WO2023035537A1 - 一种高碳酸盐难选铁矿石的选矿方法 - Google Patents

一种高碳酸盐难选铁矿石的选矿方法 Download PDF

Info

Publication number
WO2023035537A1
WO2023035537A1 PCT/CN2022/072321 CN2022072321W WO2023035537A1 WO 2023035537 A1 WO2023035537 A1 WO 2023035537A1 CN 2022072321 W CN2022072321 W CN 2022072321W WO 2023035537 A1 WO2023035537 A1 WO 2023035537A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrate
tailings
reverse flotation
scavenging
magnetic separation
Prior art date
Application number
PCT/CN2022/072321
Other languages
English (en)
French (fr)
Inventor
付亚峰
胡振涛
王润
满晓霏
刘剑军
董振海
杨晓峰
Original Assignee
鞍钢集团北京研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢集团北京研究院有限公司 filed Critical 鞍钢集团北京研究院有限公司
Publication of WO2023035537A1 publication Critical patent/WO2023035537A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/346Sorting according to other particular properties according to radioactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes

Definitions

  • the present invention relates to the technical field of mineral processing, in particular to a mineral processing method for high-carbonate refractory iron ore, and more specifically to X-ray transmission pre-selection-magnetization roasting/dispersion flotation of high-carbonate refractory iron ore mining method.
  • Iron ore resources are one of the most important strategic resources in my country and the lifeblood of the iron and steel industry.
  • the main characteristics of my country's iron ore are "poor”, “fine” and “miscellaneous", the average iron grade is low, and the proportion of complex and difficult-to-select hematite is relatively large.
  • the bottleneck of efficient development and utilization of high-carbonate hematite resources is the low grade and recovery rate of iron concentrate, which is difficult to meet the requirements of subsequent smelting processes.
  • the present invention is based on the inventor's discovery and recognition of the following facts and problems: the existing "stage grinding, coarse and fine separation, gravity separation-magnetic separation-anion reverse flotation" process flow is limited to siderite content Iron ore with less than 3% iron ore, and iron ore with high carbonate content is difficult to process. The high content of ferrous carbonate in iron ore will lead to a serious drop in flotation index, and even the phenomenon that the concentrate and tailings cannot be separated, which will affect the beneficiation effect.
  • the siderite often has been over-grinded, in a fine mud state, and attached to the surface of the red/magnetite particles. Therefore, pre-separating siderite from iron ore before flotation operation is an effective way to improve the overall beneficiation effect.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiment of the present invention provides a kind of beneficiation method of high carbonate refractory iron ore, the purpose is to use X-ray transmission pre-selection technology to pre-select siderite and hematite/magnetite in iron ore Separation, and the separated red/magnetite part is processed through the enhanced dispersion flotation process, and the separated pre-selected concentrate is recovered through the suspension magnetization roasting-magnetic separation process to effectively develop and utilize percarbonate iron ore.
  • a kind of beneficiation method of high carbonate refractory iron ore comprises the following steps:
  • the siderite in the iron ore is separated in advance, and the siderite content in the floating feed ore is reduced to prevent siderite
  • the ore is attached to the surface of the red/magnetite particles to block the contact between the flotation agent and the red/magnetite particles, thereby improving the flotation effect; 2.
  • the pre-selection of siderite also greatly reduces the amount of ore entering the flotation, saving flotation 3.
  • the ore dressing method of the embodiment of the present invention can be Realize the separate grinding of siderite and red/magnetite, avoiding the siderite caused by mixed grinding and attaching to the surface of red/magnetite particles after over-grinding, and can also control the grinding of different minerals according to the hardness of the minerals 4.
  • the ore dressing method of the embodiment of the present invention can process iron ores with more mineral types, especially iron ores with a ferrous carbonate content as high as 3-15wt%.
  • Carry out effective treatment; 5 the ore dressing method of the embodiment of the present invention provides a kind of resource recovery process to the development and utilization of China's same type of ore, and this sorting process runs smoothly, and the reverse flotation concentrate obtained after the method is processed It has high purity, high purification effect, contains TFe 66.5-68.5% by weight percentage, and iron recovery rate is 60-70%, which has important industrial significance for the effective utilization of high carbonate iron ore resources in China; 6.
  • the iron ore contains siderite, and hematite and/or magnetite, and the content of the siderite is 3-15wt%.
  • the X-ray transmission pre-selection adopts an X-ray transmission pre-selector, and the energy of the X-ray is set to 50-400keV, and the content of siderite in the pre-selected tailings is controlled ⁇ 3 wt%.
  • the magnetization roasting of the pre-selected concentrate is reduction magnetization roasting
  • the roasting temperature is 500-650°C
  • the roasting time is 10-30min
  • the amount of reducing agent is 10-45m 3 /t pre-concentrate
  • the grinding particle size of the magnetized roasted product is -200 mesh 85-95%; and/or,
  • the magnetic field strength of the weak magnetic separation is 0.15-0.3T.
  • the grinding particle size of the pre-selected tailings is -200 mesh 80-85%; and/or,
  • the magnetic field strength of the strong magnetic separation is 0.8-1T.
  • the reverse flotation of the pre-selected tailings includes roughing, beneficiation, and sweeping, and the strong magnetic separation concentrate is subjected to the roughing to obtain the roughing concentrate ore and roughing tailings; the roughing concentrate is subjected to the concentration to obtain concentrated concentrate and concentrated tailings, the concentrated concentrate is the reverse flotation concentrate, and the concentrate tailings Return to the roughing; the roughing tailings are scavenged to obtain scavenging concentrate and scavenging tailings, the scavenging tailings are the reverse flotation tailings, and the scavenging concentrate is returned to the rough selection.
  • the scavenging includes primary scavenging and secondary scavenging, and the primary scavenging concentrate and primary scavenging tailings are obtained by performing primary scavenging on the roughing tailings ore, the primary scavenging concentrate is returned to the rougher; the primary scavenging tailings are subjected to the secondary scavenging to obtain the secondary scavenging concentrate and the secondary scavenging tailings, and the secondary scavenging The tailings are the reverse flotation tailings, and the secondary scavenging concentrate returns to the primary scavenging.
  • the reverse flotation is dispersion enhanced reverse flotation, and the dispersant used includes citric acid and sodium silicate.
  • Fig. 1 is a schematic flow chart of a beneficiation method for high-carbonate refractory iron ore according to an embodiment of the present invention.
  • a kind of beneficiation method of high-carbonate refractory iron ore according to the embodiment of the present invention, 1, through X-ray transmission pre-selection, separate the siderite in the iron ore in advance, reduce the siderite in the flotation feed ore content, preventing siderite from attaching to the surface of red/magnetite particles and blocking the contact between flotation agents and red/magnetite particles, thereby improving the flotation effect; 2.
  • the pre-selection of siderite also greatly reduces the flotation feed 3. Due to the hardness difference between siderite and red/magnetite, siderite is in an over-grinding state during mixed grinding.
  • the beneficiation method of the example can realize the separate grinding of siderite and red/magnetite, avoiding the siderite that is caused by mixed grinding and attaching to the surface of red/magnetite particles after over-grinding, and can also be controlled according to the hardness of the ore.
  • the degree of grinding of different mineral materials reduces the energy consumption of grinding; 4.
  • the beneficiation method of the embodiment can effectively recycle and utilize the iron ore resources with relatively high carbonate content in China, and "turn waste into treasure" of the currently abandoned mineral resources. According to statistics, at present, about The ore exceeds 1 million tons, and by applying the method of the embodiment of the present invention, it can directly create benefits of nearly 10 million yuan.
  • step b In the beneficiation method of the embodiment of the present invention, through X-ray transmission pre-selection, most of the siderite in the iron ore enters the pre-selected concentrate, and ores of other mineral phases such as hematite and magnetite enter the pre-selected tailings.
  • the X-ray transmission machine selectively pre-selects siderite, the separation selectivity is limited.
  • a small amount of hematite and magnetite are inevitably accompanied by siderite. Iron ore goes into pre-concentrate.
  • the mineral processing method of the embodiment of the present invention performs reduction magnetization roasting treatment on the pre-selected concentrate, and the hematite in it is reduced to magnetite. Therefore, the mineral processing method of the embodiment of the present invention separates the pre-selected concentrate by combining magnetization roasting and magnetic separation.
  • the main mineral phases in the pre-selected tailings are hematite and magnetite, and the magnetic properties of hematite are relatively weak.
  • the iron ore contains siderite, and hematite and/or magnetite, and the content of the siderite is 3-15wt%.
  • the beneficiation method of the embodiment of the present invention can process iron ore with high siderite (ferrous carbonate) content.
  • the iron phase composition in the treated high carbonate iron ore includes 15-30wt% of hematite, 5-10wt% of magnetite, and 3-15wt% of siderite , pyrite 0.1-1wt%, and the balance is iron-containing silicate and other impurities.
  • the chemical composition of the iron ore processed by the mineral processing method of the embodiment of the present invention contains TFe 30-45%, CaO 0.1-2%, MgO 0.1-2%, SiO 2 30-40%, S 0.01-0.1%, P 0.01-0.1%, and the balance is impurities.
  • the X-ray transmission pre-selection adopts an X-ray transmission pre-selector
  • the X-ray energy of the X-ray transmission pre-selector is set to 50-400keV
  • the belt width is 1.6m.
  • the ore feeding speed is 60-120t/h
  • the belt conveying speed is 1-4m/s
  • the siderite content in the pre-selected tailings is controlled to be less than 3wt%.
  • the pre-selected tailings In the X-ray transmission pre-selection of the embodiment of the present invention, most of the siderite enters the pre-selected concentrate, and hematite and magnetite enter the pre-selected tailings, and then the content of ferrous carbonate in the pre-selected tailings decreases. After many tests, the inventors have found that when the content of ferrous carbonate in the pre-selected tailings is less than 3wt%, the pre-selected tailings can ensure a good flotation effect, and if the content of ferrous carbonate is too high, the flotation effect will decrease.
  • the pre-selection concentrate contains TFe 25-40%, CaO 0.1-2%, MgO 0.1-2%, SiO 2 10-30% by weight , S 0.01-0.1%, P 0.01-0.1%, and the balance is impurities;
  • the pre-selected tailings contain TFe 30-50%, CaO 0.1-2%, MgO 0.1-2%, SiO 2 15-50% by weight %, S 0.01-0.1%, P 0.01-0.1%, and the balance is impurities.
  • the mineral processing method of the embodiment of the present invention preferably selects the separation method of the pre-selected concentrate described in step b, including:
  • Magnetization roasting put the pre-selected concentrate into the suspension magnetization roaster, and roast at a roasting temperature of 500-650°C, the amount of fluidizing agent N 2 is 40-50m 3 /t of pre-selected concentrate , and the amount of reducing agent CO is 10-45m 3 /t of pre-selected ore concentrates are subjected to reduction magnetization roasting, and the roasting time is 10-30 minutes to obtain magnetized roasting products;
  • the magnetization roasting temperature in step b is optimized. Due to the low reduction efficiency of the reducing agent CO on hematite in the conventional magnetization roasting technology, the magnetization roasting temperature in the actual industry needs to reach 750°C to ensure the reduced magnetization effect of the hematite; in the embodiment of the present invention, due to the original After the ore is pre-selected by X-ray transmission machine, the content of siderite in the obtained pre-selected concentrate increases significantly, while the content of hematite and magnetite decreases significantly, because the temperature required for magnetization and roasting of siderite is low, and the ore The decomposition of siderite will increase the contact area between the reducing agent CO and hematite, thereby accelerating the reduction efficiency of hematite in the ore, so the roasting temperature here can be reduced, which greatly reduces the energy consumption of magnetization roasting.
  • the ore dressing method of the embodiment of the present invention optimizes the magnetic field intensity of the weak magnetic separation operation. Since the ore in the magnetized roasted product has been magnetized and has strong magnetism, magnetic separation can be realized by performing weak magnetic separation on the magnetized roasted product.
  • the reverse flotation of the pre-selected tailings includes roughing, beneficiation, and sweeping, and the strong magnetic separation concentrate is subjected to the roughing to obtain a roughing concentrate and roughing tailings; the roughing concentrate is subjected to the concentration to obtain concentrated concentrates and concentrated tailings, the concentrated concentrates are the reverse flotation concentrates, and the concentrated ore tailings are returned to the described roughing; the roughing tailings are swept to obtain scavenging concentrate and scavenging tailings, the scavenging tailings are the reverse flotation tailings, and the scavenging concentrate returns to the roughing .
  • the scavenging includes primary scavenging and secondary scavenging, and the primary scavenging tailings are subjected to primary scavenging to obtain primary scavenging concentrate and primary scavenging tailings,
  • the primary scavenging concentrate is returned to the rougher;
  • the primary scavenging tailings are subjected to the secondary scavenging to obtain secondary scavenging concentrates and secondary scavenging tailings, and the secondary scavenging tailings
  • the secondary sweep concentrate is returned to the primary sweep for the reverse flotation tailings.
  • the reverse flotation in step c includes roughing, beneficiation and at least one sweeping to ensure the separation effect of dispersed reverse flotation. It should be noted that the specific times of reverse flotation concentration and reverse flotation sweeping in the beneficiation method of the embodiment of the present invention depend on the properties of the raw materials and the requirements of the final product, and are not specifically limited here.
  • the dispersant used in the reverse flotation includes citric acid and sodium silicate.
  • the beneficiation method of the embodiment adopts enhanced dispersion flotation technology to improve the dispersion effect of minerals.
  • the beneficiation method of the embodiment of the present invention optimizes the formulation of the dispersant, compounding citric acid on the basis of sodium silicate to strengthen the dispersion effect of fine mineral particles, so as to realize the effective separation of red/magnetite and gangue minerals. select.
  • the combined use of the collector KS-III and the compound dispersant can effectively disperse gangue minerals such as chlorite.
  • the red/magnetite surface is exposed, thereby improving the collection performance of collector KS-III and red/magnetite.
  • the mineral processing method of the embodiment of the present invention preferably selects the separation method of the pre-selected tailings described in step c, including:
  • (1) Grinding - strong magnetic separation Grind the pre-selected tailings through a ball mill until the fineness of the obtained ore material is less than 200 mesh and the mass accounts for 80-85% of the total mass of the pre-selected tailings, and then pass through the magnetic field with a strength of 0.8-1T The ore is sorted by the high-end strong magnetic separator, and the strong magnetic separation concentrate and strong magnetic separation tailings are obtained.
  • the strong magnetic separation concentrate contains iron grade 30-37%, ferrous carbonate content mine tailings;
  • Reverse flotation roughing add water to the strong magnetic separation concentrate to make a reverse flotation roughing slurry with a weight concentration of 30-35% and send it to the flotation equipment, and stir quickly at a stirring speed of 1200-1400rpm for 2- 3min, add dispersant citric acid and sodium silicate at the same time to enhance the dispersion of the pulp, stir for 2-3min, the amount of citric acid added is 25-50g/t pulp , the amount of sodium silicate added is 10-50g/t pulp , then add pH Regulator NaOH, adjust the pH of the flotation pulp to 11-12, and stir for 2-3 minutes, then add inhibitor starch and stir for 2-3 minutes, the amount of starch added is 200-400g/t pulp , then add CaCl 2 and stir for 2- 3min, the amount of CaCl2 added is 250-400g/t pulp , then collector KS-III is added and stirred for 2-3min, the amount of collector added is 600-800g/t pulp , and finally reverse flotation roughing is carried out.
  • Reverse flotation concentration add water to the reverse flotation roughing concentrate to prepare a reverse flotation roughing concentrate slurry with a weight concentration of 20-30%, add dispersant citric acid and sodium silicate and stir for 2 -3min, the amount of citric acid added is 10-30g/t pulp , the amount of sodium silicate added is 10-30g/t pulp , then inhibitor starch is added and stirred for 2-3min, the amount of starch added is 100-200g/t pulp , Finally, carry out reverse flotation concentration, the concentration time is 2-3min, and obtain the reverse flotation concentrated ore and reverse flotation concentrated tailings, and the reverse flotation concentrated tailings are returned to the reverse flotation roughing slurry, and then the reverse flotation process is carried out again reverse flotation roughing;
  • Reverse flotation primary sweeping add water to the reverse flotation roughing tailings to prepare reverse flotation sweeping pulp with a weight concentration of 20-30%, then add dispersant citric acid and sodium silicate simultaneously and stir for 2 -3min, the amount of citric acid added is 10-20g/t pulp , the amount of sodium silicate added is 10-20g/t pulp , then inhibitor starch is added and stirred for 2-3min, the amount of starch added is 50-100g/t pulp , Then add collector KS-III and stir for 2-3 minutes, the amount of collector added is 100-150g/t pulp , and finally carry out a reverse flotation sweep for 3-4 minutes to obtain a reverse flotation sweep The ore and reverse flotation sweep the tailings once, and the reverse flotation sweeps the concentrated ore and returns to the reverse flotation roughing slurry, and then performs the reverse flotation roughing again, and the reverse flotation sweeps the tailings and throws the tailings.
  • the ore dressing method of the embodiment of the present invention further optimizes the sorting method of pre-selected tailings, and optionally includes reverse flotation secondary sweeping, and the reverse flotation secondary sweeping is specifically: to reverse flotation primary sweeping tailings
  • the dispersant citric acid and sodium silicate at the same time and stir for 2-3min
  • the amount of citric acid added is 10-20g/t pulp
  • the amount of sodium silicate added is 10-20g/t pulp
  • the amount of starch added is 50-100g/t pulp
  • collector KS-III is added to stir for 2-3min
  • the amount of collector added is 100-150g/t pulp
  • reverse flotation is carried out for the second sweeping
  • the scavenging time is 2-4min
  • the reverse flotation secondary scavenging concentrate and reverse flotation secondary scavenging tailings are obtained.
  • the reverse flotation secondary scavenging concentrate returns to the reverse flotation primary scavenging slurry, and the reverse flotation Flotation is one-time scavenging, reverse flotation is second-time scavenging and tailings are discarded.
  • the iron ore used in the embodiment of the present invention is produced in Anshan, Liaoning.
  • the ore is mined from a mining field and crushed by a jaw crusher.
  • the X-ray transmission pre-selection adopted is an XNDT type separator; in the embodiment of the present invention, the magnetic separator used for the weak magnetic separation operation of the pre-selected concentrate is a drum magnetic separator, and the pre-selected tailings
  • the magnetic separator selected for the strong magnetic separation operation is a Slon vertical ring high-gradient magnetic separator; the ball mill adopted in the embodiment of the present invention is an XMCQ type ceramic lining ball mill, and the flotation equipment used in the reverse flotation is a XFLB type miniature closed-circuit continuous flotation machine.
  • high-carbonate iron ore in Anshan area is selected, and after crushing and screening closed-circuit operations, materials with a particle size of less than 40mm are obtained, and ores with a particle size greater than 40mm are returned to the crusher for further crushing; the chemical composition of the crushed material is calculated by weight percentage It contains 39.3% of TFe, 1.58% of CaO, 1.61% of MgO, 37.7% of SiO 2 , 0.02% of S, 0.1% of P, and the rest is impurities, of which the content of siderite is 8.65wt%.
  • the material obtained after crushing and screening is sorted by an X-ray transmission pre-selector to obtain pre-selected ore concentrate and pre-selected tailings.
  • the X-ray energy of the X-ray transmission pre-selector set in the pre-selection work is 150keV, and the belt width is 1.6m, the ore feeding speed is 110t/h, the belt conveying speed is 3.5m/s, and the content of siderite in the obtained pre-selected tailings is 2.27wt%.
  • Magnetization roasting Add the pre-selected concentrate to the suspension magnetization roaster, adjust the roasting temperature to 650°C, the amount of fluidizing agent N 2 to 50m 3 /t pre-selected concentrate , and the amount of reducing agent CO to 40m 3 /t pre-selected concentrate Carry out reduction magnetization roasting under the condition of ore , the roasting time is 15min, obtain the magnetization roasting product;
  • the magnetized roasted product is ground by a ball mill until the fineness of the obtained ore is less than 200 mesh, and the mass accounts for 95% of the total mass of the magnetized roasted product, and the obtained ground product is moved into a magnetic field with a strength of 0.25T
  • the special magnetic separator performs weak magnetic separation operation to obtain roasted magnetic separation concentrate and roasted magnetic separation tailings.
  • Sorting the pre-selected tailings including the following steps:
  • (1) Grinding - strong magnetic separation Grind the pre-selected tailings through a ball mill until the fineness of the obtained ore material is less than 200 mesh and the mass accounts for 85% of the total mass of the pre-selected tailings, and then pass through a strong magnetic field with a magnetic field strength of 1.0T The ore is sorted by the concentrator, and the strong magnetic separation concentrate and strong magnetic separation tailings are obtained, and the strong magnetic separation tailings are discarded;
  • Reverse flotation roughing add water to the magnetic separation iron concentrate to make a reverse flotation roughing pulp with a weight concentration of 33%, and add it to the flotation equipment, stir rapidly at a stirring speed of 1250rpm for 2min, and add
  • the prepared dispersant mixture of citric acid and sodium silicate was stirred for 3 minutes, the amount of citric acid added was 50g/t of pulp , the amount of sodium silicate added was 45g/t of pulp , and then pH regulator NaOH was added to adjust the pH of the pulp to 12 , and stirred for 2 minutes, then added inhibitor starch and stirred for 3 minutes, the amount of starch added was 400g/t pulp , then CaCl 2 was added and stirred for 3 minutes, the amount of CaCl 2 added was 400g/t pulp , and finally collector KS-III was added and Stir for 2 minutes, the amount of collector added is 750g/t pulp , and then carry out reverse flotation roughing for 3 minutes to obtain reverse flotation roughing concentrate and reverse flotation roughing tailing
  • Reverse flotation concentration add water to the reverse flotation roughing concentrate to prepare a reverse flotation concentration pulp with a weight concentration of 30%, and add the dispersant citric acid and sodium silicate mixture prepared in advance at the same time, And stir for 3min, the amount of citric acid added is 30g/t of pulp , the amount of sodium silicate added is 30g/t of pulp , then inhibitor starch is added and stirred for 2min, the amount of starch added is 180g/t of pulp , and then reverse flotation is carried out for 3min Concentration, obtaining reverse flotation concentrated ore and reverse flotation concentrated tailings, reverse flotation concentrated tailings are returned to reverse flotation roughing pulp, and reverse flotation roughing is carried out again;
  • Secondary scavenging of reverse flotation add the prepared dispersant citric acid and sodium silicate mixture to the tailings of the first reverse flotation at the same time, and stir for 3 minutes.
  • the amount of citric acid added is 12g/t for reverse flotation Roughly select the tailings slurry, add 10g/t of sodium silicate to the slurry , add inhibitor starch and stir for 2 minutes, add starch to 50g/t of slurry , and finally add collector KS-III and stir for 3 minutes.
  • the addition amount is 150g/t pulp , and then carry out 2min reverse flotation secondary scavenging to obtain reverse flotation secondary scavenging concentrate and reverse flotation secondary scavenging tailings, and reverse flotation secondary scavenging concentrate Go back to reverse flotation for primary scavenging of ore pulp, perform reverse flotation for primary scavenging again, and reverse flotation for secondary scavenging of tailings.
  • the chemical composition of the roasted magnetic separation concentrate obtained by pre-selection concentrate separation contains TFe68.6% by weight percentage, and the iron recovery rate is 26.9%;
  • the chemical composition of the ore contains TFe 67.3% by weight, and the iron recovery rate is 68.7%.
  • the iron recovery rate of the comprehensive iron concentrate composed of roasting magnetic separation concentrate and reverse flotation concentration concentrate is 95.6%.
  • high-carbonate iron ore in Anshan area is selected, and after crushing and screening closed-circuit operations, materials with a particle size of less than 40mm are obtained, and ores with a particle size greater than 40mm are returned to the crusher for further crushing; the chemical composition of the crushed material is calculated by weight percentage Contains 33.5% of TFe, 0.42% of CaO, 0.17% of MgO, 32.3% of SiO 2 , 0.015% of S, 0.021% of P, the rest is impurities, and the content of siderite is 11.81wt%.
  • the material obtained after crushing and screening is sorted by an X-ray transmission pre-selector to obtain pre-selected ore concentrate and pre-selected tailings.
  • the X-ray energy of the X-ray transmission pre-selector set in the pre-selection work is 300keV, and the belt width It is 1.6m, the ore feeding speed is 100t/h, the belt conveying speed is 3.5m/s, and the content of siderite in the obtained pre-selected tailings is 2.05wt%.
  • Magnetization roasting Add the pre-selected concentrate to the suspension magnetization roaster, adjust the roasting temperature to 550°C, the amount of fluidizing agent N 2 to 40m 3 /t pre-selected concentrate , and the amount of reducing agent CO to 30m 3 /t pre-selected concentrate Reductive magnetization roasting is carried out under the condition of ore , and the roasting time is 30min, and the magnetized roasting product is obtained;
  • the magnetized roasted product is ground by a ball mill until the fineness of the obtained ore is less than 200 mesh, and the mass accounts for 85% of the total mass of the magnetized roasted product, and the obtained ground product is moved into a magnetic field with a strength of 0.2T
  • the special magnetic separator performs weak magnetic separation operation to obtain roasted magnetic separation concentrate and roasted magnetic separation tailings.
  • Sorting the pre-selected tailings including the following steps:
  • (1) Grinding - strong magnetic separation Grind the pre-selected tailings through a ball mill until the fineness of the obtained ore material is less than 200 mesh, and the mass accounts for 81.5% of the total mass of the pre-selected tailings, and then pass through a strong magnetic field with a magnetic field strength of 0.8T The ore is sorted by the concentrator, and the strong magnetic separation concentrate and strong magnetic separation tailings are obtained, and the strong magnetic separation tailings are discarded;
  • Reverse flotation concentration add water to the reverse flotation roughing concentrate to prepare a reverse flotation concentration pulp with a weight concentration of 25%, and add the dispersant citric acid and sodium silicate mixture prepared in advance at the same time, And stir for 2min, the amount of citric acid added is 20g/t of pulp , the amount of sodium silicate added is 15g/t of pulp , then inhibitor starch is added and stirred for 2min, the amount of starch added is 120g/t of pulp , and then reverse flotation is carried out for 2min Concentration, obtaining reverse flotation concentrated ore and reverse flotation concentrated tailings, reverse flotation concentrated tailings are returned to reverse flotation roughing pulp, and reverse flotation roughing is carried out again;
  • reverse flotation scavenging add water to the reverse flotation roughing tailings to prepare a reverse flotation scavenging pulp with a weight concentration of 20%, and add the dispersant citric acid and sodium silicate mixed solution prepared in advance at the same time, And stir for 3 minutes, the amount of citric acid added is 12g/t of pulp , the amount of sodium silicate added is 15g/t of pulp , then inhibitor starch is added and stirred for 3min, the amount of starch added is 100g/t of pulp , and finally the collector KS- III Stir for 2 minutes, the amount of collector added is 100g/t pulp , and then carry out reverse flotation scavenging for 3 minutes to obtain reverse flotation scavenging concentrate and reverse flotation scavenging tailings, and the reverse flotation scavenging concentrate is returned to To the reverse flotation roughing pulp, reverse flotation roughing again, reverse flotation scavenging tailings.
  • the chemical composition of the roasted magnetic separation concentrate obtained by pre-selection concentrate separation contains TFe67.9% by weight percentage, and the iron recovery rate is 26.3%;
  • the chemical composition of the ore contains 66.7% TFe by weight, and the iron recovery rate is 65.5%.
  • the iron recovery rate of the comprehensive iron concentrate composed of roasting magnetic separation concentrate and reverse flotation concentration concentrate is 91.8%.
  • high-carbonate iron ore in Anshan area is selected, and after crushing and screening closed-circuit operations, materials with a particle size of less than 40mm are obtained, and ores with a particle size greater than 40mm are returned to the crusher for further crushing; the chemical composition of the crushed material is calculated by weight percentage Contains 42.35% of TFe, 1.83% of CaO, 1.38% of MgO, 38.4% of SiO2, 0.012% of S, 0.091% of P, the rest is impurities, and the content of ferrous carbonate is 14.5wt%.
  • the material obtained after crushing and screening is sorted by an X-ray transmission pre-selector to obtain pre-selected ore concentrate and pre-selected tailings.
  • the X-ray energy of the X-ray transmission pre-selector set in the pre-selection work is 350keV, and the belt width is 1.6m, the ore feeding speed is 80t/h, the belt conveying speed is 1.5m/s, and the content of siderite in the obtained pre-selected tailings is 2.83wt%.
  • Magnetization roasting add the pre-selected concentrate to the suspension magnetization roaster, adjust the roasting temperature to 550°C, the amount of fluidizing agent N 2 to 45m 3 /t pre-selected concentrate , and the amount of reducing agent CO to 25m 3 /t pre-selected concentrate Carry out reduction magnetization roasting under the condition of ore , the roasting time is 25min, obtain the magnetization roasting product;
  • the magnetized roasted product is ground by a ball mill until the fineness of the obtained ore is less than 200 mesh and the mass accounts for 90% of the total mass of the magnetized roasted product, and the obtained ground product is moved into a magnetic field with a strength of 0.15T
  • the special magnetic separator performs weak magnetic separation operation to obtain roasted magnetic separation concentrate and roasted magnetic separation tailings.
  • Sorting the pre-selected tailings including the following steps:
  • (1) Grinding - strong magnetic separation Grind the pre-selected tailings through a ball mill until the fineness of the obtained ore material is less than 200 mesh, and the mass accounts for 81.5% of the total mass of the pre-selected tailings, and then pass through a strong magnetic field with a magnetic field strength of 1.0T The ore is sorted by the concentrator, and the strong magnetic separation concentrate and strong magnetic separation tailings are obtained, and the strong magnetic separation tailings are discarded;
  • Reverse flotation roughing Add water to the magnetically separated iron concentrate to make a reverse flotation roughing slurry with a weight concentration of 30%, and add it to the flotation equipment, stir rapidly at a stirring speed of 1350rpm for 3 minutes, and add in advance
  • the prepared dispersant mixture of citric acid and sodium silicate is stirred for 2 minutes, the amount of citric acid added is 30g/t of reverse flotation pulp, the amount of sodium silicate added is 15g/t of pulp , and then pH regulator NaOH is added to adjust the pulp pH to 11.3, and stir for 2 minutes, then add inhibitor starch and stir for 3 minutes, the amount of starch added is 250g/t pulp , then add CaCl 2 and stir for 3 minutes, the amount of CaCl 2 added is 300g/t pulp , and finally add collector KS -III and stir for 2 minutes, the amount of collector added is 650g/t pulp , and then carry out reverse flotation roughing for 3 minutes to obtain reverse flotation roughing concentrate and reverse flotation roughing tailings
  • Reverse flotation concentration add water to the reverse flotation roughing concentrate to prepare a reverse flotation concentration pulp with a weight concentration of 30%, and add the dispersant citric acid and sodium silicate mixture prepared in advance at the same time, And stir for 3 minutes, the amount of citric acid added is 15g/t of pulp , the amount of sodium silicate added is 15g/t of pulp , then inhibitor starch is added and stirred for 3min, the amount of starch added is 180g/t of pulp , and then reverse flotation is carried out for 3min Concentration, obtaining reverse flotation concentrated ore and reverse flotation concentrated tailings, reverse flotation concentrated tailings are returned to reverse flotation roughing pulp, and reverse flotation roughing is carried out again;
  • reverse flotation scavenging add water to the reverse flotation roughing tailings to prepare a reverse flotation scavenging pulp with a weight concentration of 30%, and add the dispersant citric acid and sodium silicate mixed solution prepared in advance, And stir for 3 minutes, the amount of citric acid added is 18g/t of pulp , the amount of sodium silicate added is 18g/t of pulp , then inhibitor starch is added and stirred for 2min, the amount of starch added is 80g/t of pulp , and finally collector KS- III Stir for 2 minutes, the amount of collector added is 120g/t pulp , and then carry out reverse flotation scavenging for 3 minutes to obtain reverse flotation scavenging concentrate and reverse flotation scavenging tailings, and the reverse flotation scavenging concentrate is returned to To the reverse flotation roughing pulp, reverse flotation roughing again, reverse flotation scavenging tailings.
  • the chemical composition of the roasted magnetic separation concentrate obtained by pre-selection concentrate separation contains TFe69.1% by weight percentage, and the iron recovery rate is 28.5%;
  • the chemical composition of the ore contains TFe 67.9% by weight, and the iron recovery rate is 62.3%.
  • the iron recovery rate of the comprehensive iron concentrate composed of roasting magnetic separation concentrate and reverse flotation concentration concentrate is 90.8%.
  • the iron ore raw material and beneficiation method of this comparative example are the same as those in Example 1, the only difference being that the iron ore is not pre-selected by X-ray transmission. That is, the iron ore after crushing is subjected to mineral processing according to the separation method of the pre-selected tailings in Example 1.
  • the chemical composition of the reverse flotation concentrated ore obtained contains TFe 63.25% by weight percentage, and the iron recovery rate is 73.14%.
  • Comparative examples 1-3 iron ore raw material and ferrous carbonate content in pre-selected tailings, and embodiment 1-3 and the total iron grade and iron recovery rate of reverse flotation concentrated ore of comparative example can be known, the embodiment of the present invention
  • the advanced ore dressing method pre-separates siderite in iron ore through X-ray transmission pre-selection, reduces the content of ferrous carbonate in the flotation feed, prevents siderite from adhering to the surface of red/magnetite particles, and blocks flotation agents and The contact of red/magnetite particles improves the flotation effect.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean specific features, structures, materials, or features described in connection with the embodiment or example.
  • a feature is included in at least one embodiment or example of the invention.
  • the schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高碳酸盐难选铁矿石的选矿方法,包括:a、将铁矿石进行X射线透射预选得到富含菱铁矿的预选精矿和预选尾矿;b、将富含菱铁矿的预选精矿进行磁化焙烧,将磁化焙烧产物经磨矿后进行弱磁选得到焙烧磁选精矿和焙烧磁选尾矿;c、将预选尾矿经磨矿后进行强磁选得到强磁选精矿和强磁选尾矿,将强磁选精矿进行反浮选得到反浮选精矿和反浮选尾矿。通过X射线透射预选,预先分离出铁矿石中的菱铁矿,降低入浮给矿中菱铁矿含量,防止菱铁矿附着于赤/磁铁矿颗粒表面阻隔浮选药剂与赤/磁铁矿颗粒的接触,从而提升浮选效果。

Description

一种高碳酸盐难选铁矿石的选矿方法
相关申请的交叉引用
本申请要求申请号为202111055792.9、申请日为2021年9月9日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本发明涉及选矿技术领域,具体涉及一种高碳酸盐难选铁矿石的选矿方法,更具体涉及一种高碳酸盐难选铁矿石的X射线透射预选-磁化焙烧/分散浮选的选矿方法。
背景技术
铁矿资源是我国最为重要的战略资源之一,是钢铁工业的命脉。我国铁矿石的主要特点是“贫”、“细”、“杂”,平均铁品位低,复杂难选的赤铁矿所占比例较大。高碳酸盐赤铁矿资源高效开发利用的瓶颈是铁精矿品位和回收率较低,难以满足后续冶炼工艺的要求。
随着开采深度的增加,目前鞍钢矿业公司齐大山铁矿开采的矿石中碳酸亚铁含量已高达13%,碳酸亚铁主要以菱铁矿的矿相形式存在。矿山企业通过将不同开采区的铁矿石进行配矿来降低入选物料中的碳酸亚铁含量(降低到3%以下),并通过“阶段磨矿、粗细分选、重选-磁选-阴离子反浮选”工艺流程来进行分选,导致矿产资源的极度浪费。而若不经过配矿而直接进行选别处理,铁矿石中碳酸亚铁含量较高会导致浮选指标严重下降,甚至出现精矿和尾矿无法分离的现象。
发明内容
本发明是基于发明人对以下事实和问题的发现和认识做出的:现有的“阶段磨矿、粗细分选、重选-磁选-阴离子反浮选”工艺流程仅限于菱铁矿含量3%以下的铁矿石,而对高碳酸盐含量的铁矿石则难以处理。铁矿石中碳酸亚铁含量较高会导致浮选指标严重下降,甚至出现精矿和尾矿无法分离的现象,影响选矿效果。发明人通过研究首次发现,影响铁矿石浮选效果的主要原因在于,浮选作业中,化学成分为碳酸亚铁的菱铁矿附着于赤铁矿或磁铁矿(赤/磁铁矿)颗粒表面,阻隔了浮选药剂与赤/磁铁矿颗粒的接触。发明人通过进一步研究发现,菱铁矿附着包覆赤/磁铁矿的原因在于,菱铁矿的硬度明显低于赤/磁铁矿的硬度,在浮选前的磨矿作业中,在赤/磁铁矿粒度达到入浮要求时,菱铁矿往往已出现过磨现象,呈细泥态,并附着于赤/磁铁矿颗粒表面。因此,在浮选作业前预先分离出铁矿石中的菱铁矿,是提升整体选矿效果的有效途径。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的实施例提供一种高碳酸盐难选铁矿石的选矿方法,目的是利用X射线透射预选技术,将铁矿石中的菱铁矿与赤/磁铁矿进行预先分离,并对分离后的赤/磁铁矿部分通过强化分散浮选工艺进行处理,而对分离后的预选精矿通过悬浮磁化焙烧-磁选工艺进行回收,以有效开发利用高碳酸盐的铁矿石。
根据本发明实施例的一种高碳酸盐难选铁矿石的选矿方法,包括如下步骤:
a、将所述铁矿石进行X射线透射预选得到富含菱铁矿的预选精矿和预选尾矿;
b、将所述富含菱铁矿的预选精矿进行磁化焙烧,将磁化焙烧产物经磨矿后进行弱磁选得到焙烧磁选精矿和焙烧磁选尾矿;
c、将所述预选尾矿经磨矿后进行强磁选得到强磁选精矿和强磁选尾矿,将所述强磁选精矿进行反浮选得到反浮选精矿和反浮选尾矿。
根据本发明实施例的选矿方法带来的优点和技术效果,1、通过X射线透射预选,预先分离出铁矿石中的菱铁矿,降低入浮给矿中菱铁矿含量,防止菱铁矿附着于赤/磁铁矿颗粒表面阻隔浮选药剂与赤/磁铁矿颗粒的接触,从而提升浮选效果;2、菱铁矿的预选也大大降低了入浮给矿量,节约浮选药剂,简化浮选流程,降低选矿成本及二氧化碳排放量;3、由于菱铁矿与赤/磁铁矿之间的硬度差异,混合磨矿时菱铁矿处于过磨状态,不仅会附着于赤/磁铁矿颗粒表面干扰浮选,而且菱铁矿的过磨也造成了不必要的能量损耗,而磨矿作业是选矿流程中主要能耗之一,因此,本发明实施例的选矿方法可实现菱铁矿与赤/磁铁矿的分别磨矿,避免了混合磨矿造成的菱铁矿过磨后附着于赤/磁铁矿颗粒表面,也可依据矿料硬度控制不同矿料的磨矿程度,降低磨矿能耗;4、本发明实施例的选矿方法可对矿物种类较多的铁矿石进行处理中,特别是对碳酸亚铁含量高达3-15wt%的铁矿石仍可进行有效处理;5、本发明实施例的选矿方法,对我国同类型矿石的开发利用提供了一种资源回收工艺,且该选别工艺运行平稳,经本方法处理后获得的反浮选精矿的纯度高,提纯效果高,按重量百分比含TFe 66.5-68.5%,铁回收率为60-70%,对我国高碳酸盐铁矿石资源的有效利用具有重要的工业意义;6、目前由于技术水平限制,国内大多数碳酸盐含量较高型矿山企业均将该类铁矿石堆存或者通过配矿来降低菱铁矿含量,导致矿产资源的极度浪费,本发明实施例的选矿方法可有效回收利用我国碳酸盐含量较高型铁矿资源,将目前被抛弃的矿产资源“变废为宝”,据统计,目前东鞍山铁矿每年约堆存该类铁矿石超过100万吨,通过应用本发明实施例的方法,可直接创造效益近1000万元。
根据本发明实施例的选矿方法,所述铁矿石包含菱铁矿,以及赤铁矿和/或磁铁矿,所述菱铁矿含量为3-15wt%。
根据本发明实施例的选矿方法,所述步骤a中,所述X射线透射预选采用X射线透射 预选机,设置X射线的能量为50-400keV,控制所述预选尾矿中菱铁矿含量<3wt%。
根据本发明实施例的选矿方法,所述步骤b中,所述预选精矿的磁化焙烧为还原磁化焙烧,焙烧温度500-650℃,焙烧时间10-30min,还原剂用量10-45m 3/t预选精矿;和/或,
所述磁化焙烧产物的磨矿粒度为-200目85-95%;和/或,
所述弱磁选的磁场强度0.15-0.3T。
根据本发明实施例的选矿方法,所述步骤c中,所述预选尾矿的磨矿粒度为-200目80-85%;和/或,
所述强磁选的磁场强度0.8-1T。
根据本发明实施例的选矿方法,所述步骤c中,所述预选尾矿的反浮选包括粗选、精选、扫选,所述强磁选精矿进行所述粗选得到粗选精矿和粗选尾矿;所述粗选精矿进行所述精选得到精选精矿和精选尾矿,所述精选精矿为所述反浮选精矿,所述精矿尾矿返回所述粗选;所述粗选尾矿进行扫选得到扫选精矿和扫选尾矿,所述扫选尾矿为所述反浮选尾矿,所述扫选精矿返回所述粗选。
根据本发明实施例的选矿方法,所述步骤c中,所述扫选包括一次扫选和二次扫选,所述粗选尾矿进行一次扫选得到一次扫选精矿和一次扫选尾矿,所述一次扫选精矿返回所述粗选;所述一次扫选尾矿进行所述二次扫选得到二次扫选精矿和二次扫选尾矿,所述二次扫选尾矿为所述反浮选尾矿,所述二次扫选精矿返回所述一次扫选。
根据本发明实施例的选矿方法,所述步骤c中,所述反浮选为分散强化反浮选,使用的分散剂包括柠檬酸和硅酸钠。
附图说明
图1是本发明实施例的高碳酸盐难选铁矿石的选矿方法流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
根据本发明实施例的一种高碳酸盐难选铁矿石的选矿方法,包括如下步骤:
a、将所述铁矿石进行X射线透射预选得到富含菱铁矿的预选精矿和预选尾矿;
b、将所述富含菱铁矿的预选精矿进行磁化焙烧,将磁化焙烧产物经磨矿后进行弱磁选得到焙烧磁选精矿和焙烧磁选尾矿;
c、将所述预选尾矿经磨矿后进行强磁选得到强磁选精矿和强磁选尾矿,将所述强磁选精矿进行反浮选得到反浮选精矿和反浮选尾矿。
根据本发明实施例的一种高碳酸盐难选铁矿石的选矿方法,1、通过X射线透射预选, 预先分离出铁矿石中的菱铁矿,降低入浮给矿中菱铁矿含量,防止菱铁矿附着于赤/磁铁矿颗粒表面阻隔浮选药剂与赤/磁铁矿颗粒的接触,从而提升浮选效果;2、菱铁矿的预选也大大降低了入浮给矿量,节约浮选药剂,简化浮选流程,降低选矿成本及二氧化碳排放量;3、由于菱铁矿与赤/磁铁矿之间的硬度差异,混合磨矿时菱铁矿处于过磨状态,不仅会附着于赤/磁铁矿颗粒表面干扰浮选,而且菱铁矿的过磨也造成了不必要的能量损耗,而磨矿作业是选矿流程中主要能耗之一,因此,本发明实施例的选矿方法可实现菱铁矿与赤/磁铁矿的分别磨矿,避免了混合磨矿造成的菱铁矿过磨后附着于赤/磁铁矿颗粒表面,也可依据矿料硬度控制不同矿料的磨矿程度,降低磨矿能耗;4、本发明实施例的选矿方法可对矿物种类较多的铁矿石进行处理中,特别是对碳酸亚铁含量高达3-15wt%的铁矿石仍可进行有效处理;5、本发明实施例的选矿方法,对我国同类型矿石的开发利用提供了一种资源回收工艺,且该选别工艺运行平稳,经本方法处理后获得的反浮选精矿的纯度高,提纯效果高,按重量百分比含TFe 66.5-68.5%,铁回收率为60-70%,对我国高碳酸盐铁矿石资源的有效利用具有重要的工业意义;6、目前由于技术水平限制,国内大多数碳酸盐含量较高型矿山企业均将该类铁矿石堆存或者通过配矿来降低菱铁矿含量,导致矿产资源的极度浪费,本发明实施例的选矿方法可有效回收利用我国碳酸盐含量较高型铁矿资源,将目前被抛弃的矿产资源“变废为宝”,据统计,目前东鞍山铁矿每年约堆存该类铁矿石超过100万吨,通过应用本发明实施例的方法,可直接创造效益近1000万元。
在本发明实施例的选矿方法中,经过X射线透射预选,铁矿石中大部分菱铁矿进入预选精矿,其它矿相的矿石例如赤铁矿和磁铁矿进入预选尾矿。步骤b中,尽管X射线透射机选择性预选菱铁矿,但分离选择性有限,为保证预选尾矿中碳酸亚铁含量保持较低水平,少量赤铁矿和磁铁矿不可避免地伴随菱铁矿进入预选精矿。为使预选精矿中所有矿相的铁元素均能被磁选选出,本发明实施例的选矿方法对预选精矿进行了还原磁化焙烧处理,将其中的赤铁矿还原为磁铁矿,因此,本发明实施例的选矿方法对预选精矿采用磁化焙烧-磁选相结合方式进行分选。
在本发明实施例的选矿方法的步骤c中,预选尾矿中主要矿相为赤铁矿和磁铁矿,赤铁矿磁性较弱,为保证赤铁矿和磁铁矿进入反浮选,需采用强磁选对预选尾矿进行选别,防止铁元素流失,提高金属回收率。
根据本发明实施例的选矿方法,所述铁矿石包含菱铁矿,以及赤铁矿和/或磁铁矿,所述菱铁矿含量为3-15wt%。本发明实施例的选矿方法可处理高菱铁矿(碳酸亚铁)含量的铁矿石。
在本发明实施例的选矿方法中,所述处理的高碳酸盐铁矿石中铁物相组成,包含赤铁矿15-30wt%,磁铁矿5-10wt%,菱铁矿3-15wt%,黄铁矿0.1-1wt%,余量为含铁硅酸盐 等杂质。
进一步的,本发明实施例的选矿方法所处理的铁矿石的化学成分,按重量百分比含有TFe 30-45%,CaO 0.1-2%,MgO 0.1-2%,SiO 2 30-40%,S 0.01-0.1%,P 0.01-0.1%,余量为杂质。
根据本发明实施例的选矿方法,步骤a中,所述X射线透射预选采用X射线透射预选机,设置所述X射线透射预选机的X射线的能量为50-400keV,皮带宽度为1.6m,给矿速度为60-120t/h,皮带输送速度为1-4m/s,控制所述预选尾矿中菱铁矿含量<3wt%。本发明实施例的X射线透射预选中,大部分菱铁矿进入预选精矿,赤铁矿和磁铁矿进入预选尾矿,随之预选尾矿中碳酸亚铁含量降低。发明人经过多次试验探究得出,预选尾矿中碳酸亚铁含量<3wt%时可保证预选尾矿具有良好的浮选效果,若碳酸亚铁含量过高会导致浮选效果下降。
在本发明实施例的选矿方法中,经X射线透射预选后,所述预选精矿按重量百分比含TFe 25-40%,CaO 0.1-2%,MgO 0.1-2%,SiO 2 10-30%,S 0.01-0.1%,P 0.01-0.1%,余量为杂质;所述预选尾矿按重量百分比含TFe 30-50%,CaO 0.1-2%,MgO 0.1-2%,SiO 2 15-50%,S 0.01-0.1%,P 0.01-0.1%,余量为杂质。
本发明实施例的选矿方法优选了步骤b所述预选精矿的分选方法,包括:
(1)磁化焙烧:将所述预选精矿加入悬浮磁化焙烧炉中,在焙烧温度500-650℃、流化剂N 2用量40-50m 3/t 预选精矿、还原剂CO用量10-45m 3/t 预选精矿条件下进行还原磁化焙烧,焙烧时间为10-30min,获得磁化焙烧产物;
(2)磨矿-弱磁选:将磁化焙烧产物经球磨机粉磨至得到的矿石物料中细度小于200目质量占磁化焙烧产物总质量的85-95%,获得的磨矿产品进入磁选机在磁场强度为0.15-0.3T的条件下进行弱磁选作业,获得焙烧磁选精矿和焙烧磁选尾矿。
本发明实施例的选矿方法优选了步骤b中磁化焙烧温度。由于常规磁化焙烧技术中,还原剂CO对赤铁矿的还原效率较低,实际工业中磁化焙烧温度需达750℃才可保证赤铁矿的还原磁化效果;在本发明实施例中,由于原矿石经X射线透射机预选后,获得的预选精矿中菱铁矿含量显著增加,而赤铁矿、磁铁矿的含量明显降低,由于菱铁矿磁化焙烧所需的温度较低,且矿石中菱铁矿的分解会提高还原剂CO与赤铁矿的接触面积,从而加快矿石中赤铁矿的还原效率,因此此处焙烧温度可降低,大大降低了磁化焙烧的能量消耗。
此外,本发明实施例的选矿方法优化了弱磁选作业的磁场强度,由于磁化焙烧产物中矿石已被磁化,磁性较强,因此对磁化焙烧产物进行弱磁选即可实现磁选。
根据本发明实施例的选矿方法,步骤c中,所述预选尾矿的反浮选包括粗选、精选、扫选,所述强磁选精矿进行所述粗选得到粗选精矿和粗选尾矿;所述粗选精矿进行所述精 选得到精选精矿和精选尾矿,所述精选精矿为所述反浮选精矿,所述精矿尾矿返回所述粗选;所述粗选尾矿进行扫选得到扫选精矿和扫选尾矿,所述扫选尾矿为所述反浮选尾矿,所述扫选精矿返回所述粗选。
根据本发明实施例的选矿方法,步骤c中,所述扫选包括一次扫选和二次扫选,所述粗选尾矿进行一次扫选得到一次扫选精矿和一次扫选尾矿,所述一次扫选精矿返回所述粗选;所述一次扫选尾矿进行所述二次扫选得到二次扫选精矿和二次扫选尾矿,所述二次扫选尾矿为所述反浮选尾矿,所述二次扫选精矿返回所述一次扫选。
在本发明实施例的选矿方法中,步骤c中反浮选包括粗选、精选和至少一次扫选,保证分散反浮的分选效果。需要说明的是,本发明实施例的选矿方法中反浮选精选和反浮选扫选的具体次数取决于原料性质及最终产品要求,在此不做具体限定。
根据本发明实施例的选矿方法,所述反浮选使用的分散剂包括柠檬酸和硅酸钠。现有的浮选工艺中,由于菱铁矿、绿泥石等微细粒脉石矿物极易黏附于赤/磁铁矿表面,常规单一分散剂对此类黏附行为的分散效果有限,因此本发明实施例的选矿方法采用强化分散浮选技术,以提高矿物的分散效果。本发明实施例的选矿方法优选了分散剂的配方,在硅酸钠的基础上复配柠檬酸,以强化微细粒矿物颗粒的分散效果,从而实现赤/磁铁矿与脉石矿物的有效分选。
根据本发明实施例的选矿方法,所述反浮选中,捕收剂KS-Ⅲ与复配分散剂(硅酸钠-柠檬酸)的配合使用,可以在有效分散绿泥石等脉石矿物的基础上,将赤/磁铁矿表面暴露出来,从而提高捕收剂KS-Ⅲ与赤/磁铁矿的捕收性能。
本发明实施例的选矿方法优选了步骤c所述预选尾矿的分选方法,包括:
(1)磨矿-强磁选:将预选尾矿经球磨机粉磨至得到的矿石物料中细度小于200目质量占预选尾矿总质量的80-85%,然后通过磁场强度为0.8-1T的强磁选机对矿石进行选别,获得强磁选精矿和强磁选尾矿,强磁选精矿含铁品位30-37%、碳酸亚铁含量0.1-3%,强磁选尾矿抛尾;
(2)反浮选粗选:向强磁选精矿中加水制成重量浓度30-35%的反浮选粗选矿浆并送入浮选设备,搅拌速度1200-1400rpm条件下快速搅拌2-3min,同时加入分散剂柠檬酸与硅酸钠强化矿浆分散程度,搅拌2-3min,柠檬酸加入量为25-50g/t 矿浆,硅酸钠加入量为10-50g/t 矿浆,然后加入pH调整剂NaOH,调节浮选矿浆pH至11-12,并搅拌2-3min,再加入抑制剂淀粉并搅拌2-3min,淀粉加入量为200-400g/t 矿浆,再加入CaCl 2并搅拌2-3min,CaCl 2加入量为250-400g/t 矿浆,再加入捕收剂KS-Ⅲ并搅拌2-3min,捕收剂加入量为600-800g/t 矿浆,最后进行反浮选粗选,粗选时间3-4min,得到反浮选粗选精矿和反浮选粗选尾矿;
(3)反浮选精选:将反浮选粗选精矿加水配制成重量浓度为20-30%的反浮选粗选精矿矿浆,同时加入分散剂柠檬酸与硅酸钠并搅拌2-3min,柠檬酸加入量为10-30g/t 矿浆,硅酸钠加入量为10-30g/t 矿浆,再加入抑制剂淀粉并搅拌2-3min,淀粉加入量为100-200g/t 矿浆,最后进行反浮选精选,精选时间2-3min,得到反浮选精选精矿和反浮选精选尾矿,反浮选精选尾矿返回至反浮选粗选矿浆,再次进行反浮选粗选;
(4)反浮选一次扫选:将反浮选粗选尾矿加水配制成重量浓度为20-30%的反浮选扫选矿浆,随后同时加入分散剂柠檬酸与硅酸钠并搅拌2-3min,柠檬酸加入量为10-20g/t 矿浆,硅酸钠加入量为10-20g/t 矿浆,再加入抑制剂淀粉并搅拌2-3min,淀粉加入量为50-100g/t 矿浆,再加入捕收剂KS-Ⅲ搅拌2-3min,捕收剂加入量为100-150g/t 矿浆,最后进行反浮选一次扫选,扫选时间3-4min,得到反浮选一次扫选精矿和反浮选一次扫选尾矿,反浮选一次扫选精矿返回至反浮选粗选矿浆,再次进行反浮选粗选,反浮选一次扫选尾矿抛尾。
本发明实施例的选矿方法进一步优选了预选尾矿的分选方法,还任选地包括反浮选二次扫选,反浮选二次扫选具体为:向反浮选一次扫选尾矿中同时加入分散剂柠檬酸与硅酸钠并搅拌2-3min,柠檬酸加入量为10-20g/t 矿浆,硅酸钠加入量为10-20g/t 矿浆,再加入抑制剂淀粉并搅拌2-3min,淀粉加入量为50-100g/t 矿浆,再加入捕收剂KS-Ⅲ搅拌2-3min,捕收剂加入量为100-150g/t 矿浆,最后进行反浮选二次扫选,扫选时间2-4min,得到反浮选二次扫选精矿和反浮选二次扫选尾矿,反浮选二次扫选精矿返回至反浮选一次扫选矿浆,再次进行反浮选一次扫选,反浮选二次扫选尾矿抛尾。
下面结合具体实施例和附图详细描述本发明。
本发明实施例中采用的铁矿石为辽宁鞍山地区矿产,矿石从采矿场开采出来,经颚式破碎机粉碎后的产物。
本发明实施例中X射线透射预选所采用的是XNDT型分选机;本发明实施例中对预选精矿的弱磁选作业采用的磁选机为筒式磁选机,对预选尾矿的强磁选作业选用的磁选机为Slon立环高梯度磁选机;本发明实施例中采用的球磨机为XMCQ型瓷衬球磨机,反浮选采用的浮选设备为XFLB型微型闭路连续浮选机。
实施例1
本实施例选取鞍山地区高碳酸盐铁矿石,经破碎及筛分闭路作业后获得粒度小于40mm的物料,大于40mm的矿石返回破碎机进行再次破碎;破碎后物料的化学成分,按重量百分比含TFe 39.3%,CaO 1.58%,MgO 1.61%,SiO 2 37.7%,S 0.02%,P 0.1%,余量为杂质,其中菱铁矿含量为8.65wt%。
a、将破碎筛分后获得的物料,经X射线透射预选机进行选别得到预选精矿和预选尾矿,预选工作中设置所述X射线透射预选机的X射线的能量为150keV,皮带宽度为1.6m,给 矿速度为110t/h,皮带输送速度为3.5m/s,得到的预选尾矿中菱铁矿含量2.27wt%。
b、对预选精矿进行分选,包括如下步骤:
(1)磁化焙烧:将预选精矿加入悬浮磁化焙烧炉中,调节焙烧温度为650℃、流化剂N 2用量为50m 3/t 预选精矿、还原剂CO用量为40m 3/t 预选精矿的条件下进行还原磁化焙烧,焙烧时间为15min,获得磁化焙烧产物;
(2)磨矿-弱磁选:将磁化焙烧产物经球磨机粉磨至得到的矿石中细度小于200目质量占磁化焙烧产物总质量的95%,获得的磨矿产品移入磁场强度为0.25T的磁选机进行弱磁选作业,获得焙烧磁选精矿和含有焙烧磁选尾矿。
c、对预选尾矿进行分选,包括如下步骤:
(1)磨矿-强磁选:将预选尾矿经球磨机粉磨至得到的矿石物料中细度小于200目质量占预选尾矿总质量的85%,然后通过磁场强度为1.0T的强磁选机对矿石进行选别,获得强磁选精矿和强磁选尾矿,强磁选尾矿抛尾;
(2)反浮选粗选:向磁选铁精矿中加水制成重量浓度33%的反浮选粗选矿浆并加入浮选设备中,在搅拌速度1250rpm条件下快速搅拌2min,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,搅拌3min,柠檬酸加入量为50g/t 矿浆,硅酸钠加入量为45g/t 矿浆,然后加入pH调整剂NaOH,调节矿浆pH至12,并搅拌2min,再加入抑制剂淀粉并搅拌3min,淀粉加入量为400g/t 矿浆,再加入CaCl 2并搅拌3min,CaCl 2加入量为400g/t 矿浆,最后加入捕收剂KS-Ⅲ并搅拌2min,捕收剂加入量为750g/t 矿浆,然后进行3min的反浮选粗选,得到反浮选粗选精矿和反浮选粗选尾矿;
(3)反浮选精选:将反浮选粗选精矿加水配制成重量浓度为30%的反浮选精选矿浆,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌3min,柠檬酸加入量为30g/t 矿浆,硅酸钠加入量为30g/t 矿浆,再加入抑制剂淀粉并搅拌2min,淀粉加入量为180g/t 矿浆,然后进行3min的反浮选精选,获得反浮选精选精矿和反浮选精选尾矿,反浮选精选尾矿返回至反浮选粗选矿浆,再次进行反浮选粗选;
(4)反浮选一次扫选:将反浮选粗选尾矿加水配制成重量浓度为30%的反浮选一次扫选矿浆,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌2min,柠檬酸加入量为20g/t 矿浆,硅酸钠加入量为18g/t 矿浆,再加入抑制剂淀粉并搅拌3min,淀粉加入量为80g/t 矿浆,最后加入捕收剂KS-Ⅲ搅拌2min,捕收剂加入量为150g/t 矿浆,然后进行3min的反浮选一次扫选,得到反浮选一次扫选精矿和反浮选一次扫选尾矿,反浮选一次扫选精矿返回至反浮选粗选矿浆,再次进行反浮选粗选;
(5)反浮选二次扫选:将一次反浮选扫选尾矿同时加入配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌3min,柠檬酸加入量为12g/t反浮选粗选尾矿矿浆,硅酸钠加入量为10g/t 矿浆,再加入抑制剂淀粉并搅拌2min,淀粉加入量为50g/t 矿浆,最后加入捕收剂KS-Ⅲ搅拌3min,捕收剂加入量为150g/t 矿浆,然后进行2min的反浮选二次扫选,得到反浮选二次扫选精矿和反浮选二次扫选尾矿,反浮选二次扫选精矿返回至反浮选一次扫选矿浆,再次进行反浮选一次扫选,反浮选二次扫选尾矿抛尾。
本实施例中,预选精矿分选获得的焙烧磁选精矿的化学成分,按重量百分比含TFe68.6%,铁回收率为26.9%;预选尾矿分选获得的反浮选精选精矿的化学成分,按重量百分比含TFe 67.3%,铁回收率为68.7%。由此,焙烧磁选精矿和反浮选精选精矿构成的综合铁精矿的铁回收率为95.6%。
实施例2
本实施例选取鞍山地区高碳酸盐铁矿石,经破碎及筛分闭路作业后获得粒度小于40mm的物料,大于40mm的矿石返回破碎机进行再次破碎;破碎后物料的化学成分,按重量百分比含TFe 33.5%,CaO 0.42%,MgO 0.17%,SiO 2 32.3%,S 0.015%,P 0.021%,余量为杂质,其中菱铁矿含量为11.81wt%。
a、将破碎筛分后获得的物料,经X射线透射预选机进行选别得到预选精矿和预选尾矿,预选工作中设置所述X射线透射预选机的X射线的能量为300keV,皮带宽度为1.6m,给矿速度为100t/h,皮带输送速度为3.5m/s,得到的预选尾矿中菱铁矿含量2.05wt%。
b、对预选精矿进行分选,包括如下步骤:
(1)磁化焙烧:将预选精矿加入悬浮磁化焙烧炉中,调节焙烧温度为550℃、流化剂N 2用量为40m 3/t 预选精矿、还原剂CO用量为30m 3/t 预选精矿的条件下进行还原磁化焙烧,焙烧时间为30min,获得磁化焙烧产物;
(2)磨矿-弱磁选:将磁化焙烧产物经球磨机粉磨至得到的矿石中细度小于200目质量占磁化焙烧产物总质量的85%,获得的磨矿产品移入磁场强度为0.2T的磁选机进行弱磁选作业,获得焙烧磁选精矿和含有焙烧磁选尾矿。
c、对预选尾矿进行分选,包括如下步骤:
(1)磨矿-强磁选:将预选尾矿经球磨机粉磨至得到的矿石物料中细度小于200目质量占预选尾矿总质量的81.5%,然后通过磁场强度为0.8T的强磁选机对矿石进行选别,获得强磁选精矿和强磁选尾矿,强磁选尾矿抛尾;
(2)反浮选粗选:向磁选铁精矿中加水制成重量浓度30%的反浮选粗选矿浆并加入浮选设备中,在搅拌速度1400rpm条件下快速搅拌3min,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,搅拌3min,柠檬酸加入量为35g/t 矿浆,硅酸钠加入量为30g/t 矿浆,然后加入pH调整剂NaOH,调节矿浆pH至11.5,并搅拌3min,再加入抑制剂淀粉并搅拌2min,淀粉加入量为300g/t 矿浆,再加入CaCl 2并搅拌3min,CaCl 2加入量为350g/t 矿浆,最后加入 捕收剂KS-Ⅲ并搅拌3min,捕收剂加入量为800g/t 矿浆,然后进行4min的反浮选粗选,得到反浮选粗选精矿和反浮选粗选尾矿;
(3)反浮选精选:将反浮选粗选精矿加水配制成重量浓度为25%的反浮选精选矿浆,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌2min,柠檬酸加入量为20g/t 矿浆,硅酸钠加入量为15g/t 矿浆,再加入抑制剂淀粉并搅拌2min,淀粉加入量为120g/t 矿浆,然后进行2min的反浮选精选,获得反浮选精选精矿和反浮选精选尾矿,反浮选精选尾矿返回至反浮选粗选矿浆,再次进行反浮选粗选;
(4)反浮选扫选:将反浮选粗选尾矿加水配制成重量浓度为20%的反浮选扫选矿浆,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌3min,柠檬酸加入量为12g/t 矿浆,硅酸钠加入量为15g/t 矿浆,再加入抑制剂淀粉并搅拌3min,淀粉加入量为100g/t 矿浆,最后加入捕收剂KS-Ⅲ搅拌2min,捕收剂加入量为100g/t 矿浆,然后进行3min的反浮选扫选,得到反浮选扫选精矿和反浮选扫选尾矿,反浮选扫选精矿返回至反浮选粗选矿浆,再次进行反浮选粗选,反浮选扫选尾矿。
本实施例中,预选精矿分选获得的焙烧磁选精矿的化学成分,按重量百分比含TFe67.9%,铁回收率为26.3%;预选尾矿分选获得的反浮选精选精矿的化学成分,按重量百分比含TFe 66.7%,铁回收率为65.5%。由此,焙烧磁选精矿和反浮选精选精矿构成的综合铁精矿的铁回收率为91.8%。
实施例3
本实施例选取鞍山地区高碳酸盐铁矿石,经破碎及筛分闭路作业后获得粒度小于40mm的物料,大于40mm的矿石返回破碎机进行再次破碎;破碎后物料的化学成分,按重量百分比含TFe42.35%,CaO 1.83%,MgO 1.38%,SiO 2 38.4%,S 0.012%,P 0.091%,余量为杂质,其中碳酸亚铁含量为14.5wt%。
a、将破碎筛分后获得的物料,经X射线透射预选机进行选别得到预选精矿和预选尾矿,预选工作中设置所述X射线透射预选机的X射线的能量为350keV,皮带宽度为1.6m,给矿速度为80t/h,皮带输送速度为1.5m/s,得到的预选尾矿中菱铁矿含量2.83wt%。
b、对预选精矿进行分选,包括如下步骤:
(1)磁化焙烧:将预选精矿加入悬浮磁化焙烧炉中,调节焙烧温度为550℃、流化剂N 2用量为45m 3/t 预选精矿、还原剂CO用量为25m 3/t 预选精矿的条件下进行还原磁化焙烧,焙烧时间为25min,获得磁化焙烧产物;
(2)磨矿-弱磁选:将磁化焙烧产物经球磨机粉磨至得到的矿石中细度小于200目质量占磁化焙烧产物总质量的90%,获得的磨矿产品移入磁场强度为0.15T的磁选机进行弱磁选作业,获得焙烧磁选精矿和含有焙烧磁选尾矿。
c、对预选尾矿进行分选,包括如下步骤:
(1)磨矿-强磁选:将预选尾矿经球磨机粉磨至得到的矿石物料中细度小于200目质量占预选尾矿总质量的81.5%,然后通过磁场强度为1.0T的强磁选机对矿石进行选别,获得强磁选精矿和强磁选尾矿,强磁选尾矿抛尾;
(2)反浮选粗选:向磁选铁精矿中加水制成重量浓度30%的反浮选粗选矿浆并加入浮选设备中,在搅拌速度1350rpm条件下快速搅拌3min,同时加入提前配置好的分散剂柠檬酸与硅酸钠混合液,搅拌2min,柠檬酸加入量为30g/t反浮选矿浆,硅酸钠加入量为15g/t 矿浆,然后加入pH调整剂NaOH,调节矿浆pH至11.3,并搅拌2min,再加入抑制剂淀粉并搅拌3min,淀粉加入量为250g/t 矿浆,再加入CaCl 2并搅拌3min,CaCl 2加入量为300g/t 矿浆,最后加入捕收剂KS-Ⅲ并搅拌2min,捕收剂加入量为650g/t 矿浆,然后进行3min的反浮选粗选,得到反浮选粗选精矿和反浮选粗选尾矿;
(3)反浮选精选:将反浮选粗选精矿加水配制成重量浓度为30%的反浮选精选矿浆,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌3min,柠檬酸加入量为15g/t 矿浆,硅酸钠加入量为15g/t 矿浆,再加入抑制剂淀粉并搅拌3min,淀粉加入量为180g/t 矿浆,然后进行3min的反浮选精选,获得反浮选精选精矿和反浮选精选尾矿,反浮选精选尾矿返回至反浮选粗选矿浆,再次进行反浮选粗选;
(4)反浮选扫选:将反浮选粗选尾矿加水配制成重量浓度为30%的反浮选扫选矿浆,同时加入提前配制好的分散剂柠檬酸与硅酸钠混合液,并搅拌3min,柠檬酸加入量为18g/t 矿浆,硅酸钠加入量为18g/t 矿浆,再加入抑制剂淀粉并搅拌2min,淀粉加入量为80g/t 矿浆,最后加入捕收剂KS-Ⅲ搅拌2min,捕收剂加入量为120g/t 矿浆,然后进行3min的反浮选扫选,得到反浮选扫选精矿和反浮选扫选尾矿,反浮选扫选精矿返回至反浮选粗选矿浆,再次进行反浮选粗选,反浮选扫选尾矿。
本实施例中,预选精矿分选获得的焙烧磁选精矿的化学成分,按重量百分比含TFe69.1%,铁回收率为28.5%;预选尾矿分选获得的反浮选精选精矿的化学成分,按重量百分比含TFe 67.9%,铁回收率为62.3%。由此,焙烧磁选精矿和反浮选精选精矿构成的综合铁精矿的铁回收率为90.8%。
对比例1
本对比例的铁矿石原料及选矿方法与实施例1相同,区别仅在于,未对铁矿石进行X射线透射预选。即,对破碎后的铁矿石按照实施例1的预选尾矿的分选方法进行选矿处理。
本对比例中,获得的反浮选精选精矿的化学成分,按重量百分比含TFe 63.25%,铁回收率为73.14%。
对比实施例1-3中铁矿石原料和预选尾矿中的碳酸亚铁含量,以及实施例1-3及对比例 反浮选精选精矿的全铁品位及铁回收率可知,本发明实施例的选矿方法通过X射线透射预选预先分离出铁矿石中的菱铁矿,降低入浮给矿中碳酸亚铁含量,防止菱铁矿附着于赤/磁铁矿颗粒表面,阻隔浮选药剂与赤/磁铁矿颗粒的接触,从而提升浮选效果。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

  1. 一种高碳酸盐难选铁矿石的选矿方法,其特征在于,包括如下步骤:
    a、将所述铁矿石进行X射线透射预选得到富含菱铁矿的预选精矿和预选尾矿;
    b、将所述富含菱铁矿的预选精矿进行磁化焙烧,将磁化焙烧产物经磨矿后进行弱磁选得到焙烧磁选精矿和焙烧磁选尾矿;
    c、将所述预选尾矿经磨矿后进行强磁选得到强磁选精矿和强磁选尾矿,将所述强磁选精矿进行反浮选得到反浮选精矿和反浮选尾矿。
  2. 根据权利要求1所述的选矿方法,其特征在于,所述铁矿石包含菱铁矿,以及赤铁矿和/或磁铁矿,所述菱铁矿含量为3-15wt%。
  3. 根据权利要求1或2所述的选矿方法,其特征在于,所述步骤a中,所述X射线透射预选采用X射线透射预选机,设置X射线的能量为50-400keV,控制所述预选尾矿中菱铁矿含量<3wt%。
  4. 根据权利要求1-3中任一项所述的选矿方法,其特征在于,所述步骤b中,所述预选精矿的磁化焙烧为还原磁化焙烧,焙烧温度500-650℃,焙烧时间10-30min,还原剂用量10-45m 3/t 预选精矿;和/或,
    所述磁化焙烧产物的磨矿粒度为-200目85-95%;和/或,
    所述弱磁选的磁场强度0.15-0.3T。
  5. 根据权利要求1-4中任一项所述的选矿方法,其特征在于,所述步骤c中,所述预选尾矿的磨矿粒度为-200目80-85%;和/或,
    所述强磁选的磁场强度0.8-1T。
  6. 根据权利要求1-5中任一项所述的选矿方法,其特征在于,所述步骤c中,所述预选尾矿的反浮选包括粗选、精选、扫选,所述强磁选精矿进行所述粗选得到粗选精矿和粗选尾矿;所述粗选精矿进行所述精选得到精选精矿和精选尾矿,所述精选精矿为所述反浮选精矿,所述精矿尾矿返回所述粗选;所述粗选尾矿进行扫选得到扫选精矿和扫选尾矿,所述扫选尾矿为所述反浮选尾矿,所述扫选精矿返回所述粗选。
  7. 根据权利要求6所述的选矿方法,其特征在于,所述步骤c中,所述扫选包括一次扫选和二次扫选,所述粗选尾矿进行一次扫选得到一次扫选精矿和一次扫选尾矿,所述一次扫选精矿返回所述粗选;所述一次扫选尾矿进行所述二次扫选得到二次扫选精矿和二次扫选尾矿,所述二次扫选尾矿为所述反浮选尾矿,所述二次扫选精矿返回所述一次扫选。
  8. 根据权利要求1-7中任一项所述的选矿方法,其特征在于,所述步骤c中,所述反浮选为分散强化反浮选,使用的分散剂包括柠檬酸和硅酸钠。
PCT/CN2022/072321 2021-09-09 2022-01-17 一种高碳酸盐难选铁矿石的选矿方法 WO2023035537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111055792.9 2021-09-09
CN202111055792.9A CN113877851B (zh) 2021-09-09 2021-09-09 一种高碳酸盐难选铁矿石的选矿方法

Publications (1)

Publication Number Publication Date
WO2023035537A1 true WO2023035537A1 (zh) 2023-03-16

Family

ID=79008890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072321 WO2023035537A1 (zh) 2021-09-09 2022-01-17 一种高碳酸盐难选铁矿石的选矿方法

Country Status (2)

Country Link
CN (1) CN113877851B (zh)
WO (1) WO2023035537A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877851B (zh) * 2021-09-09 2024-01-26 鞍钢集团北京研究院有限公司 一种高碳酸盐难选铁矿石的选矿方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316853A (zh) * 2013-06-06 2013-09-25 东北大学 一种采用x-射线辐射分选预富集贫赤铁矿的方法
US20150048009A1 (en) * 2013-08-19 2015-02-19 Vhip Llc System and Method For Iron Ore Reclaiming From Tailings Of Iron Ore Mining Operations
CN105268542A (zh) * 2015-11-25 2016-01-27 东北大学 微细粒嵌布含碳酸盐赤铁矿石分步分散协同浮选分离方法
CN105772216A (zh) * 2016-03-28 2016-07-20 东北大学 一种用复杂难选铁矿石生产铁精矿的新方法
CN107119185A (zh) * 2017-04-27 2017-09-01 甘肃酒钢集团宏兴钢铁股份有限公司 一种复杂难选混合型铁矿石的磁化焙烧方法
CN112642575A (zh) * 2020-12-30 2021-04-13 东北大学 一种含碳酸盐贫磁赤混合铁矿石磁浮联合分选方法
CN113877851A (zh) * 2021-09-09 2022-01-04 鞍钢集团北京研究院有限公司 一种高碳酸盐难选铁矿石的选矿方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728453B (zh) * 2012-06-17 2013-08-07 鞍钢集团矿业设计研究院 含碳酸铁贫赤磁铁矿石选别新工艺
RU2601884C1 (ru) * 2015-10-28 2016-11-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ обогащения и переработки железных руд
CN109985723A (zh) * 2019-03-20 2019-07-09 中钢集团马鞍山矿山研究院有限公司 一种微细粒磁-赤混合铁矿石的选矿方法
CN110714117A (zh) * 2019-10-18 2020-01-21 甘肃酒钢集团宏兴钢铁股份有限公司 一种难选铁矿石智能预选抛废-竖炉磁化焙烧方法
CN112317134A (zh) * 2020-09-27 2021-02-05 鞍钢集团矿业有限公司 一种处理含碳酸盐铁矿石的复配分散剂及选矿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316853A (zh) * 2013-06-06 2013-09-25 东北大学 一种采用x-射线辐射分选预富集贫赤铁矿的方法
US20150048009A1 (en) * 2013-08-19 2015-02-19 Vhip Llc System and Method For Iron Ore Reclaiming From Tailings Of Iron Ore Mining Operations
CN105268542A (zh) * 2015-11-25 2016-01-27 东北大学 微细粒嵌布含碳酸盐赤铁矿石分步分散协同浮选分离方法
CN105772216A (zh) * 2016-03-28 2016-07-20 东北大学 一种用复杂难选铁矿石生产铁精矿的新方法
CN107119185A (zh) * 2017-04-27 2017-09-01 甘肃酒钢集团宏兴钢铁股份有限公司 一种复杂难选混合型铁矿石的磁化焙烧方法
CN112642575A (zh) * 2020-12-30 2021-04-13 东北大学 一种含碳酸盐贫磁赤混合铁矿石磁浮联合分选方法
CN113877851A (zh) * 2021-09-09 2022-01-04 鞍钢集团北京研究院有限公司 一种高碳酸盐难选铁矿石的选矿方法

Also Published As

Publication number Publication date
CN113877851A (zh) 2022-01-04
CN113877851B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN101862703B (zh) 一种鲕状贫赤铁矿生产铁精矿的选冶联合方法
CN106000639B (zh) 一种含高品位冰铜的铜冶炼转炉渣处理工艺
CN102357406B (zh) 泥质氧化铅锌矿的选矿方法
CN112642575B (zh) 一种含碳酸盐贫磁赤混合铁矿石磁浮联合分选方法
CN103272698B (zh) 包头矿磁铁矿浮选尾矿中回收铁和稀土的选矿工艺
CN102716801B (zh) 一种高磷鲕状赤铁矿的选矿方法
CN104888947A (zh) 微细粒嵌布磁-赤混合矿的磁选-离心机分选工艺
CN111686925B (zh) 一种低品位稀土矿中回收稀土、萤石和重晶石的选矿工艺
CN109304256A (zh) 一种炼铜尾渣的综合利用方法
CN108993764A (zh) 一种贫磁铁矿提质降杂的工艺方法
CN108855583A (zh) 一种钒钛磁铁矿选矿预富集的方法
CN107649278B (zh) 一种低品位含钛磁铁矿的分选方法
CN108580023A (zh) 一种伴生稀土矿物的铁尾矿多组分回收选矿方法
WO2023035537A1 (zh) 一种高碳酸盐难选铁矿石的选矿方法
WO2019218295A1 (zh) 高硅高钙高铁低品级水镁石的高效提纯方法
CN105268542A (zh) 微细粒嵌布含碳酸盐赤铁矿石分步分散协同浮选分离方法
CN107790283A (zh) 一种闪石型原生铁矿选别工艺
CN117505046A (zh) 一种复杂难选硫铁矿综合利用工艺及系统
CN109675905A (zh) 一种钢渣资源化处理系统及处理方法
CN102233300A (zh) 一种高磷赤铁矿的选矿方法
CN104138793B (zh) 一种含硫铁滑石矿的重选除杂方法
CN109437619B (zh) 一种冶炼铜渣作为水泥铁质校正剂的用途及水泥
CN113798052A (zh) 一种微细粒铁矿物强磁选桥联团聚剂的使用方法
CN105289836A (zh) 一种高铁铝矿综合利用的选矿方法
CN112317134A (zh) 一种处理含碳酸盐铁矿石的复配分散剂及选矿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE