WO2023035414A1 - 基于雷达的电视曲率调整方法、装置、电视及存储介质 - Google Patents

基于雷达的电视曲率调整方法、装置、电视及存储介质 Download PDF

Info

Publication number
WO2023035414A1
WO2023035414A1 PCT/CN2021/132138 CN2021132138W WO2023035414A1 WO 2023035414 A1 WO2023035414 A1 WO 2023035414A1 CN 2021132138 W CN2021132138 W CN 2021132138W WO 2023035414 A1 WO2023035414 A1 WO 2023035414A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
curvature
point cloud
direction information
screen
Prior art date
Application number
PCT/CN2021/132138
Other languages
English (en)
French (fr)
Inventor
黄浩
徐遥令
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Publication of WO2023035414A1 publication Critical patent/WO2023035414A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED

Definitions

  • the present application relates to the field of television technology, in particular to a radar-based television curvature adjustment method, device, television and storage medium.
  • Curved TVs can be divided into curved TVs and flat-screen TVs.
  • Curved TVs refer to TVs with a certain curvature of the screen and a certain curved surface shape.
  • the curvature of a general curved TV is basically the same as the curvature of the human eyeball.
  • Curved TVs have the characteristics of wide viewing angles. Compared with flat-screen TVs of the same size, curved TV screens have a wider field of view, and the screens of curved TVs are more suitable for human vision, and the slightly curved edges are closer to the user's vision. Basically the same viewing angle in the central position. Also, because the viewing angle of the curved surface is wider, it is in line with the physiological structure of the human eye, so it can relieve visual and eye fatigue. In addition, the curved TV can bring an immersive experience, and the slightly curved screen can provide a better surround look and feel, and provide users with a deeper viewing experience.
  • Curved TVs are divided into two types: fixed curvature and adjustable curvature. Curved TVs with fixed curvature cannot adjust the curvature, and cannot bring a good viewing experience when the viewing distance changes; another curved TV with adjustable curvature generally uses a remote control to adjust the curvature, resulting in different The viewing distance and scene need to be readjusted twice, which is very inconvenient.
  • the main purpose of this application is to provide a radar-based TV curvature adjustment method, device, TV and storage medium, aiming to solve the technical problem of how to improve the viewing effect of TV in the prior art.
  • the present application provides a radar-based TV curvature adjustment method, the method includes the following steps:
  • the step of obtaining the global point cloud array includes:
  • a global point cloud array is generated from each point cloud array group.
  • the step of determining the distance and direction information of the viewing target according to the global point cloud array includes:
  • the step of determining the distance and direction information of the viewing target according to the three-dimensional image includes:
  • the step of determining the corresponding curvature value and orientation value according to the distance and direction information includes:
  • a corresponding curvature value is determined according to the distance.
  • the step of adjusting the azimuth angle of the TV screen according to the azimuth value it further includes:
  • the duration of the viewing object is acquired
  • the present application also proposes a radar-based television curvature adjustment device, the radar-based television curvature adjustment device comprising:
  • the point cloud acquisition module is used to obtain the global point cloud array
  • An information determination module configured to determine the distance and direction information of the viewing target according to the global point cloud array
  • a determining module configured to determine a corresponding curvature value and an orientation value according to the distance and direction information
  • a curvature adjustment module configured to adjust the curvature of the TV screen according to the curvature value
  • the azimuth adjustment module is used to adjust the azimuth angle of the TV screen according to the azimuth value.
  • the present application also proposes a TV, which includes: a memory, a processor, and a radar-based TV curvature adjustment program stored in the memory and operable on the processor, so that The radar-based television curvature adjustment program is configured to implement the steps of the radar-based television curvature adjustment method described above.
  • the present application also proposes a storage medium, on which a radar-based TV curvature adjustment program is stored, and when the radar-based TV curvature adjustment program is executed by a processor, the above-mentioned The steps of the radar-based TV curvature adjustment method.
  • the present application obtains the global point cloud array; determines the distance and direction information of the viewing target according to the global point cloud array; determines the corresponding curvature value and orientation value according to the distance and direction information; adjusts the curvature of the TV screen according to the curvature value; Adjusting the azimuth angle of the TV screen according to the azimuth value.
  • the radar on the TV acquires the global point cloud array in front of the TV to determine the distance and angle between the viewer and the TV, adjust the TV screen to the curvature corresponding to the distance, and rotate the TV screen according to the angle, so that Make the TV achieve the best viewing effect, thereby improving the user experience.
  • FIG. 1 is a schematic structural diagram of a TV in a hardware operating environment involved in the solution of the embodiment of the present application;
  • FIG. 2 is a schematic flow chart of the first embodiment of the radar-based TV curvature adjustment method of the present application
  • Fig. 3 is the schematic diagram of the radar ranging principle diagram of an embodiment of the radar-based television curvature adjustment method of the present application
  • FIG. 4 is a schematic flow chart of the second embodiment of the radar-based TV curvature adjustment method of the present application.
  • FIG. 5 is a schematic flow chart of the third embodiment of the radar-based TV curvature adjustment method of the present application.
  • FIG. 6 is a structural block diagram of the first embodiment of the radar-based television curvature adjustment device of the present application.
  • FIG. 1 is a schematic diagram of a television structure of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the television may include: a processor 1001 , such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002 , a user interface 1003 , a network interface 1004 , and a memory 1005 .
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a Wireless-Fidelity (Wi-Fi) interface).
  • Wi-Fi Wireless-Fidelity
  • the memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory, or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • FIG. 1 is not limited to the TV, and may include more or less components than shown in the figure, or combine certain components, or arrange different components.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module, and a radar-based television curvature adjustment program.
  • the network interface 1004 is mainly used for data communication with the network server; the user interface 1003 is mainly used for data interaction with the user; the processor 1001 and the memory 1005 in the TV of this application can be set in the TV
  • the TV uses the processor 1001 to call the radar-based TV curvature adjustment program stored in the memory 1005, and executes the radar-based TV curvature adjustment method provided by the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a first embodiment of the radar-based television curvature adjustment method of the present application.
  • the radar-based TV curvature adjustment method includes the following steps:
  • Step S10 Obtain the global point cloud array.
  • the implementation subject of this embodiment is a TV
  • the screen used by the TV is a flexible screen, such as a flexible OLED.
  • the TV is equipped with a multi-beam lidar sensor, which includes a laser transmitter and a receiver.
  • the laser transmitter and receiver are arranged vertically to form a plane, which is located in the center of the bottom of the TV.
  • the lidar sensor has the following advantages compared with the image sensor to identify the viewing target.
  • the lidar sensor has the following advantages: good anti-light performance, can accurately measure the distance and angle of the viewing target in the dark night without light or in a strong light environment, stable performance and reliability; while the image sensor is susceptible to the influence of external light, and the image quality is unstable, resulting in inaccurate measurement; the image sensor presents a 2D image, and positioning from 2D to 3D requires multiple cameras to measure and view the target azimuth and distance data , the algorithm is complex and position measurement is difficult, and the laser radar sensor only needs one sensor to accurately obtain the three-dimensional information of the target, and accurately measure the target azimuth distance; the laser radar sensor has a wide measurement range and high precision, and can be based on the 360° up, down, left, and right sides of the TV Radar beams are emitted with an accuracy of up to 1CM, so lidar is superior to image sensors in judging the state of moving targets.
  • step S10 includes: determining the global field of view; obtaining each point cloud array group according to the global field of view; generating a global point cloud according to each point cloud array group array.
  • the global point cloud array refers to the point cloud array within the viewing angle range of 180° in front of the TV. Therefore, the global field of view refers to the 180° in front of the TV.
  • the multi-beam lidar sensor module of the TV can have 10 sets of built-in laser transmitters and receivers, which are arranged vertically based on a vertical field of view of 40° and a vertical resolution of 10°.
  • the pulse drive circuit simultaneously drives 10 groups of laser transmitters to emit 10 vertically arranged laser pulse groups with a very short duration but very high instantaneous power.
  • Step S20 Determine the distance and direction information of the viewing target according to the global point cloud array.
  • the global point cloud array includes the point cloud of the viewing target data.
  • the reflected light reflected to the laser receiver is converted into photocurrent by the photoelectric device and sent to the echo signal processing circuit.
  • the echo signal processing circuit converts the photocurrent into a voltage signal. After one or several stages of amplification and conditioning, an electrical pulse corresponding to the echo signal is obtained.
  • the electrical pulse corresponding to the echo signal is measured by the multi-beam laser radar sensor from the transmitter The time taken for the whole journey to return is "tr".
  • R c ⁇ tr/2 (where R represents the one-way distance from the target to the TV radar, in m; tr represents the time interval between the laser pulse to and fro viewing the target and the radar, in s; c is the speed of light) Get the distance information of a reflection point.
  • Step S30 Determine the corresponding curvature value and orientation value according to the distance and direction information.
  • the TV is also provided with a curvature adjustment module, which can change the curvature of the TV screen, and the TV is also provided with a rotatable base, which can adjust the direction of the TV screen.
  • the curvature of the TV screen is obtained by forming the curve into a complete arc and measuring its radius.
  • the "R" value indicates the radius of the curvature, for example: a curved TV with 4200R curvature
  • a circle with a radius of 4200MM can be formed. If calculated based on the average viewing distance of 3.5-4 meters, the viewer's eyes are just in the center of the circle at this time, so that the distance from the human eye to all points on the screen is equal, and the best viewing experience is obtained. Therefore, after the distance of the viewing target is determined according to the distance and direction information, how to adjust the curvature of the TV screen can be determined according to the distance. For example, when the viewing target is 4.5 meters away from the TV screen, it is necessary to adjust the curvature of the TV screen to 4500R, that is, the curvature value is 4500R.
  • 4500R the curvature value is 4500R.
  • step S30 includes: determining the distance between the viewing target and the TV screen according to the distance and direction information; and determining a corresponding curvature value according to the distance.
  • the curvature mode of the TV can be set according to the distance of the viewing target.
  • the relationship between the distance and the curvature value is shown in Table 1 below:
  • the curvature value of the TV is set to 1800R, and so on.
  • Step S40 Adjust the curvature of the TV screen according to the curvature value.
  • the curvature adjustment module includes a telescopic structure, and when the curvature adjustment module receives the curvature value, it controls the change of the telescopic structure according to the curvature value, thereby adjusting the TV screen to a corresponding curvature.
  • Step S50 Adjust the azimuth angle of the TV screen according to the azimuth value.
  • the rotatable base is connected with the TV screen to control the orientation angle of the TV screen. After determining the azimuth value of the viewing target according to the distance and direction information, the azimuth value corresponds to a unique azimuth angle, thereby determining the azimuth angle of the viewing target , at this time, the rotation of the base drives the TV screen to rotate to the corresponding azimuth angle.
  • the TV is usually placed close to the TV wall, and the distance between the TV and the TV wall will limit the rotation of the TV, and if the TV hits the wall when rotating, it may damage the TV. Therefore, There are distance sensors on both sides of the rear of the TV screen, which are used to detect the distance between the rear of the TV and obstacles or walls. When the distance is less than the distance threshold, an instruction to stop rotating is sent to the rotatable base, so as to prevent the TV from bumping into obstacles and causing damage. damage.
  • step S50 in order to better improve the user experience, after step S50, it also includes: when detecting that the viewing target moves, acquiring the dwell time of the viewing target; , acquiring the current distance and direction information of the viewing target; adjusting the curvature and azimuth angle of the TV screen according to the current distance and direction information.
  • the viewing target will move due to its own reasons, so it is necessary to continuously monitor the position of the viewing target, but if the viewing target only moves briefly and then returns to its original position, the continuous rotation of the TV screen will affect the user experience, so , it is necessary to continuously detect the staying time of the viewing target at the same position.
  • the preset time is 30 seconds
  • the staying time exceeds 30 seconds
  • the current distance and direction information of the viewing target is determined through the global point cloud array, and according to the distance direction
  • the information adjusts the curvature and azimuth of the TV screen.
  • the monitoring of the viewing target position can be judged by the infrared camera.
  • This embodiment obtains the global point cloud array; determines the distance and direction information of the viewing target according to the global point cloud array; determines the corresponding curvature value and orientation value according to the distance and direction information; adjusts the curvature of the TV screen according to the curvature value ; Adjusting the azimuth angle of the TV screen according to the azimuth value.
  • the radar on the TV acquires the global point cloud array in front of the TV to determine the distance and angle between the viewer and the TV, adjust the TV screen to the curvature corresponding to the distance, and rotate the TV screen according to the angle, so that Make the TV achieve the best viewing effect, thereby improving the user experience.
  • FIG. 4 is a schematic flow chart of a second embodiment of a radar-based TV curvature adjustment method of the present application.
  • the radar-based television curvature adjustment method in this embodiment includes in step S20:
  • Step S21 Generate a three-dimensional environment image according to the global point cloud array.
  • the global point cloud array contains the 3D coordinate data of each point, so a 3D environment image can be established based on the 3D coordinate data.
  • the 3D environment image includes not only the 3D image of the viewing target, but also the 3D image of the surrounding environment. Such as sofa, coffee table and so on.
  • Step S22 Determine the 3D image of the viewing target according to the 3D environment image.
  • machine learning can be used to identify the 3D image of the viewing target in the 3D environment image.
  • the 3D image trains the machine learning algorithm, and the trained machine learning algorithm can recognize the 3D image of the viewing target in the 3D environment image.
  • Step S23 Determine the distance and direction information of the viewing target according to the three-dimensional image.
  • step S23 includes: identifying the 3D face image of the viewing target according to the 3D image; determining the 3D face image of the viewing target according to the 3D face image A human eye image; determining the eye distance and eye orientation of the viewing target according to the three-dimensional human eye image; generating distance and direction information according to the eye distance and the eye orientation.
  • the 3D face image includes images of facial features, so it is necessary to identify the 3D human eye image from the 3D face image, and determine the point cloud data corresponding to the 3D human eye image.
  • the point cloud data includes the human eye and facial features.
  • the distance and azimuth of the TV screen (that is, the distance of the eyes) and the azimuth (that is, the azimuth of the eyes) are used to generate distance and azimuth information based on these information, and the TV adjusts the curvature and azimuth angle according to the distance and azimuth information.
  • a 3D environment image is generated according to the global point cloud array; a 3D image of the viewing target is determined according to the 3D environment image; and distance and direction information of the viewing target is determined according to the 3D image.
  • FIG. 5 is a schematic flowchart of a third embodiment of a radar-based television curvature adjustment method of the present application.
  • the radar-based TV curvature adjustment method of this embodiment after the step S30, further includes:
  • Step S31 Determine the number of people watching the target according to the global point cloud array.
  • the number of viewing target point cloud datasets can be determined through the global point cloud array, thereby determining the number of people viewing the target.
  • Step S32 When the number of people exceeds the preset number of people, a straight-screen prompt message is displayed for the user to make a choice.
  • the preset number of people can be 1, and when the number of people watching the target exceeds 1, a prompt message will be displayed on the TV whether to display directly on the screen, and the user can choose through the remote control.
  • Step S33 When receiving the straight screen selection instruction, adjust the TV screen to a straight screen.
  • the remote controller when the user selects a straight screen, the remote controller sends a straight screen selection command, and the TV adjusts the screen to a straight screen, that is, the curvature is 0. At the same time, turn the TV screen to face the front.
  • the number of people viewing the target is determined according to the global point cloud array; when the number of people exceeds the preset number of people, a straight screen prompt message is displayed for the user to choose; when a straight screen selection instruction is received to adjust the TV screen to a straight screen.
  • the embodiment of the present application also proposes a storage medium on which a radar-based television curvature adjustment program is stored.
  • the radar-based television curvature adjustment program is executed by a processor, the radar-based The steps of the television curvature adjustment method.
  • the storage medium adopts all the technical solutions of all the above-mentioned embodiments, it at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • FIG. 6 is a structural block diagram of a first embodiment of a radar-based television curvature adjustment device according to the present application.
  • the radar-based television curvature adjustment device proposed in the embodiment of the present application includes: a point cloud acquisition module 10 , configured to acquire a global point cloud array.
  • the information determination module 20 is configured to determine distance and direction information of the viewing target according to the global point cloud array.
  • the determination module 30 is configured to determine the corresponding curvature value and orientation value according to the distance and direction information.
  • the curvature adjustment module 40 is configured to adjust the curvature of the TV screen according to the curvature value.
  • the azimuth adjustment module 50 is configured to adjust the azimuth angle of the TV screen according to the azimuth value.
  • This embodiment obtains the global point cloud array; determines the distance and direction information of the viewing target according to the global point cloud array; determines the corresponding curvature value and orientation value according to the distance and direction information; adjusts the curvature of the TV screen according to the curvature value ; Adjusting the azimuth angle of the TV screen according to the azimuth value.
  • the radar on the TV acquires the global point cloud array in front of the TV to determine the distance and angle between the viewer and the TV, adjust the TV screen to the curvature corresponding to the distance, and rotate the TV screen according to the angle, so that Make the TV achieve the best viewing effect, thereby improving the user experience.
  • the point cloud acquisition module 10 is further configured to determine a global field of view; obtain each point cloud array group according to the global field of view; and generate a global point cloud array according to each point cloud array group.
  • the information determination module 20 is further configured to generate a 3D environment image according to the global point cloud array; determine a 3D image of the viewing target according to the 3D environment image; Describe the distance and direction information of the viewing target.
  • the information determining module 20 is further configured to identify a 3D face image of the viewing target according to the 3D image; determine a 3D human eye image of the viewing target according to the 3D face image; Determining the eye distance and eye orientation of the viewing target according to the three-dimensional human eye image; generating distance and direction information according to the eye distance and the eye orientation.
  • the determination module 30 is further configured to determine the distance between the viewing target and the TV screen according to the distance and direction information; and determine the corresponding curvature value according to the distance.
  • the information determination module 20 is further configured to determine the number of people watching the target according to the global point cloud array; when the number of people exceeds a preset number, display a straight-screen prompt message for the user Make a selection; when receiving a straight screen selection instruction, adjust the TV screen to a straight screen.
  • the orientation adjustment module 50 is further configured to obtain the dwell time of the viewing target when it is detected that the viewing target moves; The current distance and direction information of the target; adjusting the curvature and azimuth angle of the TV screen according to the current distance and direction information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请属于电视技术领域,公开了一种基于雷达的电视曲率调整。该方法包括:获取全局点云阵列;根据所述全局点云阵列确定观看目标的距离方向信息;根据所述距离方向信息确定对应的曲率值以及方位值;根据所述曲率值调整电视屏幕的曲率;根据所述方位值调整所述电视屏幕的方位角度。通过上述方式,电视上的雷达获取电视机前方的全局点云阵列,从而确定观看者与电视之间的距离以及角度,将电视的屏幕调整为距离对应的曲率,并根据角度转动电视屏幕,从而使电视达到最佳的观看效果,从而提升了用户体验。

Description

基于雷达的电视曲率调整方法、装置、电视及存储介质
本申请要求于2021年9月13日提交中国专利局、申请号为202111077007.X、申请名称为“基于雷达的电视曲率调整方法、装置、电视及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及电视技术领域,尤其涉及一种基于雷达的电视曲率调整方法、装置、电视及存储介质。
背景技术
电视可分为曲面电视和平面电视,曲面电视是指屏幕有一定的曲率,具有一定曲面形态的电视。一般的曲面电视的曲率与人眼球弧度基本一致。
曲面电视具有视角广泛的特点,与相同尺寸的平面电视相比,曲面电视的屏幕视野会更广,并且曲面电视的屏幕更贴合人眼视觉,微微弯曲的边缘更贴近用户视觉,实现与屏幕中央位置基本相同的观看视角。也因曲面观看角度更广,符合人眼生理构造,因此更能减缓视觉、眼睛的疲劳感。另外曲面电视可以带沉浸式体验,略微弯曲的屏幕能够提供更好的环绕式观感,为用户提供更具深度的观赏感受。
曲面电视分为固定曲率和可调曲率两种方式。固定曲率的曲面电视,无法调节曲率,当观看距离有所变化时不能带来好的观影体验;另外一种可调曲率的曲面电视,调整曲率一般采用遥控器的方式进行调节,导致不同的观影距离、场景都需要二次重新调节,非常不便利。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请的主要目的在于提供一种基于雷达的电视曲率调整方法、装置、电视及存储介质,旨在解决现有技术如何提升电视的观看效果的技术问题。
技术解决方案
为实现上述目的,本申请提供了一种基于雷达的电视曲率调整方法,所述方法包括以下步骤:
获取全局点云阵列;
根据所述全局点云阵列确定观看目标的距离方向信息;
根据所述距离方向信息确定对应的曲率值以及方位值;
根据所述曲率值调整电视屏幕的曲率;
根据所述方位值调整所述电视屏幕的方位角度。
在一实施例中,所述获取全局点云阵列的步骤,包括:
确定全局视场角;
根据所述全局视场角获取各点云阵列组;
根据各点云阵列组生成全局点云阵列。
在一实施例中,所述根据所述全局点云阵列确定观看目标的距离方向信息的步骤,包括:
根据所述全局点云阵列生成三维环境图像;
根据所述三维环境图像确定所述观看目标的三维图像;
根据所述三维图像确定所述观看目标的距离方向信息。
在一实施例中,所述根据所述三维图像确定所述观看目标的距离方向信息的步骤,包括:
根据所述三维图像识别所述观看目标的三维人脸图像;
根据所述三维人脸图像确定所述观看目标的三维人眼图像;
根据所述三维人眼图像确定所述观看目标的眼睛距离以及眼睛方位;
根据所述眼睛距离以及所述眼睛方位生成距离方向信息。
在一实施例中,所述根据所述距离方向信息确定对应的曲率值以及方位值的步骤,包括:
根据所述距离方向信息确定所述观看目标与所述电视屏幕的距离;
根据所述距离确定对应的曲率值。
在一实施例中,所述根据所述方位值调整所述电视屏幕的方位角度的步骤之后,还包括:
当检测到所述观看目标移动时,获取所述观看目标的停留时长;
当所述停留时长超过预设时长时,获取所述观看目标的当前距离方向信息;
根据所述当前距离方向信息调整所述电视屏幕的曲率以及方位角度。
此外,为实现上述目的,本申请还提出一种基于雷达的电视曲率调整装置,所述基于雷达的电视曲率调整装置包括:
点云获取模块,用于获取全局点云阵列;
信息确定模块,用于根据所述全局点云阵列确定观看目标的距离方向信息;
确定模块,用于根据所述距离方向信息确定对应的曲率值以及方位值;
曲率调整模块,用于根据所述曲率值调整电视屏幕的曲率;
方位调整模块,用于根据所述方位值调整所述电视屏幕的方位角度。
此外,为实现上述目的,本申请还提出一种电视,所述电视包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的基于雷达的电视曲率调整程序,所述基于雷达的电视曲率调整程序配置为实现如上文所述的基于雷达的电视曲率调整方法的步骤。
此外,为实现上述目的,本申请还提出一种存储介质,所述存储介质上存储有基于雷达的电视曲率调整程序,所述基于雷达的电视曲率调整程序被处理器执行时实现如上文所述的基于雷达的电视曲率调整方法的步骤。
有益效果
本申请通过获取全局点云阵列;根据所述全局点云阵列确定观看目标的距离方向信息;根据所述距离方向信息确定对应的曲率值以及方位值;根据所述曲率值调整电视屏幕的曲率;根据所述方位值调整所述电视屏幕的方位角度。通过上述方式,电视上的雷达获取电视机前方的全局点云阵列,从而确定观看者与电视之间的距离以及角度,将电视的屏幕调整为距离对应的曲率,并根据角度转动电视屏幕,从而使电视达到最佳的观看效果,从而提升了用户体验。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的电视的结构示意图;
图2为本申请基于雷达的电视曲率调整方法第一实施例的流程示意图;
图3为本申请基于雷达的电视曲率调整方法一实施例的雷达测距原理图;
图4为本申请基于雷达的电视曲率调整方法第二实施例的流程示意图;
图5为本申请基于雷达的电视曲率调整方法第三实施例的流程示意图;
图6为本申请基于雷达的电视曲率调整装置第一实施例的结构框图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的电视结构示意图。
如图1所示,该电视可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(Wireless-Fidelity,Wi-Fi)接口)。存储器1005可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对电视的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及基于雷达的电视曲率调整程序。
在图1所示的电视中,网络接口1004主要用于与网络服务器进行数据通信;用户接口1003主要用于与用户进行数据交互;本申请电视中的处理器1001、存储器1005可以设置在电视中,所述电视通过处理器1001调用存储器1005中存储的基于雷达的电视曲率调整程序,并执行本申请实施例提供的基于雷达的电视曲率调整方法。
本申请实施例提供了一种基于雷达的电视曲率调整方法,参照图2,图2为本申请一种基于雷达的电视曲率调整方法第一实施例的流程示意图。
本实施例中,所述基于雷达的电视曲率调整方法包括以下步骤:
步骤S10:获取全局点云阵列。
需要说明的是,本实施例的执行主体为电视,电视所采用的屏幕为柔性屏,例如柔性OLED。电视上设置有多线束激光雷达传感器,多线束激光雷达传感器中包括激光发射器和接收器,激光发射器和接收器竖向排列形成一个面,位于电视底部正中央位置。
可以理解的是,激光雷达传感器对比图像传感器识别观看目标,激光雷达传感器有以下几个优点:抗光表现好,在黑夜无灯光或者强光环境下,能精准测量观看目标的距离与角度,稳定性与可靠性搞;而图像传感器容受外界光线的影响,成像质量不稳定导致测量不精准;图像传感器呈现的是2D图像,从2D到3D进行定位,测量观看目标方位距离数据需要多个摄像头,算法复杂测位比较困难,而采用激光雷达传感器只需要一个传感器就能够准确获取目标的三维信息,精准的测量目标方位距离;激光雷达传感器测量范围广、精度高,可基于电视上下左右360°发射雷达波束,精度可达1CM,所以对运动目标状态的判断激光雷达优于图像传感器。
在一实施例中,为了更好的获得全局点云阵列,步骤S10包括:确定全局视场角;根据所述全局视场角获取各点云阵列组;根据各点云阵列组生成全局点云阵列。
可以理解的是,由于用户是坐在电视前方观看,因此全局点云阵列是指电视前方180°视角范围内的点云阵列,因此,全局视场角是指电视前方180°。
在具体实现中,电视的多线束激光雷达传感器模块可内置10组激光发射器和接收器,基于垂直视场角40°、垂直分辨率10°方式进行垂直排列。多线束激光雷达进行探测时,脉冲驱动电路同时驱动10组激光发射器发射10个持续时间极短但瞬时功率非常高的竖直排列激光脉冲组。激光发射器开始发射激光脉冲组后,多线束激光雷达传感器下方的旋转机构子模块,基于电视中心位置水平的全局视场角180°、水平分辨率0.2°、10Hz(1秒扫描10次),控制线束激光雷达传感器从0°~180°旋转方式进行发射与接收激光脉冲,即10*180/0.2=9000,1秒扫描10次,每一次扫描得到一组点云阵列组,1周期得到90000pts/s采集点数,即全局点云阵列。
步骤S20:根据所述全局点云阵列确定观看目标的距离方向信息。
需要说明的是,观看目标进入激光脉冲探测范围,激光发射器的激光脉冲照射到观看目标以后,通过目标的反射光线汇聚到激光接收器上,因此,全局点云阵列中包括观看目标的点云数据。
可以理解的是,雷达测距原理如图3所示,反射到激光接收器的反射光线,通过光电器件转化为光电流,输送给回波信号处理电路。回波信号处理电路将光电流转化为电压信号,经过一级或数级放大并调理后,得到一个回波信号对应的电脉冲,通过多线束激光雷达传感器测量回波信号对应的电脉冲从发射到返回的全程所用的时间为“tr”。根据距离公式:R=c·tr/2(其中R表示目标到电视雷达的单程距离,单位为m;tr表示激光脉冲往返观看目标与雷达之间的时间间隔,单位为s;c为光速)得出一个反射点的距离信息。
同上述方式,计算得出观看目标上其他各反射点的距离信息,再将这些距离信息与该点对应光束指向的方位角和俯仰角结合得到目标的距离-角度-角度,观看目标的点云数据。将各个反射点的距离和方位角,各自进行相加并取平均值,从而得到观看目标最终的距离以及方位角,即距离方向信息。
步骤S30:根据所述距离方向信息确定对应的曲率值以及方位值。
在具体实现中,电视上还设置有曲率调整模块,可以改变电视屏幕的曲率,电视上还设置有可转动底座,可以调整电视屏幕的方向。
可以理解的是,电视屏幕的曲率是通过将曲线形成一个完整的圆弧,测量其半径而获得,当测量曲面显示屏时,“R”值表示曲率的半径,例如:一个4200R曲率的曲面电视可以形成一个半径为4200MM的圆圈。如果以平均观影距离3.5-4米来推算,此时观看者的眼睛恰好处于这个圆形的中心区域,使得人眼到屏幕各点距离相等,获得最佳的观看体验。因此,当根据距离方向信息确定观看目标的的距离后,则可以根据距离确定电视屏幕的曲率需要如何调整。例如,当观看目标距离电视屏幕4.5米时,此时需要调整电视屏幕的曲率为4500R,即曲率值为4500R。以上仅为举例说明,本实施例不加以限制。
在一实施例中,步骤S30包括:根据所述距离方向信息确定所述观看目标与所述电视屏幕的距离;根据所述距离确定对应的曲率值。
需要说明的是,为了方便电视的曲率调节,电视的曲率模式可以根据观看目标的距离进行设置,距离与曲率值的关系如下表1所示:
表1
距离 1~2M 2~3M 3~4M 4~5M
曲率值 1800R 2500R 3000R 4200R
可以理解的是,当观看目标与电视的距离为1至2米时,则将电视曲率值为1800R,以此类推。
步骤S40:根据所述曲率值调整电视屏幕的曲率。
在具体实现中,曲率调整模块中包含伸缩结构,当曲率调整模块接收到曲率值后,根据曲率值控制伸缩结构变化,从而将电视屏幕调整至对应的曲率。
步骤S50:根据所述方位值调整所述电视屏幕的方位角度。
可以理解的是,可转动底座与电视屏幕连接,用于控制电视屏幕的方向角度,当根据距离方向信息确定观看目标的方位值后,方位值对应唯一的方位角度,从而确定观看目标的方位角度,此时底座转动带动电视屏幕转动至对应的方位角度。
需要说明的是,用于通常电视会摆放在距离电视墙较近的位置,而电视与电视墙的距离会限制电视机的转动,并且若电视转动时碰到墙壁可能会损坏电视,因此,电视屏幕后方两侧设置有距离传感器,用于检测电视后方与障碍物或墙壁的距离,当距离小于距离阈值时,则向可转动底座发送停止转动的指令,从而避免电视碰上障碍物而引起的损坏。
在一实施例中,为了更好的提升用户体验,步骤S50之后,还包括:当检测到所述观看目标移动时,获取所述观看目标的停留时长;当所述停留时长超过预设时长时,获取所述观看目标的当前距离方向信息;根据所述当前距离方向信息调整所述电视屏幕的曲率以及方位角度。
在具体实现中,观看目标会因自身原因而移动,因此需要持续监测观看目标的位置,但若观看目标仅是短暂移动又返回原位时,电视屏幕不停地转动则会影响用户体验,因此,需要持续检测观看目标在同一位置的停留时长,例如当预设时长为30秒时,当停留时长超过30秒时,则通过全局点云整列确定观看目标当前的距离方向信息,并根据距离方向信息调整电视屏幕的曲率以及方位角度。观看目标位置的监测可通过红外摄像头进行判断。
本实施例通过获取全局点云阵列;根据所述全局点云阵列确定观看目标的距离方向信息;根据所述距离方向信息确定对应的曲率值以及方位值;根据所述曲率值调整电视屏幕的曲率;根据所述方位值调整所述电视屏幕的方位角度。通过上述方式,电视上的雷达获取电视机前方的全局点云阵列,从而确定观看者与电视之间的距离以及角度,将电视的屏幕调整为距离对应的曲率,并根据角度转动电视屏幕,从而使电视达到最佳的观看效果,从而提升了用户体验。
参考图4,图4为本申请一种基于雷达的电视曲率调整方法第二实施例的流程示意图。
基于上述第一实施例,本实施例基于雷达的电视曲率调整方法在所述步骤S20,包括:
步骤S21:根据所述全局点云阵列生成三维环境图像。
可以理解的是,全局点云阵列中包含每个点的三维坐标数据,因此可以根据三维坐标数据建立三维环境图像,三维环境图像中不仅包括观看目标的三维图像,还包括周围环境的三维图像,例如沙发、茶几等。
步骤S22:根据所述三维环境图像确定所述观看目标的三维图像。
需要说明的是,由于每种物体的三维图像特征是不同的,可通过机器学习识别三维环境图像中观看目标的三维图像,因为观看目标的三维图像是人形,预先使用人体观看电视时各形态的三维图像训练机器学习算法,训练后的机器学习算法则可以识别三维环境图像中观看目标的三维图像。
步骤S23:根据所述三维图像确定所述观看目标的距离方向信息。
在一实施例中,为了让用户获得更好的观看体验,步骤S23包括:根据所述三维图像识别所述观看目标的三维人脸图像;根据所述三维人脸图像确定所述观看目标的三维人眼图像;根据所述三维人眼图像确定所述观看目标的眼睛距离以及眼睛方位;根据所述眼睛距离以及所述眼睛方位生成距离方向信息。
可以理解的是,由于观看电视屏幕的是人体的眼睛,而考虑人体的其他部位的位置方向时,可能会影响眼睛的观看体验,因此需要从观看目标的三维图像中确定三维人脸图像,即观看目标脸部的三维图像。
在具体实现中,三维人脸图像中包括面部五官的图像,因此需要从三维人脸图像中识别三维人眼图像,并确定三维人眼图像对应的点云数据,点云数据中包括人眼与电视屏幕的距离(即眼睛距离)以及方位角(即眼睛方位)等信息,从而根据这些信息生成距离方位信息,电视则根据距离方位信息调整曲率以及方位角度。
本实施例通过根据所述全局点云阵列生成三维环境图像;根据所述三维环境图像确定所述观看目标的三维图像;根据所述三维图像确定所述观看目标的距离方向信息。通过上述方式,将观看目标的三维图像从三维环境图像中分离出来,从而可以更准确的确定观看目标的位置。
参考图5,图5为本申请一种基于雷达的电视曲率调整方法第三实施例的流程示意图。
基于上述第一实施例,本实施例基于雷达的电视曲率调整方法在所述步骤S30之后,还包括:
步骤S31:根据所述全局点云阵列确定所述观看目标的人数。
需要说明的是,观看目标可能存在多个,而当多人观看电视,由于坐在不同的位置,电视以曲面进行显示则会影响用户的观看体验,因此需要根据全局点云阵列确定观看目标的人数。可以通过全局点云阵列确定观看目标点云数据集的个数,从而确定观看目标的人数。
步骤S32:当所述人数超过预设人数时,显示直屏提示信息,以供用户进行选择。
可以理解的是,预设人数可为1,当观看目标的人数超过1人时,则在电视上显示是否需要直屏显示的提示信息,用户则可以通过遥控器进行选择。
步骤S33:当接收到直屏选择指令时,将所述电视屏幕调整为直屏。
在具体实现中,当用户选择直屏后,遥控器发送直屏选择指令,电视机则将屏幕调整为直屏,即曲率为0。同时,将电视屏幕转向至正前方。
本实施例中通过根据所述全局点云阵列确定所述观看目标的人数;当所述人数超过预设人数时,显示直屏提示信息,以供用户进行选择;当接收到直屏选择指令时,将所述电视屏幕调整为直屏。通过上述方式,可以确定观看目标的人数,根据人数来调整电视屏幕的曲率,从而进一步提升了用户体验。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有基于雷达的电视曲率调整程序,所述基于雷达的电视曲率调整程序被处理器执行时实现如上文所述的基于雷达的电视曲率调整方法的步骤。
由于本存储介质采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
参照图6,图6为本申请基于雷达的电视曲率调整装置第一实施例的结构框图。
如图6所示,本申请实施例提出的基于雷达的电视曲率调整装置包括:点云获取模块10,用于获取全局点云阵列。
信息确定模块20,用于根据所述全局点云阵列确定观看目标的距离方向信息。
确定模块30,用于根据所述距离方向信息确定对应的曲率值以及方位值。
曲率调整模块40,用于根据所述曲率值调整电视屏幕的曲率。
方位调整模块50,用于根据所述方位值调整所述电视屏幕的方位角度。
应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限定,在具体应用中,本领域的技术人员可以根据需要进行设置,本申请对此不做限制。
本实施例通过获取全局点云阵列;根据所述全局点云阵列确定观看目标的距离方向信息;根据所述距离方向信息确定对应的曲率值以及方位值;根据所述曲率值调整电视屏幕的曲率;根据所述方位值调整所述电视屏幕的方位角度。通过上述方式,电视上的雷达获取电视机前方的全局点云阵列,从而确定观看者与电视之间的距离以及角度,将电视的屏幕调整为距离对应的曲率,并根据角度转动电视屏幕,从而使电视达到最佳的观看效果,从而提升了用户体验。
在一实施例中,所述点云获取模块10,还用于确定全局视场角;根据所述全局视场角获取各点云阵列组;根据各点云阵列组生成全局点云阵列。
在一实施例中,所述信息确定模块20,还用于根据所述全局点云阵列生成三维环境图像;根据所述三维环境图像确定所述观看目标的三维图像;根据所述三维图像确定所述观看目标的距离方向信息。
在一实施例中,所述信息确定模块20,还用于根据所述三维图像识别所述观看目标的三维人脸图像;根据所述三维人脸图像确定所述观看目标的三维人眼图像;根据所述三维人眼图像确定所述观看目标的眼睛距离以及眼睛方位;根据所述眼睛距离以及所述眼睛方位生成距离方向信息。
在一实施例中,所述确定模块30,还用于根据所述距离方向信息确定所述观看目标与所述电视屏幕的距离;根据所述距离确定对应的曲率值。
在一实施例中,所述信息确定模块20,还用于根据所述全局点云阵列确定所述观看目标的人数;当所述人数超过预设人数时,显示直屏提示信息,以供用户进行选择;当接收到直屏选择指令时,将所述电视屏幕调整为直屏。
在一实施例中,所述方位调整模块50,还用于当检测到所述观看目标移动时,获取所述观看目标的停留时长;当所述停留时长超过预设时长时,获取所述观看目标的当前距离方向信息;根据所述当前距离方向信息调整所述电视屏幕的曲率以及方位角度。
需要说明的是,以上所描述的工作流程仅仅是示意性的,并不对本申请的保护范围构成限定,在实际应用中,本领域的技术人员可以根据实际的需要选择其中的部分或者全部来实现本实施例方案的目的,此处不做限制。
另外,未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的基于雷达的电视曲率调整方法,此处不再赘述。
此外,需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read Only Memory,ROM)/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种基于雷达的电视曲率调整方法,其中,所述基于雷达的电视曲率调整方法包括:
    获取全局点云阵列;
    根据所述全局点云阵列确定观看目标的距离方向信息;
    根据所述距离方向信息确定对应的曲率值以及方位值;
    根据所述曲率值调整电视屏幕的曲率;
    根据所述方位值调整所述电视屏幕的方位角度。
  2. 如权利要求1所述的方法,其中,所述获取全局点云阵列的步骤,包括:
    确定全局视场角;
    根据所述全局视场角获取各点云阵列组;
    根据各点云阵列组生成全局点云阵列。
  3. 如权利要求1所述的方法,其中,所述根据所述全局点云阵列确定观看目标的距离方向信息的步骤,包括:
    根据所述全局点云阵列生成三维环境图像;
    根据所述三维环境图像确定所述观看目标的三维图像;
    根据所述三维图像确定所述观看目标的距离方向信息。
  4. 如权利要求3所述的方法,其中,所述根据所述三维图像确定所述观看目标的距离方向信息的步骤,包括:
    根据所述三维图像识别所述观看目标的三维人脸图像;
    根据所述三维人脸图像确定所述观看目标的三维人眼图像;
    根据所述三维人眼图像确定所述观看目标的眼睛距离以及眼睛方位;
    根据所述眼睛距离以及所述眼睛方位生成距离方向信息。
  5. 如权利要求1所述的方法,其中,所述根据所述距离方向信息确定对应的曲率值以及方位值的步骤,包括:
    根据所述距离方向信息确定所述观看目标与所述电视屏幕的距离;
    根据所述距离确定对应的曲率值。
  6. 如权利要求1所述的方法,其中,所述根据所述全局点云阵列确定观看目标的距离方向信息的步骤之后,还包括:
    根据所述全局点云阵列确定所述观看目标的人数;
    当所述人数超过预设人数时,显示直屏提示信息,以供用户进行选择;
    当接收到直屏选择指令时,将所述电视屏幕调整为直屏。
  7. 如权利要求1-6任一项所述的方法,其中,所述根据所述方位值调整所述电视屏幕的方位角度的步骤之后,还包括:
    当检测到所述观看目标移动时,获取所述观看目标的停留时长;
    当所述停留时长超过预设时长时,获取所述观看目标的当前距离方向信息;
    根据所述当前距离方向信息调整所述电视屏幕的曲率以及方位角度。
  8. 如权利要求1所述的方法,其中,所述根据所述全局点云阵列确定观看目标的距离方向信息包括:将各个反射点的距离和方位角,各自进行相加并取平均值,得到包括观看目标最终的距离以及方位角的距离方向信息。
  9. 如权利要求1所述的方法,其中,全局点云阵列是指电视前方180°视角范围内的点云阵列。
  10. 如权利要求1所述的方法,其中,所述根据所述曲率值调整电视屏幕的曲率,包括:曲率调整模块中包含伸缩结构,当曲率调整模块接收到曲率值后,根据曲率值控制伸缩结构变化,将电视屏幕调整至对应的曲率。
  11. 如权利要求3所述的方法,其中,所述根据所述全局点云阵列生成三维环境图像包括:全局点云阵列中包含每个点的三维坐标数据,根据三维坐标数据建立三维环境图像。
  12. 一种基于雷达的电视曲率调整装置,其中,所述基于雷达的电视曲率调整装置包括:
    点云获取模块,用于获取全局点云阵列;
    信息确定模块,用于根据所述全局点云阵列确定观看目标的距离方向信息;
    确定模块,用于根据所述距离方向信息确定对应的曲率值以及方位值;
    曲率调整模块,用于根据所述曲率值调整电视屏幕的曲率;
    方位调整模块,用于根据所述方位值调整所述电视屏幕的方位角度。
  13. 如权利要求12所述的电视曲率调整装置,其中,所述点云获取模块,还用于确定全局视场角;根据所述全局视场角获取各点云阵列组;根据各点云阵列组生成全局点云阵列。
  14. 如权利要求12所述的电视曲率调整装置,其中,所述信息确定模块,还用于根据所述全局点云阵列生成三维环境图像;根据所述三维环境图像确定所述观看目标的三维图像;根据所述三维图像确定所述观看目标的距离方向信息。
  15. 一种存储介质,其中,所述存储介质上存储有基于雷达的电视曲率调整程序,所述基于雷达的电视曲率调整程序被处理器执行时实现如权利要求1至11任一项所述的基于雷达的电视曲率调整方法。
PCT/CN2021/132138 2021-09-13 2021-11-22 基于雷达的电视曲率调整方法、装置、电视及存储介质 WO2023035414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111077007.X 2021-09-13
CN202111077007.XA CN113794922B (zh) 2021-09-13 2021-09-13 基于雷达的电视曲率调整方法、装置、电视及存储介质

Publications (1)

Publication Number Publication Date
WO2023035414A1 true WO2023035414A1 (zh) 2023-03-16

Family

ID=79183311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132138 WO2023035414A1 (zh) 2021-09-13 2021-11-22 基于雷达的电视曲率调整方法、装置、电视及存储介质

Country Status (2)

Country Link
CN (1) CN113794922B (zh)
WO (1) WO2023035414A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794922B (zh) * 2021-09-13 2022-11-01 深圳创维-Rgb电子有限公司 基于雷达的电视曲率调整方法、装置、电视及存储介质
TWI800287B (zh) * 2022-03-03 2023-04-21 緯創資通股份有限公司 雷達偵測系統及雷達視界方向調整方法
CN115174996A (zh) * 2022-06-24 2022-10-11 安徽康佳电子有限公司 一种用于电视的视觉疲劳检测方法和视觉疲劳检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103854571A (zh) * 2014-03-26 2014-06-11 冠捷显示科技(厦门)有限公司 一种智能曲面显示设备及调节曲率的方法
US20160100158A1 (en) * 2014-10-07 2016-04-07 Top Victory Investments Ltd. Display Device with Curved Display Function
CN111651039A (zh) * 2020-05-15 2020-09-11 深圳创维-Rgb电子有限公司 根据用户姿势自动旋转电视屏幕处理方法、装置
CN112528771A (zh) * 2020-11-27 2021-03-19 深兰科技(上海)有限公司 障碍物检测方法、装置、电子设备及存储介质
CN112882024A (zh) * 2021-03-25 2021-06-01 浙江大华技术股份有限公司 雷达检测方法和装置、存储介质及电子装置
CN113012574A (zh) * 2021-02-19 2021-06-22 深圳创维-Rgb电子有限公司 屏幕曲率调整方法、装置、曲面显示器以及存储介质
CN113794922A (zh) * 2021-09-13 2021-12-14 深圳创维-Rgb电子有限公司 基于雷达的电视曲率调整方法、装置、电视及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112445397A (zh) * 2019-09-02 2021-03-05 深圳Tcl数字技术有限公司 一种屏幕调节方法、系统、智能终端及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103854571A (zh) * 2014-03-26 2014-06-11 冠捷显示科技(厦门)有限公司 一种智能曲面显示设备及调节曲率的方法
US20160100158A1 (en) * 2014-10-07 2016-04-07 Top Victory Investments Ltd. Display Device with Curved Display Function
CN111651039A (zh) * 2020-05-15 2020-09-11 深圳创维-Rgb电子有限公司 根据用户姿势自动旋转电视屏幕处理方法、装置
CN112528771A (zh) * 2020-11-27 2021-03-19 深兰科技(上海)有限公司 障碍物检测方法、装置、电子设备及存储介质
CN113012574A (zh) * 2021-02-19 2021-06-22 深圳创维-Rgb电子有限公司 屏幕曲率调整方法、装置、曲面显示器以及存储介质
CN112882024A (zh) * 2021-03-25 2021-06-01 浙江大华技术股份有限公司 雷达检测方法和装置、存储介质及电子装置
CN113794922A (zh) * 2021-09-13 2021-12-14 深圳创维-Rgb电子有限公司 基于雷达的电视曲率调整方法、装置、电视及存储介质

Also Published As

Publication number Publication date
CN113794922B (zh) 2022-11-01
CN113794922A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023035414A1 (zh) 基于雷达的电视曲率调整方法、装置、电视及存储介质
CN112804508B (zh) 投影仪校正方法、系统、存储介质以及电子设备
CN114339194B (zh) 投影显示方法、装置、投影设备及计算机可读存储介质
US11640000B2 (en) System and method of capturing and generating panoramic three-dimensional images
CN108010121B (zh) 用于处理扫描数据的方法、计算机可读介质和测量系统
US20120136254A1 (en) Ultrasound system for providing an ultrasound image optimized for posture of a user
JP2017538302A (ja) 走査型レーザ平面度検出
WO2022100265A1 (en) Camera calibration method, apparatus, and system
WO2021031781A1 (zh) 投影图像校准方法、装置及投影设备
US11620732B2 (en) Multi-projection system, image projection method and projector
CN101762953A (zh) 自动调整成像尺寸的投影装置及方法
CN205333856U (zh) 一种基于普通摄像头芯片的低成本激光测距装置
JP2017163432A (ja) 情報処理装置、情報処理方法、及び、プログラム
WO2017117749A1 (zh) 基于多种测距方式的跟焦系统、方法及拍摄系统
CN107514745A (zh) 一种智能空调立体视觉定位的方法及系统
US10228759B2 (en) Distance sensing substrate, display device, display system and resolution adjustment method
WO2022227893A1 (zh) 图像拍摄方法、装置、终端及存储介质
WO2017024765A1 (zh) 显示装置、显示系统和分辨率调整方法
CN107270867B (zh) 一种主动测距系统以及方法
CN113568595B (zh) 基于ToF相机的显示器组件的控制方法、装置、设备和介质
CN113589296A (zh) 一种人体坐姿检测装置及方法
CN112764052A (zh) 防空导弹飞行监测系统
JP7472899B2 (ja) 情報処理装置、情報処理方法及びプログラム
CN111860183A (zh) 一种具有坐姿矫正功能的台灯系统及其控制方法
US9626012B2 (en) Method for generating pointer movement value and pointing device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE