WO2023035796A1 - 一种基于资源运行的空中交通管理系统 - Google Patents

一种基于资源运行的空中交通管理系统 Download PDF

Info

Publication number
WO2023035796A1
WO2023035796A1 PCT/CN2022/108086 CN2022108086W WO2023035796A1 WO 2023035796 A1 WO2023035796 A1 WO 2023035796A1 CN 2022108086 W CN2022108086 W CN 2022108086W WO 2023035796 A1 WO2023035796 A1 WO 2023035796A1
Authority
WO
WIPO (PCT)
Prior art keywords
airspace
resource
data
demand
management module
Prior art date
Application number
PCT/CN2022/108086
Other languages
English (en)
French (fr)
Inventor
许兵
Original Assignee
许兵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许兵 filed Critical 许兵
Publication of WO2023035796A1 publication Critical patent/WO2023035796A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan

Definitions

  • the invention relates to the field of air traffic control systems, in particular to an air traffic management system based on resource operation.
  • Air control includes theater airspace control, air traffic control and air flow control, intelligence reporting and control reports, etc.
  • the purpose is to control the use of airspace, safeguard national air security, maintain flight order, and improve the efficiency of airspace use.
  • Air traffic control is the nerve center of the civil aviation industry.
  • the "Sky” plan focuses on the integrated management of fragmented airspace resources; the United States proposes the "Next Generation Air Transport System” plan, which focuses on track operation management; my country proposes the "New Generation Air Traffic Management System” plan to achieve the goal of becoming a civil aviation power
  • the concept of "air-ground integration" is the core.
  • Performance-Based Navigation PBN
  • ADS-B Automatic Dependent Insights-Broadcast
  • TBO Track-Based Operations
  • SWIM Wide Area Information Management
  • FF-ICE Flight and Flow Cooperative Information Environment
  • the current air traffic management system is characterized by intensive manpower, isolated information islands, and inefficient use of airspace resources, which cannot meet the development needs of air traffic control technology.
  • a new generation of intelligent air traffic management system with new technology needs to be studied urgently.
  • an air traffic management system based on resource operation, including an airspace resource supply end, an aircraft airspace resource demand end, and an air traffic control brain, in which strategic resources are set Management module, used to generate seasonal flight schedule and temporary plan; pre-tactical resource management module, used to generate next day flight plan and flow control; tactical resource management module, used to generate sectoral tactical airspace resource allocation plan and remaining available resources ;
  • the real-time resource management module is used to adjust the aircraft airspace resources;
  • the program execution and feedback module is used to output or feed back the aircraft airspace resource adjustment plan;
  • the airspace resource supply end and the aircraft airspace resource demand end respectively provide the strategic resource management module, the pre-tactical resource management module, and the tactical resource management module with airspace supply resource data and flight plan airspace demand resource data, and the program execution and feedback module will execute Program output, or receive external feedback information.
  • the implementation process of the strategic resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including national geographic information data, national airspace resource data, and flight information data;
  • the aircraft airspace resource demand side provides flight airspace demand resource data to the strategic resource management module, including application data for seasonal flight plans by airlines, historical flight data, application data for temporary flight plans by airlines, and airspace demand resource data for temporary flights;
  • the strategic resource management module judges the supply/demand matching of airspace strategic resources according to the data provided by S1-1 and S1-2, and judges whether the supply and demand of airspace resources are balanced;
  • the implementation process of the pre-tactical resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including regional air traffic management bureau geographic information data, regional airspace resource data, flight information data, and other restricted information data;
  • the aircraft airspace resource demand side provides the next day's flight plan airspace demand resource data to the strategic resource management module, including historical flight data and next day's flight plan application data: including flight schedule data and temporary flight plan data;
  • the pre-tactical resource management module judges the supply/demand matching of pre-tactical airspace resources according to the data provided by S2-1 and S2-2, and judges whether the supply and demand of airspace resources are balanced;
  • the implementation process of the tactical resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including sector and adjacent sector geographic information data, sector and adjacent sector airspace data, flight information data, and other restricted information;
  • the aircraft airspace resource demand side provides sectoral flight airspace demand resources to the strategic resource management module, including next day flight plan data, flow control management data, current day flight plan data and flight pilot plan data;
  • the tactical resource management module judges the supply/demand matching of sectoral tactical airspace resources according to the data provided by S3-1 and S3-2, and judges whether the supply and demand of airspace resources are balanced;
  • the implementation process of the real-time resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including the remaining available resource data of sector tactical airspace;
  • the aircraft airspace resource demand side provides the strategic resource management module with real-time airspace demand resource data, including aircraft surveillance system data, sector real-time flight dynamic data, and sector tactical airspace resource allocation plan data;
  • the real-time resource management module performs an aircraft real-time airspace resource supply/demand matching analysis based on the data provided by S4-1 and S4-2, and judges whether the airspace resource is in balance between supply and demand;
  • the present invention has the following advantages: the present invention is based on the concept of resource operation, utilizes the essential connection of resources, and connects the three basic elements of "people, environment, and objects" such as controllers, airspace, and aircrafts in air traffic control work into one another.
  • the organic whole that is interconnected and interacts with each other makes it possible to digitize various elements of air traffic control, integrate the bottom layer of isolated system data, and artificial intelligence processing of comprehensive digital information, and realize the simulation of the actual scene of civil aviation safe operation to the virtual scene of the air traffic control system.
  • air traffic control automation in a complete sense can be realized, that is, air traffic control full digital information processing, intelligent decision-making Auxiliary and intelligent control services, etc., to improve the safety, efficiency and service quality of air traffic control operations.
  • Figure 1 is a schematic diagram of the structure of the existing air traffic control system.
  • Fig. 2 is a schematic diagram of the structure of an air traffic management system based on resource operation in the present application.
  • Fig. 3 is a flow diagram of a strategic resource management module in an air traffic management system based on resource operation in the present application.
  • Fig. 4 is a schematic flow diagram of a pre-tactical resource management module in an air traffic management system based on resource operation in the present application.
  • Fig. 5 is a schematic flow diagram of a tactical resource management module in an air traffic management system based on resource operation in the present application.
  • Fig. 6 is a schematic flow diagram of a real-time resource management module in a resource-based air traffic management system of the present application.
  • Accompanying drawing 1 is the architecture diagram of the existing air traffic control system. It can be seen from the accompanying drawing 1 that most of the existing air traffic control systems are only controlled by the controller, and the information is isolated and the utilization of airspace resources is low; compared with this, combined with the accompanying drawing 2,
  • This embodiment provides an air traffic management system based on resource operation, including an airspace resource supply end, an aircraft airspace resource demand end, and an air traffic control brain.
  • a strategic resource management module is set in the air traffic control brain for generating seasonal flight schedules.
  • pre-tactical resource management module used to generate next day flight plan and flow control
  • tactical resource management module used to generate sectoral tactical airspace resource allocation plan and remaining available resources
  • real-time resource management module used to conduct aircraft Airspace resource adjustment
  • plan execution and feedback module used to output or feed back aircraft airspace resource adjustment plan
  • the airspace resource supply end and the aircraft airspace resource demand end respectively provide the strategic resource management module, the pre-tactical resource management module, and the tactical resource management module with airspace supply resource data and flight plan airspace demand resource data, and the program execution and feedback module will execute Program output, or receive external feedback information, while interacting with other modules.
  • the airspace resource provided by the airspace resource demand side of the aircraft is the minimum safe flight "body" space range composed of the real-time and planned track points of the aircraft as the particle and the three-dimensional interval as the size, and is an inseparable physical attribute of aircraft operation. It is also the smallest unit of airspace resource allocation and the basic guarantee for the safe flight of aircraft; currently, aircraft can include civil, military, general-purpose, unmanned aerial vehicles and sounding balloons, and in the future, it can also include aircraft such as flying cars;
  • the airspace resources provided by the airspace resource supply end are, in principle, the entire space body extending vertically upward from the surface of the airspace control area.
  • airspace resources are roughly divided into user types: civil aviation, military Airspace used by parties, low-altitude/navigational flight airspace, UAV flight airspace, and intelligence consultation airspace, etc., are all space “body” concepts, so airspace resources meet the addition and subtraction of quantity and size, while geographic information, route structure, flight
  • the essence of information such as intelligence, meteorology, and other airspace restrictions is the factor that increases or decreases the size of the airspace resource body. For example, a disastrous thunderstorm body, adding safety circumvention intervals and time parameters, constitutes an airspace resource body similar to aircraft safety requirements.
  • the addition and subtraction of the airspace volume concept is the addition and subtraction of the airspace volume concept;
  • the air traffic control brain is the simulation, extension and expansion of human thinking, information processing, storage and decision-making. It is responsible for the dynamic planning, monitoring and implementation of airspace resource information for past, present and future aircraft safety requirements, and available airspace resource information. Information processing such as storage and feedback;
  • the strategic resource management module, the pre-tactical resource management module, the tactical resource management module, and the real-time resource management module function sequentially, and the final results are sent through the program execution and feedback module to interact with pilots and controllers.
  • the implementation process of the strategic resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including national geographic information data, national airspace resource data, and flight information data;
  • the aircraft airspace resource demand side provides flight airspace demand resource data to the strategic resource management module, including application data for seasonal flight plans by airlines, historical flight data, application data for temporary flight plans by airlines, and airspace demand resource data for temporary flights;
  • the strategic resource management module judges the supply/demand matching of airspace strategic resources according to the data provided by S1-1 and S1-2, and judges whether the supply and demand of airspace resources are balanced;
  • the implementation process of the pre-tactical resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including regional air traffic management bureau geographic information data, regional airspace resource data, flight information data, and other restricted information data;
  • the aircraft airspace resource demand side provides the next day's flight plan airspace demand resource data to the strategic resource management module, including historical flight data and next day's flight plan application data: including flight schedule data and temporary flight plan data;
  • the pre-tactical resource management module judges the supply/demand matching of pre-tactical airspace resources according to the data provided by S2-1 and S2-2, and judges whether the supply and demand of airspace resources are balanced;
  • the implementation process of the tactical resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including sector and adjacent sector geographic information data, sector and adjacent sector airspace data, flight information data, and other restricted information;
  • the aircraft airspace resource demand side provides sectoral flight airspace demand resources to the strategic resource management module, including next day flight plan data, flow control management data, current day flight plan data and flight pilot plan data;
  • the tactical resource management module judges the supply/demand matching of sectoral tactical airspace resources according to the data provided by S3-1 and S3-2, and judges whether the supply and demand of airspace resources are balanced;
  • the implementation process of the real-time resource management module includes the following steps:
  • the airspace resource supply end provides airspace supply resource data to the strategic resource management module, including the remaining available resource data of sector tactical airspace;
  • the aircraft airspace resource demand side provides the strategic resource management module with real-time airspace demand resource data, including aircraft surveillance system data, sector real-time flight dynamic data, and sector tactical airspace resource allocation plan data;
  • the real-time resource management module performs an aircraft real-time airspace resource supply/demand matching analysis based on the data provided by S4-1 and S4-2, and judges whether the airspace resource is in balance between supply and demand;
  • this application uses the essential connection of resources to connect the three basic elements of "human, environment, and objects" in air traffic control work, such as controllers, airspace, and aircraft, into an organic whole that is interconnected and mutually influential, making air
  • the digitization of management elements, the underlying fusion of isolated system data, and the artificial intelligence processing of comprehensive digital information become possible, realizing the simulation of the real scene of civil aviation safe operation to the virtual scene of the air traffic control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种基于资源运行的空中交通管理系统,包括战略资源管理模块,用于生成换季航班时刻表和临时计划;预战术资源管理模块,用于生成次日航班计划和流量控制;战术资源管理模块,用于生成扇区战术空域资源分配预案和剩余可用资源;实时资源管理模块,用于进行航空器空域资源调整;方案执行与反馈模块,用于输出或反馈航空器空域资源调整方案。该系统利用资源的本质联系,将空管工作中管制员、空域和航空器等"人、环境、物"三个基本元素联结为彼此相互联系又相互影响的有机整体,使得空管各要素数字化、各孤立系统数据底层融合和综合数字信息的人工智能化处理成为可能,实现民航安全运行的现实情景到空管系统虚拟情景的仿真。

Description

一种基于资源运行的空中交通管理系统 技术领域
本发明涉及空管系统领域,具体涉及一种基于资源运行的空中交通管理系统。
背景技术
空中管制包括战区空域管制、空中交通管制和空中流量控制、情报报知和管制报告等,目的是通过控制空域使用,保卫国家空中安全,维护飞行秩序,提高空域使用效率。
空管是民航业的神经中枢,为了适应未来航空业的快速发展,解决空中交通安全、空域拥挤、航班延误等问题,各国致力于开展解决未来空中交通问题的新技术研究;欧盟提出“单一欧洲天空”计划,侧重碎片化空域资源一体化管理;美国提出“下一代航空运输系统”计划,侧重航迹运行管理;我国为实现民航强国的目标,提出“新一代空中交通管理系统”计划,以“天空地一体化”概念为核心。
欧美为研发主体的基于性能导航(PBN)、广播式自动相关见识(ADS-B)、基于航迹的运行(TBO)、广域信息管理(SWIM)、航班与流量协同信息环境(FF-ICE)等空管新技术不断得到应用;我国交通强国建设纲要将北斗卫星、5G、大飞机、物联网、人工智能等为核心的数字技术融合应用定为国家战略。
目前,现行空管系统特点为人力密集、信息孤岛、空域资源利用低效,不能满足空管技术的发展需求,因此,一种基于空管创新理论,融合空管各要素、数字技术和空管新技术的新一代智慧空中交通管理系统亟待研究。
发明内容
为解决上述技术问题,本发明提供的技术方案为:一种基于资源运行的空中交通管理系统,包括空域资源供给端、航空器空域资源需求端和空管大脑,所述空管大脑内设置战略资源管理模块,用于生成换季航班时刻表和临时计划;预战术资源管理模块,用于生成次日航班计划和流量控制;战术资源管理模块,用于生成扇区战术空域资源分配预案和剩余可用资源;实时资源管理模块,用于进行航空器空域资源调整;方案执行与反馈模块,用于输出或反馈航空器空域资源调整方案;
空域资源供给端、航空器空域资源需求端分别向战略资源管理模块、预战术资源管理模块、战术资源管理模块提供空域供给资源数据、及飞行计划空域需求资源数据,所述方案执行与反馈模块将执行方案输出,或接收外部反馈信息。
优选地,所述战略资源管理模块的实现过程,包括以下步骤:
S1-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括由全国地理信息数据、全国空域资源数据、飞行情报数据;
S1-2、航空器空域资源需求端向战略资源管理模块提供航班空域需求资源数据,包括由航空公司换季 航班计划申请数据、历史飞行数据、航空公司临时航班计划申请数据及临时航班空域需求资源数据;
S1-3、战略资源管理模块根据S1-1、S1-2提供的数据进行空域战略资源供给/需求匹配判断,判断空域资源是否供需平衡;
S1-4、当空域资源供需平衡时,根据航空公司提供的换季航班计划申请及历史飞行数据输出换季航班时刻表;
或根据空域剩余可用资源及航空公司提供的临时航班计划申请数据、临时航班空域需求资源数据生成临时航班计划;
S1-5、当空域资源供需不平衡时,进行资源需求协调请求。
优选地,所述预战术资源管理模块的实现过程,包括以下步骤:
S2-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括地区空管局地理信息数据、地区空域资源数据、飞行情报数据、其他限制信息数据;
S2-2、航空器空域资源需求端向战略资源管理模块提供次日飞行计划空域需求资源数据,包括历史飞行数据以及次日飞行计划申请数据:包括航班时刻表数据以及临时飞行计划数据;
S2-3、预战术资源管理模块根据S2-1、S2-2提供的数据进行预战术空域资源供给/需求匹配判断,判断空域资源是否供需平衡;
S2-4、当空域资源供需平衡时,输出次日飞行计划及流量控制管理计划;
S2-5、当空域资源供需不平衡时,进行地区空管局间资源需求协调请求。
优选地,所述战术资源管理模块的实现过程,包括以下步骤:
S3-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括扇区及相邻扇区地理信息数据、扇区及相邻扇区空域数据、飞行情报数据以及其他限制信息;
S3-2、航空器空域资源需求端向战略资源管理模块提供扇区航班空域需求资源,包括次日飞行计划数据、流量控制管理数据、当日飞行计划数据以及飞行领航计划数据;
S3-3、战术资源管理模块根据S3-1、S3-2提供的数据进行扇区战术空域资源供给/需求匹配判断,判断空域资源是否供需平衡;
S3-4、当空域资源供需平衡时,输出扇区战术空域资源分配预案及扇区战术空域剩余可用资源;
S3-5、当空域资源供需不平衡时,进行扇区间资源协调。
优选地,所述实时资源管理模块的实现过程,包括以下步骤:
S4-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括扇区战术空域剩余可用资源数据;
S4-2、航空器空域资源需求端向战略资源管理模块提供航空器实时空域需求资源数据,包括航空器监视系统数据、扇区实时航班动态数据以及扇区战术空域资源分配预案数据;
S4-3、实时资源管理模块根据S4-1、S4-2提供的数据进行航空器实时空域资源供给/需求匹配分析,判断空域资源是否供需平衡;
S4-4、当空域资源供需平衡时,将扇区战术空域资源分配预案输出至执行结果存档与反馈模块;
S4-5,当空域资源供需不平衡时,进行航空器空域资源调整。
采用以上方案后,本发明具有如下优点:本发明基于资源运行概念,利用资源的本质联系,将空管工作中管制员、空域和航空器等“人、环境、物”三个基本元素联结为彼此相互联系又相互影响的有机整体,使得空管各要素数字化、各孤立系统数据底层融合和综合数字信息的人工智能化处理成为可能,实现民航安全运行的现实情景到空管系统虚拟情景的仿真。
通过本发明系统,能够实现空管和相关机载设备的标准、规范、设计、制造、应用等产业链科技创新;能够实现完全意义上的空管自动化,即空管全数字信息处理、智能决策辅助和智慧管制服务等,提升空管运行安全、效率和服务品质。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解的是,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是现有空管系统的构架示意图。
图2是本申请一种基于资源运行的空中交通管理系统的构架示意图。
图3是本申请一种基于资源运行的空中交通管理系统中战略资源管理模块流程示意图。
图4是本申请一种基于资源运行的空中交通管理系统中预战术资源管理模块流程示意图。
图5是本申请一种基于资源运行的空中交通管理系统中战术资源管理模块流程示意图。
图6是本申请一种基于资源运行的空中交通管理系统中实时资源管理模块流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
实施例
附图1为现空管子系统架构图,有附图1可以看出,现有空管系统大多仅有管制员进行调控,信息孤岛、空域资源利用低;与此对比,结合附图2,本实施例提供一种基于资源运行的空中交通管理系统,包括空域资源供给端、航空器空域资源需求端和空管大脑,所述空管大脑内设置战略资源管理模块,用于生成换季航班时刻表和临时计划;预战术资源管理模块,用于生成次日航班计划和流量控制;战术资源管理模块,用于生成扇区战术空域资源分配预案和剩余可用资源;实时资源管理模块,用于进行航空器空域资源调整;方案执行与反馈模块,用于输出或反馈航空器空域资源调整方案;
空域资源供给端、航空器空域资源需求端分别向战略资源管理模块、预战术资源管理模块、战术资源管理模块提供空域供给资源数据、及飞行计划空域需求资源数据,所述方案执行与反馈模块将执行方案输出,或接收外部反馈信息,在与其他模块交互。
其中,航空器空域资源需求端所提供的空域资源,是航空器以实时和规划的航迹点为质点、三维间隔为大小构成的最小安全飞行“体”空间范围,是航空器运行不可分割的物理属性,也是空域资源分配的最小单位,是航空器安全飞行的基本保障;目前航空器可包括民用、军用、通用、无人机和探空气球,未来还可以包括飞行汽车等飞行器;
空域资源供给端所提供的空域的资源,原则上是从空管管制辖区的地表、向上垂直延伸的整个空间体,根据空域管理和使用法规,空域资源按用户类型大致分为:民航空域、军方使用空域、低空/通航飞行空域、无人机飞行空域和情报咨询空域等,因均为空间“体”概念,所以空域资源满足数量、大小的加减运算,而地理信息、航路结构、飞行情报、气象、其他空域限制等信息的本质是空域资源体大小增减的因素,如灾害性雷暴体,加安全绕飞间隔和时间参数,构成类似航空器安全需求的空域资源体,由此可进行空域体概念的加减运算;
空管大脑是人的思维、信息处理、存储和决策等智能的模拟、延伸和扩展,负责对过去、现在和未来航空器安全需求的空域资源信息、和空域可用资源信息的动态规划、监视实施、存储和反馈等信息处理;
本实施例中战略资源管理模块、预战术资源管理模块、战术资源管理模块、实时资源管理模块依次作用,并将最终结果通过方案执行与反馈模块发送,与飞行员、管制员进行信息交互。
结合附图3,战略资源管理模块的实现过程,包括以下步骤:
S1-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括由全国地理信息数据、全国空域资源数据、飞行情报数据;
S1-2、航空器空域资源需求端向战略资源管理模块提供航班空域需求资源数据,包括由航空公司换季航班计划申请数据、历史飞行数据、航空公司临时航班计划申请数据及临时航班空域需求资源数据;
S1-3、战略资源管理模块根据S1-1、S1-2提供的数据进行空域战略资源供给/需求匹配判断,判断空域资源是否供需平衡;
S1-4、当空域资源供需平衡时,根据航空公司提供的换季航班计划申请及历史飞行数据输出换季航班 时刻表;
或根据空域剩余可用资源及航空公司提供的临时航班计划申请数据、临时航班空域需求资源数据生成临时航班计划;
S1-5、当空域资源供需不平衡时,进行资源需求协调请求。
结合附图4,预战术资源管理模块的实现过程,包括以下步骤:
S2-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括地区空管局地理信息数据、地区空域资源数据、飞行情报数据、其他限制信息数据;
S2-2、航空器空域资源需求端向战略资源管理模块提供次日飞行计划空域需求资源数据,包括历史飞行数据以及次日飞行计划申请数据:包括航班时刻表数据以及临时飞行计划数据;
S2-3、预战术资源管理模块根据S2-1、S2-2提供的数据进行预战术空域资源供给/需求匹配判断,判断空域资源是否供需平衡;
S2-4、当空域资源供需平衡时,输出次日飞行计划及流量控制管理计划;
S2-5、当空域资源供需不平衡时,进行地区空管局间资源需求协调请求。
结合附图5,战术资源管理模块的实现过程,包括以下步骤:
S3-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括扇区及相邻扇区地理信息数据、扇区及相邻扇区空域数据、飞行情报数据以及其他限制信息;
S3-2、航空器空域资源需求端向战略资源管理模块提供扇区航班空域需求资源,包括次日飞行计划数据、流量控制管理数据、当日飞行计划数据以及飞行领航计划数据;
S3-3、战术资源管理模块根据S3-1、S3-2提供的数据进行扇区战术空域资源供给/需求匹配判断,判断空域资源是否供需平衡;
S3-4、当空域资源供需平衡时,输出扇区战术空域资源分配预案及扇区战术空域剩余可用资源;
S3-5、当空域资源供需不平衡时,进行扇区间资源协调。
结合附图6,实时资源管理模块的实现过程,包括以下步骤:
S4-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括扇区战术空域剩余可用资源数据;
S4-2、航空器空域资源需求端向战略资源管理模块提供航空器实时空域需求资源数据,包括航空器监视系统数据、扇区实时航班动态数据以及扇区战术空域资源分配预案数据;
S4-3、实时资源管理模块根据S4-1、S4-2提供的数据进行航空器实时空域资源供给/需求匹配分析,判断空域资源是否供需平衡;
S4-4、当空域资源供需平衡时,将扇区战术空域资源分配预案输出至执行结果存档与反馈模块;
S4-5,当空域资源供需不平衡时,进行航空器空域资源调整。
本申请基于资源运行概念,利用资源的本质联系,将空管工作中管制员、空域和航空器等“人、环境、物”三个基本元素联结为彼此相互联系又相互影响的有机整体,使得空管各要素数字化、各孤立系统数据底层融合和综合数字信息的人工智能化处理成为可能,实现民航安全运行的现实情景到空管系统虚拟情景的仿真。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。总而言之如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (5)

  1. 一种基于资源运行的空中交通管理系统,其特征在于,包括空域资源供给端、航空器空域资源需求端和空管大脑,所述空管大脑内设置战略资源管理模块,用于生成换季航班时刻表和临时计划;预战术资源管理模块,用于生成次日航班计划和流量控制;战术资源管理模块,用于生成扇区战术空域资源分配预案和剩余可用资源;实时资源管理模块,用于进行航空器空域资源调整;方案执行与反馈模块,用于输出或反馈航空器空域资源调整方案;
    空域资源供给端、航空器空域资源需求端分别向战略资源管理模块、预战术资源管理模块、战术资源管理模块提供空域供给资源数据、及飞行计划空域需求资源数据,所述方案执行与反馈模块将执行方案输出,或接收外部反馈信息。
  2. 根据权利要求1所述的一种基于资源运行的空中交通管理系统,其特征在于,所述战略资源管理模块的实现过程,包括以下步骤:
    S1-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括由全国地理信息数据、全国空域资源数据、飞行情报数据;
    S1-2、航空器空域资源需求端向战略资源管理模块提供航班空域需求资源数据,包括由航空公司换季航班计划申请数据、历史飞行数据、航空公司临时航班计划申请数据及临时航班空域需求资源数据;
    S1-3、战略资源管理模块根据S1-1、S1-2提供的数据进行空域战略资源供给/需求匹配判断,判断空域资源是否供需平衡;
    S1-4、当空域资源供需平衡时,根据航空公司提供的换季航班计划申请及历史飞行数据输出换季航班时刻表;
    或根据空域剩余可用资源及航空公司提供的临时航班计划申请数据、临时航班空域需求资源数据生成临时航班计划;
    S1-5、当空域资源供需不平衡时,进行资源需求协调请求。
  3. 根据权利要求1所述的一种基于资源运行的空中交通管理系统,其特征在于,所述预战术资源管理模块的实现过程,包括以下步骤:
    S2-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括地区空管局地理信息数据、地区空域资源数据、飞行情报数据、其他限制信息数据;
    S2-2、航空器空域资源需求端向战略资源管理模块提供次日飞行计划空域需求资源数据,包括历史飞行数据以及次日飞行计划申请数据:包括航班时刻表数据以及临时飞行计划数据;
    S2-3、预战术资源管理模块根据S2-1、S2-2提供的数据进行预战术空域资源供给/需求匹配判断,判断空域资源是否供需平衡;
    S2-4、当空域资源供需平衡时,输出次日飞行计划及流量控制管理计划;
    S2-5、当空域资源供需不平衡时,进行地区空管局间资源需求协调请求。
  4. 根据权利要求1所述的一种基于资源运行的空中交通管理系统,其特征在于,所述战术资源管理模块的实现过程,包括以下步骤:
    S3-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括扇区及相邻扇区地理信息数据、扇区及相邻扇区空域数据、飞行情报数据以及其他限制信息;
    S3-2、航空器空域资源需求端向战略资源管理模块提供扇区航班空域需求资源,包括次日飞行计划数据、流量控制管理数据、当日飞行计划数据以及飞行领航计划数据;
    S3-3、战术资源管理模块根据S3-1、S3-2提供的数据进行扇区战术空域资源供给/需求匹配判断,判断空域资源是否供需平衡;
    S3-4、当空域资源供需平衡时,输出扇区战术空域资源分配预案及扇区战术空域剩余可用资源;
    S3-5、当空域资源供需不平衡时,进行扇区间资源协调。
  5. 根据权利要求1所述的一种基于资源运行的空中交通管理系统,其特征在于,所述实时资源管理模块的实现过程,包括以下步骤:
    S4-1、空域资源供给端向战略资源管理模块提供空域供给资源数据,包括扇区战术空域剩余可用资源数据;
    S4-2、航空器空域资源需求端向战略资源管理模块提供航空器实时空域需求资源数据,包括航空器监视系统数据、扇区实时航班动态数据以及扇区战术空域资源分配预案数据;
    S4-3、实时资源管理模块根据S4-1、S4-2提供的数据进行航空器实时空域资源供给/需求匹配分析,判断空域资源是否供需平衡;
    S4-4、当空域资源供需平衡时,将扇区战术空域资源分配预案输出至执行结果存档与反馈模块;
    S4-5,当空域资源供需不平衡时,进行航空器空域资源调整。
PCT/CN2022/108086 2021-09-09 2022-07-27 一种基于资源运行的空中交通管理系统 WO2023035796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111055910.6A CN113808440A (zh) 2021-09-09 2021-09-09 一种基于资源运行的空中交通管理系统
CN202111055910.6 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023035796A1 true WO2023035796A1 (zh) 2023-03-16

Family

ID=78894989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108086 WO2023035796A1 (zh) 2021-09-09 2022-07-27 一种基于资源运行的空中交通管理系统

Country Status (2)

Country Link
CN (1) CN113808440A (zh)
WO (1) WO2023035796A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808440A (zh) * 2021-09-09 2021-12-17 许兵 一种基于资源运行的空中交通管理系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193362A1 (en) * 2003-03-25 2004-09-30 Baiada R. Michael Method and system for aircraft flow management
CN101950493A (zh) * 2010-09-10 2011-01-19 四川大学 区域空中交通网络流量调度方法
CN105160944A (zh) * 2015-08-31 2015-12-16 中国电子科技集团公司第二十八研究所 一种航路资源动态分配工具及其实现方法
CN105355092A (zh) * 2015-12-03 2016-02-24 上海民航华东空管工程技术有限公司 一种航班流量预控制方法
CN107944625A (zh) * 2017-11-23 2018-04-20 南京航空航天大学 基于历史运行数据驱动的单机场航班换季时隙优化方法
CN109740871A (zh) * 2018-12-18 2019-05-10 温州云航信息科技有限公司 一种基于缓冲机制的航班时隙资源利用方法及对应系统
CN110349444A (zh) * 2018-04-06 2019-10-18 杭州坚果壳科技开发有限公司 基于大数据的空中交通流量管理方法
CN110751857A (zh) * 2019-09-18 2020-02-04 南京航空航天大学 一种机会约束空中交通流量管理方法
CN112241405A (zh) * 2020-11-19 2021-01-19 中国民航信息网络股份有限公司 航班计划自动生成方法及装置、存储介质及电子设备
CN113140134A (zh) * 2021-03-12 2021-07-20 北京航空航天大学 一种智慧空管系统的体系架构
CN113808440A (zh) * 2021-09-09 2021-12-17 许兵 一种基于资源运行的空中交通管理系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040193362A1 (en) * 2003-03-25 2004-09-30 Baiada R. Michael Method and system for aircraft flow management
CN101950493A (zh) * 2010-09-10 2011-01-19 四川大学 区域空中交通网络流量调度方法
CN105160944A (zh) * 2015-08-31 2015-12-16 中国电子科技集团公司第二十八研究所 一种航路资源动态分配工具及其实现方法
CN105355092A (zh) * 2015-12-03 2016-02-24 上海民航华东空管工程技术有限公司 一种航班流量预控制方法
CN107944625A (zh) * 2017-11-23 2018-04-20 南京航空航天大学 基于历史运行数据驱动的单机场航班换季时隙优化方法
CN110349444A (zh) * 2018-04-06 2019-10-18 杭州坚果壳科技开发有限公司 基于大数据的空中交通流量管理方法
CN109740871A (zh) * 2018-12-18 2019-05-10 温州云航信息科技有限公司 一种基于缓冲机制的航班时隙资源利用方法及对应系统
CN110751857A (zh) * 2019-09-18 2020-02-04 南京航空航天大学 一种机会约束空中交通流量管理方法
CN112241405A (zh) * 2020-11-19 2021-01-19 中国民航信息网络股份有限公司 航班计划自动生成方法及装置、存储介质及电子设备
CN113140134A (zh) * 2021-03-12 2021-07-20 北京航空航天大学 一种智慧空管系统的体系架构
CN113808440A (zh) * 2021-09-09 2021-12-17 许兵 一种基于资源运行的空中交通管理系统

Also Published As

Publication number Publication date
CN113808440A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
Sáez et al. Traffic synchronization in terminal airspace to enable continuous descent operations in trombone sequencing and merging procedures: An implementation study for Frankfurt airport
Wing et al. Comparison of ground-based and airborne function allocation concepts for NextGen using human-in-the-loop simulations
Torres Swarm theory applied to air traffic flow management
WO2023035796A1 (zh) 一种基于资源运行的空中交通管理系统
Marzuoli et al. Improving disruption management with multimodal collaborative decision-making: A case study of the Asiana crash and lessons learned
Itoh et al. Evaluating energy-saving arrivals of wide-body passenger aircraft via flight-simulator experiments
Wing et al. New Flight Rules to Enable the Era of Aerial Mobility in the National Airspace System
Underwood et al. Incorporation of time of arrival constraints in a trajectory optimization technology
Neto et al. Trajectory-based urban air mobility (UAM) operations simulator (TUS)
Wargo et al. Performance of data link communications in surface management operations
Wing et al. Digital flight: A new cooperative operating mode to complement vfr and ifr
Li et al. Going SPO: hierarchical task analysis of pilot flying and pilot monitoring in two-crew operations
Gladkiy et al. Cross-polar transit potential of Russia: what prevents its implementation?
Azzopardi et al. Computational air traffic management
Balakrishna et al. Seattle required time-of-arrival flight trials
Bourgois et al. Air traffic management and air navigation service providers
Assaad et al. Reducing fuel burn through air traffic flow optimisation incorporating wind models
Wing et al. Comparison of Airborne and Ground-Based Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations
Lunlong et al. Analysis of requirements and architecture of the next generation flight management system
Wieland et al. Future architectures for autonomous national airspace system control: Concept of operation and evaluation
Liang Improvements to the Global Oceanic Model and Performance Assessment of the North Atlantic Organized Track System
Pak et al. Can Urban Air Mobility become reality? Opportunities, challenges and selected research results
Kuba Impacts of Space Launch Operations on Florida East Coast Airspace Users
Sridhar Airspace Systems Technologies
Fan et al. Flight Operation Technology in Future Civil Aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE