WO2023035635A1 - Ctp电池包单体梯次利用拆解工艺 - Google Patents

Ctp电池包单体梯次利用拆解工艺 Download PDF

Info

Publication number
WO2023035635A1
WO2023035635A1 PCT/CN2022/090531 CN2022090531W WO2023035635A1 WO 2023035635 A1 WO2023035635 A1 WO 2023035635A1 CN 2022090531 W CN2022090531 W CN 2022090531W WO 2023035635 A1 WO2023035635 A1 WO 2023035635A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
ctp
cells
monomer
temperature
Prior art date
Application number
PCT/CN2022/090531
Other languages
English (en)
French (fr)
Inventor
姜校林
张可成
陈若葵
叶俊英
刘毅超
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111068588.0A external-priority patent/CN113964408B/zh
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023035635A1 publication Critical patent/WO2023035635A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of power battery recycling, and in particular relates to a cascade utilization and disassembly process of a CTP battery pack monomer.
  • the power battery pack can be divided into two types according to the composition of the monomers: the first type, which consists of several monomers into a module, and then several modules into a battery pack, which belongs to the traditional type of power battery pack; the second type, Directly combine several monomers into a battery pack (Cellto Pack, CTP for short), which saves the intermediate link of the module, increases the energy density per unit volume of the battery pack, and reduces the manufacturing cost at the same time. It is a new type of battery pack that is currently advocated and is emerging in batches.
  • the current CTP battery packs are covered with a thick layer of two-component battery on the bottom case. of adhesives.
  • the battery pack has been used for several years, because the technical performance can no longer meet the requirements of the vehicle power battery, it must be scrapped within a specified time (that is, the battery pack is decommissioned).
  • the performance of the monomers in the decommissioned battery packs cannot meet the requirements for electric vehicles, they can be used in products such as street lamps and charging treasures to achieve cascade utilization.
  • CTP for cascaded utilization is 30,000 yuan per ton higher than that of non-cascade utilization (that is, renewable resource utilization), creating a value of 12 million yuan for the company every year, and the current benefits are increasing month by month.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a step-by-step utilization and disassembly process for CTP battery pack monomers, which can achieve the purpose of step-by-step utilization and bring significant economic benefits to dismantling enterprises.
  • a cascade utilization and disassembly process of a CTP battery pack monomer including the following steps:
  • the pretreatment includes: (1) removing the upper cover of the CTP battery pack; (2) disconnecting the high-voltage power supply, removing the high-voltage switch box, and removing the BMS system , Remove the signal line on the battery pack; (3) Mill the busbar connecting the CTP battery pack to each monomer.
  • step S1 the milling uses a gantry milling machine.
  • step S2 the freezing is carried out in a freezer, using R507A refrigerant.
  • step S2 it is sufficient to freeze until the overall temperature of the battery pack reaches -30°C to -35°C.
  • the freezing time is 9-12 hours.
  • the determination of the freezing time depends on factors such as the quality of the frozen object, the heat capacity of the frozen object, the ambient temperature of the day, and the existing insulation performance of the freezer.
  • step S3 the time for warming up is 6-8 hours.
  • step S4 the temperature of the hot water is 60-65°C.
  • step S4 the time for immersing in hot water is 5-8 minutes.
  • the CTP battery pack In order to quickly disassemble the frozen battery pack at room temperature, the CTP battery pack must be pre-treated before freezing to reduce the time for freezing and dismantling. Otherwise, if the time is too long, the battery pack will be damaged under the influence of the ambient temperature. The temperature will rise. When the temperature rises to a certain level, the brittleness of the two-component adhesive will decrease and the toughness will increase. The difficulty of disassembly will increase, so that it cannot be effectively disassembled without damage. In addition, if the frozen battery is exposed to the air for a long time, a large amount of condensed water will be generated, which will also cause irreversible performance damage to the battery.
  • the pretreatment is performed first to remove the mechanical connection between the monomers, which reduces the time and difficulty for dismantling after freezing.
  • the circuit connection between the monomers is eliminated, the voltage is reduced, and the operation risk is also reduced for freezing and dismantling.
  • the present invention adopts the method of hammering the shell of the battery pack to knock down the monomer from the bottom shell. Since the CTP battery pack has been pretreated in advance, the solid adhesive formed by the two-component glue has become the only connection between each monomer and the battery pack bottom case. This colloidal connection Due to the long-term low temperature effect, the toughness of the adhesive decreases and the brittleness increases significantly. At this time, as long as an impact load is applied to the frozen battery pack, the monomer can be easily separated from the bottom case of the battery pack.
  • the present invention adopts the heat conduction method of the closed box to carry out the temperature return treatment of the frozen monomer without air contact, so as to avoid the scrapping of the monomer caused by the discharge circuit formed by the condensed water. Due to the low temperature of the monomer, if the monomer is stored in the air, a layer of water film will be formed on the surface of the monomer soon, especially in the humid south in summer. same as above. This layer of water film directly connects the positive and negative electrodes of the monomer to form a discharge circuit.
  • the present invention adopts a hot-bath type degumming method to tear off the colloids that become soft and have low bonding strength after the hot bath from the monomer. Since the colloid and the monomer have been firmly connected together, it is impossible to peel it off from the monomer manually. If the colloid is milled with a milling machine or ground with a grinder, practice has proved that these two methods are not only slow, but when the colloid is removed, the surface of the monomer is often scraped or even milled, so that it is scrapped. Cannot be used step by step.
  • the bonding strength between the colloid and the monomer will be significantly reduced due to the heating effect, and the colloid itself will become soft due to heating.
  • the colloid can be easily torn off from the monomer, while the surface of the monomer is intact.
  • Fig. 1 is a process flow diagram of the present invention.
  • a step-by-step dismantling process for a single CTP battery pack referring to Figure 1, the specific process is as follows:
  • the freezing temperature of the freezer can be as low as -45°C, and the selected refrigerant is R507A.
  • Low-temperature freezing and disassembly send the pretreated CTP battery pack to the freezer for low-temperature freezing.
  • the freezing time should be determined according to the quality of the frozen object, the heat capacity of the frozen object, the ambient temperature of the day, It is related to factors such as the existing heat preservation performance of the warehouse. Generally speaking, the freezing time is between 9 hours and 12 hours.
  • the overall temperature of the battery pack that is, the inside and outside of the battery pack
  • hammering the frozen battery pack can easily separate the monomer from the bottom case of the battery pack.
  • the cooling box is made of aluminum plate with good heat dissipation.
  • the volume of each cooling box is not large, and the general length, width and height are roughly 0.6 meters x 0.5 meters x 0.4 meters. Its purpose is threefold: (1) It can be filled with cooling units in a short time; (2) Due to the small size and high thermal conductivity of aluminum products, the cooling speed is improved; (3) The box itself is light and easy to move and operate.
  • Hot bath degumming Immerse the viscose surface of the monomer in warm water with a water temperature of 60°C to 65°C, keep it for 5 to 8 minutes, and then use manual operation, with the help of a dust scraper and other tools, to remove The colloid is scooped off from the monomer, and the surface of the monomer is intact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种CTP电池包单体梯次利用拆解工艺,包括对CTP电池包进行预处理以去除单体间的机械连接,将预处理后的CTP电池包进行冷冻,再对冷冻后的电池包施加冲击载荷使单体从电池包分离下来,将拆分后的单体擦去表面湿气,并置于封闭且导热好的空间内进行回温,将回温后的单体的粘胶面浸入60~65℃的热水中一段时间,再将粘胶从单体上剥离。本发明通过预处理为冻后拆解减少了时间和难度,同时由于消除了各单体间的电路连接,降低了作业风险,采用封闭箱体的热传导法对冻后的单体进行无空气接触的回温处理,避免因凝结水构成的放电回路导致单体的报废,采用热浴式除胶法,便于将热浴后变软、粘接强度变低的胶体从单体上剥离。

Description

CTP电池包单体梯次利用拆解工艺 技术领域
本发明属于动力电池回收技术领域,具体涉及一种CTP电池包单体梯次利用拆解工艺。
背景技术
动力电池包按单体组成方式可分为两类:第一类,将若干单体组成一个模组,再将若干个模组组成一个电池包,属于动力电池包的传统类型;第二类,直接将若干单体组成一个电池包(Cellto Pack,无模组动力电池包,简称CTP),省去了模组的中间环节,电池包单位体积的能量密度增大,同时也下降了制造成本,是目前较为倡导、正在批量兴起的新型电池包。
为了能够使单体牢固地安装在电池包的底壳上,不致于在受到颠簸等外力时导致单体毁坏,目前的CTP电池包,都在底壳上铺上一层较厚的双组份的粘接剂。然而,电池包在若干年的使用后,由于技术性能已经满足不了车用动力电池要求,在规定的时间内要进行报废处理(即电池包退役)。而退役后电池包中的单体,虽然用在电动汽车上的性能达不到要求,但可以利用在诸如路灯、充电宝等产品中,实现梯次利用。进行梯次利用的CTP,每吨比非梯次利用(即再生资源性利用)的售价高出3万元,每年为本企业创造价值1200万元,且目前效益逐月递增。
为实现梯次利用的目的,需要对退役CTP实行精细化拆解,减少拆解过程中单体的外形损伤和电性能损耗。将单体取出来的方法可以有多种,诸如冷冻、加热、机械助力、人工拆解、溶液浸泡等,但却不能保证单体在其外形尺寸的完好和表面符合要求,同时也不能保证电池的电技术性能不受伤害。由于退役后的CTP电池包,存在着巨大的梯级利用价值。随着日后新能源电动汽车退役高峰的来临,这种潜在的价值变得越来越明显。所以,有必要研究一种对退役CTP动力电池包的单体无损伤的拆解工艺。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种CTP电池包单体梯次利用拆解工艺,达到能梯次利用的目的,能给拆解企业的带来显著的经济效益。
根据本发明的一个方面,提出了一种CTP电池包单体梯次利用拆解工艺,包括以下步骤:
S1:对CTP电池包进行预处理以去除单体间的机械连接;
S2:将预处理后的CTP电池包进行冷冻,再对冷冻后的电池包施加冲击载荷使单体从电池包分离下来;
S3:将拆分后的单体擦去表面湿气,并置于封闭且导热好的空间内进行回温;
S4:将回温后的单体的粘胶面浸入热水中一段时间,再将粘胶从单体上剥离。
在本发明的一些实施方式中,步骤S1中,所述预处理包括:(1)将CTP电池包的上盖拆下;(2)断开高压电源、拆去高压开关盒、拆出BMS系统,拆出电池包上的信号线;(3)将CTP电池包连接各单体上的汇流排铣削掉。
在本发明的一些实施方式中,步骤S1中,所述铣削采用龙门铣床。
在本发明的一些实施方式中,步骤S2中,所述冷冻在冻库内进行,采用R507A制冷剂。
在本发明的一些实施方式中,步骤S2中,冷冻至电池包的整体温度达到-30℃~-35℃即可。
在本发明的一些实施方式中,步骤S2中,所述冷冻的时间为9~12小时。冷冻时间的确定,要根据冷冻物的质量、冷冻物体的热容量、当天的环境温度、冻库现有的保温性能等因素有关。
在本发明的一些实施方式中,步骤S3中,所述回温的时间为6~8小时。
在本发明的一些实施方式中,步骤S4中,所述热水的温度为60~65℃。
在本发明的一些实施方式中,步骤S4中,所述浸入热水的时间为5~8分钟。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、为了使冷冻后的电池包在常温下能快速进行拆解,事先要将CTP电池包进行冷冻前的预处理,以减少冻拆时间,否则若时间过长,电池包在环境温度作用下会温度回升,当温度回升到一定时,双组份胶的脆性降低韧性增加,拆解的难度就会加大,以至无法有效实现无损伤拆解。此外,冻后的电池长时间暴露在空气中会产生大量的凝结水,也会对电池造成不可逆转的性能伤害。因此先进行预处理去除单体间的机械连接,为冻后拆解减少了时间和难度,同时由于消除了各单体间的电路连接,降低了电压,也为冻拆时降低了作业风险。
2、本发明采用锤击电池包壳体的方法,将单体从底壳里冲击下来。由于事先已经对CTP电池包进行了预处理,使得由双组份胶形成的固状粘接剂,成了各单体、及单体与电池包底壳之间唯一的连接,这种胶体连接由于长时间的低温作用,粘接剂的韧性下降而脆性显著增加,此时只要对冻后的电池包使用冲击类的载荷,即可轻松地将单体从电池包的底壳中分离下来。
3、本发明采用封闭箱体的热传导法对冻后的单体进行无空气接触的回温处理,避免因凝结水构成的放电回路导致单体的报废。由于单体的温度低,若将单体存放于空气中,单体很快会在表面会形成一层水膜,尤其在夏季潮湿的南方情况尤为明显,严重时就好像水泼在了单体上的一样。这层水膜直接将单体的正负极连接起来形成了放电回路,由于是电池本身是存有电量的,这种水膜会使单体放电,以至将单体内存电量降低(单体的电量要保持一定值,否则电量过低会导致过放电,单体就会失去梯次利用的价值),从而使单体失去梯级利用的价值,故这种现象会对梯次利用构成了危害,甚至成为电池废料。现将单体置于散冷箱或散冷室内,在热传导作用下一方面会逐渐恢复自身的温度,另一方面由于封闭的散冷箱与空气隔绝,单体上便不会产生冷凝水,故对单体不会造成上述的危害。当单体的温度与环境温度不存在温差时,再从箱体里取出来,自然就不会产生凝结水了。
4、本发明采用热浴式除胶法,将热浴后变软、粘接强度变低的胶体从单体中撕扯下来。由于胶体与单体已经牢固地站接到一起,人工已无法正常将其从单体剥离出来。若采用铣床对胶体进行铣削,或者用磨床进行磨削的办法,实践证明,这两种方法不但 速度慢,胶体在被去除的同时,单体的表面也经常受到刮擦甚至铣削,以至报废而无法梯次利用。因此将单体的粘胶面浸入到热水中,由于受热作用,胶体与单体的粘接强度显著降低,胶体本身也因加热而变得柔软,此时用人工操作,借助刮灰刀等工具,就可将胶体从单体中很容易地铲撕下来,而单体的表面完好无损。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种CTP电池包单体梯次利用拆解工艺,参照图1,具体过程为:
(1)建造一个超低温冻库,冻库的冷冻温度最低可到-45℃,所选用的制冷剂为R507A。
(2)预处理:将电池包上盖拆下,断开高压电源、拆去高压开关盒、拆出BMS系统,拆出电池包上的信号线,将CTP电池包置于龙门铣床上,将电池包连接各单体上的汇流排铣削掉。
(3)低温冷冻、拆解:将经过预处理后的CTP电池包,送至冻库进行低温冷冻,冷冻时间的确定,要根据冷冻物的质量、冷冻物体的热容量、当天的环境温度、冻库现有的保温性能等因素有关,一般而言冷冻时间在9小时~12小时之间,当电池包整体温度(即电池包的内部和外部)全部达到至-30℃~-35℃时,即可取出进行冻拆;对冻后的电池包进行锤击,即可轻松地将单体从电池包的底壳中分离下来。
(4)封闭回温:将单体运至封闭且导热良好的金属材质的专用“散冷箱”内,用干 毛巾擦去单体表面的湿气,然后盖上散冷箱的盖子,使单体与空气完全隔离,经过6~8小时回温,使单体的温度已经与环境温度持平。
其中散冷箱是由散热良好的铝质板材制作而成,每个散冷箱的体积不大,一般长、宽、高大致为0.6米×0.5米×0.4米。其目的有三:(1)可在短时间内放满待散冷单体;(2)因体积小和铝制品导热系数高,提高了散冷速度;(3)箱体本身重量轻便于移动和操作。
放置单体前,要用干棉布将单体表面的湿气擦掉后再放入,放满后即将散冷箱盖子盖好即可,由于放置的时间短,放满后箱体内所含的空气量有限,其产生的水份很小,不会对箱内的单体够成危害,故无需再额外进行其它的补救措施。
(5)热浴除胶:将单体的粘胶面浸入到水温为60℃~65℃的温热水中,保持5~8分钟的时间,再用人工操作,借助刮灰刀等工具,将胶体从单体中铲撕下来,单体的表面完好无损。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (9)

  1. 一种CTP电池包单体梯次利用拆解工艺,其特征在于,包括以下步骤:
    S1:对CTP电池包进行预处理以去除单体间的机械连接;
    S2:将预处理后的CTP电池包进行冷冻,再对冷冻后的电池包施加冲击载荷使单体从电池包分离下来;
    S3:将拆分后的单体擦去表面湿气,并置于封闭且导热好的空间内进行回温;
    S4:将回温后的单体的粘胶面浸入热水中一段时间,再将粘胶从单体上剥离。
  2. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S1中,所述预处理包括:(1)将CTP电池包的上盖拆下;(2)断开高压电源、拆去高压开关盒、拆出BMS系统,拆出电池包上的信号线;(3)将CTP电池包连接各单体上的汇流排铣削掉。
  3. 根据权利要求2所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S1中,所述铣削采用龙门铣床。
  4. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S2中,所述冷冻在冻库内进行,采用R507A制冷剂。
  5. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S2中,冷冻至电池包的整体温度达到-30℃~-35℃即可。
  6. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S2中,所述冷冻的时间为9~12小时。
  7. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S3中,所述回温的时间为6~8小时。
  8. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S4中,所述热水的温度为60~65℃。
  9. 根据权利要求1所述的CTP电池包单体梯次利用拆解工艺,其特征在于,步骤S4中,所述浸入热水的时间为5~8分钟。
PCT/CN2022/090531 2021-09-13 2022-04-29 Ctp电池包单体梯次利用拆解工艺 WO2023035635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111068588.0 2021-09-13
CN202111068588.0A CN113964408B (zh) 2021-09-13 Ctp电池包单体梯次利用拆解工艺

Publications (1)

Publication Number Publication Date
WO2023035635A1 true WO2023035635A1 (zh) 2023-03-16

Family

ID=79461489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090531 WO2023035635A1 (zh) 2021-09-13 2022-04-29 Ctp电池包单体梯次利用拆解工艺

Country Status (1)

Country Link
WO (1) WO2023035635A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121279A1 (ja) * 2015-01-28 2016-08-04 株式会社豊田自動織機 電池モジュール及び電池モジュールの解体方法
CN109103535A (zh) * 2018-08-09 2018-12-28 深圳市伟创源科技有限公司 一种汽车梯次电池模组的拆解方法
CN109301372A (zh) * 2018-10-30 2019-02-01 江苏双登富朗特新能源有限公司 退役动力锂离子模块无损拆解方法
CN112701371A (zh) * 2020-12-28 2021-04-23 上海龙旗科技股份有限公司 电子产品电池冷冻拆解方法
CN113319776A (zh) * 2021-05-17 2021-08-31 广州小鹏新能源汽车有限公司 拆解设备及电池模组拆解方法
CN113964408A (zh) * 2021-09-13 2022-01-21 广东邦普循环科技有限公司 Ctp电池包单体梯次利用拆解工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121279A1 (ja) * 2015-01-28 2016-08-04 株式会社豊田自動織機 電池モジュール及び電池モジュールの解体方法
CN109103535A (zh) * 2018-08-09 2018-12-28 深圳市伟创源科技有限公司 一种汽车梯次电池模组的拆解方法
CN109301372A (zh) * 2018-10-30 2019-02-01 江苏双登富朗特新能源有限公司 退役动力锂离子模块无损拆解方法
CN112701371A (zh) * 2020-12-28 2021-04-23 上海龙旗科技股份有限公司 电子产品电池冷冻拆解方法
CN113319776A (zh) * 2021-05-17 2021-08-31 广州小鹏新能源汽车有限公司 拆解设备及电池模组拆解方法
CN113964408A (zh) * 2021-09-13 2022-01-21 广东邦普循环科技有限公司 Ctp电池包单体梯次利用拆解工艺

Also Published As

Publication number Publication date
CN113964408A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
CN100372169C (zh) 锂离子动力电池组热平衡处理方法及装置
CN102528200B (zh) 一种蓄电池端子铜镶件预处理方法
CN103192731B (zh) 一种太阳能补偿的电动车电池车载充电加热装置
CN103117419A (zh) 一种废旧锂离子电池修复方法
CN103474707A (zh) 一种铅酸蓄电池修复液及利用其修复铅酸蓄电池的方法
WO2023035635A1 (zh) Ctp电池包单体梯次利用拆解工艺
CN111384456A (zh) 一种锂离子电池的预充化成方法及其锂离子电池
CN101150211A (zh) 铅酸蓄电瓶正反向充电激活法
CN102396099A (zh) 废旧铅酸动力电池负极板的回收利用方法
CN110148779B (zh) LiI-KI共晶盐在低温液态熔盐锂电池中的应用、低温液态熔盐锂电池及制备方法
CN113964408B (zh) Ctp电池包单体梯次利用拆解工艺
CN101964432A (zh) 电动汽车用电池包散热方法
CN203690419U (zh) 一种聚合物锂离子凝胶电解液电池
CN117013123A (zh) 一种拆解装置及方法
CN205264833U (zh) 带有预热装置的电池系统
CN206059448U (zh) 一种防自动漏电的电池
CN206041608U (zh) 一种充电式电动工具用混合电源
CN209418587U (zh) 一种增加弹性支撑架构的圆形电池模组
CN113675491A (zh) 锂离子电池的修复方法
CN208646650U (zh) 一种并联充电和选择性单体电池放电均衡的均衡电路
CN215119133U (zh) 一种用于自动泊车机器人的节能环保锂电池
CN208955155U (zh) 一种均温储热板
CN208188781U (zh) 交直流输出不间断电源电路
CN112133967A (zh) 一种全固态硫锂电池
CN206110096U (zh) 一种水利水电闸门门槽防冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE