light-emitting surface, while the second layer of the circuit layer 100 is directly formed The circuit layer 100 is formed on the surface of the first layer of the circuit layer 100 away from the first cured layer 11 . It can be understood that the circuit layer 100 of the third layer, the fourth layer, and the fifth layer can also be formed directly.
  • the method of directly forming the circuit layer 100 may include printing, vapor deposition, electroplating, electroless plating, sputter plating or mask etching.
  • the first cured layer 11 and the dielectric structure 102 in the circuit layer 100 can be made of the same flexible material, so that the LED chip light-emitting device 10 can be made of flexible materials as a whole, so as to meet the requirements of flexible display screens.
  • the first cured layer 11 , the conductive structure 101 and the dielectric structure 102 in the circuit layer 100 can all be made of transparent materials, so as to achieve the effect of transparent display.
  • the LED chip light-emitting device 10 may include a single-layer circuit layer 100 or a multi-layer circuit layer 100, and the circuit layer 100 may form a mutual circuit connection with the LED chip 12 to achieve diversification.
  • the circuit structure realizes the function of controlling the lighting effect. Due to the selection of various materials for the first cured layer 11 and the circuit layer 100 in the LED chip light-emitting device 10 , the effect of single-point power or pixel control of the LED chip 12 therein can be achieved.
  • the LED chip light-emitting device 10 can be applied to a direct display device or as a backlight module of a display, and can also be used as an electronic device casing, a protective case of a portable device or a wearable device.
  • the second embodiment of the present invention provides a method for manufacturing an LED chip light-emitting device 10, which includes the following steps:
  • Step Q1 arranging a plurality of LED chips so that at least some of the light-emitting surfaces of the LED chips are arranged in the same direction, forming a first curing layer for fixing the LED chips between the plurality of LED chips and/or covering a plurality of the LED chips, The electrodes of the LED chip are exposed on the first cured layer;
  • the light emitting surface may be covered in the first cured layer, or the light emitting surface is coplanar with a side of the first cured layer away from the electrode.
  • step Q2 at least one circuit layer is directly formed on the side of the first cured layer close to the electrodes, and the circuit layer is electrically connected to the electrodes of the LED chip, so as to obtain the required LED chip light-emitting device.
  • an electrode is provided on the side of the LED chip opposite to the light-emitting surface, and the electrode can be a part of the LED chip, or the electrode can be formed by the positive end of the LED chip.
  • the electrical connector leading out from the negative terminal such as gold wire, tin wire, etc.
  • the first cured layer can be made of chemical solvent-soluble adhesive material, made of hot melt adhesive or other soluble materials, or made of epoxy resin, silica gel, polycarbonate (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), etc. or a combination of several; can also choose such as It is prepared from materials such as optical curing and thermal curing.
  • chemical solvent-soluble adhesive material made of hot melt adhesive or other soluble materials, or made of epoxy resin, silica gel, polycarbonate (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), etc. or a combination of several; can also choose such as It is prepared from materials such as optical curing and thermal curing.
  • the color of the first cured layer 11 includes but not limited to red, yellow, blue, green, black and so on. It can be understood that the first cured layer is also made of a transparent material, which can fix the LED chip and the electrode.
  • the first cured layer can be directly formed between the LED chips and cover the LED chips by means of injection molding, pouring, dripping, etc., so as to fix the arranged LED chips.
  • step Q2 In order to achieve a better connection between the circuit layer and the first cured layer, and to avoid falling off or unnecessary gaps between the first cured layer and the circuit layer, it is also possible to perform step Q2 on all The first cured layer is subjected to surface treatment.
  • the roughness of the surface to be formed of the first cured layer has a great influence on the line width and pattern edge of the conductive structure formed in the circuit layer.
  • the smoothness of the surface has a great influence, and the line width and edge roughness of the surface to be printed are the smallest, which can be as low as 10-30 ⁇ m.
  • argon plasma treatment may be performed on the surface to be formed of the first cured layer to change the chemical composition and roughness of the surface to be formed of the first cured layer, thereby improving the hydrophilicity of the surface.
  • oxygen plasma can also be used to effectively remove pollutants from the surface of the first cured layer to be formed.
  • a circuit layer is directly formed on the side of the first cured layer close to the electrode, and the circuit layer is electrically connected to the electrode of the LED chip, wherein the direct formation of the circuit layer may be on the side of the first cured layer
  • the surface to be formed is printed to form a circuit layer.
  • the circuit layer specifically includes a conductive structure and a dielectric structure, wherein the conductive structure is formed by printing conductive materials, and the conductive materials include but are not limited to: gold-based conductive ink, silver-based conductive ink, copper-based conductive ink And carbon-based conductive ink, tin conductive ink, etc., specifically, nano-metal particle ink, nano-silver, particle-free phase ink silver acetate, silver oxide, metal salts (oxides), etc.
  • Dielectric structures are printed from dielectric materials including, but not limited to: polyester (PES), polyethylene (PE), polyvinyl alcohol (PVOH), poly(vinyl acetate) (PVA), Poly(methyl methacrylate) (PMMA), poly(vinylpyrrolidone), multifunctional acrylates or combinations comprising mixtures, monomers, oligomers and copolymers of one or more of the foregoing.
  • the dielectric structure may also include electronic potting glue and/or photosensitive resin, and the photosensitive resin includes cationic and free radical type, wherein the cationic photosensitive resin is mainly epoxy resin, and also has some vinyl ether groups Group resins, free radical photosensitive resins include epoxy acrylic resins, polyurethane acrylic resins, etc.
  • Direct printing to form circuit layers may include inkjet printing, extrusion printing, and the like.
  • inkjet printing is used as an example to illustrate the formation of circuit layers by direct printing, which specifically includes:
  • the printing materials sequentially ejected from the nozzle holes are directly deposited on the surface of the first cured layer to be formed as a preset printing pattern, and after sintering or curing, the first circuit layer can be formed without making a template.
  • the "sintering” includes thermal sintering, photonic sintering or chemical sintering and the like.
  • Use printable materials conductive ink, etc.
  • the curing and sintering of printing materials by means of heat, light or chemical crosslinking agents, and finally realize the rapid prototyping of multi-layer circuit layers.
  • the "curing” includes a process in which a crosslinking agent or curing agent such as a photopolymerization initiator reacts with a crosslinkable functional group to form a crosslinked network characteristic of the cured composition.
  • Surfactants and/or co-surfactants may be cationic surfactants, anionic surfactants, nonionic surfactants and amphiphilic copolymers, eg block copolymers.
  • the surface to be formed of the already formed circuit layer can be surface treated to change the chemical composition of the surface to be formed and roughness, thereby improving the hydrophilicity of its surface.
  • the method of direct printing used in the present invention to form a circuit layer can cause relative displacement of the positive and negative charges inside the piezoelectric crystal by applying an external voltage, and then the piezoelectric crystal deforms and presses the ink in the chamber to flow out of the nozzle hole, completing the process.
  • the driving voltage, the duration of the high level and the magnitude of the negative pressure, the inkjet speed and the particle size of the jetted material can be precisely controlled.
  • the passive components of capacitors, inductors and resistors can be directly printed on the surface to be formed by an inkjet printer to form a printed circuit layer of integrated components.
  • a reinforcing structure can be provided between the conductive structure and the dielectric structure, and the reinforcing structure can be made of a dielectric material, which can be arranged on the conductive
  • the edge of the structure which can be a construction of a polygonal cross-section such as a cylinder, a hexagonal column, or a combination thereof.
  • the reinforcing structure is a dielectric material whose strength is greater than the hardness of the dielectric structure.
  • the step of forming the circuit layer by direct printing at least includes:
  • the circuit layer may also include preparing blind holes and buried holes, and electrically connecting the intermediate traces with the external circuit, so that the circuit layer directly formed on the surface of the first cured layer to be formed can be externally connected to the circuit or other devices.
  • the conductive structure can also be formed first, and then the dielectric structure can be formed, or can be formed by printing at the same time.
  • step Q1 may also specifically include:
  • Step S1 providing a substrate
  • Step S2 arranging LED chips on the substrate, the LED chips include electrodes, and the side of the LED chips away from the electrodes is in contact with the substrate;
  • Step S3 forming a first cured layer for fixing the LED chips on the side of the substrate where the LED chips are arranged, and electrodes of the LED chips are exposed to the first cured layer.
  • the substrate provides support for the arrangement of the LED chips and the formation of the first cured layer for fixing the LED chips, which facilitates the convenience of preparation and the stability of fixing the LED chips in the industrial production process.
  • the electrodes of the LED chip can be exposed by means of grinding, etching, etc., or the electrodes of the LED chip can be treated before the formation of the first cured layer, so as to avoid the formation of the first cured layer.
  • the electrodes of the LED chips are covered so that the electrodes of the LED chips can be exposed to the first cured layer.
  • the end of the electrode is flush with the surface of the first cured layer, so as to facilitate the printing of the circuit layer and the electrical connection between the electrode and the circuit layer.
  • step S1 the step S2:
  • Step S11a distributing an adhesive layer on the side of the substrate where the LED chips are arranged.
  • the material used for the adhesive layer includes any one of heat-sensitive adhesive and photosensitive adhesive.
  • the setting of the adhesive layer can make the fixing between the substrate and the first cured layer tighter.
  • the substrate may be removed by light or heating.
  • step S1 the following steps may also be included between step S1 and step S2:
  • step S11b coating a first cured layer on the side of the substrate where the LED chips are arranged.
  • step S11a can be omitted.
  • step S3 it can be understood that, in order to obtain better lighting or display effects, the following steps are further included between step S3 and step S4:
  • a reflective layer is coated on the side of the first cured layer close to the electrode; a through hole is provided in the reflective layer close to the electrode.
  • the light emitted by the LED chip can be better reflected to prevent the light from propagating from the second surface side, resulting in loss of light efficiency of the LED chip.
  • step Q2 as shown in Figure 16, further includes:
  • Step S4 forming a circuit layer on the side of the first cured layer close to the electrode of the LED chip, and the electrode is electrically connected to the circuit layer;
  • Step S5 removing the substrate to obtain the LED chip light-emitting device.
  • step S4 the supporting substrate will be removed, therefore, the LED chip light-emitting device finally obtained is relatively thin, and since the first cured layer and the circuit layer are directly prepared Therefore, the LED chip light-emitting device is more firm and stable.
  • step S5 the following steps are further included between step S4 and step S5:
  • Step S41 filling and forming a second cured layer on the circuit layer
  • Step S42 printing a second circuit layer on the second cured layer.
  • the second cured layer can provide support for the second circuit layer and can provide an expandable circuit structure.
  • the second cured layer and the second circuit layer are provided to control the circuit with better LED chip light-emitting devices and improve its luminous effect.
  • the third embodiment of the present invention provides a display device 20, the display device 20 includes the LED chip light-emitting device 10 and the display assembly 21 provided in the first embodiment above, and the display assembly 21 is arranged on the In the light emitting direction of the LED chip light emitting device 10 , the LED chip light emitting device 10 provides a backlight for the display assembly 21 .
  • the light emitting surface of the LED chip light emitting device 10 is attached to the display assembly 21 without gap.
  • the LED chip light emitting device 10 is bonded to the display assembly 21 seamlessly.
  • the display device 20 further includes a power supply component 22 and a drive component 23, and the drive component 23 can be used to provide control signals for the LED chip light emitting device 10 to make the LED chip emit light.
  • the device 10 realizes lighting in sub-regions; the power supply component 22 is used to provide electric energy drive for the LED chip light-emitting device 10, and the drive component 23 can also control the startup or shutdown of the power supply component 22, and can further control the power supply The output power of the module 22.
  • the driving assembly 23 uses a dynamic backlight driving mode to drive a plurality of the LED chips 12 in the LED chip light emitting device 10 .
  • the display assembly 21 can be a display device 20 that needs to provide a backlight source, which includes but is not limited to: DSTN-LCD display (Dual Scan Tortuosity Nomograph-Liquid Crystal Display, double-layer super twisted nematic liquid crystal display), TFT-LCD display (thin filmtransistor-Liquid Crystal Display, thin film transistor liquid crystal display), etc.
  • DSTN-LCD display Dual Scan Tortuosity Nomograph-Liquid Crystal Display, double-layer super twisted nematic liquid crystal display
  • TFT-LCD display thin filmtransistor-Liquid Crystal Display, thin film transistor liquid crystal display
  • the frame of the LED chip light emitting device 10 is in the same position as the edge of the display area of the display assembly 21 . Furthermore, the ratio between the area of the display area of the display component 21 and the area of the light emitting surface of the fluorescent layer is 1:(0.9-1.1). Preferably, the ratio between the area of the display area of the display component 21 and the area of the light emitting surface of the fluorescent layer is further 1:(0.95-1.05). More preferably, the ratio between the area of the display area of the display component 21 and the area of the light emitting surface of the fluorescent layer is 1:1.
  • the LED chip light-emitting device 10 included in the display device 20 of the present invention has all the technical features included in the above-mentioned first embodiment and its modified embodiments, and the same parts thereof will not be repeated here.
  • the display device 20 includes the LED chip light emitting device 10 provided in the first embodiment, the LED chips 12 in the LED chip light emitting device 10 form a plurality of light emitting elements 24, and the light emitting elements 24 further include uniform A plurality of pixel units 241 are distributed, and each pixel unit 241 includes LED components 242 that emit light of at least three colors.
  • the setting of the number of the pixel units 241 can be determined according to the size of the display device 20 to be manufactured and the resolution of the display device 20 .
  • each pixel unit 241 may include an R-LED chip, a G-LED chip and a B-LED chip.
  • each pixel unit 241 may include three, five or more LED assemblies 242, and at least three LED assemblies 242 are arranged in a straight line, in an L shape, in a square shape, or in a square shape. arrangement.
  • the LED assembly 242 is obtained by disposing a light conversion layer on the LED chip 12 of the LED chip light emitting device 10 .
  • the R-LED chip includes a blue LED chip and a first quantum dot layer (not shown) disposed on the blue LED chip, and the blue LED chip excites the first quantum dot layer to emit red light.
  • B-LED chips include only blue LED chips, which emit blue light.
  • the G-LED chip includes a blue LED chip and a second quantum dot layer (not shown) disposed on the blue LED chip, and the blue LED chip excites the second quantum dot layer to emit green light. The wavelengths of the first quantum dot layer and the second quantum dot layer are different.
  • the fourth embodiment of the present invention provides an electronic device 30, the electronic device 30 includes a support body 31, and the support body 31 has a display device 20 in the second embodiment above. cavity.
  • the side of the display device 20 facing the user is also provided with a protective cover 32 .
  • the supporting body 31 further includes protrusions 311 symmetrically disposed on the side walls of the supporting body 31 , and the protrusions 311 can provide support for the display device 20 .
  • the protrusion 311 further forms an inner space in the display device 20 . In order to make full use of the internal space of the electronic device 30, avoid the excessive volume of the electronic device 30, thereby reducing the portability of the electronic device 30, internal components such as the power supply assembly 22 and the drive assembly 23 can be arranged on the in the inner space.
  • the display component 21 in the display device 20 is electrically connected to the drive component 23 through a flexible circuit board 201 Since the flexibility of the flexible circuit board 201 is good, the distance P between the side wall of the support body 31 and the side of the display device 20 is negligible.
  • the difference from the existing electronic equipment is that the display device 20 and the support body 31 in the electronic equipment 30 provided by the present invention are independent of each other in terms of display functions, therefore, the support body 31 only serves as The function of supporting the circuit structure will not affect the display effect of the display device 20 , and the support body 31 will not affect the light emitting effect of the LED chip light emitting device 10 .
  • the LED chip light-emitting device 10 In order to make the LED chip light-emitting device 10 maintain a good light-emitting effect after partial bending, the LED chip light-emitting device 10 needs to meet the above distribution density requirements.
  • the electronic device 30 includes the LED chip light emitting device 10 in any of the above embodiments.
  • the LED chip light-emitting device 10 provided by the present invention compared with the side-emitting light source or the direct-light emitting light source commonly used in the prior art, does not produce dark areas in the edge area of the display assembly 21 of the electronic device 30, therefore, it can Make the electronic device 30 with no frame or narrow frame.
  • the electronic device 30 may not be provided with a frame for accommodating the display device 20 , and the drive assembly 23 and the power supply assembly 22 may be provided on the side of the display device 20 , to obtain a thinner electronic device 30 .
  • the electronic device 30 may be the electronic device 30 of the flexible display assembly 21 .
  • the LED chip light-emitting device 10 with bendable performance can be obtained, so that an electronic device 30 with a flexible display component 21 can be manufactured.
  • the present invention also provides an embodiment in which the LED chip light-emitting device 10 is embedded in the shell body of an electronic device.
  • the LED chip light-emitting device 10 is used as a part of the electronic device shell, and the corresponding electronic equipment includes a mobile phone shell, a tablet computer shell, a Bluetooth Earphone casings, smart watch casings, and more.
  • the LED chip light-emitting device 10 By setting the LED chip light-emitting device 10 to be embedded in the shell body of the electronic equipment, it is used to replace the traditional light belt product. Since the size of the LED chip light-emitting device 10 is smaller, it is not possible to increase the thickness of the electronic equipment shell, and because the LED Low heat dissipation and low power consumption, the case will not overheat during use, which improves user experience, reduces energy consumption, and increases practicability.
  • the LED chip light-emitting device 10 can also be attached to the surface of the electronic device 30, and the above-mentioned electronic device housing body is designed to better reflect the preset pattern set by the LED light-emitting assembly.
  • the effect is usually made of materials with a certain degree of light transmission.
  • the LED chip light-emitting device 10 is used to replace the traditional light strip product, because the size of the LED chip light-emitting device 10 provided by the present invention is smaller, and because the LED With low heat dissipation and low power consumption, the mobile phone case will not overheat during use. Therefore, the user experience is improved, energy consumption is reduced, and practicality is increased.
  • the LED chip light-emitting device and its preparation method, display device and electronic equipment of the present invention have the following advantages:
  • the prepared LED chip light-emitting device can be made lighter and thinner as a whole, and the packaging integrity is better, and the production efficiency and product yield can be further improved.
  • a plurality of LED chips are arranged so that the light emitting surfaces of at least some of the LED chips are arranged in the same direction, and a first cured layer for fixing the LED chips is formed between the plurality of LED chips and/or covering a plurality of the LED chips, and the LED The electrode of the chip is exposed to the first cured layer; a circuit layer is directly formed on the side of the first cured layer close to the electrode, and the circuit layer is electrically connected to the electrode of the LED chip to obtain the required LED chip light-emitting device.
  • Forming a first cured layer for fixing LED chips between and/or covering a plurality of LED chips, and directly forming a circuit layer on the side of the first cured layer close to the electrodes can improve the performance of the LED.
  • the overall sealing and firmness of the chip light-emitting device improves the yield rate and effectively reduces the manufacturing cost of the LED chip light-emitting device, and is especially suitable for the preparation of large-size LED chip light-emitting devices.
  • the first cured layer plays the role of fixing the LED chip and the circuit layer.
  • the first cured layer can replace the existing light-emitting device
  • the function of the middle substrate can make the LED chip light-emitting device lighter and thinner, and fix it more firmly. It can also effectively reduce its production cost and user's use cost, and because there is no substrate, it can be applied to more scenarios.
  • the LED chip is prevented from sliding when the first cured layer is filled, so as to avoid affecting the arrangement of the LED chip and the luminous effect of the LED chip light-emitting device.
  • the use of the adhesive layer material can make it easier to separate the LED chip, the first cured layer and the substrate.
  • the preparation process of the first cured layer is related to the specific material selection of the first cured layer and the structural relationship between it and the LED chip, which can further improve the preparation of the obtained LED chip light-emitting device. structural stability and manufacturing yield.
  • At least one circuit layer is directly formed on the side of the first cured layer close to the electrodes, and after the circuit layer is electrically connected to the electrodes of the LED chip, it also includes removing the substrate to obtain the LED chip.
  • Light emitting devices The substrate can provide support for the LED chip arrangement during the preparation process of the LED chip light-emitting device, and remove the base after the preparation is completed, which can make the overall thickness of the LED chip light-emitting device smaller, and without the substrate, the LED chip emits light.
  • the device can still function normally.
  • the removed substrate can be reused in the manufacturing process, thus, the production cost can be further reduced.
  • the circuit layer includes a conductive structure and a dielectric structure
  • the conductive structure is formed by printing a conductive material
  • the dielectric structure is formed by printing a dielectric material. Dividing the circuit layer into conductive materials and dielectric materials can further improve the accuracy and operability of the direct printing of the circuit layer.
  • the conductive material and the dielectric material are directly printed on the surface to be formed of the first cured layer and deposited as a preset printing pattern, and the first layer of the circuit layer is formed after sintering or curing, which has a significant impact on the circuit layer.
  • the direct printing is further limited. After printing the pattern, it is sintered and cured, so the printed pattern can be fixed to facilitate the formation of subsequent circuit layers, and the stability of each circuit layer can be improved.
  • the diversified sintering or curing methods in the present invention can meet the requirements for the selection of different circuit layer materials, and then can realize the preparation requirements of various structures.
  • the material of the first cured layer includes any one of epoxy resin, silica gel, polycarbonate, polyethylene, polypropylene, polystyrene, polyethylene terephthalate or a combination of several.
  • the selection of the corresponding material can fix the LED chip while avoiding affecting its luminous effect.
  • the circuit layer and the first cured layer are made of flexible material and/or transparent material. It can meet the preparation requirements of various LED chip light-emitting devices, so as to expand the application scenarios of LED chip light-emitting devices.
  • the present invention also provides a display device, which adopts the above-mentioned LED chip light-emitting device as a backlight source or as a direct display structure. Since the LED chip light-emitting device with the above structure is adopted, no additional substrate is required, and therefore, the overall thickness of the LED chip light-emitting device is smaller, thereby making the display device more miniaturized and thinner. In addition, it can also effectively reduce the The usage and manufacturing cost of the above-mentioned display device.
  • LED chip light-emitting device as the main component of the display device on electronic equipment can obtain electronic equipment with a smaller thickness, which is beneficial to the design and manufacture of miniaturized and thinner electronic equipment, thereby effectively reducing its small size. Minimize the manufacturing cost of electronic equipment and meet the market demand for thinner and lighter products.

Abstract

提供一种LED芯片发光器件(10)的制备方法,其通过在多个LED芯片(12)之间和/或覆盖多个所述LED芯片(12)形成固定LED芯片(12)的第一固化层(11),以及在所述第一固化层(11)靠近电极(122)的一侧直接形成电路层(13),可以提高所述LED芯片发光器件(10)整体的密封性和牢固性,提高良品率,有效降低了LED芯片发光器件(10)的生产制造成本,尤其适合用于大尺寸薄型化LED芯片发光器件的制备中。还提供采用上述方法制备获得的LED芯片发光器件(10),以及具有上述LED芯片发光器件(10)的显示装置(20)及电子设备(30),其有效降低了薄型化电子设备的制造成本。

Description

LED芯片发光器件及其制备方法、显示装置及电子设备 【技术领域】
本发明涉及LED显示技术领域,特别涉及一种LED芯片发光器件及其制备方法、显示装置及电子设备。
【背景技术】
LED(Light Emitting Diode)是现有常见的固体光源,其具有寿命长、稳定性高、节能环保等特点。现有的LED显示器件中,一般是将LED芯片设置在基板上,基板上设置有电路结构,在制备组装的过程中往往需要设置一些连通的导电孔,通过穿设引线或者导电胶使得LED芯片和基板之间实现电连接,因此其结构往往比较复杂,尤其当电路结构复杂时,LED光源组件的厚度往往较大,且其电路结构与LED芯片易损坏,良品率低,大大提高了LED光源组件的生产制造成本。
【发明内容】
为克服现有技术中存在的问题,本发明提供了LED芯片发光器件及其制备方法、显示装置及电子设备。
本发明解决技术问题的方案是提供一种LED芯片发光器件的制备方法,一种LED芯片发光器件的制备方法,其包括以下步骤:排布多个LED芯片,以使至少部分LED芯片的出光面同向设置,在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,LED芯片的电极外露于所述第一固化层;在所述第一固化层靠近电极的一侧直接形成至少一电路层,所述电路层与LED芯片的电极电连接,以获得所需LED芯片发光器件。
优选地,排布多个LED芯片进一步包括:提供一基板;在所述基板上排布LED芯片,所述LED芯片包括电极,所述LED芯片远离电极的一侧与所述基板接触。
优选地,在所述基板排布所述LED芯片的一侧涂布黏着层;所述黏着层包括热敏胶黏剂、光敏胶黏剂中任一种。
优选地,在所述第一固化层靠近电极的一侧直接形成电路层,该电路层与LED芯片的电极电连接,移除所述基板之后获得所述LED芯片发光器件。
优选地,通过光照、加热或化学引发剂以移除所述基板。
优选地,所述电路层包括导电结构及介电结构,导电结构由导电材料打印而形成,介电结构由介电材料打印而形成。
优选地,导电材料和介电材料直接被打印在所述第一固化层的待形成表面上沉积为预设的打印图案,经烧结或固化后形成第一层所述电路层。
优选地,所述烧结包括热烧结、光子烧结或化学烧结中任一种或几种的组合;和/或所述固化包括交联剂或固化剂与可交联官能团反应以形成固化组合物的交联网络特征的过程。
优选地,所述第一固化层的材料包括环氧树脂、硅胶、聚碳酸酯、聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯中任一种或几种的组合。
优选地,所述电路层与所述第一固化层为柔性材质和/或透明材质。
本发明为了解决上述技术问题,还提供如下的技术方案:一种LED芯片发光器件,其包括多个LED芯片、第一固化层以及至少一电路层,第一固化层固定所述LED 芯片,所述电路层与LED芯片的电极电连接,所述LED芯片发光器件基于如上所述的LED芯片发光器件的制备方法制备而成。
优选地,所述LED芯片发光器件的厚度为10μm-50μm。
优选地,所述电路层包括导电结构、介电结构以及增强结构,多个所述导电结构呈图案化分布,增强结构设于导电结构与介电结构之间。
本发明为了解决上述技术问题,还提供如下的技术方案:一种显示装置,其包括如上所述的LED芯片发光器件和显示组件,所述显示组件设于所述LED芯片发光器件的发光方向之上,所述LED芯片发光器件为所述显示组件提供背光源;或者所述显示装置包括如权利要求11所述LED芯片发光器件,所述LED芯片发光器件包括多个像素单元,每个所述像素单元包括至少三种颜色的LED组件。
本发明为了解决上述技术问题,还提供如下的技术方案:一种电子设备,其包括如上所述的LED芯片发光器件以及电子设备主体,所述LED芯片发光器件嵌设于所述电子设备主体或所述LED芯片发光器件附于所述电子设备主体表面。
与现有技术相比,本发明的LED芯片发光器件及其制备方法、显示装置及电子设备具有以下优点:
采用本发明所提供的制备方法,可使制备获得LED芯片发光器件整体更轻薄且封装整体性更优,还可以进一步提高生产效率及产品良率。此外,排布多个LED芯片,以使至少部分LED芯片的出光面同向设置,在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,LED芯片的电极外露于所述第一固化层;在所述第一固化层靠近电极的一侧直接形成电路层,该电路层与LED芯片的电极电连接,以获得所需LED芯片发光器件,通过在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,以及在所述第一固化层靠近电极的一侧直接形成电路层,可以提高所述LED芯片发光器件整体的密封性和牢固性,提高良品率,有效降低了LED芯片发光器件的生产制造成本,尤其适合用于大尺寸LED芯片发光器件的制备中。
使用该结构的LED芯片发光器件,第一固化层起到固定LED芯片的作用与电路层的作用,在本发明所提供的LED芯片发光器件中,所述第一固化层可替换现有发光器件中基板的作用,从而可使所述LED芯片发光器件更轻薄化,且固定更牢固。还可以有效降低了其生产制造的成本,以及用户的使用成本,且由于没有设置基板,使得其可应用于更多的场景。
通过在基板上设置黏着层,使得在填充第一固化层时,防止LED芯片产生滑动,以避免影响LED芯片的排列,以及避免影响LED芯片发光器件的发光效果。黏着层材料的使用,可使得LED芯片、第一固化层与基板更容易分离。
在本发明中,针对所述第一固化层的制备过程中的,涉及对于第一固化层的具体材料选择以及其与LED芯片之间的结构关系,可以进一步提高制备所获得的LED芯片发光器件的结构稳定性以及制备良率。
在本发明中,在所述第一固化层靠近电极的一侧直接形成至少一电路层,所述电路层与LED芯片的电极电连接之后,还包括移除所述基板之后获得所述LED芯片发光器件。基板可以在LED芯片发光器件制备过程中为LED芯片排布提供支撑,而在制备完成后移除基本,则 可以使LED芯片发光器件整体厚度更小,且在没有基板的情况下,LED芯片发光器件仍然可以正常。被移除的基板可在制造过程中可重复使用,因此,可以进一步降低生产成本。
进一步地,在本发明中,所述电路层包括导电结构及介电结构,导电结构由导电材料打印而形成,介电结构由介电材料打印而形成。将电路层划分为由导电材料和介电材料打印而成,可以进一步提高电路层直接打印形成的精准度和可操作性。
进一步地,导电材料和介电材料直接被打印在所述第一固化层的待形成表面上沉积为预设的打印图案,经烧结或固化后形成第一层所述电路层,其对电路层的直接打印做了进一步的限定,进行打印图案后经烧结、固化,因此可以使打印图固定,以便于后续电路层形成,并可提高每个电路层的稳定性。
在本发明中多样化的烧结或固化方式,可以满足不同电路层材质选择的需求,进而可以实现多种结构的制备需求。
进一步地,在本发明中,所述第一固化层的材料包括环氧树脂、硅胶、聚碳酸酯、聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯中任一种或几种的组合。对应材质的选择可对LED芯片固定的同时,避免对其发光效果造成影响。
所述电路层与所述第一固化层为柔性材质和/或透明材质。可以满足多样化LED芯片发光器件的制备需求,以拓展LED芯片发光器件的应用场景。
本发明还提供一种显示装置,其采用上述LED芯片发光器件作为背光源或作为直接显示的结构。由于采用上述结构的LED芯片发光器件,则无需额外设置基板,因此,所述LED芯片发光器件的整体厚度更小,进而可使显示装置更小型化、轻薄化,此外,还可以有效降低了所述显示装置的使用及制造成本。
在电子设备上采用上述LED芯片发光器件作为所述显示装置的主要组成部分,可以获得厚度更小的电子设备,以利于小型化、轻薄化电子设备的设计和生产制造,进而有效降低了其小型化电子设备的制造成本,并能满足市场对轻薄化产品的需求。
【附图说明】
图1是本发明第一实施例中LED芯片发光器件的主视结构示意图;
图2是本发明第一实施例中LED芯片出光面的结构示意图;
图3是本发明第一实施例中LED芯片发光器件包括第一电路层时的结构示意图;
图4是本发明第一实施例中LED芯片发光器件上设置有反射层时的结构示意图;
图5是本发明第一实施例中LED芯片发光器件上设置有匀光层或荧光层时的结构示意图;
图6是本发明第一实施例中LED芯片发光器件上设置有光学膜层时的结构示意图;
图7是本发明第一实施例中LED芯片尺寸示意图;
图8是本发明第一实施例中LED芯片发光器件上设置有第二固化层、第二电路层时的结构示意图;
图9是本发明第一实施例中LED芯片发光器件中包含至少一直接形成的电路层的结构示意图;
图10是图9中所示LED芯片发光器件中导电结构包括导电结构、介电结构的结构示意图。
图11是图9中所示LED芯片发光器件中设置导电连接件、隔离层的结构示意图。
图12是图9中所示LED芯片发光器件中设置增强结构的结构示意图。
图13是本发明第一实施例中LED芯片发光器件中可挠结构的示意图。
图14是本发明第二实施例一种LED芯片发光器件的制备方法的流程示意图;
图15是本发明第二实施例一种LED芯片发光器件的制备方法中步骤Q1的细节流程示意图;
图16是本发明第二实施例一种LED芯片发光器件的制备方法中步骤Q2的细节流程示意图;
图17是本发明第二实施例一种LED芯片发光器件的制备方法中步骤S4与步骤S5之间的细节流程示意图;
图18是本发明第三实施例中显示装置的剖视结构示意图;
图19是本发明第三实施例中显示装置的另一模块示意图;
图20是本发明第三实施例提供的显示装置中像素单元241的排列示意图;
图21是本发明第四实施例中电子设备的结构示意图;
附图标示说明:
10、LED芯片发光器件;11、第一固化层;12、LED芯片;13、第一电路层;14、反射层;15、功能层;16、光学膜层;17、第二固化层;18、第二电路层;111、第一表面;112、第二表面;121、出光面;122、电极;
100、电路层;101、导电结构;102、介电结构;103、导电连接件;104、隔离层;105、增强结构;
20、显示装置;21、显示组件;22、电源组件;23、驱动组件;201、柔性电路板;241、像素单元;242、LED组件;
30、电子设备;31、支撑体;32、保护盖板;311、凸起。
【具体实施方式】
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
请参阅图1和图2,本发明第一实施例提供一种LED芯片发光器件10,其包括第一固化层11及多个LED芯片12,多个所述LED芯片12嵌设在所述第一固化层11上。在多个LED芯片12之间和/或覆盖多个所述LED芯片12形成固定LED芯片12的第一固化层11。所述LED芯片12包括一出光面121,所述第一固化层11包括第一表面111,所述LED芯片12的出光面121与所述第一表面111平行,可以理解,所述出光面121可与第一表面111处于同一平面,或者所述出光面121略高于所述第一表面111。
所述LED芯片12中与出光面121相对的一侧上设 置有电极122,所述电极122可为所述LED芯片12的一部分,或所述电极122为由所述LED芯片12的正极端、负极端引出的电连接件,如可为金线、锡线等。界定所述第一固化层11中与所述第一表面111相对的一面为第二表面112,所述电极122远离与LED芯片12接触的一端与第二表面112处于同一平面,或者所述电极122远离与LED芯片12接触的一端略高于所述第二表面112。以使得的电极122可与外接电路相连,使得LED芯片12导通。
可以理解,在本实施例中,如图1中所示,所述LED芯片发光器件10无需额外设置基板。直接通过将第一固化层11设置于多个所述LED芯片12以及所述电极122之间即可。
进一步地,在本实施例中,第一固化层11可以由化学溶剂能溶解的黏胶材料制成,由热熔胶或者其他可溶解的材料制成,或者由环氧树脂、硅胶、聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)中任一种制成;还可以选用如光学固化、热固化等材质制备而成。
优选地,所述第一固化层11的颜色包括但不限于红、黄、蓝、绿、黑等。可以理解,所述第一固化层也为透明材质,其可对所述LED芯片与所述电极起到固定的作用。
作为一种实施方式,所述第一固化层11可为绝缘层或者非绝缘层,当所述第一固化层11为非绝缘层时,所述电极122外侧包裹有绝缘层,以防止电极122之间通过所述第一固化层11电导通,从而引起所述LED芯片12的短路。
进一步地,本发明中,所述LED芯片12可为蓝光芯片或紫光芯片,也可为RGB三色光芯片。当所述LED芯片发光器件10中所包含的为RGB三色光芯片时,则可以认为,在所述LED芯片发光器件10上,包括多个由RGB对应芯片组成像素单元。
可以理解,在本实施例中,LED芯片12之间可以按照一定的间距矩阵排列,多个LED芯片12之间也可为离散型分布、同心环状分布等,具体排布方式可基于不同的使用场景做调整。单个LED芯片12或多个LED芯片12成一组,实现电性导通及电路控制。
请参阅图3,作为一种优化实施方式,所述LED芯片发光器件10还包括第一电路层13,所述第一电路层13设置于所述第一固化层11靠近所述电极122一侧,也即所述第一电路层13设置于第二表面112,与所述电极122电连接,通过所述电极122可使得所述LED芯片12可与外接电路实现电连接,以便于外部电源向所述LED芯片12供电或实现控制。
请参阅图4,作为又一种优化实施方式,所述LED芯片发光器件10还包括有一反射层14,所述反射层14设置于所述第一固化层11与所述第一电路层13之间,所述反射层14能很好地将LED芯片12发出的光线进行反射,避免光线从第二表面112一侧传播出去,导致LED芯片12的光效损失。
可以理解,所述反射层14的可以为黑胶或者白胶。
请参阅图5,作为一种优化实施方式,所述LED芯片发光器件10还包括有一功能层15,所述功能层15为匀光层或荧光层,所述功能层15设置于所述LED芯片12远离所述电极122一侧,也即所述功能层15设置于所述第一表面111一侧,以使得所述LED芯片 发光器件10获得更优的发光效果。
可以理解,在本发明一些实施例中,所述第一固化层11与所述功能层15可为一体设置,且其材料相同。
在本发明的一些具体实施例中,当所述功能层15为荧光层时,所述荧光层包括荧光粉组合物、胶体及扩散粒子。
所述荧光粉组合物可包括但不受限于:红光荧光粉:氮氧化物、氟化物、氮化物等之一种或多种;绿光荧光粉:塞隆、硅酸盐等之一种或多种;黄粉:钇铝石榴石、硅酸盐等之一种或多种;蓝粉:铝酸钡、铝酸盐等之一种或多种。
所述胶体可包括但不受限于:硅胶、环氧树脂、聚甲基丙烯酸甲酯(PMMA)。
所述扩散粒子为二氧化硅类、有机硅类、丙烯酸类或碳酸钙类粒子中的一种或几种的组合,其中,所述扩散粒子的粒径为7-20μm。所述扩散粒子的粒径及其数量,会使得所述胶层13对光源的偏转及扩散效果更好,同时能提高光洁度及其透光率。更优地,为了获得更优的混光效果,所述扩散粒子可选用至少两种光折射率不同的粒子进行组合。
其中,所述荧光粉组合物的质量占所述荧光胶组合物与所述胶体总质量的3%-50%。
在本发明一些较优的实施例中,所述荧光粉组合物中包括黄光荧光粉,即所述荧光粉组合物中包括钇铝石榴石、硅酸盐等之一种或两种的混合物。
在本发明另外的一些实施例中,所述荧光粉组合物中还可包括红光荧光粉及绿光荧光粉的组合,即所述荧光粉组合物中红光荧光粉可包括氮氧化物、氟化物、氮化物等之一种或多种及绿光荧光粉包括塞隆、硅酸盐等之一种或多种。
在本发明一些较优实施例中,所述荧光粉组合物包括红光荧光粉、绿光荧光粉及黄光荧光粉的组合,所述红光荧光粉包括氮氧化物、氟化物、氮化物等之一种或多种;所述绿光荧光粉包括卤硅酸盐、硫化物、硅酸盐及氮氧化物中的一种或几种的组合;黄光荧光粉:钇铝石榴石、硅酸盐等之一种或多种。
进一步地,红光荧光粉为氟硅酸钾和氟锗酸钾中的一种或者其组合,绿光荧光粉为塞隆;所述黄光荧光粉为硅酸锶、硅酸镁及硅酸锶钡中的一种或几种的组合。
进一步地,所述荧光层组合物包括质量比为(1~4)∶(0.5~2)∶(0.5~2)的红光荧光粉、绿光荧光粉及黄光荧光粉。
更进一步地,红光荧光粉、绿光荧光粉及黄光荧光粉的质量比为(1~3)∶(0.5~1.5)∶(0.5~1.5)。
在本发明一些具体实施例中,所述红光荧光粉为氟锗酸钾,黄光荧光粉为硅酸盐,绿光荧光粉为塞隆。可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的64%,16%,20%。又可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的58.4%,17.2%,24.4%。还可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的68%,14%,18%。也可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的52%,22%,26%。
优选地,所述红光荧光粉、绿光荧光粉及黄光荧光粉分别占荧光粉总量的60%,18%及22%。
在本发明另一些具体实施例中,所述红光荧光粉为氟硅酸钾,黄光荧光粉为钇铝石榴石,绿光荧光粉为塞隆。可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的61.2%,19.4%,19.4%。又可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的58%,21%,21%。还可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的55%,23%,22%。也可以是所述红光荧光粉、绿光荧光粉及黄光荧光粉的质量分别占荧光粉总质量的67%,17%,16%。
优选地,所述红光荧光粉、绿光荧光粉及黄光荧光粉分别占荧光粉总量的60%,20%及20%。
请参阅图6,在一些其他实施例中,所述LED芯片发光器件10还包括设置在所述功能层15上的光学膜层16。可选地,光学膜层16还可以为扩散片、反射膜、增透膜、滤光膜或者保护膜中的一种或几种。
请参阅图7,在本发明中,界定一LED芯片12的长度方向及宽度方向。LED芯片12长度方向的尺寸L为:10-900μm,宽度方向的尺寸M为:10-700μm。优选地,LED芯片12的长度尺寸L为20-210μm,21-220μm,22-230μm,23-250μm,25-350μm,35-480μm,48-650μm,65-850μm,85-900μm,LED芯片12的长度尺寸L还可以为:20μm、25μm、21μm、29μm、22μm、250μm、265μm、275μm、295μm、380μm、450μm、600μm、750μm、900μm。所述LED芯片12的宽度尺寸M为10-105μm、15-110μm、16-130μm、130-260μm、260-350μm、350-450μm、450-550μm、550-650μm、650-730μm。较优地,所述LED芯片12的宽度尺寸M还可以为:101μm、106μm、108μm、109μm、113μm、118μm、121μm、125μm、129μm、190μm、280μm、350μm、460μm、560μm、650μm、730μm。优选地,LED芯片12长宽比为3∶2、2∶1、2.5∶1、2.4∶1、2.2∶1或1∶1。进一步地,界定一LED芯片12的厚度方向,LED芯片12厚度方向的尺寸H为:5um-15um,优选地,LED芯片12的厚度尺寸H为5um-12um,7um-11um,8um-13um,8um-15um,LED芯片12的厚度尺寸H还可为8um,9um,10um,11um,12um。
请参阅图8,所述LED芯片发光器件10的厚度D可为10um-50um,优选地,所述LED芯片发光器件10的厚度D可为10um-20um,10um-30um,10um-40um,15um-30um,15um-35um,15um-40um,所述LED芯片发光器件10的厚度D还可为10um,15um,20um,25um,30um等。
请参阅图8,作为一种优化实施方式,所述LED芯片发光器件10还包括有第二固化层17与第二电路层18,所述第二固化层17设置于所述第一电路层13远离于所述第一固化层11连接一侧,所述第二电路层18设置于所述第二固化层17远离于所述第一电路层13连接一侧,且所述第二电路层18与所述第一电路层13之间电连接。
可以理解,为实现对LED芯片发光器件10更好的控制效果,所述LED芯片发光器件10还可包括第三固化层(图未示)、第三电路层(图未示)以及第四固化层(图未示)、第四电路层(图未示)等,其中,所述第三固化层设于第二电路层18远离第二固化层17的一侧,所述第三电路层、第四固化层及第四电路层依次设于所述第三固化层远离搜书第二电路层18 的一侧之上。
在本发明中,更多的固化层或电路层的设置,可以满足多种不同结构或者控制需求的所述LED芯片发光器件10的制备,从而可更好地LED芯片发光器件10进行控制,以获得更好使用效果。
作为本发明的另一些具体的实施例,所述LED芯片发光器件10还可以包括至少一电路层100,如图9中所示,所述LED芯片发光器件10包括两层电路层100。单个所述电路层100的厚度为0.1μm至20μm之间,具体地,所述电路层100的厚度为0.1μm-1μm、0.5μm-5μm、3μm-15μm、7μm-20μm之间。在一些实施例中,所述电路层100可等同于所述第一电路层13。
当所述电路层100的层数为两层及以上时,多层所述电路层为依次叠加形成,多层所述电路层100之间可具有电连接关系。
如图10中所示,所述电路层100设于所述第一固化层11靠近所述电极122的一侧。具体地,所述电路层100包括多个导电结构101及多个介电结构102,其中,所述导电结构101与所述电极122连接,所述介电结构102设于导电结构101之间,以避免不同导电结构101之间接触而出现短路的问题。
多个所述导电结构101可为连续结构或分为多个独立设置的结构。多个所述导电结构101呈图案化分布,所述导电结构101具体图案基于LED芯片12的数量及其控制方式决定;如多个所述导电结构101可使多个LED芯片12为并联连接,也可以使多个LED芯片为串并联连接;多个所述导电结构101可连接多个LED芯片12与外部电路实现电连接,因此,多个所述导电结构101的图案也会随之变化。
进一步地,所述导电结构101可包括导电粒子,其材质可包括但不限于银、铜、锡等材质,所述导电结构101与所述电极122的材质可为相同或不同。
如图11中所示,在所述导电结构101与所述电极122连接处还设有导电连接件103,所述导电连接件103可用于使所述导电结构101与所述电极122之间电连接更稳定。
如图11中所示,所述第一固化层11的材质为非绝缘材质时,则在所述电路层100与所述第一固化层11之间还需要设置隔离层104,所述隔离层104可以避免所述电路层100上的导电结构101与所述第一固化层11之间产生非必要的电连接关系。进一步地,为了在设置所述隔离层104后,所述电极122与导电结构101之间可以实现有效电连接,则在所述隔离层104上还设有供所述电极122穿设或外露的通孔。
如图12中所示,为了进一步使所述电路层100的导电结构101不易损坏,则在所述导电结构101与所述介电结构102之间可设置增强结构105,该增强结构105可以为介电材质制成,其可设于所述导电结构101的边沿,其可为圆柱体、六边形柱体等多边形横截面的构建或其组合。所述增强结构105为介电材料,其材料的强度大于所述介电结构102的强度。
在本发明一些具体的实施例中,所述介电结构102的材质包括但不受限于:聚酯(PES)、聚乙烯(PE)、聚乙烯醇(PVOH)、聚(乙酸乙烯酯)(PVA)、聚(甲基丙烯酸甲酯)(PMMA)、聚(乙烯基吡咯烷酮)、多官能丙烯酸酯或包括上述一种或多种的混合物、单体、低聚物和共聚物的组合。
在本实施例中,相邻两层所述电路层100之间可以直接叠加形成。结合图9-图12中所示,可以理解,第一层所述电路层100直接形成于所述第一固化层11远离所述出光面的一侧,而第二层所述电路层100直接形成于第一层所述电路层100远离所述第一固化层11的一侧表面,可以理解,第三层、第四层、第五层的所述电路层100的也可直接形成。在本发明中,直接形成所述电路层100的方法可以包括打印、蒸镀、电镀、化学镀、溅射镀或掩模蚀刻的方式形成。
请参阅图13,在本实施例另一些具体实施方式中,所述第一固化层11与所述电路层100中的介电结构102可采用相同的柔性材质,以使所述LED芯片发光器件10整体可为柔性材质,以满足柔性显示屏的需求。
进一步地,所述第一固化层11、所述电路层100中的导电结构101、介电结构102均可采用透明材质制备而成,以达到透明显示的效果。
在本实施例中,所提供的所述LED芯片发光器件10可包括单层电路层100或多层电路层100,且该电路层100可与LED芯片12形成相互的电路连接,以实现多样化的电路结构,实现控制点亮效果的功能。由于所述LED芯片发光器件10中第一固化层11、电路层100多样化材质的选择,因此,可以实现其内LED芯片12的单点电量或像素控制的效果。所述LED芯片发光器件10可应用于直显装置或作为显示器的背光模组,也可用于作为电子设备外壳、便携设备的保护壳或穿戴设备中。
请参阅图14,本发明的第二实施例提供一种LED芯片发光器件10的制备方法,其包括以下步骤:
步骤Q1,排布多个LED芯片,以使至少部分LED芯片的出光面同向设置,在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,LED芯片的电极外露于所述第一固化层;
其中,所述出光面可被包覆在所述第一固化层内,或所述出光面与第一固化层远离所述电极的一侧共面。
步骤Q2,在所述第一固化层靠近电极的一侧直接形成至少一电路层,所述电路层与LED芯片的电极电连接,以获得所需LED芯片发光器件。
其中,在步骤Q1中,所述LED芯片中与出光面相对的一侧上设置有电极,所述电极可为所述LED芯片的一部分,或所述电极可以为由所述LED芯片的正极端、负极端引出的电连接件,如可为金线、锡线等。
进一步地,在本实施例中,第一固化层可以由化学溶剂能溶解的黏胶材料制成,由热熔胶或者其他可溶解的材料制成,或者由环氧树脂、硅胶、聚碳酸酯(PC)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)中等中任一种或几种的组合;还可以选用如光学固化、热固化等材质制备而成。
优选地,所述第一固化层11的颜色包括但不限于红、黄、蓝、绿、黑等。可以理解,所述第一固化层也为透明材质,其可对所述LED芯片与所述电极起到固定的作用。
所述第一固化层可以通过注塑、灌注、滴液等方式直接形成于LED芯片之间且覆盖所述LED芯片,以对已经排布好的多个LED芯片进行固定。
为了使所述电路层与所述第一固化层之间实现更 好连接,避免第一固化层与所述电路层之间出现脱落或不必要的间隙,则在进行步骤Q2之前还可以对所述第一固化层进行表面处理。
以述第一固化层为聚对苯二甲酸乙二醇酯(PET)为例,所述第一固化层的待形成表面的粗糙度对制成形成电路层中导电结构的线宽与图案边缘的光滑程度有很大影响,待打印表面的线宽和边缘粗糙度最小,最低可低至10-30μm。例如,可以对所述第一固化层的待形成表面进行氩等离子处理,改变了所述第一固化层的待形成表面的化学组成以及粗糙度,从而提高了其表面亲水性。此外,为了进一步提高制成形成电路层的质量,也可以采用氧等离子有效所述第一固化层的待形成表面的去除污染物。
在上述步骤Q2中,在所述第一固化层靠近电极的一侧直接形成电路层,该电路层与LED芯片的电极电连接,其中,直接形成电路层可为在所述第一固化层的待形成表面打印形成电路层。
具体地,所述电路层具体包括导电结构及介电结构,其中,导电结构由导电材料打印而形成,导电材料包括但不受限于:金系导电墨水、银系导电墨水、铜系导电墨水和碳系导电墨水,锡导电墨水等,具体可为纳米金属颗粒墨水、纳米银、无颗粒相墨水醋酸银、氧化银,金属盐类(氧化物)等。
介电结构由介电材料打印而形成,介电材料包括但不受限于:聚酯(PES)、聚乙烯(PE)、聚乙烯醇(PV0H)、聚(乙酸乙烯酯)(PVA)、聚(甲基丙烯酸甲酯)(PMMA)、聚(乙烯基吡咯烷酮)、多官能丙烯酸酯或包括上述一种或多种的混合物、单体、低聚物和共聚物的组合。具体地,所述介电结构也可包括电子灌封胶和/或光敏树脂,光敏树脂包括阳离子型和自由基型,其中,阳离子型光敏树脂以环氧树脂为主,也有部分乙烯基醚基团树脂,自由基型光敏树脂则包括环氧丙烯酸树脂、聚氨酯丙烯酸树脂等。
直接打印形成电路层可包括喷墨打印、挤压打印等。
在本实施例中,以喷墨打印作为示例说明直接打印形成电路层,具体包括:
喷孔依次喷出的打印材料直接在所述第一固化层的待形成表面上沉积为预设的打印图案,经烧结或固化后即可成形第一层所述电路层,无需制作模板。
其中,所述“烧结”包括热烧结、光子烧结或化学烧结等。使用可打印的材料(导电油墨等)通过逐层打印的方式来进行堆积,通过热、光或化学交联剂等方式实现打印材料的固化与烧结,最后实现多层电路层的快速成型。
所述“固化”包括交联剂或固化剂诸如光聚合引发剂与可交联官能团反应以形成固化组合物的交联网络特征的过程。
导电材料和/或介电材料作为打印油墨组合物时,均需要表面活性剂和任选的助表面活性剂的存在。表面活性剂和/或助表面活性剂可以是阳离子表面活性剂,阴离子表面活性剂,非离子表面活性剂和两亲共聚物,例如嵌段共聚物。
可以理解,在形成一层电路层后,需要在该层电路层上继续形成下一层电路层之前,可以对已经形成的电路层的待形成表面进行表面处理,以改变待形成表面的化学组成以及粗糙度,从而提高了其表面亲水性。
本发明所采用的直接打印形成电路层的方式,可以通过外加电压的方式使压电晶体内部正负电荷发生相对位移,然后压电晶体发生形变并压迫腔室内的墨水从喷孔中流出,完成导电材料、介电材料喷射。进一步地,通过控制驱动电压、高电平持续时间及负压大小,精密控制喷墨速度和喷射材料的颗粒大小。
可以理解,在本发明所提供的实施例中,电容器、电感器和电阻器的无源部件可以通过喷墨打印机直接打印形成在待形成表面,制成集成元件印制的电路层。
为了进一步使所述电路层的导电结构不易损坏,则在所述导电结构与所述介电结构之间可设置增强结构,该增强结构可以为介电材质制成,其可设于所述导电结构的边沿,其可为圆柱体、六边形柱体等多边形横截面的构建或其组合。所述增强结构为介电材料,其材料的强度大于所述介电结构的硬度。
在本实施例中,直接打印形成电路层的步骤至少包括:
使用打印头打印介电材料,以形成介电结构;
使用打印头打印导电材料,以形成导电结构,烧结以形成一层电路层;以及
完成一层电路层打印制备后,继续进行下一层电路层打印。
在完成电路层打印后,还可包括制备盲孔和埋孔,将中间迹线与外部电路实现电连接,以使直接形成在所述第一固化层待形成表面上的电路层可外接电路或其他设备。
可以理解,也可以先形成导电结构,再形成介电结构,也可以同时打印形成。
为了提高制备获得的LED芯片发光器件10的稳定性,如图15中所示,上述步骤Q1还可具体包括:
步骤S1,提供一基板;
步骤S2,在所述基板上排布LED芯片,所述LED芯片包括电极,所述LED芯片远离电极的一侧与所述基板接触;
步骤S3,在所述基板排布所述LED芯片的一侧形成固定所述LED芯片的第一固化层,LED芯片的电极外露于所述第一固化层。
其中,基板为LED芯片的排布及形成固定LED芯片的第一固化层提供了支撑,便于在工业生产过程中,提高制备的便捷度以及LED芯片固定的稳定性。
上述步骤S3中使所述LED芯片的电极外露可采用打磨、蚀刻等方式,也可以在形成所述第一固化层前,对LED芯片的电极进行处理,以使第一固化层形成过程中避免对LED芯片的电极被覆盖,以使LED芯片的电极可以外露于所述第一固化层。通过对第一固化层进行处理,以使得电极的端部与第一固化层表面齐平,以便于所述电路层印刷,以及电极与所述电路层的电连接。
进一步地,在所述步骤S1与所述步骤S2之间还包括以下步骤:
步骤S11a,在所述基板排布所述LED芯片的一侧谂布黏着层。
所述黏着层所使用的材料包括热敏胶黏剂、光敏胶黏剂中任一种。
所述黏着层的设置可以使所述基板与所述第一固化层之间固定更紧密。
此时,在步骤S5中,可通过光照或者加热以移除所述基板。
作为一种变形,步骤S1与步骤S2之间还可包括 以下步骤:
所述步骤S11b,在所述基板排布所述LED芯片的一侧涂布第一固化层。
此时,步骤S11a可以省略。
可以理解,为了获得更好的发光或显示效果,则步骤S3与步骤S4之间进一步包括以下步骤:
在所述第一固化层靠近所述电极一侧涂布反射层;所述反射层靠近所述电极位置设置有通孔。
通过在所述固化层靠近所述电极一侧涂布反射层,以更好地将LED芯片发出的光线进行反射,避免光线从第二表面一侧传播出去,导致LED芯片的光效损失。
上述步骤Q2,如图16中所示,进一步包括:
步骤S4,在所述第一固化层靠近所述LED芯片的电极一侧形成电路层,所述电极与所述电路层电性连接;及
步骤S5,移除基板,获得所述LED芯片发光器件。
可见,在本实施例中,起支撑作用的基板会被移除,因此,最终获得的所述LED芯片发光器件厚度较薄,且由于所述第一固化层、所述电路层均为直接制备获得,因此,所述LED芯片发光器件更牢固及稳定、请参阅图17,步骤S4与步骤S5之间进一步包括以下步骤:
步骤S41,在所述电路层上填充形成第二固化层;及
步骤S42,在所述第二固化层上印刷第二电路层。
其中,所述第二固化层可为所述第二电路层提供支撑,并可提供可拓展的电路结构。
在本实施例中,设置第二固化层以及第二电路层,以更好的LED芯片发光器件进行电路控制,提升其发光效果。
请参阅图18,本发明第三实施例提供一种显示装置20,所述显示装置20包括上述第一实施例提供的LED芯片发光器件10及显示组件21,所述显示组件21设于所述LED芯片发光器件10的出光方向上,所述LED芯片发光器件10为所述显示组件21提供背光源。所述LED芯片发光器件10的发光面与所述显示组件21无间隙贴合。
在一些实施例中,所述LED芯片发光器件10与所述显示组件21无缝隙贴合。
如图19中所示,优选地,所述显示装置20进一步包括电源组件22及驱动组件23,所述驱动组件23可用于为所述LED芯片发光器件10提供控制信号,使所述LED芯片发光器件10实现分区域进行点亮;所述电源组件22用于为所述LED芯片发光器件10提供电能源驱动,所述驱动组件23还可控制电源组件22的启动或关闭,还可进一步控制电源组件22的输出功率。
具体地,在本发明一些较为优选的实施例中,所述驱动组件23采用动态背光驱动模式对所述LED芯片发光器件10中的多个所述LED芯片12进行驱动。
在本发明中,所述显示组件21可为需要提供背光源的显示装置20,其包括但不受限于:DSTN-LCD显示器(Dual Scan Tortuosity Nomograph-Liquid Crystal Display,双层超扭曲向列型液晶显示)、TFT-LCD显示器(thin filmtransistor-Liquid Crystal Display,薄膜晶体管型液晶显示)等。需要特别说明的是,上述列举的显示组件21种类仅为说明,而不作为本发明中对显示组件21种类的限制。
所述LED芯片发光器件10的边框与所述显示组件21的显示区域的边缘的位置一致。更进一步地,所述显示组件21的显示区域的面积与所述荧光层的发光面的面积之间比例为1∶(0.9-1.1)。优选地,所述显示组件21的显示区域的面积与所述荧光层的发光面的面积之间比例进一步为1∶(0.95-1.05)。更优地,所述显示组件21的显示区域的面积与所述荧光层的发光面的面积之间比例为1∶1。
本发明中所述显示装置20中所包括的LED芯片发光器件10具有如上述第一实施例及其变形实施例包括的所有技术特征,在此不再赘述其相同部分。
请参阅图20,所述显示装置20包括第一实施例提供的LED芯片发光器件10,所述LED芯片发光器件10中的LED芯片12形成多个发光件24,所述发光件24进一步包括均匀分布的多个像素单元241,每个像素单元241包括至少三种发光颜色的LED组件242。所述像素单元241数量的设置可依据所要制作的显示装置20的大小及显示装置20的分辨率而决定。
具体地,如图20所示,每个像素单元241内可包括R-LED芯片、G-LED芯片及B-LED芯片。本实施例的其他实施方式中,每个像素单元241可包括三个、五个或者更多LED组件242,至少三个LED组件242呈一字型排列、L型排列、品字型排列或者方形排列。
可以理解的是,LED组件242为在LED芯片发光器件10上的LED芯片12上设置光转换层而得。所述R-LED芯片包括蓝光LED芯片及设置在蓝光LED芯片上的第一量子点层(图未示),蓝光LED芯片激发所述第一量子点层发出红光。B-LED芯片仅包括蓝光LED芯片,其能发出蓝光。G-LED芯片包括蓝光LED芯片及设置在蓝光LED芯片上的第二量子点层(图未示),所述蓝光LED芯片激发所述第二量子点层发出绿光。第一量子点层和第二量子点层的波长不相同。
请参阅图21,本发明第四实施例提供一种电子设备30,所述电子设备30包括一支撑体31,所述支撑体31内具有一可收容上述第二实施例中所述显示装置20的腔体。所述显示装置20面向用户的一面上还设有一保护盖板32。
所述支撑体31进一步包括对称设置在所述支撑体31侧壁上的凸起311,所述凸起311可为所述显示装置20提供支撑。所述凸起311进一步在所述显示装置20形成一内部空间。为了充分利用该电子设备30的内部空间,避免所述电子设备30的体积过大,从而降低所述电子设备30的便携性,如所述电源组件22、驱动组件23等内部器件可设于所述内部空间内。
如图15所示,为了进一步提高所述电子设备30中所述显示区域的屏占比,所述显示装置20中的所述显示组件21通过柔性电路板201与所述驱动组件23电性连接,由于所述柔性电路板201的可挠性较好,因此,所述支撑体31的侧壁与所述显示装置20的侧面的距离P可忽略不计。
与现有电子设备的不同之处在于:本发明所提供的所述电子设备30中显示装置20与所述支撑体31之间在显示功能上彼此独立,因此,所述支撑体31仅起到支撑所述电路结构的作用,而不会对所述显示装置20的显示效果造成影响,所述支撑体31也不会对所述LED芯片发光器件10的发光效果造成影响。
为了使所述LED芯片发光器件10在局部弯曲后仍能保持较好的发光效果,所述LED芯片发光器件10需 满足上述的分布密度要求。
在本实施例中,所述电子设备30包括如上所述的任一实施例中所述LED芯片发光器件10。本发明所提供的所述LED芯片发光器件10与现有技术中常用的侧边发光式光源或直下发光式光源相比,不会在电子设备30显示组件21边缘区域产生暗区,因此,可做成无边框或者窄边框的电子设备30。
更进一步地,在本发明另外一些实施例中,所述电子设备30可不设置收容所述显示装置20的边框,所述驱动组件23与所述电源组件22可设置在所述显示装置20的侧面,以获得厚度更薄的电子设备30。
更进一步地,在本发明一些特殊的实施例中,所述电子设备30可为柔性显示组件21的电子设备30。通过选用上述可弯曲、折叠或卷曲的电路结构,可获得具有可弯曲性能的所述LED芯片发光器件10,从而可制备获得具有柔性显示组件21的电子设备30。
本发明还提供一种所述LED芯片发光器件10嵌入电子设备壳本体内的实施例,LED芯片发光器件10作为电子设备壳体的一部分,对应电子设备包括手机壳体、平板电脑壳体、蓝牙耳机壳体、智能手表壳体等等。
通过设置LED芯片发光器件10嵌入电子设备壳本体内,用于替代传统的灯带产品,由于本LED芯片发光器件10的尺寸更小,所以可以不增加电子设备壳体的厚度,而且由于LED的低散热和低功耗,在使用时不会出现壳体过热的现象,提高了用户体验,降低了能耗,增加了实用性。
可以理解,在本发明的一种使用场景中,LED芯片发光器件10也可以贴附在所述电子设备30的表面,上述的电子设备壳体本体为了更好体现LED发光组件设置的预设图案的效果,通常运用具有一定透光性的材料制成。
可以理解的,通过设置LED芯片发光器件10粘接在所述电子设备30的表面,用于替代传统的灯带产品,由于本发明所提供的LED芯片发光器件10的尺寸更小,而且由于LED的低散热和低功耗,在使用时不会出现手机壳过热的现象,因此,提高了用户体验,降低了能耗,增加了实用性。
与现有技术相比,本发明的LED芯片发光器件及其制备方法、显示装置及电子设备具有以下优点:
采用本发明所提供的制备方法,可使制备获得LED芯片发光器件整体更轻薄且封装整体性更优,还可以进一步提高生产效率及产品良率。此外,排布多个LED芯片,以使至少部分LED芯片的出光面同向设置,在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,LED芯片的电极外露于所述第一固化层;在所述第一固化层靠近电极的一侧直接形成电路层,该电路层与LED芯片的电极电连接,以获得所需LED芯片发光器件,通过在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,以及在所述第一固化层靠近电极的一侧直接形成电路层,可以提高所述LED芯片发光器件整体的密封性和牢固性,提高良品率,有效降低了LED芯片发光器件的生产制造成本,尤其适合用于大尺寸LED芯片发光器件的制备中。
使用该结构的LED芯片发光器件,第一固化层起到固定LED芯片的作用与电路层的作用,在本发明所提供的LED芯片发光器件中,所述第一固化层可替换现有发光器件中基板的作用,从而可使所述LED芯片发光器件更轻薄化,且固定更牢固。还可以有效降低了其生产制 造的成本,以及用户的使用成本,且由于没有设置基板,使得其可应用于更多的场景。
通过在基板上设置黏着层,使得在填充第一固化层时,防止LED芯片产生滑动,以避免影响LED芯片的排列,以及避免影响LED芯片发光器件的发光效果。黏着层材料的使用,可使得LED芯片、第一固化层与基板更容易分离。
在本发明中,针对所述第一固化层的制备过程中的,涉及对于第一固化层的具体材料选择以及其与LED芯片之间的结构关系,可以进一步提高制备所获得的LED芯片发光器件的结构稳定性以及制备良率。
在本发明中,在所述第一固化层靠近电极的一侧直接形成至少一电路层,所述电路层与LED芯片的电极电连接之后,还包括移除所述基板之后获得所述LED芯片发光器件。基板可以在LED芯片发光器件制备过程中为LED芯片排布提供支撑,而在制备完成后移除基本,则可以使LED芯片发光器件整体厚度更小,且在没有基板的情况下,LED芯片发光器件仍然可以正常。被移除的基板可在制造过程中可重复使用,因此,可以进一步降低生产成本。
进一步地,在本发明中,所述电路层包括导电结构及介电结构,导电结构由导电材料打印而形成,介电结构由介电材料打印而形成。将电路层划分为由导电材料和介电材料打印而成,可以进一步提高电路层直接打印形成的精准度和可操作性。
进一步地,导电材料和介电材料直接被打印在所述第一固化层的待形成表面上沉积为预设的打印图案,经烧结或固化后形成第一层所述电路层,其对电路层的直接打印做了进一步的限定,进行打印图案后经烧结、固化,因此可以使打印图固定,以便于后续电路层形成,并可提高每个电路层的稳定性。
在本发明中多样化的烧结或固化方式,可以满足不同电路层材质选择的需求,进而可以实现多种结构的制备需求。
进一步地,在本发明中,所述第一固化层的材料包括环氧树脂、硅胶、聚碳酸酯、聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯中任一种或几种的组合。对应材质的选择可对LED芯片固定的同时,避免对其发光效果造成影响。
所述电路层与所述第一固化层为柔性材质和/或透明材质。可以满足多样化LED芯片发光器件的制备需求,以拓展LED芯片发光器件的应用场景。
本发明还提供一种显示装置,其采用上述LED芯片发光器件作为背光源或作为直接显示的结构。由于采用上述结构的LED芯片发光器件,则无需额外设置基板,因此,所述LED芯片发光器件的整体厚度更小,进而可使显示装置更小型化、轻薄化,此外,还可以有效降低了所述显示装置的使用及制造成本。
在电子设备上采用上述LED芯片发光器件作为所述显示装置的主要组成部分,可以获得厚度更小的电子设备,以利于小型化、轻薄化电子设备的设计和生产制造,进而有效降低了其小型化电子设备的制造成本,并能满足市场对轻薄化产品的需求。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的原则之内所作的任何修改,等同替换和改进等均应包含本发明的保护范围之内。

Claims (15)

  1. 一种LED芯片发光器件的制备方法,其特征在于:其包括以下步骤:排布多个LED芯片,以使至少部分LED芯片的出光面同向设置,在多个LED芯片之间和/或覆盖多个所述LED芯片形成固定LED芯片的第一固化层,LED芯片的电极外露于所述第一固化层;在所述第一固化层靠近电极的一侧直接形成至少一电路层,所述电路层与LED芯片的电极电连接,以获得所需LED芯片发光器件。
  2. 如权利要求1所述LED芯片发光器件的制备方法,其特征在于:排布多个LED芯片进一步包括:提供一基板;在所述基板上排布LED芯片,所述LED芯片包括电极,所述LED芯片远离电极的一侧与所述基板接触。
  3. 如权利要求2所述LED芯片发光器件的制备方法,其特征在于:在所述基板排布所述LED芯片的一侧涂布黏着层;所述黏着层包括热敏胶黏剂、光敏胶黏剂中任一种。
  4. 如权利要求2所述LED芯片发光器件的制备方法,其特征在于:在所述第一固化层靠近电极的一侧直接形成至少一电路层,所述电路层与LED芯片的电极电连接之后,还包括移除所述基板之后获得所述LED芯片发光器件。
  5. 如权利要求4所述LED芯片发光器件的制备方法,其特征在于:通过光照、加热或化学引发剂以移除所述基板。
  6. 如权利要求1所述LED芯片发光器件的制备方法,其特征在于:所述电路层包括导电结构及介电结构,导电结构由导电材料打印而形成,介电结构由介电材料打印而形成。
  7. 如权利要求6所述LED芯片发光器件的制备方法,其特征在于:导电材料和介电材料直接被打印在所述第一固化层的待形成表面上沉积为预设的打印图案,经烧结或固化后形成第一层所述电路层。
  8. 如权利要求7所述LED芯片发光器件的制备方法,其特征在于:所述烧结包括热烧结、光子烧结或化学烧结中任一种或几种的组合;和/或所述固化包括交联剂或固化剂与可交联官能团反应以形成固化组合物的交联网络特征的过程。
  9. 如权利要求1所述LED芯片发光器件的制备方法,其特征在于:所述第一固化层的材料包括环氧树脂、硅胶、聚碳酸酯、聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二醇酯中任一种或几种的组合。
  10. 如权利要求1所述LED芯片发光器件的制备方法,其特征在于:所述电路层与所述第一固化层为柔性材质和/或透明材质。
  11. 一种LED芯片发光器件,其特征在于:所述LED芯片发光器件包括多个LED芯片、第一固化层以及至少一电路层,第一固化层固定所述LED芯片,所述电路层与LED芯片的电极电连接,所述LED芯片发光器件基于如权利要求1-10中任一项所述的LED芯片发光器件的制备方法制备而成。
  12. 如权利要求11中所述LED芯片发光器件,其特征在于:所述LED芯片发光器件的厚度为10μm-50μm。
  13. 如权利要求11中所述LED芯片发光器件,其特征在于:所述电路层包括导电结构、介电结构以及增强结构,多个所述导电结构呈图案化分布,增强结构设于 导电结构与介电结构之间。
  14. 一种显示装置,其特征在于:其包括如权利要求11所述的LED芯片发光器件和显示组件,所述显示组件设于所述LED芯片发光器件的发光方向之上,所述LED芯片发光器件为所述显示组件提供背光源;或者
    所述显示装置包括如权利要求11所述LED芯片发光器件,所述LED芯片发光器件包括多个像素单元,每个所述像素单元包括至少三种颜色的LED组件。
  15. 一种电子设备,其特征在于:所述电子设备包括如权利要求11所述的LED芯片发光器件以及电子设备主体,所述LED芯片发光器件嵌设于所述电子设备主体或所述LED芯片发光器件附于所述电子设备主体表面。
PCT/CN2022/112857 2021-09-08 2022-08-16 Led芯片发光器件及其制备方法、显示装置及电子设备 WO2023035881A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111051294.7 2021-09-08
CN202122173450.9 2021-09-08
CN202111051294.7A CN113921508A (zh) 2021-09-08 2021-09-08 Led芯片发光器件及其制备方法、显示装置及电子设备
CN202122173450.9U CN217214709U (zh) 2021-09-08 2021-09-08 一种led芯片发光器件、显示装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023035881A1 true WO2023035881A1 (zh) 2023-03-16

Family

ID=85507185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112857 WO2023035881A1 (zh) 2021-09-08 2022-08-16 Led芯片发光器件及其制备方法、显示装置及电子设备

Country Status (1)

Country Link
WO (1) WO2023035881A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051923A (zh) * 2013-03-28 2015-11-11 东芝北斗电子株式会社 发光装置及其制造方法
CN105706257A (zh) * 2013-11-07 2016-06-22 东芝北斗电子株式会社 发光装置
CN107092129A (zh) * 2016-09-30 2017-08-25 深圳市玲涛光电科技有限公司 光源组件、显示装置及电子设备
CN209993596U (zh) * 2019-06-26 2020-01-24 深圳市瑞丰光电子股份有限公司 一种led芯片发光器件、显示装置及电子设备
CN113921508A (zh) * 2021-09-08 2022-01-11 深圳市瑞丰光电子股份有限公司 Led芯片发光器件及其制备方法、显示装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105051923A (zh) * 2013-03-28 2015-11-11 东芝北斗电子株式会社 发光装置及其制造方法
CN105706257A (zh) * 2013-11-07 2016-06-22 东芝北斗电子株式会社 发光装置
CN107092129A (zh) * 2016-09-30 2017-08-25 深圳市玲涛光电科技有限公司 光源组件、显示装置及电子设备
CN209993596U (zh) * 2019-06-26 2020-01-24 深圳市瑞丰光电子股份有限公司 一种led芯片发光器件、显示装置及电子设备
CN113921508A (zh) * 2021-09-08 2022-01-11 深圳市瑞丰光电子股份有限公司 Led芯片发光器件及其制备方法、显示装置及电子设备

Similar Documents

Publication Publication Date Title
CN112133718B (zh) 显示面板、显示装置及显示面板的制备方法
CN107093659B (zh) 柔性面光源及其制造方法及电子设备
US7824049B2 (en) Illumination device and display device incorporating the same
JP4300223B2 (ja) 照明装置および照明装置を用いた表示装置
WO2019148591A1 (zh) 直下式背光模组以及液晶显示器
EP2363884B1 (en) Lighting unit and display device comprising the same
WO2020019421A1 (zh) Led背光装置及led显示装置
KR102067420B1 (ko) 발광다이오드어셈블리 및 그를 포함한 액정표시장치
CN109671735B (zh) 量子点显示基板及其制作方法、显示装置
WO2023226611A1 (zh) 灯板及其制备方法、背光模组
KR101055037B1 (ko) 라이트 유닛 및 이를 구비한 디스플레이 장치
CN210403725U (zh) 发光二极管封装组件
CN111682094A (zh) 一种led发光背板及其生产方法
KR101081073B1 (ko) 라이트 유닛 및 이를 구비한 디스플레이 장치
CN215932317U (zh) 一种背光模组以及显示装置
KR100824716B1 (ko) 엘이디 칩온보드 타입의 면광원모듈과 이를 이용한액정표시장치
WO2023035881A1 (zh) Led芯片发光器件及其制备方法、显示装置及电子设备
CN114509895B (zh) 背光模组及其制备方法和显示装置
CN113921508A (zh) Led芯片发光器件及其制备方法、显示装置及电子设备
CN213988888U (zh) 一种使用倒装发光二极管芯片的背光模组
CN217214709U (zh) 一种led芯片发光器件、显示装置及电子设备
WO2024051256A1 (zh) 背光模组、显示装置以及背光模组的制作方法
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
TWI807445B (zh) 發光模組及其製造方法、顯示裝置
CN217641323U (zh) 一种背光模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866355

Country of ref document: EP

Kind code of ref document: A1