WO2023035049A1 - SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL - Google Patents

SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL Download PDF

Info

Publication number
WO2023035049A1
WO2023035049A1 PCT/BR2021/050385 BR2021050385W WO2023035049A1 WO 2023035049 A1 WO2023035049 A1 WO 2023035049A1 BR 2021050385 W BR2021050385 W BR 2021050385W WO 2023035049 A1 WO2023035049 A1 WO 2023035049A1
Authority
WO
WIPO (PCT)
Prior art keywords
injector
combustion system
air
gas
fuel gas
Prior art date
Application number
PCT/BR2021/050385
Other languages
English (en)
French (fr)
Inventor
David James Retallack
Original Assignee
Fct Holdings Pty Ltd
Fct Combustão Brasil Importação E Exportação Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fct Holdings Pty Ltd, Fct Combustão Brasil Importação E Exportação Ltda filed Critical Fct Holdings Pty Ltd
Priority to EP21956273.3A priority Critical patent/EP4400765A1/en
Priority to AU2021464172A priority patent/AU2021464172A1/en
Priority to PCT/BR2021/050385 priority patent/WO2023035049A1/pt
Priority to BR112023014451A priority patent/BR112023014451A2/pt
Publication of WO2023035049A1 publication Critical patent/WO2023035049A1/pt

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors

Definitions

  • This patent deals with a combustion system with ultra-low NOx emission and a quick fuel mixing method.
  • Said method allows the rapid mixing of fuel gas, for example, natural gas, and combustion air, so as to compose an intense mixing of the rotational "swirl" air flow with a plurality of jets of fuel gas discharged into this flow.
  • the design of the combustion system and its method of operation combine advantageous operating characteristics for rapid mixing in the injection nozzle, which allow achieving extremely low emissions of NOx, CO and hydrocarbons.
  • Nitrogen oxides NO and NO2 are typically formed by the reaction of N 2 and O 2 at high temperatures during the combustion process.
  • the highest temperatures, where there is most thermal NOx formation, are observed around the stoichiometric zones of the flame and can be as high as 1925 °C / 3500 °F for flames originating from the combustion of natural gas in air. Reducing the formation of temperature peaks in the flames, or even eliminating them, is the goal of many manufacturers and suppliers of burners with ultra low NOx emissions.
  • the mixing device (“mixer”) consists of two concentric tubes: inner tube, through which the high pressure fuel gas is injected; and external tube, through which the combustion air flows. Fuel and air mix along the inside of the annular section of the "mixer", creating a "lean” mixture, with up to 70% excess air above the stoichiometric amount of air required for complete combustion.
  • the lean mixture forms an adiabatic low temperature flame of around 1000°C/1850°F, with reduced formation of thermal NOx.
  • the aforementioned long tube models have several drawbacks, such as the need for relatively long burners to accommodate this configuration, as this requires mixing tubes with a high length/diameter ratio to achieve adequate mixing of air with fuel gas, , and the need for flame stabilizing devices at the exit of the tubes.
  • the velocity of the fuel-air mixture inside the mixing tubes may become excessively low, which may cause flashback of the flame inside the tubes, which does not is acceptable for stable burner operation.
  • the rotational air fins are made from metal sheets that form a hollow structure. Fuel gas flows through this structure and is injected into the air stream through a plurality of orifices located in the fins. Injection holes are located on the downstream edge of each fin. There is no fuel flow between the fins, only combustion air flow, which is in the process of changing from a strictly axial flow to a flow with both axial and axial components. rotational (“swirl"). The fuel gas is injected parallel to the air flow which can extend the mixing time and therefore lengthen the total mixing length. That is, this model does not have the advantages of the "fast mix” burners. [008] Another disadvantage is that the hollow fin model described above is relatively complex to manufacture and, therefore, more expensive.
  • the rapid mixing burner model manufactured by 'Eclipse Inc.' It uses a turbulator consisting of thick-walled deflector fins, made of cast material (iron or carbon/stainless steel). Each fin is designed with a "step", downstream, in the same direction as the air flow, where the fuel gas injection holes are located. In their discharge, the fuel gas jets are protected, by the fin step, from instantaneous contact with the air current. The gas jets are discharged in a readial direction away from the centerline of the burner. The burner quickly mixes air and gas, provides a compact flame with rotating components ("swirl"), in operation with high excess air, producing NOx emissions of 10-20 ppm at 3% O 2 .
  • swirl rotating components
  • Another disadvantage is that, as the fins are thick and hollow, the number of fins on the turbulator, for a given burner diameter, is lower than that of the turbulator with non-hollow fins, made of sheet metal.
  • the configuration with a smaller number of fins brings additional disadvantages for obtaining high numbers of "swirl", such as the need to use combustion air, less flame stability, flame formation with a less uniform angular thermal profile, among others.
  • a new combustion system (10) with ultra-low NOx emission whose set consists of an external body (12) with an air inlet and mounting flanges (14)/(14') on both sides. sides.
  • the body (12) is connected with a conical outlet element (18) and further with the cylindrical combustor (20).
  • a second set of concentric tubes (24) and (26) provided with fins (42) and gas injectors (48) is inserted inside the outer body (12).
  • the combustion air is supplied to the combustion system (10) by means of a fan or air blower, and flows through the annular channel formed by the outer body (12) and the tube (26) and then flows through the open passages between the fins (42) of the turbulator, thus forming a current with an intense rotational component.
  • the fuel gas flows through the annular channel formed by the concentric tubes (24) and (26).
  • the outer tube (26) has perforations (50), over which the gas injectors (48) are installed.
  • the number of injectors (48), mounted between two adjacent fins (42), can vary from one to ten; in this specific case we present a model with three injectors (48) arranged between two adjacent fins (42).
  • Each injector has perforated holes (52) through which the fuel gas (GC) is injected into the combustion air stream, which flows between adjacent fins (42). In this way, the fuel gas (GC) is uniformly distributed in the rotational air flow and throughout the circumference of the combustion system (10).
  • the flame exits through the conical piece (18) towards the cylindrical combustor (20), which is significantly larger in diameter than the fast mixing zone.
  • the main flame is established in the combustor.
  • the diameter and length of the combustor (20) are determined such that the combustion reaction takes place completely within the combustor volume, with excess air required to reduce the adiabatic flame temperature and thus reduce NOx formation.
  • the burner can operate with less excess air (10%-30%), but the combustor wall (20) and the front plate (38) may overheat. In this case, a cooling medium for these elements is necessary.
  • the excess air level is an important element in controlling emissions from the combustion system (10).
  • the fuel gas needs to be ideally mixed with combustion air before ignition and with excess air close to 60-70% to obtain low Nox levels, which can be in the range of 10-20 ppm corrected to 3% O2 .
  • This is only valid for burners with fast "lean" mix nozzle or with "lean” premix design. For example, if we operate a standard burner with 60-70% excess air, the NOx can be 100 ppm or even higher.
  • the combustor can be manufactured from refractory material.
  • the use of excess air above 70% can lead to instability of the combustion system (10), but if the flame is still stable, it can lead to excessive formation of CO (carbon monoxide).
  • Figure 1 shows an exploded perspective view of the elements that make up the combustion system in question
  • Figure 2 represents a perspective view of the assembled system
  • Figure 3 shows a view in longitudinal section A.A of the axis of the combustion system
  • Figure 4 illustrates the assembly of gas supply tubes with gas inlet, turbulator fins and fuel gas injectors
  • Figure 5 shows a perspective view of the turbulator, including positioning the fins and gas injectors in relation to each other;
  • Figure 6 illustrates the gas injector discharge ports positioning themselves with different discharge angles to the air flow
  • Figure 7 represents a cross-sectional view BB in a plane through the middle of the fins to illustrate the gas injectors positioning themselves in relation to each fin; It is
  • Figure 8 shows a C.C longitudinal sectional view of the injectors to illustrate the distances and dimensions.
  • This patent refers to the "COMBUSTION SYSTEM WITH ULTRA LOW NOx EMISSION AND RAPID FUEL MIXING METHOD", more precisely, it is a combustion system (10) for industrial combustion of the type applied in generators of hot gases, steam boilers, single burner installations, furnaces and other processes.
  • Said combustion system (10) has an external body (12), which is preferably cylindrical in shape with mounting flanges (14)/(14') arranged at the inlet and outlet openings (see figures 1 and 2).
  • Said external body (12) is equipped with an air inlet (16) of rectangular or cylindrical shape or any other suitable format for supplying combustion air to the external body (12).
  • the outer body (12) is attached by the flange (14') to the conical element (18) (see figure 3) which, in turn, is mounted on the combustor (20), which can be made of stainless steel or refractory material, preferably cylindrical in shape.
  • Said external body (12), conical element (18) and combustor (20) when assembled make up the main body of the combustion system (10).
  • the fuel gas is supplied to the combustion system (10) through a fuel gas assembly (22) (see figure 4) provided with concentric tubes (24) and (26) composing an annular channel (28).
  • the fuel gas (GC) inlet (30) is mounted orthogonally to the outer tube (26).
  • a flange (34) blocks the inlet (32) with the potential possibility of installing, for example, an oil lance as a second fuel.
  • the output side (36) is blocked with the plate (38) which is covered with an insulating layer (40).
  • the outlet end of the fuel gas assembly (22) (36) is equipped with a plurality of fins (42) of curved shape (see figure 5), which together with the external surface of the tube (26) make up the passages (46) for the air flow to be deflected for the creation of the rotational movement ( "swirl").
  • a set of three gas injectors (48) which can be attached by welding to the outer tube (26) or another form of attachment such as a thread (not shown), which provides a plurality of holes (50) aligned under each injector (48), enabling the flow of fuel gas (GC) from the annular space (28) into the injector (48).
  • Each injector (48) has a plurality of openings (52) that inject the fuel gas (GC), with the angles (a), (P), (y) pre-arranged, into the combustion air flow.
  • the height of the gas injectors (48) can vary in the direction of flow, for example, the first injector (48) has three injection holes (52), while the second injector (48) has four holes (52) and the third injector with five holes (52).
  • the number of holes (52) for fuel gas (GC) in each injector (48) can vary, however the ratio of the discharge area between the injectors (48) is kept the same, the higher the injector (48) , the greater the number of discharge openings (52).
  • Each gas injector (48) is mounted inclined so as to have its longitudinal axis as parallel as possible to the fin surface (42).
  • Said discharge openings (52) are distributed along the injectors (48) so that the gas jets (GC) are uniformly discharged into the air stream from the bottom to the top of the passage (46). This arrangement ensures that each and every passageway (46) receives a uniformly distributed flow of fuel gas (GC) and thus there is rapid mixing between air and fuel gas (GC).
  • the fuel gas assembly (22) is arranged inside the outer body (12) of the combustion system (10) and attached to it by the flange (54).
  • the assembly may have a provision for inserting an additional alternative fuel lance, such as oil, aligned with the central axis (65) of the combustion system (10).
  • the flange (34) is covering the opening (58) for this provision (see figure 4).
  • Said fuel gas injectors (48) are arranged inside the air passages (46) and supported on the curvature surface of the fins (42) (see figures 3 and 6). Therefore, the fuel discharge holes (52) are located in a cavity low pressure aerodynamics, formed by the curvature of the fins (42), thus resulting in a better dissipation of the fuel gas jets in the air stream and, in this way, providing its faster mixing with air.
  • Said injectors (48) are also arranged in a row along the direction of movement of the air stream, one after the other, and there may be three, as in the model shown, or in greater or lesser numbers.
  • the distance (L) between the injectors (48) can vary from 1 to 2 diameters (D) of the injector.
  • the first injector (48) installed is the shortest with height (Hl).
  • the second injector (48) arranged between the first and third injector has an intermediate height (H2).
  • the number of openings (52) and diameter (d) may vary depending on the thermal capacity and physical size of the combustion system (10), and in this embodiment, the first injector (48) is equipped with three openings (52 ), the second with four openings (52), and the third with five openings (52). For a given combustion system, all openings have the same diameter (d), but this may vary in size depending on the size and thermal capacity of the combustion system.
  • the openings (52) are aligned in a row starting from the upper wall (66) of the injector (48), being equally distributed with a distance (X) (see figure 8) of about 2 to 3 diameters (d). Fuel gas is injected through openings (52) uniformly covering the distance from the bottom (68) to the top (66) of an air passage (46).
  • the arrangement of the discharge openings (52) is done so that more fuel is injected into the upper part of the air passage (46), as the air mass flow is also higher in this part due to the exponential increase in cross-sectional area along the radius, starting from the burner axis (65)) of the combustion system (10) in a radial direction to the periphery thereof along the center line (56) of the combustion system (10) (see figure 7). Therefore, the smallest injector, of height Hl, has only three injection holes, since less fuel is required in the lower section, while the injectors of height (H2) and (H3) have more holes, since a greater amount of fuel is required in the lower sections. upper sections.
  • Figure 6 represents the top view of the gas injectors (48) to illustrate the angles (a,
  • the fuel gas discharge openings (52) direct the gas jets from the highest injector (H 3) at an angle (y) in relation to the burner axis (65) such that the direction is predominantly parallel to the line tangential to the external curve of the fin (42).
  • the fuel gas discharge openings (52) direct the gas jets from the injector with a height (H2) at an angle (P) in relation to the burner axis (65) such that the direction is predominantly parallel to the axis (65) of the system of combustion (10), that is, with ( equal to zero.
  • the fuel gas discharge openings (52) direct the injector gas jets with height (Hl) predominantly in the angle (a), which can be between 0 - 90 degrees to the axis (65) of the combustion system (10) This arrangement and combination of discharge angles allows for uniform and faster mixing than prior art designs.
  • Said combustion system (10) is operated using a method of rapid mixing of fuel gas with a high excess of air to produce flames with ultra-low NOx emission that have the phases:
  • GC Phase 2 - Fuel gas
  • natural gas for example, natural gas
  • the channel (28) goes to the gas injectors (48), from which it is discharged into the passes (46) through the injection openings (52) to be mixed rapidly with the rotational air stream.
  • ignition for example, through an electric ignitor (62) (see figure 3)
  • the flame is stabilized in the conical element (18) of the combustion system (10) which together with the fins (42) and injectors (48) make up the fast mixing zone (Zl);
  • the combustion system (10) can operate at varying levels of combustion air, but within the limits of flammability.
  • the amount of excess air is an important parameter for controlling burner emissions.
  • the use of a high excess of air allows flames to be obtained with a lower average adiabatic temperature, and thus the formation of thermal NOx is inhibited.
  • the fuel gas needs to be ideally mixed with air (typically with an excess of air close to 60-70%) before ignition, to eliminate temperature peaks in the flame and thus reduce the formation of NOx, which can reach emissions as as low as 10-12 ppm corrected to 3% O2.
  • the NOx can be 1000ppm and even higher, due to temperature spikes in the stoichiometric and near-stoichiometric concentration regions within the flame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

Trata‐se de sistema de combustão que utiliza método de mistura rápida de gás combustível com ar de combustão de a obter mistura intensa de fluxo de ar com fortes componentes rotacionais com uma pluralidade de jatos de gás descarregada para esse fluxo. A montagem de sistema de combustão inclui um corpo externo dotado de uma entrada de ar e flanges de montagem. O corpo externo é conectado com o elemento de saída cônica e ainda com combustor de formato cilíndrico. O sistema de combustão também inclui a o conjunto de combustível compreendido por dois tubos coaxiais com aletas curvas de "swirl" e injetores de gás. Essa montagem é colocada dentro do corpo externo ao longo do eixo do queimador com aletas posicionadas próximas à entrada do elemento cônico. O sistema de combustão opera empregando um método de mistura rápida, com os jatos de gás combustível injetados e regularmente distribuídos no fluxo de ar de combustão com componentes rotacionais de alta intensidade.

Description

"SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL".
CAMPO TÉCNICO DA INVENÇÃO
[001] A presente patente de invenção trata de sistema de combustão com emissão ultrabaixa de NOx e método de mistura rápida de combustível. Refere-se, especificamente, a mecanismo de combustão e método de operação que viabiliza a redução da formação de NOx(Óxidos de Nitrogênio) nos sistemas industriais de combustão. Dito método permite a mistura rápida de gás combustível, por exemplo, gás natural, e ar de combustão, de modo a compor uma mistura intensa do fluxo de ar de rotacional "swirl" com uma pluralidade de jatos de gás combustível descarregada para esse fluxo.
O projeto do sistema de combustão e respectivo método de operação combinam caraterísticas operacionais vantajosas para a rápida mistura no bocal de injeção, que permitem atingir emissões extremamente baixas de NOx, CO e hidrocarbonetos.
HISTÓRICO DA INVENÇÃO
[002] Óxidos de nitrogênio NO e NO2 (NOx) são tipicamente formados pela reação de N2 e O2 a altas temperaturas durante o processo de combustão. As temperaturas mais altas, onde há maior formação de NOx térmico, são observadas em torno das zonas estequiométricas da chama e podem ser tão altas quanto 1925 °C / 3500 °F para chamas oriundas da combustão de gás natural em com ar. Reduzir a formaçãoo de picos de temperaturas nas chamas, ou ainda eliminá-los ,é a meta de muitos fabricantes e fornecedores de queimadores com emissões ultra baixas de NOx.
[003] As patentes ns. US5,667,376, US2009/0029302A1, US2013/0203003A1 e US8662887 e diversos modelos de Queimadores industriais da empresa 'North American', apresentam modelos de queimador de mistura de gás combustível com ar de combustão, em configuração de pré-mistura "pobre", antes do bocal de injeção, obtida através de um conjunto de tubos longos. Nestes modelos, o dispositivo de mistura ("mixer") é constituído por dois tubos concêntricos: tubo interno, através do qual o gás combustível de alta pressão é injetado; e tubo externo, por onde flui o ar de combustão. Combustível e ar se misturam ao longo do interior da seção anular do "mixer", criando uma mistura "pobre", com até 70% de excesso de ar acima da quantidade de ar estequiométrico requerida para a combustão completa. Sendo inflamada, a mistura pobre forma uma chama de baixa temperatura adiabática, de cerca de 1000°C/1850°F, com reduzida formação de NOx térmico.
[004] Os modelos de tubos longos citados apresentam diversos inconvenientes, tais como, necessidade de queimadores relativamente longos para acomodar esta configuração, pois esta requer tubos misturadores de elevada relação comprimento/diâmetro para que seja atingida mistura adequada de ar com gás combustível, , e necessidade de dispositivos estabilizadores de chama à saída dos tubos. Em caso de operação do queimador com carga térmica reduzida, em função de exigências do processo, a velocidade da mistura ar combustível dentro dos tubos misturadores pode se tornar excessivamente baixa, que pode ocasionar retrocesso da chama “flashback” dentro dos tubos, o que não é aceitável para a operação estável do queimador.
[005] Outro modelo e método de mistura rápida de gás combustível e ar antes da ignição e reação de combustão é baseado em jatos de combustível distribuídos em fluxo de ar reto, que pode ser misturado com gases de combustão por meio de recirculação de gases da fornalha, apresentado nos documentos de n^. US5.460.512; 8.118.588 B2; 8.794.960 B2. Esse modelo de queimador é de alta complexidade construtiva, apresenta elevado custo de fabricação e necessita de sistemas de controle de alto custo.
[006] Modelos de queimadores fabricados por “Coen Company, lnc"e por "Eclipse Inc.' preveem intensa utilização de ar rotacional para promover a mistura de gás combustível com ar de combustão antes de sua ignição, com estabilização adicional de chama.
[007] No modelo concebido pela 'Coerí, as aletas de ar rotacional ("swirl") são fabricadas a partir de chapas metálicas que formam uma estrutura oca. O gás combustível flui por dentro desta estrutura e é injetado no fluxo de ar por meio de uma pluralidade de orifício localizados nas aletas. Os orifícios de injeção estão localizados na borda de cada aleta a jusante da mesma. Não há fluxo de combustível entre as aletas, somente fluxo de ar de combustão, que está no processo de se transformar de um escoamento estritamente axial para um escoamento com componentes axial e rotacional ("swirl"). O gás combustível é injetado paralelamente ao fluxo de ar o que pode estender o tempo de mistura e, portanto, alongar o comprimento de mistura total. Ou seja, esse modelo não apresenta as vantagens dos queimadores de "mistura rápida". [008] Outra desvantagem é que o modelo de aleta oca descrito acima é de relativa complexidade de fabricação e, portanto, mais custoso.
[009] O modelo do queimador de mistura rápida fabricado pela 'Eclipse Inc.' emprega turbulador constituído por aletas defletorasde paredes espessas, fabricadas em material fundido(, ferroou aço carbono/inoxidável). Cada aleta é concebida com um "degrau", a seu jusante, na mesma direção do fluxo de ar, onde se encontram os orifícios de injeção de gás combustível. Em sua descarga, os jatos de gás combustível são protegidos, pelo degrau da aleta, do contato instantâneo com a corrente de ar. Os jatos de gás são descarregados em direção readial para fora da linha central do queimador. O queimador mistura o ar e gás rapidamente, proporciona uma chama compacta com componentes rotacionais ("swirl"), em operação com elevado excesso de ar, produzindo à saída emissões de NOx de 10-20 ppm a 3% O2.
[010] A maior desvantagem do modelo supracitado consiste no fato do turbulador ser fabricado em metal fundido, portanto muito pesado, motivo pelo qual a capacidade máxima do queimador não ultrapassa lOMMBtu/h (3.3MW).
[011] Outra desvantagem é que, tendo as aletas espessas e ocas, o número de aletas do turbulador, para um dado diâmetro de queimador, é inferior ao do turbulador de aletas não-ocas, fabricadas com chapas metálicas. A configuração com menor número de aletas traz desvantagens adicionais para obtenção de elevados números de "swirl", como por exemplo a necessidade de utilização de ar de combustão, menor estabilidade de chama, formação de chama de perfil térmico angular menos uniforme, entre outros.
OBJETIVOS DA INVENÇÃO
[012] É objetivo da invenção apresentar um sistema de combustão (10) com emissão ultrabaixa de NOx e método de mistura rápida de combustível que permitem superar as desvantagens da técnica anterior. Ao mesmo tempo, a peça cônica (18) de saída ou o afunilamento diametral do sistema de combustão (10) é vantajosa para redução adicional das emissões de NOx pela mistura extremamente rápida do gás combustível com ar de combustão antes da ignição e estabilização de chama no combustor.
[013] É objetivo da invenção apresentar um novo sistema de combustão (10) com emissão ultrabaixa de NOx cujo conjunto consiste num corpo externo (12) com uma entrada de ar e flanges (14)/(14') de montagem em ambos os lados. O corpo (12) é conectado com um elemento de saída cônica (18) e ainda com o combustor cilíndrico (20). Um segundo conjunto de tubos concêntricos (24) e (26) provido de aletas (42) e injetores de gás (48) é inserido dentro do corpo externo (12).
[014] O ar de combustão é suprido ao sistema de combustão (10) por meio de ventilador ou soprador de ar, e escoa pelo canal anular formado pelo corpo externo (12) e o tubo (26) e em sequência escoa pelas passagens abertas entre as aletas (42) do turbulador, formando, então, uma corrente com intensa componente rotacional. O gás combustível escoa pelo canal anular formado pelos tubos concêntricos (24) e (26). O tubo externo (26) possui perfurações (50), sobre as quais os injetores de gás (48) são instalados. O número de injetores (48), montados entre duas aletas (42) adjacentes, pode variar de um a dez; neste caso específico apresentamos um modelo com três injetores (48) dispostos entre duas aletas (42) adjacentes. Cada injetor possui orifícios perfurados (52) através dos quais o gás combustível (GC) é injetado na corrente de ar de combustão, que flui entre aletas adjacentes (42). Dessa forma, o gás combustível (GC) é uniformemente distribuído no fluxo de ar rotacional e em toda a circunferência do sistema de combustão (10).
[015] Para iniciar a operação do sistema de combustão (10), deve-se começar fornecendo ar ao sistema, por exemplo, 30-40% da vazão nominal de ar de combustão. Em seguida, acionar o ignitor elétrico (62), e na sequência abrir a válvula de gás combustível gradualmente até ocorrer a ignição da chama. Observar a chama através da porta de observação; o sensor de UV deve captar um forte sinal de presença de chama. Como resultado, a chama é estabilizada no elemento cônico (18) do sistema de combustão (10), que, junto com as aletas do turbulador e os injetores de gás, pode ser denominado como zona de mistura rápida. Então, ajustar os fluxos de gás e ar para a potência térmica e excesso de ar requeridos pelo processo.
[016] A chama, com intensa componente rotacional ("swirl"), sai pela peça cônica (18) em direção ao combustor cilíndrico (20), que tem o diâmetro significativamente maior do que a zona de mistura rápida. A chama principal é estabelecida no combustor. O diâmetro e comprimento do combustor (20) são determinados de forma que a reação de combustão ocorra completamente dentro do volume de combustor, com o excesso de ar exigido para reduzir a temperatura adiabática de chama e, assim, reduzir a formação de NOx.
[017] Devido à natureza das chamas rotacionais (ou, de modo geral, fluxos rotacionais), a área de pressão negativa é desenvolvida tanto ao longo do eixo do combustor (20) como da zona de mistura rápida. Como resultado, uma importante recirculação (retorno) dos produtos quentes de combustão movimenta-se ao longo do eixo do sistema de combustão (10) em direção ao turbulador e penetra na zona de mistura rápida. Essa recirculação constantemente promove a ignição da mistura de combustível/ar que vem do turbulador. Então, o mecanismo de estabilização de chama nesse modelo de sistema de combustão (10) ocorre pela recirculação dos produtos quentes de combustão. Após poucos minutos do início de operação, a parede do combustor(20) e a placa de material isolante (40) podem começar a brilhar. Esses elementos brilhantes podem ajudar na estabilização da chama por meio de mecanismo de transmissão de calor por radiação. A intensidade das superfícies brilhantes é fortemente dependente de sua temperatura, ou seja, quanto maior o excesso de ar utilizado, menor o efeito da radiação no mecanismo de estabilização da chama.
[018] Em sistemas de combustão de processo, o queimador pode operar com menor excesso de ar (10%-30%), porém a parede do combustor (20) e a placa frontal (38) podem vir a superaquecer. Neste caso faz-se necessário um meio de resfriamento para esses elementos.
[019] O nível de ar em excesso é elemento importante no controle de emissões do sistema de combustão (10). Quanto maior o excesso de ar, menor a temperatura adiabática de chama, e menor a formação de NOx térmico. Entretanto, o gás combustível precisa ser idealmente misturado com ar de combustão antes da ignição e com excesso de ar próximo a 60-70% para obter baixos níveis de Nox, que podem estar na faixa de de 10-20 ppm corrigido para 3% O2. Isso é válido somente para queimadores com bocal de mistura "pobre" rápida ou com design de pré-mistura "pobre". Por exemplo, se operarmos um queimador padrão com excesso de ar de 60-70%, o NOx pode ser 100 ppm ou ainda superior.
[020] O combustor pode ser fabricado a partir de material refratário. A utilização de excesso de ar superior a 70% pode levar à instabilidade do sistema de combustão (10), porém se a chama ainda estiver estável, pode levar à formação excessiva de CO (monóxido de carbono).
VANTAGENS
[021] As principais vantagens do sistema de combustão residem no fato da construtividade inovada, especialmente, pela previsão de injetores de gás junto ao arranjo de corrente de ar permitir a mistura do fluxo de gás e ar mais uniforme e mais rápida, o que leva a um design mais simples e mais compacto resultando na baixa emissão de NOx.
DESCRIÇÃO DAS FIGURAS
[022] A complementar a presente descrição de modo a obter uma melhor compreensão das características do presente invento e de acordo com uma preferencial realização prática do mesmo, acompanha a descrição, em anexo, um conjunto de desenhos, onde, de maneira exemplificada, embora não limitativa, representa seu funcionamento:
[023] a figura 1 mostra uma vista em perspectiva explodida dos elementos que compõem o sistema de combustão em questão;
[024] a figura 2 representa uma vista em perspectiva sistema montado ;
[025] a figura 3 revela uma vista em corte longitudinal A.A do eixo do sistema de combustão;
[026] a figura 4 ilustra a montagem dos tubos de fornecimento de gás com entrada de gás, aletas do turbulador e injetores de gás de combustível;
[027] a figura 5 mostra uma vista em perspectiva do turbulador, incluindo posicionamento das aletas e dos injetores de gás em relação entre si;
[028] a figura 6 ilustra as portas de descarga de injetor de gás posicionando-se com diferentes ângulos de descarga ao fluxo de ar; [029] a figura 7 representa uma vista em corte transversal B.B em um plano através do meio das aletas para ilustrar os injetores de gás posicionando-se em relação a cada aleta; e
[030] a figura 8 revela uma vista em corte longitudinal C.C dos injetores para ilustrar as distâncias e dimensões.
DESCRIÇÃO DA INVENÇÃO
[031] A presente patente de invenção se refere à "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", mais precisamente trata-se de sistema de combustão (10) para combustão industrial do tipo aplicado em geradores de gases quentes, caldeiras a vapor, instalações de queimadores únicos, fornos e outros processos. Dito sistema de combustão (10) tem um corpo externo (12), que é preferivelmente de formato cilíndrico com os flanges de montagem (14)/(14') dispostos nas aberturas de entrada e saída (ver figuras 1 e 2). Dito corpo externo (12) é equipado com uma entrada de ar (16) de formato retangular ou cilíndrico ou qualquer outro formato apropriado para o fornecimento de ar de combustão ao corpo externo (12).
[032] Segundo a presente invenção, o corpo externo (12) é anexado pelo flange (14') ao elemento cônico (18) (ver figura 3) que, por sua vez, é montado no combustor (20), o qual pode ser confeccionado em aço inoxidável ou material refratário, preferivelmente de formato cilíndrico. Dito corpo externo (12), elemento cônico (18) e combustor (20) quando montados compõem o corpo principal do sistema de combustão (10).
[033] O gás combustível é fornecido ao sistema de combustão (10) por meio de um conjunto de gás combustível (22) (ver figura 4) provido de tubos concêntricos (24) e (26) compondo um canal anular (28). A entrada (30) do gás combustível (GC) é montada ortogonalmente ao tubo externo (26). Um flange (34) bloqueia a entrada (32) com possibilidade potencial de instalação, por exemplo, de uma lança de óleo como segundo combustível. O lado de saída (36) é bloqueado com a placa (38) que é recoberta com uma camada de isolamento (40).
[034] A extremidade de saída do conjunto de gás combustível (22) (36) é equipada com uma pluralidade de aletas (42) de formato curvado (ver figura 5), as quais juntas com a superfície externa do tubo (26) compõem as passagens (46) para o fluxo de ar a ser defletido para a criação do movimento de rotação ("swirl"). Entre cada par de aletas (42), existe um conjunto de três injetores de gás (48), que podem ser fixados por meio de solda ao tubo externo (26) ou outra forma de fixação como rosca (não ilustrada), o qual prevê uma pluralidade de orifícios (50) alinhadas sob cada injetor (48), viabilizando o fluxo de gás combustível (GC) do espaço anular (28) para dentro do injetor (48).
[035] Cada injetor (48) tem uma pluralidade de aberturas (52) que injetam o gás combustível (GC), com os ângulos (a), (P), (y) pré-dispostos, no fluxo de ar de combustão. A altura dos injetores de gás (48) pode variar na direção do fluxo, como por exemplo, o primeiro injetor (48) conta com três orifícios de injeção (52), enquanto o segundo injetor (48) com quatro orifícios (52) e o terceiro injetor com cinco orifícios (52). O número de orifícios (52) de gás combustível (GC) em cada injetor (48) pode variar, porém a razão da área de descarga entre os injetores (48) é mantida a mesma, sendo que quanto mais alto o injetor (48), maior o número de aberturas de descarga (52). Cada injetor (48) de gás é montado inclinado de forma a ter seu eixo longitudinal o mais paralelo possível à superfície da aleta (42).
[036] Ditas aberturas (52) de descarga são distribuídas ao longo dos injetores (48) de modo que os jatos de gás (GC) são descarregados na corrente de ar de forma uniforme do fundo até o topo da passagem (46). Essa disposição garante que cada e todas as passagens (46) recebam um fluxo uniformemente distribuído de gás combustível (GC) e, assim, haja a mistura rápida entre ar e gás combustível (GC).
[037] O conjunto de gás combustível (22) é disposto no interior do corpo exterior (12) do sistema de combustão (10) e fixado a este pelo flange (54). O conjunto pode ter uma provisão para inserção de uma lança adicional de combustível alternativo, como óleo, alinhada ao eixo central (65) do sistema de combustão (10). O flange (34) está cobrindo a abertura (58) para essa provisão (ver figura 4).
[038] Ditos injetores de gás combustível (48) são dispostos dentro das passagens de ar (46) e apoiados na superfície de curvatura das aletas (42) (ver figuras 3 e 6). Portanto, os orifícios de descarga (52) de combustível estão localizados em uma cavidade aerodinâmica de baixa pressão, formada pela curvatura das aletas (42), resultando, assim, numa melhor dissipação dos jatos de gás combustível na corrente de ar e, desse modo, proporcionando sua mistura mais rápida com ar.
[039] Ditos injetores (48), também, são arranjados em fileira ao longo da direção de movimento de corrente de ar, um após o outro, podendo ser três, como no modelo apresentado, ou em maior ou menor número. A distância (L) entre os injetores (48) pode variar de 1 a 2 diâmetros (D) do injetor. O primeiro injetor (48) instalado é o mais curto com altura (Hl). O terceiro injetor (48) cuja extremidade (66) apresenta maior altura (H3). O segundo injetor (48) disposto entre o primeiro e terceiro injetor tem altura (H2) intermediária.
[040] O número de aberturas (52) e diâmetro (d) podem variar dependendo da capacidade térmica e tamanho físico do sistema de combustão (10), sendo que nesta realização, o primeiro injetor (48) é equipado com três aberturas (52), o segundo com quatro aberturas (52), e o terceiro com cinco aberturas (52). Para um dado sistema de combustão, todas as aberturas têm o mesmo diâmetro (d), porém este pode variar de dimensão dependendo do tamanho e capacidade térmica do sistema de combustão. As aberturas (52) estão alinhadas em uma fileira a partir da parede superior (66) do injetor (48), sendo igualmente distribuídas com uma distância (X) (ver figura 8) de cerca de 2 a 3 diâmetros (d). O gás combustível é injetado através das aberturas (52) de maneira uniforme cobrindo a distância a partir do fundo (68) à parte superior (66) de uma passagem de ar (46).
[041] O arranjo das aberturas de descarga (52) é feito de modo a que mais combustível seja injetado na parte superior da passagem de ar (46), pois o fluxo mássico de ar também é mais elevado nesta parte devido ao aumento exponencial da área da seção transversal ao longo do raio, partindo-se do eixo do queimador (65)) do sistema de combustão (10) em direção radial à periferia do mesmo ao longo da linha de centro (56) do sistema de combustão (10) (ver figura 7). Portanto, o menor injetor, de altura Hl possui apenas três orifícios de injeção, pois menos combustível é requerido na seção inferior, enquanto os injetores de altura (H2) e (H3) contam com mais orifícios, pois maior quantidade de combustível é necessária nas seções superiores. [042] A figura 6 representa a vista de topo dos injetores de gás (48) para ilustrar os ângulos (a, |3, y) em que os jatos de gás são descarregados na corrente de ar entre as aletas (42). As aberturas de descarga (52) de gás combustível direcionam os jatos de gás do injetor mais alto (H 3) com ângulo (y) em relação ao eixo do queimador (65) tal que a direção predominantemente seja paralela à linha tangencial à curva externa da aleta (42). As aberturas de descarga (52) de gás combustível direcionam os jatos de gás do injetor com altura (H2) com ângulo (P) em relação ao eixo do queimador (65) tal que a direção predominantemente seja paralela ao eixo (65) do sistema de combustão (10), ou seja, com ( igual a zero. As aberturas de descarga (52) de gás combustível direcionam os jatos de gás do injetor com altura (Hl) predominantemente no ângulo (a), que pode estar entre 0 - 90 graus ao eixo (65) do sistema de combustão (10). Esse arranjo e combinação dos ângulos de descarga permitem a mistura uniforme e mais rápida do que nos designs da técnica anterior.
[043] Dito sistema de combustão (10) é operado através de método de mistura rápida de gás combustível com elevado excesso de ar para produzir chamas com emissão ultrabaixa de NOx que apresenta as fases:
[044] - Fase 1 - O ar de combustão (60) (ver figura 3) é fornecido ao corpo externo (12) pelo soprador de ar ou ventilador (não ilustrados) e então, através das passagens (46) entre as aletas (42) do turbulador, é defletido e adquire componentes rotacionais, seguindo para a saída cônica (18) e obtendo um movimento de rotação dentro do cone (18). A intensidade do movimento de rotação depende do formato e número de aletas (42) instaladas no turbulador;
[045] - Fase 2 - 0 gás combustível (GC), por exemplo, gás natural, (ver figura 4) é fornecido ao canal (28), segue para os injetores de gás (48), a partir dos quais é descarregado nas passagens (46) através das aberturas (52) de injeção para serem misturados rapidamente com a corrente de ar rotacional. Após ignição, por exemplo, através de ignitor elétrico (62) (ver figura 3), a chama é estabilizada no elemento cônico (18) do sistema de combustão (10) que junto com as aletas (42) e injetores (48) compõe a zona de mistura rápida (Zl);
[046] - Fase 3 - A chama, com intensas componentes rotacionais, segue da saída cônica (18) ao combustor cilíndrico (20), que tem diâmetro maior do que o corpo externo (12). A chama continua o movimento de circulação no combustor. O diâmetro e comprimento do combustor (20) são determinados do modo que a reação de combustão seja completa dentro do volume de combustor (20). A reação completa garante mínimas emissões de CO e hidrocarbonetos não queimados para fora do tubo do combustor (20), bem como, emissão mínima de NOx na operação com elevado excesso de ar.
[047] De modo geral, fluxos e chamas com intensas componentes rotacionais criam zonas de baixa pressão, que por sua vez induzem a formação de recirculações. Neste sistema de combustão, a área de pressão negativa é desenvolvida ao longo do eixo (65) do combustor (20) e elemento cônico (18). Como resultado, o intenso refluxo dos produtos quentes de combustão movimenta-se ao longo do eixo (65) e penetra na zona de mistura rápida. Esse refluxo promove constantemente a ignição da mistura de combustível/ar que provém das passagens (46) do turbulador. Então, o mecanismo de estabilização de chama rotacional no sistema de combustão (10) é realizado pelo refluxo dos produtos quentes de combustão.
[048] O sistema de combustão (10) pode operar em níveis variáveis de ar de combustão, porém dentro dos limites de inflamabilidade. A quantidade de excesso de ar é parâmetro importante do controle de emissões do queimador. A utilização de elevado excesso de ar permite obter chamas de menor temperatura adiabática média, e, desse modo, a formação de NOx térmico é inibida. Porém o gás combustível precisa ser idealmente misturado com o ar (tipicamente com excesso de ar próximo a 60-70%) antes da ignição, para eliminar picos da temperatura na chama e, assim, reduzir a formação de NOx, que pode atingir emissões tão baixas como 10-12 ppm corrigido para 3% O2. Isso ocorre somente para sistemas de combustão (10) de bocal de mistura "pobre" rápida, ou em queimadores de pré-mistura "pobre". Por exemplo, ao operar um queimador padrão com ar em excesso 60-70%, o NOx pode ser lOOppm e ainda superior, devido aos picos da temperatura nas regiões de concentração estequiométrica e próximo a estequiométricas dentro da chama.
[049] Todos os elementos novos e exclusivos acima descritos do novo design de mistura rápida de sistema de combustão (10) permitem a mistura de jatos de gás e fluxo de ar mais uniformemente e mais rápida. Isso orientará o design mais simples e mais compacto do misturador de sistema de combustão. A emissão de NOx na saída também será reduzida, quando comparada com as técnicas anteriores.
[050] É certo que quando o presente invento for colocado em prática, poderão ser introduzidas modificações no que se refere a certos detalhes de construção e forma, sem que isso implique afastar-se dos princípios fundamentais que estão claramente substanciados no quadro reivindicatório, ficando assim entendido que a terminologia empregada não teve a finalidade de limitação.

Claims

REIVI N DICAÇÕES
1) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", mais precisamente trata-se de sistema de combustão (10) para combustão industrial do tipo aplicado em caldeiras de vapor industrial, instalações de queimadores únicos, fornos e outros processos; dito sistema de combustão (10) tem um corpo externo (12), que é preferivelmente de formato cilíndrico com os flanges de montagem (14)/( 14' ) dispostos nas aberturas de entrada e saída; dito corpo externo (12) é equipado com uma entrada de ar (16) de formato retangular ou cilíndrico ou qualquer outro formato apropriado para entregar o ar de combustão ao corpo externo(12); caracterizado por entre cada par de aletas (42) existir um conjunto de três injetores de gás (48), que são soldados ao tubo externo (26), o qual prevê uma pluralidade de orifícios (50) alinhados sob cada injetor (48) para o escoamento do gás combustível (GC) do espaço anular (28) para dentro de cada injetor (48), os quais, por sua vez, têm uma pluralidade de aberturas (52) que descarregam o gás combustível (GC) no fluxo de ar de combustão sob os ângulos pré- dispostos; ditos injetores de gás combustível (48) são dispostos dentro das passagens de ar (46) e apoiados em direção à superfície de curvatura das aletas (42) e, portanto, as aberturas de descarga (52) de combustível são dispostas em uma cavidade aerodinâmica de pressão inferior, que é formada devido à curvatura das aletas (42); ditas aberturas (52) de descarga dos injetores (48) são devidamente distribuídas para que os jatos de gás (GC) sejam descarregados uniformemente, do fundo até o topo da passagem (46), na corrente de ar que escoa através da passagem (46) entre as aletas (42); dita passagem (46) é dimensionada para que o gás combustível (GC) se misture com ar de maneira uniforme e rápida em toda e cada passagem .
2) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por a altura dos injetores de gás (48) poder variar na direção do fluxo, tal como, gradual, sendo que o primeiro injetor (48) com três aberturas de descarga (52), enquanto o segundo injetor (48) com quatro aberturas (52) e o terceiro injetor com cinco aberturas descarga (52).
3) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com as reivindicações 1 e 2, caracterizado por número de aberturas de descarga (52) de combustível (GC) em cada injetor (48) poder variar onde a razão da área de descarga entre os injetores (48) é mantida a mesma, sendo que quanto mais alto o injetor (48), maior o número de aberturas de descarga (52).
4) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por injetores (48) serem arranjados numa fileira ao longo da direção de movimento de corrente de ar, um após o outro, podendo ser três mais ou menos em números.
5) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por distância (L) entre os injetores (48) pode variar de 1 a 2 de um diâmetro (D) de injetor.
6) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por primeiro injetor (48) ser mais curto com altura (Hl); o terceiro injetor (48) cuja extremidade (66) apresenta maior altura (H3); o segundo injetor (48) disposto entre o primeiro e terceiro injetores tem altura (H2) intermediária.
7) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por número de aberturas (52) e diâmetro (d) poderem variar dependendo da capacidade e tamanho físico do sistema de combustão (10), sendo que nesta realização, o primeiro injetor (48) é equipado com três aberturas (52), o segundo com quatro aberturas (52), e o terceiro com cinco aberturas (52); todas as portas têm o mesmo diâmetro (d), dependendo do tamanho e capacidade térmica do queimador; as aberturas (52) são praticadas em uma fileira a partir da parede superior (66) do injetor (48), enquanto sendo regularmente distribuídas com uma distância (X) entre as adjacentes, que é cerca de 2 a 3 do diâmetro (d) de cada abertura (52); o gás combustível é descarregado através das aberturas (52) uniformemente cobrindo a distância a partir do fundo (68) à parte superior (66) de uma passagem de ar (46).
8) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por as aberturas de descarga (52) dos jatos de combustível de gás direto de injetor com altura (Hl) predominantemente no ângulo (a), poderem estar dentro de 0° a 90° ao eixo (65) do sistema de combustão (10); as 15 aberturas de descarga (52) de gás combustível direcionam os jatos de gás do injetor mais alto (H3) com ângulo (y) em relação ao eixo do queimador (65) paralela à linha tangencial à curva externa da aleta (42); as aberturas de descarga (52) de gás combustível direcionam os jatos de gás do injetor com altura (H 2) com ângulo (P) em relação ao eixo do queimador (65) predominantemente paralela ao eixo (65) do sistema de combustão (10) igual a zero.
9) "SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx", de acordo com a reivindicação 1, caracterizado por corpo principal do sistema de combustão (10) ser formado por corpo exteno (12) anexado pelo flange (14') ao elemento cônico (18) que, por sua vez, é montado no combustor (20), o qual pode ser confeccionado em aço inoxidável ou material refratário preferivelmente de formato cilíndrico; o gás combustível é entregue ao conjunto de gás combustível (22) provido de tubos coaxiais (24) e (26) compondo um canal (28); a entrada (30) do gás combustível (GC) é montada ortogonalmenteao tubo externo (26); um flange (34) bloqueia a entrada (32) passível de receber uma laça de óleo para utilização de combustível alternativo; o lado de saída (36) é bloqueado com a placa (38) que é recoberta com uma camada de isolamento (40); o conjunto de de gás combustível (22) no lado de descarga (36) é equipado com uma pluralidade de aletas (42) de formato curvado, as quais juntas com a superfície externa do tubo (26) compõem as passagens (46).
10) "MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", de acordo com as reivindicações 1 a 9, caracterizado por método de mistura rápida com elevado excesso de ar para produzir emissão ultrabaixa de NOx que apresenta as fases:
- fase 1 - fornecimento de ar de combustão ao corpo externo (12) que escoa através das passagens (46) das aletas (42) forma uma corrente de ar com intensas componentes rotacionais; o gás combustível é fornecido através do canal anular (28) que é formado por dois tubos coaxiais (24)/(26); o tubo externo tem perfurações (26), e sobre essas perfurações os injetores de gás (48) são instalados; cada injetor (48) possui orifícios (52) que descarregam o gás na corrente de ar de combustão ;
- fase 2- o gás combustível escoa através das aberturas (52) dos injetores (48) e é descarregado nas passagens (46) das aletas (42) do turbulador para ser uniformemente 16 distribuído em torno da circunferência e dentro do fluxo de arrotacional , e ainda para se misturar rápida e e completamente este;
- fase 3 - a mistura completamente misturada posteriormente é inflamada e estabilizada no elemento de cone (18) e em sequência no combustor (20); o mecanismo de estabilização é por meio de recirculação de produtos quentes de combustão movimentando-se em direção aposta à chama a partir do combustor para dentro do elemento cônico (18); esses produtos quentes de combustão constantemente reacenderão a mistura de gás combustível/ar que provém das passagens (46) das aletas (42);
- fase 4 - a natureza da estabilização de chama é um efeito aerodinâmico de reignição.
11) "MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", de acordo com a reivindicação 10, caracterizado por método que inclui a descarga e mistura de gás combustível com ar em uma zona de pressão inferior (46) criada ao longo da curva externa da aleta (42).
12) "MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", de acordo com a reivindicação 10, caracterizado por injetores de gás (48) de diferentes alturas (Hl), (H2) e (H3) e números de aberturas de descarga (52) dispostos de maneira que o gás combustível seja descarregado gradualmente ao do fundo ao topo da passagem (46) entre as aletas (42).
13) "MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", de acordo com a reivindicação 12, caracterizado por etapa em que cada injetor (48) tendo diferentes alturas (Hl), (H2) e (H3) é circundado por correntes de ar fresco, entretanto sem que haja interposição entre os jatos de gás de cada injetor e
14) "MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", de acordo com a reivindicação 10, caracterizado por método incluir a etapa em que as aberturas de descarga (52) dos injetores (48) descarregarem os jatos de gás na corrente de ar sob os ângulos especialmente dispostos.
15) "MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL", de acordo com a reivindicação 14, caracterizado por método incluir a etapa em que os jatos de gás a partir do injetor curto serem descarregados dentro de 0° a 90 graus ao eixo de sistema de combustão (10), a partir do injetor (48) de altura média (H2) predominantemente paralelo ao eixo 17
(26) do queimador (10), do injetor (48) mais alto (H3) predominantemente paralelo à linha tangencial à curva externa da aleta.
PCT/BR2021/050385 2021-09-09 2021-09-09 SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL WO2023035049A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21956273.3A EP4400765A1 (en) 2021-09-09 2021-09-09 Combustion system with ultralow nox emission and quick fuel mixing method
AU2021464172A AU2021464172A1 (en) 2021-09-09 2021-09-09 Combustion system with ultralow nox emission and quick fuel mixing method
PCT/BR2021/050385 WO2023035049A1 (pt) 2021-09-09 2021-09-09 SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL
BR112023014451A BR112023014451A2 (pt) 2021-09-09 2021-09-09 Sistema de combustão com emissão ultrabaixa de nox e método de mistura rápida de combustível

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2021/050385 WO2023035049A1 (pt) 2021-09-09 2021-09-09 SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL

Publications (1)

Publication Number Publication Date
WO2023035049A1 true WO2023035049A1 (pt) 2023-03-16

Family

ID=85506018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050385 WO2023035049A1 (pt) 2021-09-09 2021-09-09 SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL

Country Status (4)

Country Link
EP (1) EP4400765A1 (pt)
AU (1) AU2021464172A1 (pt)
BR (1) BR112023014451A2 (pt)
WO (1) WO2023035049A1 (pt)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460512A (en) 1993-05-27 1995-10-24 Coen Company, Inc. Vibration-resistant low NOx burner
US5667376A (en) 1993-04-12 1997-09-16 North American Manufacturing Company Ultra low NOX burner
US20090029302A1 (en) 2007-07-27 2009-01-29 Steven Bortz System of close coupled rapid mix burner cells
US8118588B2 (en) 2004-02-25 2012-02-21 Coen Company, Inc. Energy efficient low NOx burner and method of operating same
US20130203003A1 (en) 2011-08-10 2013-08-08 Bruce E. Cain Low NOx Fuel Injection for an Indurating Furnace
US8662887B2 (en) 2009-03-24 2014-03-04 Fives North American Combustion, Inc. NOx suppression techniques for a rotary kiln
US8794960B2 (en) 2004-02-25 2014-08-05 John Zink Company, Llc Low NOx burner
CN205939136U (zh) * 2016-08-26 2017-02-08 中能服能源科技股份有限公司 一种新型低氮氧化物燃烧器结构
CN205939145U (zh) * 2016-08-26 2017-02-08 中能服能源科技股份有限公司 一种低NOx燃气燃烧器结构
CN107676781A (zh) * 2017-05-17 2018-02-09 温岭市百然机械有限公司 应用于低氮短焰燃烧器的强制掺混结构
BR102018001237A2 (pt) * 2018-01-19 2019-08-06 Aestus Consultoria Em Engenharia Térmica Ltda Queimador convectivo recuperativo
CN110388643A (zh) * 2019-07-26 2019-10-29 合肥工业大学 富氢燃料气低污染燃烧的燃气空气预混器
CN210532361U (zh) * 2019-05-20 2020-05-15 岳阳恒盛石化科技有限公司 一种自混合低NOx燃气燃烧器
CN212777339U (zh) * 2020-08-17 2021-03-23 深圳市佳运通电子有限公司 一种稳定燃烧的低NOx燃烧器结构
CN112762448A (zh) * 2021-02-01 2021-05-07 西安交通大学 一种耦合分级旋流分散燃烧技术的低NOx燃气燃烧器
BR102012005176B1 (pt) * 2012-03-08 2021-06-08 Global Service Controle Termico E Manutencao Refrataria Ltda. dispositivo para câmara de combustão de queimador de forno industrial, com sistema de direcionamento de ar e refrigeração
CN112963832A (zh) * 2021-04-02 2021-06-15 中国科学技术大学 一种具有防爆功能的全预混低NOx燃烧器

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667376A (en) 1993-04-12 1997-09-16 North American Manufacturing Company Ultra low NOX burner
US5460512A (en) 1993-05-27 1995-10-24 Coen Company, Inc. Vibration-resistant low NOx burner
US8118588B2 (en) 2004-02-25 2012-02-21 Coen Company, Inc. Energy efficient low NOx burner and method of operating same
US8794960B2 (en) 2004-02-25 2014-08-05 John Zink Company, Llc Low NOx burner
US20090029302A1 (en) 2007-07-27 2009-01-29 Steven Bortz System of close coupled rapid mix burner cells
US8662887B2 (en) 2009-03-24 2014-03-04 Fives North American Combustion, Inc. NOx suppression techniques for a rotary kiln
US20130203003A1 (en) 2011-08-10 2013-08-08 Bruce E. Cain Low NOx Fuel Injection for an Indurating Furnace
BR102012005176B1 (pt) * 2012-03-08 2021-06-08 Global Service Controle Termico E Manutencao Refrataria Ltda. dispositivo para câmara de combustão de queimador de forno industrial, com sistema de direcionamento de ar e refrigeração
CN205939145U (zh) * 2016-08-26 2017-02-08 中能服能源科技股份有限公司 一种低NOx燃气燃烧器结构
CN205939136U (zh) * 2016-08-26 2017-02-08 中能服能源科技股份有限公司 一种新型低氮氧化物燃烧器结构
CN107676781A (zh) * 2017-05-17 2018-02-09 温岭市百然机械有限公司 应用于低氮短焰燃烧器的强制掺混结构
BR102018001237A2 (pt) * 2018-01-19 2019-08-06 Aestus Consultoria Em Engenharia Térmica Ltda Queimador convectivo recuperativo
CN210532361U (zh) * 2019-05-20 2020-05-15 岳阳恒盛石化科技有限公司 一种自混合低NOx燃气燃烧器
CN110388643A (zh) * 2019-07-26 2019-10-29 合肥工业大学 富氢燃料气低污染燃烧的燃气空气预混器
CN212777339U (zh) * 2020-08-17 2021-03-23 深圳市佳运通电子有限公司 一种稳定燃烧的低NOx燃烧器结构
CN112762448A (zh) * 2021-02-01 2021-05-07 西安交通大学 一种耦合分级旋流分散燃烧技术的低NOx燃气燃烧器
CN112963832A (zh) * 2021-04-02 2021-06-15 中国科学技术大学 一种具有防爆功能的全预混低NOx燃烧器

Also Published As

Publication number Publication date
EP4400765A1 (en) 2024-07-17
AU2021464172A1 (en) 2023-09-28
BR112023014451A2 (pt) 2023-12-12

Similar Documents

Publication Publication Date Title
US11747013B2 (en) Low NOx and CO combustion burner method and apparatus
JP3930948B2 (ja) 低NOx排出渦巻きバーナー
US5067419A (en) Low nox boiler
US20160025333A1 (en) Perforated flame holder and burner including a perforated flame holder
US8118588B2 (en) Energy efficient low NOx burner and method of operating same
BR112014011437B1 (pt) aparelho queimador para um sistema de forno, e, método para operar um queimador
CA3009668C (en) Low nox burner apparatus and method
EP3152490B1 (en) Non-symmetrical low nox burner apparatus and method
US5562440A (en) Gas burner with radiant retention head
US20230014871A1 (en) Radiant wall burner
WO2023035049A1 (pt) SISTEMA DE COMBUSTÃO COM EMISSÃO ULTRABAIXA DE NOx E MÉTODO DE MISTURA RÁPIDA DE COMBUSTÍVEL
US20050003316A1 (en) Counterflow fuel injection nozzle in a burner-boiler system
CA3014023C (en) Burner apparatus and method of combustion
BR112012013257B1 (pt) queimador industrial e processo de combustão correlacionado a fornos de tratamento térmico
JP2005201514A (ja) 多管式貫流ボイラ
JPH03199805A (ja) 低NOxボイラおよびボイラ用バーナ
KR102647978B1 (ko) 예혼합 수냉연소 버너
TWI807525B (zh) 具有固定葉片的燃燒器
JP2023154262A (ja) バーナ
Carroll et al. Low NO x and CO combustion burner method and apparatus
JPH0478886B2 (pt)
JP3896591B2 (ja) 二段燃焼装置
KR20210000951A (ko) 단계 연소형 저녹스 연소버너
JPH043802A (ja) 低NO↓xボイラ用バーナ並びに低NO↓xボイラ及びその運転方法
Lifshits et al. Vibration-resistant low NO x burner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956273

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014451

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021464172

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021464172

Country of ref document: AU

Date of ref document: 20210909

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023014451

Country of ref document: BR

Free format text: APRESENTE NOVAS FOLHAS DE (RELATORIO DESCRITIVO/ REIVINDICACOES/RESUMO/DESENHOS) ADAPTADAS AO ART. 39 DA INSTRUCAO NORMATIVA/INPI/NO 31/2013, UMA VEZ QUE O CONTEUDO ENVIADO NA PETICAO NO 870230063094 DE 19/07/2023 ENCONTRA-SE FORA DA NORMA NO QUE SE REFERE A NUMERACAO DAS PAGINAS. A EXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207.

ENP Entry into the national phase

Ref document number: 112023014451

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230719

WWE Wipo information: entry into national phase

Ref document number: 2021956273

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021956273

Country of ref document: EP

Effective date: 20240409