WO2023035848A1 - 介质同步时延计时器设置方法及相关装置 - Google Patents

介质同步时延计时器设置方法及相关装置 Download PDF

Info

Publication number
WO2023035848A1
WO2023035848A1 PCT/CN2022/111750 CN2022111750W WO2023035848A1 WO 2023035848 A1 WO2023035848 A1 WO 2023035848A1 CN 2022111750 W CN2022111750 W CN 2022111750W WO 2023035848 A1 WO2023035848 A1 WO 2023035848A1
Authority
WO
WIPO (PCT)
Prior art keywords
mld
access point
station
link
nstr
Prior art date
Application number
PCT/CN2022/111750
Other languages
English (en)
French (fr)
Inventor
李云波
郭宇宸
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023035848A1 publication Critical patent/WO2023035848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a method for setting a medium synchronization delay timer and related devices.
  • wireless local area network wireless local area network
  • cellular network development and evolution The continuous technical goal of wireless local area network (wireless local area network, WLAN) or cellular network development and evolution is to continuously improve throughput.
  • the protocol of the WLAN system is mainly discussed and researched in the standard group of the Institute of Electrical and Electronics Engineers (IEEE, institute of electrical and electronics engineers).
  • IEEE Institute of Electrical and Electronics Engineers
  • 802.11a/b/g/n/ac/ax the next generation
  • the standard 802.11be takes extremely high throughput (EHT) as a technical goal.
  • EHT extremely high throughput
  • One of the key technologies of 802.11be is to improve throughput through multi-link (multi-link, ML) communication.
  • WLAN devices that support the next-generation standard 802.11be, that is, EHT devices have the ability to send and receive in multi-band (multi-band), so as to use larger bandwidth for data transmission, thereby significantly improving Throughput rate.
  • multi-frequency bands include but are not limited to: 2.4GHz Wi-Fi frequency band, 5GHz Wi-Fi frequency band and 6GHz Wi-Fi frequency band.
  • 802.11be a WLAN device that supports multi-link communication is called a multi-link device (Multi-link device, MLD).
  • MLD multi-link device
  • a multi-link device can use multiple links (or multiple frequency bands) to communicate in parallel to make the transmission The speed has been greatly improved.
  • multi-link devices When multiple frequency bands supported by a multilink device (MLD) are closely spaced between frequencies, transmitting a signal on one frequency band can affect reception on another frequency band. For example, if a multi-link device sends a signal on link 1, since the frequency interval between link 1 and link 2 is small, the signal sent on link 1 will cause channel interference to link 2, affecting the link 2 channels to access and receive information, so in order to avoid mutual interference, this device cannot independently perform transmission and reception operations on multiple frequency bands simultaneously.
  • STR transmitting and receiving
  • NSTR non-simultaneous transmitting and receiving
  • NSTR link pair due to the problem of signal interference between links, when it sends a signal on one link (such as link 1), it may not be able to send signals on another link (such as link 2). ) to receive the signal, if there is a data packet to be received on link 2 at this time, it may not be received, resulting in packet loss, thereby missing the network allocation vector (network allocation vector, NAV) update. Then, if the station on link 2 directly participates in channel competition (such as enhanced distributed channel access (EDCA) competition), it will bring fairness problems to other stations. This technical problem needs to be solved urgently. solve.
  • channel competition such as enhanced distributed channel access (EDCA) competition
  • the embodiment of the present application provides a method for setting a medium synchronization delay timer and a related device.
  • a medium synchronization delay timer By reasonably setting the value of the medium synchronization delay timer, it is possible to solve the problem that a station that loses medium synchronization (lost medium synchronization) participates in channel competition to other stations.
  • the fairness problem brought about can also reduce the impact of unnecessary restrictions on site performance, that is, it can improve site performance.
  • the present application provides a method for setting a medium synchronization delay timer, the method including: the first non-AP MLD in a non-access point station (non-access point station, non-AP STA) multi-link device A station starts the Medium Sync Delay (MediumSyncDelay) timer and sets an initial value at the end of the transmission of the second station in the non-AP MLD; the first station in the non-AP MLD receives the medium access control protocol data unit (Medium Access Control Protocol Data Unit (MPDU) physical layer protocol data unit (physical layer Protocol Data Unit, PPDU), the MPDU contains a request to send (request to send, RTS) frame; if the RTS frame is sent by the first access point , and the working link of the first access point does not belong to any NSTR link pair of the AP MLD to which the first access point belongs, then the first station in the non-AP MLD will set the medium synchronization delay timer The count value is reset to 0.
  • MPDU Medium Access Control Protocol Data Unit
  • PPDU
  • the link pair formed by the link working at the first station and the link working at the second station is an NSTR link pair, that is to say, the first station and the second station in the non-AP MLD have the NSTR capability.
  • the first access point may be an access point associated with the first station, or the first access point may be a multiple (multiple) basic service set identifier where the access point associated with the first station is located, other access points in BSSID). It should be understood that the first station here may be referred to as a station that loses medium synchronization or a station in a blind state.
  • the foregoing initial value is set by the AP, or is a default value stipulated by a standard.
  • the first station After the first station receives the RTS frame, it determines whether the count value of the MediumSyncDelay timer needs to be set to 0 by judging whether the link of the sending station of the RTS frame belongs to the NSTR link pair. Different sending sites of the RTS frame perform different processing on the MediumSyncDelay timer.
  • the implementation of this technical solution can not only solve the fairness problem brought by the lost medium synchronization station participating in channel competition to other stations, thereby reducing the probability of collision and improving the fairness of channel competition; it can also reduce unnecessary restrictions on station performance impact, which can improve site performance.
  • the current 802.11be standard only defines that when an AP MLD is a mobile AP MLD (Mobile AP MLD), its link pair can be NSTR, otherwise the AP MLD All link pairs must be STR's.
  • NSTR Mobile AP MLD has only two links, and the only two links are NSTR. Therefore, the working link of the above-mentioned first access point does not belong to any NSTR link pair of the AP MLD to which the first access point belongs. It can also be understood as: the AP MLD to which the first access point belongs is not NSTR Mobile AP MLD , any two links included in the NSTR Mobile AP MLD are NSTR's.
  • the above method further includes: if the above RTS frame is sent by the first access point, and the AP MLD to which the first access point belongs is NSTR Mobile AP MLD, then the first station in the non-AP MLD does not The count value of the medium synchronization delay timer is reset to 0.
  • this solution provides a method for setting the medium synchronization delay timer compatible with the existing 802.11be standard.
  • the above method further includes: if the above RTS frame is sent by the first access point, and the working link of the first access point belongs to For any NSTR link pair of the AP MLD, the first station in the non-AP MLD does not reset the count value of the medium synchronization delay timer to 0.
  • this scheme does not allow the MediumSyncDelay timer to be reset to 0 when the sending station of the RTS frame is in a blind state or loses medium synchronization, which can avoid the fairness brought to other stations by the station losing medium synchronization directly participating in channel competition Sexual issues, thereby reducing the probability of collisions and improving the fairness of channel competition.
  • the present application provides a communication device, which may be a non-AP MLD or a chip in the non-AP MLD, such as a Wi-Fi chip.
  • the communication device includes: a processing unit, configured to start a medium synchronization delay timer and set an initial value when the transmission of the second station in the non-AP MLD ends, and the link where the communication device works is connected to the link where the second station works
  • the link pair formed by the link is an NSTR link pair
  • the transceiver unit is used to receive the PPDU, the PPDU carries the MPDU, and the MPDU contains the RTS frame
  • the processing unit is also used to send the RTS frame for the first access point , and the working link of the first access point does not belong to any NSTR link pair of the AP MLD to which the first access point belongs, the count value of the medium synchronization delay timer is reset to 0.
  • the first access point is an access point associated with the communication device, or the first access point is another access point in the multi-BSS
  • the foregoing initial value is set by the AP, or is a default value stipulated by a standard.
  • the link on which the first access point works does not belong to any NSTR link pair of the AP MLD to which the first access point belongs, which can also be understood as: the first The AP MLD to which the access point belongs is not NSTR Mobile AP MLD, and any two links included in the NSTR Mobile AP MLD are NSTR.
  • the above-mentioned processing unit is also used to not synchronize the medium delay timer when the above-mentioned RTS frame is sent by the first access point, and the AP MLD to which the first access point belongs is NSTR Mobile AP MLD The count value of is reset to 0.
  • the above processing unit is further configured to: when the above RTS frame is sent by the first access point, and the working link of the first access point belongs to the first access point When any NSTR link pair of the AP MLD to which the point belongs, the count value of the medium synchronization delay timer is not reset to 0.
  • the present application provides a method for setting a medium synchronization delay timer, the method including: the first access point in the AP MLD starts the medium synchronization delay timer when the transmission of the second access point in the AP MLD ends and set the initial value; the first access point in the AP MLD receives the PPDU carrying the MPDU, and the MPDU contains the RTS frame; if the RTS frame is sent by the first station associated with the first access point, and the first station The working link does not belong to any NSTR link pair of the non-AP MLD to which the first station belongs, then the first access point in the AP MLD resets the count value of the medium synchronization delay timer to 0.
  • the link pair formed by the link of the first access point and the link of the second access point is an NSTR link pair, that is, the first access point and the second access point in the AP MLD
  • the point has NSTR capability.
  • the AP MLD here can be NSTR Mobile AP MLD.
  • At least one of the link pairs of the NSTR Mobile AP MLD is NSTR.
  • the first access point here may be referred to as an AP that loses medium synchronization or an AP in a blind state.
  • the foregoing initial value is set by the AP, or is a default value stipulated by a standard.
  • this solution extends the setting method of the MediumSyncDelay timer on the site side to the AP side.
  • the first access point loses medium synchronization
  • the first access point receives the RTS frame from the The MediumSyncDelay timer is only reset to 0 when the site loses medium sync.
  • the implementation of this technical solution can solve the fairness problem caused by the direct participation in channel competition on the AP side due to the loss of medium synchronization, reduce the probability of collisions, and improve the fairness of channel competition; it can also reduce unnecessary restrictions on the AP performance impact, i.e. performance can be improved.
  • the above method further includes: if the above RTS frame is sent by the first station associated with the first access point, and the working link of the first station belongs to An NSTR link pair of the non-AP MLD, the first access point in the AP MLD does not reset the count value of the medium synchronization delay timer to 0.
  • the present application provides a communication device, which may be an AP MLD or a chip in the AP MLD, such as a Wi-Fi chip.
  • the communication device includes: a processing unit, configured to start a medium synchronization delay timer and set an initial value when the transmission of the second access point in the AP MLD ends, and the link that the communication device works works with the second access point
  • the link pair composed of the links is the NSTR link pair;
  • the transceiver unit is used to receive the PPDU, the PPDU carries the MPDU, and the MPDU contains the RTS frame;
  • the processing unit is also used when the RTS frame is associated with the communication device When sending from the first station of the first station, and the working link of the first station does not belong to any NSTR link pair of the non-AP MLD to which the first station belongs, reset the count value of the medium synchronization delay timer to 0.
  • the foregoing initial value is set by the AP, or is a default value stipulated by a standard.
  • the above processing unit is further configured to send the above RTS frame to the first station associated with the communication device, and the working link of the first station belongs to the When an NSTR link is paired with a non-AP MLD, the count value of the medium synchronization delay timer is not reset to 0.
  • the present application provides a communication device, specifically a non-AP MLD, including a processor and a transceiver.
  • the processor is configured to start a medium synchronization delay timer and set an initial value at the end of the transmission of the second station in the non-AP MLD, the working link of the communication device is composed of the working link of the second station
  • the link pair is a non-simultaneous sending and receiving NSTR link pair;
  • the transceiver is used to receive the PPDU, the PPDU carries the MPDU, and the MPDU contains the RTS frame;
  • the processor is also used when the RTS frame is the first access point and the working link of the first access point does not belong to any NSTR link pair of the access point multi-link device AP MLD to which the first access point belongs, the medium synchronization delay timer
  • the count value is reset to 0; the first access point is the access point associated with the communication device, or the first access point is another access point in the same multi-BSSID as
  • the present application provides a communication device, specifically an AP MLD, including a processor and a transceiver.
  • the processor is configured to start a medium synchronization delay timer and set an initial value at the end of the transmission of the second access point in the AP MLD, the link where the communication device works and the link where the second access point works
  • the formed link pair is an NSTR link pair;
  • the transceiver is used to receive a PPDU, the PPDU carries an MPDU, and the MPDU includes an RTS frame;
  • the processor is also used to receive the RTS frame when the RTS frame is the first When a station sends, and the working link of the first station does not belong to any NSTR link pair of the non-AP MLD to which the first station belongs, the count value of the medium synchronization delay timer is reset to 0.
  • the present application provides a device, which is implemented in the product form of a chip, and includes an input and output interface and a processing circuit.
  • the device is a chip in a non-AP MLD.
  • the processing circuit is used to start the medium synchronization delay timer and set the initial value when the transmission of the second station in the non-AP MLD ends, and the working link of the first station is composed of the working link of the second station
  • the link pair is a non-simultaneous sending and receiving NSTR link pair
  • the input and output interface is used to input the PPDU received through the antenna and the radio frequency circuit, the PPDU carries the MPDU, and the MPDU contains the RTS frame
  • the processing circuit is also used when the When the RTS frame is sent by the first access point, and the working link of the first access point does not belong to any NSTR link pair of the AP MLD to which the first access point belongs, the medium synchronization delay timer
  • the count value of is reset to 0;
  • the present application provides a device, which is implemented in the product form of a chip, and includes an input and output interface and a processing circuit.
  • This device is a chip in the AP MLD.
  • the processing circuit is configured to start a medium synchronization delay timer and set an initial value when the transmission of the second access point in the AP MLD ends, and the link on which the first access point works works with the second access point
  • the link pair composed of links is an NSTR link pair
  • the input and output interface is used to input the PPDU received through the antenna and the radio frequency circuit, the PPDU carries the MPDU, and the MPDU contains the RTS frame;
  • the processing circuit is also used when When the RTS frame is sent by the first station associated with the first access point, and the working link of the first station does not belong to any NSTR link pair of the non-AP MLD to which the first station belongs, the The count value of the media sync delay timer is reset to 0.
  • the present application provides a computer-readable storage medium, where program instructions are stored in the computer-readable storage medium, and when the program instructions are run on a computer, the computer executes the above-mentioned first aspect or the above-mentioned third aspect The medium synchronization delay timer setting method.
  • the present application provides a computer program product including program instructions, which, when run on a computer, cause the computer to execute the medium synchronization delay timer setting method described in the first aspect or the third aspect.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of multi-link communication provided by an embodiment of the present application.
  • FIG. 3a is a schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • FIG. 3b is another schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for setting a medium synchronization delay timer provided in an embodiment of the present application
  • FIG. 5 is another schematic flowchart of a method for setting a medium synchronization delay timer provided in an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • words such as “first” and “second” do not limit the number and order of execution, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used to mean an example, illustration or description. Any embodiment or design described in this application as “exemplary”, “for example” or “such as” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “for example,” or “such as” is intended to present related concepts in a specific manner.
  • system architecture of the method provided in the embodiment of the present application will be described below. It can be understood that the system architecture described in the embodiments of the present application is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • next-generation 802.11 standard station equipment supporting multiple link communication at the same time is called multi-link equipment, and the internal entity responsible for any link is called station (station, STA).
  • station station
  • stations access point, AP
  • AP MLD access point stations
  • non-access point station non-AP STA
  • non-AP MLD non-access point station
  • a multi-link device includes one or more affiliated stations (affiliated STA).
  • An affiliated station is a logical station that can work on one link or one frequency band or one channel.
  • the affiliated station may be an access point (access point, AP) or a non-access point station (non-access point station, non-AP STA).
  • access point access point
  • non-access point station non-access point station
  • 802.11be a multi-link device whose affiliated station is an AP is called an AP multi-link device (AP multi-link device, AP MLD), and a multi-link device whose affiliated station is a non-AP STA is called a non-AP multi-link device.
  • Link device non-AP multi-link device, non-AP MLD).
  • a multi-link device may include multiple logical sites, and each logical site works on one link, but multiple logical sites are allowed to work on the same link.
  • link identifiers can be used to identify a link or a station on a link.
  • the AP MLD and the non-AP MLD can first negotiate or communicate the correspondence between the link identifier and a link or a station on a link. Therefore, in the process of data transmission, there is no need to transmit a large amount of signaling information to indicate the link or the site on the link, just carry the link identifier, which reduces signaling overhead and improves transmission efficiency.
  • multi-link devices can follow IEEE 802.11 series protocols to realize wireless communication, for example, follow stations with extremely high throughput rate, or follow stations based on IEEE 802.11be or compatible with IEEE 802.11be to realize communication with other devices.
  • other devices may or may not be multi-link devices.
  • the technical solution provided by this application can be applied to a scenario where a node communicates with one or more nodes; it can also be applied to a single-user up/downlink communication scenario, or a multi-user uplink/downlink communication scenario; it can also be applied to In the communication scenario of device to device (D2D).
  • the term “communication” may also be described as "data transmission”, “information transmission” or “transmission”.
  • the term “transmission” can refer to both sending and receiving.
  • any of the above-mentioned nodes may be an AP MLD or a non-AP MLD.
  • it can be a communication scenario between an AP MLD and one or more non-AP MLDs, or a communication scenario between a non-AP MLD and one or more AP MLDs; or a communication between an AP MLD and an AP MLD
  • the scenario of communication, or the scenario of communication between non-AP MLD and non-AP MLD this embodiment of the present application does not limit it.
  • the above communication scenario may also include a traditional station that only supports transmission on a single link.
  • At least one node has the capability of not being able to send and receive at the same time, that is, has the NSTR capability.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system includes at least one AP MLD (such as AP MLD100 in Figure 1) and at least one non-AP MLD (such as non-AP MLD200 and non-AP MLD300 in Figure 1).
  • AP MLD such as AP MLD100 in Figure 1
  • non-AP MLD such as non-AP MLD200 and non-AP MLD300 in Figure 1
  • FIG. 1 also includes legacy stations that support transmission only on a single link (such as the single-link non-AP STA400 in FIG. 1, also called STA400).
  • the AP MLD is a device that provides services for the non-AP MLD, and the non-AP MLD can communicate with the AP MLD through multiple links, so as to achieve the effect of improving the throughput.
  • a STA in the non-AP MLD can also communicate with an AP in the AP MLD through a link. Understandably, the number of AP MLDs and non-AP MLDs in Figure 1 is only exemplary.
  • the wireless communication system includes at least one MLD capable of NSTR.
  • FIG. 2 is a schematic diagram of multi-link communication provided by an embodiment of the present application.
  • the AP MLD includes n stations, which are AP1, AP2,...,APn; the non-AP MLD also includes n stations, which are STA1, STA2,...,STAn. Communication between MLDs is multi-link communication, and links 1 to n in FIG. 2 form a multi-link.
  • AP MLD and non-AP MLD can use link 1, link 2,..., link n to communicate in parallel.
  • an AP in the AP MLD can establish an association relationship with a STA in the non-AP MLD.
  • STA1 in non-AP MLD establishes an association relationship with AP1 in AP MLD
  • STA2 in non-AP MLD establishes an association relationship with AP2 in AP MLD
  • STAn in non-AP MLD establishes an association relationship with APn in AP MLD. relationship, etc.
  • FIG. 3a is a schematic structural diagram of a multi-link device provided in an embodiment of the present application.
  • the 802.11 standard focuses on the 802.11 physical layer (PHY) and medium access control (MAC) layer portions of multilink devices.
  • the multiple STAs included in the multi-link device are independent of each other at the low MAC (low MAC) layer and the PHY layer, and are also independent of each other at the high MAC (high MAC) layer.
  • FIG. 3b is another schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • the multiple STAs included in the multi-link device are independent of each other at the low MAC (low MAC) layer and the PHY layer, and share the high MAC (high MAC) layer.
  • the non-AP MLD can adopt a structure in which the high MAC layers are independent of each other, while the AP MLD adopts a structure shared by the high MAC layer; it can also be that the non-AP MLD adopts a structure shared by the high MAC layer , AP MLD adopts a structure with a high MAC layer independent of each other; it can also be that both non-AP MLD and AP MLD adopt a structure with a high MAC layer; it can also be that both non-AP MLD and AP MLD adopt a structure with a high MAC layer independent of each other .
  • both the high MAC layer and the low MAC layer may be implemented by a processor in the system-on-a-chip of the multi-link device, and may also be implemented by different processing modules in the system-on-a-chip.
  • the multi-link device in the embodiment of the present application may be a single-antenna device or a multi-antenna device.
  • it may be a device with more than two antennas.
  • the embodiment of the present application does not limit the number of antennas included in the multi-link device.
  • the multi-link device (here it can be both non-AP MLD and AP MLD) is a device with wireless communication function, which can be a complete device or can be installed in the complete device
  • the chips or processing systems in the device, etc., and the devices installed with these chips or processing systems can implement the methods and functions of the embodiments of the present application under the control of these chips or processing systems.
  • the non-AP MLD in the embodiment of the present application has a wireless transceiver function, can support 802.11 series protocols, and can communicate with AP MLD, single-link device or other non-AP MLD.
  • a non-AP MLD is any user communication device that allows a user to communicate with an AP and thus with a WLAN.
  • non-AP MLDs can be tablets, desktops, laptops, notebooks, ultra-mobile personal computers (UMPCs), handheld computers, netbooks, personal digital assistants (PDAs) , mobile phones and other user equipment that can be connected to the Internet, or IoT nodes in the Internet of Things, or vehicle communication devices in the Internet of Vehicles, etc.; non-AP MLD can also be chips and processing systems in these terminals.
  • the device that AP MLD can provide services for non-AP MLD can support 802.11 series protocols.
  • AP MLD can be communication entities such as communication servers, routers, switches, and bridges, or AP MLD can include various forms of macro base stations, micro base stations, relay stations, etc.
  • AP MLD can also be these various forms of equipment
  • the chip and the processing system in the present application realize the methods and functions of the embodiments of the present application.
  • the 802.11 protocol may be a protocol supporting 802.11be or compatible with 802.11be.
  • multi-link devices can support high-speed and low-latency transmission.
  • multi-link devices can also be applied to more scenarios, such as sensor nodes in smart cities ( For example, smart water meters, smart meters, smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, displays, TVs, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment Terminals (such as wearable devices such as AR and VR), smart devices in smart offices (such as printers, projectors, etc.), Internet of Vehicles devices in Internet of Vehicles, and some infrastructure in daily life scenes (such as vending machines, commercial Super self-service navigation console, self-service cashier equipment, self-service ordering machine, etc.).
  • the specific forms of non-AP MLD and AP MLD are not limited, and are only illustrative descriptions here.
  • NSTR link pair When a station on an NSTR link pair (NSTR link pair) in the non-AP MLD sends a signal, another station on the NSTR link pair may not be able to receive the signal, and 802.11be considers this to be due to uplink interference (due to UL interference) and the station that cannot receive the signal loses the medium synchronization (have lost medium synchronization).
  • a link such as link 1 of NSTR MLD is sending
  • another link such as link 2 cannot receive normal packets
  • the station on the other link is regarded as the medium Medium synchronization lost, also simply referred to as the station on the other link is in a state of blindness.
  • the station that loses medium synchronization may miss the NAV update. If this station directly participates in EDCA competition, it will bring fairness problems to other stations. That is to say, other stations have successfully competed in EDCA and reserved a certain time period (this time period is called transmission opportunity (transmission opportunity, TXOP)) to communicate, but the communication of other stations may be delayed during the reserved time period. Interference (eg, collision) by frames sent by a station that lost medium synchronization (ie, a station on link 2).
  • TXOP transmission opportunity
  • the "blind state” mentioned in this application may also be called “self-interference state” or “unreceivable state” or “deaf state”.
  • the "link pair” mentioned in this application can refer to two different links (links) in the MLD.
  • an MLD has a total of 3 links, which are link1, link2, and link3; where link1 and link2 are one For link pairs, link2 and link3 are another link pair, and link1 and link3 are another link pair.
  • the "NSTR link pair” mentioned in this application means that the MLD cannot simultaneously perform sending and receiving operations on this link pair, or that the MLD has the NSTR capability on this link pair.
  • the NAV can be understood as a countdown timer, which gradually decreases as time goes by, and when the countdown is 0, it is considered that the medium is in an idle state.
  • the station may update the NAV according to the duration (duration) field in the received frame. If the receiving address of the frame is the station, it means that the station is the receiving station, and the NAV cannot be updated.
  • the NAV value is calculated from the end moment of the received frame.
  • the 802.11be standard requires the station that loses medium synchronization (such as the station on link 2) to maintain a medium synchronization delay (MediumSyncDelay) timer.
  • MediumSyncDelay medium synchronization delay
  • a station that has lost medium synchronization due to transmission by another station affiliated with the same MLD shall start the MediumSyncDelay timer at the end of that transmission event (A STA that has lost medium synchronization due to transmission by another STA affiliated with the same MLD shall start a MediumSyncDelay timer at the end of that transmission event). That is, the MediumSyncDelay timer sets the initial frame at the end of the frame sent by link 1 and starts counting down.
  • the initial value of the MediumSyncDelay timer may be set by the AP, or may be a default value specified in the standard.
  • the station that lost medium synchronization tries to compete for a TXOP it must use the Request to Send (RTS) frame as the initial frame.
  • RTS Request to Send
  • the MediumSyncDelay timer can be reset (resets) to 0.
  • the MediumSyncDelay timer resets to zero when any of the following events occur:
  • the STA receives a PPDU with a valid MPDU.
  • the station that loses medium synchronization will set the NAV after receiving the valid MPDU , so the station that loses medium synchronization will not directly participate in the EDCA competition, but will conduct the EDCA competition after the NAV countdown is 0, so that it will not bring fairness problems to other stations, or it will not interfere with other stations (in the chain communication on road 2).
  • valid MDPU may mean that the station that lost media synchronization can parse the MPDU, and there is corresponding content in the MPDU.
  • the station that loses medium synchronization can normally perform channel competition, that is, the channel competition is not limited.
  • NSTR link pair NSTR link pair
  • another station ie, a station that loses medium synchronization, such as station 2 cannot receive normally; but After station 1 on this NSTR link pair finishes sending, station 2 can receive normally (because there is no interference from station 1 to station 2 at this time). That is to say, a station that loses medium synchronization may receive a physical protocol data unit (physical protocol data unit, PPDU) after starting the MediumSyncDelay timer.
  • PPDU physical protocol data unit
  • the RTS frame is also a valid MPDU, according to the current 802.11be protocol, if a station that loses medium synchronization receives an RTS frame sent by another station, it will reset the count value of the MediumSyncDelay timer to 0. However, in some cases, even if a station that loses medium synchronization receives RTS frames sent by other stations, it should not reset the MediumSyncDelay timer count value to 0.
  • the RTS frame received by a station that loses medium synchronization comes from another station in a blind state (that is, another station that loses medium synchronization, for descriptive convenience, denoted as station 2)
  • Situation that is, another station in the blind state (station 2) uses the RTS frame as the initial frame to try to compete for a TXOP, and the RTS frame is just received by station 1. This is because station 2 also loses medium synchronization, and its channel competition is likely to fail. If the channel competition of station 2 fails, it means that the channel is busy at this time.
  • station 1 Because station 1 has received the RTS frame sent by station 2, station 1 will reset the count value of the MediumSyncDelay timer to 0, that is to say, station 1 has lifted the channel competition restriction because it received the RTS frame sent by station 2, so Station 1 can carry out normal channel competition, but at this time the channel is busy (that is, the channel is occupied by a certain station, or is in the TXOP of a certain station), if station 1 conducts normal channel competition, it will still bring other stations For fairness issues, for example, the data sent by station 1 may collide with the data transmitted by other stations.
  • the embodiment of the present application considers performing exception processing on the RTS frame.
  • the embodiment of the present application restricts a station that loses medium synchronization not to reset the count value of the MediumSyncDelay timer to 0 through an RTS frame.
  • the count value of the MediumSyncDelay timer is not 0, if the station that lost medium synchronization receives a PPDU carrying a valid MPDU, and the valid MPDU does not include an RTS frame, the count value of the MediumSyncDelay timer can be Resets to 0.
  • the MediumSyncDelay timer is reset to 0 when the following event occurs: A station that lost medium synchronization receives a PPDU carrying a valid MPDU that does not contain an RTS frame. (the MediumSyncDelay timer resets to zero when the following event occurs: The STA receives a PPDU with a valid MPDU that does not contain an RTS frame.)
  • the embodiment of the present application can prevent a station that loses medium synchronization from releasing restrictions on channel competition because it receives an RTS frame sent by another station, thereby reducing the probability of collision and improving the fairness of channel competition.
  • the RTS frame received by the station that lost the medium synchronization may also be sent by the station that is not in the blind state (or the station that has not lost the medium synchronization), then if the station that has lost the medium synchronization is directly constrained to receive the RTS frame, the MediumSyncDelay will not be reset
  • the count value of the timer is 0, so that some RTS frames sent by stations that are not in the blind state (or stations that have not lost medium synchronization) are also limited. That is to say, for a station that lost medium synchronization to receive an RTS frame sent by a station that is not in the blind state (or a station that has not lost medium synchronization), it brings unnecessary restrictions, thereby affecting the performance of the station that has lost medium synchronization. performance.
  • the embodiment of the present application provides a method for setting a medium synchronization delay timer.
  • the value of the medium synchronization delay timer is reasonably set, which can solve the loss of medium synchronization (lost medium synchronization)
  • the fairness of the stations participating in channel competition brings to other stations, thereby reducing the probability of collisions and improving the fairness of channel competition; it can also reduce the impact of unnecessary restrictions on station performance, that is, it can improve station performance.
  • the first embodiment describes the setting method of the medium synchronization delay timer when at least one link pair of the non-AP MLD is NSTR.
  • Embodiment 2 describes how to set the medium synchronization delay timer when at least one link pair of AP MLD is NSTR. It should be understood that the technical solutions described in Embodiment 1 and Embodiment 2 of the present application can be combined in any way to form a new embodiment, and the same or similar parts of the concepts or solutions involved can be referred to or combined with each other. Each embodiment will be described in detail below.
  • both the AP MLD and the non-AP MLD in this application support the 802.11be protocol (or called Wi-Fi 7, EHT protocol), and can also support other WLAN communication protocols, such as 802.11ax, 802.11ac and other protocols. It should be understood that the AP MLD and non-AP MLD in this application can also support the next-generation protocol of 802.11be. That is to say, the method provided by this application is not only applicable to the 802.11be protocol, but also applicable to the next generation protocol of 802.11be.
  • both the AP MLD and the non-AP MLD in this application have at least one link pair (link pair), that is to say, both the AP MLD and the non-AP MLD in this application include at least two links.
  • at least one STA in the non-AP MLD of this application is associated with an AP of the AP MLD.
  • Embodiment 1 of the present application mainly introduces a method for setting a medium synchronization delay timer when the station that loses medium synchronization is a non-AP STA.
  • FIG. 4 is a schematic flowchart of a method for setting a medium synchronization delay timer provided in an embodiment of the present application.
  • the medium synchronization delay timer setting method includes but not limited to the following steps:
  • the first station in the non-AP MLD starts the media synchronization delay timer and sets the initial value when the transmission of the second station in the non-AP MLD ends, and the working link of the first station and the working link of the second station
  • the link pair composed of roads is a non-simultaneous sending and receiving NSTR link pair.
  • the first station in the non-AP MLD receives a physical layer protocol data unit PPDU, where the PPDU carries a media access control protocol data unit MPDU, and the MPDU includes a request to send RTS frame.
  • PPDU physical layer protocol data unit
  • MPDU media access control protocol data unit
  • a non-AP MLD can include multiple sites, and a site of the non-AP MLD works on a link (an affiliated STA(if any) of the non-AP MLD that operates on a link).
  • the non-AP MLD in the embodiment of the present application includes at least two sites, namely the first site and the second site. Assume that the link working on the first site is the first link, and the link working on the second site is the second link. The first link and the second link form a link pair (link pair), and the link pair is NSTR. That is to say, the first station of the non-AP MLD cannot receive the signal while the second station is sending the signal. In other words, the first site of the non-AP MLD has lost medium synchronization (have lost medium synchronization).
  • the first site of the non-AP MLD may also be referred to as a site that loses medium synchronization or a site that experiences medium synchronization loss.
  • the first station of the non-AP MLD starts a Medium Sync Delay (MediumSyncDelay) timer and sets an initial value at the end of the transmission of the second station of the non-AP MLD. That is, the station that lost medium synchronization (i.e. the first station) due to a transmission by another station (i.e. the second station) belonging to the same MLD starts the MediumSyncDelay timer (A STA that has lost medium synchronization due to transmission by another STA affiliated with the same MLD shall start a MediumSyncDelay timer at the end of that transmission event).
  • the initial value of the MediumSyncDelay timer may be set by the AP, or may be a default value specified in the standard.
  • the first station of the non-AP MLD receives a PPDU, and the PPDU carries an MPDU, and the MPDU includes an RTS frame. Because the station knows the number of links of the AP MLD associated with it, and whether each link pair (link pair) of the AP MLD is of STR or NSTR.
  • the non-AP MLD The first station resets or sets the count value of the Medium Sync Delay (MediumSyncDelay) timer to 0.
  • the working link of the first access point does not belong to any NSTR link pair of the AP MLD to which the first access point belongs, which can be understood as: the first access point does not work on the AP to which the first access point belongs On the link of any NSTR link pair of the MLD.
  • MediumSyncDelay Medium SyncDelay
  • the AP MLD to which the first access point belongs has three links in total, link1 to link3.
  • the first link of the first access point is link1; because link1 and link2 form a link pair, link2 and link2 form a link pair.
  • link3 forms another link pair, and link1 and link3 form another link pair; so link1 and link2 belong to STR, and link1 and link3 also belong to STR.
  • the link where the first access point is located does not belong to a link in any NSTR link pair of the AP MLD to which the first access point belongs.
  • the first access point is not on any link of the NSTR link pair.
  • the non-AP MLD The first station does not reset the count value of the Medium Sync Delay (MediumSyncDelay) timer to 0.
  • the foregoing first access point is an access point associated with the first station.
  • the access point associated with the first station is referred to as an associated AP herein.
  • the above method for setting the medium synchronization delay timer can also be described as: after the station that loses medium synchronization (that is, the first station) receives an RTS frame, if the RTS frame is accessed by the associated AP (that is, the access station associated with the first station) point) and the associated AP does not belong to any NSTR link pair, then the count value of the MediumSyncDelay timer can be reset to 0 (based on the RTS frame). Otherwise, it is not allowed to reset the count value of the MediumSyncDelay timer to 0 based on the RTS frame.
  • the above method for setting the medium synchronization delay timer can also be described as: after the station that loses medium synchronization (that is, the first station) receives an RTS frame, if the RTS frame is sent by the associated AP (that is, the one associated with the first station) access point), and the AP MLD to which the associated AP belongs is not an NSTR Mobile AP MLD, then the count value of the MediumSyncDelay timer can be reset to 0 (based on the RTS frame). Otherwise, it is not allowed to reset the count value of the MediumSyncDelay timer to 0 based on the RTS frame. In other words, the MediumSyncDelay timer is reset to 0 when the following event occurs: the station that lost medium synchronization (i.e.
  • the first station receives a PPDU with a valid MPDU that does not contain RTS frame; unless the RTS frame is sent by an associated AP belonging to the AP MLD (that is, the AP associated with the first station), and the AP MLD is not an NSTR mobile AP MLD.
  • the MediumSyncDelay timer resets to zero when the following event occurs: The STA receives a PPDU with a valid MPDU that does not contain an RTS frame, except the RTS frame not is transmitted by the associated at anth an AP TR M NS affiliated with mobile AP MLD.
  • the NSTR Mobile AP MLD in the embodiment of this application can be extended to more links, and at least some of the link pairs are NSTR.
  • any two links or all link pairs included in NSTR Mobile AP MLD belong to NSTR.
  • the access point in the 802.11be standard also supports multiple (multiple) basic service set (BSS) identifier (identifier, ID) features
  • BSS basic service set
  • ID identifier
  • multiple APs in multiple BSSIDs can share radio frequencies, It works on the same channel/frequency band through time division. Therefore, the AP associated with the first site (called an associated AP) and other APs in the multiple BSSID where the associated AP is located work on the same link in a time-division manner. Therefore, in the case of considering multiple BSSIDs, the first access point may also be other access points in the multiple BSSIDs where the access point associated with the first station (that is, the associated AP) is located.
  • BSS basic service set
  • the above-mentioned medium synchronization delay timer setting method can also be described as: after the station (that is, the first station) that loses medium synchronization receives an RTS frame, if the RTS frame is sent by the associated AP (that is, the connection associated with the first station) The other AP in the multiple BSSID where the entry point) is located, and the other AP (and/or the associated AP) does not belong to any NSTR link pair, then the count value of the MediumSyncDelay timer can be reset (based on the RTS frame) is 0. Otherwise, it is not allowed to reset the count value of the MediumSyncDelay timer to 0 based on the RTS frame.
  • the above method for setting the medium synchronization delay timer can also be described as: after the station that loses medium synchronization (that is, the first station) receives an RTS frame, if the RTS frame is sent by the associated AP (that is, the one associated with the first station) access point) or sent by other APs in the multiple BSSID where the associated AP is located, and the AP MLD to which the associated AP belongs is not NSTR Mobile AP MLD, then the count value of the MediumSyncDelay timer can be reset (based on the RTS frame) is 0. Otherwise, it is not allowed to reset the count value of the MediumSyncDelay timer to 0 based on the RTS frame.
  • the MediumSyncDelay timer (the count value of) will be reset to 0 when the following event occurs: the station that lost medium synchronization (i.e. the first station) receives a PPDU carrying a valid MPDU, and the valid MPDU does not contain an RTS frame; unless the RTS frame is sent by the associated AP (that is, the AP associated with the first station) or by another AP in the same multiple BSSID as the associated AP, and the AP MLD to which the associated AP belongs is not NSTR mobile AP MLD.
  • the STA receives a PPDU with a valid MPDU that does not contain an RTS frame, except the RTS ftheframe is transmitted ult by the B associated le of the AP or another AP in SS associated AP, and the associated AP affiliated with an AP MLD that is not an NSTR mobile AP MLD.
  • the station after receiving the RTS frame, the station (referring to the above-mentioned first station) that lost medium synchronization determines whether the sending station of the RTS frame and the working link of the sending station belong to the NSTR link pair. Whether it is necessary to set the count value of the MediumSyncDelay timer to 0, the MediumSyncDelay timer can be processed differently according to the sending station of the RTS frame (the station in the broad sense, here refers to the AP).
  • the embodiment of the present application can not only solve the fairness problem caused by the lost medium synchronization station participating in the channel competition to other stations, thereby reducing the probability of collision and improving the fairness of channel competition; it can also reduce unnecessary restrictions on station performance impact, which can improve site performance.
  • Embodiment 2 of the present application mainly introduces a method for setting a medium synchronization delay timer when the station that loses medium synchronization is an AP.
  • Embodiment 2 of the present application may be implemented alone, or may be implemented in combination with the foregoing Embodiment 1, which is not limited in the present application.
  • FIG. 5 is another schematic flowchart of a method for setting a medium synchronization delay timer provided in an embodiment of the present application.
  • the medium synchronization delay timer setting method includes but not limited to the following steps:
  • the first access point in the AP MLD starts the medium synchronization delay timer and sets the initial value when the transmission of the second access point in the AP MLD ends, and the working link of the first access point is connected to the second access point
  • the link pair composed of the links working at the point is an NSTR link pair.
  • the first access point in the AP MLD receives a PPDU, where the PPDU carries an MPDU, and the MPDU includes an RTS frame.
  • the AP MLD in this embodiment of the application may be NSTR Mobile AP MLD.
  • at least one of the link pairs of the NSTR Mobile AP MLD in this embodiment of the application is NSTR.
  • An AP MLD can include multiple APs, and one AP of the AP MLD works on one link, and one AP can be associated with one STA.
  • the AP MLD in the embodiment of the present application includes at least two access points, namely a first access point and a second access point. It is assumed that the link on which the first access point works is the first link, and the link on which the second access point works is the second link. The first link and the second link form a link pair (link pair), and the link pair is NSTR.
  • the first access point of the AP MLD cannot receive signals while the second access point is sending signals.
  • the first access point of the AP MLD has lost medium synchronization (have lost medium synchronization).
  • the first access point of the AP MLD may also be called an AP that loses medium synchronization or an AP experiencing medium synchronization loss.
  • the first access point of the AP MLD starts a Medium Sync Delay (MediumSyncDelay) timer and sets an initial value when the transmission of the second access point of the AP MLD ends. That is, the AP (ie, the first access point) that lost medium synchronization due to a transmission from another AP (ie, the second access point) belonging to the same MLD starts the MediumSyncDelay timer at the end of that transmission event.
  • the initial value of the MediumSyncDelay timer may be set by the AP, or may be a default value specified in the standard.
  • the first access point of the AP MLD receives a PPDU, and the PPDU carries an MPDU, and the MPDU includes an RTS frame. Because the first access point knows the number of links of the non-AP MLD associated with it, and whether each link pair (link pair) of the non-AP MLD is of STR or NSTR.
  • the AP MLD The first access point in resets the count value of the medium synchronization delay timer to 0.
  • the first station associated with the first access point is referred to as an associated STA.
  • the working link of the first station does not belong to any NSTR link pair of the non-AP MLD to which the first station belongs, which can be understood as: the first station does not work in any of the non-AP MLDs to which the first station belongs on the link of the NSTR link pair.
  • the link pair formed by the first link that the first station works and any link in the non-AP MLD to which the first station belongs except the first link is a STR link pair.
  • the link where the first station is located does not belong to a link in any NSTR link pair of the non-AP MLD to which the first station belongs.
  • the first station is not on the link of any NSTR link pair.
  • the AP MLD The first access point in does not reset the count value of the medium synchronization delay timer to 0.
  • the above-mentioned medium synchronization delay timer setting method can also be described as: when an AP (that is, the first access point) that loses medium synchronization receives an RTS frame, if the RTS frame is associated with the AP STA transmits, and the link where the STA is located does not belong to any link in the NSTR link pair, then the count value of the MediumSyncDelay timer can be reset to 0 (based on the RTS frame). Otherwise, it is not allowed to reset the count value of the MediumSyncDelay timer to 0 based on the RTS frame.
  • the MediumSyncDelay timer will be reset to 0 when the following events occur: a station that lost medium synchronization receives a PPDU carrying a valid MPDU that does not contain an RTS frame; unless the medium is lost
  • the synchronized station is an AP (that is, the first access point) that belongs to NSTR Mobile AP MLD, and the RTS frame is sent by an associated STA (that is, the STA associated with the first access point) that belongs to the MLD, and the associated STA Not on a link of any NSTR link pair.
  • the STA receives a PPDU with a valid MPDU that does not contain an RTS frame, except the STA is an AP affiliated with an NSTR RTS mobile AP MLD, and is an associated STA which is affiliated with an MLD and the associated STA is not on a link of any NSTR link pair(s).
  • the embodiment of the present application extends the setting method of the MediumSyncDelay timer on the site side to the AP side.
  • the MediumSyncDelay timer count value is reset to 0 only when the RTS frame is from a station that is not in the blind state or has not lost medium synchronization.
  • Implementing the embodiment of this application can solve the fairness problem caused by the direct participation in channel competition on the AP side due to the loss of medium synchronization, reduce the probability of collision, and improve the fairness of channel competition; it can also reduce unnecessary restrictions on NSTR Mobile AP MLD performance impact, that can improve performance.
  • the technical solution provided in this application may also be implemented in combination with the foregoing embodiment 1 and embodiment 2.
  • the MediumSyncDelay timer (count value) will be reset to 0 when the following events occur:
  • the station that loses medium synchronization receives a PPDU that carries a valid MPDU, and the valid MPDU does not contain an RTS frame; unless the station that loses medium synchronization is a non-AP STA (ie, the first station), and the RTS frame is sent by a member of the AP
  • the AP associated with the MLD that is, the AP associated with the first station
  • sends and the AP MLD is not an NSTR mobile AP MLD, or the station that lost medium synchronization is an AP that belongs to the NSTR Mobile AP MLD (that is, the first access point )
  • the RTS frame is sent by an associated STA belonging to the MLD (that is, the STA associated with the first access point), and the associated STA is not on any link of the NSTR link pair.
  • the STA receives a PPDU with a valid MPDU that does not contain an RTS frame, except the STA is a non-AP STA, and the RTS frame the APDU is transmitted assigned affiliated with a AP MLD that is not an NSTR mobile AP MLD, or the STA is an AP affiliated with an NSTR mobile AP MLD, and the RTS is transmitted by an associated STA which is not affiliated with an MLD and the associated on STA is a link of any NSTR link pair(s).
  • the MediumSyncDelay timer is reset to 0 when the following events occur:
  • the station that lost medium synchronization receives a PPDU carrying a valid MPDU, and the valid MPDU does not contain an RTS frame; unless the station that lost medium synchronization is a non-AP STA (i.e. the first station), and the RTS frame is sent by the associated AP (that is, the access point associated with the first station) or sent by another AP in the multiple BSSID where the associated AP is located, and the AP MLD to which the associated AP belongs is not NSTR Mobile AP MLD, or the station that lost medium synchronization It is an AP (that is, the first access point) that belongs to NSTR Mobile AP MLD, and the RTS frame is sent by an associated STA (that is, the STA associated with the first access point) that belongs to the MLD, and the associated STA is not in any NSTR on the link of the link pair.
  • the station that lost medium synchronization is a non-AP STA (i.e. the first station)
  • the RTS frame is sent by the associated
  • the STA receives a PPDU with a valid MPDU that does not contain an RTS frame, except the STA is a non-AP STA, and the RTS frame the APDU is transmitted assigned or another AP in the same multiple BSSID of associated AP, and the associated AP affiliated with a AP MLD that is not an NSTR mobile AP MLD, or the STA is an AP affiliated with an NSTR mobile AP MLD, and by the RTS is transmitted an associated STA which is affiliated with an MLD and the associated STA is not on a link of any NSTR link pair(s).
  • the embodiment of the present application also provides a corresponding device or equipment.
  • the embodiment of the present application can divide the functional modules of AP MLD and non-AP MLD according to the above method example, for example, each functional module can be divided corresponding to each function, and two or more functions can also be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 6 and FIG. 7 . Wherein, the communication device is AP MLD or non-AP MLD, further, the communication device can be a device in AP MLD; or, the communication device is a device in non-AP MLD.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device includes a processing unit 11 and a transceiver unit 12 .
  • the above-mentioned communication device may be a non-AP MLD or a chip in the non-AP MLD, such as a Wi-Fi chip.
  • the processing unit 11 is configured to start a medium synchronization delay timer and set an initial value when the transmission of the second station in the non-AP MLD ends, and the link that the communication device works is composed of the link that the second station works
  • the link pair is an NSTR link pair;
  • the transceiver unit 12 is configured to receive a PPDU, the PPDU carries an MPDU, and the MPDU includes an RTS frame;
  • the processing unit 11 is also configured to send the RTS frame for the first access point, and
  • the count value of the medium synchronization delay timer is reset to 0.
  • the first access point is an access point associated with the communication device, or the first access point is another access point in the multi-BSSID where the access point associated with the communication
  • the link on which the first access point works does not belong to any NSTR link pair of the AP MLD to which the first access point belongs, including: the AP MLD to which the first access point belongs is not NSTR Mobile AP MLD, Any two links included in the NSTR Mobile AP MLD are NSTR's.
  • the above-mentioned processing unit 11 is also used for not delaying the medium synchronization delay when the above-mentioned RTS frame is sent by the first access point, and the AP MLD to which the first access point belongs is NSTR Mobile AP MLD The count value of the counter is reset to 0.
  • the above-mentioned processing unit 11 is also used for when the above-mentioned RTS frame is sent by the first access point, and the working link of the first access point belongs to any NSTR of the AP MLD to which the first access point belongs When the link is correct, the medium synchronization delay timer is not reset to 0.
  • the communication device in this design can correspondingly execute the aforementioned first embodiment, and the above-mentioned operations or functions of each unit in the communication device are to realize the corresponding operations of the non-AP MLD in the aforementioned first embodiment, for the sake of brevity, I won't repeat them here.
  • the above-mentioned communication device may be an AP MLD or a chip in the AP MLD, such as a Wi-Fi chip.
  • the processing unit 11 is configured to start a medium synchronization delay timer and set an initial value when the transmission of the second access point in the AP MLD ends, and the working link of the communication device is composed of the working link of the second access point
  • the link pair is an NSTR link pair;
  • the transceiver unit 12 is used to receive a PPDU, and the PPDU carries an MPDU, and the MPDU includes an RTS frame;
  • the processing unit 11 is also used for when the RTS frame is the first link associated with the communication device When a station sends, and the working link of the first station does not belong to any NSTR link pair of the non-AP MLD to which the first station belongs, the count value of the medium synchronization delay timer is reset to 0.
  • the above-mentioned processing unit 11 is also configured to send the above-mentioned RTS frame for the first station associated with the communication device, and the link on which the first station works belongs to an NSTR link of the non-AP MLD to which the first station belongs During synchronization, the count value of the media synchronization delay timer is not reset to 0.
  • the communication device in this design can correspondingly execute the aforementioned second embodiment, and the above-mentioned operations or functions of each unit in the communication device are respectively to realize the corresponding operations of the AP MLD in the aforementioned second embodiment.
  • the communication device in this design can correspondingly execute the aforementioned second embodiment, and the above-mentioned operations or functions of each unit in the communication device are respectively to realize the corresponding operations of the AP MLD in the aforementioned second embodiment.
  • the communication device in this design can correspondingly execute the aforementioned second embodiment, and the above-mentioned operations or functions of each unit in the communication device are respectively to realize the corresponding operations of the AP MLD in the aforementioned second embodiment.
  • AP MLD and non-AP MLD of the embodiment of the present application have been introduced above, and the possible product forms of the AP MLD and non-AP MLD are introduced below. It should be understood that any form of product having the functions of the non-AP MLD or AP MLD described in FIG. 6 above falls within the scope of protection of the embodiments of the present application. It should also be understood that the following introduction is only an example, and the product forms of the AP MLD and the non-AP MLD of the embodiments of the present application are not limited thereto.
  • the AP MLD and non-AP MLD described in the embodiment of this application can be realized by a general bus architecture.
  • FIG. 7 is a schematic structural diagram of a communication device 1000 provided in an embodiment of the present application.
  • the communication device 1000 may be an AP MLD or a non-AP MLD, or a chip therein.
  • FIG. 7 shows only the main components of the communication device 1000 .
  • the communication device may further include a memory 1003 and an input and output device (not shown in the figure).
  • the processor 1001 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • the memory 1003 is mainly used to store software programs and data.
  • the transceiver 1002 may include a control circuit and an antenna, and the control circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit, and the radio frequency circuit performs radio frequency processing on the baseband signal, and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001, and the processor 1001 converts the baseband signal into data and processes the data deal with.
  • the radio frequency circuit and the antenna can be set independently from the processor for baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the processor 1001, the transceiver 1002, and the memory 1003 may be connected through a communication bus.
  • the communication device 1000 can be used to perform the functions of the non-AP MLD in the first embodiment: the processor 1001 can be used to perform steps S101 and S103 in FIG. 4 , and/or to perform the functions described herein. Other processes of the technology; the transceiver 1002 may be used to perform step S102 in FIG. 4, and/or for other processes of the technology described herein.
  • the communication device 1000 can be used to perform the function of the AP MLD in the second embodiment above: the processor 1001 can be used to perform steps S201 and S203 in FIG. 5, and/or to perform the functions described herein. Other processes of the technology; the transceiver 1002 may be used to perform step S202 in FIG. 5, and/or for other processes of the technology described herein.
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1001 may store instructions, and the instructions may be computer programs, and the computer programs run on the processor 1001 to enable the communication device 1000 to execute the methods described in any of the above method embodiments.
  • the computer program may be fixed in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (radio frequency integrated circuits, RFICs), mixed-signal ICs, application specific integrated circuits (application specific integrated circuits) , ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the AP MLD and non-AP MLD described in the embodiments of this application can be implemented by a general-purpose processor.
  • a general-purpose processor implementing a non-AP MLD includes processing circuitry and an input-output interface that communicates internally with the processing circuitry.
  • the general-purpose processor can be used to execute the function of the non-AP MLD in the first embodiment.
  • the processing circuit can be used to perform steps S101 and S103 in FIG. 4, and/or other processes for performing the technology described herein;
  • the input-output interface can be used to perform step S102 in FIG. 4, and/or Or other procedures for the techniques described herein.
  • a general-purpose processor that implements AP MLD includes processing circuitry and input-output interfaces that communicate internally with the processing circuitry.
  • the general-purpose processor can be used to execute the function of the AP MLD in the aforementioned second embodiment.
  • the processing circuit can be used to perform steps S201 and S203 in FIG. 5, and/or other processes for performing the technology described herein;
  • the input-output interface can be used to perform step S202 in FIG. 5, and/or Or other procedures for the techniques described herein.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored, and when the above-mentioned processor executes the computer program code, the electronic device executes the method in any one of the above-mentioned embodiments.
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the foregoing embodiments.
  • the embodiment of the present application also provides a communication device, which can exist in the product form of a chip.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device performs the aforementioned The method in any of the examples.
  • the embodiment of the present application also provides a wireless communication system, including AP MLD and non-AP MLD, and the AP MLD and non-AP MLD can execute the method in any of the foregoing embodiments.
  • the steps of the methods or algorithms described in connection with the disclosure of this application can be implemented in the form of hardware, or can be implemented in the form of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Television Signal Processing For Recording (AREA)
  • Communication Control (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

本申请涉及无线通信领域,应用于支持802.11系列标准的无线局域网中,尤其涉及一种介质同步时延计时器设置方法及相关装置,该方法包括:MLD中NSTR链路对上的一个站点在另一个站点传输结束时启动介质同步时延计时器并设置初始值(不为0);这个站点接收携带MPDU的PPDU,该MPDU包含RTS帧;如果该RTS帧是与该站点关联的接入点发送,且这个接入点所在的链路不是这个接入点隶属的MLD的任一个NSTR链路对上的链路,则这个站点将这个介质同步时延计时器的计数值重置为0。采用本申请实施例,可以减少不必要的限制对丢失介质同步的站点的性能的影响,提高站点的性能。

Description

介质同步时延计时器设置方法及相关装置
本申请要求于2021年09月08日提交中国专利局、申请号为202111052538.3、申请名称为“介质同步时延计时器设置方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种介质同步时延计时器设置方法及相关装置。
背景技术
无线局域网(wireless local area network,WLAN)或蜂窝网发展演进的持续技术目标是不断提高吞吐率。WLAN系统的协议主要在电气和电子工程师协会(IEEE,institute of electrical and electronics engineers)标准组中进行讨论和研究,基于之前的标准协议802.11a/b/g/n/ac/ax等,下一代标准802.11be将极高吞吐率(extremely high throughput,EHT)作为技术目标。而802.11be的其中一个关键技术是通过多链路(multi-link,ML)通信来提升吞吐率。多链路通信的核心思想是:支持下一代标准802.11be的WLAN设备,即EHT设备拥有在多频段(multi-band)发送和接收的能力,从而使用更大的带宽进行数据传输,进而显著提升吞吐率。其中,多频段包括但不限于:2.4GHz Wi-Fi频段、5GHz Wi-Fi频段以及6GHz Wi-Fi频段。802.11be中将支持多链路通信的WLAN设备称为多链路设备(Multi-link device,MLD),显然,多链路设备可采用多条链路(或多个频段)并行通信使得传输的速率得到大幅度提升。
当多链路设备(MLD)所支持的多个频段之间的频率间隔较近时,在一个频段上发送信号会影响在另一个频段上接收信号。比如,多链路设备在链路1上发送信号,由于链路1与链路2之间的频率间隔较小,所以链路1上发送的信号会对链路2产生信道干扰,影响链路2上的信道接入和接收信息,因此为了避免互相干扰,这个设备不能独立地在多个频段同时执行发送和接收操作。根据目前802.11TGbe标准组的进展,定义了多链路设备可具备同时收发(Simultaneous transmitting and receiving,STR)能力,以及可具备非同时收发(Non-Simultaneous transmitting and receiving,NSTR)能力。一个MLD的具备STR能力的两条链路被称为一个STR链路对,不具有STR能力的两条链路被称为一个NSTR链路对。
对于一个NSTR链路对而言,由于存在链路之间信号干扰的问题,当其在一条链路(比如链路1)上发送信号的同时,可能无法在另一条链路(比如链路2)上进行信号的接收,如果这时在链路2上有数据包要接收,就可能收不到,导致丢包,从而错过网络分配矢量(network allocation vector,NAV)更新。那么,如果此时链路2上的站点直接参与信道竞争(比如增强的分布式信道访问(enhanced distributed channel access,EDCA)竞争),会给其它站点带来公平性问题,这一技术问题,亟待解决。
发明内容
本申请实施例提供一种介质同步时延计时器设置方法及相关装置,通过合理设置介质同步时延计时器的值,既可以解决丢失介质同步(lost medium synchronization)的站点参与信道竞争给其他站点带来的公平性问题,也可以减少不必要的限制对站点性能的影响,即可以提高站点性能。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可 以互相参考。
第一方面,本申请提供一种介质同步时延计时器设置方法,该方法包括:非接入点站点(non-access point station,non-AP STA)多链路设备non-AP MLD中的第一站点在non-AP MLD中的第二站点传输结束时启动介质同步时延(MediumSyncDelay)计时器并设置初始值;non-AP MLD中的第一站点接收携带介质接入控制协议数据单元(Medium Access Control Protocol Data Unit,MPDU)的物理层协议数据单元(physical layer Protocol Data Unit,PPDU),该MPDU包含请求发送(request to send,RTS)帧;如果该RTS帧是第一接入点发送的,且该第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,则non-AP MLD中的第一站点将该介质同步时延计时器的计数值重置为0。其中,第一站点工作的链路与第二站点工作的链路组成的链路对是NSTR链路对,也就是说,non-AP MLD中的第一站点和第二站点具备NSTR能力。第一接入点可以是与第一站点关联的接入点,或者第一接入点可以是与第一站点关联的接入点所在的多(multiple)基本服务集标识(basic service set identifier,BSSID)中的其它接入点。应理解,这里的第一站点可以称为丢失介质同步的站点或处于盲状态的站点。
可选的,上述初始值是AP设置的,或者是标准规定的默认值。
可见,本方案中第一站点接收到RTS帧之后,通过判断这个RTS帧的发送站点工作的链路是否属于NSTR链路对,来确定是否需要将MediumSyncDelay计时器的计数值置为0,可以根据RTS帧的发送站点的不同对MediumSyncDelay计时器进行不同的处理。实施该技术方案,既可以解决丢失介质同步的站点参与信道竞争给其他站点带来的公平性问题,从而减少发生碰撞的概率,提高信道竞争的公平性;也可以减少不必要的限制对站点性能的影响,即可以提高站点性能。
结合第一方面,在一种可能的实现方式中,因为目前802.11be标准中只定义了当一个AP MLD是移动AP MLD(Mobile AP MLD)时,其链路对可以是NSTR的,否则AP MLD的所有链路对必须是STR的。又因为NSTR Mobile AP MLD只有两条链路,且该仅有的两条链路是NSTR的。所以,上述第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,还可以理解为:第一接入点隶属的AP MLD不是NSTR Mobile AP MLD,该NSTR Mobile AP MLD包括的任两条链路是NSTR的。
可选的,上述方法还包括:如果上述RTS帧是第一接入点发送的,且第一接入点隶属的AP MLD是NSTR Mobile AP MLD,则non-AP MLD中的第一站点不将该介质同步时延计时器的计数值重置为0。
可见,本方案提供了一种兼容现有802.11be标准的介质同步时延计时器设置方法。
结合第一方面,在一种可能的实现方式中,上述方法还包括:如果上述RTS帧是第一接入点发送的,且该第一接入点工作的链路属于第一接入点隶属的AP MLD的任一个NSTR链路对,则non-AP MLD中的第一站点不将介质同步时延计时器的计数值重置为0。
可见,本方案通过约束RTS帧的发送站点处于盲状态或丢失了介质同步时,不允许MediumSyncDelay计时器重置为0,可以避免丢失介质同步的站点直接参与信道竞争而给其他站点带来的公平性问题,从而减少发生碰撞的概率,提高信道竞争的公平性。
第二方面,本申请提供一种通信装置,该通信装置可以是non-AP MLD或non-AP MLD中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于在该non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,该通信装置工作的链路与该第二站点工作的链路组成的链路对是NSTR链路对;收发单元,用于接收PPDU,该PPDU携带 MPDU,该MPDU包含RTS帧;该处理单元,还用于当该RTS帧为第一接入点发送,且该第一接入点工作的链路不属于该第一接入点隶属的AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0。其中,第一接入点是与该通信装置关联的接入点,或该第一接入点是与该通信装置关联的接入点所在的多BSSID中的其它接入点。
可选的,上述初始值是AP设置的,或者是标准规定的默认值。
结合第二方面,在一种可能的实现方式中,上述第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,还可以理解为:第一接入点隶属的AP MLD不是NSTR Mobile AP MLD,该NSTR Mobile AP MLD包括的任两条链路是NSTR的。
可选的,上述处理单元,还用于当上述RTS帧是第一接入点发送的,且第一接入点隶属的AP MLD是NSTR Mobile AP MLD时,不将该介质同步时延计时器的计数值重置为0。
结合第二方面,在一种可能的实现方式中,上述处理单元,还用于当上述RTS帧是第一接入点发送的,且该第一接入点工作的链路属于第一接入点隶属的AP MLD的任一个NSTR链路对时,不将该介质同步时延计时器的计数值重置为0。
第三方面,本申请提供一种介质同步时延计时器设置方法,该方法包括:AP MLD中的第一接入点在AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值;AP MLD中的第一接入点接收携带MPDU的PPDU,该MPDU包含RTS帧;如果该RTS帧为与第一接入点关联的第一站点发送,且该第一站点工作的链路不属于该第一站点隶属的non-AP MLD的任一个NSTR链路对,则AP MLD中的第一接入点将该介质同步时延计时器的计数值重置为0。其中,第一接入点工作的链路与第二接入点工作的链路组成的链路对是NSTR链路对,也就是说,AP MLD中的第一接入点和第二接入点具备NSTR能力。这里的AP MLD可以是NSTR Mobile AP MLD。该NSTR Mobile AP MLD的链路对中至少有一个链路对是NSTR的。应理解,这里的第一接入点可以称为丢失介质同步的AP或处于盲状态的AP。
可选的,上述初始值是AP设置的,或者是标准规定的默认值。
可见,本方案将站点侧MediumSyncDelay计时器的设置方法扩展到AP侧,在第一接入点丢失介质同步的情况下,当该第一接入点接收到的RTS帧来自不处于盲状态或未丢失介质同步的站点时,才将MediumSyncDelay计时器重置为0。实施本技术方案,可以解决AP侧因丢失介质同步而直接参与信道竞争给其他站点带来的公平性问题,减少发生碰撞的概率,提高信道竞争的公平性;也可以减少不必要的限制对AP的性能影响,即可以提高性能。
结合第三方面,在一种可能的实现方式中,上述方法还包括:如果上述RTS帧为与第一接入点关联的第一站点发送,且第一站点工作的链路属于第一站点隶属的non-AP MLD的一个NSTR链路对,则AP MLD中的第一接入点不将该介质同步时延计时器的计数值重置为0。
第四方面,本申请提供一种通信装置,该通信装置可以是AP MLD或AP MLD中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于在AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,该通信装置工作的链路与该第二接入点工作的链路组成的链路对是NSTR链路对;收发单元,用于接收PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理单元,还用于当该RTS帧为与该通信装置关联的第一站点发送,且该第一站点工作的链路不属于该第一站点隶属的non-AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0。
可选的,上述初始值是AP设置的,或者是标准规定的默认值。
结合第四方面,在一种可能的实现方式中,上述处理单元,还用于当上述RTS帧为与通信装置关联的第一站点发送,且第一站点工作的链路属于第一站点隶属的non-AP MLD的一个NSTR链路对时,不将介质同步时延计时器的计数值重置为0。
第五方面,本申请提供一种通信装置,具体为non-AP MLD,包括处理器和收发器。该处理器,用于在该non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,该通信装置工作的链路与该第二站点工作的链路组成的链路对是非同时发送和接收NSTR链路对;该收发器,用于接收PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理器,还用于当该RTS帧为第一接入点发送,且该第一接入点工作的链路不属于该第一接入点隶属的接入点多链路设备AP MLD的任一个NSTR链路对使,将该介质同步时延计时器的计数值重置为0;该第一接入点是与该通信装置关联的接入点,或该第一接入点是与该通信装置关联的接入点所在的多BSSID中的其它接入点。
第六方面,本申请提供一种通信装置,具体为AP MLD,包括处理器和收发器。该处理器,用于在该AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,该通信装置工作的链路与该第二接入点工作的链路组成的链路对是NSTR链路对;该收发器,用于接收PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理器,还用于当该RTS帧为与该通信装置关联的第一站点发送,且该第一站点工作的链路不属于该第一站点隶属的non-AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0。
第七方面,本申请提供一种装置,该装置以芯片的产品形态实现,包括输入输出接口和处理电路。该装置为non-AP MLD中的芯片。该处理电路,用于在该non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,第一站点工作的链路与该第二站点工作的链路组成的链路对是非同时发送和接收NSTR链路对;该输入输出接口,用于输入通过天线和射频电路接收的PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理电路,还用于当该RTS帧为第一接入点发送,且该第一接入点工作的链路不属于该第一接入点隶属的AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0;该第一接入点是与该第一站点关联的接入点,或该第一接入点是与该第一站点关联的接入点所在的多BSSID中的其它接入点。
第八方面,本申请提供一种装置,该装置以芯片的产品形态实现,包括输入输出接口和处理电路。该装置为AP MLD中的芯片。该处理电路,用于在该AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,该第一接入点工作的链路与该第二接入点工作的链路组成的链路对是NSTR链路对;该输入输出接口,用于输入通过天线和射频电路接收的PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理电路,还用于当该RTS帧为与该第一接入点关联的第一站点发送,且该第一站点工作的链路不属于该第一站点隶属的non-AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0。
第九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机上运行时,使得计算机执行上述第一方面、或上述第三方面该的介质同步时延计时器设置方法。
第十方面,本申请提供一种包含程序指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、或上述第三方面所述的介质同步时延计时器设置方法。
实施本申请实施例,一方面可以解决丢失介质同步(lost medium synchronization)的站点参与信道竞争给其他站点带来的公平性问题,另一方面可以减少不必要的限制对站点性能的 影响,即可以提高站点性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的无线通信系统的一架构示意图;
图2是本申请实施例提供的多链路通信的示意图;
图3a是本申请实施例提供的多链路设备的一结构示意图;
图3b是本申请实施例提供的多链路设备的另一结构示意图;
图4是本申请实施例提供的介质同步时延计时器设置方法的一示意流程图;
图5是本申请实施例提供的介质同步时延计时器设置方法的另一示意流程图;
图6是本申请实施例提供的通信装置的结构示意图;
图7是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
在本申请的描述中,“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。
为便于理解本申请实施例提供的方法,下面将对本申请实施例提供的方法的系统架构进行说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请将同时支持多条链路通信的下一代802.11标准站设备称为多链路设备,其中负责任何一条链路的内部实体称为站点(station,STA)。如果某MLD内部的所有站点是接入点(access point,AP),则可以进一步称其为AP MLD;如果某MLD内部的所有站点是非接入点站点(non-access point station,non-AP STA),则可以进一步称其为non-AP MLD。换句话 说,多链路设备包括一个或多个隶属的站点(affiliated STA),隶属的站点是一个逻辑上的站点,可以工作在一条链路或一个频段或一个信道上。其中,隶属的站点可以为接入点(access point,AP)或非接入点站点(non-access point station,non-AP STA)。802.11be将隶属的站点为AP的多链路设备称为AP多链路设备(AP multi-link device,AP MLD),隶属的站点为non-AP STA的多链路设备称为non-AP多链路设备(non-AP multi-link device,non-AP MLD)。
可选的,一个多链路设备可包括多个逻辑站点,每个逻辑站点工作在一条链路上,但允许多个逻辑站点工作在同一条链路上。AP MLD与non-AP MLD在数据传输时,可以采用链路标识来标识一条链路或一条链路上的站点。在通信之前,AP MLD与non-AP MLD可以先协商或沟通链路标识与一条链路或一条链路上的站点的对应关系。因此在数据传输的过程中,不需要传输大量的信令信息用来指示链路或链路上的站点,携带链路标识即可,降低了信令开销,提升了传输效率。
可选的,多链路设备可以遵循IEEE 802.11系列协议实现无线通信,例如,遵循极高吞吐率的站点,或遵循基于IEEE 802.11be或兼容支持IEEE 802.11be的站点,实现与其他设备的通信。当然,其他设备可以是多链路设备,也可以不是多链路设备。
本申请提供的技术方案可以应用于一个节点与一个或多个节点进行通信的场景中;也可以应用于单用户的上/下行通信场景中,多用户的上/下行通信场景中;还可以应用于设备到设备(device to device,D2D)的通信场景中。在本申请实施例中,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。术语“传输”可以泛指发送和接收。
其中,上述任一节点可以是AP MLD,也可以是non-AP MLD。例如,可以是一个AP MLD与一个或多个non-AP MLD之间通信的场景,或者一个non-AP MLD与一个或多个AP MLD之间通信的场景;或者AP MLD和AP MLD之间通信的场景,或者non-AP MLD和non-AP MLD之间通信的场景,本申请实施例对此不做限定。可选的,上述通信场景中也可以包括支持仅在单链路上进行传输的传统站点。
可选的,上述任一场景中存在至少一个节点具备不能同时收发能力,即具备NSTR能力。
本申请提供的技术方案主要应用于WLAN中。参见图1,图1是本申请实施例提供的无线通信系统的一架构示意图。如图1所示,该无线通信系统包括至少一个AP MLD(如图1中的AP MLD100)和至少一个non-AP MLD(如图1中的non-AP MLD200和non-AP MLD300)。可选的,图1中还包括支持仅在单链路上进行传输的遗留站点(如图1中的单链路non-AP STA400,又称为STA400)。其中,AP MLD是为non-AP MLD提供服务的设备,non-AP MLD可以与AP MLD之间采用多条链路进行通信,从而达到提升吞吐率的效果。non-AP MLD中的一个STA也可以与AP MLD中的一个AP通过一条链路进行通信。可理解的,图1中AP MLD和non-AP MLD的个数,仅是示例性的。可选的,该无线通信系统中包括至少一个MLD具备NSTR能力。
可选的,参见图2,图2是本申请实施例提供的多链路通信的示意图。如图2所示,AP MLD包括n个站点,分别是AP1,AP2,…,APn;non-AP MLD也包括n个站点,分别是STA1,STA2,…,STAn。MLD之间的通信为多链路通信,图2中的链路1~链路n组成了多链路。换句话说,AP MLD和non-AP MLD可以采用链路1,链路2,…,链路n并行进行通信。其中,AP MLD中的一个AP可以与non-AP MLD中的一个STA建立关联关系。比如,non-AP MLD中的STA1与AP MLD中的AP1建立关联关系,non-AP MLD中的STA2与AP MLD中的AP2建立关联关系,non-AP MLD中的STAn与AP MLD中的APn建立关联关系等。
可选的,参见图3a,图3a是本申请实施例提供的多链路设备的一结构示意图。802.11 标准关注多链路设备中的802.11物理层(physical layer,PHY)和介质接入控制(medium access control,MAC)层部分。如图3a所示,多链路设备包括的多个STA在低MAC(low MAC)层和PHY层互相独立,在高MAC(high MAC)层也互相独立。参见图3b,图3b是本申请实施例提供的多链路设备的另一结构示意图。如图3b所示,多链路设备中包括的多个STA在低MAC(low MAC)层和PHY层互相独立,共用高MAC(high MAC)层。当然,在多链路通信过程中,non-AP MLD可以是采用高MAC层相互独立的结构,而AP MLD采用高MAC层共用的结构;也可以是non-AP MLD采用高MAC层共用的结构,AP MLD采用高MAC层相互独立的结构;还可以是non-AP MLD和AP MLD都采用高MAC层共用的结构;还可以是non-AP MLD和AP MLD都采用高MAC层相互独立的结构。本申请实施例对于多链路设备的内部结构示意图并不进行限定,图3a和图3b仅是示例性说明。示例性的,该高MAC层或低MAC层都可以由多链路设备的芯片系统中的一个处理器实现,还可以分别由一个芯片系统中的不同处理模块实现。
示例性的,本申请实施例中的多链路设备可以是单个天线的设备,也可以是多天线的设备。例如,可以是两个以上天线的设备。本申请实施例对于多链路设备包括的天线数目不做限定。
示例性的,多链路设备(这里既可以是non-AP MLD,也可以是AP MLD)为具有无线通信功能的装置,该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,本申请实施例中的non-AP MLD具有无线收发功能,可以支持802.11系列协议,可以与AP MLD,单链路设备或其他non-AP MLD进行通信。例如,non-AP MLD是允许用户与AP通信进而与WLAN通信的任何用户通信设备。例如,non-AP MLD可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等;non-AP MLD还可以为上述这些终端中的芯片和处理系统。AP MLD可以为non-AP MLD提供服务的装置,可以支持802.11系列协议。例如,AP MLD可以为通信服务器、路由器、交换机、网桥等通信实体,或,AP MLD可以包括各种形式的宏基站,微基站,中继站等,当然AP MLD还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。其中,802.11协议可以为支持802.11be或兼容802.11be的协议。
可理解的,多链路设备可以支持高速率低时延的传输,随着无线局域网应用场景的不断演进,多链路设备还可以应用于更多场景中,比如为智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中智能设备(比如,打印机,投影仪等),车联网中的车联网设备,日常生活场景中的一些基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等)。本申请实施例中对于non-AP MLD和AP MLD的具体形式不做限定,在此仅是示例性说明。
上述内容简要介绍了本申请实施例的系统结构,下面简要介绍多链路中的盲(blindness)问题。
当non-AP MLD中一个NSTR链路对(NSTR link pair)上的一个站点发送信号的同时, 该NSTR链路对上的另一个站点可能无法进行信号的接收,则802.11be认为这个因为上行干扰(due to UL interference)而无法进行信号接收的站点丢失了介质同步(have lost medium synchronization)。换句话说,NSTR MLD的一条链路(比如链路1)在发送的过程中,另外一条链路(比如链路2)无法进行正常包接收,则该另外一条链路上的站点被认为介质同步丢失(medium synchronization lost),也简称为该另外一条链路上的站点处于盲(blindness)状态。此时,丢失介质同步的站点(即链路2上的站点)可能会错过NAV更新,如果该站点直接参与EDCA竞争,会给其它站点带来公平性问题。也就是说,其它站点已经EDCA竞争成功,预留了一定时间段(该时间段称为传输机会(transmission opportunity,TXOP))来进行通信,但是在该预留时间段内其它站点的通信可能会被丢失介质同步的站点(即链路2上的站点)所发送的帧所干扰(比如发生碰撞)。
应理解,本申请提及的“盲状态”也可以称为“自干扰状态”或“无法接收的状态”或“聋状态”等。本申请提及的“链路对”可以指MLD中两条不同的链路(link),比如,一个MLD总共有3条链路,分别为link1,link2,link3;其中,link1和link2为一个链路对,link2和link3为另一个链路对,link1和link3为又一个链路对。本申请提及的“NSTR链路对”是指MLD在这个链路对上无法同时执行发送和接收操作,或者,MLD在这个链路对上具备NSTR能力。
可理解的,NAV可以理解成一个倒计时计时器,随时间的流逝逐渐减少,当倒计时为0时,则认为介质处于空闲状态。具体地,当一个站点接收到一个帧后,如果该帧的接收地址不是该站点,则该站点可以根据接收到的帧中的持续时间(duration)字段来更新NAV。如果该帧的接收地址是该站点,说明该站点为接收站点,则不可以更新NAV。其中,在更新NAV之前,还可以判断当前帧中duration字段的数值是否大于站点当前的NAV数值,如果大于则更新NAV;反之,如果小于或等于,则不更新NAV。NAV数值从接收帧的结束时刻开始算起的。
因此,为了解决多链路中的盲状态问题,802.11be标准要求丢失介质同步的站点(比如链路2上的站点)维护一个介质同步时延(MediumSyncDelay)计时器,在该计时器的计数值不为0时,丢失介质同步的站点进行信道竞争时受到限制。具体细节可参见IEEE802.11be协议的章节35.3.15.7(介质接入恢复过程,Medium access recovery procedure)。因为隶属于同一MLD的另一站点的传输而丢失介质同步的站点应在该传输事件结束时启动该MediumSyncDelay计时器(A STA that has lost medium synchronization due to transmission by another STA affiliated with the same MLD shall start a MediumSyncDelay timer at the end of that transmission event)。也就是说,MediumSyncDelay计时器在链路1发送的帧的结束时刻设置初始帧,并开始进行倒计时。该MediumSyncDelay计时器的初始值可以是AP设置的,也可以是标准规定的默认值。
在MediumSyncDelay计时器的计数值不为0的情况下,如果该丢失介质同步的站点尝试竞争一个TXOP,则必须使用请求发送(Request to Send,RTS)帧作为初始帧。(A non-AP STA affiliated with non-AP MLD that has a nonzero MediumSyncDelay timer that supports to obtain a TXOP:Shall transmit an RTS frame as the first frame of any attempt to obtain a TXOP.)
在MediumSyncDelay计时器的计数值不为0的情况下,如果该丢失介质同步的站点接收到一个携带有效的(valid)介质接入控制协议数据单元(MAC Protocol Data Unit,MPDU)的物理层协议数据单元(physical protocol data unit,PPDU),则MediumSyncDelay计时器可以重新设置(resets)为0。(the MediumSyncDelay timer resets to zero when any of the following  events occur:The STA receives a PPDU with a valid MPDU.)通常来说,因为valid MPDU会携带NAV,丢失介质同步的站点接收到valid MPDU后会设置NAV,所以该丢失介质同步的站点不会直接参与EDCA竞争,而是在NAV倒计时为0后再进行EDCA竞争,从而不会给其它站点带来公平性问题,或者说不会干扰其它站点(在链路2上)的通信。这里,valid MDPU可以指该丢失介质同步的站点能够解析该MPDU,且该MPDU中有相应的内容。
当MediumSyncDelay计时器的计数值为0时,该丢失介质同步的站点可以正常进行信道竞争,即信道竞争不受限。
应理解,虽然属于同一个NSTR链路对(NSTR link pair)上的一个站点(比如站点1)发送信号的同时,另一个站点(即丢失介质同步的站点,比如站点2)无法正常接收;但是当这个NSTR链路对上的站点1发送结束后,站点2可以正常接收(因为此时不存在站点1对站点2的干扰)。也就是说,丢失介质同步的站点在启动MediumSyncDelay计时器后可能接收到物理层协议数据单元(physical protocol data unit,PPDU)。
因为RTS帧也属于valid MPDU,所以按照目前802.11be协议的规定,如果丢失介质同步的站点接收到其它站点发送的RTS帧,则会将MediumSyncDelay计时器的计数值重新设置(resets)为0。但是,在某些情况下,即使丢失介质同步的站点接收到其它站点发送的RTS帧,也不应该将MediumSyncDelay计时器的计数值重置为0。比如,丢失介质同步的站点(为便于描述,记为站点1)接收到的RTS帧来自另一个处于盲状态的站点(即另一个丢失介质同步的站点,为便于描述,记为站点2)的情况,也就是说,另一个处于盲状态的站点(站点2)使用RTS帧作为初始帧来尝试竞争一个TXOP,且该RTS帧刚好被站点1接收到的情况。这是因为站点2也丢失了介质同步,其信道竞争很可能失败,如果站点2的信道竞争失败,也就说明此时信道繁忙(busy)。又因为站点1接收到了站点2发送的RTS帧,站点1会将MediumSyncDelay计时器的计数值重置为0,也就是说站点1因为接收到站点2发送的RTS帧解除了信道竞争的限制,所以站点1可以进行正常的信道竞争,但是此时信道繁忙(即该信道被某个站点占用,或正处于某个站点的TXOP内),站点1若进行正常的信道竞争,仍然会给其它站点带来公平性问题,比如,站点1发送的数据可能会与其它站点传输的数据发生碰撞。
因此,本申请实施例考虑对RTS帧进行例外处理。一种实现方式中,本申请实施例约束丢失介质同步的站点不可以通过RTS帧重新设置MediumSyncDelay计时器的计数值为0。具体的,在MediumSyncDelay计时器的计数值不为0的情况下,如果该丢失介质同步的站点接收到一个携带valid MPDU的PPDU,且该valid MPDU不包括RTS帧,则MediumSyncDelay计时器的计数值可以重新设置(resets)为0。换句话说,当发生以下事件时,MediumSyncDelay计时器将重置为0:丢失介质同步的站点接收到一个携带valid MPDU的PPDU,且该valid MPDU不包含RTS帧。(the MediumSyncDelay timer resets to zero when the following event occur:The STA receives a PPDU with a valid MPDU that does not contain an RTS frame.)
可见,本申请实施例可以避免丢失介质同步的站点因为接收到其它站点发送的RTS帧而解除信道竞争的限制,从而可以减少发生碰撞的概率,提高信道竞争的公平性。
但是,丢失介质同步的站点接收到的RTS帧也可能是不处于盲状态的站点(或未丢失介质同步的站点)发送的,那么如果直接约束丢失介质同步的站点接收到RTS帧不重置MediumSyncDelay计时器的计数值为0,则使得一些由不处于盲状态的站点(或未丢失介质同步的站点)发送的RTS帧也受到了限制。也就是说,对于丢失介质同步的站点接收到不处于盲状态的站点(或未丢失介质同步的站点)发送的RTS帧而言,带来了不必要的限制,从 而影响丢失介质同步的站点的性能。
因此,本申请实施例提供一种介质同步时延计时器设置方法,通过区分发送RTS帧的发送站点,来合理设置介质同步时延计时器的值,既可以解决丢失介质同步(lost medium synchronization)的站点参与信道竞争给其他站点带来的公平性问题,从而减少发生碰撞的概率,提高信道竞争的公平性;也可以减少不必要的限制对站点性能的影响,即可以提高站点性能。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案通过多个实施例进行阐述。其中,实施例一阐述non-AP MLD的至少一个链路对是NSTR时,介质同步时延计时器的设置方法。实施例二阐述AP MLD的至少一个链路对是NSTR时,介质同步时延计时器的设置方法。应理解的,本申请实施例一和实施例二所描述的技术方案可以任一组合形成新的实施例且所涉及概念或方案相同或相似的部分可以相互参考或组合。下面分别对各个实施例进行详细说明。
应理解,本申请中的AP MLD和non-AP MLD均支持802.11be协议(或称为Wi-Fi 7,EHT协议),还可以支持其他WLAN通信协议,如802.11ax,802.11ac等协议。应理解,本申请中的AP MLD和non-AP MLD还可以支持802.11be的下一代协议。也就是说,本申请提供的方法不仅适用于802.11be协议,还可以适用于802.11be的下一代协议。
可选的,本申请中的AP MLD和non-AP MLD均有至少一个链路对(link pair),也就是说本申请中的AP MLD和non-AP MLD均包括至少两条链路。可选的,本申请的non-AP MLD中至少有一个STA与AP MLD的一个AP关联。
实施例一
本申请实施例一主要介绍丢失介质同步的站点是non-AP STA时,介质同步时延计时器的设置方法。
参见图4,图4是本申请实施例提供的介质同步时延计时器设置方法的一示意流程图。如图4所示,该介质同步时延计时器设置方法包括但不限于以下步骤:
S101,non-AP MLD中的第一站点在non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,第一站点工作的链路与第二站点工作的链路组成的链路对是非同时发送和接收NSTR链路对。
S102,non-AP MLD中的第一站点接收物理层协议数据单元PPDU,该PPDU携带介质接入控制协议数据单元MPDU,该MPDU包含请求发送RTS帧。
S103,若该RTS帧为第一接入点发送,且第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,则non-AP MLD中的第一站点将该介质同步时延计时器的计数值重置为0。
可选的,一个non-AP MLD可包括多个站点,且non-AP MLD的一个站点工作在一条链路上(an affiliated STA(if any)of the non-AP MLD that operates on a link)。本申请实施例中的non-AP MLD至少包含两个站点,分别为第一站点和第二站点。假设第一站点工作的链路为第一链路,第二站点工作的链路为第二链路。第一链路和第二链路组成一个链路对(link pair),且这个链路对是NSTR的。也就是说,non-AP MLD的第一站点在第二站点发送信号的同时,不能进行信号的接收。或者说,non-AP MLD的第一站点丢失了介质同步(have lost medium synchronization)。其中,non-AP MLD的第一站点也可称为丢失介质同步的站点或经历介质同步丢失的站点。
可选的,non-AP MLD的第一站点在non-AP MLD的第二站点传输结束时启动介质同步时延(MediumSyncDelay)计时器并设置初始值。也就是说,因为隶属于同一MLD的另一站点(即第二站点)的传输而丢失介质同步的站点(即第一站点)在该传输事件结束时启动MediumSyncDelay计时器(A STA that has lost medium synchronization due to transmission by another STA affiliated with the same MLD shall start a MediumSyncDelay timer at the end of that transmission event)。其中,该MediumSyncDelay计时器的初始值可以是AP设置的,也可以是标准规定的默认值。
可选的,在MediumSyncDelay计时器的计数值不为0的情况下,non-AP MLD的第一站点(即丢失介质同步的站点)接收到一个PPDU,该PPDU携带MPDU,该MPDU包含RTS帧。因为站点知道与其关联的AP MLD的链路数目,以及该AP MLD的各链路对(link pair)是STR的还是NSTR的。所以,如果该RTS帧为第一接入点发送,且第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,则non-AP MLD中的第一站点将介质同步时延(MediumSyncDelay)计时器的计数值重置(resets)或设置为0。其中,第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,可以理解为:第一接入点不工作在第一接入点隶属的AP MLD的任一个NSTR链路对的链路上。或者,可以理解为:第一接入点工作的第一链路与第一接入点隶属的AP MLD中除该第一链路外的任一条链路形成的链路对都是STR链路对。比如,第一接入点隶属的AP MLD共有3条链路,分别是link1~link3,假设第一接入点工作的第一链路为link1;因为link1和link2组成一个链路对,link2和link3组成另一个链路对,link1和link3组成又一个链路对;所以link1和link2是STR的,link1和link3也是STR的。或者,还可以理解为:第一接入点所在的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对中的链路。或者,还可以理解为:第一接入点不在任何NSTR链路对的链路上。
可选的,如果该RTS帧为第一接入点发送,且第一接入点工作的链路属于第一接入点隶属的AP MLD的一个NSTR链路对,则non-AP MLD中的第一站点不将该介质同步时延(MediumSyncDelay)计时器的计数值重置为0。
一种实现方式中,上述第一接入点是与第一站点关联的接入点,为便于描述,本文将与第一站点关联的接入点称为关联AP。上述介质同步时延计时器设置方法还可以描述为:丢失介质同步的站点(即第一站点)接收到一个RTS帧后,如果该RTS帧是由关联AP(即与第一站点关联的接入点)发送,且该关联AP不属于任何NSTR链路对,则可以(基于该RTS帧)重新设置MediumSyncDelay计时器的计数值为0。否则,不允许基于该RTS帧重新设置MediumSyncDelay计时器的计数值为0。
因为802.11be标准中定义了当一个AP MLD是移动AP MLD(Mobile AP MLD)时,其链路对可以是NSTR的,否则AP MLD的所有链路对必须是STR的。又因为NSTR Mobile AP MLD只有两条链路,且该仅有的两条链路是NSTR的。所以,上述介质同步时延计时器设置方法还可以描述为:丢失介质同步的站点(即第一站点)接收到一个RTS帧后,如果该RTS帧是由关联AP(即与第一站点关联的接入点)发送,且该关联AP隶属的AP MLD不是NSTR Mobile AP MLD,则可以(基于该RTS帧)重新设置MediumSyncDelay计时器的计数值为0。否则,不允许基于该RTS帧重新设置MediumSyncDelay计时器的计数值为0。换句话说,当发生以下事件时,MediumSyncDelay计时器(的计数值)将重置为0:丢失介质同步的站点(即第一站点)接收到一个携带valid MPDU的PPDU,且该valid MPDU不包含RTS帧;除非该RTS帧由隶属于AP MLD的关联AP(即与第一站点关联的AP)发送,且该AP MLD 不是NSTR mobile AP MLD。(the MediumSyncDelay timer resets to zero when the following event occur:The STA receives a PPDU with a valid MPDU that does not contain an RTS frame,except the RTS frame is transmitted by the associated AP affiliated with an AP MLD that is not an NSTR mobile AP MLD.)
本申请实施例中的NSTR Mobile AP MLD可以扩展到更多的链路,且其中至少有部分链路对是NSTR的。这里,NSTR Mobile AP MLD包括的任两条链路或所有链路对都是NSTR的。
另一种实现方式中,因为802.11be标准中接入点还支持多(multiple)基本服务集(basic service set,BSS)标识(identifier,ID)特性,multiple BSSID中的多个AP可以共享射频,其通过时分的方式工作在相同的信道/频段上。所以,与第一站点关联的AP(称为关联AP)和关联AP所在的multiple BSSID中的其它AP通过时分的方式工作在同一条链路上。因此,在考虑multiple BSSID的情况下,第一接入点也可以是与第一站点关联的接入点(即关联AP)所在的multiple BSSID中的其它接入点。则上述介质同步时延计时器设置方法还可以描述为:丢失介质同步的站点(即第一站点)接收到一个RTS帧后,如果该RTS帧是由关联AP(即与第一站点关联的接入点)所在的multiple BSSID中的其它AP发送,且该其它AP(和/或该关联AP)不属于任何一个NSTR链路对,则可以(基于该RTS帧)重新设置MediumSyncDelay计时器的计数值为0。否则,不允许基于该RTS帧重新设置MediumSyncDelay计时器的计数值为0。
或者,上述介质同步时延计时器设置方法还可以描述为:丢失介质同步的站点(即第一站点)接收到一个RTS帧后,如果该RTS帧是由关联AP(即与第一站点关联的接入点)发送或由该关联AP所在的multiple BSSID中的其它AP发送,且该关联AP隶属的AP MLD不是NSTR Mobile AP MLD,则可以(基于该RTS帧)重新设置MediumSyncDelay计时器的计数值为0。否则,不允许基于该RTS帧重新设置MediumSyncDelay计时器的计数值为0。换句话说,当发生以下事件时,MediumSyncDelay计时器(的计数值)将重置为0:丢失介质同步的站点(即第一站点)接收到携带valid MPDU的PPDU,且该valid MPDU不包含RTS帧;除非该RTS帧由关联AP(即与第一站点关联的AP)发送或由与关联AP在同一multiple BSSID中的另一个AP发送,且该关联AP隶属的AP MLD不是NSTR mobile AP MLD。(the MediumSyncDelay timer resets to zero when the following event occur:The STA receives a PPDU with a valid MPDU that does not contain an RTS frame,except the RTS frame is transmitted by the associated AP or another AP in the same multiple BSSID of the associated AP,and the associated AP affiliated with an AP MLD that is not an NSTR mobile AP MLD.)
可见,本申请实施例中丢失介质同步的站点(指上述第一站点)接收到RTS帧之后,通过判断这个RTS帧的发送站点和该发送站点工作的链路是否属于NSTR链路对,来确定是否需要将MediumSyncDelay计时器的计数值置为0,可以根据RTS帧的发送站点(广义的站点,这里指AP)的不同对MediumSyncDelay计时器进行不同的处理。也就是说,如果RTS帧的发送站点处于盲状态或丢失了介质同步,则不允许MediumSyncDelay计时器的计数值重置为0;如果RTS帧的发送站点未处于盲状态或未丢失介质同步,则将MediumSyncDelay计时器的计数值重置为0。实施本申请实施例既可以解决丢失介质同步的站点参与信道竞争给其他站点带来的公平性问题,从而减少发生碰撞的概率,提高信道竞争的公平性;也可以减少不必要的限制对站点性能的影响,即可以提高站点性能。
实施例二
应理解,前述实施例一主要考虑接收RTS帧的站点是non-AP STA,但NSTR Mobile AP MLD包含的AP也可能会丢失介质同步。所以,本申请实施例二主要介绍丢失介质同步的站点是AP时,介质同步时延计时器的设置方法。其中,本申请实施例二可以单独实施,也可以结合前述实施例一一起实施,本申请对此不做限定。
参见图5,图5是本申请实施例提供的介质同步时延计时器设置方法的另一示意流程图。如图5所示,该介质同步时延计时器设置方法包括但不限于以下步骤:
S201,AP MLD中的第一接入点在AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,第一接入点工作的链路与第二接入点工作的链路组成的链路对是NSTR链路对。
S202,AP MLD中的第一接入点接收PPDU,该PPDU携带MPDU,该MPDU包含RTS帧。
S203,若该RTS帧为与第一接入点关联的第一站点发送,且第一站点工作的链路不属于第一站点隶属的non-AP MLD的任一个NSTR链路对,则AP MLD中的第一接入点将该介质同步时延计时器的计数值重置为0。
可选的,本申请实施例中的AP MLD可以是NSTR Mobile AP MLD。可选的,本申请实施例中NSTR Mobile AP MLD的链路对中至少有一个链路对是NSTR的。一个AP MLD可包括多个AP,且AP MLD的一个AP工作在一条链路上,一个AP可以与一个STA关联。本申请实施例中的AP MLD至少包含两个接入点,分别为第一接入点和第二接入点。假设第一接入点工作的链路为第一链路,第二接入点工作的链路为第二链路。第一链路和第二链路组成一个链路对(link pair),且这个链路对是NSTR的。也就是说,AP MLD的第一接入点在第二接入点发送信号的同时,不能进行信号的接收。或者说,AP MLD的第一接入点丢失了介质同步(have lost medium synchronization)。其中,AP MLD的第一接入点也可称为丢失介质同步的AP或经历介质同步丢失的AP。
可选的,AP MLD的第一接入点在AP MLD的第二接入点传输结束时启动介质同步时延(MediumSyncDelay)计时器并设置初始值。也就是说,因为隶属于同一MLD的另一AP(即第二接入点)的传输而丢失介质同步的AP(即第一接入点)在该传输事件结束时启动MediumSyncDelay计时器。其中,该MediumSyncDelay计时器的初始值可以是AP设置的,也可以是标准规定的默认值。
可选的,在MediumSyncDelay计时器的计数值不为0的情况下,AP MLD的第一接入点(即丢失介质同步的AP)接收到一个PPDU,该PPDU携带MPDU,该MPDU包含RTS帧。因为第一接入点知道与其关联的non-AP MLD的链路数目,以及该non-AP MLD的各链路对(link pair)是STR的还是NSTR的。所以,如果该RTS帧为与第一接入点关联的第一站点发送,且第一站点工作的链路不属于第一站点隶属的non-AP MLD的任一个NSTR链路对,则AP MLD中的第一接入点将介质同步时延计时器的计数值重置为0。为便于描述,本申请实施例将与第一接入点关联的第一站点称为关联STA。其中,第一站点工作的链路不属于第一站点隶属的non-AP MLD的任一个NSTR链路对,可以理解为:第一站点不工作在第一站点隶属的non-AP MLD的任一个NSTR链路对的链路上。或者,可以理解为:第一站点工作的第一链路与第一站点隶属的non-AP MLD中除该第一链路外的任一条链路形成的链路对都是STR链路对。或者,可以理解为:第一站点所在的链路不属于第一站点隶属的non-AP MLD的任一个NSTR链路对中的链路。或者,可以理解为:第一站点不在任何NSTR链路对的链 路上。
可选的,如果该RTS帧为与第一接入点关联的第一站点发送,且第一站点工作的链路属于第一站点隶属的non-AP MLD的一个NSTR链路对,则AP MLD中的第一接入点不将该介质同步时延计时器的计数值重置为0。
换句话说,上述介质同步时延计时器设置方法还可以描述为:当一个丢失介质同步的AP(即第一接入点)接收到一个RTS帧,如果该RTS帧是由该AP所关联的STA发送,且该STA所在的链路不属于任何一个NSTR链路对中的链路,则可以(基于该RTS帧)重新设置MediumSyncDelay计时器的计数值为0。否则,不允许基于该RTS帧重新设置MediumSyncDelay计时器的计数值为0。也就是说,当发生以下事件时,MediumSyncDelay计时器(的计数值)将重置为0:丢失介质同步的站点接收到一个携带valid MPDU的PPDU,且该valid MPDU不包含RTS帧;除非丢失介质同步的站点是隶属于NSTR Mobile AP MLD的AP(即第一接入点),且该RTS帧由隶属于MLD的关联STA(即与第一接入点关联的STA)发送,且该关联STA不在任何NSTR链路对的链路上。(the MediumSyncDelay timer resets to zero when the following event occur:The STA receives a PPDU with a valid MPDU that does not contain an RTS frame,except the STA is an AP affiliated with an NSTR mobile AP MLD,and the RTS is transmitted by an associated STA which is affiliated with an MLD and the associated STA is not on a link of any NSTR link pair(s).)
可见,本申请实施例将站点侧MediumSyncDelay计时器的设置方法扩展到AP侧,在隶属于NSTR Mobile AP MLD的AP(即上述第一接入点)丢失介质同步的情况下,当该AP接收到的RTS帧来自不处于盲状态或未丢失介质同步的站点时,才将MediumSyncDelay计时器的计数值重置为0。实施本申请实施例,可以解决AP侧因丢失介质同步而直接参与信道竞争给其他站点带来的公平性问题,减少发生碰撞的概率,提高信道竞争的公平性;也可以减少不必要的限制对NSTR Mobile AP MLD性能的影响,即可以提高性能。
作为一个可选实施例,本申请提供的技术方案也可以是前述实施例一和实施例二结合一起实施。具体的,当发生以下事件时,MediumSyncDelay计时器(的计数值)将重置为0:
丢失介质同步的站点接收到一个携带valid MPDU的PPDU,且该valid MPDU不包含RTS帧;除非该丢失介质同步的站点是non-AP STA(即第一站点),且该RTS帧由隶属于AP MLD的关联AP(即与第一站点关联的AP)发送,且该AP MLD不是NSTR mobile AP MLD,或者,该丢失介质同步的站点是隶属于NSTR Mobile AP MLD的AP(即第一接入点),且该RTS帧由隶属于MLD的关联STA(即与第一接入点关联的STA)发送,且该关联STA不在任何NSTR链路对的链路上。(the MediumSyncDelay timer resets to zero when the following event occur:The STA receives a PPDU with a valid MPDU that does not contain an RTS frame,except the STA is a non-AP STA,and the RTS frame is transmitted by the associated AP affiliated with a AP MLD that is not an NSTR mobile AP MLD,or the STA is an AP affiliated with an NSTR mobile AP MLD,and the RTS is transmitted by an associated STA which is affiliated with an MLD and the associated STA is not on a link of any NSTR link pair(s).)
可选的,在考虑multiple BSSID的情况下,当发生以下事件时,MediumSyncDelay计时器(的计数值)将重置为0:
丢失介质同步的站点接收到一个携带valid MPDU的PPDU,且该valid MPDU不包含RTS帧;除非该丢失介质同步的站点是non-AP STA(即第一站点),且该RTS帧是由关联AP(即 与第一站点关联的接入点)发送或由该关联AP所在的multiple BSSID中的另一AP发送,且该关联AP隶属的AP MLD不是NSTR Mobile AP MLD,或者该丢失介质同步的站点是隶属于NSTR Mobile AP MLD的AP(即第一接入点),且该RTS帧由隶属于MLD的关联STA(即与第一接入点关联的STA)发送,且该关联STA不在任何NSTR链路对的链路上。(the MediumSyncDelay timer resets to zero when the following event occur:The STA receives a PPDU with a valid MPDU that does not contain an RTS frame,except the STA is a non-AP STA,and the RTS frame is transmitted by the associated AP or another AP in the same multiple BSSID of associated AP,and the associated AP affiliated with a AP MLD that is not an NSTR mobile AP MLD,or the STA is an AP affiliated with an NSTR mobile AP MLD,and the RTS is transmitted by an associated STA which is affiliated with an MLD and the associated STA is not on a link of any NSTR link pair(s).)
上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对AP MLD和non-AP MLD进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图6和图7详细描述本申请实施例的通信装置。其中,该通信装置是AP MLD或non-AP MLD,进一步的,该通信装置可以为AP MLD中的装置;或者,该通信装置为non-AP MLD中的装置。
在采用集成的单元的情况下,参见图6,图6是本申请实施例提供的通信装置的结构示意图。如图6所示,该通信装置包括处理单元11和收发单元12。
一种设计中,上述通信装置可以为non-AP MLD或non-AP MLD中的芯片,比如Wi-Fi芯片等。处理单元11,用于在该non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,该通信装置工作的链路与该第二站点工作的链路组成的链路对是NSTR链路对;收发单元12,用于接收PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理单元11,还用于当该RTS帧为第一接入点发送,且该第一接入点工作的链路不属于该第一接入点隶属的AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0。其中,第一接入点是与该通信装置关联的接入点,或该第一接入点是与该通信装置关联的接入点所在的多BSSID中的其它接入点。
可选的,上述第一接入点工作的链路不属于第一接入点隶属的AP MLD的任一个NSTR链路对,包括:第一接入点隶属的AP MLD不是NSTR Mobile AP MLD,该NSTR Mobile AP MLD包括的任两条链路是NSTR的。
可选的,上述处理单元11,还用于当上述RTS帧是第一接入点发送的,且第一接入点隶属的AP MLD是NSTR Mobile AP MLD时,不将该介质同步时延计时器的计数值重置为0。
可选的,上述处理单元11,还用于当上述RTS帧是第一接入点发送的,且该第一接入点工作的链路属于第一接入点隶属的AP MLD的任一个NSTR链路对时,不将该介质同步时延计时器重置为0。
应理解,该种设计中的通信装置可对应执行前述实施例一,并且该通信装置中的各个单元的上述操作或功能分别为了实现前述实施例一中non-AP MLD的相应操作,为了简洁,在 此不再赘述。
另一种设计中,上述通信装置可以为AP MLD或AP MLD中的芯片,比如Wi-Fi芯片等。处理单元11,用于在AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,该通信装置工作的链路与该第二接入点工作的链路组成的链路对是NSTR链路对;收发单元12,用于接收PPDU,该PPDU携带MPDU,该MPDU包含RTS帧;该处理单元11,还用于当该RTS帧为与该通信装置关联的第一站点发送,且该第一站点工作的链路不属于该第一站点隶属的non-AP MLD的任一个NSTR链路对时,将该介质同步时延计时器的计数值重置为0。
可选的,上述处理单元11,还用于当上述RTS帧为与通信装置关联的第一站点发送,且第一站点工作的链路属于第一站点隶属的non-AP MLD的一个NSTR链路对时,不将介质同步时延计时器的计数值重置为0。
应理解,该种设计中的通信装置可对应执行前述实施例二,并且该通信装置中的各个单元的上述操作或功能分别为了实现前述实施例二中AP MLD的相应操作,为了简洁,在此不再赘述。
以上介绍了本申请实施例的AP MLD和non-AP MLD,以下介绍所述AP MLD和non-AP MLD可能的产品形态。应理解,但凡具备上述图6所述的non-AP MLD或AP MLD的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的AP MLD和non-AP MLD的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的AP MLD和non-AP MLD,可以由一般性的总线体系结构来实现。
为了便于说明,参见图7,图7是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为AP MLD或non-AP MLD,或其中的芯片。图7仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述实施例一中non-AP MLD的功能:处理器 1001可以用于执行图4中的步骤S101和步骤S103,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S102,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例二中AP MLD的功能:处理器1001可以用于执行图5中的步骤S201和步骤S203,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图5中的步骤S202,和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述任一方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的AP MLD和non-AP MLD,可以由通用处理器来实现。
实现non-AP MLD的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。该通用处理器可以用于执行前述实施例一中non-AP MLD的功能。具体地,处理电路可以用于执行图4中的步骤S101和步骤S103,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图4中的步骤S102,和/或用于本文所描述的技术的其它过程。
实现AP MLD的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接 口。该通用处理器可以用于执行前述实施例二中AP MLD的功能。具体地,处理电路可以用于执行图5中的步骤S201和步骤S203,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图5中的步骤S202,和/或用于本文所描述的技术的其它过程。
应理解,上述各种产品形态的通信装置,具有上述方法实施例中AP MLD或non-AP MLD的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信系统,包括AP MLD和non-AP MLD,该AP MLD和non-AP MLD可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (15)

  1. 一种介质同步时延计时器设置方法,其特征在于,包括:
    非接入点站点多链路设备non-AP MLD中的第一站点在所述non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,所述第一站点工作的链路与所述第二站点工作的链路组成的链路对是非同时发送和接收NSTR链路对,所述初始值不为0;
    所述non-AP MLD中的所述第一站点接收物理层协议数据单元PPDU,所述PPDU携带介质接入控制协议数据单元MPDU,所述MPDU包含请求发送RTS帧;
    若所述RTS帧为第一接入点发送,且所述第一接入点工作的链路不属于所述第一接入点隶属的接入点多链路设备AP MLD的任一个NSTR链路对,则所述non-AP MLD中的所述第一站点将所述介质同步时延计时器的计数值重置为0;
    所述第一接入点是与所述第一站点关联的接入点,或所述第一接入点是与所述第一站点关联的接入点所在的多基本服务集标识BSSID中的其它接入点。
  2. 根据权利要求1所述的方法,其特征在于,所述第一接入点工作的链路不属于所述第一接入点隶属的接入点多链路设备AP MLD的任一个NSTR链路对,包括:
    所述第一接入点隶属的AP MLD不是NSTR移动AP MLD,所述NSTR移动AP MLD包括的任两条链路是NSTR的。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若所述RTS帧为第一接入点发送,且所述第一接入点隶属的AP MLD是NSTR移动AP MLD,则所述non-AP MLD中的所述第一站点不将所述介质同步时延计时器的计数值重置为0。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述RTS帧为第一接入点发送,且所述第一接入点工作的链路属于所述第一接入点隶属的AP MLD的一个NSTR链路对,则所述non-AP MLD中的所述第一站点不将所述介质同步时延计时器的计数值重置为0。
  5. 一种介质同步时延计时器设置方法,其特征在于,包括:
    AP MLD中的第一接入点在所述AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,所述第一接入点工作的链路与所述第二接入点工作的链路组成的链路对是NSTR链路对,所述初始值不为0;
    所述AP MLD中的所述第一接入点接收PPDU,所述PPDU携带MPDU,所述MPDU包含RTS帧;
    若所述RTS帧为与所述第一接入点关联的第一站点发送,且所述第一站点工作的链路不属于所述第一站点隶属的non-AP MLD的任一个NSTR链路对,则所述AP MLD中的所述第一接入点将所述介质同步时延计时器的计数值重置为0。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述RTS帧为与所述第一接入点关联的第一站点发送,且所述第一站点工作的链路属 于所述第一站点隶属的non-AP MLD的一个NSTR链路对,则所述AP MLD中的所述第一接入点不将所述介质同步时延计时器的计数值重置为0。
  7. 一种通信装置,其特征在于,包括:
    处理单元,用于在non-AP MLD中的第二站点传输结束时启动介质同步时延计时器并设置初始值,第一站点工作的链路与所述第二站点工作的链路组成的链路对是NSTR链路对,所述初始值不为0;
    收发单元,用于接收PPDU,所述PPDU携带MPDU,所述MPDU包含RTS帧;
    所述处理单元,还用于当所述RTS帧为第一接入点发送,且所述第一接入点工作的链路不属于所述第一接入点隶属的接入点多链路设备AP MLD的任一个NSTR链路对时,将所述介质同步时延计时器的计数值重置为0;
    所述第一接入点是与所述第一站点关联的接入点,或所述第一接入点是与所述第一站点关联的接入点所在的多基本服务集标识BSSID中的其它接入点。
  8. 根据权利要求7所述的通信装置,其特征在于,所述第一接入点工作的链路不属于所述第一接入点隶属的接入点多链路设备AP MLD的任一个NSTR链路对,包括:
    所述第一接入点隶属的AP MLD不是NSTR移动AP MLD,所述NSTR移动AP MLD包括的任两条链路是NSTR的。
  9. 根据权利要求2所述的通信装置,其特征在于,所述处理单元,还用于:
    当所述RTS帧为第一接入点发送,且所述第一接入点隶属的AP MLD是NSTR移动AP MLD时,则不将所述介质同步时延计时器的计数值重置为0。
  10. 根据权利要求7所述的通信装置,其特征在于,所述处理单元,还用于:
    当所述RTS帧为第一接入点发送,且所述第一接入点工作的链路属于所述第一接入点隶属的AP MLD的一个NSTR链路对时,不将所述介质同步时延计时器的计数值重置为0。
  11. 一种通信装置,其特征在于,包括:
    处理单元,用于在AP MLD中的第二接入点传输结束时启动介质同步时延计时器并设置初始值,第一接入点工作的链路与所述第二接入点工作的链路组成的链路对是NSTR链路对,所述初始值不为0;
    收发单元,用于接收PPDU,所述PPDU携带MPDU,所述MPDU包含RTS帧;
    所述处理单元,还用于当所述RTS帧为与所述第一接入点关联的第一站点发送,且所述第一站点工作的链路不属于所述第一站点隶属的non-AP MLD的任一个NSTR链路对时,将所述介质同步时延计时器的计数值重置为0。
  12. 根据权利要求11所述的通信装置,其特征在于,所述处理单元,还用于:
    当所述RTS帧为与所述第一接入点关联的第一站点发送,且所述第一站点工作的链路属于所述第一站点隶属的non-AP MLD的一个NSTR链路对时,不将所述介质同步时延计时器的计数值重置为0。
  13. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于收发PPDU,所述处理器运行程序指令时,以使得所述通信装置执行权利要求1-6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-6中任一项所述的方法。
  15. 一种包含程序指令的计算机程序产品,其特征在于,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-6中任一项所述的方法。
PCT/CN2022/111750 2021-09-08 2022-08-11 介质同步时延计时器设置方法及相关装置 WO2023035848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111052538.3A CN115776683A (zh) 2021-09-08 2021-09-08 介质同步时延计时器设置方法及相关装置
CN202111052538.3 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023035848A1 true WO2023035848A1 (zh) 2023-03-16

Family

ID=85387484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111750 WO2023035848A1 (zh) 2021-09-08 2022-08-11 介质同步时延计时器设置方法及相关装置

Country Status (3)

Country Link
CN (1) CN115776683A (zh)
TW (1) TWI816522B (zh)
WO (1) WO2023035848A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714472A (zh) * 2020-12-22 2021-04-27 中兴通讯股份有限公司 参数反馈、更新、关联方法、通信节点、通信系统及介质
CN113068214A (zh) * 2020-01-02 2021-07-02 联发科技(新加坡)私人有限公司 无线通信中受限制的多链路设备操作的方法
US20210266891A1 (en) * 2020-02-23 2021-08-26 Nxp Usa, Inc. Method and apparatus for multi-link operations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300713B2 (en) * 2013-08-16 2016-03-29 Qualcomm Incorporated Clock synchronization for multi-processor/multi-chipset solution
US11889435B2 (en) * 2019-07-12 2024-01-30 Mediatek Singapore Pte. Ltd. Enhanced high-throughput synchronous and constrained multi-link transmissions in WLAN
CN115088382A (zh) * 2020-01-08 2022-09-20 Lg 电子株式会社 用于多链路传输的信令
US20210250963A1 (en) * 2020-02-12 2021-08-12 Mediatek Singapore Pte. Ltd. Group addressed frame wireless transmission for constrained multi-link operation
CN112040551B (zh) * 2020-09-11 2024-02-20 腾讯科技(深圳)有限公司 多链路设备的信号传输方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068214A (zh) * 2020-01-02 2021-07-02 联发科技(新加坡)私人有限公司 无线通信中受限制的多链路设备操作的方法
US20210266891A1 (en) * 2020-02-23 2021-08-26 Nxp Usa, Inc. Method and apparatus for multi-link operations
CN112714472A (zh) * 2020-12-22 2021-04-27 中兴通讯股份有限公司 参数反馈、更新、关联方法、通信节点、通信系统及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DIBAKAR DAS (INTEL): "PDT-MAC-MLO-NSTR-blindness-TBD", IEEE DRAFT; 11-21-0221-00-00BE-PDT-MAC-MLO-NSTR-BLINDNESS-TBD, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 0, 8 February 2021 (2021-02-08), Piscataway, NJ USA , pages 1 - 5, XP068176178 *

Also Published As

Publication number Publication date
TW202312766A (zh) 2023-03-16
TWI816522B (zh) 2023-09-21
CN115776683A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2022042268A1 (zh) 多链路通信的链路指示方法及相关装置
WO2022033593A1 (zh) 适用于多链路的关键bss参数管理方法及相关装置
US11864039B2 (en) Individually addressed traffic indication method applicable to multiple links and related apparatus
US20240172218A1 (en) Method for indicating uplink parameter of ppdu and related apparatus
AU2021323746B2 (en) Channel contention method and related apparatus
AU2021336597A1 (en) Channel access method for multi-link device and related apparatus
WO2023035848A1 (zh) 介质同步时延计时器设置方法及相关装置
CN116133043A (zh) 多链路通信方法、装置及可读存储介质
WO2022228400A1 (zh) Emlsr模式下信标帧传输方法及相关装置
WO2023155661A1 (zh) Emlsr模式下链路状态指示方法及相关装置
WO2023236821A1 (zh) 多链路通信方法及装置
TWI830238B (zh) 通訊方法及裝置
WO2023207223A1 (zh) 多链路的重配置方法及装置
RU2804327C1 (ru) Способ указания параметров восходящей линии связи ppdu и соответствующее устройство
EP4376527A1 (en) Communication method and related device
WO2023020525A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866322

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024004680

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022866322

Country of ref document: EP

Effective date: 20240315

NENP Non-entry into the national phase

Ref country code: DE