WO2023035824A1 - 一种基于瓶子设置的吸试剂方法 - Google Patents

一种基于瓶子设置的吸试剂方法 Download PDF

Info

Publication number
WO2023035824A1
WO2023035824A1 PCT/CN2022/110211 CN2022110211W WO2023035824A1 WO 2023035824 A1 WO2023035824 A1 WO 2023035824A1 CN 2022110211 W CN2022110211 W CN 2022110211W WO 2023035824 A1 WO2023035824 A1 WO 2023035824A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
reagent
bottle
voltage signal
test
Prior art date
Application number
PCT/CN2022/110211
Other languages
English (en)
French (fr)
Inventor
吴国银
黄海进
徐建新
简·马克·玖塞夫·杜加
Original Assignee
苏州长光华医生物医学工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州长光华医生物医学工程有限公司 filed Critical 苏州长光华医生物医学工程有限公司
Publication of WO2023035824A1 publication Critical patent/WO2023035824A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water

Definitions

  • the application belongs to the field of medical devices, is suitable for chemiluminescence equipment, and relates to a method for absorbing reagents based on bottle settings.
  • chemiluminescent instruments generally absorb reagents through the liquid level detection method based on capacitance detection.
  • each bottle of reagents is generally injected with the same level of liquid volume for unified processing. Certain factors may cause the lack of liquid in individual bottles. For example, considering that the reagent is spilled or a part of the consumed reagent is loaded into other instruments for testing, the traditional way of aspirating reagents may cause the reagent to be sucked empty due to misdetection, and there is a certain risk.
  • the technical problem to be solved by the present invention is: to solve the deficiency of the reagent suction method in the prior art, thereby providing a bottle-based reagent suction method.
  • a method for absorbing reagents based on bottle settings comprising the following steps:
  • the logic of the step of detecting the remaining amount of reagent in the reagent bottle includes:
  • step S3 standard height liquid level detection: the sampling needle probes down to X-V1 height detection to get the voltage signal value AD1; after S3 is completed, execute the judgment logic: if the difference between AD1 and AD0 does not exceed the set threshold, then proceed to step S4, if If the difference between AD1 and AD0 exceeds the set threshold, then the standard packaging volume is X as the actual liquid volume of the bottle reagent, and step S5 is performed;
  • the first value-taking step control the sampling needle to continue to probe, record the detected voltage signal value H1 after reaching the liquid level, start the plunger pump to suck the reagent, and monitor the pipeline pressure state to determine whether it is empty;
  • the second value-taking step the sampling needle probes down to the height of X-V1 to obtain the voltage signal value AD1, controls the sampling needle to continue to probe, and records the detected voltage signal value H2 after reaching the liquid level, and starts the plunger pump to suck the reagent , and monitor the pipeline pressure state to determine whether it is empty;
  • step S5 If the difference between AD1 and AD0 in the first value-taking step and the difference between AD1 and AD0 in the second value-taking step are greater than or less than the set threshold, average H1 and H2 and bring them into the detector
  • the relationship function between the voltage signal value and the liquid volume in the bottle updates the real liquid volume of the reagent in the bottle, and proceeds to step S5;
  • the third value-taking step is performed ;
  • the third value-taking step the sampling needle probes down to the height of X-V1 to obtain the voltage signal value AD1, controls the sampling needle to continue to probe, and records the detected voltage signal value H3 after reaching the liquid level, and starts the plunger pump to suck Reagent, and monitor the pipeline pressure status to determine whether it is empty;
  • step S5 is performed;
  • step S5 If the logic a or b is not satisfied, it is determined that the margin detection is abnormal, and proceed to step S5;
  • the main test step is carried out before the remaining amount detection step
  • the main test steps include:
  • the step of detecting the remaining amount of the reagent in the reagent bottle is performed on the discarded test.
  • the steps of establishing the relationship function between the detector pulse value and the liquid volume in the bottle are:
  • the reagent suction method based on the bottle setting of the present invention before the main test step, also implements a code scanning identification step: a reagent bottle of the same type is provided with a specific identification code on the bottle body, and a code scanning mechanism is set on the reagent suction device to The identification code is scanned to identify the type of reagent bottle.
  • a flag is established, the initial value of the flag is 0, and when the difference between AD2 and AD0 does not exceed the threshold, the value of the flag is increased by 1, When the value of the flag bit reaches 2, the test is suspended, indicating that the liquid level signal is abnormal.
  • the pressure sensor connected in series in the pipeline monitors the pressure signal during the sample suction process. If the pressure curve conforms to the judgment algorithm of normal sample aspiration, the test is carried out normally, and the subsequent action of spitting liquid into the cuvette will continue in the sequential action; if the air suction condition is triggered, the liquid will not be spitting, the corresponding test will be abandoned, and the follow-up test will continue , if the air suction is triggered twice in a row, the test will be paused.
  • a flag is established, and the initial value of the flag is 0.
  • the value of the flag is increased by 1.
  • the flag When the value reaches 2, the test is paused.
  • the beneficial effects of the present invention are: it can process some reagent bottles filled with non-standard liquids, and reduce the possibility of empty suction during sampling;
  • the spilled reagent For the spilled reagent, after a part of the reagent is consumed, it is loaded to other instruments for testing, and the remaining amount is updated, and the experiment can be performed normally.
  • Fig. 1 is the flow chart of the main test steps of the reagent suction method based on the bottle setting of the embodiment of the present application;
  • Fig. 2 is a flow chart of the air suction determination of the plunger pump according to the embodiment of the present application.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application based on specific situations.
  • the present embodiment provides a method for absorbing reagents based on bottle settings, comprising the following steps:
  • the logic of the step of detecting the remaining amount of reagent in the reagent bottle includes:
  • V1 takes reagent: 0.5mL; magnetic bead solution: 0.3mL), and take the sampling needle at the highest point (that is, the sampling needle At the highest position on the driving stroke of the driving device), the reference value of the voltage signal is AD0;
  • S3 standard height liquid level detection: the sampling needle probes down to the height of X-V1 to obtain the voltage signal value AD1; after S3 is completed, execute the judgment logic: if the difference between AD1 and AD0 does not exceed the set threshold (threshold setting is Based on the amount of liquid that needs to be absorbed each time in the actual experiment, for example, the packaging volume in a certain reagent bottle in this embodiment is X-10% V1, but for this measurement experiment, the single liquid absorption in the ideal state is V1, and the qualified absorption is V1.
  • the liquid volume is more than 90% V1; therefore, the voltage signal value AD1' measured when the packaging volume in a reagent bottle is X-10% V1 is set as the threshold value.
  • step S4 If the difference between AD1 and AD0 exceeds the set threshold, it means that the amount of liquid filled in the reagent will cause the amount of the first liquid absorption to be unqualified), then proceed to step S4, if the difference between AD1 and AD0 exceeds the set threshold, then use
  • the standard packaging volume is X as the actual liquid volume of the bottle reagent, and proceed to step S5;
  • the first value-taking step control the sampling needle to continue to probe, record the detected voltage signal value H1 after reaching the liquid level, start the plunger pump to suck the reagent, and monitor the pipeline pressure state to determine whether it is empty;
  • the second value-taking step the sampling needle probes down to the height of X-V1 to obtain the voltage signal value AD1, controls the sampling needle to continue to probe, and records the detected voltage signal value H2 after reaching the liquid level, and starts the plunger pump to suck the reagent , and monitor the pipeline pressure state to determine whether it is empty;
  • step S5 If the difference between AD1 and AD0 in the first value-taking step and the difference between AD1 and AD0 in the second value-taking step are greater than or less than the set threshold, average H1 and H2 and bring them into the detector
  • the relationship function between the voltage signal value and the liquid volume in the bottle updates the real liquid volume of the reagent in the bottle, and proceeds to step S5;
  • the third value-taking step is performed ;
  • the third value-taking step the sampling needle probes down to the height of X-V1 to obtain the voltage signal value AD1, controls the sampling needle to continue to probe, and records the detected voltage signal value H3 after reaching the liquid level, and starts the plunger pump to suck Reagent, and monitor the pipeline pressure status to determine whether it is empty;
  • step S5 is performed;
  • step S5 If the logic a or b is not satisfied, it is determined that the margin detection is abnormal, and proceed to step S5;
  • the main test step is carried out before the remaining amount detection step
  • the main test steps include:
  • V2 takes reagent: 1.5mL; magnetic bead solution: 0.7mL);
  • the step of detecting the remaining amount of the reagent in the reagent bottle is performed on the discarded test.
  • the steps of establishing the relationship function between the detector pulse value and the liquid volume in the bottle are as follows:
  • the step is to measure the voltage signal value when the sampling needle detects each liquid level; the liquid volume in the reagent bottle and the corresponding measured voltage signal value are fitted to a linear equation according to the least square method (for example, the volume of the reagent or magnetic bead liquid is used as the horizontal coordinates, the voltage signal value when the liquid level is detected is used as the ordinate to establish several recording points, and then a straight line is fitted), and the relationship function between the voltage signal value and the liquid volume in the bottle is established.
  • a code scanning identification step is also implemented: setting a specific identification code on the bottle body for the reagent bottle of the same type, and setting a code scanning mechanism on the reagent suction device Scan the identification code to identify the type of reagent bottle.
  • a flag is established, the initial value of the flag is 0, and when the difference between AD2 and AD0 does not exceed the threshold, The value of the flag is increased by 1, and when the value of the flag reaches 2, the test is suspended, indicating that the liquid level signal is abnormal.
  • the pressure sensor connected in series in the pipeline monitors the pressure signal during the sample suction process,
  • the pressure curve conforms to the judgment algorithm of normal sample aspiration, the test is carried out normally, and the subsequent action of spitting liquid into the cuvette will continue in the sequential action; if the air suction condition is triggered, the liquid will not be spitting, the corresponding test will be abandoned, and the follow-up test will continue If the air suction is triggered twice in a row, the test will be paused.
  • the reagent suction method based on the bottle setting of this embodiment, as shown in Figure 2, in the three value-taking steps, a flag is established, the initial value of the flag is 0, when the air suction condition is triggered, the value of the flag is The value is increased by 1, and when the value of the flag bit reaches 2, the test is suspended.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种基于瓶子设置后快速高度方式的吸试剂逻辑。在仪器调试阶段,对试剂瓶不同液量进行液面位置确认,形成一条一次函数拟合曲线。在新装载试剂时,通过扫码识别瓶子中装量信息,然后使用余量探测功能,确认瓶子中实际液量。在主测试时,会直接运行到实际液量对应高度以下1.5mL处,然后检查液面信号,如液面信号正常触发则可启动正常吸试剂动作,否则该测试放弃并报试剂空吸异常。

Description

一种基于瓶子设置的吸试剂方法 技术领域
本申请属于医疗器械领域,适用于化学发光设备,涉及一种基于瓶子设置的吸试剂方法。
背景技术
目前化学发光仪器吸取试剂一般通过基于电容检测的液面探测方式,对于同一类型的试剂,在实际使用时一般是给每瓶试剂注入同等高度的液量,以便统一处理,但是实际情况下由于不确定因素可能造成个别瓶中的液体缺少,比如考虑到试剂洒掉或消耗掉一部分的试剂装到其他仪器测试,传统的吸试剂方式由于误探可能导致试剂空吸,存在一定风险。
发明内容
本发明要解决的技术问题是:为解决现有技术中吸试剂方法的不足,从而提供一种基于瓶子设置的吸试剂方法。
本发明解决其技术问题所采用的技术方案是:
一种基于瓶子设置的吸试剂方法,包括以下步骤:
建立探测器电压信号数值与瓶内液量的关系函数步骤;
试剂瓶内试剂余量探测步骤;
所述试剂瓶内试剂余量探测步骤的逻辑包括:
以试剂瓶内标准封装量为X,以预设的特定测量体积为V1,以取样针处于最高点时的电压信号基准值为AD0;
S3,标准高度液面探测:取样针下探到X-V1高度探测得到电压信号数值AD1;S3完成后,执行判断逻辑:如果AD1与AD0的差值未超过设定阈值则进行步骤S4,如果AD1与AD0的差值超过设定阈值则以标准封装量为X作为瓶试剂的真实液量,进行步骤S5;
S4,第一次取值步骤:控制取样针继续下探,探到液面后记录探测到的电压信号数值H1,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
第二次取值步骤:取样针下探到X-V1高度探测得到电压信号数值AD1,控制取样针继续下探,探到液面后记录探测到的电压信号数值H2,启动柱塞泵吸试剂, 并监控管路压力状态,判定是否空吸;
如果第一次取值步骤中AD1与AD0的差值与第二次取值步骤中AD1与AD0的差值均大于或均小于设定阈值,则将H1、H2取平均值,带入探测器电压信号数值与瓶内液量的关系函数更新该瓶试剂的真实液量,进行步骤S5;
如果第一次取值步骤中AD1与AD0的差值与第二次取值步骤中AD1与AD0的差值其中一个大于设定阈值,另一个小于设定阈值,则进行第三次取值步骤;第三次取值步骤:取样针下探到X-V1高度探测得到电压信号数值AD1,控制取样针继续下探,探到液面后记录探测到的电压信号数值H3,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
第三次取值步骤完成后,执行以下三种逻辑:
a.三次取值步骤中,存在两次步骤中AD1与AD0的差值未超过设定阈值,且判断出未发生空吸,则取对应步骤中的探到液面后记录探测到的电压信号数值H1、H2或H3中的两个的均值,带入探测器电压信号数值与瓶内液量的关系函数更新该瓶试剂的真实液量,进行步骤S5;
b.三次取值步骤中,存在两次标准高度液面探测步骤中发生AD1与AD0的差值超过设定阈值,则以标准封装量为X作为该瓶试剂的真实液量,进行步骤S5;
c.未满足a或b逻辑的情况下,认定余量探测异常,进行步骤S5;
S5,上报探测结果和探测到的液量H。
优选地,本发明的基于瓶子设置的吸试剂方法,余量探测步骤之前实行主测试步骤,
主测试步骤包括:
S1,设定试剂或磁珠在主测试中每次固定的取液量V2;
S2,控制取样针下降到试剂瓶内液量X-V2的位置,探测得到电压信号数值AD2,将AD2与AD0的差值进行比较,如AD2与AD0的差值超出阈值,则判断为液量正常,测试正常进行,时序动作上,柱塞泵正常吸取试剂;如AD2与AD0的差值未超出阈值,则该测试放弃,后续测试继续;如果连续两次出现AD2与AD0的差值未超出阈值的情况,则测试暂停,提示液面信号异常;
正常测试全部完成后,对放弃的测试进行试剂瓶内试剂余量探测步骤。
优选地,本发明的基于瓶子设置的吸试剂方法,建立探测器脉冲数值与 瓶内液量的关系函数步骤为:
取液量已知且不同的试剂瓶若干个,将取样针实行液面探测步骤,测得取样针探测到各个液面时的电压信号数值;将试剂瓶内液量与对应测得的电压信号数值按照最小二乘法拟合直线方程,建立电压信号数值与瓶内液量的关系函数。
优选地,本发明的基于瓶子设置的吸试剂方法,主测试步骤之前,还实施扫码识别步骤:将同一类型的试剂瓶在瓶身上设置特定的识别码,吸试剂设备上设置扫码机构对识别码进行扫码以识别试剂瓶的种类。
优选地,本发明的基于瓶子设置的吸试剂方法,S2中,建立一个标志位,标志位的初始值为0,当出现AD2与AD0的差值未超出阈值时,标志位的数值加1,当标志位数值达到2,则测试暂停,提示液面信号异常。
优选地,本发明的基于瓶子设置的吸试剂方法,三次取值步骤中,在柱塞泵吸试剂或磁珠过程中,串联在管路中的压力传感器监控吸样过程中的压力信号,当压力曲线符合正常吸样的判定算法,则测试正常进行,时序动作上继续后续吐液到反应杯的动作;若触发空吸条件,则不会去吐液,对应的测试放弃,后续测试继续进行,若连续两次触发空吸,则测试暂停。
优选地,本发明的基于瓶子设置的吸试剂方法,三次取值步骤中,建立一个标志位,标志位的初始值为0,当触发空吸条件时,标志位的数值加1,当标志位数值达到2,则测试暂停。
本发明的有益效果是:能够处理部分装液不标准的试剂瓶,减少取样时空吸的可能;
对于试剂洒掉,试剂消耗一部分后装载到其他仪器测试,通过余量更新,可正常实验。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1是本申请实施例的基于瓶子设置的吸试剂方法主测试步骤流程图;
图2是本申请实施例的柱塞泵空吸判定流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
下面将参考附图并结合实施例来详细说明本申请的技术方案。
实施例
本实施例提供一种基于瓶子设置的吸试剂方法,包括以下步骤:
建立探测器电压信号数值与瓶内液量的关系函数步骤;
试剂瓶内试剂余量探测步骤;
所述试剂瓶内试剂余量探测步骤的逻辑包括:
以试剂瓶内标准封装量为X,以预设的特定测量体积为V1(本实施例中,V1取试剂:0.5mL;磁珠液:0.3mL),以取样针处于最高点(即取样针在驱动设备驱动行程上的最高位置)时的电压信号基准值为AD0;
S3,标准高度液面探测:取样针下探到X-V1高度探测得到电压信号数值AD1;S3完成后,执行判断逻辑:如果AD1与AD0的差值未超过设定阈值(阈值的设定是基于实际实验中每次需要吸液的量,比如本实施例中某一试剂瓶内封装量为X-10%V1,而对于本测量实验,理想状态的单次吸液量是V1,合格吸液量是90%V1以上;所以将一试剂瓶内封装量为X-10%V1时测得的电压信号数值AD1’定为阈值,当某一试剂瓶进行标准高度液面探测时AD1与AD0的差值未超过设 定阈值则表示了该试剂装液量已经会导致第一次吸液的量是不合格的了)则进行步骤S4,如果AD1与AD0的差值超过设定阈值则以标准封装量为X作为瓶试剂的真实液量,进行步骤S5;
S4,第一次取值步骤:控制取样针继续下探,探到液面后记录探测到的电压信号数值H1,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
第二次取值步骤:取样针下探到X-V1高度探测得到电压信号数值AD1,控制取样针继续下探,探到液面后记录探测到的电压信号数值H2,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
如果第一次取值步骤中AD1与AD0的差值与第二次取值步骤中AD1与AD0的差值均大于或均小于设定阈值,则将H1、H2取平均值,带入探测器电压信号数值与瓶内液量的关系函数更新该瓶试剂的真实液量,进行步骤S5;
如果第一次取值步骤中AD1与AD0的差值与第二次取值步骤中AD1与AD0的差值其中一个大于设定阈值,另一个小于设定阈值,则进行第三次取值步骤;第三次取值步骤:取样针下探到X-V1高度探测得到电压信号数值AD1,控制取样针继续下探,探到液面后记录探测到的电压信号数值H3,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
第三次取值步骤完成后,执行以下三种逻辑:
a.三次取值步骤中,存在两次步骤中AD1与AD0的差值未超过设定阈值,且判断出未发生空吸,则取对应步骤中的探到液面后记录探测到的电压信号数值H1、H2或H3中的两个的均值,带入探测器电压信号数值与瓶内液量的关系函数更新该瓶试剂的真实液量,进行步骤S5;
b.三次取值步骤中,存在两次标准高度液面探测步骤中发生AD1与AD0的差值超过设定阈值,则以标准封装量为X作为该瓶试剂的真实液量,进行步骤S5;
c.未满足a或b逻辑的情况下,认定余量探测异常,进行步骤S5;
S5,上报探测结果和探测到的液量H。
优选地,本实施例的基于瓶子设置的吸试剂方法,余量探测步骤之前实行主测试步骤,
如图1所示,主测试步骤包括:
S1,设定试剂或磁珠在主测试中每次固定的取液量V2(本实施例中,V2取试 剂:1.5mL;磁珠液:0.7mL);
S2,控制取样针下降到试剂瓶内液量X-V2的位置,探测得到电压信号数值AD2,将AD2与AD0的差值进行比较,如AD2与AD0的差值超出阈值,则判断为液量正常,测试正常进行,时序动作上,柱塞泵正常吸取试剂;如AD2与AD0的差值未超出阈值,则该测试放弃,后续测试继续;如果连续两次出现AD2与AD0的差值未超出阈值的情况,则测试暂停,提示液面信号异常;
正常测试全部完成后,对放弃的测试进行试剂瓶内试剂余量探测步骤。
优选地,本实施例的基于瓶子设置的吸试剂方法,建立探测器脉冲数值与瓶内液量的关系函数步骤为:
取液量已知且不同的试剂瓶若干个(试剂:1.5mL;5mL;10mL;15mL;20mL;22mL;磁珠液:1mL;2mL;3mL;4mL;5mL),将取样针实行液面探测步骤,测得取样针探测到各个液面时的电压信号数值;将试剂瓶内液量与对应测得的电压信号数值按照最小二乘法拟合直线方程(比如以试剂或磁珠液体积为横坐标,以探测到液面时的电压信号数值为纵坐标建立若干个记录点,然后再拟合直线),建立电压信号数值与瓶内液量的关系函数。
优选地,本实施例的基于瓶子设置的吸试剂方法,主测试步骤之前,还实施扫码识别步骤:将同一类型的试剂瓶在瓶身上设置特定的识别码,吸试剂设备上设置扫码机构对识别码进行扫码以识别试剂瓶的种类。
优选地,本实施例的基于瓶子设置的吸试剂方法,S2中,如图1所示,建立一个标志位,标志位的初始值为0,当出现AD2与AD0的差值未超出阈值时,标志位的数值加1,当标志位数值达到2,则测试暂停,提示液面信号异常。
优选地,本实施例的基于瓶子设置的吸试剂方法,三次取值步骤中,在柱塞泵吸试剂或磁珠过程中,串联在管路中的压力传感器监控吸样过程中的压力信号,当压力曲线符合正常吸样的判定算法,则测试正常进行,时序动作上继续后续吐液到反应杯的动作;若触发空吸条件,则不会去吐液,对应的测试放弃,后续测试继续进行,若连续两次触发空吸,则测试暂停。
优选地,本实施例的基于瓶子设置的吸试剂方法,如图2所示,三次取值步骤中,建立一个标志位,标志位的初始值为0,当触发空吸条件时,标志位的数值加1,当标志位数值达到2,则测试暂停。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工 作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

  1. 一种基于瓶子设置的吸试剂方法,其特征在于,包括以下步骤:建立探测器电压信号数值与瓶内液量的关系函数步骤;
    试剂瓶内试剂余量探测步骤;
    所述试剂瓶内试剂余量探测步骤的逻辑包括:
    以试剂瓶内标准封装量为X,以预设的特定测量体积为V1,以取样针处于最高点时的电压信号基准值为AD0;
    S3,标准高度液面探测:取样针下探到X-V1高度探测得到电压信号数值AD1;
    S3完成后,执行判断逻辑:如果AD1与AD0的差值未超过设定阈值则进行步骤S4,如果AD1与AD0的差值超过设定阈值则以标准封装量为X作为瓶试剂的真实液量,进行步骤S5;
    S4,第一次取值步骤:控制取样针继续下探,探到液面后记录探测到的电压信号数值H1,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
    第二次取值步骤:取样针下探到X-V1高度探测得到电压信号数值AD1,控制取样针继续下探,探到液面后记录探测到的电压信号数值H2,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
    如果第一次取值步骤中AD1与AD0的差值与第二次取值步骤中AD1与AD0的差值均大于或均小于设定阈值,则将H1、H2取平均值,带入探测器电压信号数值与瓶内液量的关系函数更新该瓶试剂的真实液量,进行步骤S5;
    如果第一次取值步骤中AD1与AD0的差值与第二次取值步骤中AD1与AD0的差值其中一个大于设定阈值,另一个小于设定阈值,则进行第三次取值步骤;
    第三次取值步骤:取样针下探到X-V1高度探测得到电压信号数值AD1,控制取样针继续下探,探到液面后记录探测到的电压信号数值H3,启动柱塞泵吸试剂,并监控管路压力状态,判定是否空吸;
    第三次取值步骤完成后,执行以下三种逻辑:
    a.三次取值步骤中,存在两次步骤中AD1与AD0的差值未超过设定阈值,且判断出未发生空吸,则取对应步骤中的探到液面后记录探测到的电压信号数值H1、H2或H3中的两个的均值,带入探测器电压信号数值与瓶内液量的关系函数更新该瓶试剂的真实液量,进行步骤S5;
    b.三次取值步骤中,存在两次标准高度液面探测步骤中发生AD1与AD0的差 值超过设定阈值,则以标准封装量为X作为该瓶试剂的真实液量,进行步骤S5;
    c.未满足a或b逻辑的情况下,认定余量探测异常,进行步骤S5;
    S5,上报探测结果和探测到的液量H。
  2. 根据权利要求1所述的基于瓶子设置的吸试剂方法,其特征在于,余量探测步骤之前实行主测试步骤,
    主测试步骤包括:
    S1,设定试剂或磁珠在主测试中每次固定的取液量V2;
    S2,控制取样针下降到试剂瓶内液量X-V2的位置,探测得到电压信号数值AD2,将AD2与AD0的差值进行比较,如AD2与AD0的差值超出阈值,则判断为液量正常,测试正常进行,时序动作上,柱塞泵正常吸取试剂;如AD2与AD0的差值未超出阈值,则该测试放弃,后续测试继续;如果连续两次出现AD2与AD0的差值未超出阈值的情况,则测试暂停,提示液面信号异常;
    正常测试全部完成后,对放弃的测试进行试剂瓶内试剂余量探测步骤。
  3. 根据权利要求1所述的基于瓶子设置的吸试剂方法,其特征在于,建立探测器脉冲数值与瓶内液量的关系函数步骤为:
    取液量已知且不同的试剂瓶若干个,将取样针实行液面探测步骤,测得取样针探测到各个液面时的电压信号数值;将试剂瓶内液量与对应测得的电压信号数值按照最小二乘法拟合直线方程,建立电压信号数值与瓶内液量的关系函数。
  4. 根据权利要求2所述的基于瓶子设置的吸试剂方法,其特征在于,主测试步骤之前,还实施扫码识别步骤:将同一类型的试剂瓶在瓶身上设置特定的识别码,吸试剂设备上设置扫码机构对识别码进行扫码以识别试剂瓶的种类。
  5. 根据权利要求2或4所述的基于瓶子设置的吸试剂方法,其特征在于,S2中,建立一个标志位,标志位的初始值为0,当出现AD2与AD0的差值未超出阈值时,标志位的数值加1,当标志位数值达到2,则测试暂停,提示液面信号异常。
  6. 根据权利要求1-4任一项所述的基于瓶子设置的吸试剂方法,其特征在于,三次取值步骤中,在柱塞泵吸试剂或磁珠过程中,串联在管路中的压力传感器监控吸样过程中的压力信号,当压力曲线符合正常吸样的判定算法, 则测试正常进行,时序动作上继续后续吐液到反应杯的动作;若触发空吸条件,则不会去吐液,对应的测试放弃,后续测试继续进行,若连续两次触发空吸,则测试暂停。
  7. 根据权利要求6所述的基于瓶子设置的吸试剂方法,其特征在于,三次取值步骤中,建立一个标志位,标志位的初始值为0,当触发空吸条件时,标志位的数值加1,当标志位数值达到2,则测试暂停。
PCT/CN2022/110211 2021-09-08 2022-08-04 一种基于瓶子设置的吸试剂方法 WO2023035824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111048244.3 2021-09-08
CN202111048244.3A CN113720417B (zh) 2021-09-08 2021-09-08 一种基于瓶子设置的吸试剂方法

Publications (1)

Publication Number Publication Date
WO2023035824A1 true WO2023035824A1 (zh) 2023-03-16

Family

ID=78682463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110211 WO2023035824A1 (zh) 2021-09-08 2022-08-04 一种基于瓶子设置的吸试剂方法

Country Status (2)

Country Link
CN (1) CN113720417B (zh)
WO (1) WO2023035824A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720417B (zh) * 2021-09-08 2023-04-18 苏州长光华医生物医学工程有限公司 一种基于瓶子设置的吸试剂方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881706A (zh) * 2010-07-05 2010-11-10 深圳迈瑞生物医疗电子股份有限公司 一种采样设备及方法
CN102288260A (zh) * 2011-07-06 2011-12-21 长春迪瑞医疗科技股份有限公司 试剂剩余量检测装置和方法
WO2017033910A1 (ja) * 2015-08-25 2017-03-02 株式会社日立ハイテクノロジーズ 自動分析装置、分注方法、および液面検知方法
CN107643699A (zh) * 2017-09-30 2018-01-30 迈克医疗电子有限公司 取液控制方法、装置及取液系统
CN111141919A (zh) * 2019-12-23 2020-05-12 苏州长光华医生物医学工程有限公司 用于化学发光免疫分析仪的试剂液面高度检测方法和装置
CN112414506A (zh) * 2020-11-11 2021-02-26 苏州长光华医生物医学工程有限公司 一种试剂空吸检测装置及计算机可读存储介质
CN113720417A (zh) * 2021-09-08 2021-11-30 苏州长光华医生物医学工程有限公司 一种基于瓶子设置的吸试剂方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918374A (zh) * 2016-11-02 2017-07-04 北京信息科技大学 一种加样针结构电容法液位探测方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881706A (zh) * 2010-07-05 2010-11-10 深圳迈瑞生物医疗电子股份有限公司 一种采样设备及方法
CN102288260A (zh) * 2011-07-06 2011-12-21 长春迪瑞医疗科技股份有限公司 试剂剩余量检测装置和方法
WO2017033910A1 (ja) * 2015-08-25 2017-03-02 株式会社日立ハイテクノロジーズ 自動分析装置、分注方法、および液面検知方法
CN107643699A (zh) * 2017-09-30 2018-01-30 迈克医疗电子有限公司 取液控制方法、装置及取液系统
CN111141919A (zh) * 2019-12-23 2020-05-12 苏州长光华医生物医学工程有限公司 用于化学发光免疫分析仪的试剂液面高度检测方法和装置
CN112414506A (zh) * 2020-11-11 2021-02-26 苏州长光华医生物医学工程有限公司 一种试剂空吸检测装置及计算机可读存储介质
CN113720417A (zh) * 2021-09-08 2021-11-30 苏州长光华医生物医学工程有限公司 一种基于瓶子设置的吸试剂方法

Also Published As

Publication number Publication date
CN113720417A (zh) 2021-11-30
CN113720417B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
US8475740B2 (en) Liquid dispensing apparatus
US9335335B2 (en) Automatic analyzer
US9470570B2 (en) Automatic analyzer and method for determining malfunction thereof
US20160291049A1 (en) Methods and apparatus for determining aspiration and/or dispensing volume and/or pipette positioning
JP2001021572A (ja) 流体の吸引体積を確認する方法
US9389240B2 (en) Automatic analyzer
WO2023035824A1 (zh) 一种基于瓶子设置的吸试剂方法
US20140123774A1 (en) Automatic analyzer
JP2004271266A (ja) 分注装置およびそれを用いた自動分析装置
US20120291532A1 (en) Methods, Systems, And Apparatus To Determine A Clot Carryout Condition Upon Probe Retraction During Sample Aspiration And Dispensing
CN106353519A (zh) 在自动分析装置中用于移液液体的方法
EP3101431B1 (en) Automatic analytical apparatus
US11788971B2 (en) Test kit, test method, dispensing device
JP7200357B2 (ja) 実験器具の動作方法
US6484556B1 (en) Thin film detection during fluid aspiration
JP2013044530A (ja) 分注装置
US20170307481A1 (en) Syringe assembly and method of using the same
JP5536727B2 (ja) 分注方法及び分注装置
JP4045211B2 (ja) 自動分析装置
JP3120180U (ja) 自動分析装置
JP2004028673A (ja) 自動分析装置
US7779666B2 (en) Method for checking the condition of a sample when metering liquid
EP3896460A1 (en) Automatic sampling method for handling whole blood
JP2000046624A (ja) 液体残量検出機能を備えた分析装置
JPS63269061A (ja) 自動化学分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE