WO2023035094A1 - 数控刀柄、回转体动平衡检测校正装置及方法 - Google Patents
数控刀柄、回转体动平衡检测校正装置及方法 Download PDFInfo
- Publication number
- WO2023035094A1 WO2023035094A1 PCT/CN2021/116833 CN2021116833W WO2023035094A1 WO 2023035094 A1 WO2023035094 A1 WO 2023035094A1 CN 2021116833 W CN2021116833 W CN 2021116833W WO 2023035094 A1 WO2023035094 A1 WO 2023035094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- correction
- unbalance
- dynamic balance
- tool holder
- tool
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000003754 machining Methods 0.000 claims abstract description 23
- 230000002093 peripheral effect Effects 0.000 claims abstract description 19
- 238000005553 drilling Methods 0.000 claims description 30
- 238000006073 displacement reaction Methods 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/14—Control or regulation of the orientation of the tool with respect to the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B31/00—Chucks; Expansion mandrels; Adaptations thereof for remote control
- B23B31/02—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M1/00—Testing static or dynamic balance of machines or structures
- G01M1/14—Determining imbalance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M1/00—Testing static or dynamic balance of machines or structures
- G01M1/30—Compensating imbalance
- G01M1/34—Compensating imbalance by removing material from the body to be tested, e.g. from the tread of tyres
Definitions
- the present application relates to the technical field of dynamic balance of a rotary body, in particular, to a numerically controlled tool handle, a dynamic balance detection and correction device and method for a rotary body.
- the tool handle drives the machining tool to rotate at high speed to process the workpiece.
- the high-speed rotating machining tool rotates at high speed
- Other rotary bodies also have the problem of lateral vibration when rotating at high speed.
- the purpose of this application is to provide a numerically controlled tool holder and a rotary body dynamic balance detection and correction device and method to solve the above problems.
- a rotating body dynamic balance detection and correction device includes a detection component and a processing correction component.
- the detection component is used to detect the unbalance of the revolving body;
- the processing and correcting component is used to process and form a correction hole on the outer peripheral surface of the revolving body, so that the value of the unbalanced amount of the processed revolving body does not exceed the preset maximum unbalance value.
- the revolving body is a numerically controlled tool holder.
- the detection assembly includes a spindle imitating a CNC machine tool, which has a locking cylinder for clamping the CNC tool handle; a dynamic balance measuring instrument is installed on the spindle imitating a CNC machine tool, and the dynamic balance measuring instrument The instrument can measure the unbalance of the CNC tool holder when the spindle drives the CNC tool holder to rotate.
- the imitation CNC machine tool spindle mentioned here refers to the spindle formed by imitating the shape of the actual CNC machine tool spindle.
- the internal structure of the spindle imitating the CNC machine tool is completely symmetrical to reduce the unbalance error of the rotating part.
- the dynamic balance measuring instrument includes a ring magnetic strip and a magnetic scale.
- the rotational power of the spindle is driven by a synchronous belt, and the position accuracy of the servo encoder is poor.
- the method of recording the real-time position of the tool handle with a ring magnetic strip and a magnetic scale can improve the measured position accuracy.
- the processing correction assembly includes a processing head, a head displacement assembly and a tool setting assembly.
- the processing head is installed on the head displacement assembly, and can be moved under the drive of the head displacement assembly to make the processing head correspond to the to-be processing position.
- the tool setting assembly is configured for tool setting the processing head.
- the tool setting assembly includes a tool setting moving assembly and a tool setting instrument installed on the tool setting moving assembly; the tool setting instrument can move relative to the processing machine head driven by the tool setting moving assembly to perform Tool setting operation.
- the processing correction assembly further includes a tool holder clamping assembly, and the tool holder clamping assembly is configured to be able to clamp the numerically controlled tool holder to limit the rotation of the numerically controlled tool holder.
- the embodiment of the present application also provides a method for detecting and correcting the dynamic balance of the revolving body, which includes: dynamic balance detection to obtain the initial unbalance amount of the revolving body Machining correction, machining a correction hole on the peripheral surface of the revolving body, and making the value of the unbalance amount of the revolving body after processing the correction hole not exceed the value of the preset maximum unbalance amount.
- the outer peripheral surface of the revolving body has an unmachinable angle range and a machinable angle range; when the initial unbalance When it falls within the unmachinable angle range of the revolving body, process N correction holes within the machinable angle range of the revolving body, and the N unbalanced quantities corresponding to the N correction holes
- the vector sum of is equal to the initial imbalance N is an integer greater than or equal to 2; when the initial imbalance When it falls into the machinable range of the rotary body, according to the initial unbalance
- the magnitude and direction of the numerical value are processed on the rotary body to form a correction hole.
- the revolving body is a numerically controlled handle, and the outer peripheral surface of the numerically controlled handle is provided with a limit card slot for the rotatable installation of the numerically controlled tool handle.
- the bottom surface of the limit card slot is datum plane;
- the method of processing the correction hole is to form the radial inward drilling of the CNC tool holder by the ball drill, which includes: according to the radius r0 of the ball drill and the unbalance corresponding to each correction hole Determine the drilling depth h and drilling angle ⁇ of each calibration hole;
- the drilling angle ⁇ is equal to the unbalance corresponding to the correction hole angle
- the drilling depth h is calculated by the following formula:
- L is the distance from the axis center of the CNC tool holder to the reference plane
- r0 is the radius of the drill bit
- R is the intersection point of the radial line along the angle ⁇ and passing through the axis center of the CNC tool holder and the reference plane to the CNC tool holder.
- the distance between the shaft center of the handle, ⁇ is the density of the material of the CNC handle, and U is the unbalance amount corresponding to the correction hole value.
- N 2 corresponding to two unbalanced quantities respectively and and the two are respectively located in the initial unbalance both sides of
- U 0 is the unbalanced quantity
- U 1 is the unbalanced quantity
- U 2 is the unbalanced quantity value.
- the machinable angle range is identified as follows: if the calibration hole formed by drilling the ball drill along the drilling angle ⁇ completely coincides with or does not coincide with the limit slot, then The drilling angle ⁇ is a machinable angle, and the set of all the machinable angles constitutes the machinable angle range.
- the identification method of the unmachinable angle range is: the range outside the machinable angle range is the unmachinable angle range.
- the embodiment of the present application also provides a numerically controlled tool handle, which includes a tool handle body, and a plurality of calibration holes are opened on the tool handle body, and the plurality of calibration holes are processed by the aforementioned rotary body dynamic balance detection and calibration method become.
- Fig. 1 is a three-dimensional view of the rotary body dynamic balance detection and correction device in the embodiment of the present application;
- Fig. 2 is a front view of the dynamic balance detection and correction device of the rotary body in Fig. 1;
- Figure 3 shows a schematic diagram of the detection component in the embodiment of the present application
- Fig. 4 is the sectional view of Fig. 3;
- Fig. 5 is a partial view of the processing correction assembly in Fig. 1;
- Fig. 6 is a three-dimensional view of the machine shell provided by the rotary body dynamic balance detection and correction device in Fig. 1;
- Fig. 7 is a flow chart of the method for detecting and correcting the dynamic balance of the revolving body in the embodiment of the present application.
- Fig. 8 is the front view of the CNC knife handle as a rotary body
- Fig. 9 is a cross-sectional view of a numerically controlled handle
- Figure 10 shows the unbalance and at the initial unbalance The collection relationship view between;
- Figure 11 shows an auxiliary view of the calculation method for obtaining the drilling depth by the unbalance when drilling from the reference plane to form a correction hole
- Figure 12 shows a schematic view of the determination of the machinable angle range and the non-machinable angle range, in which the position of the correction hole at the boundary of each machinable angle range and the non-machinable angle range is shown by a dotted line;
- Fig. 13 shows the front view of the CNC tool holder after processing and correcting holes.
- Detection components twenty one Machining Correction Components twenty two base twenty three Imitation CNC machine tool spindle twenty four lock cylinder 25 Dynamic balance measuring instrument 26 Ring Magnetic Stripe 27 Magnetic scale 28 timing belt 29 Spindle drive motor 30 Processing head 31 Head displacement components 32 Tool setting components 33 up and down movement mechanism 34 Horizontal platform 35 hand wheel 36 Screw Nut Assemblies 37 slide rail 38 slider 39 slippery hole 40 Processing tool 41 Tool holder 42 Machining rotating electrical machines 43 Machining Feed Motor 44 Tool moving component 45 Tool setting instrument 46 horizontal cylinder 47 vertical cylinder 48 Tool holder clamping cylinder 49 clamping cylinder 50 Gripper 51 Machine shell 52
- this embodiment proposes a rotating body dynamic balance detection and correction device 20 , including a detection component 21 and a processing and correction component 22 .
- the detection assembly 21 is used to detect the unbalance of the revolving body 10 .
- the processing correction assembly 22 is used to process and form a correction hole 13 (see FIG. 11 ) on the outer peripheral surface 12 of the revolving body 10, so that the unbalance value of the processed revolving body 10 does not exceed the preset maximum unbalance value.
- the rotary body dynamic balance detection and correction device 20 further includes a base 23, on which the detection component 21 and the processing and correction component 22 are installed respectively, forming an integral device with detection and correction functions.
- the term "revolving body” refers to an object that can rotate around its axis of rotation, such as a CNC tool holder used to hold a tool and drive the tool to rotate in CNC machining.
- the rotary body dynamic balance detection and correction device 20 in the embodiment of the present application corrects the unbalance of the rotary body 10 and reduces the unbalance of the rotary body 10 by detecting the unbalance amount and processing the correction hole 13 on the outer peripheral surface 12 of the rotary body 10 To avoid excessive lateral vibration when the revolving body 10 rotates at a high speed.
- the revolving body 10 is a numerically controlled tool holder 11
- this device is a device for performing dynamic balance detection and correction on the numerically controlled tool holder 11
- the detection assembly 21 includes a NC machine tool spindle 24
- the NC machine tool spindle 24 has a locking cylinder 25 for clamping the NC tool handle 11
- a dynamic balance measuring instrument 26 is installed on the main shaft 24 imitating a numerically controlled machine tool, and the dynamic balancing measuring instrument 26 can measure the unbalance of the numerically controlled knife handle 11 when the main shaft drives the numerically controlled knife handle 11 to rotate.
- the imitation CNC machine tool spindle 24 mentioned here refers to the spindle formed by imitating the shape of the actual CNC machine tool spindle.
- the internal structure of the main shaft 24 of the imitation numerical control machine tool is completely symmetrical, so as to reduce the unbalance error of the rotating part.
- the dynamic balance measuring instrument 26 mentioned here can adopt common dynamic balance measuring equipment, which can obtain the angular position and size of the unbalance amount of the measured numerical control handle 11 .
- the dynamic balance measuring instrument 26 includes an annular magnetic strip 27 and a magnetic scale 28 .
- the rotational power of the main shaft is driven by the synchronous belt 29, and the position accuracy of the servo encoder is relatively poor, but the method of recording the real-time position of the tool handle with the ring magnetic strip 27 and the magnetic scale 28 can improve the measured position accuracy.
- the dynamic balance of the CNC tool holder 11 in a real use state can be accurately obtained, and the value is more reliable and effective.
- the spindle 24 imitating the CNC machine tool is installed vertically upward on the base 23 , and the CNC handle 11 is loaded into the locking cylinder 25 imitating the spindle 24 of the CNC machine tool from the top.
- a main shaft drive motor 30 is also arranged on the base 23, and the main shaft drive motor 30 drives the rotating part of the CNC tool holder 11 and the main shaft installed therein to rotate through the synchronous belt 29.
- the processing correction assembly 22 includes a processing head 31 , a head displacement assembly 32 and a tool setting assembly 33 .
- the processing machine head 31 is installed on the machine head displacement assembly 32, and can move under the drive of the machine head displacement assembly 32 to make the processing machine head 31 correspond to the area to be processed on the outer peripheral surface 12 of the CNC tool handle 11 clamped on the locking cylinder 25. Location.
- the head displacement assembly 32 includes an up and down movement mechanism 34 , and the up and down movement mechanism 34 includes a horizontal bearing platform 35 , a hand wheel 36 , a screw nut assembly 37 and a sliding guide rail 38 .
- the horizontal platform 35 is slidably matched to the base 23 through the sliding guide rail 38 , and the manual adjustment of the upper and lower positions is realized through the screw nut assembly 37 controlled by the hand wheel 36 .
- a sliding seat 39 is arranged on the horizontal platform 35, and the sliding seat 39 has a sliding hole 40 along the horizontal.
- the processing head 31 includes a processing tool 41 , a tool holder 42 , a processing rotating motor 43 , and a processing feed motor 44 .
- the processing tool 41 is arranged in the horizontal direction and corresponds to the outer peripheral surface 12 of the numerically controlled handle 11 in the radial direction.
- the processing tool 41 is clamped in the tool holder 42, and the processing rotating motor 43 is connected to the tool holder 42 through transmission, and passes through the tool holder 42.
- the machining tool 41 is driven to rotate, and the machining feed motor 44 is transmission-connected to the machining rotating motor 43, and can drive the machining rotating motor 43, the tool holder 42 and the machining tool 41 to move in a direction close to or away from the CNC tool handle 11 as a whole.
- the tool holder 42 is slidably supported in the slide hole 40 of the slide seat 39 .
- the axis of the machining tool 41 is perpendicular to the axis of the CNC tool holder 11 .
- the tool setting assembly 33 in this embodiment is configured for tool setting of the processing head 31 .
- the tool setting assembly 33 includes a tool setting moving assembly 45 and a tool setting instrument 46 installed on the tool setting moving assembly 45 .
- the tool setting instrument 46 can move relative to the processing machine head 31 under the drive of the tool setting moving assembly 45 to perform tool setting operation.
- the tool setting moving assembly 45 includes a horizontal cylinder 47 and a vertical cylinder 48.
- the tool setting instrument 46 is connected to the vertical cylinder 48 and can move vertically under the drive of the vertical cylinder 48.
- the horizontal cylinder 47 is fixedly installed. And drive the vertical cylinder 48 to drive the vertical cylinder 48 and the tool setting instrument 46 to move along the axial direction of the aforementioned processing tool 41 .
- the machining correction assembly 22 further includes a tool holder clamping assembly 49 configured to clamp the CNC tool holder 11 to limit the rotation of the CNC tool holder 11 .
- the tool handle clamping assembly 49 is installed on the base 23, and it includes a clamping cylinder 50 and a clamping head 51 connected to the clamping cylinder 50, and the clamping head 51 can be closed to clamp the CNC tool handle 11, thereby Restricting the rotation of the CNC tool handle 11 creates conditions for the processing tool 41 to process the calibration hole 13 on the CNC tool handle 11 .
- the rotary body dynamic balance detection and correction device 20 also includes a protective machine shell 52 for covering the above-mentioned moving parts inside to ensure safe use of the device or avoid external interference.
- part of the structure can be set in a form that can be opened and closed, so as to observe or replace the CNC tool holder 11 in a convenient way.
- the embodiment of the present application also provides a method for detecting and correcting the dynamic balance of a revolving body, which is based on the aforementioned device 20 for detecting and correcting the dynamic balance of a revolving body.
- the dynamic balance detection and correction method of the revolving body includes: dynamic balance detection to obtain the initial unbalance amount of the revolving body 10 Machining correction is to process the correction hole 13 on the outer peripheral surface of the revolving body 10, and make the value of the unbalance amount of the revolving body 10 after processing the correction hole 13 not exceed the value of the preset maximum unbalance amount.
- the preset maximum unbalance value can be set to 1gmm.
- the aforementioned tool setting assembly 33 can be used to perform tool setting on the processing tool 41 .
- the method for detecting and correcting the dynamic balance of the revolving body in this embodiment corrects the unbalance of the revolving body 10 and reduces the unbalance degree of the revolving body 10 by detecting the unbalance amount and processing the correction hole 13 on the outer peripheral surface 12 of the revolving body 10, Avoid excessive lateral vibration when the rotating body 10 rotates at a high speed.
- the revolving body 10 is a numerically controlled handle 11, and the outer peripheral surface 12 of the numerically controlled handle 11 is provided with a limiting slot 15, which is used for the rotatable installation of the numerically controlled handle 11 to limit the position.
- the bottom surface of the slot 15 is a reference plane 16 .
- the method of processing the calibration hole 13 is to drill inward along the radial direction of the numerically controlled handle 11 by a ball drill bit.
- the machinable angle range 17 can be determined in the following way: if the correction hole 13 formed by drilling the ball drill along the drilling angle ⁇ and the limit card groove 15 are completely coincident or not coincident at all, then the drilling angle ⁇ belongs to Machinable angle, the set of all machinable angles constitutes the machinable angle range 17.
- the identification method of the unmachinable angle range 18 is: the range outside the machinable angle range 17 is the unmachinable angle range 18 .
- N correction holes 13 are processed within the machinable angle range 17 of the CNC tool holder 11, and the N correction holes 13 correspond to N unbalanced quantities
- the vector sum of is equal to the initial imbalance N is an integer greater than or equal to 2; when the initial unbalance When it falls into the machinable range of CNC tool holder 11, according to the initial unbalance
- the magnitude and direction of the numerical value are processed on the numerically controlled handle 11 to form a calibration hole 13 .
- the step of processing the correction holes 13 includes: according to the radius r 0 of the ball drill bit and the unbalance amount corresponding to each correction hole 13 Determine the drilling depth h and drilling angle ⁇ of each correction hole 13.
- the drilling angle ⁇ is equal to the unbalance corresponding to the correction hole 13 angle
- the drilling depth h is calculated by the following formula:
- L is the distance from the axis O1 of the CNC tool holder 11 to the datum plane 16
- r0 is the radius of the drill bit
- R is the radial line and the datum along the angle ⁇ and passing through the axis O1 of the CNC tool holder 11
- ⁇ is the density of the material of the CNC tool holder 11
- U is the unbalance amount corresponding to the correction hole 13 value
- the drilling angle ⁇ is equal to the unbalance amount corresponding to the correction hole 13
- the angle and the drilling depth h can be directly given by the detection component 21.
- the detection component has a calculation part, and the calculation part regards the CNC tool holder 11 as a cylinder without a limit card slot 15, and obtains the unbalance amount according to the geometric relationship The relationship with the corresponding processing depth h; for the correction hole 13 formed by drilling from the arc surface segment of the outer peripheral surface, it is sufficient to directly use the obtained processing depth h for processing; and for the aforementioned correction hole 13 formed by drilling from the reference plane , it needs to be corrected by the above formula.
- U 0 is the unbalanced quantity
- U 1 is the unbalanced quantity
- U 2 is the unbalanced quantity value.
- the inventor found that the probability of the initial unbalance of the CNC tool holder 11 falling into the unmachinable angle range 18 is as high as 70%, so the above-mentioned initial unbalance It is very necessary to process the correction holes separately after changing to N unbalanced quantities.
- the embodiment of the present application also provides a numerically controlled tool holder 11, which includes a tool holder body 14, on which a plurality of correction holes 13 are opened, and the plurality of correction holes 13 are moved by the aforementioned rotary body. It is processed by balance detection and correction method.
- the numerically controlled tool holder 11 in this embodiment corrects its dynamic balance through the above-mentioned rotary body dynamic balance detection and correction method, which has a high degree of dynamic balance, small lateral vibration during high-speed rotation, and high machining accuracy.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Testing Of Balance (AREA)
Abstract
一种回转体动平衡检测校正装置(20),包括检测组件(21)和加工校正组件(22)。检测组件(21)用于检测回转体(10)的不平衡量。加工校正组件(22)用于在回转体(10)的外周面(12)加工形成校正孔(13),以使加工后的回转体(10)的不平衡量的数值不超过预设的最大不平衡量的数值。还包括一种回转体动平衡检测校正方法和数控刀柄。回转体动平衡检测校正装置能够有效校正回转体的不平衡量,降低回转体的不平衡程度,避免回转体高速转动时产生过大的横向振动。
Description
本申请涉及回转体动平衡技术领域,具体而言,涉及数控刀柄、回转体动平衡检测校正装置及方法。
数控加工中,刀柄带动加工刀具高速旋转以加工工件。实践中,高速旋转的加工刀具在高速旋转时,存在因不平衡而产生横向振动,进而降低加工精度的问题。其他回转体在高速旋转时,也存在横向振动的问题。
发明内容
本申请旨在提供数控刀柄、回转体动平衡检测校正装置及方法,以解决上述问题。
本申请的实施例是这样实现的:
一种回转体动平衡检测校正装置,包括检测组件和加工校正组件。检测组件用于检测回转体的不平衡量;加工校正组件用于在所述回转体的外周面加工形成校正孔,以使加工后的回转体的不平衡量的数值不超过预设的最大不平衡量的数值。
在一种实施方式中,所述回转体为数控刀柄。所述检测组件包括仿数控机床主轴,所述仿数控机床主轴具有用于夹持所述数控刀柄的锁紧气缸;所述仿数控机床主轴上安装有动平衡测量仪,所述动平衡测量仪能够在所述主轴驱动所述数控刀柄转动时,测得数控刀柄的不平衡量。该处所说的仿数控机床主轴指仿照实际的数控机床主轴的形状加工形成的主轴。
可选地,仿数控机床主轴内部结构完全对称,以减小旋转部分的不平衡误差。
可选地,所述动平衡测量仪包括环形磁条和磁栅尺。本方案中,主轴的旋转动力为通过同步带驱动,伺服编码器位置精度较差,而用环形磁条加磁栅尺记录刀柄实时位置的方式,能够提高测得的位置精度。
在一种实施方式中,所述加工校正组件包括加工机头、机头位移组件和对刀组件。所述加工机头安装于所述机头位移组件,并能够在所述机头位移组件的带动下移动至使加工机头对应于夹持在所述锁紧气缸的数控刀柄外周面的待加工位置。所述对刀组件被构造成用于对所述加工机头对刀。
可选地,所述对刀组件包括对刀移动组件和安装于所述对刀移动组件的对刀仪;所述对刀仪能够在对刀移动组件的带动下相对加工机头移动,以进行对刀操作。
在一种实施方式中,所述加工校正组件还包括刀柄夹紧组件,所述刀柄夹紧组件被构造成能够夹持所述数控刀柄以限制所述数控刀柄旋转。
本申请实施例还提供一种回转体动平衡检测校正方法,其包括:动平衡检测,以获得回转体的初始不平衡量
加工校正,在所述回转体的周面上加工校正孔,且使加工校正孔后的回转体的不平衡量的数值不超过预设的最大不平衡量的数值。
在一种实施方式中,所述回转体的外周面具有不可加工角度范围和可加工角度范围;当所述初始不平衡量
落入所述回转体的不可加工角度范围时,在所述回转体的可加工角度范围内加工N个校正孔,N个所述校正孔对应的N个不平衡量
的矢量和等于所述初始不平衡量
N为大于或等于2的整数;当所述初始不平衡量
落入所述回转体的可加工范围时,按照所述初始不平衡量
的数值大小和方向在所述回转体上加工形成一个所述校正孔。
在一种实施方式中,所述回转体为数控刀柄,所述数控刀柄的外周面设有限位卡槽,用于所述数控刀柄的可转动安装,限位卡槽的槽底面为基准平面;
式中,L为数控刀柄的轴心到所述基准平面的距离,r
0为钻头的半径,R为沿角度θ并通过数控刀柄的轴心的径向线和基准平面的交点到数控刀柄的轴心的距离,ρ为数控刀柄构成材质的密度,U为校正孔对应的不平衡量
的数值。
在一种实施方式中,所述可加工角度范围的认定方式为:若所述球头钻头沿钻入角度θ钻入形成的校正孔和所述限位卡槽完全重合或完全不重合,则该钻入角度θ属可加工角度,所有所述可加工角度组成的集合构成所述可加工角度范围。所述不可加工角度范围的认定方式为:在所述可加工角度范围之外的范围为不可加工角度范围。
本申请实施例还提供一种数控刀柄,其包括刀柄本体,在所述刀柄本体上开设有多个校正孔,多个所述校正孔由前述的回转体动平衡检测校正方法加工而成。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例中的回转体动平衡检测校正装置的三维视图;
图2为图1回转体动平衡检测校正装置的正向视图;
图3中示出了本申请实施例中的检测组件的示意图;
图4为图3的剖面视图;
图5为图1中的加工校正组件的部分视图;
图6为图1中的回转体动平衡检测校正装置设置机台外壳的三维视图;
图7为本申请实施例中的回转体动平衡检测校正方法的流程图;
图8为作为回转体的数控刀柄的正向视图;
图9为数控刀柄的截面视图;
图11示出了从基准平面钻孔形成校正孔时,由不平衡量获得钻孔深度的计算方法的辅助视图;
图12示出了可加工角度范围和不可加工角度范围的确定的原理视图,图中用虚线示出了各可加工角度范围和不可加工角度范围的分界处的校正孔的位置;
图13示出了经加工校正孔后的数控刀柄的正向视图。
主要元件符号说明:
回转体 | 10 |
数控刀柄 | 11 |
外周面 | 12 |
校正孔 | 13 |
刀柄本体 | 14 |
限位卡槽 | 15 |
基准平面 | 16 |
可加工角度范围 | 17 |
不可加工角度范围 | 18 |
回转体动平衡检测校正装置 | 20 |
检测组件 | 21 |
加工校正组件 | 22 |
底座 | 23 |
仿数控机床主轴 | 24 |
锁紧气缸 | 25 |
动平衡测量仪 | 26 |
环形磁条 | 27 |
磁栅尺 | 28 |
同步带 | 29 |
主轴驱动电机 | 30 |
加工机头 | 31 |
机头位移组件 | 32 |
对刀组件 | 33 |
上下移动机构 | 34 |
水平承台 | 35 |
手轮 | 36 |
丝杠螺母组件 | 37 |
滑动导轨 | 38 |
滑座 | 39 |
滑孔 | 40 |
加工刀具 | 41 |
刀具夹筒 | 42 |
加工旋转电机 | 43 |
加工进给电机 | 44 |
对刀移动组件 | 45 |
对刀仪 | 46 |
水平气缸 | 47 |
竖直气缸 | 48 |
刀柄夹紧气缸 | 49 |
夹持气缸 | 50 |
夹持头 | 51 |
机台外壳 | 52 |
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
实施例
参见图1-图2,本实施例提出一种回转体动平衡检测校正装置20,包括检测组件21和加工校正组件22。检测组件21用于检测回转体10的不平衡量。加工校正组件22用于在回转体10的外周面12加工形成校正孔13(参见图11),以使加工后的回转体10的不平衡量的数值不超过预设的最大不平衡量的数值。可选地,回转体动平衡检测校正装置20还包括底座23,检测组件21和加工校正组件22分别安装于底座23上,形成一个整体的具有检测和校正功能的装置。
本申请中,术语“回转体”指能绕其转轴回转的物体,例如数控加工中用于夹持刀具和带动刀具旋转的数控刀柄等。
本申请实施例中的回转体动平衡检测校正装置20通过不平衡量的检测和在回转体10外周面12加工校正孔13的方式,来校正回转体10的不平衡量,降低回转体10的不平衡程度,避免回转体10高速转动时产生过大 的横向振动。
配合参见图3和图4,本实施例中,回转体10为数控刀柄11,该装置为用于对数控刀柄11进行动平衡检测和校正的装置。检测组件21包括仿数控机床主轴24,仿数控机床主轴24具有用于夹持数控刀柄11的锁紧气缸25。仿数控机床主轴24上安装有动平衡测量仪26,动平衡测量仪26能够在主轴驱动数控刀柄11转动时,测得数控刀柄11的不平衡量。该处所说的仿数控机床主轴24指仿照实际的数控机床主轴的形状加工形成的主轴。可选地,仿数控机床主轴24内部结构完全对称,以减小旋转部分的不平衡误差。该处所说的动平衡测量仪26可采用常见的动平衡测量设备,其能够得到被测数控刀柄11的不平衡量的角度位置和大小。可选地,动平衡测量仪26包括环形磁条27和磁栅尺28。本方案中,主轴的旋转动力为通过同步带29驱动,伺服编码器位置精度较差,而用环形磁条27加磁栅尺28记录刀柄实时位置的方式,能够提高测得的位置精度。本实施方式中,通过模拟真实数控机床主轴夹持数控刀柄11进行动平衡检测,能够准确获得数控刀柄11在真实使用状态下的动平衡,数值更可靠有效。
本实施例中,可选地,仿数控机床主轴24竖直朝上地安装在底座23上,数控刀柄11从上部装入仿数控机床主轴24的锁紧气缸25内。底座23上还设置主轴驱动电机30,主轴驱动电机30通过同步带29带动数控刀柄11和其安装的主轴的转动部分旋转。
配合参见图5,本实施例中,加工校正组件22包括加工机头31、机头位移组件32和对刀组件33。加工机头31安装于机头位移组件32,并能够在机头位移组件32的带动下移动至使加工机头31对应于夹持在锁紧气缸25的数控刀柄11外周面12的待加工位置。
机头位移组件32包括上下移动机构34,上下移动机构34包括水平承台35、手轮36、丝杆螺母组件37和滑动导轨38。水平承台35通过滑动导轨38可滑动地配合于底座23,并通过由手轮36控制的丝杆螺母组件37实现手动上下位置的调节。水平承台35上设置有滑座39,滑座39具有沿水平的滑孔40。
加工机头31包括加工刀具41、刀具夹筒42、加工旋转电机43、加工进给电机44。加工刀具41沿水平方向设置并沿径向对应于数控刀柄11的 外周面12,加工刀具41夹持于刀具夹筒42,加工旋转电机43传动连接刀具夹筒42,并通过刀具夹筒42带动加工刀具41旋转,加工进给电机44传动连接于加工旋转电机43,并能够带动加工旋转电机43、刀具夹筒42和加工刀具41整体沿靠近或远离数控刀柄11的方向移动。其中,刀具夹筒42可滑动地支撑于滑座39的滑孔40中。本实施例中,加工刀具41的轴线垂直对应于数控刀柄11的轴线。
本实施例中的对刀组件33被构造成用于对加工机头31对刀。可选地,对刀组件33包括对刀移动组件45和安装于对刀移动组件45的对刀仪46。对刀仪46能够在对刀移动组件45的带动下相对加工机头31移动,以进行对刀操作。可选地,对刀移动组件45包括水平气缸47和竖直气缸48,对刀仪46连接于竖直气缸48,并能够在竖直气缸48的带动下竖向移动,水平气缸47固定安装,并传动连接竖直气缸48,以带动竖直气缸48和对刀仪46沿前述加工刀具41的轴向移动。对刀时,使水平气缸47和竖直气缸48分别伸出带动对刀仪46移动至对应于加工刀具41,然后使加工进给电机44带动加工刀具41水平移动至碰到对刀仪46后停止,记录加工进给电机44的位置数据;然后使水平气缸47和竖直气缸48分别缩回,加工进给电机44缩回,完成对刀。
本实施方式中,加工校正组件22还包括刀柄夹紧组件49,刀柄夹紧组件49被构造成能够夹持数控刀柄11以限制数控刀柄11旋转。可选地,刀柄夹紧组件49安装在底座23上,其包括夹持气缸50和连接于夹持气缸50的夹持头51,夹持头51能够合拢以夹紧数控刀柄11,从而限制数控刀柄11的旋转,以为加工刀具41对数控刀柄11加工校正孔13创造条件。
配合参见图6,在一种实现方式中,回转体动平衡检测校正装置20还包括保护机台外壳52,用于将前述各运动部分罩于内部,以确保装置安全使用或避免被外界干扰。其中,部分结构可设置为可开闭的形式,以方面观察或更换数控刀柄11。
配合参见图7,本申请实施例还提供一种回转体动平衡检测校正方法,其基于前述的回转体动平衡检测校正装置20。回转体动平衡检测校正方法包括:动平衡检测,以获得回转体10的初始不平衡量
加工校正,在回转体10的外周面上加工校正孔13,且使加工校正孔13后的回转体10的不平衡量的数值不超过预设的最大不平衡量的数值。
在一次加工校正孔13后,检测不平衡量是否满足不超过预设的最大不平衡量的要求,若满足,则校正结束;若不满足,则再次进行上述校正过程直至满足要求。实践中,预设的最大不平衡量的数值可设置为1gmm。
当然,在加工前,可采用前述的对刀组件33对加工刀具41进行对刀。
该实施例中的回转体动平衡检测校正方法通过不平衡量的检测和在回转体10外周面12加工校正孔13的方式,来校正回转体10的不平衡量,降低回转体10的不平衡程度,避免回转体10高速转动时产生过大的横向振动。
配合参见图8和图9,本实施例中,回转体10为数控刀柄11,数控刀柄11的外周面12设有限位卡槽15,用于数控刀柄11的可转动安装,限位卡槽15的槽底面为基准平面16。加工校正孔13的方式为通过球头钻头沿数控刀柄11的径向向内钻孔形成。参见图12,可加工角度范围17的认定方式为:若球头钻头沿钻入角度θ钻入形成的校正孔13和限位卡槽15完全重合或完全不重合,则该钻入角度θ属可加工角度,所有可加工角度组成的集合构成可加工角度范围17。不可加工角度范围18的认定方式为:在可加工角度范围17之外的范围为不可加工角度范围18。
配合参见图9、图10和图12,当初始不平衡量
落入数控刀柄11的不可加工角度范围18时,在数控刀柄11的可加工角度范围17内加工N个校正孔13,N个校正孔13对应的N个不平衡量
的矢量和等于初始不平衡量
N为大于或等于2的整数;当初始不平衡量
落入数控刀柄11的可加工范围时,按照初始不平衡量
的数值大小和方向在数控刀柄11上加工形成一个校正孔13。
配合参见图11,加工校正孔13的步骤包括:根据球头钻头的半径r
0和各校正孔13对应的不平衡量
确定各校正孔13的钻孔深度h和钻孔角度θ,对于从基准平面16钻入形成的校正孔13,其钻孔角度θ等于该校正孔13对应的不平衡量
的角度,钻孔深度h通过以下公式计算而得:
式中,L为数控刀柄11的轴心O
1到基准平面16的距离,r
0为钻头的半径,R为沿角度θ并通过数控刀柄11的轴心O
1的径向线和基准平面16的交点到数控刀柄11的轴心O
1的距离,ρ为数控刀柄11构成材质的密度,U为校正孔13对应的不平衡量
的数值;
即,检测组件具有计算部分,计算部分将数控刀柄11视为未形成限位卡槽15的圆柱形,并根据几何关系得到不平衡量
和对应的加工深度h的关系;对于从外周面的弧面段钻入形成的校正孔13,直接采用其得到的加工深度h加工即可;而对于前述从基准平面钻入形成的校正孔13,则需采用上式进行校正。
可选地,配合参见图9和图10,取N=2,对应的两个不平衡量
分别为
和
且两者分别位于初始不平衡量
的两侧。设定不平衡量
和初始不平衡量
之间的夹角为θ
1,设定不平衡量
和初始不平衡量
之间的夹角为θ
2。根据以下公式确定不平衡量
和
的数值:
配合参见图13,本申请实施例还提供一种数控刀柄11,其包括刀柄本体14,在刀柄本体14上开设有多个校正孔13,多个校正孔13由前述的回转体动平衡检测校正方法加工而成。
该实施例中的数控刀柄11通过前述的回转体动平衡检测校正方法校正动平衡,其动平衡程度高,高速转动时横向振动小,加工精度较高。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。
Claims (10)
- 一种回转体动平衡检测校正装置,其特征在于,包括:检测组件,用于检测回转体的初始不平衡量;加工校正组件,用于在所述回转体的外周面加工形成校正孔,以使加工后的回转体的不平衡量的数值不超过预设的最大不平衡量的数值。
- 根据权利要求1所述的回转体动平衡检测校正装置,其特征在于:所述回转体为数控刀柄;所述检测组件包括仿数控机床主轴,所述仿数控机床主轴具有用于夹持所述数控刀柄的锁紧气缸;所述仿数控机床主轴上安装有动平衡测量仪,所述动平衡测量仪能够在所述主轴驱动所述数控刀柄转动时,测得数控刀柄的初始不平衡量。
- 根据权利要求2所述的回转体动平衡检测校正装置,其特征在于:所述加工校正组件包括加工机头、机头位移组件和对刀组件;所述加工机头安装于所述机头位移组件,并能够在所述机头位移组件的带动下移动至使加工机头对应于夹持在所述锁紧气缸的数控刀柄外周面的待加工位置;所述对刀组件被构造成用于对所述加工机头对刀。
- 根据权利要求3所述的回转体动平衡检测校正装置,其特征在于:所述加工校正组件还包括刀柄夹紧组件,所述刀柄夹紧组件被构造成能够夹持所述数控刀柄以限制所述数控刀柄旋转。
- 根据权利要求6所述的回转体动平衡检测校正方法,其特征在于:所述回转体为数控刀柄,所述数控刀柄的外周面设有限位卡槽,用于所述数控刀柄的可转动安装,所述限位卡槽的槽底面为基准平面;
- 根据权利要求7所述的回转体动平衡检测校正方法,其特征在于:所述可加工角度范围的认定方式为:若所述球头钻头沿钻入角度θ钻入形成的校正孔和所述限位卡槽完全重合或完全不重合,则该钻入角度θ属可加工角度,所有所述可加工角度组成的集合构成所述可加工角度范围;所述不可加工角度范围的认定方式为:在所述可加工角度范围之外的范围为不可加工角度范围。
- 一种数控刀柄,其特征在于,包括:刀柄本体,在所述刀柄本体上开设有多个校正孔,多个所述校正孔由权利要求5-9任一项所述的回转体动平衡检测校正方法加工而成。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180095273.7A CN116940821A (zh) | 2021-09-07 | 2021-09-07 | 数控刀柄、回转体动平衡检测校正装置及方法 |
PCT/CN2021/116833 WO2023035094A1 (zh) | 2021-09-07 | 2021-09-07 | 数控刀柄、回转体动平衡检测校正装置及方法 |
US18/574,915 US20240326193A1 (en) | 2021-09-07 | 2021-09-07 | Numerical control tool holder, rotary body dynamic balance detection and correction device, and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/116833 WO2023035094A1 (zh) | 2021-09-07 | 2021-09-07 | 数控刀柄、回转体动平衡检测校正装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023035094A1 true WO2023035094A1 (zh) | 2023-03-16 |
Family
ID=85506144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/116833 WO2023035094A1 (zh) | 2021-09-07 | 2021-09-07 | 数控刀柄、回转体动平衡检测校正装置及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240326193A1 (zh) |
CN (1) | CN116940821A (zh) |
WO (1) | WO2023035094A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3817149A (en) * | 1972-06-26 | 1974-06-18 | Reutlinger & Sohne | Compensation of unbalance in rotary bodies |
CN101553335A (zh) * | 2006-12-06 | 2009-10-07 | 雷高费克斯股份公司 | 平衡工具接头的方法和装置 |
CN105758588A (zh) * | 2014-12-16 | 2016-07-13 | 哈尔滨通用液压机械制造有限公司 | 动平衡校正工艺 |
CN210071231U (zh) * | 2019-06-27 | 2020-02-14 | 北京博鲁斯潘精密机床有限公司 | 一种盘类零件质量不平衡修正装置 |
CN111141451A (zh) * | 2018-11-05 | 2020-05-12 | 沈阳新松机器人自动化股份有限公司 | 一种卧式动平衡检测及校正系统 |
CN111595517A (zh) * | 2020-06-03 | 2020-08-28 | 哈尔滨工业大学 | 一种金刚石微径铣刀动平衡测试与修正系统 |
CN112710429A (zh) * | 2020-12-18 | 2021-04-27 | 兰州大学 | 一种基于减材的动平衡校正方法及设备 |
-
2021
- 2021-09-07 WO PCT/CN2021/116833 patent/WO2023035094A1/zh active Application Filing
- 2021-09-07 CN CN202180095273.7A patent/CN116940821A/zh active Pending
- 2021-09-07 US US18/574,915 patent/US20240326193A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3817149A (en) * | 1972-06-26 | 1974-06-18 | Reutlinger & Sohne | Compensation of unbalance in rotary bodies |
CN101553335A (zh) * | 2006-12-06 | 2009-10-07 | 雷高费克斯股份公司 | 平衡工具接头的方法和装置 |
CN105758588A (zh) * | 2014-12-16 | 2016-07-13 | 哈尔滨通用液压机械制造有限公司 | 动平衡校正工艺 |
CN111141451A (zh) * | 2018-11-05 | 2020-05-12 | 沈阳新松机器人自动化股份有限公司 | 一种卧式动平衡检测及校正系统 |
CN210071231U (zh) * | 2019-06-27 | 2020-02-14 | 北京博鲁斯潘精密机床有限公司 | 一种盘类零件质量不平衡修正装置 |
CN111595517A (zh) * | 2020-06-03 | 2020-08-28 | 哈尔滨工业大学 | 一种金刚石微径铣刀动平衡测试与修正系统 |
CN112710429A (zh) * | 2020-12-18 | 2021-04-27 | 兰州大学 | 一种基于减材的动平衡校正方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
US20240326193A1 (en) | 2024-10-03 |
CN116940821A (zh) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102001021B (zh) | 五轴联动数控机床回转摆动轴几何误差参数值的测量方法 | |
JP4637106B2 (ja) | 同心度修正を有する研削盤 | |
US8250952B2 (en) | Method of machine tool calibration | |
US11883973B2 (en) | Cutting apparatus and contact position specifying program | |
CN106112693A (zh) | 一种五轴数控机床平动轴和旋转轴同步误差检测方法 | |
CN104786098B (zh) | 一种多轴数控机床转台几何误差六位置辨识方法 | |
WO2010013559A1 (ja) | クランクシャフトのセンタ穴加工装置及び加工方法 | |
CN107695791B (zh) | 通用转动轴与位置无关的几何误差辨识方法 | |
CN111843613B (zh) | 一种五轴龙门摆头空间轴线误差值测定方法 | |
CN111069642B (zh) | 三维空间中斜孔加工工艺 | |
Tsutsumi et al. | Evaluation of synchronous motion in five-axis machining centers with a tilting rotary table | |
JP3433710B2 (ja) | V溝形状測定方法及び装置 | |
JP2007257606A (ja) | ツールの加工位置決め誤差補正方法 | |
WO2023035094A1 (zh) | 数控刀柄、回转体动平衡检测校正装置及方法 | |
Zimmermann et al. | Extended discrete R-Test as on-machine measurement cycle to separate the thermal errors in Z-direction | |
CN110645935B (zh) | 数控回转轴集成位移传感器安装偏置的精确校准方法 | |
JP3880030B2 (ja) | V溝形状測定方法及び装置 | |
US20230152772A1 (en) | Positional relationship measurement method and machining apparatus | |
KR102061821B1 (ko) | 5축 공작 기계용 표준시편 | |
CN105729244B (zh) | 水轮机大型阀体两端盲阀轴孔同轴度测量工艺方法 | |
JP2021091091A (ja) | 切削装置 | |
CN113108738B (zh) | 一种涡轮盘榫槽三坐标测量机转台及第五轴校准方法 | |
CN218097451U (zh) | 一种回转精度检测工装 | |
Fan et al. | A novel geometric error identification methodology for the tilting head of five-axis machine tools based on double ball bar | |
US20200348118A1 (en) | Edge, runout, and true center of rotation finder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21956284 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180095273.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21956284 Country of ref document: EP Kind code of ref document: A1 |