WO2023033394A1 - 유기화합물 흡착제 및 이를 포함하는 기체송풍장치 - Google Patents

유기화합물 흡착제 및 이를 포함하는 기체송풍장치 Download PDF

Info

Publication number
WO2023033394A1
WO2023033394A1 PCT/KR2022/011852 KR2022011852W WO2023033394A1 WO 2023033394 A1 WO2023033394 A1 WO 2023033394A1 KR 2022011852 W KR2022011852 W KR 2022011852W WO 2023033394 A1 WO2023033394 A1 WO 2023033394A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
compound adsorbent
organometallic structure
organometallic
equation
Prior art date
Application number
PCT/KR2022/011852
Other languages
English (en)
French (fr)
Inventor
박교성
최민기
이태희
권세현
박도영
신창훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220091911A external-priority patent/KR20230033579A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280051624.9A priority Critical patent/CN117693514A/zh
Publication of WO2023033394A1 publication Critical patent/WO2023033394A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/008Indoor units, e.g. fan coil units with perfuming or deodorising means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media

Definitions

  • the present invention relates to an organic compound adsorbent and a gas blowing device including the same, and more particularly, to an organic compound adsorbent capable of improving the adsorption amount and adsorption rate of volatile organic compounds under dynamic gas flow conditions, and including the same It is about a gas blower.
  • Volatile Organic Compounds are air pollutants and carcinogenic toxic compounds that have a very harmful effect on the human body.
  • organic compound adsorbents containing activated carbon have been used in air purifiers, air purification filters, air conditioners, etc. Performance was a weak issue.
  • a porous metal organic framework can improve the performance of removing formaldehyde and ammonia among volatile organic compounds.
  • MOF metal organic framework
  • the present invention is to solve the above problems, focusing on the fact that there is a relationship between the structure of the organometallic structure and the adsorption capacity of volatile organic compounds, the BET specific surface area of the organometallic structure, the unit pore inlet of the organometallic structure
  • An organic compound adsorbent capable of improving the adsorption amount and adsorption rate of volatile organic compounds adsorbed inside the pores under dynamic gas flow conditions by optimizing the average diameter range and the average diameter range inside the unit pores, and gas containing the same It is intended to provide a blower.
  • the present invention provides an organic compound adsorbent and a gas blowing device.
  • the present invention includes a variable pore by a binding structure of a metal ion and an organic ligand, has a BET specific surface area of 500 m 2 /g or more, and satisfies Equation 1 below under a gas flow with a flow rate of 1 cm / sec or more organometallic structures; and an organic compound adsorbent comprising a carbon-based support supporting the organometallic structure.
  • x is the average diameter (nm) of the unit pore inlet of the organometallic structure measured by any one or more of X-ray diffraction, gas adsorption, and mercury porosimeter ego,
  • y is the average diameter inside the unit pores of the organometallic structure measured by any one or more of X-ray diffraction, gas adsorption, and mercury porosimeter (nm) am.
  • the present invention provides the organic compound adsorbent according to (1) above, wherein x is 0.2 nm or more and 1.4 nm or less, and y is 0.5 nm or more and 2.2 nm or less.
  • the present invention provides the organic compound adsorbent according to (1) or (2) above, wherein x is 0.35 nm or more and 1.2 nm or less, and y is 0.7 nm or more and 2.0 nm or less.
  • the present invention provides the organic compound adsorbent according to any one of (1) to (3) above, wherein the organometallic structure has a removal rate constant value of 0.03 or more calculated by Equation 2 below.
  • C t is the concentration of formaldehyde after t minutes
  • C i is the initial formaldehyde concentration
  • T means elapsed time (min).
  • the present invention provides the organic compound adsorbent according to any one of (1) to (4) above, wherein the organometallic structure has a BET specific surface area of 800 m 2 /g or more.
  • the metal ion is sodium (Na), potassium (K), rubidium (Rb), calcium (Ca), strontium (Sr), Barium (Ba), Scandium (Sc), Yttrium (Y), Hafnium (Hf), Niobium (Nb), Chromium (Cr), Silver (Ag), Indium (In), Germanium (Ge), Tin (Sn), Aluminum (Al), Iron (Fe), Molybdenum (Mo), Tungsten (W), Vanadium (V), Zinc (Zn), Zirconium (Zr), Copper (Cu), Magnesium (Mg), Manganese (Mn), Provided is an organic compound adsorbent that is an ion of at least one metal selected from the group consisting of nickel (Ni), titanium (Ti) and lanthanide transition metals.
  • the present invention provides the organic compound adsorbent according to any one of (1) to (6) above, wherein the organic ligand includes two or more functional groups capable of bonding with the metal ion.
  • the organic ligand is imidazole, alkylimidazole, alkoxyimidazole, terephthalic acid ), aminoterephthalic acid, trimesic acid, fumaric acid, and maleic acid.
  • the present invention according to any one of (1) to (8), wherein the carbon-based support is one selected from the group consisting of carbon nanotubes, graphene, graphite, amorphous carbon, carbon black, and activated carbon. It provides an organic compound adsorbent comprising the above.
  • the present invention is an organic compound according to any one of (1) to (9) above, wherein the adsorbent comprises 3 or more and 95 or less parts by weight of the organometallic structure based on 100 parts by weight of the carbon-based support. adsorbent is provided.
  • the present invention provides a gas blowing device including the organic compound adsorbent according to any one of (1) to (10) above and having a flow rate of gas.
  • the BET specific surface area of the organometallic structure is 500 m 2 /g or more, and the relationship between the average diameter inside the unit pores of the organometallic structure and the average diameter inside the unit pores satisfies Equation 1, so that the flow rate is 1 cm It is possible to improve the adsorption amount and adsorption rate of volatile organic compounds even at a dynamic gas flow of .
  • 1 is a schematic diagram of a measuring device for evaluating the volatile organic compound removal performance of the organic compound adsorbent of the present invention.
  • Figure 2 is a graph showing the formaldehyde reduction amount of the organic compound adsorbent of the present invention over time through the measuring device.
  • Example 3 shows an image visualizing the crystal structure of the organometallic structure of Example 1 through a visualization program (Mercury).
  • the diameter may be defined as the length of the longest straight line among straight lines connecting two different points in a circular, elliptical, or polygonal shape constituting the cross section of a unit pore of an organometallic structure.
  • the average diameter is 50% of the volume cumulative amount from the diameter distribution measured using at least one method of X-ray diffraction, gas adsorption, and mercury porosimeter. It can be defined as a diameter that corresponds to % or more.
  • the average diameter inside the unit pores may mean the average depth inside the unit pores of the organometallic structure.
  • the organometallic structure is referred to as a metal-organic framework (MOF), and a crystal in which metal ions or ion clusters are connected by organic ligands acting as linkers to form a network of primary, secondary, or tertiary structures. It is an organic-inorganic hybrid material.
  • MOF metal-organic framework
  • This organometallic structure is synthesized by microwave heating that heats the reactants using the interaction between electromagnetic waves and electrified bodies, metal cation materials such as Zn and Cu, and 1,3,5-H 3 BTC, H 2 BDC (OH ) 2, etc., electrochemical synthesis using solvent heat after combining linkers, or mechanochemical synthesis using a chemical conversion process after breaking intramolecular bonds.
  • the functional group on the surface of the organometallic structure can be adjusted or the pore size can be finely changed, it can be used as a drug delivery system in the biomedical field, and since the organometallic structure contains metal ions or ion clusters, the catalytic reaction It can also be used as a heterogeneous catalyst in anaerobic olefin oxidation, olefin epoxidation, and Friedel-Crafts benzylation.
  • the organometallic structure has a porous structure in which empty spaces exist in the framework. Due to the porous structure of the organometallic structure, the organometallic structure has a high gas storage capacity and can reversibly adsorb or desorb gas under mild conditions, so it can be used in the field of storing gases such as hydrogen, methane, and carbon dioxide. and can selectively separate a specific gas from a gas mixture.
  • gases such as hydrogen, methane, and carbon dioxide.
  • the organometallic structure has adsorption properties for various organic compounds, and particularly exhibits excellent adsorption properties for volatile organic compounds referred to as VOC (Volatile Organic Compounds).
  • the volatile organic compound is a general term for liquid or gaseous organic compounds that easily evaporate into the air, and is an air pollutant and a toxic chemical substance having carcinogenicity, and is also a precursor of photochemical oxides.
  • the emission source there are naturally emitted compounds and artificially emitted compounds. Particularly problematic are compounds such as formaldehyde and ammonia. Therefore, it shows excellent adsorption to volatile organic compounds.
  • the structure of the porous organometallic structure may have a shape in which the average diameter inside the unit pores is larger than the average diameter at the entrance of the unit pores. Due to this, volatile organic compound molecules that have entered the pores of the organometallic structure cannot be re-desorbed and may be adsorbed into the pores. In addition, in an environment of static gas flow, by increasing the average diameter inside the unit pores of the organometallic structure, the space for adsorbing volatile organic compounds inside the pores is increased, so that the amount of adsorption of volatile organic compounds can be improved. there is.
  • the inventors of the present invention studied to solve the problem that the adsorption amount and adsorption rate of volatile organic compounds are lowered when organometallic structures conventionally used to adsorb volatile organic compounds are applied to environments of gas flow such as air purifiers and air conditioners.
  • the BET specific surface area of the organometallic structure is 500 m 2 /g or more, and the average diameter inside the unit pores of the organometallic structure and the relationship between the average diameter inside the unit pores satisfy certain conditions, the flow rate
  • the present invention was completed by finding that the adsorption amount and adsorption rate of volatile organic compounds can be improved even in a dynamic gas flow of 1 cm/sec or more, such as air flow.
  • the present invention is an organometallic structure that includes variable pores by a bonding structure of metal ions and organic ligands, has a BET specific surface area of 500 m 2 /g or more, and satisfies Equation 1 below under a gas flow with a flow rate of 1 cm/sec or more. and an organic compound adsorbent comprising a carbon-based support supporting the organometallic structure.
  • Equation 1 x is the unit pore entrance of the organometallic structure measured by any one or more of X-ray diffraction, gas adsorption, and mercury porosimeter. is the average diameter (nm), and y is the unit of the organometallic structure measured by any one or more of X-ray diffraction, gas adsorption, and mercury porosimeter It is the average diameter inside the pores (nm).
  • the organometallic structure of the present invention includes variable pores due to the bonding structure of metal ions and organic ligands.
  • the variable pore may mean that the pore diameter is not fixed and the pore diameter is changed according to a specific environment.
  • the organic ligand constituting the organometallic structure may have a characteristic of being rotated along an axis that is bonded to the metal ion without being fixed at room temperature, so that the shape of the organometallic structure and the shape of the organometallic structure may change according to the rotation of the organic ligand.
  • the average diameter of the entrance of the unit pore and the average diameter inside the unit pore may be varied.
  • the average diameter of the entrance of the unit pores of the organometallic structure and the average diameter of the inside of the unit pores may change.
  • the average diameter of the unit pore inlet of the organometallic structure/average diameter inside the unit pore, x/y is 0.4 or more, 0.45 or more, 0.5 or more, 0.53 or more, 0.55 or more, 0.58 or more, 1.0 or less, 0.95 or less, 0.9 or less, 0.85 or less, 0.8 or less, 0.75 or less, 0.7 or less, 0.65 or less, or 0.6 or less.
  • Equation 1 when the average diameter (nm) of the unit pore inlet of the organometallic structure/average diameter (nm) inside the unit pore is outside the lower limit of the numerical range, the organometallic structure is included in the gas having the flow rate Since the contact time between the organometallic structure and the volatile organic compound is shorter than the time required to adsorb the volatile organic compound, the effect of the organometallic structure adsorbing the volatile organic compound may be significantly reduced.
  • the organometallic structure of the present invention may have a BET specific surface area of 500 m 2 /g or more, 800 m 2 /g or more, 1,000 m 2 /g or more, or 1,500 m 2 /g or more.
  • x may be 0.2 nm or more and 1.4 nm or less
  • y may be 0.5 nm or more and 2.2 nm or less. More specifically, in Equation 1, x may be 0.2 nm or more, 0.25 nm or more, 0.3 nm or more, 0.35 nm or more, 0.4 nm or more, 1.4 nm or less, 1.3 nm or less, or 1.2 nm or less. Also, in Equation 1, y may be 0.5 nm or more, 0.6 nm or more, 0.7 nm or more, 2.2 nm or less, 2.1 nm or less, or 2.0 nm or less.
  • the pore diameter of the organometallic structure satisfying the above-mentioned range reduces the rate at which the adsorbed volatile organic compounds are re-desorbed without deteriorating the performance of adsorbing volatile organic compounds having a large molecular weight, so that the flow rate is 1 cm / sec or more. Not only the amount of volatile organic compounds adsorbed in the phosphorus gas flow, but also the adsorption rate can be improved.
  • the organic compound adsorbent of the present invention may be an organic compound adsorbent in which the organometallic structure has a removal rate constant value calculated by Equation 2 below of 0.03 or more.
  • C t is the concentration of the target organic compound after t minutes ( ⁇ mol/mol)
  • C i is the concentration of the initial target organic compound ( ⁇ mol/mol)
  • k is the removal rate constant
  • t is the elapsed time (min) it means.
  • the target organic compound may be formaldehyde or ammonia, and specifically, formaldehyde.
  • the removal rate constant k can be obtained from linear regression analysis of t and InC t .
  • the value of the removal rate constant k is an index to check the performance of the adsorption amount and adsorption rate of the organic compound adsorbent, and when the value of the removal rate constant k satisfies the numerical range of 0.03 or more, in a dynamic gas flow Optimal adsorption amount and adsorption rate for adsorbing volatile organic compounds can be realized.
  • the organometallic structure of the present invention is composed of a bonding structure of metal ions and organic ligands, and the metal ions are sodium (Na), potassium (K), rubidium (Rb), calcium (Ca), strontium (Sr), barium (Ba), Scandium (Sc), Yttrium (Y), Hafnium (Hf), Niobium (Nb), Chromium (Cr), Silver (Ag), Indium (In), Germanium (Ge), Tin (Sn), Aluminum (Al), Iron (Fe), Molybdenum (Mo), Tungsten (W), Vanadium (V), Zinc (Zn), Zirconium (Zr), Copper (Cu), Magnesium (Mg), Manganese (Mn), Nickel It may be an ion of one or more metals selected from the group consisting of (Ni), titanium (Ti), and lanthanide-based transition metals.
  • the metal ions are sodium (Na), potassium (K), rubidium (Rb
  • the organic ligand may include two or more functional groups capable of bonding with the metal ion, and for example, a compound containing a functional group containing nitrogen (N), oxygen (O), or sulfur (S) can, specifically, imidazole, alkylimidazole, alkoxyimidazole, terephthalic acid, aminoterephthalic acid, trimesic acid, fumaric acid ( It may be at least one selected from the group consisting of fumaric acid and maleic acid.
  • N nitrogen
  • O oxygen
  • S sulfur
  • the organometallic structure of the present invention may be a MIL (Materials Institute Lavoisier)-based organometallic structure, preferably MIL-125 (Ti) containing a titanium-based (Ti) metal.
  • MIL Magnetics Institute Lavoisier
  • the organometallic structure of the present invention may have a water adsorption amount of 40 wt% or less measured at a relative humidity of 100% or less.
  • the moisture adsorption amount measured at a relative humidity of 100% or less of the organometallic structure of the present invention may be 40 wt% or less, 30 wt% or less, 20 wt% or less, or 10 wt% or less.
  • an organic compound adsorbent comprising the organometallic structure supported on a support.
  • the support may be a carbon-based support and may include at least one selected from the group consisting of carbon nanotubes, graphene, graphite, amorphous carbon, carbon black, and activated carbon.
  • activated carbon having excellent toluene adsorption performance in consideration of the fact that the organometallic nanostructure has a relatively inferior toluene adsorption performance among volatile organic compounds.
  • the organometallic structure may be included in an amount of 3 to 95 parts by weight, 30 to 95 parts by weight, 50 to 90 parts by weight, or 50 to 80 parts by weight based on 100 parts by weight of the support.
  • the organometallic structure may be supported on a carbon-based support or between carbon-based supports in the form of powder, granules, or coating.
  • the organic compound adsorbent may be prepared by filling an organometallic structure between a carbon-based support in the form of a non-woven fabric, the carbon-based support may be formed in a mesh form, and the carbon-based support may be formed of an organometallic structure. In order to prevent the organic compound adsorbent from escaping to the outside, it may be adjusted in the form of a mesh of an appropriate size as needed.
  • the mesh diameter of the carbon-based support may be 160 um or less, 150 um or less, 140 um or less, 130 um or less, or 120 um or less.
  • the organic compound adsorbent may be a moisture absorbent or deodorant.
  • a gas blowing device including the organic compound adsorbent and having a flow rate of gas
  • the gas blower can be used without limitation for products requiring an organic compound adsorbent among products that have a flow rate of gas, and can be applied to various products such as air purifiers and air conditioners.
  • Solution 1 was prepared by dissolving 5.94 g of zinc nitrate hexahydrate in 30 ml of distilled water, and solution 2 was prepared by mixing 3.28 g of 2-methylimidazole, 50 ml of triethylamine, and 37.6 g of saturated aqueous ammonia. After mixing the solution 1 and solution 2 and stirring at room temperature for 10 minutes, a white solid formed was obtained by centrifugation. The white solid was washed once with 100 ml of DMF and three times with 100 ml of methanol, and then dried in a vacuum oven at 120 °C to obtain an organometallic structure.
  • the average diameter of the unit pore entrance and the average diameter inside the unit pores, BET specific surface area, and VOC removal performance were measured by the following methods, and the measurement results are shown in Table 1 below.
  • CADR Car Air Delivery Rate
  • removal rate constant were calculated and shown in Table 1 in order to compare the removal performance of Examples and Comparative Examples.
  • the method for measuring the average diameter inside the unit pores is the method for measuring the average diameter at the entrance of the unit pores except for measuring the center distance of two atoms constituting the inside of the unit pores of the organometallic structure.
  • the average diameter inside the unit pores was measured in the same manner as described above.
  • FIG. 3 shows an image visualizing the crystal structure of the organometallic structure of Example 1 through a visualization program (Mercury).
  • the image shows the average position of atoms constituting the crystal structure of the organometallic structure by repeatedly photographing the crystal structure of the organometallic structure through the visualization program.
  • the surface area was measured by a nitrogen low-temperature adsorption method using BELSORP-max II of BEL Japan. Each organometallic structure was heated at 120 °C for 12 hours in a vacuum to remove moisture and residual solvent contained in the organometallic structure. After measuring the adsorption curve of nitrogen gas in a state where the vacuum-dried organometallic structure was cooled with liquid nitrogen, the surface area was measured using the BET method using the adsorption curve.
  • VOC removal performance The VOC removal performance of the organometallic structure was measured using the measuring device shown in FIG. 1 .
  • 1 is a schematic diagram of a measuring device for evaluating the volatile organic compound removal performance of the organic compound adsorbent of the present invention.
  • the removal rate constant k can be calculated by Equation 2 below
  • the CADR can be calculated by Equation 3 below.
  • the CADR is an index used to evaluate the performance of an air purifier and represents the amount of air that can be purified per unit area and unit time.
  • C t is the concentration of the target organic compound after t minutes ( ⁇ mol/mol)
  • C i is the concentration of the initial target organic compound ( ⁇ mol/mol)
  • k is the removal rate constant
  • t is the elapsed time (min) it means.
  • CADR -(V/t) ⁇ (ln(C t2 /C i2 )- ln(C t1 /C i1 ))
  • CADR is the purification capacity (m3/min)
  • V is the test chamber volume (m3)
  • T is the measurement time (min) at reduced operation
  • C i1 is the particle concentration at the measurement time t min (pcs/c at the time of natural decrease) m 3 )
  • C t2 is the particle concentration (piece/cm 3 ) at the measurement time t min when the operation is reduced.
  • Figure 2 is a graph showing the formaldehyde reduction amount of the organic compound adsorbent of the present invention over time through the evaluation device.
  • Examples 1 to 3 satisfy Equation 1 and the average diameter of the entrance and inside of the unit pores of the organic metal structure, and furthermore, have a BET specific surface area of 500 m 2 /g or more. Therefore, it can be seen that the value of the removal rate constant k is higher than 0.03.
  • Comparative Examples 1 and 2 do not satisfy the average diameter of the pore entrance and the pore interior and Equation 1 even if the BET specific surface area is 1000 m 2 /g or more, so the removal rate constant value is relatively less than 0.03.
  • the BET specific surface area value corresponds to less than 500 m 2 /g, so it can be seen that the removal rate constant value is remarkably low. Accordingly, as in the present invention, the most efficient adsorption amount and adsorption when the average diameter value of the entrance and the inside of the pores of the organometallic structure and the numerical range of Equation 1 are satisfied, and the BET specific surface area value is 500 m / g or more. It can be confirmed that an organometallic structure having high speed can be obtained, and an organic compound adsorbent including the same can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 유기금속 구조체의 BET 비표면적이 500m2/g이상이며, 유기금속 구조체의 단위 기공 내부의 평균직경 및 단위 기공 내부의 평균직경과의 관계가 수학식 1을 만족함으로써, 유속이 1cm/sec 이상인 동적인 기체 흐름에서도 휘발성 유기화합물의 흡착량 및 흡착속도를 향상시킬 수 있어, 기체청정기, 에어컨 등 기체 흐름의 환경에서 효율적으로 휘발성 유기화합물을 흡착할 수 있는 유기화합물 흡착제 및 이를 포함하는 기체송풍장치에 관한 것이다.

Description

유기화합물 흡착제 및 이를 포함하는 기체송풍장치
관련 출원과의 상호 인용
본 출원은 2021년 08월 30일자 한국특허출원 제10-2021-0114705호 및 2022년 07월 25일자 한국특허출원 제10-2022-0091911호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 유기화합물 흡착제 및 이를 포함하는 기체송풍장치에 관한 것으로, 보다 상세하게는 기체의 흐름이 동적인 조건에서 휘발성 유기화합물의 흡착량 및 흡착속도를 향상시킬 수 있는 유기화합물 흡착제 및 이를 포함하는 기체송풍장치에 관한 것이다.
기체 중에는 미세먼지, 초미세먼지, 유해가스, 잡균, 곰팡이, 바이러스와 같은 물질들이 부유하고 있으며, 이러한 부유물들은 질병을 유발하여 건강에 나쁜 영향을 미친다. 특히, 휘발성 유기화합물(Volatile Organic Compounds)은 대기 오염물질이며 발암성을 지닌 독성 화합물질로서 인체에 매우 유해한 영향을 미친다.
이러한 휘발성 유기화합물을 저감하기 위해, 공기 청정기, 공기 정화 필터, 에어컨 등에 활성탄이 포함된 유기화합물 흡착제를 사용하였으나, 휘발성 유기 화합물 중 톨루엔을 제거하는 데 우수한 효과를 보이는 데 반해 포름알데히드 및 암모니아를 제거하는 성능은 취약한 문제가 있었다.
최근 들어, 다공성의 유기금속 구조체인 MOF(Metal Organic Framework)는 휘발성 유기화합물 중 포름알데히드 및 암모니아를 제거하는 성능을 향상시킬 수 있다고 보고되고 있으나, 공기 청정기 또는 에어컨과 같이 기체의 흐름이 동적인 조건에서는 휘발성 유기화합물을 제거하는 성능이 저하되는 문제가 있었다. 이는 동일한 MOF를 사용하더라도, 각각의 MOF는 단위 기공 입구의 크기, 단위 기공 내부의 크기 또는 기공의 모양에 상이한 바, 기공 내부에 흡착되는 휘발성 유기화합물의 함량에 차이가 발생될 수 있고, 이러한 차이는 기체의 흐름이 정적인 조건보다는 기체의 흐름이 동적인 조건에서 더 크게 발생하는 문제가 있었다.
따라서, 기체의 흐름이 동적인 조건에서도 많은 양의 휘발성 유기화합물을 빠른 시간에 흡착할 수 있는 유기금속 구조체의 구조에 대한 연구가 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 유기금속 구조체의 구조와 휘발성 유기화합물의 흡착능과의 관련성이 있는 점에 착안하여, 유기금속 구조체의 BET 비표면적, 유기금속 구조체의 단위 기공 입구의 평균직경 범위 및 단위 기공 내부의 평균직경 범위를 최적화함으로써, 기체의 흐름이 동적인 조건에서 기공 내부에 흡착되는 휘발성 유기화합물의 흡착량 및 흡착속도가 향상될 수 있는 유기화합물 흡착제 및 이를 포함하는 기체송풍장치를 제공하고자 한다.
본 발명은 유기화합물 흡착제 및 기체송풍장치를 제공한다.
(1) 본 발명은 금속 이온과 유기 리간드의 결합 구조에 의한 가변성 기공을 포함하고, BET 비표면적이 500 m2/g 이상이며, 유속이 1cm/sec 이상인 기체 흐름 하에서 하기 수학식 1을 만족하는 유기금속 구조체; 및 상기 유기금속 구조체를 담지한 탄소계 지지체를 포함하는 유기화합물 흡착제를 제공한다.
[수학식 1]
0.4 ≤ x(nm)/y(nm) ≤1.0
상기 수학식 1에서,
x는 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법에 의해 측정된 상기 유기금속 구조체의 단위 기공 입구의 평균직경(nm)이고,
y는 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법에 의해 측정된 상기 유기금속 구조체의 단위 기공 내부의 평균직경(nm)이다.
(2) 본 발명은 상기 (1)에 있어서, 상기 x는 0.2 nm 이상 1.4 nm 이하이고, 상기 y는 0.5 nm 이상 2.2 nm 이하인 것인 유기화합물 흡착제를 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 x는 0.35 nm 이상 1.2 nm 이하이고, 상기 y는 0.7 nm 이상 2.0 nm 이하인 것인 유기화합물 흡착제를 제공한다.
(4) 본 발명은 상기 (1) 내지 (3)에 중 어느 한 항에 있어서, 상기 유기금속 구조체는 하기 수학식 2로 계산되는 제거속도 상수 값이 0.03 이상인 것인 유기화합물 흡착제를 제공한다.
[수학식 2]
Ct=Ci×e-kt
상기 수학식 2에서,
Ct는 t분 경과후 포름알데히드의 농도이고,
Ci는 초기 포름알데히드의 농도이며,
K는 제거속도 상수이고,
T는 경과 시간(min)을 의미한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 한 항에 있어서, 상기 유기금속 구조체의 BET 비표면적이 800 m2/g 이상인 것인 유기화합물 흡착제를 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 한 항에 있어서, 상기 금속 이온은 나트륨(Na), 칼륨(K), 루비듐(Rb), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 스칸듐(Sc), 이트륨(Y), 하프늄(Hf), 니오븀(Nb), 크롬(Cr), 은(Ag), 인듐(In), 게르마늄(Ge), 주석(Sn), 알루미늄(Al), 철(Fe), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 아연(Zn), 지르코늄(Zr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 니켈(Ni), 티탄(Ti) 및 란탄계 전이금속으로 이루어진 군으로부터 선택되는 1종 이상의 금속의 이온인 것인 유기화합물 흡착제를 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 한 항에 있어서, 상기 유기 리간드는 상기 금속 이온과 결합할 수 있는 작용기가 2개 이상을 포함하는 것인 유기화합물 흡착제를 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 한 항에 있어서, 상기 유기 리간드는 이미다졸(imidazole), 알킬이미다졸(alkylimidazole), 알콕시이미다졸(alkoxyimidazole), 테레프탈산(terephthalic acid), 아미노테레프탈산(aminoterephthalic acid), 트리메식산(trimesic acid), 푸마르산(fumaric acid) 및 말레인산(maleic acid)으로 이루어진 군으로부터 선택되는 1종 이상인 것인 유기화합물 흡착제를 제공한다.
(9) 본 발명은 상기 (1) 내지 (8) 중 어느 한 항에 있어서, 상기 탄소계 지지체는 탄소나노튜브, 그래핀, 흑연, 비정질탄소, 카본블랙, 활성탄으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것인 유기화합물 흡착제를 제공한다.
(10) 본 발명은 상기 (1) 내지 (9) 중 어느 한 항에 있어서, 상기 흡착제는 상기 유기금속 구조체가 상기 탄소계 지지체 100 중량부에 대하여 3 이상 95 이하 중량부로 포함되는 것인 유기화합물 흡착제를 제공한다.
(11) 본 발명은 상기 (1) 내지 (10) 중 어느 하나에 따른 유기화합물 흡착제를 포함하고 기체의 유속이 존재하는 기체송풍장치를 제공한다.
본 발명은 유기금속 구조체의 BET 비표면적이 500 m2/g이상이며, 유기금속 구조체의 단위 기공 내부의 평균직경 및 단위 기공 내부의 평균직경과의 관계가 수학식 1을 만족함으로써, 유속이 1cm/sec 이상인 동적인 기체 흐름에서도 휘발성 유기화합물의 흡착량 및 흡착속도를 향상시킬 수 있어, 공기 청정기, 에어컨 등 기체 유속이 있는 환경에서 효율적으로 휘발성 유기화합물을 흡착할 수 있다.
도 1은 본 발명의 유기화합물 흡착제의 휘발성 유기화합물 제거 성능을 평가하기 위한 측정 장치의 모식도이다.
도 2는 상기 측정 장치를 통해 시간에 따른 본 발명의 유기화합물 흡착제의 포름알데히드 감소량을 나타낸 그래프이다.
도 3은 시각화 프로그램(Mercury)를 통해 실시예 1의 유기금속 구조체의 결정 구조를 시각화한 이미지를 나타낸 것이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 직경이라 함은 유기금속 구조체의 단위 기공의 단면을 이루는 원형, 타원형 또는 다각형에서 서로 다른 두 점을 잇는 직선 중 최장 직선의 길이로 정의될 수 있다.
또한, 본 발명에서 평균직경은 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법을 이용하여 측정한 직경분포로부터 체적 누적량의 50% 이상에 해당하는 직경으로 정의될 수 있다.
또한, 본 발명에서 단위 기공 내부의 평균직경은 유기금속 구조체의 단위 기공 내부의 평균깊이를 의미하는 것일 수 있다.
유기금속 구조체는 MOF(Metal-organic framework)로 지칭되며, 금속 이온 또는 이온 클러스터(cluster)가 링커로 작용하는 유기 리간드에 의해 연결되어 1차, 2차, 또는 3차 구조의 네트워크를 형성한 결정성 유기-무기 하이브리드 물질이다.
이러한 유기금속 구조체는 전자기파와 대전체 간 상호작용을 이용하여 반응물들을 가열하는 마이크로파(Microwave) 가열 합성, Zn, Cu 등의 금속 양이온 물질과 1,3,5-H3BTC, H2BDC(OH)2 등의 링커들을 조합한 후 용매열을 이용하는 전기화학적으로 합성, 또는 분자 내 결합들을 파괴시킨 후 화학적 변환 공정을 이용하여 기계화학적으로 합성하는 방법 등에 의해 제조될 수 있다.
또한, 유기금속 구조체 표면의 기능기를 조절하거나 기공크기를 미세하게 변화시킬 수 있어, 생의학 분야에서 약물전달체로도 사용이 가능하며, 유기금속 구조체는 금속 이온 또는 이온 클러스터를 포함하고 있는 바, 촉매반응, 혐기성 올레핀 산화반응, 올레핀의 에폭시화 반응, 프리델-크라프트 벤질화 반응 등에서 불균일 촉매로도 사용이 가능하다.
특히, 유기금속 구조체는 골격 내에 빈 공간이 존재하는 다공성 구조를 가진다. 이러한 유기금속 구조체의 다공성 구조로 인해, 유기금속 구조체는 기체 저장 용량이 높고, 온화한 조건에서 기체를 가역적으로 흡착하거나 탈착할 수 있어, 수소, 메탄, 이산화탄소 등의 기체를 저장하는 분야에 사용이 가능하며, 가스 혼합물로부터 특정 가스를 선택적으로 분리할 수도 있다.
또한, 이러한 유기금속 구조체의 다공성 구조로 인해, 유기금속 구조체는 다양한 유기 화합물에 대해 흡착성을 가지며, 특히 VOC(Volatile Organic Compounds)로 지칭되는 휘발성 유기화합물에 대해 우수한 흡착성을 나타낸다. 상기 휘발성 유기화합물은 대기 중으로 쉽게 증발되는 액체 또는 기체상 유기 화합물의 총칭으로, 대기 오염물질이며 발암성을 지닌 독성 화학물질로서 광화학 산화물의 전구물질이기도 하다. 배출원에 따라 자연적으로 배출되는 화합물과 인위적으로 배출되는 화합물이 있으며, 특히 문제가 되는 것은 포름알데히드, 암모니아와 같은 화합물들이며, 유기금속 구조체가 포함된 유기화합물 흡착제는 종래 널리 사용되던 제올라이트나 활성탄과 비교하여 휘발성 유기화합물에 대해 우수한 흡착성을 나타낸다.
일반적으로, 다공성인 유기금속 구조체의 구조는 단위 기공 입구의 평균직경보다 단위 기공 내부의 평균직경이 큰 형태를 가질 수 있다. 이로 인해, 유기금속 구조체의 기공 안으로 들어온 휘발성 유기 화합물 분자는 재탈착되지 못하고 기공 내부에 흡착될 수 있다. 또한, 정적인 기체 흐름의 환경에서는 유기금속 구조체의 단위 기공 내부의 평균직경을 증가시킴으로서, 기공 내부에 휘발성 유기화합물 흡착할 수 있는 공간이 증가됨으로 인해, 휘발성 유기화합물을 흡착하는 양을 향상시킬 수 있다.
다만, 공기 청정기, 에어컨 등 동적인 기체 흐름의 환경에서는 유기금속 구조체의 단위 기공 내부의 평균직경을 증가시키더라도, 빠른 기체 흐름으로 인해 휘발성 유기화합물이 기공 내부에 들어오지 못하는 문제가 있다. 또한, 휘발성 유기화합물을 기공 내부에 들어오게 하기 위해 단위 기공 입구의 평균직경을 증가시킬 경우, 기공 내부에 흡착된 휘발성 유기 화합물이 재탈착되는 문제가 있다. 따라서, 휘발성 유기화합물을 흡착하기 위해 유기화합물 흡착제에 유기금속 구조체를 포함하더라도, 기체의 흐름이 동적인 조건에서 휘발성 유기화합물을 흡착하는 양 또는 흡착하는 속도가 저하되는 문제가 발생하는 바, 기체의 흐름이 동적인 조건인 공기 청정기 또는 에어컨에서의 적용에 문제가 있다.
본 발명자들은 종래 휘발성 유기화합물을 흡착하기 위해 사용되던 유기금속 구조체가 공기 청정기, 에어컨 등 기체 흐름의 환경에 적용되는 경우, 휘발성 유기화합물을 흡착하는 양과 흡착하는 속도가 저하되는 문제점을 해결하기 위해 연구를 거듭한 결과, 유기금속 구조체의 BET 비표면적이 500 m2/g이상이며, 유기금속 구조체의 단위 기공 내부의 평균직경 및 단위 기공 내부의 평균직경과의 관계가 특정 조건을 만족하는 경우, 유속이 1cm/sec 이상인 동적인 기체, 예컨대 공기 흐름에서도 휘발성 유기화합물의 흡착량 및 흡착속도가 향상될 수 있음을 알아내고 본 발명을 완성하였다.
본 발명은 금속 이온과 유기 리간드의 결합 구조에 의한 가변성 기공을 포함하고, BET 비표면적이 500 m2/g이상이며, 유속이 1cm/sec 이상인 기체 흐름 하에서 하기 수학식 1을 만족하는 유기금속 구조체 및 상기 유기금속 구조체를 담지한 탄소계 지지체를 포함하는 유기화합물 흡착제를 제공한다.
[수학식 1]
0.4 ≤ x(nm)/y(nm) ≤ 1.0
상기 수학식 1에서, x는 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법에 의해 측정된 상기 유기금속 구조체의 단위 기공 입구의 평균직경(nm)이고, y는 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법에 의해 측정된 상기 유기금속 구조체의 단위 기공 내부의 평균직경(nm)이다.
본 발명의 유기금속 구조체는 금속 이온과 유기 리간드의 결합 구조에 의한 가변성 기공을 포함한다. 상기 가변성 기공은 기공의 직경이 고정되지 않고, 특정 환경에 따라 기공의 직경이 변경되는 것을 의미할 수 있다. 구체적으로, 유기금속 구조체를 구성하는 유기 리간드는 실온에서 고정되지 않고 금속 이온과 결합하고 있는 축을 따라 회전하고 있는 특징을 가질 수 있어, 유기 리간드의 회전에 따라 유기금속 구조체의 형상, 유기금속 구조체의 단위 기공 입구의 평균직경 및 단위 기공 내부의 평균직경이 변화될 수 있다. 특히, 유기금속 구조체가 주변 기체의 흐름이 특정 유속을 가지는 동적인 조건에 놓여질 경우, 유기금속 구조체의 단위 기공 입구의 평균 직경 및 단위 기공 내부의 평균 직경이 변화될 수 있다.
상기 수학식 1에서, 유기금속 구조체의 단위 기공 입구의 평균직경/단위 기공 내부의 평균직경 값인 x/y는 0.4 이상, 0.45 이상, 0.5 이상, 0.53 이상, 0.55 이상, 0.58 이상, 1.0 이하, 0.95 이하, 0.9 이하, 0.85 이하, 0.8 이하, 0.75 이하, 0.7 이하, 0.65 이하, 0.6 이하일 수 있다.
상기 수학식 1에서, 유기금속 구조체의 단위 기공 입구의 평균직경(nm)/단위 기공 내부의 평균직경(nm)이 상기 수치 범위의 하한을 벗어나는 경우, 유기금속 구조체가 유속을 가진 기체에 포함되어 있는 휘발성 유기화합물을 흡착하기 위해 필요한 시간보다 유기금속 구조체와 휘발성 유기화합물이 접촉하는 시간이 짧기 때문에, 유기금속 구조체가 휘발성 유기화합물을 흡착하는 효과가 현저히 저하될 수 있다.
또한, 상기 수학식 1에서, 유기금속 구조체의 단위 기공 입구의 평균직경(nm)/단위 기공 내부의 평균직경(nm)이 상기 수치 범위의 상한을 벗어나는 경우, 유기금속 구조체의 기공 내 흡착된 휘발성 유기화합물이 유기금속 구조체의 기공 입구를 통해 쉽게 빠져나갈 수 있어, 유기금속 구조체로부터 휘발성 유기화합물이 재탈착되는 비율이 현저히 증가되는 문제가 발생될 수 있다. 또한, 본 발명의 유기금속 구조체는 BET 비표면적이 500 m2/g이상, 800 m2/g이상, 1,000 m2/g이상, 1,500 m2/g 이상일 수 있다.
또한, 상기 수학식 1에서 x는 0.2 nm 이상 1.4 nm 이하이고, y는 0.5 nm 이상 2.2 nm 이하일 수 있다. 보다 구체적으로, 상기 수학식 1에서 x는 0.2 nm 이상, 0.25 nm 이상, 0.3 nm 이상, 0.35 nm 이상, 0.4 nm 이상, 1.4 nm 이하, 1.3 nm 이하, 1.2 nm 이하일 수 있다. 또한, 상기 수학식 1에서 y는 0.5 nm 이상, 0.6 nm 이상, 0.7 nm 이상, 2.2 nm 이하, 2.1 nm 이하, 2.0 nm 이하 일 수 있다.
상술한 범위를 만족하는 유기금속 구조체의 기공 직경은 분자량이 큰 휘발성 유기화합물을 흡착하는 성능이 저하되지 않으면서도, 흡착된 휘발성 유기화합물이 재탈착 되는 비율을 감소시킴으로써, 유속이 1cm/sec 이상인 동적인 기체 흐름에서 휘발성 유기화합물을 흡착하는 양 뿐만 아니라 흡착속도도 향상될 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 유기화합물 흡착제는 상기 유기금속 구조체가 하기 수학식 2로 계산되는 제거속도 상수 값이 0.03 이상인 것인 유기화합물 흡착제일 수 있다.
[수학식 2]
Ct=Ci×e-kt
상기 수학식 2에서,
Ct는 t분 경과 후 대상 유기화합물의 농도(μmol/mol)이고, Ci는 초기 대상 유기화합물의 농도(μmol/mol)이며, k는 제거속도 상수이고, t는 경과 시간(min)을 의미한다.
상기 대상 유기화합물은 포름알데히드 또는 암모니아일 수 있고, 구체적으로, 포름알데히드일 수 있다. 상기 제거속도 상수 k는 t와 InCt에 대한 선형회귀분석으로부터 얻어질 수 있다. 상기 제거속도 상수 k의 값은 유기화합물 흡착제의 흡착량 및 흡착 속도의 성능을 확인할 수 있는 지표로서, 상기 제거속도 상수 k의 값이 상기 수치 범위인 0.03 이상을 만족하는 경우, 동적인 기체 흐름에서 휘발성 유기화합물을 흡착하는 최적의 흡착양 및 흡착속도를 구현할 수 있다.
한편, 본 발명의 유기금속 구조체는 금속 이온과 유기 리간드의 결합 구조로 구성되며, 금속 이온은 나트륨(Na), 칼륨(K), 루비듐(Rb), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 스칸듐(Sc), 이트륨(Y), 하프늄(Hf), 니오븀(Nb), 크롬(Cr), 은(Ag), 인듐(In), 게르마늄(Ge), 주석(Sn), 알루미늄(Al), 철(Fe), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 아연(Zn), 지르코늄(Zr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 니켈(Ni), 티탄(Ti) 및 란탄계 전이금속으로 이루어진 군으로부터 선택되는 1종 이상의 금속의 이온일 수 있다.
또한, 유기 리간드는 상기 금속 이온과 결합할 수 있는 작용기 2개 이상을 포함할 수 있으며, 일예로, 질소(N), 산소(O), 또는 황(S)을 함유하는 작용기를 포함하는 화합물일 수 있고, 구체적으로, 이미다졸(imidazole), 알킬이미다졸(alkylimidazole), 알콕시이미다졸(alkoxyimidazole), 테레프탈산(terephthalic acid), 아미노테레프탈산(aminoterephthalic acid), 트리메식산(trimesic acid), 푸마르산(fumaric acid) 및 말레인산(maleic acid)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 본 발명의 유기금속 구조체는 MIL(Materials Institute Lavoisier)계 유기금속 구조체일 수 있으며, 바람직하게는 티탄계(Ti) 금속을 포함하는 MIL-125(Ti)일 수 있다.
또한, 본 발명의 유기금속 구조체는 상대습도 100 % 이하에서 측정한 수분 흡착량이 40 wt% 이하일 수 있다. 구체적으로, 본 발명의 유기금속 구조체의 상대습도 100 % 이하에서 측정한 수분 흡착량은 40 wt% 이하, 30 wt% 이하, 20 wt% 이하, 10 wt% 이하일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기금속 구조체가 지지체에 담지된 것을 포함하는 유기화합물 흡착제를 제공한다. 상기 지지체는 탄소계 지지체일 수 있으며, 탄소나노튜브, 그래핀, 흑연, 비정질탄소, 카본블랙, 활성탄으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 또한, 유기금속 나노 구조체의 휘발성 유기화합물 중 톨루엔 흡착 성능이 상대적으로 열위에 있다는 점을 고려하여 톨루엔의 흡착 성능이 우수한 활성탄을 사용하는 것이 바람직하다.
또한, 상기 유기금속 구조체는 상기 지지체 100 중량부에 대하여 3 내지 95 중량부, 30 내지 95 중량부, 50 내지 90 중량부, 또는 50 내지 80 중량부로 포함될 수 있다. 상술한 범위를 만족함으로써, 탈취성을 저하시키지 않으면서도 외부 기체에 의해 유기금속 구조체가 탈착되는 현상을 저감시킬 수 있는 효과가 있다.
상기 유기금속 구조체는 분말, 과립, 또는 코팅 등의 형태로 탄소계 지지체 상에 담지되거나 탄소계 지지체 사이에 담지될 수 있다. 또한, 상기 유기화합물 흡착제는 유기금속 구조체를 부직포 형태의 탄소계 지지체 사이에 충전하여 제조될 수 있으며, 상기 탄소계 지지체는 메시(mesh) 형태로 형성될 수 있고, 상기 탄소계 지지체는 유기금속 구조체가 유기화합물 흡착제 외부로 빠져나가는 것을 방지하기 위해 필요에 따라 적절한 크기의 메시 형태로 조절될 수 있다. 상기 탄소계 지지체를 메시 형태로 형성할 경우, 상기 탄소계 지지체의 메시 직경은 160 um 이하, 150 um 이하, 140 um 이하, 130 um 이하, 120 um 이하일 수 있다. 상기 유기화합물 흡착제는 흡습제 또는 탈취제일 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 상기 유기화합물 흡착제를 포함하고 기체의 유속이 존재하는 기체송풍장치를 제공한다. 구체적으로, 상기 기체송풍장치는 기체의 유속이 존재하는 제품 중 유기화합물 흡착제가 필요한 물품에 제한없이 사용될 수 있으며, 예를 들어, 공기청정기, 에어컨 등 다양한 제품에 적용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것이며, 이에 의하여 본 명세서의 범위가 한정되는 것은 아니다.
실시예 및 비교예
실시예 1
3.0 gm이 테레프탈산을 디메틸포름아미드 60 ml에 녹인 후, 무수 메탄올 3 ml, 티타늄 이소프로폭사이드 3 ml를 혼합하였다. 이 혼합물을 200 ml 테프론 용기에 옮긴 후 스테인레스 스틸 오토 크레이브에 넣은 후 150 ℃, 24 시간동안 가열하였다. 실온으로 냉각한 후 형성된 흰색 고체를 필터 방법을 이용하여 얻은 후, DMF 20 ml으로 1회, 메탄올 40 ml으로 3회 세척한 후 100 ℃ 진공 오븐에서 건조하여 유기금속 구조체를 수득하였다.
실시예 2
3.15 g의 사염화 지르코늄과 2.45 g의 2-아미노테레프탈산을 디메틸포름아미드 519 ml에 녹인 후, 오븐에서 교반하지 않고 120 ℃, 6 시간 동안 가열하였다. 실온으로 냉각한 후 형성된 연한 노란색 고체를 필터 방법을 이용하여 얻은 후, DMF 100 ml으로 1회, 메탄올 100 ml으로 3회 세척한 후 120 ℃의 진공 오븐에서 건조하여 유기금속 구조체를 수득하였다.
실시예 3
8.1 g의 푸마르산과 23 g의 이염화 지르코늄옥소8수화물을 디메틸포름아미드 3,500 ml와 개미산 530 ml의 혼합 용매에 녹인 후, 오븐에서 교반하지 않고 120 ℃, 24 시간 동안 가열하였다. 실온으로 냉각한 후 형성된 연한 흰색 고체를 필터 방법을 이용하여 얻은 후, DMF 200 ml으로 1회, 메탄올 1000 ml으로 3회 세척한 후 150 ℃의 진공오븐에서 건조하여 유기금속 구조체를 수득하였다.
비교예 1
3.5 g의 사염화 지르코늄과 2.5 g의 테레프탈산을 디메틸포름아미드 155 ml 에 녹인 후, 1.5 ml 36 % 염산수용액을 혼합하였다. 오븐에서 교반하지 않고, 120 ℃, 24 시간 동안 가열하였다. 실온으로 냉각한 후 형성된 흰색 고체를 필터 방법을 이용하여 얻은 후, DMF 100 ml으로 1회, 메탄올 100 ml으로 3회 세척한 후 120 ℃ 진공 오븐에서 건조하여 유기금속 구조체를 수득하였다.
비교예 2
30 ml 증류수에 5.94 g의 질산아연 육수화물을 녹여서 용액 1을 제조하였고, 3.28 g 의 2-메틸이미다졸과 50 ml의 트리에틸아민, 37.6 g 암모니아 포화 수용액을 혼합하여 용액 2를 제조하였다. 상기 용액 1과 용액 2를 혼합하여 10분 동안 실온에서 교반한 후 형성된 흰색 고체를 원심분리를 사용하여 얻었다. 상기 흰색 고체를 DMF 100 ml으로 1회, 메탄올 100 ml으로 3회 세척한 후 120 ℃의 진공 오븐에서 건조하여 유기금속 구조체를 수득하였다.
비교예 3
4.75 g의 질산 마그네슘 육수화물과 11.6 g의 2,6-디히드록시테레프탈산을 440 ml 의 디메틸포름아미드에 녹였다. 이 용액에 30 ml 에탄올과 30 ml 수용액을 혼합한 후, 125 ℃의 오븐에서 15 시간 동안 가열하였다. 실온으로 냉각한 후 형성된 진한 노란색의 고체를 필터를 이용하여 얻은 후 DMF 200 ml으로 1회, 메탄올 100 ml으로 3회 세척한 후 120 ℃의 진공 오븐에서 건조하여 유기금속 구조체를 수득하였다.
실험예
실험예 1
상기 실시예 및 비교예의 유기금속 구조체에 대하여, 하기 방법으로 단위 기공 입구의 평균직경 및 단위 기공 내부의 평균직경, BET 비표면적, VOC 제거 성능을 측정하였으며, 측정 결과는 하기 표 1에 나타내었다. 또한, VOC 제거 성능을 측정한 후 실시예 및 비교예의 제거 성능을 비교하기 위해 CADR(Clean Air Delivery Rate)와 제거 속도 상수를 계산하여 하기 표 1에 나타내었다.
1) 단위 기공 입구 및 기공 내부의 평균직경 측정: X선 회절분석법(XRD 장비 및 조건: Bruker SMART Apex Diffactometer, Mo Kα radiation, 0.71073A 파장, 30초/frame, Angle 0-180 deg)으로부터 측정된 유기금속 구조체의 단결정 구조 파일(CIF:Crystal Information File)을 시각화 프로그램(Mercury)를 통해 유기금속 구조체의 결정 구조를 시각화하여 각 실시예 및 비교예의 합성 여부를 확인하였다. 이후, CSD(Cambridge Structural Database)에 수록되어 있는 단일 결정 구조를 이용하여, 유기금속 구조체의 단위 기공의 입구를 구성하는 원자 중 가장 멀리 떨어져 있는 2 개의 원자의 중심 거리를 측정하여 단위 기공 입구의 평균 직경을 측정하였다. 또한, 단위 기공 내부의 평균 직경 측정 방법은 유기금속 구조체의 단위 기공의 내부를 구성하는 원자 중 가장 멀리 떨어져 있는 2개의 원자의 중심 거리를 측정하는 것을 제외하고는 상기 단위 기공 입구의 평균 직경 측정 방법과 동일한 방법으로 단위 기공 내부의 평균 직경을 측정하였다.
도 3은 시각화 프로그램(Mercury)를 통해 실시예 1의 유기금속 구조체의 결정 구조를 시각화한 이미지를 나타낸 것이다. 상기 도 3을 참조하면, 상기 이미지는 상기 시각화 프로그램을 통해 유기금속 구조체의 결정 구조를 반복 촬영하여 상기 유기금속 구조체의 결정 구조를 구성하는 원자들의 평균 위치를 나타낸 것이다.
2) BET 비표면적 측정: BEL Japan사의 BELSORP-max II를 이용하여 질소 저온 흡착법을 통해 표면적을 측정하였다. 각 유기금속 구조체를 진공 내에서 120 ℃로 12 시간 동안 가열하여 유기금속 구조체에 포함되어 있는 수분과 잔류 용매를 제거하였다. 진공 건조된 유기금속 구조체를 액체 질소로 냉각된 상태에서 질소 기체의 흡착 곡선을 측정한 후 흡착 곡선을 이용하여 BET 법을 이용하여 표면적을 측정하였다.
3) VOC 제거 성능 측정: 유기금속 구조체의 VOC 제거 성능은 도 1에 나타난 측정 장치를 사용하여 측정하였다. 도 1은 본 발명의 유기화합물 흡착제의 휘발성 유기화합물 제거 성능을 평가하기 위한 측정장치의 모식도이다.
외부 봄베에 저장된 30 내지 50 ppm 농도의 포름알데히드 및 질소 혼합 기체를 혼합 탱크(10)에 주입한 후, 질소를 추가하여 혼합 탱크 내 포름알데히드 농도를 10 ppm으로 희석시켰다. 10 ppm 농도가 안정화된 후, 포름알데히드는 분말 상태의 유기금속 구조체(30)가 들어가 있는 홀더(20)로 주입되었다. 홀더로 주입되는 포름알데히드 기체는 펌프(50)를 이용하여 분단 3 L의 양으로 주입되고, 상기 홀더(20)의 부피는 약 39 cm3으로 상기 유기금속 구조체를 통과하는 유속은 76.4 cm/min으로 측정되었다. 주입된 포름알데히드는 시료를 통과하면서 흡착 현상을 통해 제거되면서 포름알데히드 농도가 감소하며, 측정기(40)를 이용하여 포름알데히드의 농도를 측정하여 시간 별 포름알데히드의 농도의 변화를 기록하였다. 이를 통해 각 유기금속 구조체의 시간 별 포름알데히드 감소 그래프를 도 2에 나타내었다.
4) 제거 속도 상수 k 및 CADR 계산: 제거 속도 상수 k는 하기 수학식 2로 계산될 수 있고, CADR은 하기 수학식 3으로 계산될 수 있다. 상기 CADR은 공기 청정기의 성능평가에 사용되는 지표로서 단위 면적 및 단위 시간당 정화 할 수 있는 공기량를 나타낸다.
[수학식 2]
Ct=Ci×e-kt
상기 수학식 2에서,
Ct는 t분 경과 후 대상 유기화합물의 농도(μmol/mol)이고, Ci는 초기 대상 유기화합물의 농도(μmol/mol)이며, k는 제거속도 상수이고, t는 경과 시간(min)을 의미한다.
[수학식 3]
CADR= -(V/t)×(ln(Ct2/Ci2)- ln(Ct1/Ci1))
상기 수학식 3에서,
CADR은 정화 능력(㎥/min)이고, V는 시험 챔버 체적(㎥)이며, T는 운전감소시의 측정 시간(min)이고, Ci1는 자연 감소 시 측정 개시점 t = 0에서의 입자 농도(개/c㎥)이며, Ci2는 운전 감소 시 측정 개시점 t = 0에서의 입자 농도 (개/c㎥)이고, Ci1는 자연 감소 시 측정 시간 t 분에서의 입자 농도(개/c㎥)이며, Ct2는 운전 감소 시 측정 시간 t 분에서의 입자 농도(개/c㎥)이다.
구분 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
k(제거속도 상수) 0.069 0.052 0.034 0.021 0.029 0.01
CADR 0.5 0.4 0.3 0.2 0.2 0.1
BET(m2/g) 1,530 800 990 1,100 1,340 150
기공 입구(Ap, nm) 1.137 0.394 0.57 0.5345 0.58 1.6605
기공 내부(Ca, nm) 1.9613 0.744 1.0285 1.4685 1.69 1.6605
Ap/Ca 0.58 0.53 0.55 0.36 0.34 1
도 2는 상기 평가장치를 통해 시간에 따른 본 발명의 유기화합물 흡착제의 포름알데히드 감소량을 나타낸 그래프이다. 상기 표 1 및 도 2를 참조하면, 실시예 1 내지 3은 유기 금속 구조체의 단위 기공의 입구 및 내부의 평균 직경과 상기 수학식 1을 만족하고, 나아가, BET 비표면적이 500 m2/g 이상이므로, 제거속도 상수 k 값이 0.03 이상으로 높게 나타남을 알 수 있다. 이에 반해, 비교예 1 및 2는 BET 비표면적이 1000 m2/g 이상이더라도, 상기 기공 입구 및 기공 내부의 평균 직경과 상기 수학식 1을 만족하지 못하므로, 상대적으로 제거 속도 상수 값이 0.03 미만으로 낮음을 알 수 있다. 또한, 비교예 3은 수학식 1을 만족하더라도 BET 비표면적 값이 500 m2/g 미만에 해당되어, 제거 속도 상수 값이 현저히 낮음을 알 수 있다. 이에 따라, 본원 발명과 같이 유기금속 구조체의 기공의 입구 및 내부의 평균 직경 값 및 수학식 1의 수치 범위를 만족하고, 동시에 BET 비표면적 값이 500 m2/g 이상인 경우에 가장 효율적인 흡착량 및 흡착속도를 갖는 유기금속 구조체를 얻을 수 있고, 이를 포함하는 유기화합물 흡착제를 얻을 수 있음을 확인할 수 있다.
10: 혼합 탱크
20: 홀더
30: 유기화합물 흡착제
40: VOC 농도 측정기
50: 펌프
100: 티타늄 원자
200: 탄소 원자
300: 산소 원자

Claims (11)

  1. 금속 이온과 유기 리간드의 결합 구조에 의한 가변성 기공을 포함하고, BET 비표면적이 500 m2/g 이상이며, 유속이 1cm/sec 이상인 기체 흐름 하에서 하기 수학식 1을 만족하는 유기금속 구조체; 및
    상기 유기금속 구조체가 담지된 탄소계 지지체를 포함하는 유기화합물 흡착제:
    [수학식 1]
    0.4 ≤ x(nm)/y(nm) ≤ 1.0
    상기 수학식 1에서,
    x는 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법에 의해 측정된 상기 유기금속 구조체의 단위 기공 입구의 평균직경(nm)이고,
    y는 X선 회절분석법(X-ray diffraction), 기체흡착법(Gas Adsorption) 및 수은 기공측정법(Mercury Porosimeter) 중 어느 하나 이상의 방법에 의해 측정된 상기 유기금속 구조체의 단위 기공 내부의 평균직경(nm)이다.
  2. 제1항에 있어서,
    상기 x는 0.2 nm 이상 1.4 nm 이하이고,
    상기 y는 0.5 nm 이상 2.2 nm 이하인 것인 유기화합물 흡착제.
  3. 제1항에 있어서,
    상기 x는 0.35 nm 이상 1.2 nm 이하이고,
    상기 y는 0.7 nm 이상 2.0 nm 이하인 것인 유기화합물 흡착제.
  4. 제1항에 있어서,
    상기 유기금속 구조체는 하기 수학식 2로 계산되는 제거속도 상수 값이 0.03 이상인 것인 유기화합물 흡착제:
    [수학식 2]
    Ct=Ci×e-kt
    상기 수학식 2에서,
    Ct는 t분 경과 후 포름알데히드의 농도(μmol/mol)이고,
    Ci는 초기 포름알데히드의 농도(μmol/mol)이며,
    k는 제거속도 상수이고,
    t는 경과 시간(min)을 의미한다.
  5. 제1항에 있어서,
    상기 유기금속 구조체의 BET 비표면적이 800 m2/g 이상인 것인 유기화합물 흡착제.
  6. 제1항에 있어서,
    상기 금속 이온은 나트륨(Na), 칼륨(K), 루비듐(Rb), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 스칸듐(Sc), 이트륨(Y), 하프늄(Hf), 니오븀(Nb), 크롬(Cr), 은(Ag), 인듐(In), 게르마늄(Ge), 주석(Sn), 알루미늄(Al), 철(Fe), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 아연(Zn), 지르코늄(Zr), 구리(Cu), 마그네슘(Mg), 망간(Mn), 니켈(Ni), 티탄(Ti) 및 란탄계 전이금속으로 이루어진 군으로부터 선택되는 1종 이상의 금속의 이온인 것인 유기화합물 흡착제.
  7. 제1항에 있어서,
    상기 유기 리간드는 상기 금속 이온과 결합할 수 있는 작용기가 2개 이상을 포함하는 것인 유기화합물 흡착제.
  8. 제1항에 있어서,
    상기 유기 리간드는 이미다졸(imidazole), 알킬이미다졸(alkylimidazole), 알콕시이미다졸(alkoxyimidazole), 테레프탈산(terephthalic acid), 아미노테레프탈산(aminoterephthalic acid), 트리메식산(trimesic acid), 푸마르산(fumaric acid) 및 말레인산(maleic acid)으로 이루어진 군으로부터 선택되는 1종 이상인 것인 유기화합물 흡착제.
  9. 제1항에 있어서,
    상기 탄소계 지지체는 탄소나노튜브, 그래핀, 흑연, 비정질탄소, 카본블랙, 활성탄으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것인 유기화합물 흡착제.
  10. 제9항에 있어서,
    상기 흡착제는 상기 유기금속 구조체가 상기 탄소계 지지체 100 중량부에 대하여 3 이상 95 이하 중량부로 포함되는 것인 유기화합물 흡착제.
  11. 청구항 1 내지 10 중 어느 한항에 따른 유기화합물 흡착제를 포함하고 기체의 유속이 존재하는 기체송풍장치.
PCT/KR2022/011852 2021-08-30 2022-08-09 유기화합물 흡착제 및 이를 포함하는 기체송풍장치 WO2023033394A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280051624.9A CN117693514A (zh) 2021-08-30 2022-08-09 有机化合物吸附剂和包括该有机化合物吸附剂的气体送风机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0114705 2021-08-30
KR20210114705 2021-08-30
KR10-2022-0091911 2022-07-25
KR1020220091911A KR20230033579A (ko) 2021-08-30 2022-07-25 유기화합물 흡착제 및 이를 포함하는 기체송풍장치

Publications (1)

Publication Number Publication Date
WO2023033394A1 true WO2023033394A1 (ko) 2023-03-09

Family

ID=85412820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011852 WO2023033394A1 (ko) 2021-08-30 2022-08-09 유기화합물 흡착제 및 이를 포함하는 기체송풍장치

Country Status (2)

Country Link
TW (1) TW202319114A (ko)
WO (1) WO2023033394A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198884A (ja) * 2016-04-28 2017-11-02 京セラドキュメントソリューションズ株式会社 空気フィルター、画像形成装置
KR101906043B1 (ko) * 2017-03-24 2018-11-30 연세대학교 산학협력단 마이크로파를 이용한 탄소-금속유기골격구조(MOFs) 복합체 제조 방법
KR20190106582A (ko) * 2018-03-09 2019-09-18 울산과학기술원 플렉시블 금속 유기 골격체를 이용한 동위원소 혼합물의 분리 방법
CN111205469A (zh) * 2020-01-19 2020-05-29 中山大学 一种超微孔锆基金属有机骨架材料及其制备方法和应用
KR20210094307A (ko) * 2020-01-21 2021-07-29 재단법인대구경북과학기술원 포름알데히드의 화학적 흡착 및 분해를 위한 금속유기구조체
KR20210114705A (ko) 2020-03-11 2021-09-24 주식회사 엘지에너지솔루션 수평 회전이 가능한 셀 지그 및 이를 포함하는 이차전지 평가 장치
KR20220091911A (ko) 2020-12-24 2022-07-01 하태자 비타민 c의 산화 안정성이 향상된 수처리용 비수계 겔 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198884A (ja) * 2016-04-28 2017-11-02 京セラドキュメントソリューションズ株式会社 空気フィルター、画像形成装置
KR101906043B1 (ko) * 2017-03-24 2018-11-30 연세대학교 산학협력단 마이크로파를 이용한 탄소-금속유기골격구조(MOFs) 복합체 제조 방법
KR20190106582A (ko) * 2018-03-09 2019-09-18 울산과학기술원 플렉시블 금속 유기 골격체를 이용한 동위원소 혼합물의 분리 방법
CN111205469A (zh) * 2020-01-19 2020-05-29 中山大学 一种超微孔锆基金属有机骨架材料及其制备方法和应用
KR20210094307A (ko) * 2020-01-21 2021-07-29 재단법인대구경북과학기술원 포름알데히드의 화학적 흡착 및 분해를 위한 금속유기구조체
KR20210114705A (ko) 2020-03-11 2021-09-24 주식회사 엘지에너지솔루션 수평 회전이 가능한 셀 지그 및 이를 포함하는 이차전지 평가 장치
KR20220091911A (ko) 2020-12-24 2022-07-01 하태자 비타민 c의 산화 안정성이 향상된 수처리용 비수계 겔 조성물

Also Published As

Publication number Publication date
TW202319114A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Liu et al. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection
Zhang et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors
WO2017090836A1 (ko) 구리-망간 촉매가 함유된 유해가스 제거용 복합 조성물
KR101744354B1 (ko) 아민 및 폴리카르복실산의 부가물, 및 그러한 부가물을 포함하는 여과재
US8828439B2 (en) Titanosilicate molecular sieve supported metallic nanodots and methods of use to adsorb noble gases
EP2981354B1 (de) Aktivkohle mit spezieller ausrüstung sowie deren herstellung und verwendung
WO2018068729A1 (zh) 一种空气净化复合催化剂及其制备方法
MX2012005885A (es) Materiales estructurales metal - organicos basados en acido 2, 5 - furandicarboxilico o acido 2, 5 - tiofenodicarboxilico.
Leus et al. Catalytic carpets: Pt@ MIL-101@ electrospun PCL, a surprisingly active and robust hydrogenation catalyst
WO2009103757A1 (de) Mikroporöses hydrophobes polyorganosilan, verfahren zur herstellung und verwendung
TWI389738B (zh) Cu-ZSM5沸石成形吸附劑、其活性化方法、溫度變化型吸附裝置以及氣體精製方法
KR20200145906A (ko) 이산화탄소 포집을 위한 구조화된 금속-유기 골격체 파이버 흡착제 및 이의 제조방법
Gaikwad et al. Electrospun fiber mats with multistep seeded growth of UTSA-16 metal organic frameworks by microwave reaction with excellent CO2 capture performance
WO2004052536A1 (ja) 一酸化炭素除去用触媒複合体及びそれを用いた一酸化炭素除去方法
WO2023033394A1 (ko) 유기화합물 흡착제 및 이를 포함하는 기체송풍장치
Lou et al. A versatile electrospun polylactic acid nanofiber membrane integrated with halloysite nanotubes for indoor air purification, disinfection, and photocatalytic degradation of pollutants
KR102099247B1 (ko) 개질된 금속-유기 골격체의 방사성 가스 제거 용도
KR20210001745A (ko) 수분안정성이 향상된 mof의 제조방법, 이에 따라 제조된 mof 및 이의 용도
Niu et al. Preparation of MOF-199/polyacrylonitrile nanofiber membrane and its application in the preparation of flexible VOC gas sensors
Yang et al. Ultra-light 3D MnO2-agar network with high and longevous performance for catalytic formaldehyde oxidation
KR20230088398A (ko) 공기정화장치 및 공기정화방법
WO2018190672A1 (ko) 4b족 원소를 포함하는 금속-유기 복합체의 제조방법
US5846297A (en) Filter material and process for producing No2 -free gases or liquids
CN111921375A (zh) Ag-MnO2/AC复合除醛材料、其制备方法、除醛模块和空气净化设备
KR20230033579A (ko) 유기화합물 흡착제 및 이를 포함하는 기체송풍장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280051624.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18292319

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2024507171

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022864899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864899

Country of ref document: EP

Effective date: 20240402