WO2023035765A1 - 一种提高温度控制稳定性方法和装置 - Google Patents

一种提高温度控制稳定性方法和装置 Download PDF

Info

Publication number
WO2023035765A1
WO2023035765A1 PCT/CN2022/105192 CN2022105192W WO2023035765A1 WO 2023035765 A1 WO2023035765 A1 WO 2023035765A1 CN 2022105192 W CN2022105192 W CN 2022105192W WO 2023035765 A1 WO2023035765 A1 WO 2023035765A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
value
driving voltage
voltage
power supply
Prior art date
Application number
PCT/CN2022/105192
Other languages
English (en)
French (fr)
Inventor
陈晋龙
高春彦
胡瑜
谭帆
成俊杰
张金玲
杨寒旭
Original Assignee
北京无线电计量测试研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京无线电计量测试研究所 filed Critical 北京无线电计量测试研究所
Publication of WO2023035765A1 publication Critical patent/WO2023035765A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature

Definitions

  • the present application relates to the technical field of temperature control, in particular to a method and device for improving temperature control stability.
  • the method of driving the heater based on the DC voltage for temperature control is generally to fix the voltage value of the DC power supply.
  • the heating is started, and when the temperature measurement value is higher than the temperature setting value, the heating is stopped. .
  • This method is relatively simple and is often used in fields that do not require high temperature stability.
  • the second method is also to fix the voltage value of the DC power supply, but the average heating power is adjusted by adjusting the duty ratio of the DC power supply’s turn-on time per unit time (commonly known as the PWM method), and the temperature control is realized with a certain temperature control algorithm.
  • the advantage of this method is that the resolution and stability of the heating power adjustment are higher than the first method.
  • the disadvantage is that because the DC power supply is switched continuously in a short period of time, more peak electromagnetic interference will be generated.
  • the third method is to use a program-controlled DC power supply to change the heating power by adjusting the output voltage, and to achieve temperature control with a certain temperature control algorithm.
  • the advantages of this method are Compared with the first two methods, the electromagnetic interference is much smaller.
  • the disadvantage is that when the heating current is large, it is limited by the limited voltage resolution (generally 0.01V ⁇ 0.1V), which makes it difficult to stabilize to the temperature setting value. , so there will be a large jitter near the temperature setting value.
  • the embodiment of the present application provides a method and device for improving the stability of temperature control, which can effectively reduce the temperature control oscillation under the condition of ensuring small electromagnetic interference, and is especially suitable for the need for both small electromagnetic interference and control Occasions with good temperature stability.
  • the embodiment of the present application proposes a method for improving temperature control stability, including the following steps:
  • the ideal value of the heater driving voltage is obtained through the temperature control algorithm
  • the temperature control algorithm is a PID algorithm.
  • the duty cycle of two discrete values is changed so that the measured temperature value approaches the set temperature value.
  • the present application also proposes a device for improving temperature control stability, which is used to implement the method described in any one of the embodiments of the present application, and the device includes a DC power supply, a temperature controller, a heater, and a temperature sensor.
  • the temperature sensor is used to obtain the temperature measurement value.
  • the temperature controller is used to obtain the ideal value of the driving voltage of the heater through a temperature control algorithm according to the difference between the temperature measurement value and the temperature setting value.
  • the DC power supply is used to output the driving voltage according to the discrete sequence of the driving voltage values.
  • the DC power supply is a programmable DC power supply.
  • the temperature controller uses PWM to set the output voltage of the program-controlled DC voltage source.
  • the DC power supply is a plurality of DC voltage source modules, and each DC voltage source module outputs one of the voltage values according to the discrete sequence of the driving voltage values.
  • the temperature controller uses a PWM method to control a multi-channel selector switch, respectively turns on two DC voltage source modules, and outputs two discrete values adjacent to the ideal value.
  • the output voltage resolution of the programmable direct current power supply can be improved to a certain extent, so as to facilitate the realization of higher temperature control stability.
  • PWM method it is to switch between two adjacent DC voltages, because the voltage change is small, and the electromagnetic interference introduced by it is much smaller than the conventional method.
  • Fig. 1 is the embodiment flowchart of the application method
  • Fig. 2 is a schematic diagram of an embodiment of the device of the present application.
  • Fig. 3 is a schematic diagram of another embodiment of the device of the present application.
  • Fig. 1 is a flowchart of an embodiment of the method of the present application.
  • Step 11 Measure the temperature-controlled object to obtain the temperature measurement value, and obtain the ideal value of the heater driving voltage through the temperature control algorithm according to the difference between the temperature measurement value and the temperature setting value;
  • the temperature control algorithm is a PID algorithm.
  • the existing technology algorithm is generally implemented in the temperature control algorithm, and the output voltage is gradually adjusted by observing the change of the target temperature. This cycle will be relatively long, and it is difficult to adjust the balance. Even if the balance is adjusted, the disturbance will be relatively large.
  • Step 12 setting a discrete sequence of drive voltage values, when the difference between the temperature set value and the temperature measurement value is greater than the first set threshold, directly set the drive voltage value to the discrete value closest to the ideal value;
  • the distance is farther, if it is higher than the target temperature, no heating is performed, and if it is lower than the target temperature, full power is used for heating. Even with the above adjustments, the result is the same.
  • the first set threshold generally refers to being set to be above ⁇ 2K.
  • first use the commonly used temperature control algorithm such as PID algorithm
  • PID algorithm the commonly used temperature control algorithm
  • Step 13 According to the set discrete sequence of drive voltage values, when the set temperature value and the measured temperature value are less than the second set threshold value, take two discrete values adjacent to the ideal value, and change them by means of PWM driving voltage value;
  • the PWM method refers to controlling the on-time of multiple DC power supplies according to the set duty cycle, and the generated average voltage and current meet the target requirements.
  • it switches between two adjacent DC voltages, because the voltage changes are small, and the electromagnetic interference introduced by it is much smaller than the conventional method.
  • the difference between the temperature setting value and the temperature measurement value at this time is smaller than the second set threshold value, the difference between two adjacent DC voltages is relatively small.
  • the required temperature control voltage calculated by the temperature control algorithm is between the values between the two adjacent voltages that the programmable DC power supply can output, refer to the PWM method to control the percentage of the two adjacent voltages per unit time, Make the average voltage per unit time equal to the required temperature control voltage, through this method, the output voltage resolution of the programmable DC power supply can be improved to a certain extent, so as to facilitate the realization of higher temperature control stability.
  • the required voltage value calculated by the temperature controller can be output on the programmable DC power supply, the voltage can be set directly.
  • Step 14 using the driving voltage to control the heating or cooling device, adjusting the temperature of the temperature-controlled object, so that the temperature measurement value approaches the temperature setting value.
  • the duty cycle of two discrete values is changed so that the measured temperature value approaches the set temperature value.
  • Fig. 2 is a schematic diagram of an embodiment of the device of the present application.
  • This embodiment also proposes a device for improving temperature control stability, which is used to implement the method described in any one embodiment of the present application, and the device includes a DC power supply, a temperature controller, a heater, and a temperature sensor.
  • thermo-controlled object an object that needs to be temperature-controlled is called a "temperature-controlled object"
  • the temperature sensor is used to cooperate with the temperature controller to obtain the temperature measurement value.
  • the temperature sensor is used to cooperate with the temperature controller to measure the actual temperature of the temperature-controlled object, and transmit the measurement result to the temperature controller.
  • the temperature controller is used to obtain the ideal value of the driving voltage of the heater through a temperature control algorithm according to the difference between the temperature measurement value and the temperature setting value. For example, a temperature controller is used to calculate the required programmable DC power supply set voltage based on the user's set temperature and temperature measurement value. When the temperature set value and the temperature measured value are less than the second set threshold, the temperature controller sets the output voltage of the programmable DC voltage source in a PWM manner.
  • the DC power supply is used to output the driving voltage according to the discrete sequence of the driving voltage values.
  • the DC power supply is a programmable DC power supply.
  • the heater is used to convert the electric energy provided by the programmable DC power supply into heat energy
  • this embodiment formulates a system for improving the stability of temperature control.
  • the temperature controller calculates the output voltage required by the program-controlled DC power supply according to the temperature setting value and temperature measurement value. When the temperature measurement value is far from the temperature setting value, no matter whether the program-controlled DC power supply can output the voltage value with the required accuracy, All are set to the output voltage value of the program-controlled DC power supply according to the rounding method.
  • the required voltage value calculated by the temperature controller can be output on the programmable DC power supply, then directly set the voltage, when the required voltage value calculated by the temperature controller is between
  • the value between the two adjacent voltages that can be output by the program-controlled DC power supply refer to the PWM method to control the percentage of the two adjacent voltages per unit time so that the average voltage within the unit time is equal to the required voltage
  • the output voltage resolution of the programmable DC power supply can be improved to a certain extent, so as to facilitate the realization of higher temperature control stability.
  • Fig. 3 is a schematic diagram of another embodiment of the device of the present application.
  • this embodiment formulates a system for improving the stability of temperature control.
  • a device for improving temperature control stability proposed in this embodiment is used to implement the method described in any embodiment of the present application, and the device includes a DC power supply, a temperature controller, a heater, and a temperature sensor.
  • the temperature sensor is used to cooperate with the temperature controller to obtain the temperature measurement value.
  • the temperature controller is used to obtain the ideal value of the driving voltage of the heater through a temperature control algorithm according to the difference between the temperature measurement value and the temperature setting value.
  • the DC power supply is used to output the driving voltage according to the discrete sequence of the driving voltage values.
  • the DC power supply is a plurality of DC voltage source modules, and each DC voltage source module outputs one of the voltage values according to the discrete sequence of the driving voltage values.
  • the temperature controller uses a PWM method to control a multi-channel selector switch, respectively turns on two DC voltage source modules, and outputs two discrete values adjacent to the ideal value.
  • the system includes a temperature controller, a first DC power supply module 1, a second DC power supply module 2, a multiplex switch, a heater, a temperature-controlled object, and a temperature sensor, wherein,
  • the temperature sensor is used to cooperate with the temperature controller to measure the actual temperature of the temperature-controlled object, and transmit the measurement result to the temperature controller.
  • the heater is used to convert the electric energy provided by the DC power module into heat energy
  • the DC power supply module 1 is used to drive the heater, and its output voltage should ensure that the heater driven by it can make the temperature of the temperature-controlled object higher than the temperature setting value;
  • the DC power supply module 2 is used to drive the heater, and its output voltage should ensure that the heater driven by it can make the temperature of the temperature-controlled object lower than the temperature setting value;
  • a temperature controller to calculate the desired gate position of the multiplexer based on the user temperature set point and temperature measurement
  • the temperature controller calculates the required heater driving voltage value according to the temperature setting value and the temperature measurement value.
  • the temperature controller controls the multi-way selection switch to select channel 1; when it When the voltage is lower than the voltage of the DC power module 2, the temperature controller controls the multi-way selector switch to select channel 3; when it is between the voltage value of the DC power module 1 and the voltage value of the DC power module 2, refer to the PWM wave
  • the method controls the percentages of the two voltages per unit time so that the average voltage within the unit time is equal to the required voltage, thereby facilitating the realization of higher temperature control stability.
  • PWM method When using the so-called PWM method at the same time, it is to switch between two adjacent DC voltages, because the voltage change is small, and the electromagnetic interference introduced by it is much smaller than the conventional method.
  • the invention discloses a method for improving temperature control stability, which belongs to the technical field of temperature control.
  • the method combines the DC power supply and the PWM control mode, while overcoming the traditional PWM electromagnetic interference problem, and improving the resolution of the power control by adjusting the time proportion of the large voltage and the small voltage per unit time, thereby The temperature control oscillation caused by the insufficient voltage resolution of the programmable DC power supply is reduced.
  • the present invention not only utilizes the advantages of little heating and temperature control interference of the program-controlled DC power supply, but also overcomes the disadvantage of temperature control oscillation in some cases caused by the low voltage resolution of the program-controlled DC power supply.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present invention also proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method described in any embodiment of the present application is implemented.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • the present application also proposes an electronic device, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor. described method.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory such as read-only memory (ROM) or flash RAM.
  • RAM random access memory
  • ROM read-only memory
  • Memory is an example of computer readable media.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

提高温度控制稳定性的方法和装置,方法包括对被控温物体进行测量,获得温度测量值,根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值(11);设定驱动电压值离散序列,当温度设定值和温度测量值的差大于第一设定阈值时,直接设定驱动电压值为最接近理想值的离散值(12);当温度设定值和温度测量值小于第二设定阈值时,取与理想值相邻的两个离散值,用PWM方式改变驱动电压值(13);调节被控温物体的温度,使温度测量值趋近温度设定值(14)。提高温度控制稳定性的方法和装置在保证较小电磁干扰的情况下,还能有效降低控温振荡。

Description

一种提高温度控制稳定性方法和装置
本申请要求于2021年9月9日提交中国国家知识产权局、申请号为202111055743.5、发明名称为“一种提高温度控制稳定性方法和装置”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及温度控制技术领域,尤其涉及一种提高温度控制稳定性方法和装置。
背景技术
基于直流电压驱动加热器进行温度控制的方法,一般是固定直流电源的电压值,当温度测量值低于温度设定值时,开始加热,当温度测量值高于温度设定值时,停止加热。这种方法比较简单,常用于对控温温度稳定性要求不高的领域。第二种方法也是固定直流电源电压值,但是通过调节单位时间内直流电源接通时间占空比的方法(俗称为PWM法)来调节平均加热功率,配合一定的控温算法实现温度控制,这种方法的优点是加热功率调节的分辨力和稳定性相对于第一种方法要更高一些,缺点是因为在短时间内不停的开关直流电源,会产生较多的尖峰电磁干扰,在一些对电磁干扰比较敏感的领域无法使用;第三种方法是采用程控直流电源,通过调节输出电压的大小来改变加热功率的大小,配合一定的控温算法来实现温度控制,这种方法的优点是电磁干扰相对于前两种方法来说要小很多,缺点是当加热电流较大时,受限于有限的电压分辨率(一般为0.01V~0.1V),导致很难稳定到温度设定值,所以会在温度设定值附近有较大的抖动。
发明内容
本申请实施例提供一种提高温度控制稳定性方法和装置,在保证较小电磁干扰的情况下,还能有效降低控温振荡的温度控制方法,特别适合于既需要电 磁干扰小,又需要控温稳定性好的场合。
首先,本申请实施例提出一种提高温度控制稳定性方法,包括以下步骤:
对被控温物体进行测量,获得温度测量值,根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值;
设定驱动电压值离散序列,当温度设定值和温度测量值的差大于第一设定阈值时,直接设定驱动电压值为最接近所述理想值的离散值;
当温度设定值和温度测量值的差小于第二设定阈值时,取与所述理想值相邻的两个离散值,用PWM方式改变驱动电压值;
调节被控温物体的温度,使温度测量值趋近温度设定值。
优选地,所述温度控制算法为PID算法。
优选地,用PWM方法改变驱动电压值时,改变两个离散值的占空比,使温度测量值趋近温度设定值。
第二方面,本申请还提出一种提高温度控制稳定性的装置,用于实现本申请任意一项实施例所述方法,所述装置包含直流电源、温度控制器、加热器、温度传感器。
所述温度传感器,用于获得所述温度测量值。
所述温度控制器,用于根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值。
所述直流电源,用于按照所述驱动电压值离散序列,输出驱动电压。
优选的,所述直流电源为程控直流电源。所述温度控制器,用PWM方式设定所述程控直流电压源的输出电压。
或者,优选的,所述直流电源为多个直流电压源模块,每一个直流电压源模块按照所述驱动电压值离散序列,输出其中一个电压值。所述温度控制器,用PWM方式控制多路选择开关,分别导通两个直流电压源模块,分别输出与所述理想值相邻的两个离散值。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
通过这种方法可以在一定程度上提高程控直流电源的输出电压分辨力,从而便于实现更高的控温稳定性。同时采用所谓的PWM方法时,是在两个相邻的直流电压之间切换,因为电压变化较小,由其引入的电磁干扰相对于常规方法要小很多。
附图说明
图1为本申请方法的实施例流程图;
图2为本申请装置的一个实施例示意图;
图3为本申请装置的另一实施例示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1为本申请方法的实施例流程图。
步骤11、对被控温物体进行测量,获得温度测量值,根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值;
优选地,所述温度控制算法为PID算法。现有技术算法一般会放在控温算法里去实现,通过观测目标温度的变化来逐渐调节输出电压,这样周期会比较长,不易调节平衡,即使调平衡了也会扰动比较大。
步骤12、设定驱动电压值离散序列,当温度设定值和温度测量值的差大于第一设定阈值时,直接设定驱动电压值为最接近所述理想值的离散值;
此处,当差值大于第一设定阈值时,距离较远,如果高于目标温度,不加热,如果低于目标温度,全功率加热。即使进行上述调节,结果也是一样的。
此处第一设定阈值一般指设置为±2K以上。
例如,首先采用常用的控温算法(如PID算法)计算出所需的控温电压,当温度测量值距离温度设定值较远时,不管程控直流电源是否能输出满足控温电压所需的精度,按照四舍五入的方法设定程控直流电源能输出的电压值。
步骤13、根据所述设定的驱动电压值离散序列,当温度设定值和温度测量值小于第二设定阈值时,取与所述理想值相邻的两个离散值,用PWM方式改变驱动电压值;
所述PWM方式,是指按照设定的占空比控制多个直流电源接通时间,生成的平均电压和电流符合目标要求。采用PWM方式时,是在两个相邻的直流电压之间切换,因为电压变化较小,由其引入的电磁干扰相对于常规方法要小很多。另外,由于此时温度设定值和温度测量值的差值小于第二设定阈值,相邻的两个直流电压相差较小。
当控温算法计算出的所需控温电压介于程控直流电源能输出的两个相邻电压之间的值时,参照PWM的方法,控制单位时间内两个相邻电压所占的百分比,使其在单位时间内的平均电压等于所需的控温电压,通过这种方法可以在一定程度上提高程控直流电源的输出电压分辨力,从而便于实现更高的控温稳定性。
特殊情况下,当温度测量值接近于温度设定值时,如果温度控制器计算出的所需电压值可以在程控直流电源上输出时,则直接设定该电压。
步骤14、用所述驱动电压控制加热或制冷器件,调节被控温物体的温度,使温度测量值趋近温度设定值。
需要说明的是,以上步骤11~14可循环执行。
优选地,用PWM方法改变驱动电压值时,改变两个离散值的占空比,使温度测量值趋近温度设定值。
图2为本申请装置的一个实施例示意图。
本实施例还提出一种提高温度控制稳定性的装置,用于实现本申请任意一项实施例所述方法,所述装置包含直流电源、温度控制器、加热器、温度传感器。
本申请中,将需要被控温的物体称为“被控温物体”;
所述温度传感器,用于配合所述温度控制器获得所述温度测量值。例如,温度传感器,用于配合温度控制器测量被控温物体的实际温度,并将测量结果传递给温度控制器。
所述温度控制器,用于根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值。例如,温度控制器,用于根据用户设定温度和温度测量值进行计算所需的程控直流电源设定电压。当温度设定值和温度测量值小于第二设定阈值时,所述温度控制器,用PWM方式设定所述程控直流电压源的输出电压。
所述直流电源,用于按照所述驱动电压值离散序列,输出驱动电压。例如,本实施例中,所述直流电源为程控直流电源。使用程控直流电源,用于根据温度控制器的电压设定命令输出直流电压信号,用于驱动加热器;
加热器,用于将程控直流电源提供的电能转化为热能;
本实施例针对目前的问题,制定了一种提高温度控制稳定性的系统。温度控制器根据温度设定值和温度测量值计算出程控直流电源所需的输出电压,当温度测量值距离温度设定值较远时,不管程控直流电源是否能输出所需精度的电压值,均按照四舍五入的方法设定为程控直流电源能输出的电压值。当温度测量值接近于温度设定值时,如果温度控制器计算出的所需电压值可以在程控直流电源上输出时,则直接设定该电压,当温度控制器计算出的所需电压介于程控直流电源能输出的两个相邻电压之间的值时,参照PWM方法,控制单位时间内两个相邻电压所占的百分比,使其在单位时间内的平均电压等于所需的电压,通过这种方法可以在一定程度上提高程控直流电源的输出电压分辨力, 从而便于实现更高的控温稳定性。同时采用所谓的PWM方法时,是在两个相邻的直流电压之间切换,因为电压变化较小,由其引入的电磁干扰相对于常规方法要小很多。
图3为本申请装置的另一实施例示意图。
本实施例针对目前的问题,制定了一种提高温度控制稳定性的系统。本实施例提出的一种提高温度控制稳定性的装置,用于实现本申请任意一项实施例所述方法,所述装置包含直流电源、温度控制器、加热器、温度传感器。所述温度传感器,用于配合所述温度控制器获得所述温度测量值。所述温度控制器,用于根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值。所述直流电源,用于按照所述驱动电压值离散序列,输出驱动电压。
与前一实施例相区别,本实施例中,所述直流电源为多个直流电压源模块,每一个直流电压源模块按照所述驱动电压值离散序列,输出其中一个电压值。所述温度控制器,用PWM方式控制多路选择开关,分别导通两个直流电压源模块,分别输出与所述理想值相邻的两个离散值。
例如,该系统包括温度控制器、第一直流电源模块1、第二直流电源模块2、多路选择开关、加热器、被控温物体、温度传感器,其中,
温度传感器,用于配合温度控制器测量被控温物体的实际温度,并将测量结果传递给温度控制器。
加热器,用于将直流电源模块提供的电能转化为热能;
直流电源模块1,用于驱动加热器,其输出电压应能保证由其驱动的加热器可以使被控温物体的温度高于温度设定值;
直流电源模块2,用于驱动加热器,其输出电压应能保证由其驱动的加热器可以使被控温物体的温度低于温度设定值;
温度控制器,用于根据用户温度设定值和温度测量值计算所需的多路选择开关的选通位置;
温度控制器根据温度设定值和温度测量值计算出所需的加热器驱动电压值,当其高于直流电源模块1的电压时,温度控制器控制多路选择开关选通1通道;当其低于直流电源模块2的电压时,温度控制器控制多路选择开关选通3通道;当其介于直流电源模块1的电压值和直流电源模块2的电压值之间时,参照PWM波的方法,控制单位时间内两个电压所占的百分比,使其在单位时间内的平均电压等于所需的电压,从而便于实现更高的控温稳定性。同时采用所谓的PWM方法时,是在两个相邻的直流电压之间切换,因为电压变化较小,由其引入的电磁干扰相对于常规方法要小很多。
本发明公开了一种提高温度控制稳定性的方法,属于温度控制技术领域。所述方法通过结合直流电源和PWM控制方式,在克服传统的PWM电磁干扰大的问题的同时,通过调节单位时间内大电压和小电压的时间占比的方式来提高功率控制的分辨力,从而降低了因为程控直流电源的电压分辨力不够高而导致的温度控制的振荡。本发明既利用了程控直流电源加热控温干扰小的优点,也克服了程控直流电源电压分辨力低而导致的在某些情况下控温振荡的缺点。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
基于所述方法,本发明还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请任一实施例所述的方法。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入 式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
因此,本申请还提出一种电子设备,包括存储器,处理器及存储在存储器上并可在处理器运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请任一实施例所述的方法。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技 术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (8)

  1. 一种提高温度控制稳定性方法,其特征在于,包括以下步骤:
    对被控温物体进行测量,获得温度测量值,根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值;
    设定驱动电压值离散序列,当温度设定值和温度测量值的差大于第一设定阈值时,直接设定驱动电压值为最接近所述理想值的离散值;
    当温度设定值和温度测量值小于第二设定阈值时,取与所述理想值相邻的两个离散值,用PWM方式改变驱动电压值;
    用PWM方法改变驱动电压值时,改变两个离散值的占空比,调节被控温物体的温度,使温度测量值趋近温度设定值。
  2. 如权利要求1所述方法,其特征在于,所述温度控制算法为PID算法。
  3. 一种提高温度控制稳定性的装置,用于实现权利要求1或2所述方法,其特征在于,包含直流电源、温度控制器、加热器、温度传感器;
    所述温度传感器,用于获得所述温度测量值;
    所述温度控制器,用于根据温度测量值和温度设定值的差,通过温度控制算法得到加热器驱动电压理想值;
    所述直流电源,用于按照所述驱动电压值离散序列,输出驱动电压。
  4. 如权利要求3所述装置,其特征在于
    所述直流电源为程控直流电源;
    所述温度控制器,用PWM方式设定所述程控直流电压源的输出电压。
  5. 如权利要求3所述装置,其特征在于,
    所述直流电源为多个直流电压源模块,每一个直流电压源模块按照所述驱动电压值离散序列,输出其中一个电压值。
  6. 如权利要求5所述装置,其特征在于,
    所述温度控制器,用PWM方式控制多路选择开关,分别导通两个直流电压源模块,分别输出与所述理想值相邻的两个离散值。
  7. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1或2所述的方法。
  8. 一种电子设备,包括存储器,处理器及存储在存储器上并可在处理器运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1或2所述的方法。
PCT/CN2022/105192 2021-09-09 2022-07-12 一种提高温度控制稳定性方法和装置 WO2023035765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111055743.5A CN113885602B (zh) 2021-09-09 2021-09-09 一种提高温度控制稳定性方法和装置
CN202111055743.5 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023035765A1 true WO2023035765A1 (zh) 2023-03-16

Family

ID=79008878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105192 WO2023035765A1 (zh) 2021-09-09 2022-07-12 一种提高温度控制稳定性方法和装置

Country Status (2)

Country Link
CN (1) CN113885602B (zh)
WO (1) WO2023035765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885602B (zh) * 2021-09-09 2022-05-27 北京无线电计量测试研究所 一种提高温度控制稳定性方法和装置
CN114546004B (zh) * 2022-04-25 2022-07-22 龙旗电子(惠州)有限公司 恒温箱温度调节方法、装置、设备、可读存储介质及产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449827A (en) * 1987-08-20 1989-02-27 Matsushita Electric Ind Co Ltd Water/hot water mixing control device
CN109347387A (zh) * 2018-11-07 2019-02-15 珠海格力电器股份有限公司 基于模型预测的电机控制方法及控制装置
CN110366283A (zh) * 2018-04-11 2019-10-22 佛山市顺德区美的电热电器制造有限公司 电磁加热烹饪器具及其功率控制方法和装置
CN112762578A (zh) * 2020-12-31 2021-05-07 浙江合众新能源汽车有限公司 一种ptc加热型空调制热控制方法及装置
CN113885602A (zh) * 2021-09-09 2022-01-04 北京无线电计量测试研究所 一种提高温度控制稳定性方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2192720A5 (zh) * 1972-07-11 1974-02-08 Est Aciers Fins
CN102201752A (zh) * 2010-03-25 2011-09-28 上海太阳能电池研究与发展中心 单级式光伏逆变mppt方法
CN106526499B (zh) * 2016-11-04 2020-04-21 北京无线电计量测试研究所 一种高稳电流源考核方法和系统
CN106997171B (zh) * 2017-04-27 2023-09-01 中国大唐集团科学技术研究院有限公司西北分公司 一种主汽温度调节方法
CN107395035A (zh) * 2017-08-31 2017-11-24 华南理工大学 一种基于离散Lyapunov函数的单相PWM整流器的调制方法
CN107370402B (zh) * 2017-08-31 2020-02-18 华南理工大学 一种基于离散Lyapunov函数的切换控制方法
CN112269054A (zh) * 2020-09-16 2021-01-26 国网安徽省电力有限公司六安供电公司 基于改进Prony的功率自适应算法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449827A (en) * 1987-08-20 1989-02-27 Matsushita Electric Ind Co Ltd Water/hot water mixing control device
CN110366283A (zh) * 2018-04-11 2019-10-22 佛山市顺德区美的电热电器制造有限公司 电磁加热烹饪器具及其功率控制方法和装置
CN109347387A (zh) * 2018-11-07 2019-02-15 珠海格力电器股份有限公司 基于模型预测的电机控制方法及控制装置
CN112762578A (zh) * 2020-12-31 2021-05-07 浙江合众新能源汽车有限公司 一种ptc加热型空调制热控制方法及装置
CN113885602A (zh) * 2021-09-09 2022-01-04 北京无线电计量测试研究所 一种提高温度控制稳定性方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU YUNLU, YIN MING-DE: "Research and Manufacture of Automatic Controlling System for Heating Cauldron", INDUSTRIAL HEATING, vol. 37, no. 5, 31 May 2008 (2008-05-31), pages 61 - 63, XP093045213, ISSN: 1002-1639 *

Also Published As

Publication number Publication date
CN113885602A (zh) 2022-01-04
CN113885602B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023035765A1 (zh) 一种提高温度控制稳定性方法和装置
CN102684464B (zh) 谐振变换器装置及用于谐振变换器装置的方法
CN105587681B (zh) 一种基于PID算法应用于SmartRack机柜的风扇调控方法
WO2013023394A1 (zh) 一种led背光驱动方法、led背光驱动电路及液晶显示装置
CN103809244B (zh) 一种光纤热剥装置的加热控制系统及方法
CN112018409B (zh) 燃料电池公交车中的燃料电池热管理系统及热管理方法
US11452233B2 (en) Method and apparatus for controlling fan speed
JPWO2018186082A1 (ja) レーザ駆動電源
CN102959848A (zh) 整流电路装置
CN102986126B (zh) 整流装置
CN107989816B (zh) 风扇控制方法
CN103984375B (zh) 基于dsp和温度传感器控制的温度控制系统及其控制方法
CN103286929A (zh) 一种多路pid温度控制装置及其控制方法
CN103248251A (zh) 逆变器自动变系数控制方法
JP2006315317A (ja) 射出成形機の温度制御装置
CN103809636A (zh) 编程电源的恒压恒流状态切换方法及控制电路
CN112963899B (zh) 一种多阀门多模式调节的精确控制方法及系统
CN109287020A (zh) 一种用于提升微波输出稳定性的微波源系统及方法
CN109688652B (zh) 一种基于双层结构模型预测控制的微波高温反应器温度精确控制的方法
EP2991212A1 (en) Voltage adjusting power source and method for controlling output voltage
JP2018085827A (ja) 電圧制御装置
JP2000347746A (ja) 温度制御システム、電源装置および温度調節器
CN111712007B (zh) 一种应用混合型spwm调制技术的可分离式感应加热炉
JP2010176292A (ja) 電力調整器及び電力調整方法
CN114779855B (zh) 挤出机用同步升温方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866240

Country of ref document: EP

Kind code of ref document: A1