WO2023033171A1 - 熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法 - Google Patents

熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法 Download PDF

Info

Publication number
WO2023033171A1
WO2023033171A1 PCT/JP2022/033268 JP2022033268W WO2023033171A1 WO 2023033171 A1 WO2023033171 A1 WO 2023033171A1 JP 2022033268 W JP2022033268 W JP 2022033268W WO 2023033171 A1 WO2023033171 A1 WO 2023033171A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
length
less
pellet
fibrous filler
Prior art date
Application number
PCT/JP2022/033268
Other languages
English (en)
French (fr)
Inventor
翼 田村
貴之 杉山
宗一郎 丸山
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2023545711A priority Critical patent/JPWO2023033171A1/ja
Priority to CN202280059792.2A priority patent/CN117916069A/zh
Publication of WO2023033171A1 publication Critical patent/WO2023033171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres

Definitions

  • thermoplastic resin pellets and a method for producing thermoplastic resin pellets.
  • This application claims priority based on Japanese Patent Application No. 2021-144889 filed in Japan on September 6, 2021, the content of which is incorporated herein.
  • Thermoplastic resins are resins that soften when they reach the glass transition temperature or melting point, and are broadly divided into general-purpose plastics and engineering plastics.
  • engineering plastics are widely used as molding materials for various parts such as machine parts, home appliance parts, communication equipment parts, OA parts, automobile parts, leisure goods, etc., due to their excellent mechanical properties and heat resistance.
  • thermoplastic resins are used in various applications, taking advantage of their features such as transparency and impact resistance.
  • a resin composition containing a thermoplastic resin is used as the molding material.
  • the resin composition is, for example, melt-kneaded using an extruder and extruded through a strand die to form strands, which are then cut into a predetermined shape with a pelletizer to be processed into pellets.
  • thermoplastic resin pellets In recent years, in the production of injection molded products using thermoplastic resin pellets, there are cases where continuous molding is performed over a long period of time under injection molding conditions in which the molding cycle is shortened in order to improve productivity. In such continuous molding of thermoplastic resins, it is important that the metering time (also called plasticizing time) during injection molding is highly stable. Variation in the weighing time during molding poses a problem of reduced productivity.
  • Patent Document 1 describes pellets from which burrs are removed in order to stabilize the weighing time during molding of the compact.
  • thermoplastic resin pellets In order to shorten the production time of thermoplastic resin pellets, there was a demand for further improvement in weighing stability during molding.
  • weighing stability is evaluated by the weighing time during molding. That is, “good weighing stability” means that the average value of the total weighing time of pellets when a plurality of pellets are molded a predetermined number of times is short.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide thermoplastic resin pellets with good weighing stability during the production of molded bodies.
  • thermoplastic resin pellet containing a thermoplastic resin (A) and a fibrous filler (B), wherein the length-weighted average fiber length of the fibrous filler (B) is 5 mm or more and less than 50 mm
  • the pellet length of the thermoplastic resin pellet and the length-weighted average fiber length of the fibrous filler (B) are substantially the same length, and the maximum cross-sectional height Rt of the surface of the thermoplastic resin pellet is , less than 120 ⁇ m.
  • thermoplastic resin pellet according to [1] wherein the thermoplastic resin (A) is a liquid crystal polyester resin.
  • thermoplastic resin in a molten state is added to the fiber bundle that is the raw material of the fibrous filler (B). impregnating the resin (A) to obtain a strand-shaped resin structure; rolling the strand-shaped resin structure so that the maximum cross-sectional height Rt is less than 120 ⁇ m; and rolling the resin structure. and cutting the body to pelletize.
  • thermoplastic resin pellets with good weighing stability during the production of molded bodies.
  • thermoplastic resin pellet of this embodiment It is a schematic diagram which shows an example of the thermoplastic resin pellet of this embodiment. It is a microscope image of the cross section of the thermoplastic resin pellet of this embodiment.
  • FIG. 2 is a diagram of measuring the major axis D1 and the minor axis D2 of the cross section of the thermoplastic resin pellet of the present embodiment using image analysis software.
  • FIG. 3 is a schematic diagram showing an example of a shaping roll in the thermoplastic resin pellet manufacturing apparatus of the present embodiment.
  • thermoplastic resin pellet The thermoplastic resin pellets of this embodiment contain a thermoplastic resin (A) and a fibrous filler (B).
  • the length-weighted average fiber length of the fibrous filler (B) is 5 mm or more and less than 50 mm, and the pellet length of the thermoplastic resin pellet and the length-weighted average fiber length of the fibrous filler (B) are substantially essentially the same length.
  • the maximum cross-sectional height Rt of the thermoplastic resin pellet surface is less than 120 ⁇ m.
  • the term "the pellet length of the thermoplastic resin pellet and the length-weighted average fiber length of the fibrous filler (B) are substantially the same length” means that fibers arranged in the resin pellet It means that the length-weighted average fiber length of the shaped filler (B) is 95 to 105% of the length in the longitudinal direction of the resin pellet. Since the thermoplastic resin pellets of the present embodiment are typically produced by the production method described later, the pellet length of the thermoplastic resin pellets and the length-weighted average fiber length of the fibrous filler (B) are substantially essentially the same length.
  • thermoplastic resin pellets of the present embodiment is preferably an elliptical cylinder or a flattened elliptical cylinder.
  • FIG. 1 is a schematic diagram showing a thermoplastic resin pellet 1P, which is an example of the thermoplastic resin pellet of this embodiment.
  • the thermoplastic resin pellet 1P is a pellet having a flat cylindric shape, and has an end surface 1 and an outer peripheral surface 2.
  • the pellet length L of the thermoplastic resin pellet 1P means the length of the thermoplastic resin pellet 1P in the longitudinal direction (distance between both end faces 1).
  • the "surface of the thermoplastic resin pellet” means the outer peripheral surface 2 of the thermoplastic resin pellet 1P.
  • the thermoplastic resin pellets of the present embodiment are obtained by extruding a resin structure containing a thermoplastic resin (A) and a fibrous filler (B) into strands using an extruder. It is obtained by extruding into a strip, cutting it into a predetermined length in the longitudinal direction, and pelletizing it. In this step, the cut surface produced when the strand-shaped resin structure is cut into a predetermined length in the longitudinal direction is the "end surface of the thermoplastic resin pellet". The surface in contact with the extrusion port is the "surface of the thermoplastic resin pellet”. Further, the "surface of the thermoplastic resin pellet” is a surface other than the "end surface of the thermoplastic resin pellet”.
  • the maximum cross-sectional height Rt of the surface of the thermoplastic resin pellet of the present embodiment (that is, the outer peripheral surface 2 of the thermoplastic resin pellet 1P) is less than 120 ⁇ m, preferably 118 ⁇ m or less, more preferably 116 ⁇ m or less. , and more preferably 115 ⁇ m or less.
  • the weighing stability is improved when producing a molded body using the thermoplastic resin pellet of the present embodiment. In addition, if it is equal to or less than the above preferable value, the weighing stability is further improved.
  • the arithmetic mean roughness Ra of the thermoplastic resin pellet surface of the present embodiment is preferably 11 ⁇ m or less.
  • weighing stability is further improved when a molded article is produced using the thermoplastic resin pellet of the present embodiment.
  • the maximum average roughness Rz of the thermoplastic resin pellet surface of the present embodiment is, for example, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. If the maximum average roughness Rz of the surface of the thermoplastic resin pellet of the present embodiment is equal to or less than the above preferable value, the weighing stability is further improved when producing a molded body using the thermoplastic resin pellet of the present embodiment. .
  • the maximum peak height Rp on the surface of the thermoplastic resin pellet of the present embodiment is, for example, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 40 ⁇ m or less. If the maximum peak height Rp on the surface of the thermoplastic resin pellet of the present embodiment is equal to or less than the above preferable value, weighing stability is further improved when a molded article is produced using the thermoplastic resin pellet of the present embodiment.
  • the maximum valley depth Rv of the thermoplastic resin pellet surface of the present embodiment is preferably, for example, 70 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less. If the maximum valley depth Rv on the surface of the thermoplastic resin pellet of the present embodiment is equal to or less than the above preferable value, the weighing stability is further improved when producing a molded body using the thermoplastic resin pellet of the present embodiment. .
  • the root-mean-square height Rq of the thermoplastic resin pellet surface of the present embodiment is, for example, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 40 ⁇ m or less. If the root-mean-square height Rq of the surface of the thermoplastic resin pellet of the present embodiment is equal to or less than the above preferable value, the weighing stability is improved when a molded body is produced using the thermoplastic resin pellet of the present embodiment. improves.
  • the maximum cross-sectional height Rt and the arithmetic mean roughness Ra of the pellet surface are preferably not more than the above preferable values, and the maximum cross-sectional height Rt and the arithmetic mean roughness Ra of the pellet surface Ra is the preferred value or less, and the maximum average roughness Rz, the maximum peak height Rp, the maximum valley depth Rv, or the root mean square height Rq is the preferred value or less.
  • the maximum cross-sectional height Rt, arithmetic mean roughness Ra, maximum mean roughness Rz, maximum peak height Rp, maximum valley depth Rv, and root mean square height Rq of the pellet surface are all the above preferable is more preferably less than or equal to
  • Procedure (1) Place the resin pellet on the measuring table so that the end surface of the resin pellet is perpendicular to the measuring table, and adhere the resin pellet and the measuring table with double-sided tape so that the resin pellet does not move.
  • Procedure (2) Set so that the trajectory of the measuring needle is perpendicular to the longitudinal direction of the resin pellet from a point halfway along the length of the resin pellet (pellet length). Then, as shown in FIG. 1, the measurement range is a range of ⁇ 2 mm in the longitudinal direction and the vertical direction (a total of 4 mm from X1 to X2) from the center point X of half the length of the resin pellet in the longitudinal direction (pellet length).
  • Procedure (3) Under the measurement conditions shown below, randomly take out 5 resin pellets from a plurality of resin pellets, and measure the front and back of the 5 resin pellets taken out once each, a total of 10 times.
  • the lower limit of the ratio D1/D2 between the long diameter D1 and the short diameter D2 of the cross section of the thermoplastic resin pellet is preferably 2.0 or more, more preferably 2.5 or more, and 2 0.8 or more is more preferred.
  • the upper limit of D1/D2 is preferably 100 or less, more preferably 80 or less, even more preferably 50 or less, particularly preferably 20 or less, and most preferably 15 or less.
  • D1/D2 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 2.0 or more and 100 or less, more preferably 2.5 or more and 80 or less, further preferably 2.8 or more and 50 or less, and 2.8 20 or less is particularly preferable, and 2.8 or more and 15 or less is most preferable.
  • the weighing stability is further improved when producing a molded body using the thermoplastic resin pellet of the present embodiment. do.
  • the lower limit of the long diameter D1 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 1 mm or more, more preferably 1.5 mm or more, still more preferably 2 mm or more, and particularly preferably 4.1 mm or more.
  • the upper limit of the long diameter D1 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 24 mm or less, more preferably 20 mm or less, still more preferably 15 mm or less, and particularly preferably 12 mm or less.
  • the major diameter D1 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 1 mm or more and 24 mm or less, more preferably 1.5 mm or more and 20 mm or less, further preferably 2 mm or more and 15 mm or less, and particularly 4.1 mm or more and 12 mm or less. Preferably, it may be 4.1 mm or more and 24 mm or less.
  • the lower limit of the short diameter D2 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 0.1 mm or more, more preferably 0.15 mm or more, still more preferably 0.2 mm or more, and particularly preferably 0.25 mm or more.
  • the upper limit of the short diameter D2 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 5 mm or less, more preferably 3 mm or less, still more preferably 2.5 mm or less, and particularly preferably 1.4 mm or less.
  • the short diameter D2 of the cross section of the thermoplastic resin pellet of the present embodiment is preferably 0.1 mm or more and 5 mm or less, more preferably 0.15 mm or more and 3 mm or less, further preferably 0.2 mm or more and 2.5 mm or less. 0.25 mm or more and 1.4 mm or less is particularly preferable.
  • the thermoplastic resin pellet of the present embodiment has a cross-sectional length D1 of preferably 1 mm or more and 24 mm or less, more preferably 1.5 mm or more and 20 mm or less, and still more preferably 2 mm or more and 15 mm or less.
  • the short diameter D2 of the cross section of the thermoplastic resin pellet is preferably 0.1 mm or more and 5 mm or less, more preferably 0.15 mm or more and 3 mm or less, still more preferably 0.2 mm or more and 2.5 mm or less, especially preferably 0.25 mm or more and 1.4 mm or less,
  • D1/D2 of the cross section of the thermoplastic resin pellet is 2.0 or more and 100 or less, preferably 2.5 or more and 80 or less, more preferably 2.8 or more and 50 or less, further preferably 2 0.8 or more and 20 or less, more preferably 2.8 or more and 15 or less.
  • thermoplastic resin pellet of the present embodiment is The weighing stability is further improved when a molded article is produced by using it.
  • the "cross section of the thermoplastic resin pellet” refers to the above-described "end face of the thermoplastic resin pellet", the procedure in [Method for measuring the major diameter D1 and minor diameter D2 of the cross section of the thermoplastic resin pellet] described later ( In iii) and (iv), it means a cross section (polished surface) produced by polishing the thermoplastic resin pellet to a length half of the pellet length.
  • the major axis D1 and the minor axis D2 of the cross section of the thermoplastic resin pellet mean the Feret diameter (projected width), which can be measured by the following method.
  • Procedure (vii) Procedures (i) to (vi) are performed with five resin pellets, and the average value of five measurements is adopted as the value of the major diameter D1 and minor diameter D2 of the resin pellet.
  • the major diameter D1 and the minor diameter D2 are calculated not for the end face 1 of the resin pellet but for the cross section 1' of the resin pellet. Normally, the major diameter D1 and the minor diameter D2 of the end surface 1 of the resin pellet and the major diameter D1 and the minor diameter D2 of the cross section 1' of the resin pellet are almost the same diameter.
  • a major axis D1 and a minor axis D2 of the cross section 1' of the pellet are adopted.
  • the thermoplastic resin (A) contained in the thermoplastic resin pellets of the present embodiment includes polyolefin resins such as polyethylene, polypropylene, polybutadiene, and polymethylpentene; vinyl resins such as vinyl chloride, vinylidene chloride vinyl acetate, and polyvinyl alcohol; Polystyrene resins such as polystyrene, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin); polyamide 6 (nylon 6), polyamide 66 (nylon 66), polyamide 11 (nylon 11), polyamide 12 (nylon 12), polyamide 46 (nylon 46), polyamide 610 (nylon 610), polytetramethylene tetephthalamide (nylon 4T), polyhexamethylene terephthalamide (nylon 6T), polymetaxylylene adipamide (nylon MXD6) , polyamide resins such as polynonamethylene
  • thermoplastic resin (A) contained in the thermoplastic resin pellet of the present embodiment has a maximum cross-sectional height Rt of less than 120 ⁇ m on the surface of the thermoplastic resin pellet, as shown in the method for producing a thermoplastic resin pellet described later. From the viewpoint of easy production of thermoplastic resin pellets, it is preferably a liquid crystalline polyester resin.
  • the liquid crystal polyester resin is not particularly limited as long as it is a polyester resin that exhibits liquid crystallinity in a molten state.
  • the liquid crystalline polyester resin of this embodiment may be a liquid crystalline polyester amide, a liquid crystalline polyester ether, a liquid crystalline polyester carbonate, a liquid crystalline polyester imide, or the like.
  • the flow initiation temperature of the liquid crystalline polyester resin of the present embodiment is preferably 250° C. or higher, more preferably 270° C. or higher, and even more preferably 280° C. or higher.
  • the flow initiation temperature of the liquid crystalline polyester resin of the present embodiment is preferably 400° C. or lower, more preferably 360° C. or lower, and even more preferably 330° C. or lower.
  • the flow initiation temperature of the liquid crystalline polyester resin of the present embodiment is preferably 250° C. or higher and 400° C. or lower, more preferably 270° C. or higher and 360° C. or lower, and 280° C. or higher and 330° C. or lower. More preferred.
  • the flow initiation temperature is also referred to as flow temperature or flow temperature, and is a temperature that serves as a measure of the molecular weight of a liquid crystalline polyester resin (edited by Naoyuki Koide, "Liquid Crystal Polymer -Synthesis, Molding, Application-", Stock Company CMC, June 5, 1987, p.95).
  • a capillary rheometer is used to melt the liquid crystalline polyester resin under a load of 9.8 MPa (100 kg/cm 2 ) at a rate of 4° C./min, This is the temperature at which a viscosity of 4800 Pa ⁇ s (48000 poise) is exhibited when extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm.
  • the liquid crystal polyester resin of the present embodiment is preferably a wholly aromatic liquid crystal polyester using only aromatic compounds as raw material monomers.
  • liquid crystal polyester resin of the present embodiment include at least one selected from the group consisting of aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxylamines and aromatic diamines.
  • Liquid crystalline polyester resin obtained by polymerizing (polycondensing) a compound Liquid crystalline polyester resin obtained by polymerizing multiple types of aromatic hydroxycarboxylic acids; Aromatic dicarboxylic acid, aromatic diol, aromatic hydroxylamine and aromatic Liquid crystalline polyester resins obtained by polymerizing at least one compound selected from the group consisting of diamines; and liquid crystalline polyester resins obtained by polymerizing polyesters such as polyethylene terephthalate and aromatic hydroxycarboxylic acids.
  • the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines and aromatic diamines are each independently partly or wholly replaced by polymerizable derivatives thereof.
  • Examples of polymerizable derivatives of compounds having a carboxyl group such as aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids include esters obtained by converting the carboxyl group to an alkoxycarbonyl group or an aryloxycarbonyl group; acid halides obtained by converting a group; and acid anhydrides obtained by converting a carboxyl group to an acyloxycarbonyl group.
  • Examples of polymerizable derivatives of compounds having a hydroxyl group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxylamines include acylated products obtained by acylating the hydroxyl group to convert it to an acyloxyl group. mentioned.
  • Examples of polymerizable derivatives of compounds having an amino group such as aromatic hydroxylamines and aromatic diamines include acylated products obtained by acylating an amino group to convert it to an acylamino group.
  • the liquid crystal polyester resin of the present embodiment preferably has a repeating unit represented by the following formula (1) (hereinafter also referred to as “repeating unit (1)”), and the repeating unit (1) and the following formula (2) ) (hereinafter also referred to as “repeating unit (2)”) and a repeating unit represented by the following formula (3) (hereinafter also referred to as “repeating unit (3)”) is more preferred.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • Halogen atoms which can be substituted for one or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 include fluorine, chlorine, bromine and iodine atoms.
  • the aryl group capable of substituting one or more hydrogen atoms in the group represented by Ar 1 , Ar 2 or Ar 3 includes a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1 -naphthyl group, 2-naphthyl group, and the like, and preferably have 6 to 20 carbon atoms.
  • the number of substitutions is preferably 1 or 2, more preferably 1. be.
  • the alkylidene group for Z in formula (4) includes a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, a 2-ethylhexylidene group, etc., and preferably has 1 to 10 carbon atoms.
  • Repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • Repeating units (1) include repeating units in which Ar 1 is a 1,4-phenylene group (repeating units derived from p-hydroxybenzoic acid) and repeating units in which Ar 1 is a 2,6-naphthylene group (6 -Repeating units derived from hydroxy-2-naphthoic acid) are preferred.
  • oil means that the chemical structure of the functional group contributing to polymerization changes due to the polymerization of the raw material monomer, and no other structural change occurs.
  • Repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. Repeating units (2) include repeating units in which Ar 2 is a 1,4-phenylene group (repeating units derived from terephthalic acid), and repeating units in which Ar 2 is a 1,3-phenylene group (repeating units derived from isophthalic acid).
  • repeating unit a repeating unit in which Ar 2 is a 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalene dicarboxylic acid), and a repeating unit in which Ar 2 is a diphenyl ether-4,4′-diyl group
  • Certain repeat units are preferred, repeat units in which Ar 2 is a 1,4-phenylene group, Ar 2 is a 1,3-phenylene group
  • Repeat units and repeat units in which Ar 2 is a 2,6-naphthylene group are more preferred.
  • Repeating unit (3) is a repeating unit derived from a given aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • Repeating units (3) include repeating units in which Ar 3 is a 1,4-phenylene group (repeating units derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is 4,4'-biphenylylene Repeat units that are radicals (repeat units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • the number of repeating units (1) is preferably 30% or more and 80% or less, more preferably 40% or more and 70% or less, and further 45% or more and 70% or less, relative to the total number (100%) of all repeating units. preferable.
  • the number of repeating units (2) is preferably 35% or less, more preferably 10% or more and 35% or less, even more preferably 15% or more and 30% or less, relative to the total number (100%) of all repeating units.
  • the number of repeating units (3) is preferably 35% or less, more preferably 10% or more and 35% or less, even more preferably 15% or more and 30% or less, relative to the total number (100%) of all repeating units.
  • the ratio of the number of repeating units (2) to the number of repeating units (3) is represented by [number of repeating units (2)]/[number of repeating units (3)] and is 0.9/1 to 1 /0.9 is preferred, 0.95/1 to 1/0.95 is more preferred, and 0.98/1 to 1/0.98 is even more preferred.
  • the liquid crystalline polyester resin of the present embodiment may each have two or more types of repeating units (1) to (3).
  • the liquid crystal polyester resin may have repeating units other than repeating units (1) to (3), but the number thereof is 10% or less with respect to the total number (100%) of all repeating units. Preferably, 5% or less is more preferable.
  • the number of each repeating unit means a value determined by the analytical method described in JP-A-2000-19168. Specifically, the liquid crystalline polyester resin (A) is reacted with a lower alcohol (alcohol having 1 to 3 carbon atoms) in a supercritical state to depolymerize the liquid crystalline polyester resin (A) to a monomer that induces the repeating unit. Then, the number of each repeating unit can be calculated by quantifying the monomer deriving each repeating unit obtained as a depolymerization product by liquid chromatography.
  • the number of repeating units (1) can be determined by measuring the molar concentration of the monomers that induce the repeating units (1) to (3), respectively, by liquid chromatography. By calculating the ratio of the molar concentration of the monomer that induces the repeating unit (1) when the sum of the molar concentrations of the monomers that induce the repeating units (1) to (3) is 100%, can ask.
  • the liquid crystalline polyester resin of the present embodiment has a repeating unit (3) in which X and Y are each oxygen atoms, i.e., has a repeating unit derived from a predetermined aromatic diol, and has a melt viscosity of Since the number tends to be low, it is preferable, and it is more preferable to have only repeating units (3) in which X and Y are each oxygen atoms.
  • the thermoplastic resin (A) of the present embodiment may be used singly or in combination of two or more.
  • the content of the liquid crystal polyester resin in the thermoplastic resin (A) of the present embodiment is preferably 80% by mass or more, and 90% by mass or more, relative to 100% by mass of the total amount of the thermoplastic resin (A). is more preferably 95% by mass or more, and 100% by mass, that is, the thermoplastic resin (A) of the present embodiment may consist only of the liquid crystalline polyester resin. If the content of the liquid crystalline polyester resin in the thermoplastic resin (A) of the present embodiment is at least the above preferable value, the maximum cross-sectional height Rt of the thermoplastic resin pellet surface is less than 120 ⁇ m. easier to do.
  • the content of the thermoplastic resin (A) is preferably 40% by mass or more, more preferably 45% by mass or more, and even more preferably 50% by mass or more with respect to 100% by mass of the total amount of the thermoplastic resin pellets. Moreover, the content of the thermoplastic resin (A) is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less with respect to 100% by mass of the total amount of the thermoplastic resin pellets. For example, the content of the thermoplastic resin (A) is preferably 40% by mass or more and 90% by mass or less, more preferably 45% by mass or more and 85% by mass or less, with respect to 100% by mass of the total amount of the thermoplastic resin pellet. % or more and 80 mass % or less is more preferable.
  • the fibrous filler (B) contained in the thermoplastic resin pellets of the present embodiment has a weighted average fiber length of 5 mm or more and less than 50 mm.
  • thermoplastic resin pellets can be measured by the following method.
  • the length-weighted average fiber length of the fibrous filler in the resin pellet can be measured by the following method.
  • Procedure (1) Heat 5 g of resin pellets in a muffle furnace to blow off the resin. The heating conditions are as follows: carbon fiber is heated at 500° C. for 3 hours, and glass fiber is heated at 600° C. for 4 hours.
  • Procedure (2) The resin content is removed from the resin pellets, and only the fibrous filler is dispersed in 1000 mL of an aqueous solution containing 0.05% by volume of a surfactant (Micro90 INTERNATIONAL PRODUCTS CORPORATION) to obtain fibers.
  • a surfactant Micro90 INTERNATIONAL PRODUCTS CORPORATION
  • Procedure (3) Take out 100 mL from the fibrous filler dispersion and dilute it 10 times with pure water. Take out 50 mL from the dispersion after dilution, disperse it in a petri dish, and then, the fibrous filler dispersed in the petri dish with a microscope (body: VHX-8000, lens: VH-Z00R, manufactured by Keyence Corporation, magnification 10 times to 25 times), and 5 images are taken for each sample so that the photographed areas do not overlap.
  • a microscope body: VHX-8000, lens: VH-Z00R, manufactured by Keyence Corporation, magnification 10 times to 25 times
  • Procedure (4) The fiber length is measured for all of the five captured images using image processing software (WinROOF2018, manufactured by Mitani Shoji Co., Ltd.) as follows. ⁇ Method for measuring fiber length> (a) Monochrome pixelation processing is performed on the photographed image. (b) Binarization processing is performed so that only the photographed fibers are colored. (c) Fiber length measurement is performed using the acicular separation function of image processing software. (d) Fiber lengths of fibers that could not be binarized in (c) or curved fibers are measured by multi-point measurement, and fibers that are in contact with the edge of the image are not measured.
  • image processing software WinROOF2018, manufactured by Mitani Shoji Co., Ltd.
  • the length-weighted average fiber length of the fibrous filler (B) is 5 mm or more and less than 50 mm, preferably 5 mm or more and 45 mm or less, and more preferably 5 mm or more and 40 mm or less.
  • weighing stability is further improved when a molded article is produced using the thermoplastic resin pellets of the present embodiment.
  • the fibrous filler contained in the thermoplastic resin pellets of the present embodiment may be a fibrous inorganic filler or a fibrous organic filler.
  • fibrous inorganic fillers examples include glass fibers; carbon fibers; ceramic fibers such as silica fibers, alumina fibers, and silica alumina fibers; metal fibers such as iron, gold, copper, aluminum, brass, and stainless steel; silicon carbide fibers; fibers and the like.
  • fibrous inorganic fillers include whiskers such as potassium titanate whiskers, barium titanate whiskers, wollastonite whiskers, aluminum borate whiskers, silicon nitride whiskers, and silicon carbide whiskers.
  • fibrous organic fillers examples include polyester fibers, para- or meta-aramid fibers, and PBO fibers.
  • glass fiber or carbon fiber is preferable as the fibrous filler in the present embodiment.
  • the type of glass fiber is not particularly limited, and known ones can be used. , glass for alkali-resistant applications), S glass or T glass.
  • the glass fibers may be surface-treated glass fibers or non-surface-treated glass fibers.
  • the treatment of the glass fibers can be done with modifiers, silane coupling agents, boron compounds and the like.
  • Modifiers include aromatic urethane modifiers, aliphatic urethane modifiers, acrylic modifiers, and the like.
  • E glass is preferable.
  • Carbon fiber The type of carbon fiber is not particularly limited, and known ones can be used. Pitch-based carbon fibers are more preferred, and PAN-based carbon fibers are even more preferred. For the purpose of imparting electrical conductivity, carbon fibers coated with a metal such as nickel, copper, or ytterbium can also be used.
  • PAN-based carbon fibers examples include “Zoltek (registered trademark)” manufactured by Zoltek; “Torayca (registered trademark)” manufactured by Toray Industries; “PYROFIL (registered trademark)” and “GRAFIL (registered trademark)” manufactured by Mitsubishi Chemical Corporation. "Tenax (registered trademark)” manufactured by Teijin; “TAIRYFIL (registered trademark)” manufactured by Taiwan Plastics; “SIGRAFIL (registered trademark)” manufactured by SGL Carbon.
  • the tensile strength of the carbon fibers is preferably 2500 MPa or higher, more preferably 3500 MPa or higher, and still more preferably 4000 MPa or higher.
  • the upper limit of the tensile strength of carbon fibers is, for example, 6000 MPa or less.
  • the tensile strength of carbon fiber means a value measured according to JIS R 7606:2000.
  • the tensile modulus of the carbon fiber is preferably 180 GPa or more, more preferably 200 GPa or more, still more preferably 220 GPa or more, and particularly preferably 240 GPa or more.
  • the upper limit of the tensile modulus of carbon fiber is, for example, 800 GPa or less.
  • the tensile modulus of carbon fiber means a value measured according to JIS R 7606:2000.
  • the tensile elongation of carbon fibers is preferably 0.4% or more, more preferably 0.6% or more, still more preferably 0.8% or more, and particularly preferably 1.0% or more.
  • the upper limit of the tensile elongation of carbon fibers is, for example, 10% or less.
  • the tensile elongation of carbon fiber means a value measured according to JIS R 7606:2000.
  • the number of fibers of the fibrous filler (B) is preferably 3,000 or more, more preferably 10,000 or more, even more preferably 30,000 or more.
  • the number of fibers of the fibrous filler (B) is preferably 60,000 or less, more preferably 60,000 or less, even more preferably 55,000 or less.
  • the number of fibers of the fibrous filler (B) is preferably 3000 or more and 60000 or less, more preferably 10000 or more and 60000 or less, and further preferably 30000 or more and 55000 or less. .
  • the method for measuring the number of fibers of the fibrous filler (B) in the resin pellet is, for example, the procedure of [Measurement of the length-weighted average fiber length of the fibrous filler (B) in the resin pellet] described above for one pellet.
  • the resin content is removed in the same manner as in (1), and from the total weight of the fibrous filler (B) obtained, one fiber having the same length as the pellet length is taken out from the fibrous filler (B), and 1 fiber It can be obtained by dividing the weight of the book. If the number of fibers of the fibrous filler (B) is within the above preferable range, variations in the physical properties of the molded article produced from the thermoplastic resin pellets containing the fibrous filler (B) can be further suppressed. .
  • the number average fiber diameter of the fibrous filler (B) is not particularly limited, it is preferably 1 to 40 ⁇ m, more preferably 3 to 35 ⁇ m.
  • the fibrous filler (B) is carbon fiber, it is preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m, even more preferably 4 to 9 ⁇ m.
  • the fibrous filler (B) is glass fiber, it is preferably 5 to 35 ⁇ m, more preferably 10 to 25 ⁇ m, even more preferably 10 to 20 ⁇ m.
  • the method for measuring the number average fiber diameter of the fibrous filler (B) in the resin pellet is, for example, the procedure (1) of [Measurement of length-weighted average fiber length of the fibrous filler (B) in the resin pellet] described above.
  • the resin content was removed in the same manner as above, and the resulting fibrous filler (B) was observed with a scanning electron microscope (1000x).
  • a numerical average value of measured diameters can be employed.
  • the number average fiber diameter of the fibrous filler (B) is within the above preferred range, the mechanical strength is efficiently improved by the fibrous filler (B).
  • the content of the fibrous filler (B) is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more with respect to 100% by mass of the total amount of the thermoplastic resin pellets.
  • the content of the fibrous filler (B) is preferably 60% by mass or less, more preferably 55% by mass or less, and even more preferably 50% by mass or less with respect to 100% by mass of the total amount of the thermoplastic resin pellets.
  • the content of the fibrous filler (B) is preferably 10% by mass or more and 60% by mass or less, more preferably 15% by mass or more and 55% by mass or less, with respect to 100% by mass of the total amount of the thermoplastic resin pellet. % or more and 50% by mass or less is more preferable.
  • the content of the fibrous filler (B) is within the above preferable range, the mechanical strength can be further improved.
  • the content of the fibrous filler (B) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 30 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin (A). Also, the content of the fibrous filler (B) is preferably 150 parts by mass or less, more preferably 90 parts by mass or less, and even more preferably 85 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). For example, the content of the fibrous filler (B) is preferably 10 parts by mass or more and 150 parts by mass or less, more preferably 20 parts by mass or more and 90 parts by mass or less, with respect to 100 parts by mass of the thermoplastic resin (A). Part by mass or more and 85 parts by mass or less is more preferable.
  • the weighing stability when producing a molded body using the thermoplastic resin pellets of the present embodiment is better.
  • thermoplastic resin pellets of the present embodiment optionally include other fillers other than the fibrous filler (B), additives etc., may be contained.
  • fillers other than the fibrous filler (B) include plate-like fillers, spherical fillers, powdery fillers, irregularly shaped fillers, and the like.
  • Plate-like fillers include talc, mica, graphite, and wollastonite.
  • the plate-like filler may be surface-treated or untreated.
  • examples of mica include natural mica such as muscovite, phlogopite, fluorine phlogopite, and tetrasilicon mica, and artificially produced synthetic mica.
  • Spherical fillers include glass beads and glass balloons.
  • powdery fillers examples include calcium carbonate, dolomite, barium clay sulfate, titanium oxide, carbon black, conductive carbon, and fine silica.
  • deformed fillers examples include glass flakes and deformed cross-section glass fibers.
  • thermoplastic resin pellets of the present embodiment contain other fillers, among the above, it is preferable to contain powdery fillers, and it is more preferable to contain carbon black.
  • carbon black examples include acetylene black, thermal black, furnace black, channel black, and ketjen black.
  • furnace black is preferable from the viewpoint of the balance between colorability and mechanical properties and availability.
  • the carbon black may be carbon black whose surface is modified with a silane coupling agent or the like, or carbon black whose surface is oxidized.
  • the content of the other fillers is 0.01% by mass or more and 5% by mass or less with respect to the total amount of 100% by mass of the thermoplastic resin pellets. preferably 0.1% by mass or more and 3% by mass or less, and preferably 0.5% by mass or more and 1% by mass or less.
  • Additives Additives include flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers, release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, foam control agents, viscosity modifiers, surfactants, and the like.
  • Lubricants include waxes (carnauba wax, etc.), higher fatty acids (stearic acid, etc.), higher fatty acid salts, higher alcohols (stearyl alcohol, etc.), higher fatty acid amides (stearic acid amide, erucic acid amide, etc.). From the viewpoint of heat resistance during molding, higher fatty acid salts are preferred, and higher fatty acid metal salts are more preferred.
  • a higher fatty acid metal salt is a metal salt of a long-chain fatty acid having 12 or more carbon atoms. The number of carbon atoms is preferably 12 or more and 28 or less, and more preferably 12 or more and 18 or less. Specific examples of the long-chain fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, and montanic acid.
  • higher fatty acid metal salts include lithium laurate, calcium laurate, barium laurate, lithium stearate, barium stearate, sodium stearate, potassium stearate, calcium stearate, aluminum stearate, magnesium stearate, and behene. magnesium acid, calcium behenate, barium behenate, and the like.
  • the thermoplastic resin pellet of the present embodiment contains a thermoplastic resin (A) and a fibrous filler (B), and the length-weighted average fiber length of the fibrous filler (B) is 5 mm. 50 mm or more, the pellet length of the thermoplastic resin pellet and the length-weighted average fiber length of the fibrous filler (B) are substantially the same length, and the maximum cross-sectional height Rt of the surface of the thermoplastic resin pellet is less than 120 ⁇ m.
  • the length-weighted average fiber length of the fibrous filler (B) is 5 mm or more and relatively long fibers, and the pellet length of the thermoplastic resin pellet and the fibrous filler Thermoplastic resin pellets having substantially the same length as the length-weighted average fiber length (B) have merits such as being able to improve the mechanical strength of the molded product, but generally It tends to be poorly quantifiable.
  • the maximum cross-sectional height Rt of the surface of the thermoplastic resin pellets of the present embodiment is less than 120 ⁇ m, the friction between the pellets in the hopper and between the pellets and the wall surface of the device is reduced. The pellets have good fluidity and are smoothly conveyed.
  • thermoplastic resin pellets of the present embodiment since the pellets easily flow between the cylinder and the screw in the molding machine, they can be smoothly transported from the weighing section to the compression section. Therefore, according to the thermoplastic resin pellets of the present embodiment, the weighing stability during the production of the molded body is improved. Further, according to the thermoplastic resin pellet of the present embodiment, even when using a fibrous filler (B) having a relatively large number of fibers (about 30000 to 55000) (for example, large tow), the molded body Weighing stability at the time of production is improved.
  • a fibrous filler (B) having a relatively large number of fibers about 30000 to 55000
  • the method for producing a thermoplastic resin pellet in the present embodiment includes, for example, impregnating a fiber bundle, which is a raw material of the fibrous filler (B), with a molten thermoplastic resin (A) to obtain a strand-shaped resin structure. processing the strand-shaped resin structure so that the maximum cross-sectional height Rt is less than 120 ⁇ m; and cutting and pelletizing the processed resin structure.
  • FIG. 4 shows an embodiment of an apparatus for producing thermoplastic resin pellets.
  • resin pellets 15 are obtained using a fiber roving 10 obtained by winding a fiber bundle 11 in which a plurality of fibrous fillers are bundled with a sizing agent.
  • the number average fiber diameter of the fiber roving 10 is not particularly limited, it is preferably 1 to 40 ⁇ m, more preferably 3 to 35 ⁇ m.
  • the fibrous filler is carbon fiber, it is preferably 1 to 15 ⁇ m, more preferably 3 to 10 ⁇ m, even more preferably 4 to 9 ⁇ m.
  • the fibrous filler is glass fiber, it is preferably 5 to 35 ⁇ m, more preferably 10 to 25 ⁇ m, even more preferably 10 to 20 ⁇ m.
  • the number average fiber diameter of the fiber roving 10 is obtained by observing the fibrous filler with a scanning electron microscope (1000 times) and measuring the fiber diameter of 500 randomly selected fibrous fillers. adopt.
  • the mechanical strength is efficiently improved.
  • the fibrous filler is treated with a sizing agent (sizing agent).
  • sizing agent sizing agent
  • Appropriately sized fibrous fillers are superior in productivity and quality stability during pellet production, and can reduce variations in physical properties in molded articles.
  • the sizing agent is not particularly limited, but examples thereof include nylon-based polymers, polyether-based polymers, epoxy-based polymers, ester-based polymers, urethane-based polymers, mixed polymers thereof, and modified polymers thereof. be done.
  • known coupling agents such as so-called silane coupling agents such as aminosilane and epoxysilane, and titanium coupling agents can also be used.
  • the single fibers do not necessarily have to be arranged in one direction, but from the viewpoint of productivity in the process of manufacturing the molding material, the single fibers are arranged in one direction. However, it is preferable that the fiber bundle is continuous in the length direction of the fiber.
  • the number of fibers in the fiber roving 10 is preferably 3000 or more, more preferably 10000 or more, and even more preferably 30000 or more.
  • the number of fibers in the fiber roving 10 is preferably 60,000 or less, more preferably 60,000 or less, even more preferably 55,000 or less.
  • the number of fibers in the fiber roving 10 is preferably 3,000 to 60,000, more preferably 10,000 to 60,000, and even more preferably 30,000 to 55,000.
  • the weighing stability is further improved when the thermoplastic resin pellets produced using the fiber roving 10 are used to produce a molded body.
  • the preheating unit 121 heats and dries the fiber bundle 11 fed out from the fiber roving 10 .
  • the heating temperature at that time is not particularly limited, but is, for example, 50 to 250.degree. Also, the heating time in the preheating unit 121 is not particularly limited, but is, for example, 3 to 30 seconds.
  • the fiber bundle 11 is impregnated with a molding material M other than the fiber bundle 11 (thermoplastic resin (A), other components blended as necessary).
  • the fiber bundle 11 may be impregnated with the melt obtained by charging the molding material M from the supply port 123a and heating it in the impregnation unit 123, or the molding material M melted and kneaded by the extruder 120 may be supplied to the supply port.
  • the fiber bundle 11 may be impregnated by charging from 123a.
  • a resin structure 13 is obtained in which the fiber bundle 11 is impregnated and coated with the melt.
  • the impregnated part 123 100 parts by mass of the thermoplastic resin (A), preferably 10 parts by mass or more and 150 parts by mass or less of the fibrous filler (fiber bundle 11), more preferably 100 parts by mass or more and 150 parts by mass or less, more preferably is impregnated with 20 to 90 parts by mass of fibrous filler, more preferably 30 to 80 parts by mass of fibrous filler.
  • the amount of the fibrous filler to be blended is at least the lower limit of the preferred range, the weighing stability during the production of the molded article is further improved.
  • the opening of the fiber bundle and the impregnation of the fiber bundle 11 with the thermoplastic resin (A) become easier.
  • thermoplastic resin (A) and the fibrous filler (B) in the resin structure 13 is adjusted by changing the nozzle diameter of the die head at the exit of the impregnation part 123 with respect to the diameter of the fiber bundle 11. be able to.
  • the surface of the shaping roll 109 is smooth, for example, the maximum cross-sectional height Rt, the arithmetic mean roughness Ra, the maximum mean roughness Rz, the maximum peak height Rp, the maximum valley of the shaping roll 109 measured by the following methods. It is preferable that the depth Rv or the root-mean-square height Rq is equal to or less than a value described later.
  • the maximum cross-sectional height Rt of the surface of the shaping roll 109 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the arithmetic mean roughness Ra of the surface of the shaping roll 109 is preferably 0.1 ⁇ m or less, more preferably 0.08 ⁇ m or less, and even more preferably 0.05 ⁇ m or less.
  • the maximum average roughness Rz of the surface of the shaping roll 109 is preferably 0.8 ⁇ m or less, more preferably 0.4 ⁇ m or less, and even more preferably 0.2 ⁇ m or less.
  • the maximum peak height Rp on the surface of the shaping roll 109 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the root mean square height Rq of the surface of the shaping roll 109 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • Each surface roughness of the shaping roll 109 conforms to JIS B 0601-2001 (ISO 4287-1997), and is similar to the surface roughness of the thermoplastic resin pellet described above, and was measured under the following measurement conditions. value.
  • ⁇ Measurement conditions> Measurement magnification: 2.0 times Feeding speed: 0.5 mm/s Trace length: 4.8mm Cutoff: ⁇ c 0.8mm Evaluation length: 4.0mm Spare length: 1.0mm Filter characteristics: Gaussian Leveling processing: Linear (entire range) Detector: Contact PUDJ2S
  • the resin structure 13 heated in the impregnation unit 123 (the resin structure 13 in which the fiber bundle is impregnated and covered with the melt) is passed through a pair of vertically arranged shaping rolls 109 to finally
  • the maximum cross-sectional height Rt of the surface of the resin pellet 15 obtained in 1 is shaped to be less than 120 ⁇ m.
  • the generation of floss derived from the fibrous filler (B) can be suppressed by passing the resin structure 13 between the shaping rolls 109 .
  • the material of the shaping roll 109 is not particularly limited, it is preferably made of metal from the viewpoint of heat resistance and moderate heat dissipation. Further, it is preferable that the surface of the shaping roll 109 is smooth.
  • Metals for the shaping roll 109 include iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, manganese, and alloys thereof (stainless steel, brass, phosphor bronze, etc.) can be mentioned. It may also be a thin metal or a metal coated with a film (metal plating, vapor deposition film, coating film, etc.). Among them, stainless steel is more preferable in terms of corrosion resistance and heat dissipation.
  • the shaping roll 109 is preferably a roller type having bearings inside.
  • a roller type By using a roller type, the pressure during shaping can be released in the conveying direction, and uneven impregnation and fluffing can be suppressed.
  • Bearings inside the shaping roll 109 are not particularly limited to ball bearings, angular ball bearings, cylindrical roller bearings, taper roller bearings, spherical roller bearings, needle bearings, and slide bearings, but they have low rotational resistance and are well balanced with take-up speed. Ball bearings can be preferably used.
  • the arrangement position of the shaping roll 109 is not particularly limited, but a position 15 cm away from the die head is preferable. By separating the shaping roll 109 from the die head by 15 cm, heat can be dissipated while being affected by the heat of the heater of the die head, so that the temperature of the shaping roll 109 can be further stabilized.
  • the distance here refers to the distance from the die head to the contact point between the shaping roll 109 and the resin structure 13 .
  • the arrangement position of the shaping roll 109 is not particularly limited, but a position 15 cm away from the cooling section 125 is preferable. By separating the shaping roll 109 from the cooling part 125 by 15 cm, the temperature of the shaping roll 109 can be more stabilized while the influence of the cooling part 125 is obtained.
  • the distance here refers to the distance from the contact point between the shaping roll 109 and the resin structure 13 to the cooling part 125 . Therefore, the arrangement position of the shaping roll 109 arranged between the die head and the cooling section 125 is preferably a position 15 cm away from both the die head and the cooling section 125 .
  • the vertical gap between the shaping rolls depends on the fineness of the fibrous filler (B) to be used and the size (volume content) of the resin structure 13, but it should be about the same as or less than the width of D2 of the pellets to be produced. Adjusting is preferred.
  • the gap between the upper and lower rolls is preferably 3.0 mm or less, more preferably 450 ⁇ m or more and 3.0 mm or less, even more preferably 450 ⁇ m or more and 2.0 mm or less, and particularly preferably 450 ⁇ m or more and 1.0 mm or less.
  • the impregnability of the resin pellets improves as the content falls within the more preferable range.
  • the upper and lower roll gap refers to the distance between the contact points of the resin structure and the roll when the resin structure is passed through the rolls at a take-up speed of 0 m/min.
  • the cooling unit 125 cools the resin structure 13 shaped by the shaping roll 109 to, for example, 50 to 150°C.
  • the cooling time is not particularly limited, but is, for example, 3 to 30 seconds.
  • the take-up unit 127 continuously takes up the resin structure 13 cooled by the cooling unit 125 and delivers it to the next cutting unit 129 .
  • the cutting section 129 cuts the cooled resin structure 13 to a predetermined length to produce resin pellets 15 .
  • the cutting part 129 has, for example, a rotary blade.
  • thermoplastic resin pellets of the present embodiment are manufactured as follows.
  • Step of obtaining a strand-like resin structure While the fiber bundle 11 in which a plurality of single fibers are bundled with a sizing agent is continuously let out from the fiber roving 10 , the fiber bundle 11 is first heated and dried in the preheating section 121 . Next, while supplying the dried fiber bundle 11 to the impregnation unit 123, the molding material M melted and kneaded by the extruder 120 is introduced from the supply port 123a, and the molten molding material M is supplied to the fiber bundle 11. Impregnate. As a result, a strand-shaped resin structure 13 in which the fiber bundle is impregnated and coated with the melt is obtained.
  • the resulting strand-shaped resin structure 13 is shaped by shaping rolls 109 so that the maximum cross-sectional height Rt of the surface of the resin structure 13 is less than 120 ⁇ m.
  • the shaped resin structure 13 is cooled by the cooling unit 125 .
  • the fibers are arranged substantially parallel to the longitudinal direction of the resin structure 13 .
  • the fibers are arranged substantially parallel to the longitudinal direction of the resin structure means that the angle formed by the longitudinal direction of the fibers and the longitudinal direction of the resin structure is approximately 0°. The angle between the longitudinal directions of the structures is -5° to 5°.
  • Pelletizing process Next, the resin structure 13 after cooling is taken up in a strand shape by the take-up part 127 and fed out to the cutting part 129 . Next, the strand-shaped resin structure 13 is cut at a predetermined length in the longitudinal direction at the cutting section 129 to obtain the resin pellet 15 .
  • the predetermined length of the resin pellets 15 here is a length such that the weighted average fiber length of the fibrous filler (B) is 5 mm or more and less than 50 mm. Cut so that the pellet length is 5 mm or more and less than 50 mm.
  • thermoplastic resin pellets containing the thermoplastic resin (A) and the fibrous filler (B) are produced.
  • the resin pellet 15 is obtained by solidifying a fibrous filler (B) with a thermoplastic resin (A), and the fibrous filler is arranged substantially parallel to the longitudinal direction of the pellet.
  • the length of the fibrous filler arranged in the resin pellet 15 is substantially the same length as the length of the pellet.
  • the length of the resin pellet 15 manufactured in this embodiment is, for example, 5 mm or more and less than 50 mm.
  • the fibrous filler is arranged substantially parallel to the longitudinal direction of the pellet, and the length of the fibrous filler is substantially the same as the length of the pellet, so that the pellet When a molded article is produced using , the remaining fibrous filler can be made into long fibers, which is effective in improving weighing stability.
  • the shaping roll 109 is used to shape the resin structure 13, and the maximum cross-sectional height Rt of the surface of the resin pellet 15 is controlled to be less than 120 ⁇ m. That is, means for rolling the resin structure 13 is employed in the step of processing the strand-shaped resin structure. More specifically, in the method for producing thermoplastic resin pellets of the above-described embodiment, a fiber bundle, which is the raw material of the fibrous filler (B), is impregnated with the thermoplastic resin (A) in a molten state to form strands. a step of obtaining a resin structure; a step of rolling the strand-shaped resin structure so that the maximum cross-sectional height Rt is less than 120 ⁇ m; and a step of cutting and pelletizing the rolled resin structure. It is a thing.
  • the maximum cross-sectional height Rt of the surface of the resin pellet 15 is less than 120 ⁇ m by the method for producing the thermoplastic resin pellets of the above-described embodiment. It is possible to control so that On the other hand, when a thermoplastic resin other than the liquid crystal polyester resin is used, the melt viscosity is higher than that of the liquid crystal polyester resin, and the molten resin solidifies slowly, resulting in low transferability. Since control is difficult, a step of polishing the resin structure 13 or the resin pellets 15 is required instead of the step of rolling the resin structure or in addition to the step of rolling the resin structure. Specifically, the step of polishing the resin structure 13 or the resin pellets 15 includes a step of polishing the resin structure 13 or the resin pellets 15 with a file.
  • a fiber bundle which is a raw material of the fibrous filler (B) is impregnated with the thermoplastic resin (A) in a molten state to form a strand-shaped resin.
  • the method includes a step of obtaining a structure, a step of polishing the strand-shaped resin structure so that the maximum cross-sectional height Rt is less than 120 ⁇ m, and a step of cutting and pelletizing the processed resin structure. .
  • a strand-shaped resin structure is obtained by impregnating a fiber bundle, which is a raw material of the fibrous filler (B), with a thermoplastic resin (A) in a molten state. a step of cutting the strand-shaped resin structure into pellets; and a step of polishing the pellets so that the maximum cross-sectional height Rt of the pellet surface is less than 120 ⁇ m.
  • the pair of shaping rolls 109 arranged vertically is used, but there is no particular limitation as long as the shape of the resin structure 13 can be changed. , only one shaping roll (on one side) may be arranged.
  • the present invention has the following aspects.
  • thermoplastic resin pellet containing a thermoplastic resin (A) and a fibrous filler (B), wherein the length-weighted average fiber length of the fibrous filler (B) is 5 mm or more and less than 50 mm
  • the pellet length of the thermoplastic resin pellet and the length-weighted average fiber length of the fibrous filler (B) are substantially the same length, and the maximum cross-sectional height Rt of the surface of the thermoplastic resin pellet is , less than 120 ⁇ m.
  • thermoplastic resin (A) is preferably 40% by mass or more and 90% by mass or less, more preferably 45% by mass or more and 85% by mass with respect to 100% by mass of the total amount of the thermoplastic resin pellet % or less, more preferably 50% by mass or more and 80% by mass or less, the thermoplastic resin pellet according to "1".
  • the content of the fibrous filler (B) is preferably 10% by mass or more and 60% by mass or less, more preferably 15% by mass or more and 55% by mass, relative to the total amount of 100% by mass of the thermoplastic resin pellets. % or less, more preferably 20% by mass or more and 50% by mass or less, the thermoplastic resin pellet according to "1" or "2".
  • the arithmetic mean roughness Ra of the thermoplastic resin pellet surface is preferably 11 ⁇ m or less
  • the maximum average roughness Rz of the thermoplastic resin pellet surface is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 80 ⁇ m or less, still more preferably 10 ⁇ m or more and 60 ⁇ m or less
  • the maximum peak height Rp on the surface of the thermoplastic resin pellet is preferably 1 ⁇ m or more and 80 ⁇ m or less, more preferably 2 ⁇ m or more and 60 ⁇ m or less, still more preferably 3 ⁇ m or more and 40 ⁇ m or less
  • the maximum valley depth Rv on the surface of the thermoplastic resin pellet is preferably 1 ⁇ m or more and 70 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less, still more preferably 5 ⁇ m or more and 30 ⁇ m or less
  • the root mean square height Rq of the thermoplastic resin pellet surface is preferably 1 ⁇ m or more
  • thermoplastic resin pellet according to any one of “1” to “4", The thermoplastic resin pellets are put into the hopper of an injection molding machine TR450EH3 (manufactured by Sodick) and injected into the injection molding machine with a cylinder temperature of 360°C into a mold with a mold temperature of 100°C at an injection speed of 200 mm/s.
  • TR450EH3 manufactured by Sodick
  • thermoplastic resin pellet having a characteristic that the average value of the weighing time for the 11 shots is preferably less than 65 s, more preferably 63 s or less, and still more preferably 60 s or less.
  • the molded body of this embodiment is a molded body produced using the thermoplastic resin pellets described above.
  • the molded article of the present embodiment can be obtained by a known molding method using thermoplastic resin pellets.
  • the molding method is preferably a melt molding method, and examples thereof include injection molding, blow molding, vacuum molding, press molding, and the like. Among them, injection molding is preferred.
  • thermoplastic resin pellets described above are used as a molding material and molded by an injection molding method
  • the thermoplastic resin pellets are melted using a known injection molding machine, and the melted thermoplastic resin pellets are placed in the mold. Mold by injection.
  • Known injection molding machines include, for example, TR450EH3 manufactured by Sodick, hydraulic horizontal molding machine PS40E5ASE manufactured by Nissei Plastic Industry Co., Ltd., and the like.
  • the temperature conditions for injection molding are appropriately determined according to the type of thermoplastic resin (A), and the cylinder temperature of the injection molding machine is set to a temperature 10 to 80°C higher than the flow start temperature of the thermoplastic resin (A) used. preferably.
  • the temperature of the mold is preferably set in the range of room temperature (for example, 23° C.) to 180° C. from the viewpoint of productivity.
  • Other injection conditions such as screw rotation speed, back pressure, injection speed, holding pressure, holding pressure time, etc., may be appropriately adjusted.
  • the length-weighted average fiber length of the fibrous filler (B) in the molded article of the present embodiment is preferably 0.5 mm or more and less than 50 mm, more preferably 0.8 mm or more and 20 mm or less. 0.8 mm or more and 10 mm or less is more preferable. If the length-weighted average fiber length of the fibrous filler (B) in the molded article of the present embodiment is within the above preferable range, the mechanical strength of the molded article can be further improved.
  • Procedure (1) A part (for example, width 10 mm ⁇ length 20 mm ⁇ thickness 4 mm) is cut out from the compact to obtain a test piece. Then, the test piece containing carbon fiber is heated at 500° C. for 3 hours in a muffle furnace, and the test piece containing glass fiber is heated at 600° C. for 4 hours to remove the resin content.
  • Procedure (2) The resin component is removed, leaving only the fibrous filler (B), which is dispersed in 1000 mL of an aqueous solution containing 0.05% by volume of a surfactant (Micro90 International Products Corporation). Prepare a filler dispersion.
  • Procedure (3) Take out 100 mL from the fibrous filler dispersion and dilute it 10 times with pure water. Take out 50 mL from the dispersion after dilution, disperse it in a petri dish, and then, the fibrous filler dispersed in the petri dish with a microscope (body: VHX-8000, lens: VH-Z00R, manufactured by Keyence Corporation, magnification 10 times to 25 times), and 5 images are taken for each sample so that the photographed areas do not overlap.
  • the fibrous filler is carbon fiber
  • filter paper for Kiriyama funnel No. 5C
  • Procedure (4) The fiber length is measured for all of the five captured images using image processing software (WinROOF2018 manufactured by Mitani Shoji Co., Ltd.) as follows. ⁇ Method for measuring fiber length> (a) Monochrome pixelation processing is performed on the photographed image. (b) Binarization processing is performed so that only the photographed fibers are colored. (c) Fiber length measurement is performed using the acicular separation function of image processing software. (d) Fiber lengths of fibers that could not be binarized in (c) or curved fibers are measured by multi-point measurement, and fibers that are in contact with the edge of the image are not measured.
  • image processing software WinROOF2018 manufactured by Mitani Shoji Co., Ltd.
  • the molded article of the present embodiment described above can be applied to all applications to which thermoplastic resins can generally be applied, and is particularly suitable for applications in the automobile field.
  • injection-molded articles for automobile interior materials injection-molded articles for ceiling materials, injection-molded articles for wheelhouse covers, injection-molded articles for trunk room linings, injection-molded articles for instrument panel skin materials, and steering wheels.
  • Injection molding for covers injection molding for armrests, injection molding for headrests, injection molding for seat belt covers, injection molding for shift lever boots, injection molding for console boxes, injection molding for horn pads, knobs Injection molded products, injection molded products for airbag covers, injection molded products for various trims, injection molded products for various pillars, injection molded products for door lock bezels, injection molded products for glove boxes, injection molded products for defroster nozzles, scuff plates
  • Examples include injection molded articles, injection molded articles for steering wheels, and injection molded articles for steering column covers.
  • Injection molded products for automotive exterior materials include bumper injection molded products, spoiler injection molded products, mudguard injection molded products, side molding injection molded products, door mirror housing injection molded products, and underbody shield injection molded products. etc.
  • injection molded products for automobile parts include hoses such as automobile headlamp injection molded products, glass run channel injection molded products, weather strip injection molded products, drain hose injection molded products, and window washer tube injection molded products.
  • Injection molded products for parts injection molded products for tubes, injection molded products for rack and pinion boots, injection molded products for gaskets, injection molded products for bumper beams, injection molded products for crash boxes, injection molded products for various members, suspension systems injection-molded products for front-end modules, injection-molded products for radiator supports, injection-molded products for back door inners, and the like.
  • the molded body of the present embodiment includes sensors, LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable condenser cases, optical pickups, oscillators, various terminal boards, transformers, etc. , plugs, printed circuit boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystal displays, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer parts, microwave oven parts, It can also be applied to applications such as audio/speech equipment parts, lighting parts, air conditioner parts, office computer related parts, telephone/fax related parts, and copier related parts.
  • thermoplastic resin pellets described above are used in the molded body of the present embodiment described above, the weighing time is stable and there is little variation in physical properties.
  • a flow tester manufactured by Shimadzu Corporation, model CFT-500 was used to evaluate the flow initiation temperature of the liquid crystalline polyester resin described later. Specifically, about 2 g of the liquid crystalline polyester resin was filled into a capillary rheometer equipped with a die having an inner diameter of 1 mm and a length of 10 mm. Then, the filled liquid crystal polyester resin is extruded from the nozzle of the rheometer at a heating rate of 4° C./min under a load of 9.8 MPa (100 kg/cm 2 ), and the melt viscosity is 4800 Pa s. (48000 poise) was taken as the flow initiation temperature.
  • Procedure (3) 100 mL was taken out from the fibrous filler dispersion and diluted 10 times with pure water. Take out 50 mL from the dispersion after dilution, disperse it in a petri dish, and then, the fibrous filler dispersed in the petri dish with a microscope (body: VHX-8000, lens: VH-Z00R, manufactured by Keyence Corporation, magnification 10 times to 25 times), and five images were taken for each sample so that the photographed areas do not overlap.
  • the fibrous filler is carbon fiber
  • it is filtered under reduced pressure using filter paper for Kiriyama funnel (No.
  • thermoplastic resin (A) (Production of thermoplastic resin (A)) ⁇ Production of LCP1> 994.5 g (7.2 mol) of p-hydroxybenzoic acid, 446.9 g of 4,4'-dihydroxybiphenyl ( 2.4 mol), 239.2 g (1.44 mol) of terephthalic acid, 159.5 g (0.96 mol) of isophthalic acid and 1347.6 g (13.2 mol) of acetic anhydride were charged, and 0.4 mol of 1-methylimidazole was added. 2 g was added, and the inside of the reactor was sufficiently replaced with nitrogen gas. Then, under a nitrogen gas stream, the internal temperature of the reactor was raised from room temperature to 150° C.
  • Example 1 Thermoplastic resin pellets were obtained in the following manner using the production apparatus having the configuration shown in FIG.
  • a GTS-40 type extruder manufactured by Plastic Engineering Laboratory Co., Ltd.
  • EBD-1500A manufactured by Imex Co., Ltd.
  • a fan cutter FCMiniPlus-4TN manufactured by Hoshi Plastics Co., Ltd. was used as a pelletizer.
  • the step of obtaining a resin structure By operating the belt-type take-up machine (take-up unit 127) at a take-up speed of 10 m/min, carbon fiber CF1 (manufactured by Zoltek, Zoltek (registered trademark) ) PX35 CONTINUOUS TOW, PAN-based carbon fiber (tensile modulus 242 GPa, tensile strength 4139 MPa, tensile elongation 1.7%, number average fiber diameter 7 ⁇ m, number of fibers 50000))) while continuously feeding out at a take-up speed of 10 m / min First, it was dried by heating to 200° C. in the preheating unit 121 .
  • the extruder 120 was used to heat LCP1 obtained in ⁇ Production of LCP1> above to 340° C. to prepare it in a molten state.
  • the molten LCP1 (resin material M) is extruded from the extruder 120. was introduced from the supply port 123a.
  • LCP1 is melted at 340° C.
  • 82 parts by mass of carbon fiber CF1 is impregnated with 100 parts by mass of LCP1, and ⁇ 3.
  • a resin structure 13 in which the carbon fibers CF1 were arranged substantially parallel to the longitudinal direction of the liquid crystal polyester resin layer was obtained through a 0 mm nozzle.
  • the step of rolling the resin structure The obtained resin structure 13 is rolled by a pair of shaping rolls 109 ( ⁇ 30 mm, maximum cross-sectional height Rt: 0 .20 ⁇ m, arithmetic mean roughness Ra: 0.02 ⁇ m, maximum mean roughness Rz: 0.14 ⁇ m, maximum peak height Rp: 0.44 ⁇ m, maximum valley depth Rv: 0.41 ⁇ m, root mean square height Rq0. 43 ⁇ m, made of SUS304, the distance between the axes of the shaping rolls: 37 mm), and rolled.
  • the rolled fat structure 13 was cooled to 150° C. or lower in the cooling unit 125 .
  • the cooled resin structure 13 is taken by the belt-type take-up device (take-up unit 127), delivered to a pelletizer (cutting unit 129), and cut in the longitudinal direction at a length of 12 mm. , to obtain the thermoplastic resin pellets of Example 1, shown as resin pellets 15 in FIG.
  • Length of carbon fiber CF1 in the thermoplastic resin pellet of Example 1 measured by the method described in [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Example 1.
  • thermoplastic resin pellet of Example 1 had a cross-sectional major axis D1 of 10 mm, a minor axis D2 of 1.1 mm, and a ratio of D1/D2 of 9.1.
  • thermoplastic resin pellet of Comparative Example 1 Under the same conditions as in Example 1, except that the die outlet in Example 1 was changed to a die head with a width of 10 mm and a length of 1.2 mm, the shaping roll 109 was removed, and the resin structure 13 was not rolled. , a thermoplastic resin pellet of Comparative Example 1 was produced.
  • the length of the carbon fibers CF1 in the thermoplastic resin pellet of Comparative Example 1 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet]
  • the weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 1.
  • thermoplastic resin pellet of Comparative Example 1 had a long diameter D1 of 9.8 mm, a short diameter D2 of 1.1 mm, and a ratio of D1/D2 of 8.9.
  • thermoplastic resin pellet of Comparative Example 2 was produced under the same conditions as in Example 1 except that the shaping roll 109 in Example 1 was removed and the resin structure 13 was not rolled.
  • Length of carbon fiber CF1 in thermoplastic resin pellet of Comparative Example 2 measured by the method described in [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 2.
  • thermoplastic resin pellet of Comparative Example 2 had a long diameter D1 of 3.3 mm, a short diameter D2 of 2.2 mm, and a ratio of D1/D2 of 1.5.
  • Example 2 Example 1 except that 82 parts by mass of carbon fiber CF1 was changed to 33 parts by mass of carbon fiber CF1 with respect to 100 parts by mass of LCP1 in Example 1, and the die outlet was changed to a die head of ⁇ 5.0 mm.
  • Thermoplastic resin pellets of Example 2 were obtained under the same conditions.
  • the length of the carbon fibers CF1 in the thermoplastic resin pellets of Example 2 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous fillers (carbon fibers, glass fibers) in resin pellets]
  • the weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Example 2.
  • thermoplastic resin pellet of Example 2 had a cross-sectional major axis D1 of 9.0 mm, a minor axis D2 of 2.2 mm, and a ratio of D1/D2 of 4.1.
  • Example 3 Carbon fiber CF1 of Example 1 was replaced with carbon fiber CF2 (manufactured by Mitsubishi Chemical Corporation, PYROFIL (registered trademark) CF tow, TR50S15L, PAN-based carbon fiber, tensile strength 4900 MPa, tensile elastic modulus 235 GPa, tensile elongation 2.1%, number average fiber diameter 7 ⁇ m, number of fibers 15000), 82 parts by mass of carbon fiber CF1 with respect to 100 parts by mass of LCP1 in Example 1 was changed to 54 parts by mass of carbon fiber CF2, and the die exit was ⁇ 1.
  • Thermoplastic resin pellets of Example 3 were obtained under the same conditions as in Example 1, except that the die head was changed to 0.5 mm.
  • thermoplastic resin pellet of Example 3 had a cross-sectional major axis D1 of 3.5 mm, a minor axis D2 of 0.8 mm, and a ratio of D1/D2 of 4.4.
  • thermoplastic resin pellet of Comparative Example 3 was produced under the same conditions as in Example 3, except that the shaping roll 109 in Example 3 was removed and the resin structure 13 was not rolled.
  • the length of the carbon fibers CF2 in the thermoplastic resin pellet of Comparative Example 3 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 3.
  • thermoplastic resin pellet of Comparative Example 3 had a long diameter D1 of 1.7 mm, a short diameter D2 of 1.5 mm, and a ratio of D1/D2 of 1.1.
  • Example 4 The carbon fiber CF1 of Example 1 was changed to glass fiber GF1 (manufactured by Nittobo Co., Ltd., RS110QL483AC, E glass, number average fiber diameter 17 ⁇ m, number of fibers 3000), and the cut length was changed to 5 mm in the longitudinal direction. However, 82 parts by mass of carbon fiber CF1 for 100 parts by mass of LCP1 was changed to 54 parts by mass of glass fiber GF1 for 100 parts by mass of LCP1, and the die outlet was changed to a die head of ⁇ 1.5 mm. obtained thermoplastic resin pellets of Example 4 under the same conditions as in Example 1.
  • the length of the glass fiber GF1 in the thermoplastic resin pellet of Example 4 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet]
  • the weighted average fiber length was 5 mm, which is the same as the pellet length of the thermoplastic resin pellets of Example 4.
  • thermoplastic resin pellet of Comparative Example 4 was produced under the same conditions as in Example 4, except that the shaping roll 109 in Example 4 was removed and the resin structure 13 was not rolled.
  • the length of the glass fiber GF1 in the thermoplastic resin pellet of Comparative Example 4 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 5 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 4.
  • Example 5 LCP1 of Example 1 was changed to LCP2, the temperature of the molten state was changed to 360° C., carbon fiber CF1 was changed to carbon fiber CF2, and 82 parts by mass of carbon fiber CF1 was added to 100 parts by mass of LCP1. Except for changing 100 parts by mass of LCP2 to 54 parts by mass of carbon fiber CF2, changing the cut length to 35 mm in the longitudinal direction, and changing the die outlet to a die head of ⁇ 1.8 mm. Thermoplastic resin pellets of Example 5 were obtained under the same conditions as in 1.
  • the length of the carbon fibers CF2 in the thermoplastic resin pellet of Example 5 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet]
  • the weighted average fiber length was 35 mm, which is the same as the pellet length of the thermoplastic resin pellets of Example 5.
  • thermoplastic resin pellet of Comparative Example 5 was produced under the same conditions as in Example 5, except that the shaping roll 109 in Example 5 was removed and the resin structure 13 was not rolled.
  • the length of the carbon fibers CF2 in the thermoplastic resin pellet of Comparative Example 5 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 35 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 5.
  • Example 6 Carbon fiber CF1 of Example 1 was replaced with carbon fiber CF3 (Mitsubishi Chemical Corporation, PYROFIL (registered trademark) CF tow, HS40 12P, PAN-based carbon fiber (tensile modulus 425 GPa, tensile strength 4160 MPa, tensile elongation 1.1%, 82 parts by mass of carbon fiber CF1 for 100 parts by mass of LCP1, and 54 parts by mass of carbon fiber CF3 for 100 parts by mass of LCP1. , Thermoplastic resin pellets of Example 6 were produced under the same conditions as in Example 1, except that the die outlet was changed to a die head with a diameter of 1.5 mm.
  • the length of the carbon fibers CF3 in the thermoplastic resin pellet of Example 6 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet]
  • the weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Example 6.
  • thermoplastic resin pellet of Example 6 had a cross-sectional major axis D1 of 4.6 mm, a minor axis D2 of 0.56 mm, and a ratio of D1/D2 of 8.2.
  • thermoplastic resin pellet of Comparative Example 6 was produced under the same conditions as in Example 6, except that the shaping roll 109 in Example 6 was removed and the resin structure 13 was not rolled.
  • the length of the carbon fibers CF3 in the thermoplastic resin pellet of Comparative Example 6 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 6.
  • thermoplastic resin pellet of Comparative Example 6 had a cross-sectional major axis D1 of 1.8 mm, a minor axis D2 of 1.2 mm, and a D1/D2 of 1.5.
  • Example 7 In Example 6, under the same conditions as in Example 6, except that 1 part by mass of carbon black CB1 (BP880, manufactured by Cabot Corporation) was additionally added to 100 parts by mass of LCP1 in extruder 120. A thermoplastic resin pellet of Example 7 was produced. The length of the carbon fibers CF3 in the thermoplastic resin pellet of Example 7 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Example 7.
  • thermoplastic resin pellet of Example 7 had a cross-sectional major axis D1 of 4.5 mm, a minor axis D2 of 0.45 mm, and a D1/D2 of 10.
  • thermoplastic resin pellet of Comparative Example 7 was produced under the same conditions as in Example 7 except that the shaping roll 109 in Example 7 was removed and the resin structure 13 was not rolled.
  • the length of the carbon fibers CF3 in the thermoplastic resin pellet of Comparative Example 7 measured by the method described in the above [Measurement of length-weighted average fiber length of fibrous filler (carbon fiber, glass fiber) in resin pellet] The weighted average fiber length was 12 mm, which is the same as the pellet length of the thermoplastic resin pellets of Comparative Example 7.
  • thermoplastic resin pellet of Comparative Example 7 had a cross-sectional major axis D1 of 1.7 mm, a minor axis D2 of 1.1 mm, and a ratio of D1/D2 of 1.6.
  • Procedure (2) The trajectory of the measuring needle was set so as to be perpendicular to the longitudinal direction of the resin pellet from a point halfway along the longitudinal length (pellet length). Then, as shown in FIG. 1, the measurement range is a range of ⁇ 2 mm in the longitudinal direction and the vertical direction (a total of 4 mm from X1 to X2) from the center point X of half the length of the resin pellet in the longitudinal direction (pellet length). and Procedure (3): Under the measurement conditions shown below, 5 resin pellets are randomly selected from a plurality of resin pellets, and the front and back of the 5 resin pellets are measured once each, a total of 10 times.
  • Procedure (4) Calibration of the reference height is performed using the surface texture measurement standard piece SS-N21, the displacement y from the reference height is obtained, and the resin pellet is obtained by the above formulas (1) to (6).
  • the average value of the total 10 measurements is the arithmetic mean roughness Ra, the maximum mean roughness Rz, the maximum peak height Rp, the maximum valley depth Rv, and the root mean square height Rq of the thermoplastic resin pellet.
  • Tables 1-3 The results are shown in Tables 1-3.
  • Example 1 Manufacturing of injection molded body 1 (Example 1)
  • the thermoplastic resin pellets of Example 1 are put into the hopper of an injection molding machine TR450EH3 (manufactured by Sodick), and the injection speed is 20 mm/s into the injection molding machine with a cylinder temperature of 360°C and a mold temperature of 100°C.
  • a multi-purpose test piece (type A1) (thickness: 4 mm) conforming to JIS K7139 was molded by injecting the resin.
  • the gate was a film gate with a thickness of 4 mm from the upper side of the one-sided grip portion of the multi-purpose test piece of Example 1.
  • Other injection conditions are as follows. ⁇ Injection conditions ⁇ Screw rotation speed (plasticizing part) 100 rpm, back pressure 0 MPa, holding pressure 100 MPa, holding pressure time 5 seconds.
  • Examples 2 to 4, 6, 7, Comparative Examples 1 to 4, 6, 7 Under the same conditions as in Example 1, except that the thermoplastic resin pellets of Example 1 were changed to the thermoplastic resin pellets of Examples 2 to 4, 6, 7 and Comparative Examples 1 to 4, 6, 7, respectively. , Examples 2 to 4, 6 and 7, and Comparative Examples 1 to 4, 6 and 7, respectively.
  • Example 5 Comparative Example 5
  • the thermoplastic resin pellets of Example 1 were changed to the thermoplastic resin pellets of Example 5 or Comparative Example 5, and the cylinder temperature was changed from 360°C to 380°C. Multi-purpose specimens for Example 5 and Comparative Example 5 were prepared, respectively.
  • Procedure (2) Remove the resin component from the multi-purpose test piece of each example, leaving only the fibrous filler, and disperse it in 1000 mL of an aqueous solution containing 0.05% by volume of a surfactant (Micro90 INTERNATIONAL PRODUCTS CORPORATION). to prepare a fibrous filler dispersion.
  • Procedure (3) 100 mL was taken out from the fibrous filler dispersion and diluted 10 times with pure water.
  • Procedure (4) The fiber length was measured for all of the five captured images using image processing software (WinROOF2018, manufactured by Mitani Shoji Co., Ltd.) as follows. ⁇ Method for measuring fiber length> (a) Monochrome pixelation processing was performed on the photographed image. (b) A binarization process was performed so that only the photographed fibers were colored. (c) The fiber length was measured using the acicular separation function of the image processing software. (d) The fiber lengths of the fibers that could not be binarized in (c) or curved fibers were measured by multi-point measurement, and the fibers that were in contact with the edge of the image were not measured.
  • image processing software WinROOF2018, manufactured by Mitani Shoji Co., Ltd.
  • Example 2 (Manufacturing of injection molded body 2) (Example 1)
  • the thermoplastic resin pellets of Example 1 are put into the hopper of an injection molding machine TR450EH3 (manufactured by Sodick Co., Ltd.), and injected into the injection molding machine with a cylinder temperature of 360°C into a mold with a mold temperature of 100°C at an injection speed of 200 mm/s.
  • a flat molded product of Example 1 having a size of 150 mm ⁇ 150 mm ⁇ 4 mm in thickness was produced by injecting the resin.
  • a film gate having a thickness of 4 mm from one side of the flat molded product of Example 1 was used as a gate.
  • Other injection conditions are as follows. ⁇ Injection conditions ⁇ Screw rotation speed (plasticizing part) 100 rpm, back pressure 0 MPa, holding pressure 100 MPa, holding pressure time 5 seconds.
  • Examples 2 to 4, 6, 7, Comparative Examples 1 to 4, 6, 7 Under the same conditions as in Example 1, except that the thermoplastic resin pellets of Example 1 were changed to the thermoplastic resin pellets of Examples 2 to 4, 6, 7 and Comparative Examples 1 to 4, 6, 7, respectively. , Examples 2 to 4, 6 and 7, and Comparative Examples 1 to 4, 6 and 7, respectively.
  • Example 5 Comparative Example 5
  • the thermoplastic resin pellets of Example 1 were changed to the thermoplastic resin pellets of Example 5 or Comparative Example 5, and the cylinder temperature was changed from 360°C to 380°C.
  • a flat molded product of Example 5 and Comparative Example 5 was produced.
  • Example 1 and Comparative Examples 1 and 2 Example 3 and Comparative Example 3, Example 4 and Comparative Example 4, Example 5 and Comparative Example 5, which have the same pellet composition, Comparing the weighing times during molding of the multi-purpose test piece and the flat molded product of Example 6 and Comparative Example 6, and Example 7 and Comparative Example 7, the maximum cross-sectional height Rt of the surface is less than 120 ⁇ m Thermoplastic resin pellets It was confirmed that the multi-purpose test piece and the flat plate-shaped molded product of the example prepared using .
  • thermoplastic resin pellet 1: end face, 2: outer peripheral surface, L: pellet length, 1': cross section, D1: major diameter, D2: minor diameter 100: manufacturing equipment, 101 to 108: transport roll, 109: shaping roll , 120: extruder, 121: preheating unit, 123: impregnation unit, 125: cooling unit, 127: take-up unit, 129: cutting unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有する熱可塑性樹脂ペレットであって、繊維状フィラー(B)の長さ加重平均繊維長は、5mm以上50mm未満であり、熱可塑性樹脂ペレットのペレット長と繊維状フィラー(B)の長さ加重平均繊維長とは、実質的に同じ長さであり、熱可塑性樹脂ペレット表面の最大断面高さRtは、120μm未満である、熱可塑性樹脂ペレット。

Description

熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法
 本発明は、熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法に関する。
 本願は、2021年9月6日に日本に出願された、特願2021-144889号に基づき優先権主張し、その内容をここに援用する。
 熱可塑性樹脂は、ガラス転移温度又は融点に達すると軟化する樹脂であり、汎用プラスチックとエンジニアリングプラスチックとに大別される。
 なかでもエンジニアリングプラスチックは、機械的性質や耐熱性に優れることから、機械部品、家電部品、通信機器部品、OA部品、自動車部品、レジャー用品などの各種部品の成形材料として幅広く使用されている。そのなかでも熱可塑性樹脂は、透明性や耐衝撃性などの特長を活かして、様々な用途に使用されている。
 成形材料としては、熱可塑性樹脂を含有する樹脂組成物が用いられている。この樹脂組成物は、例えば、押出機を用いて溶融混練し、ストランドダイから押し出すことでストランドを形成した後、該ストランドをペレタイザーで所定形状に切断することにより、ペレットに成形加工される。
 近年、熱可塑性樹脂ペレットを用いた射出成形体の製造においては、生産性を向上させるために成形サイクルを短縮させた射出成形条件で、長期的に連続成形する場合がある。このような熱可塑性樹脂の連続成形においては、射出成形時の計量時間(可塑化時間とも呼ばれる)の安定性が高いことが重要である。成形時の計量時間がばらつくと、生産性が低下するという課題がある。
 このような課題に対し、特許文献1には、成形体の成形時の計量時間を安定させるために、バリが除去されたペレットが記載されている。
特開2013-177007号公報
 しかしながら、熱可塑性樹脂ペレットは、生産時間の短縮のために、さらなる成形時の計量安定性の向上が求められていた。
 本明細書において、「計量安定性」は、成形時の計量時間よって評価される。すなわち、「計量安定性が良好である」とは、複数のペレットを所定の回数成形した際のペレットの計量時間の合計の平均値が短いことを意味する。
 本発明は、上記のような事情に鑑みてなされたものであり、成形体作製時の計量安定性が良好な熱可塑性樹脂ペレットを提供することを目的とする。
 上記の課題を解決するために、本発明は以下の構成を採用した。
 [1]熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有する熱可塑性樹脂ペレットであって、前記繊維状フィラー(B)の長さ加重平均繊維長は、5mm以上50mm未満であり、前記熱可塑性樹脂ペレットのペレット長と前記繊維状フィラー(B)の長さ加重平均繊維長とは、実質的に同じ長さであり、前記熱可塑性樹脂ペレット表面の最大断面高さRtは、120μm未満である、熱可塑性樹脂ペレット。
 [2]前記熱可塑性樹脂(A)は、液晶ポリエステル樹脂である、[1]に記載の熱可塑性樹脂ペレット。
 [3]前記繊維状フィラー(B)は、炭素繊維又はガラス繊維を含む、[1]又は[2]に記載の熱可塑性樹脂ペレット。
 [4]前記熱可塑性樹脂ペレット表面の算術平均粗さRaは、11μm以下である、[1]~[3]のいずれか一項に記載の熱可塑性樹脂ペレット。
 [5][1]~[4]のいずれか一項に記載の熱可塑性樹脂ペレットの製造方法であって、前記繊維状フィラー(B)の原材料である繊維束に、溶融状態の前記熱可塑性樹脂(A)を含浸させてストランド状の樹脂構造体を得る工程と、前記ストランド状の樹脂構造体を、最大断面高さRtが120μm未満になるように圧延する工程と、前記圧延した樹脂構造体を切断して、ペレット化する工程とを含む、熱可塑性樹脂ペレットの製造方法。
 本発明によれば、成形体作製時の計量安定性が良好な熱可塑性樹脂ペレットを提供することができる。
本実施形態の熱可塑性樹脂ペレットの一例を示す模式図である。 本実施形態の熱可塑性樹脂ペレットの断面のマイクロスコープ画像である。 本実施形態の熱可塑性樹脂ペレットの断面の長径D1及び短径D2を画像解析ソフトで測定している図である。 本実施形態の熱可塑性樹脂ペレットの製造装置の一例を示す模式図である。 本実施形態の熱可塑性樹脂ペレットの製造装置における整形ロールの一例を示す模式図である。
 (熱可塑性樹脂ペレット)
 本実施形態の熱可塑性樹脂ペレットは、熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有する。
 前記繊維状フィラー(B)の長さ加重平均繊維長は、5mm以上50mm未満であり、前記熱可塑性樹脂ペレットのペレット長と前記繊維状フィラー(B)の長さ加重平均繊維長とは、実質的に同じ長さである。
 前記熱可塑性樹脂ペレット表面の最大断面高さRtは、120μm未満である。
 本明細書において、「熱可塑性樹脂ペレットのペレット長と前記繊維状フィラー(B)の長さ加重平均繊維長とは、実質的に同じ長さ」とは、樹脂ペレット中に配列している繊維状フィラー(B)の長さ加重平均繊維長が、樹脂ペレットの長手方向の長さの95~105%であることを意味する。
 本実施形態の熱可塑性樹脂ペレットは、典型的には、後述する製造方法により製造されるため、熱可塑性樹脂ペレットのペレット長と前記繊維状フィラー(B)の長さ加重平均繊維長とが実質的に同じ長さとなる。
 本実施形態の熱可塑性樹脂ペレットの形状は、楕円柱、又は、扁平楕円柱が好ましい。
 図1は、本実施形態の熱可塑性樹脂ペレットの一例である熱可塑性樹脂ペレット1Pを示す模式図である。
 熱可塑性樹脂ペレット1Pは、扁平楕円柱形状のペレットであり、端面1と、外周面2とを有する。
 熱可塑性樹脂ペレット1Pのペレット長Lは、熱可塑性樹脂ペレット1Pの長手方向の長さ(両端面1間の距離)を意味する。
 本明細書において、「熱可塑性樹脂ペレットの表面」は熱可塑性樹脂ペレット1Pにおける外周面2を意味する。
 具体的には、後述のように、本実施形態の熱可塑性樹脂ペレットは、熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有する樹脂構造体を、押出機を用いてストランド状に押し出し、長手方向に所定の長さに切断して、ペレット化することにより得られる。該工程において、ストランド状の樹脂構造体を、長手方向に所定の長さに切断する際に生じる切断面が、「熱可塑性樹脂ペレットの端面」となる。また押出口に接する面が「熱可塑性樹脂ペレットの表面」となる。また、「熱可塑性樹脂ペレットの表面」とは、「熱可塑性樹脂ペレットの端面」以外の面である。
 本実施形態の熱可塑性樹脂ペレットの表面(すなわち、熱可塑性樹脂ペレット1Pの外周面2)の最大断面高さRtは、120μm未満であり、好ましくは118μm以下であり、より好ましくは116μm以下であり、さらに好ましくは115μm以下である。
 本実施形態の熱可塑性樹脂ペレット表面の最大断面高さRtが120μm未満であることにより、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性が向上する。また、上記の好ましい値以下であれば、該計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレット表面の算術平均粗さRaは、好ましくは11μm以下である。
 本実施形態の熱可塑性樹脂ペレット表面の算術平均粗さRaが11μm以下であることにより、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレット表面の最大平均粗さRzは、例えば、100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。
 本実施形態の熱可塑性樹脂ペレット表面の最大平均粗さRzが上記の好ましい値以下であれば、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレット表面の最大山高さRpは、例えば、80μm以下が好ましく、60μm以下がより好ましく、40μm以下がさらに好ましい。
 本実施形態の熱可塑性樹脂ペレット表面の最大山高さRpが上記の好ましい値以下であれば、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレット表面の最大谷深さRvは、例えば、70μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましい。
 本実施形態の熱可塑性樹脂ペレット表面の最大谷深さRvが上記の好ましい値以下であれば、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレット表面の2乗平均平方根高さRqは、例えば、80μm以下が好ましく、60μm以下がより好ましく、40μm以下がさらに好ましい。
 本実施形態の熱可塑性樹脂ペレット表面の2乗平均平方根高さRqが上記の好ましい値以下であれば、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレットは、該ペレット表面の最大断面高さRt及び算術平均粗さRaが上記の好ましい値以下であることが好ましく、該ペレット表面の最大断面高さRt及び算術平均粗さRaが上記の好ましい値以下であり、かつ、最大平均粗さRz、最大山高さRp、最大谷深さRv、又は、2乗平均平方根高さRqが上記の好ましい値以下であることがより好ましく、該ペレット表面の最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqがいずれも上記の好ましい値以下であることがさらに好ましい。
 [最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqの測定方法]
 本実施形態の熱可塑性樹脂ペレットの表面の最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqは、表面粗さ計(小坂研究所社製、SE600LK-31)を用いて以下の方法で測定することができる。
 手順(1):樹脂ペレットの端面が、測定台と垂直になるように、樹脂ペレットを測定台に載置し、樹脂ペレットが動かないように、両面テープで樹脂ペレットと測定台とを接着する。
 手順(2):測定針の軌跡が、樹脂ペレットの長手方向の長さ(ペレット長)の半分の点から長さ方向に対して垂直となるように設定する。そして、図1に示すように、樹脂ペレットの長手方向の長さ(ペレット長)の半分の中心点Xから、長手方向と垂直方向の±2mmの範囲(X1~X2の計4mm)を測定範囲とする。
 手順(3):以下に示す測定条件で、複数の樹脂ペレットの中からランダムで5つの樹脂ペレットを取り出し、取り出した5つの樹脂ペレットの表、裏、各1回ずつ、合計10回測定する。
 手順(4):基準高さの校正を、表面性状測定用標準片SS-N21を用いて行い、基準高さからの変位yを求め、以下に示す式(1)~(6)により、樹脂ペレットの表面の最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqを算出し、手順(3)の合計10回の値の平均値を熱可塑性樹脂ペレットの算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqとする。
 <測定条件>
 測定倍率:100倍
 送り速さ:0.5mm/s
 トレース長さ:1.6mm
 カットオフ:λc=0.8mm
 評価長さ:カットオフ×5
 予備長さ:0mm
 フィルタ特性:ガウス
 レベリング処理:直線(全域)
 検出器:接触PUDJ2S
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 本実施形態の熱可塑性樹脂ペレット表面の最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqは、熱可塑性樹脂(A)の種類、繊維状フィラー(B)の種類・含有量、後述する本実施形態の熱可塑性樹脂ペレットの製造方法における樹脂構造体を加工する工程の条件等を適宜変更することにより、調整することができる。
 また、特に熱可塑性樹脂(A)として、溶融粘度が低い液晶ポリエステル樹脂を用いることで、最大断面高さRt等を制御しやすくなる。
 本実施形態の熱可塑性樹脂ペレットは、熱可塑性樹脂ペレットの断面の長径D1と短径D2との比D1/D2の下限値が、2.0以上が好ましく、2.5以上がより好ましく、2.8以上がさらに好ましい。
 D1/D2の上限値は、100以下が好ましく、80以下がより好ましく、50以下がさらに好ましく、20以下が特に好ましく、15以下が最も好ましい。
 例えば、本実施形態の熱可塑性樹脂ペレットの断面のD1/D2は、2.0以上100以下が好ましく、2.5以上80以下がより好ましく、2.8以上50以下がさらに好ましく、2.8以上20以下が特に好ましく、2.8以上15以下が最も好ましい。
 本実施形態の熱可塑性樹脂ペレットの断面のD1/D2が、上記の好ましい範囲内であることにより、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレットの断面の長径D1の下限値は、1mm以上が好ましく、1.5mm以上がより好ましく、2mm以上がさらに好ましく、4.1mm以上が特に好ましい。
 本実施形態の熱可塑性樹脂ペレットの断面の長径D1の上限値は、24mm以下が好ましく、20mm以下がより好ましく、15mm以下がさらに好ましく、12mm以下が特に好ましい。
 例えば、本実施形態の熱可塑性樹脂ペレットの断面の長径D1は、1mm以上24mm以下が好ましく、1.5mm以上20mm以下がより好ましく、2mm以上15mm以下がさらに好ましく、4.1mm以上12mm以下が特に好ましく、4.1mm以上24mm以下であってもよい。
 本実施形態の熱可塑性樹脂ペレットの断面の短径D2の下限値は、0.1mm以上が好ましく、0.15mm以上がより好ましく、0.2mm以上がさらに好ましく、0.25mm以上が特に好ましい。
 本実施形態の熱可塑性樹脂ペレットの断面の短径D2の上限値は、5mm以下が好ましく、3mm以下がより好ましく、2.5mm以下がさらに好ましく、1.4mm以下が特に好ましい。
 例えば、本実施形態の熱可塑性樹脂ペレットの断面の短径D2は、0.1mm以上5mm以下が好ましく、0.15mm以上3mm以下がより好ましく、0.2mm以上2.5mm以下がさらに好ましく、0.25mm以上1.4mm以下が特に好ましい。
 本実施形態の熱可塑性樹脂ペレットは、熱可塑性樹脂ペレットの断面の長径D1が、好ましくは1mm以上24mm以下であり、より好ましくは1.5mm以上20mm以下であり、さらに好ましくは2mm以上15mm以下であり、特に好ましくは4.1mm以上12mm以下であり、4.1mm以上24mm以下であってもよく、
 熱可塑性樹脂ペレットの断面の短径D2が、好ましくは0.1mm以上5mm以下であり、より好ましくは0.15mm以上3mm以下であり、さらに好ましくは0.2mm以上2.5mm以下であり、特に好ましくは0.25mm以上1.4mm以下であり、
 かつ、熱可塑性樹脂ペレットの断面のD1/D2が、2.0以上100以下であり、好ましくは2.5以上80以下であり、より好ましくは2.8以上50以下であり、さらに好ましくは2.8以上20以下であり、特に好ましくは2.8以上15以下であることが好ましい。
 本実施形態の熱可塑性樹脂ペレットの断面の長径D1及び短径D2が上記の好ましい範囲内であり、かつ、D1/D2が、上記の範囲内であれば、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本明細書において、「熱可塑性樹脂ペレットの断面」とは、上記「熱可塑性樹脂ペレットの端面」を、後述する[熱可塑性樹脂ペレットの断面の長径D1及び短径D2の測定方法]における手順(iii)、(iv)で、熱可塑性樹脂ペレットのペレット長さの1/2の長さまで研磨することにより生じる断面(研磨した面)を意味する。
 本明細書において、熱可塑性樹脂ペレットの断面の長径D1及び短径D2は、フェレ径(射影幅)を意味し、以下の方法で測定することができる。
 [樹脂ペレットの断面の長径D1及び短径D2の測定]
 手順(i):熱可塑性樹脂ペレット1Pを、熱可塑性樹脂ペレット1Pより十分大きい円柱上の型に入れ、図2に示すように、固定治具J1(Holding blue clips(plastic)、Presi社製)を用いて、熱可塑性樹脂ペレット1Pを長さ方向が型底面と垂直となるように直立させ、固定する。
 手順(ii):冷間埋込樹脂No.105(ストルアス社製)と、No.105用M剤(硬化剤)(ストルアス社製)とを100:2の割合で入れた溶液を、上記円柱状の型に流し込む。次いで、1日以上、常温(23℃)で静置し、十分に固化する。
 手順(iii):固化した円柱状サンプルを型から取り出し、研磨機(APO-128 オートマックス・ポリッシャーEV、リファインテック社製)を用いて、熱可塑性樹脂ペレット1Pのペレット長が1/2の長さとなるように、固化した円柱状サンプルを研磨する。
 手順(iv):1/2の長さまで研磨した面を、同研磨機にスエードクロスNo.52-308(リファインテック社製)を引き、アルミナ粉末(アルミナ粉末A、リファインテック社製)を水で、平面かつ研磨傷がなくなるまで研磨する。これにより樹脂ペレットの断面1’が形成される。
 手順(v):樹脂ペレットの断面1’をマイクロスコープ(本体:VHX-8000、レンズ:VH-Z00R、キーエンス社製)を用いて倍率10~25倍で撮影する。
 手順(vi):図3に示すように、撮影した画像を画像処理ソフト(三谷商事社製、WinRooF2018)にて二値化処理を行い、計測ツールからフェレIIを用いてフェレ径を算出し、フェレ水平を熱可塑性樹脂ペレット1P断面の長径D1、フェレ垂直を熱可塑性樹脂ペレット1P断面の短径D2とする。
 手順(vii):手順(i)~手順(vi)を5つの樹脂ペレットで行い、5回測定した平均値を樹脂ペレットの長径D1、短径D2の値として採用する。
 本測定において、上記長径D1及び短径D2は、樹脂ペレットの端面1ではなく、樹脂ペレットの断面1’の長径D1及び短径D2を算出している。通常、樹脂ペレットの端面1の長径D1及び短径D2と、樹脂ペレットの断面1’の長径D1及び短径D2とはほとんど同じ径であるが、より製造ばらつきによる影響を低減するために、樹脂ペレットの断面1’の長径D1及び短径D2を採用している。
 <熱可塑性樹脂>
 本実施形態の熱可塑性樹脂ペレットが含有する熱可塑性樹脂(A)としては、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリメチルペンテン等のポリオレフィン樹脂;塩化ビニル、塩化ビニリデン酢酸ビニル、ポリビニルアルコール等のビニル系樹脂;ポリスチレン、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等のポリスチレン系樹脂;ポリアミド6(ナイロン6)、ポリアミド66(ナイロン66)、ポリアミド11(ナイロン11)、ポリアミド12(ナイロン12)、ポリアミド46(ナイロン46)、ポリアミド610(ナイロン610)、ポリテトラメチレンテテフタルアミド(ナイロン4T)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリメタキシリレンアジパミド(ナイロンMXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂;変性ポリスルホン、ポリエーテルスルホン、ポリスルホン、ポリフェニルスルホン等のポリスルホン系樹脂;直鎖型ポリフェニレンスルフィド、架橋型ポリフェニレンスルフィド、半架橋型ポリフェニレンスルフィドなどのポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等のポリエーテルケトン;ポリカーボネート;ポリフェニレンエーテル;熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド系樹脂などが挙げられる。
 本実施形態の熱可塑性樹脂ペレットが含有する熱可塑性樹脂(A)は、上記の中でも、後述の熱可塑性樹脂ペレットの製造方法で示す通り、熱可塑性樹脂ペレット表面の最大断面高さRtが120μm未満の熱可塑性樹脂ペレットを製造しやすい観点から、液晶ポリエステル樹脂であることが好ましい。
 ≪液晶ポリエステル樹脂≫
 液晶ポリエステル樹脂は、溶融状態で液晶性を示すポリエステル樹脂であれば、特に限定されない。本実施形態の液晶ポリエステル樹脂は、液晶ポリエステルアミド、液晶ポリエステルエーテル、液晶ポリエステルカーボネート、液晶ポリエステルイミド等であってもよい。
 本実施形態の液晶ポリエステル樹脂の流動開始温度は、250℃以上であることが好ましく、270℃以上であることがより好ましく、280℃以上であることがさらに好ましい。
 また、本実施形態の液晶ポリエステル樹脂の流動開始温度は、400℃以下であることが好ましく、360℃以下であることがより好ましく、330℃以下であることがさらに好ましい。
 例えば、本実施形態の液晶ポリエステル樹脂の流動開始温度は、250℃以上400℃以下であることが好ましく、270℃以上360℃以下であることがより好ましく、280℃以上330℃以下であることがさらに好ましい。
 本明細書において、流動開始温度は、フロー温度または流動温度とも呼ばれ、液晶ポリエステル樹脂の分子量の目安となる温度である(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 流動開始温度の測定方法として、具体的には、毛細管レオメーターを用いて、液晶ポリエステル樹脂を9.8MPa(100kg/cm)の荷重下4℃/分の速度で昇温しながら溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度である。
 本実施形態の液晶ポリエステル樹脂は、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 本実施形態の液晶ポリエステル樹脂の典型的な例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなる液晶ポリエステル樹脂;複数種の芳香族ヒドロキシカルボン酸を重合させてなる液晶ポリエステル樹脂;芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなる液晶ポリエステル樹脂;ポリエチレンテレフタレートなどのポリエステルと芳香族ヒドロキシカルボン酸とを重合させてなる液晶ポリエステル樹脂が挙げられる。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部または全部に代えて、重合可能なそれらの誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるエステル;カルボキシル基をハロホルミル基に変換してなる酸ハロゲン化物;カルボキシル基をアシルオキシカルボニル基に変換してなる酸無水物等が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなるアシル化物等が挙げられる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるアシル化物等が挙げられる。
 本実施形態の液晶ポリエステル樹脂は、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ともいう)を有することが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ともいう)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ともいう)とを有することがより好ましい。
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
[式中、Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。]
 (4)-Ar-Z-Ar
[式中、ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基を表す。]
 Ar、ArまたはArで表される前記基中の1個以上の水素原子と置換可能なハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Ar、ArまたはArで表される前記基中の1個以上の水素原子と置換可能なアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、n-デシル基等が挙げられ、その炭素数は、1~10が好ましい。
 Ar、ArまたはArで表される前記基中の1個以上の水素原子と置換可能なアリール基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基、2-ナフチル基等が挙げられ、その炭素数は、6~20が好ましい。
 Ar、ArまたはArで表される前記基中の水素原子が上述した基で置換されている場合、その置換数は、好ましくは1個又は2個であり、より好ましくは1個である。
 式(4)中のZにおけるアルキリデン基としては、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基、2-エチルヘキシリデン基等が挙げられ、その炭素数は1~10が好ましい。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arが1,4-フェニレン基である繰返し単位(p-ヒドロキシ安息香酸に由来する繰返し単位)、およびArが2,6-ナフチレン基である繰返し単位(6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。
 本明細書において「由来」とは、原料モノマーが重合するために、重合に寄与する官能基の化学構造が変化し、その他の構造変化を生じないことを意味する。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arが1,4-フェニレン基である繰返し単位(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基であるも繰返し単位(イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基である繰返し単位(2,6-ナフタレンジカルボン酸に由来する繰返し単位)、およびArがジフェニルエ-テル-4,4’-ジイル基である繰返し単位(ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましく、Arが1,4-フェニレン基である繰返し単位、Arが1,3-フェニレン基である繰返し単位、およびArが2,6-ナフチレン基である繰返し単位がより好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミンまたは芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arが1,4-フェニレン基である繰返し単位(ヒドロキノン、p-アミノフェノールまたはp-フェニレンジアミンに由来する繰返し単位)、およびArが4,4’-ビフェニリレン基である繰返し単位(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルまたは4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 繰返し単位(1)の数は、全繰返し単位の合計数(100%)に対して、30%以上80%以下が好ましく、40%以上70%以下がより好ましく、45%以上70%以下がさらに好ましい。
 繰返し単位(2)の数は、全繰返し単位の合計数(100%)に対して、35%以下が好ましく、10%以上35%以下がより好ましく、15%以上30%以下がさらに好ましい。
 繰返し単位(3)の数は、全繰返し単位の合計数(100%)に対して、35%以下が好ましく、10%以上35%以下がより好ましく、15%以上30%以下がさらに好ましい。
 繰返し単位(2)の数と繰返し単位(3)の数との割合は、[繰返し単位(2)の数]/[繰返し単位(3)の数]で表して、0.9/1~1/0.9が好ましく、0.95/1~1/0.95がより好ましく、0.98/1~1/0.98がさらに好ましい。
 本実施形態の液晶ポリエステル樹脂は、繰返し単位(1)~(3)を、それぞれ2種以上有してもよい。また、液晶ポリエステル樹脂は、繰返し単位(1)~(3)以外の繰返し単位を有してもよいが、その数は、全繰返し単位の合計数(100%)に対して、10%以下が好ましく、5%以下がより好ましい。
 本明細書において、各繰返し単位の数(各繰返し単位の重合度)は、特開2000-19168号公報に記載の分析方法によって求められる値を意味する。
 具体的には、液晶ポリエステル樹脂(A)を超臨界状態の低級アルコール(炭素数1~3のアルコール)と反応させて、前記液晶ポリエステル樹脂(A)をその繰返し単位を誘導するモノマーまで解重合し、解重合生成物として得られる各繰返し単位を誘導するモノマーを液体クロマトグラフィーによって定量することで、各繰返し単位の数を算出することができる。
 例えば、液晶ポリエステル樹脂が、繰返し単位(1)~(3)からなる場合の繰返し単位(1)の数は、繰返し単位(1)~(3)をそれぞれ誘導するモノマーのモル濃度を液体クロマトグラフィーによって算出し、繰返し単位(1)~(3)をそれぞれ誘導するモノマーのモル濃度の合計を100%とした際の繰返し単位(1)を誘導するモノマーのモル濃度の割合を算出することによって、求めることができる。
 本実施形態の液晶ポリエステル樹脂は、繰返し単位(3)として、XおよびYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが、溶融粘度が低くなり易いため、好ましく、繰返し単位(3)として、XおよびYがそれぞれ酸素原子であるもののみを有することがより好ましい。
 本実施形態の熱可塑性樹脂(A)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 本実施形態の熱可塑性樹脂(A)における液晶ポリエステル樹脂の含有量は、熱可塑性樹脂(A)全量100質量%に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%、すなわち、本実施形態の熱可塑性樹脂(A)は液晶ポリエステル樹脂のみからなるものであってもよい。
 本実施形態の熱可塑性樹脂(A)における液晶ポリエステル樹脂の含有量が、上記の好ましい値以上であれば、熱可塑性樹脂ペレット表面の最大断面高さRtが120μm未満の熱可塑性樹脂ペレットをより製造しやすくなる。
 熱可塑性樹脂(A)の含有量は、熱可塑性樹脂ペレット全量100質量%に対して、40質量%以上が好ましく、45質量%以上がより好ましく、50質量%以上がさらに好ましい。
 また、熱可塑性樹脂(A)の含有量は、熱可塑性樹脂ペレット全量100質量%に対して、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。
 例えば、熱可塑性樹脂(A)の含有量は、熱可塑性樹脂ペレット全量100質量%に対して、40質量%以上90質量%以下が好ましく、45質量%以上85質量%以下がより好ましく、50質量%以上80質量%以下がさらに好ましい。
 <繊維状フィラー(B)>
 本実施形態の熱可塑性樹脂ペレットが含有する繊維状フィラー(B)は、長さ加重平均繊維長が、5mm以上50mm未満である。
 本明細書において、熱可塑性樹脂ペレット中の「長さ加重平均繊維長」は以下の方法で測定することができる。
 [樹脂ペレット中の繊維状フィラー(B)の長さ加重平均繊維長の測定]
 樹脂ペレット中の繊維状フィラーの長さ加重平均繊維長は以下の方法で測定することができる。
 手順(1):樹脂ペレット5gをマッフル炉で加熱して樹脂分を飛ばす。
 加熱条件は、炭素繊維の場合は500℃で3h加熱し、ガラス繊維の場合、600℃で4h加熱する。
 手順(2):樹脂ペレットから樹脂分を除去して、繊維状フィラーだけになったものを、界面活性剤(Micro90 INTERNATIONAL PRODUCTS CORPORATION社製)0.05体積%入り水溶液1000mLに分散させて、繊維状フィラー分散液を調製する。
 手順(3):繊維状フィラー分散液から100mLを取り出し、純水10倍に希釈する。希釈後の分散液から50mLを取り出して、シャーレに分散させ、続いて、シャーレの中に分散した繊維状フィラーを、マイクロスコープ(本体:VHX-8000、レンズ:VH-Z00R、キーエンス社製、倍率10倍~25倍)にて観察し、画像を1サンプルにつき、撮影領域が重ならないように5枚撮影する。但し、繊維状フィラーが炭素繊維の場合、希釈後の分散液から50mLを取り出した後に、Φ90mmの桐山ロート用ろ紙(No.5C)を用いて減圧濾過を行い、ろ紙に分散した炭素繊維の画像を撮影する。
 手順(4):撮影した5枚の画像の全てを画像処理ソフト(三谷商事社製、WinROOF2018)を用いて以下の様にして、繊維長を測定する。
 <繊維長の測定方法>
 (a)撮影された画像に対して、モノクロ画素化処理を行う。
 (b)撮影した繊維のみに色がつくように二値化処理を実施する。
 (c)画像処理ソフトの針状分離機能を用いて繊維長測定を行う。
 (d)(c)で二値化できなかった繊維や湾曲した繊維の繊維長を多点間計測により測定し、画像の淵に接している繊維は測定しないこととする。ただし、(c)及び(d)において、20μm以下の繊維はノイズと判断し、繊維の測定本数nに含まないようにする。n>500、繊維の測定本数nが500を超えない場合、手順(3)に戻り、画像を追加撮影し、nが500を超えるまで測定する。
 手順(5):手順(4)で測定した繊維状フィラーの繊維長から、長さ加重平均繊維長lm=(Σli×ni)/(Σli×ni)を求める(Σni>500)。
 li:繊維状フィラーの繊維長
 ni:繊維長liの繊維状フィラーの本数
 繊維状フィラー(B)の長さ加重平均繊維長は、5mm以上50mm未満であり、5mm以上45mm以下が好ましく、5mm以上40mm以下がより好ましい。
 繊維状フィラー(B)の長さ加重平均繊維長が5mm以上50mm未満であることにより、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 本実施形態の熱可塑性樹脂ペレットが含有する繊維状フィラーは、繊維状の無機充填材であってもよいし、繊維状の有機充填材であってもよい。
 繊維状の無機充填材としては、ガラス繊維;炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維;鉄、金、銅、アルミニウム、黄銅、ステンレス等の金属繊維;炭化ケイ素繊維;ボロン繊維などが挙げられる。
 また、繊維状の無機充填材としては、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカー等のウイスカーも挙げられる。
 繊維状の有機充填材としては、ポリエステル繊維、パラ又はメタアラミド繊維、PBO繊維等が挙げられる。
 本実施形態における繊維状フィラーとしては、上記の中でも、ガラス繊維又は炭素繊維が好ましい。
 ・ガラス繊維
 ガラス繊維の種類は、特に制限はなく、公知のものを用いることができ、例えば、Eガラス(すなわち、無アルカリガラス)、Cガラス(すなわち、耐酸用途向けガラス)、ARガラス(すなわち、耐アルカリ用途向けガラス)、Sガラス又はTガラスなどを挙げることができる。
 ガラス繊維は、表面処理されたガラス繊維でもよく、表面処理されていないガラス繊維でもよい。
 ガラス繊維の処理は、修飾剤、シランカップリング剤、ホウ素化合物などで行うことができる。修飾剤としては、芳香族ウレタン系修飾剤、脂肪族ウレタン系修飾剤、アクリル系修飾剤等が挙げられる。
 ガラス繊維としては、上記の中でも、Eガラスが好ましい。
 ・炭素繊維
 炭素繊維の種類は、特に制限はなく、公知のものを用いることができ、例えば、PAN系、ピッチ系、レーヨン系、フェノール系、リグニン系の炭素繊維が好ましく、PAN系炭素繊維又はピッチ系炭素繊維がより好ましく、PAN系炭素繊維がさらに好ましい。
 また、導電性を付与する目的においては、ニッケルや銅やイッテルビウムなどの金属を被覆した炭素繊維を用いることもできる。
 PAN系炭素繊維としては、例えば、Zoltek社製「Zoltek(登録商標)」;東レ社製「トレカ(登録商標)」;三菱ケミカル社製「PYROFIL(登録商標)」、「GRAFIL(登録商標)」;帝人社製「Tenax(登録商標)」;台湾プラスチック社製「TAIRYFIL(登録商標)」;SGLカーボン社製「SIGRAFIL(登録商標)」等が挙げられる。
 炭素繊維の引張強度は、好ましくは2500MPa以上であり、より好ましくは3500MPa以上であり、さらに好ましくは4000MPa以上である。
 高引張強度の炭素繊維を使用することで、成形体作製までの加工プロセス中の繊維折損が抑制され、繊維を長く残せることで、機械特性をより向上させることができる。
 炭素繊維の引張強度の上限値は、例えば、6000MPa以下である。
 炭素繊維の引張強度は、JIS R 7606:2000に準じて測定した値を意味する。
 炭素繊維の引張弾性率は、好ましくは180GPa以上であり、より好ましくは200GPa以上であり、さらに好ましくは220GPa以上であり、特に好ましくは240GPa以上である。
 高引張弾性率の炭素繊維を使用することで、成形体の弾性率を向上できる。
 炭素繊維の引張弾性率の上限値は、例えば、800GPa以下である。
 炭素繊維の引張弾性率は、JIS R 7606:2000に準じて測定した値を意味する。
 炭素繊維の引張伸びは、好ましくは0.4%以上であり、より好ましくは0.6%以上であり、さらに好ましくは0.8%以上であり、特に好ましくは1.0%以上である。
 高引張伸びの炭素繊維を使用することで、成形体の引張伸びを向上できる。
 炭素繊維の引張伸びの上限値は、例えば、10%以下である。
 炭素繊維の引張伸びは、JIS R 7606 :2000に準じて測定した値を意味する。
 繊維状フィラー(B)の繊維本数は、3000本以上であることが好ましく、10000本以上であることがより好ましく、30000本以上であることがさらに好ましい。
 また、繊維状フィラー(B)の繊維本数は、60000本以下であることが好ましく、60000本以下であることがより好ましく、55000本以下であることがさらに好ましい。
 例えば、繊維状フィラー(B)の繊維本数は、3000本以上60000本以下であることが好ましく、10000本以上60000本以下であることがより好ましく、30000本以上55000本以下であることがさらに好ましい。
 樹脂ペレット中の繊維状フィラー(B)の繊維本数の測定方法は、例えば、ペレット1粒について、上述した[樹脂ペレット中の繊維状フィラー(B)の長さ加重平均繊維長の測定]の手順(1)と同様の方法で樹脂分を除去し、得られた繊維状フィラー(B)の全重量から、繊維状フィラー(B)からペレット長と同じ長さの繊維1本を取り出し、繊維1本の重量を除することで求めることができる。
 繊維状フィラー(B)の繊維本数が上記の好ましい範囲内であれば、該繊維状フィラー(B)を含有する熱可塑性樹脂ペレットから作製される成形体の物性のばらつきをより抑制することができる。
 繊維状フィラー(B)の数平均繊維径は、特に限定されないが、1~40μmであることが好ましく、3~35μmであることがより好ましい。
 繊維状フィラー(B)が炭素繊維の場合、1~15μmであることが好ましく、3~10μmであることがより好ましく、4~9μmであることがさらに好ましい。
 繊維状フィラー(B)がガラス繊維の場合、5~35μmであることが好ましく、10~25μmであることがより好ましく、10~20μmであることがさらに好ましい。
 樹脂ペレット中の繊維状フィラー(B)の数平均繊維径の測定方法は、例えば、上述した[樹脂ペレット中の繊維状フィラー(B)の長さ加重平均繊維長の測定]の手順(1)と同様の方法で樹脂分を除去し、得られた繊維状フィラー(B)を走査型電子顕微鏡(1000倍)にて観察し、無作為に選んだ500本の繊維状フィラー(B)について繊維径を計測した値の数平均値を採用することができる。
 繊維状フィラー(B)の数平均繊維径が、上記の好ましい範囲内であると、繊維状フィラー(B)による機械的強度の向上が効率良く行われる。
 繊維状フィラー(B)の含有量は、熱可塑性樹脂ペレット全量100質量%に対して、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。
 また、繊維状フィラー(B)の含有量は、熱可塑性樹脂ペレット全量100質量%に対して、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下がさらに好ましい。
 例えば、繊維状フィラー(B)の含有量は、熱可塑性樹脂ペレット全量100質量%に対して、10質量%以上60質量%以下が好ましく、15質量%以上55質量%以下がより好ましく、20質量%以上50質量%以下がさらに好ましい。
 繊維状フィラー(B)の含有量が上記の好ましい範囲内であれば、機械的強度をより向上させることができる。
 繊維状フィラー(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましい。
 また、繊維状フィラー(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、150質量部以下が好ましく、90質量部以下がより好ましく、85質量部以下がさらに好ましい。
 例えば、繊維状フィラー(B)の含有量は、熱可塑性樹脂(A)100質量部に対して、10質量部以上150質量部以下が好ましく、20質量部以上90質量部以下がより好ましく、30質量部以上85質量部以下がさらに好ましい。
 熱可塑性樹脂(A)の含有量に対する繊維状フィラー(B)の含有量が上記の好ましい範囲内であれば、本実施形態の熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 <その他成分>
 本実施形態の熱可塑性樹脂ペレットは、上述した熱可塑性樹脂(A)、及び、繊維状フィラー(B)に加えて、必要に応じて、繊維状フィラー(B)以外の他のフィラー、添加剤等を1種以上含有してもよい。
 ・他のフィラー
 繊維状フィラー(B)以外の他のフィラーとしては、板状フィラー、球状フィラー、粉状フィラー、異形フィラー等が挙げられる。
 板状フィラーとしては、タルク、マイカ、グラファイト、ウォラストナイトが挙げられる。
 板状フィラーは表面処理されたものであっても、未処理のものでもよい。
 マイカとしては、白雲母、金雲母、フッ素金雲母、四ケイ素雲母等の天然マイカ、人工的に製造される合成マイカが挙げられる。
 球状フィラーとしては、ガラスビース、ガラスバルーンが挙げられる。
 粉状フィラーとしては、炭酸カルシウム、ドロマイト、クレイ硫酸バリウム、酸化チタン、カーボンブラック、導電カーボン、微粒シリカが挙げられる。
 異形フィラーとしては、ガラスフレーク、異形断面ガラス繊維が挙げられる。
 本実施形態の熱可塑性樹脂ペレットが他のフィラーを含有する場合、上記の中でも、粉状フィラーを含有することが好ましく、カーボンブラックを含有することがより好ましい。
 カーボンブラックとしては、アセチレンブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等が挙げられる。その中でも、着色性と機械特性のバランス、入手性の観点から、ファーネスブラックが好ましい。
 また、該カーボンブラックは、シランカップリング剤等により表面修飾されたカーボンブラック、表面が酸化されたカーボンブラックであってもよい。
 本実施形態の熱可塑性樹脂ペレットが、他のフィラーを含有する場合、他のフィラーの含有量は、熱可塑性樹脂ペレット全量100質量%に対して、0.01質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることが好ましく、0.5質量%以上1質量%以下であることが好ましい。
 ・添加剤
 添加剤としては、難燃剤、導電性付与材剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、粘度調整剤、界面活性剤等が挙げられる。
 滑剤としては、ワックス(カルナバロウワックス等)、高級脂肪酸(ステアリン酸等)、高級脂肪酸塩、高級アルコール(ステアリルアルコール等)、高級脂肪酸アミド(ステアリン酸アミド、エルカ酸アミド等)等が挙げられる。成形時の耐熱性の観点から、高級脂肪酸塩が好ましく、高級脂肪酸金属塩がより好ましい。
 高級脂肪酸金属塩は、炭素数12以上の長鎖脂肪酸の金属塩である。該炭素数は12以上28以下が好ましく、該炭素数は12以上18以下がより好ましい。
 該長鎖脂肪酸の具体例としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリ
ン酸、オレイン酸、ベヘン酸、モンタン酸などが挙げられる。
 高級脂肪酸金属塩として、具体的には、ラウリン酸リチウム、ラウリン酸カルシウム、ラウリン酸バリウム、ステアリン酸リチウム、ステアリン酸バリウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ベヘン酸マグネシウム、ベヘン酸カルシウム、ベヘン酸バリウム等が挙げられる。
 以上説明したように本実施形態の熱可塑性樹脂ペレットは、熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有し、繊維状フィラー(B)の長さ加重平均繊維長が、5mm以上50mm未満であり、熱可塑性樹脂ペレットのペレット長と繊維状フィラー(B)の長さ加重平均繊維長とが、実質的に同じ長さであり、熱可塑性樹脂ペレット表面の最大断面高さRtが、120μm未満である。
 本実施形態の熱可塑性樹脂ペレットのように、繊維状フィラー(B)の長さ加重平均繊維長が、5mm以上で比較的長繊維であり、かつ、熱可塑性樹脂ペレットのペレット長と繊維状フィラー(B)の長さ加重平均繊維長とが、実質的に同じ長さである熱可塑性樹脂ペレットは、成形体の機械的強度を向上させることができる等のメリットがある一方で、一般的に計量性が悪い傾向にある。
 これに対して、本実施形態の熱可塑性樹脂ペレットは、表面の最大断面高さRtが、120μm未満であるため、ホッパー内の該ペレット間及び該ペレットと装置壁面の摩擦が軽減されることで該ペレットの流動性が良好となり、搬送がスムーズに行われる。また、成形機内のシリンダーとスクリュー間へ、該ペレットが流れこみやすいため、計量部から圧縮部へスムーズに搬送できる。
 したがって、本実施形態の熱可塑性樹脂ペレットによれば、成形体作製時の計量安定性が良好となる。
 また、本実施形態の熱可塑性樹脂ペレットによれば、繊維本数が比較的多い(30000~55000本程度の)繊維状フィラー(B)(例えば、ラージトウ)を用いた場合であっても、成形体作製時の計量安定性が良好となる。
 (熱可塑性樹脂ペレットの製造方法)
 本実施形態における熱可塑性樹脂ペレットの製造方法は、例えば、繊維状フィラー(B)の原材料である繊維束に、溶融状態の熱可塑性樹脂(A)を含浸させてストランド状の樹脂構造体を得る工程と、ストランド状の樹脂構造体を、最大断面高さRtが120μm未満になるように加工する工程と、加工した樹脂構造体を切断して、ペレット化する工程とを含む。
 ・熱可塑性樹脂ペレットの製造装置
 図4は、熱可塑性樹脂ペレットの製造装置の一実施形態を示している。
 図4に示す本実施形態では、複数本の繊維状フィラーが収束剤にて収束された繊維束11をロール状に巻き取った繊維ロービング10を用いて、樹脂ペレット15を得る場合を説明する。
 図4に示すように、製造装置100は、予備加熱部121と、含浸部123と、冷却部125と、引取部127と、切断部129と、搬送ロール101~108と、整形ロール109とを備える。図4に示す製造装置100では、含浸部123に押出機120が接続されている。
 図4では、繊維ロービング10から繊維束11が連続的に繰り出される様子を示している。本実施形態では、繊維ロービング10から繰り出される繊維束11を搬送ロール101~108によって長手方向に搬送しながら、樹脂ペレット15を作製する。
 繊維ロービング10の数平均繊維径は、特に限定されないが、1~40μmであることが好ましく、3~35μmであることがより好ましい。
 繊維状フィラーが炭素繊維の場合、1~15μmであることが好ましく、3~10μmであることがより好ましく、4~9μmであることがさらに好ましい。
 繊維状フィラーがガラス繊維の場合、5~35μmであることが好ましく、10~25μmであることがより好ましく、10~20μmであることがさらに好ましい。
 繊維ロービング10の数平均繊維径は、繊維状フィラーを走査型電子顕微鏡(1000倍)にて観察し、無作為に選んだ500本の繊維状フィラーについて繊維径を計測した値の数平均値を採用する。
 繊維ロービング10の数平均繊維径が、前記の好ましい範囲内であると、機械的強度の向上が効率良く行われる。
 本実施形態で、繊維状フィラーは、収束剤(サイジング剤)で処理されたものが用いられている。適度にサイジング処理された繊維状フィラーの方が、ペレット生産時の生産性や品質安定性に優れ、成形体での物性ばらつきを小さくできる。
 収束剤(サイジング剤)は、特に限定されないが、例えば、ナイロン系ポリマー、ポリエーテル系ポリマー、エポキシ系ポリマー、エステル系ポリマー、ウレタン系ポリマー、又はこれらの混合系ポリマー若しくはこれらの各変性ポリマーが挙げられる。またアミノシランやエポキシシラン等のいわゆるシランカップリング剤、チタンカップリング剤等公知のカップリング剤を使用することもできる。
 本実施形態の樹脂ペレットに用いられる繊維状フィラーは、単繊維が必ずしも一方向に配列している必要はないが、成形材料を製造する過程での生産性の観点から、単繊維が一方に配列し繊維束が繊維の長さ方向に亘り連続した状態であることが好ましい。
 繊維ロービング10の繊維本数は、3000本以上であることが好ましく、10000本以上であることがより好ましく、30000本以上であることがさらに好ましい。
 また、繊維ロービング10の繊維本数は、60000本以下であることが好ましく、60000本以下であることがより好ましく、55000本以下であることがさらに好ましい。
 例えば、繊維ロービング10の繊維本数は、3000本以上60000本以下であることが好ましく、10000本以上60000本以下であることがより好ましく、30000本以上55000本以下であることがさらに好ましい。
 繊維ロービング10の繊維本数が上記の好ましい範囲内であれば、繊維ロービング10を用いて製造される熱可塑性樹脂ペレットを用いて成形体を作製する際に計量安定性がより向上する。
 予備加熱部121では、繊維ロービング10から繰り出される繊維束11を加熱して乾燥させる。その際の加熱温度は、特に限定されないが、例えば50~250℃である。
 また、予備加熱部121での加熱時間は、特に限定されないが、例えば3~30秒間である。
 含浸部123では、繊維束11以外の成形材料M(熱可塑性樹脂(A)、必要に応じて配合されるその他成分)を、繊維束11に含浸させる。
 成形材料Mを供給口123aから投入し、含浸部123内で加熱して得られる溶融物を、繊維束11に含浸させてもよいし、押出機120にて溶融混練した成形材料Mを供給口123aから投入して、繊維束11に含浸させてもよい。
 そして、図4に示す実施形態では、繊維束11に前記溶融物が含浸及び被覆した樹脂構造体13が得られる。
 含浸部123での加熱温度は、熱可塑性樹脂(A)の種類に応じて適宜決定され、熱可塑性樹脂(A)の流動開始温度より10~80℃高い温度に設定することが好ましく、例えば300~400℃である。
 含浸部123においては、成形体に要求される特性等に応じて、熱可塑性樹脂(A)100質量部を、好ましくは繊維状フィラー(繊維束11)10質量部以上150質量部以下、より好ましくは繊維状フィラー20質量部以上90質量部以下、さらに好ましくは繊維状フィラー30質量部以上80質量部以下に含浸させる。
 繊維状フィラーの配合量が、前記の好ましい範囲の下限値以上であれば、成形体作製時の計量安定性がより向上する。一方、前記の好ましい範囲の上限値以下であれば、繊維束の開繊及び熱可塑性樹脂(A)の繊維束11への含浸がより容易になる。
 含浸部123の出口におけるダイヘッドのノズル径を、繊維束11の径に対して変化させることにより、樹脂構造体13における熱可塑性樹脂(A)と繊維状フィラー(B)との配合比を調整することができる。
 含浸部123の出口におけるダイヘッドのノズル形状としては、丸型、四角型など、特に限定されないが、整形ロール109圧延時に樹脂構造体13をより変形させることができ、熱可塑性樹脂(A)の含浸性が良好になることから、丸型の形状が好ましい。
 図5に示すように、含浸部123で加熱された状態の樹脂構造体13(繊維束に前記溶融物が含浸及び被覆した樹脂構造体13)は、上下に配置した一対の整形ロール109間を通過し、圧延されることで、最終的に得られる樹脂ペレット15表面の最大断面高さRtが120μm未満となる。
 樹脂ペレット15表面の最大断面高さRtを120μm未満にしやすくする観点から、整形ロール109の材質は、金属製が好ましい。また、整形ロール109の表面は平滑であることが好ましい。
 整形ロール109の表面が平滑であるとは、例えば、以下の方法で測定される整形ロール109の最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、又は、2乗平均平方根高さRqが後述する値以下であることが好ましい。
 整形ロール109の表面の最大断面高さRtは、1μm以下であることが好ましく、0.8μm以下がより好ましく、0.5μm以下がさらに好ましい。
 整形ロール109の表面の算術平均粗さRaは、0.1μm以下であることが好ましく、0.08μm以下がより好ましく、0.05μm以下がさらに好ましい。
 整形ロール109の表面の最大平均粗さRzは、0.8μm以下であることが好ましく、0.4μm以下がより好ましく、0.2μm以下がさらに好ましい。
 整形ロール109の表面の最大山高さRpは、1μm以下であることが好ましく、0.8μm以下がより好ましく、0.5μm以下がさらに好ましい。
 整形ロール109の表面の最大谷深さRvは、1μm以下であることが好ましく、0.8μm以下がより好ましく、0.5μm以下がさらに好ましい。
 整形ロール109の表面の2乗平均平方根高さRqは、1μm以下であることが好ましく、0.8μm以下がより好ましく、0.5μm以下がさらに好ましい。
 整形ロール109の各表面粗さは、JIS B 0601-2001(ISO 4287-1997)に準拠し、上述した熱可塑性樹脂ペレットの表面の各表面粗さと同様の方法で、以下の測定条件で測定した値である。
 <測定条件>
 測定倍率:2.0倍
 送り速さ:0.5mm/s
 トレース長さ:4.8mm
 カットオフ:λc=0.8mm
 評価長さ:4.0mm
 予備長さ:1.0mm
 フィルタ特性:ガウス
 レベリング処理:直線(全域)
 検出器:接触PUDJ2S
 含浸部123で加熱された状態の樹脂構造体13(繊維束に前記溶融物が含浸及び被覆した樹脂構造体13)は、上下に配置した一対の整形ロール109間を通過することにより、最終的に得られる樹脂ペレット15の表面の最大断面高さRtが120μm未満となるように整形される。
 また、樹脂構造体13が、整形ロール109間を通過することで、繊維状フィラー(B)に由来するフロスの発生を抑えることができる。
 整形ロール109の材質は、特に限定されないが、耐熱温度や適度な放熱性の観点から、金属製が好ましい。また、整形ロール109の表面は平滑であることが好ましい。
 整形ロール109の材質の金属としては、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム、マンガン及びこれらの合金(ステンレス,真鍮,リン青銅など)を挙げることができる。また薄膜の金属や被膜(金属メッキ、蒸着膜、塗膜等)された金属であってもよい。その中でも、耐腐食性や放熱性の点でステンレスがより好ましい。
 整形ロール109間を通過させる際の樹脂構造体13の温度は特に限定されないが、含有する熱可塑性樹脂(A)の流動開始温度に対して、-100~+60℃であることが好ましく、0~+60℃であることがより好ましい。
 整形ロール109間を通過させる際の樹脂構造体13の温度が、含有する熱可塑性樹脂(A)の流動開始温度の-100℃以上の温度であれば、樹脂構造体13を所望の形状により整形しやすくなる。
 また、該樹脂構造体13の温度が、該流動開始温度の+60℃以下の温度であれば、樹脂構造体13が整形ロール109により張り付きにくくなる。
 整形ロール109は内部にベアリングを有するローラータイプものが好ましい。ローラータイプにすることで整形時の圧力を搬送方向に逃がすことができ、含浸ムラや毛羽立ちが抑制できる。
 整形ロール109内部のベアリングはボールベアリング、アンギュラボールベアリング、シリンドリカルローラーベアリング、テーパーローラーベアリング、スフェリカルローラーベアリング、ニードルベアリング、滑り軸受と特に限定されないが、回転抵抗が低く、引取速度とのバランスの優れたボールベアリングを好ましく用いることができる。
 整形ロール109の配置位置としては、特に限定されないが、ダイヘッドから15cm離れた位置が好ましい。整形ロール109をダイヘッドから15cm離すことでダイヘッドのヒーターの熱の影響を得つつも放熱できるため、整形ロール109の温度をより安定させることができる。ここでいう距離はダイヘッドから整形ロール109と樹脂構造体13の接点までの距離を指す。
 また、整形ロール109の配置位置としては、特に限定されないが、冷却部125から15cm離れた位置が好ましい。整形ロール109を冷却部125から15cm離すことで冷却部125の影響を得つつも、整形ロール109の温度をより安定させることができる。ここでいう距離は整形ロール109と樹脂構造体13の接点から冷却部125までの距離を指す。
 したがって、ダイヘッドと冷却部125との間に配置されている整形ロール109の配置位置としては、ダイヘッド及び冷却部125からいずれも15cm離れた位置であることが好ましい。
 整形ロールの上下間隙は、使用する繊維状フィラー(B)の繊度や、樹脂構造体13の大きさ(体積含有率)によるが、作製したいペレットのD2の幅と同程度、又は、それ以下に調節することが好ましい。具体的には、上下ロールの間隙は、3.0mm以下が好ましく、450μm以上3.0mm以下がより好ましく、450μm以上2.0mm以下がさらに好ましく、450μm以上1.0mm以下が特に好ましい。上記範囲のより好ましい範囲になるほど樹脂ペレットの含浸性が向上する。上下ロール間隙とは引取速度0m/minでロールに樹脂構造体を通したときの樹脂構造体とロールの接点間の距離のことを指す。
 冷却部125では、整形ロール109により整形された樹脂構造体13を、例えば50~150℃に冷却する。冷却時間は、特に限定されないが、例えば3~30秒である。
 引取部127では、冷却部125で冷却された樹脂構造体13を連続的に引き取り、次の切断部129へ繰り出していく。
 切断部129では、冷却後の樹脂構造体13を所定の長さに切断し、樹脂ペレット15を作製する。切断部129は、例えば回転刃などを備える。
 ・製造装置100を用いた熱可塑性樹脂ペレットの製造方法
 上述した製造装置100を用い、本実施形態の熱可塑性樹脂ペレットを以下のようにして製造する。
 ストランド状の樹脂構造体を得る工程:
 繊維ロービング10から複数本の単繊維が収束剤にて収束された繊維束11を連続的に繰り出しながら、まず、予備加熱部121で、繊維束11を加熱して乾燥させる。
 次に、含浸部123に、乾燥後の繊維束11を供給しつつ、押出機120により溶融混練した成形材料Mを供給口123aから投入して、繊維束11に、溶融状態の成形材料Mを含浸させる。これにより、繊維束に前記溶融物が含浸及び被覆したストランド状の樹脂構造体13が得られる。
 ストランド状の樹脂構造体を加工する工程:
 得られたストランド状の樹脂構造体13を、樹脂構造体13表面の最大断面高さRtが120μm未満になるように整形ロール109により整形する。次いで、整形された樹脂構造体13を冷却部125で冷却する。
 ここで得られる樹脂構造体13においては、繊維が樹脂構造体13の長手方向に略平行に配列している。
 「繊維が樹脂構造体の長手方向に略平行に配列する」とは、繊維の長手方向と樹脂構造体の長手方向とのなす角度が、略0°であり、具体的には、繊維及び樹脂構造体のそれぞれの長手方向のなす角度が-5°~5°である状態を示す。
 ペレット化する工程:
 次に、冷却後の樹脂構造体13を、引取部127でストランド状に引き取り、切断部129へ繰り出していく。
 次に、切断部129で、ストランド状の樹脂構造体13を、その長手方向に所定の長さで切断し、樹脂ペレット15を得る。
 ここでいう樹脂ペレット15についての所定の長さとは、繊維状フィラー(B)の長さ加重平均繊維長が5mm以上50mm未満となるような長さであり、典型的には、樹脂ペレット15のペレット長が5mm以上50mm未満となるように切断する。
 上述のようにして、熱可塑性樹脂(A)及び繊維状フィラー(B)を含む熱可塑性樹脂ペレット(樹脂ペレット15)が製造される。
 この樹脂ペレット15は、繊維状フィラー(B)が熱可塑性樹脂(A)で固められたものであって、当該繊維状フィラーは、当該ペレットの長手方向に略平行に配列している。また、樹脂ペレット15中に配列している当該繊維状フィラーの長さは、当該ペレットの長さと実質的に同じ長さである。本実施形態で製造される樹脂ペレット15の長さは、例えば、5mm以上50mm未満である。
 このように、当該繊維状フィラーが当該ペレットの長手方向に略平行に配列し、かつ、当該繊維状フィラーの長さが当該ペレットの長さと実質的に同じ長さとされていることにより、当該ペレットを用いて成形体を作製する際に、残存繊維状フィラーの長繊維化が可能となり、計量安定性向上に効果がある。
 図4に示す本実施形態では、整形ロール109を用いて、樹脂構造体13を整形して、樹脂ペレット15表面の最大断面高さRtが120μm未満になるように制御している。すなわち、ストランド状の樹脂構造体を加工する工程において、樹脂構造体13を圧延する手段を採用している。
 より具体的には、上述した実施形態の熱可塑性樹脂ペレットの製造方法は、繊維状フィラー(B)の原材料である繊維束に、溶融状態の熱可塑性樹脂(A)を含浸させてストランド状の樹脂構造体を得る工程と、ストランド状の樹脂構造体を、最大断面高さRtが120μm未満になるように圧延する工程と、圧延した樹脂構造体を切断して、ペレット化する工程とを含むものである。
 例えば、熱可塑性樹脂(A)として、溶融粘度の低い液晶ポリエステル樹脂を用いた場合では、上述した実施形態の熱可塑性樹脂ペレットの製造方法により、樹脂ペレット15表面の最大断面高さRtが120μm未満になるように制御することが可能である。
 一方で、液晶ポリエステル樹脂以外の熱可塑性樹脂を用いた場合は、液晶ポリエステル樹脂よりも溶融粘度が高いこと、及び、溶融樹脂の固化が遅く、転写性が低いことから、最大断面高さRtの制御が困難であるため、上記樹脂構造体を圧延する工程に代えて、又は、上記樹脂構造体を圧延する工程に加えて、樹脂構造体13又は樹脂ペレット15を研磨する工程が必要となる。樹脂構造体13又は樹脂ペレット15を研磨する工程として、具体的には、樹脂構造体13又は樹脂ペレット15をやすりで研磨する工程が挙げられる。
 より具体的には、一実施形態の熱可塑性樹脂ペレットの製造方法は、繊維状フィラー(B)の原材料である繊維束に、溶融状態の熱可塑性樹脂(A)を含浸させてストランド状の樹脂構造体を得る工程と、ストランド状の樹脂構造体を、最大断面高さRtが120μm未満になるように研磨する工程と、加工した樹脂構造体を切断して、ペレット化する工程とを含むものである。
 また、一実施形態の熱可塑性樹脂ペレットの製造方法は、繊維状フィラー(B)の原材料である繊維束に、溶融状態の熱可塑性樹脂(A)を含浸させてストランド状の樹脂構造体を得る工程と、ストランド状の樹脂構造体を切断して、ペレット化する工程と、ペレット表面の最大断面高さRtが120μm未満になるようにペレットを研磨する工程とを含むものである。
 また、図4に示す製造装置100において、上下に配置された一対の整形ロール109を用いているが、樹脂構造体13の形状を変化させることのできる態様であれば、特に限定されず、例えば、整形ロールは1つ(片側)のみ配置されていてもよい。
 本発明は以下の側面を有する。
 「1」熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有する熱可塑性樹脂ペレットであって、前記繊維状フィラー(B)の長さ加重平均繊維長は、5mm以上50mm未満であり、前記熱可塑性樹脂ペレットのペレット長と前記繊維状フィラー(B)の長さ加重平均繊維長とは、実質的に同じ長さであり、前記熱可塑性樹脂ペレット表面の最大断面高さRtは、120μm未満である、熱可塑性樹脂ペレット。
 「2」前記熱可塑性樹脂(A)の含有量は、前記熱可塑性樹脂ペレット全量100質量%に対して、好ましくは40質量%以上90質量%以下であり、より好ましくは45質量%以上85質量%以下であり、さらに好ましくは50質量%以上80質量%以下である、「1」に記載の熱可塑性樹脂ペレット。
 「3」前記繊維状フィラー(B)の含有量は、前記熱可塑性樹脂ペレット全量100質量%に対して、好ましくは10質量%以上60質量%以下であり、より好ましくは15質量%以上55質量%以下であり、さらに好ましくは20質量%以上50質量%以下である、「1」又は「2」に記載の熱可塑性樹脂ペレット。
 「4」前記熱可塑性樹脂ペレット表面の算術平均粗さRaは、好ましくは11μm以下であり、
 前記熱可塑性樹脂ペレット表面の最大平均粗さRzは、好ましくは1μm以上100μm以下であり、より好ましくは5μm以上80μm以下であり、さらに好ましくは10μm以上60μm以下であり、
 前記熱可塑性樹脂ペレット表面の最大山高さRpは、好ましくは1μm以上80μm以下であり、より好ましくは2μm以上60μm以下であり、さらに好ましくは3μm以上40μm以下であり、
 前記熱可塑性樹脂ペレット表面の最大谷深さRvは、好ましくは1μm以上70μm以下であり、より好ましくは3μm以上50μm以下であり、さらに好ましくは5μm以上30μm以下であり、
 前記熱可塑性樹脂ペレット表面の2乗平均平方根高さRqは、好ましくは1μm以上80μm以下であり、より好ましくは2μm以上60μm以下であり、さらに好ましくは3μm以上40μm以下である、「1」~「3」のいずれか一項に記載の熱可塑性樹脂ペレット。
 「5」「1」~「4」のいずれか一項に記載の熱可塑性樹脂ペレットであって、
 該熱可塑性樹脂ペレットを射出成形機TR450EH3(ソディック社製)のホッパーへ投入し、シリンダー温度360℃の前記射出成形機内へ金型温度100℃の金型内に射出速度200mm/sにて射出することにより、150mm×150mm×厚さ4mmの平板状成形品を15本連続で作製し、3本目から13本目までの成形時の合計11ショット分の計量時間をそれぞれ測定し、
 該11ショット分の計量時間の平均値が、好ましくは65s未満、より好ましくは63s以下、さらに好ましくは60s以下となる特性を有する、熱可塑性樹脂ペレット。
 (成形体)
 本実施形態の成形体は、上述した熱可塑性樹脂ペレットを用いて作製された成形体である。
 本実施形態の成形体は、熱可塑性樹脂ペレットを用いて、公知の成形方法により得ることができる。成形方法として、具体的には、溶融成形法が好ましく、その例としては、射出成形、ブロー成形、真空成形およびプレス成形等が挙げられる。中でも射出成形が好ましい。
 例えば、上述した熱可塑性樹脂ペレットを成形材料とし、射出成形法により成形する場合、公知の射出成形機を用いて、熱可塑性樹脂ペレットを溶融させ、溶融した熱可塑性樹脂ペレットを、金型内に射出することにより成形する。
 公知の射出成形機としては、例えば、ソディック社製のTR450EH3、日精樹脂工業社製の油圧式横型成形機PS40E5ASE型などが挙げられる。
 射出成形の温度条件は、熱可塑性樹脂(A)の種類に応じて適宜決定され、射出成形機のシリンダー温度を、用いる熱可塑性樹脂(A)の流動開始温度より10~80℃高い温度に設定することが好ましい。
 金型の温度は、生産性の点から、室温(例えば23℃)から180℃の範囲に設定することが好ましい。
 その他射出条件として、スクリュー回転数、背圧、射出速度、保圧、保圧時間などを適宜調節すればよい。
 本実施形態の成形体中の前記繊維状フィラー(B)の長さ加重平均繊維長は、0.5mm以上50mm未満であることが好ましく、0.8mm以上20mm以下であることがより好ましく、0.8mm以上10mm以下であることがさらに好ましい。
 本実施形態の成形体中の前記繊維状フィラー(B)の長さ加重平均繊維長が上記の好ましい範囲内であれば、成形体の機械的強度をより向上させることができる。
 [成形体中の繊維状フィラー(B)の長さ加重平均繊維長の測定]
 手順(1):成形体から、一部(例えば、幅10mm×長さ20mm×厚さ4mm)を切り出し、試験片を得る。
 次いで、該試験片について、マッフル炉で炭素繊維を含有するものは500℃で3h加熱し、ガラス繊維を含有するものは600℃で4h加熱して、樹脂分を除去する。
 手順(2):樹脂分を除去して、繊維状フィラー(B)だけになったものを、界面活性剤(Micro90 INTERNATIONAL PRODUCTS CORPORATION社製)0.05体積%入り水溶液1000mLに分散させて、繊維状フィラー分散液を調製する。
 手順(3):繊維状フィラー分散液から100mLを取り出し、純水10倍に希釈する。希釈後の分散液から50mLを取り出して、シャーレに分散させ、続いて、シャーレの中に分散した繊維状フィラーを、マイクロスコープ(本体:VHX-8000、レンズ:VH-Z00R、キーエンス社製、倍率10倍~25倍)にて観察し、画像を1サンプルにつき、撮影領域が重ならないように5枚撮影する。但し、繊維状フィラーが炭素繊維の場合、希釈後の分散液から50mLを取り出した後に、Φ90mmの桐山ロート用ろ紙(No.5C)を用いて減圧濾過を行い、ろ紙に分散した炭素繊維の画像を撮影する。
 手順(4):撮影した5枚の画像の全てを画像処理ソフト(三谷商事社製、WinROOF2018)を用いて以下の様にして、繊維長を測定する。
 <繊維長の測定方法>
 (a)撮影された画像に対して、モノクロ画素化処理を行う。
 (b)撮影した繊維のみに色がつくように二値化処理を実施する。
 (c)画像処理ソフトの針状分離機能を用いて繊維長測定を行う。
 (d)(c)で二値化できなかった繊維や湾曲した繊維の繊維長を多点間計測により測定し、画像の淵に接している繊維は測定しないこととする。ただし、(c)及び(d)において、20μm以下の繊維はノイズと判断し、繊維の測定本数nに含まないようにする。n>500、繊維の測定本数nが500を超えない場合、手順(3)に戻り、画像を追加撮影し、nが500を超えるまで測定する。
 手順(5):手順(4)で測定した繊維状フィラーの繊維長から、長さ加重平均繊維長lm=(Σli×ni)/(Σli×ni)を求める(Σni>500)。
 li:繊維状フィラーの繊維長
 ni:繊維長liの繊維状フィラーの本数
 上述した本実施形態の成形体は、一般に熱可塑性樹脂が適用し得るあらゆる用途に適用可能であり、中でも自動車分野の用途に特に好適である。
 自動車分野の用途としては、例えば、自動車内装材用射出成形体として、天井材用射出成形体、ホイールハウスカバー用射出成形体、トランクルーム内張用射出成形体、インパネ表皮材用射出成形体、ハンドルカバー用射出成形体、アームレスト用射出成形体、ヘッドレスト用射出成形体、シートベルトカバー用射出成形体、シフトレバーブーツ用射出成形体、コンソールボックス用射出成形体、ホーンパッド用射出成形体、ノブ用射出成形体、エアバッグカバー用射出成形体、各種トリム用射出成形体、各種ピラー用射出成形体、ドアロックベゼル用射出成形体、グラブボックス用射出成形体、デフロスタノズル用射出成形体、スカッフプレート用射出成形体、ステアリングホイール用射出成形体、ステアリングコラムカバー用射出成形体などが挙げられる。
 また、自動車外装材用射出成形体として、バンパー用射出成形体、スポイラー用射出成形体、マッドガード用射出成形体、サイドモール用射出成形体、ドアミラーハウジング用射出成形体、アンダーボディシールド用射出成形体などが挙げられる。
 その他の自動車部品用射出成形体としては、自動車ヘッドランプ用射出成形体、グラスランチャンネル用射出成形体、ウェザーストリップ用射出成形体、ドレーンホース用射出成形体、ウィンドウォッシャーチューブ用射出成形体などのホース用射出成形体、チューブ類用射出成形体、ラックアンドピニオンブーツ用射出成形体、ガスケット用射出成形体、バンパービーム用射出成形体、クラッシュボックス用射出成形体、各種メンバー用射出成形体、サスペンションシステム用射出成形体、フロントエンドモジュール用射出成形体、ラジエーターサポート用射出成形体、バックドアインナー用射出成形体などが挙げられる。
 また、本実施形態の成形体は、上述の他、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶ディスプレイ、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品、電子レンジ部品、音響・音声機器部品、照明部品、エアコン部品、オフィスコンピューター関連部品、電話・FAX関連部品、および複写機関連部品などの用途にも適用可能である。
 以上説明した本実施形態の成形体は、上述した熱可塑性樹脂ペレットが用いられているため、計量時間が安定しており、物性のばらつきが少ない。
 以下、具体的な実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
 [液晶ポリエステル樹脂の流動開始温度]
 後述する液晶ポリエステル樹脂について、フローテスター(島津製作所社製、CFT-500型)を用いて、流動開始温度を評価した。具体的には、液晶ポリエステル樹脂約2gを内径1mm、長さ10mmのダイスを取付けた毛細管型レオメーターに充填した。次いで、充填された液晶ポリエステル樹脂について、昇温速度4℃/分で、9.8MPa(100kg/cm)の荷重下で、該レオメーターのノズルから押出すときに、溶融粘度が4800Pa・s(48000ポイズ)を示す温度を流動開始温度とした。
 [樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]
 後述する樹脂ペレット中の繊維状フィラーの長さ加重平均繊維長は以下の方法で測定した。
 手順(1):樹脂ペレット5gをマッフル炉で加熱して樹脂分を飛ばした。
 加熱条件は、炭素繊維の場合は500℃で3h加熱し、ガラス繊維の場合、600℃で4h加熱した。
 手順(2):樹脂ペレットから樹脂分を除去して、繊維状フィラーだけになったものを、界面活性剤(Micro90 INTERNATIONAL PRODUCTS CORPORATION社製)0.05体積%入り水溶液1000mLに分散させて、繊維状フィラー分散液を調製した。
 手順(3):繊維状フィラー分散液から100mLを取り出し、純水10倍に希釈した。希釈後の分散液から50mLを取り出して、シャーレに分散させ、続いて、シャーレの中に分散した繊維状フィラーを、マイクロスコープ(本体:VHX-8000、レンズ:VH-Z00R、キーエンス社製、倍率10倍~25倍)にて観察し、画像を1サンプルにつき、撮影領域が重ならないように5枚撮影した。但し、繊維状フィラーが炭素繊維の場合、希釈後の分散液から50mLを取り出した後に、Φ90mmの桐山ロート用ろ紙(No.5C)を用いて減圧濾過を行い、ろ紙に分散した炭素繊維の画像を撮影した。
 手順(4):撮影した5枚の画像の全てを画像処理ソフト(三谷商事社製、WinROOF2018)を用いて以下の様にして、繊維長を測定した。
 <繊維長の測定方法>
 (a)撮影された画像に対して、モノクロ画素化処理を行った。
 (b)撮影した繊維のみに色がつくように二値化処理を実施した。
 (c)画像処理ソフトの針状分離機能を用いて繊維長測定を行った。
 (d)(c)で二値化できなかった繊維や湾曲した繊維の繊維長を多点間計測により測定し、画像の淵に接している繊維は測定しないこととした。ただし、(c)及び(d)において、20μm以下の繊維はノイズと判断し、繊維の測定本数nに含まないようにした。n>500、繊維の測定本数nが500を超えない場合、手順(3)に戻り、画像を追加撮影し、nが500を超えるまで測定した。
 手順(5):手順(4)で測定した繊維状フィラーの繊維長から、長さ加重平均繊維長lm=(Σli×ni)/(Σli×ni)を求めた(Σni>500)。
 li:繊維状フィラーの繊維長
 ni:繊維長liの繊維状フィラーの本数
 [樹脂ペレットの断面の長径D1及び短径D2の測定]
 手順(i):各例の樹脂ペレットを、各例の樹脂ペレットより十分大きい円柱上の型に入れ、固定治具(Holding blue clips(plastic)、Presi社製)を用いて、各例の樹脂ペレットを長さ方向が型底面と垂直となるように直立させ、固定した。
 手順(ii):冷間埋込樹脂No.105(ストルアス社製)と、No.105用M剤(硬化剤)(ストルアス社製)とを100:2の割合で入れた溶液を、上記円柱状の型に流し込んだ。次いで、1日以上、常温(23℃)で静置し、十分に固化した。
 手順(iii):固化した円柱状サンプルを型から取り出し、研磨機(APO-128 オートマックス・ポリッシャーEV、リファインテック社製)を用いて、熱可塑性樹脂ペレット1Pのペレット長が1/2の長さとなるように、固化した円柱状サンプルを研磨した。
 手順(iv):1/2の長さまで研磨した面を、同研磨機にスエードクロスNo.52-308(リファインテック社製)を引き、アルミナ粉末(アルミナ粉末A、リファインテック社製)を水で、平面かつ研磨傷がなくなるまで研磨した。
 手順(v):平面かつ研磨傷がなくなるまで研磨した面をマイクロスコープ(本体:VHX-8000、レンズ:VH-Z00R、キーエンス社製)を用いて倍率10~25倍で撮影した。
 手順(vi):撮影した画像を画像処理ソフト(三谷商事社製、WinRooF2018)にて二値化処理を行い、計測ツールからフェレIIを用いてフェレ径を算出し、フェレ水平を樹脂ペレットの長径D1、フェレ垂直を樹脂ペレットの短径D2とした。
 手順(vii):手順(i)~手順(vi)を5つのペレットで行い、その平均値を各樹脂ペレットの長径D1、短径D2の値として採用した。
 (熱可塑性樹脂(A)の製造)
 <LCP1の製造>
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸239.2g(1.44モル)、イソフタル酸159.5g(0.96モル)及び無水酢酸1347.6g(13.2モル)を仕込み、1-メチルイミダゾール0.2gを添加し、反応器内を十分に窒素ガスで置換した。
 その後、窒素ガス気流下、撹拌しながら、反応器内温が室温から150℃まで30分かけて昇温し、150℃を保持して1時間還流させた。
 次いで、1-メチルイミダゾール0.9gを加え、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められる時点を反応終了としてプレポリマーを得た。
 こうして得られたプレポリマーを室温まで冷却し、粗粉砕機で粉砕して、プレポリマーの粉末を得た。このプレポリマーの粉末を、窒素雰囲気下、室温から220℃まで1時間かけて昇温し、220℃から240℃まで0.5時間かけて昇温し、240℃で10時間保持することで、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル樹脂1(LCP1)を得た。
 LCP1の流動開始温度は291℃であった。
 <LCP2の製造>
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸(1034.99g、5.5モル)、2,6-ナフタレンジカルボン酸(378.33g、1.75モル)、テレフタル酸(83.07g、0.5モル)、ヒドロキノン(272.52g、2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計量に対して0.225モル過剰)、無水酢酸(1226.87g、12モル)、及び触媒として1-メチルイミダゾール(0.17g)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、反応器内温が室温から140℃まで15分間かけて昇温し、140℃で1時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3.5時間かけて昇温し、310℃で3時間保持した後、内容物を取り出し、これを室温まで冷却した。得られた固形物を、粉砕機で粒径約0.1~1mmに粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から310℃まで9時間かけて昇温し、310℃で5時間保持することにより、固相重合を行った。
 固相重合後、冷却して、粉末状の液晶ポリエステル樹脂2(LCP2)を得た。
 LCP2の流動開始温度は322℃であった。
 (樹脂ペレットの製造)
 (実施例1)
 図4に示す形態の製造装置を用い、以下のようにして、熱可塑性樹脂ペレットを得た。押出機にはGTS-40型押出機(プラスチック工学研究所社製)を用いた。ベルト式引取機にはEBD-1500A(アイメックス社製)を用いた。ペレタイザーにはファンカッターFCMiniPlus-4TN(星プラスチックス社製)を用いた。
 ・樹脂構造体を得る工程
 前記ベルト式引取機(引取部127)を10m/minの引取速度で作動させることにより、繊維ロービング10から繊維束として、炭素繊維CF1(Zoltek社製、Zoltek(登録商標) PX35 CONTINUOUS TOW、PAN系炭素繊維(引張弾性率242GPa、引張強度4139MPa、引張伸び1.7%、数平均繊維径7μm、繊維本数50000本))を引取速度10m/minで連続的に繰り出しながら、まず、予備加熱部121で、200℃に加熱して乾燥させた。
 別途、押出機120を用いて、上記<LCP1の製造>で得られたLCP1を340℃に加熱して溶融状態に調製した。
 次に、押出機120の先端に取り付けたダイ(含浸部123)に、乾燥後の繊維束(炭素繊維)を供給しつつ、押出機120から溶融状態のLCP1(樹脂材料M)を押出機120の供給口123aから投入した。ダイ(含浸部123)内で、LCP1を340℃で溶融させ、100質量部のLCP1に対して、82質量部の炭素繊維CF1に含浸させて、ダイ(含浸部123)の出口で、Φ3.0mmのノズルを通り、炭素繊維CF1が液晶ポリエステル樹脂層の長手方向に略平行に配列した樹脂構造体13を得た。
 ・樹脂構造体を圧延する工程
 得られた樹脂構造体13を、最大断面高さRtが120μm未満になるように、上下に配置された一対の整形ロール109(Φ30mm、最大断面高さRt:0.20μm、算術平均粗さRa:0.02μm、最大平均粗さRz:0.14μm、最大山高さRp:0.44μm、最大谷深さRv:0.41μm、2乗平均平方根高さRq0.43μm、SUS304製、整形ロール同士の軸間距離:37mm)で挟むことで、圧延させた。次いで、圧延させた脂構造体13を、冷却部125で150℃以下に冷却した。
 ・ペレット化する工程
 次に、冷却後の樹脂構造体13を、前記ベルト式引取機(引取部127)で引き取り、ペレタイザー(切断部129)へ繰り出し、その長手方向に長さ12mmで切断して、図4に樹脂ペレット15として示す、実施例1の熱可塑性樹脂ペレットを得た。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例1の熱可塑性樹脂ペレット中の炭素繊維CF1の長さ加重平均繊維長は、実施例1の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、実施例1の熱可塑性樹脂ペレットは、実施例1の熱可塑性樹脂ペレットの断面の長径D1が10mm、短径D2が1.1mm、D1/D2が9.1であった。
 (比較例1)
 実施例1における、ダイ出口を横:10mm、縦:1.2mmのダイヘッドに変更し、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例1と同様の条件で、比較例1の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例1の熱可塑性樹脂ペレット中の炭素繊維CF1の長さ加重平均繊維長は、比較例1の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、比較例1の熱可塑性樹脂ペレットは、比較例1の熱可塑性樹脂ペレットの断面の長径D1が9.8mm、短径D2が1.1mm、D1/D2が8.9であった。
 (比較例2)
 実施例1における、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例1と同様の条件で、比較例2の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例2の熱可塑性樹脂ペレット中の炭素繊維CF1の長さ加重平均繊維長は、比較例2の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、比較例2の熱可塑性樹脂ペレットは、比較例2の熱可塑性樹脂ペレットの断面の長径D1が3.3mm、短径D2が2.2mm、D1/D2が1.5であった。
 (実施例2)
 実施例1における、100質量部のLCP1に対して82質量部の炭素繊維CF1を、33質量部の炭素繊維CF1に変更し、ダイ出口をφ5.0mmのダイヘッドに変更した以外は、実施例1と同様の条件で、実施例2の熱可塑性樹脂ペレットを得た。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例2の熱可塑性樹脂ペレット中の炭素繊維CF1の長さ加重平均繊維長は、実施例2の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、実施例2の熱可塑性樹脂ペレットは、実施例2の熱可塑性樹脂ペレットの断面の長径D1が9.0mm、短径D2が2.2mm、D1/D2が4.1であった。
 (実施例3)
 実施例1の炭素繊維CF1を炭素繊維CF2(三菱ケミカル社製、PYROFIL(登録商標)CFトウ、TR50S15L、PAN系炭素繊維、引張強度4900MPa、引張弾性率235GPa、引張伸び2.1%、数平均繊維径7μm、繊維本数15000本)に変更し、実施例1における、100質量部のLCP1に対して82質量部の炭素繊維CF1を、54質量部の炭素繊維CF2に変更し、ダイ出口をφ1.5mmのダイヘッドに変更した以外は、実施例1と同様の条件で、実施例3の熱可塑性樹脂ペレットを得た。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例3の熱可塑性樹脂ペレット中の炭素繊維CF2の長さ加重平均繊維長は、実施例3の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、実施例3の熱可塑性樹脂ペレットは、実施例3の熱可塑性樹脂ペレットの断面の長径D1が3.5mm、短径D2が0.8mm、D1/D2が4.4であった。
 (比較例3)
 実施例3における、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例3と同様の条件で、比較例3の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例3の熱可塑性樹脂ペレット中の炭素繊維CF2の長さ加重平均繊維長は、比較例3の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、比較例3の熱可塑性樹脂ペレットは、比較例3の熱可塑性樹脂ペレットの断面の長径D1が1.7mm、短径D2が1.5mm、D1/D2が1.1であった。
 (実施例4)
 実施例1の炭素繊維CF1をガラス繊維GF1(日東紡社製、RS110QL483AC、Eガラス、数平均繊維径17μm、繊維本数3000本)に変更し、カット長を長手方向に長さ5mmで切断に変更し、100質量部のLCP1に対して82質量部の炭素繊維CF1を、100質量部のLCP1に対して54質量部のガラス繊維GF1に変更し、ダイ出口をφ1.5mmのダイヘッドに変更した以外は、実施例1と同様の条件で、実施例4の熱可塑性樹脂ペレットを得た。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例4の熱可塑性樹脂ペレット中のガラス繊維GF1の長さ加重平均繊維長は、実施例4の熱可塑性樹脂ペレットのペレット長と同一の5mmであった。
 (比較例4)
 実施例4における、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例4と同様の条件で、比較例4の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例4の熱可塑性樹脂ペレット中のガラス繊維GF1の長さ加重平均繊維長は、比較例4の熱可塑性樹脂ペレットのペレット長と同一の5mmであった。
 (実施例5)
 実施例1のLCP1をLCP2に変更し、溶融状態の温度を360℃に変更し、炭素繊維CF1を炭素繊維CF2に変更し、100質量部のLCP1に対して82質量部の炭素繊維CF1を、100質量部のLCP2に対して54質量部の炭素繊維CF2に変更し、カット長を長手方向に長さ35mmで切断に変更し、ダイ出口をφ1.8mmのダイヘッドに変更した以外は、実施例1と同様の条件で、実施例5の熱可塑性樹脂ペレットを得た。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例5の熱可塑性樹脂ペレット中の炭素繊維CF2の長さ加重平均繊維長は、実施例5の熱可塑性樹脂ペレットのペレット長と同一の35mmであった。
 (比較例5)
 実施例5における、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例5と同様の条件で、比較例5の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例5の熱可塑性樹脂ペレット中の炭素繊維CF2の長さ加重平均繊維長は、比較例5の熱可塑性樹脂ペレットのペレット長と同一の35mmであった。
 (実施例6)
 実施例1の炭素繊維CF1を炭素繊維CF3(三菱ケミカル株式会社製、PYROFIL(登録商標)CFトウ、HS40 12P、PAN系炭素繊維(引張弾性率425GPa、引張強度4160MPa、引張伸び1.1%、数平均繊維径5μm、繊維本数24000本)に変更し、100質量部のLCP1に対して82質量部の炭素繊維CF1を、100質量部のLCP1に対して54質量部の炭素繊維CF3に変更し、ダイ出口をφ1.5mmのダイヘッドに変更した以外は実施例1と同様の条件で、実施例6の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例6の熱可塑性樹脂ペレット中の炭素繊維CF3の長さ加重平均繊維長は、実施例6の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、実施例6の熱可塑性樹脂ペレットは、実施例6の熱可塑性樹脂ペレットの断面の長径D1が4.6mm、短径D2が0.56mm、D1/D2が8.2であった。
 (比較例6)
 実施例6における、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例6と同様の条件で、比較例6の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例6の熱可塑性樹脂ペレット中の炭素繊維CF3の長さ加重平均繊維長は、比較例6の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、比較例6の熱可塑性樹脂ペレットは、比較例6の熱可塑性樹脂ペレットの断面の長径D1が1.8mm、短径D2が1.2mm、D1/D2が1.5であった。
 (実施例7)
 実施例6において、押出機120内に、追加で100質量部のLCP1に対して1質量部のカーボンブラックCB1(キャボット社製、BP880)を添加したこと以外は実施例6と同様の条件で、実施例7の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した実施例7の熱可塑性樹脂ペレット中の炭素繊維CF3の長さ加重平均繊維長は、実施例7の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、実施例7の熱可塑性樹脂ペレットは、実施例7の熱可塑性樹脂ペレットの断面の長径D1が4.5mm、短径D2が0.45mm、D1/D2が10であった。
 (比較例7)
 実施例7における、整形ロール109を取り除き、樹脂構造体13を圧延させなかったこと以外は、実施例7と同様の条件で、比較例7の熱可塑性樹脂ペレットを作製した。
 上述した[樹脂ペレット中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定]に記載の方法で測定した比較例7の熱可塑性樹脂ペレット中の炭素繊維CF3の長さ加重平均繊維長は、比較例7の熱可塑性樹脂ペレットのペレット長と同一の12mmであった。
 また、比較例7の熱可塑性樹脂ペレットは、比較例7の熱可塑性樹脂ペレットの断面の長径D1が1.7mm、短径D2が1.1mm、D1/D2が1.6であった。
 [表面粗さの測定]
 表面粗さ計(小坂研究所社製、SE600LK-31)を用いて、各例の樹脂ペレットの算術平均粗さRa、最大平均粗さRz、最大断面高さRt、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqを以下の方法で求めた。
 手順(1):樹脂ペレットの端面が、測定台と垂直になるように、樹脂ペレットを測定台に載置し、樹脂ペレットが動かないように、両面テープで樹脂ペレットと測定台とを接着した。
 手順(2):測定針の軌跡が、樹脂ペレットの長手方向の長さ(ペレット長)の半分の点から長さ方向に対して垂直となるように設定した。そして、図1に示すように、樹脂ペレットの長手方向の長さ(ペレット長)の半分の中心点Xから、長手方向と垂直方向の±2mmの範囲(X1~X2の計4mm)を測定範囲とした。
 手順(3):以下に示す測定条件で、複数の樹脂ペレットの中からランダムで5つの樹脂ペレットを取り出し、取り出した5つの樹脂ペレットの表、裏、各1回ずつ、合計10回測定した。
 手順(4):基準高さの校正を、表面性状測定用標準片SS-N21を用いて行い、基準高さからの変位yを求め、上述した式(1)~(6)により、樹脂ペレットの表面の最大断面高さRt、算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqを算出し、手順(3)の合計10回の測定値の平均値を熱可塑性樹脂ペレットの算術平均粗さRa、最大平均粗さRz、最大山高さRp、最大谷深さRv、及び、2乗平均平方根高さRqとし、その結果を、表1~3に示した。
 <測定条件>
 測定倍率:100倍
 送り速さ:0.5mm/s
 トレース長さ:1.6mm
 カットオフ:λc=0.8mm
 評価長さ:カットオフ×5
 予備長さ:0mm
 フィルタ特性:ガウス
 レベリング処理:直線(全域)
 検出器:接触PUDJ2S
 (射出成形体の製造1)
 (実施例1)
 実施例1の熱可塑性樹脂ペレットを射出成形機TR450EH3(ソディック社製)のホッパーへ投入し、シリンダー温度360℃の前記射出成形機内へ金型温度100℃の金型内に射出速度20mm/sにて射出することにより、JIS K7139に準拠した多目的試験片(タイプA1)(厚さ4mm)を成形した。ゲートは実施例1の多目的試験片の片側つかみ部の上辺より厚さ4mmのフィルムゲートとした。
 その他の射出条件は以下の通りである。
 ≪射出条件≫
 スクリュー回転数(可塑化部)100rpm、背圧0MPa、保圧100MPa、保圧時間5秒間。
 (実施例2~4、6、7、比較例1~4、6、7)
 実施例1の熱可塑性樹脂ペレットを、それぞれ実施例2~4、6、7、比較例1~4、6、7の熱可塑性樹脂ペレットに変更したこと以外は、実施例1と同様の条件で、実施例2~4、6、7、比較例1~4、6、7の多目的試験片をそれぞれ作製した。
 (実施例5、比較例5)
 実施例1の熱可塑性樹脂ペレットを、実施例5又は比較例5の熱可塑性樹脂ペレットに変更し、シリンダー温度を360℃から380℃に変更した以外は、実施例1と同様の条件で、実施例5及び比較例5の多目的試験片をそれぞれ作製した。
 [計量時間の測定1]
 上述した射出成形体の製造1において、各例の多目的試験片をそれぞれ30本連続で成形し、15本目から25本目までの成形時の合計11ショット分の計量時間をそれぞれ測定した。次いで、11ショット分の計量時間の平均値を算出した。また、その計量時間から、標準偏差を算出した。それらの結果を表1~3に示した。
 [射出成形体中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定1]
 射出成形体中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長は、以下の方法で測定した。
 手順(1):各例の多目的試験片の中央部から幅10mm×長さ20mm×厚さ4mmの試験片をそれぞれ切り出し、マッフル炉で加熱して樹脂分を飛ばした。
 加熱条件は、炭素繊維の場合は500℃で3h加熱し、ガラス繊維の場合、600℃で4h加熱した。
 手順(2):各例の多目的試験片から樹脂分を除去して、繊維状フィラーだけになったものを、界面活性剤(Micro90 INTERNATIONAL PRODUCTS CORPORATION社製)0.05体積%入り水溶液1000mLに分散させて、繊維状フィラー分散液を調製した。
 手順(3):繊維状フィラー分散液から100mLを取り出し、純水10倍に希釈した。希釈後の分散液から50mLを取り出して、シャーレに分散させ、続いて、シャーレの中に分散した繊維状フィラーを、マイクロスコープ(本体:VHX-8000、レンズ:VH-Z00R、キーエンス社製、倍率10倍~25倍)にて観察し、画像を1サンプルにつき、撮影領域が重ならないように5枚撮影した。但し、繊維状フィラーが炭素繊維の場合、希釈後の分散液から50mLを取り出した後に、Φ90mmの桐山ロート用ろ紙(No.5C)を用いて減圧濾過を行い、ろ紙に分散した炭素繊維の画像を撮影した。
 手順(4):撮影した5枚の画像の全てを画像処理ソフト(三谷商事社製、WinROOF2018)を用いて以下の様にして、繊維長を測定した。
 <繊維長の測定方法>
 (a)撮影された画像に対して、モノクロ画素化処理を行った。
 (b)撮影した繊維のみに色がつくように二値化処理を実施した。
 (c)画像処理ソフトの針状分離機能を用いて繊維長測定を行った。
 (d)(c)で二値化できなかった繊維や湾曲した繊維の繊維長を多点間計測により測定し、画像の淵に接している繊維は測定しないこととした。ただし、(c)及び(d)において、20μm以下の繊維はノイズと判断し、繊維の測定本数nに含まないようにした。n>500、繊維の測定本数nが500を超えない場合、手順(3)に戻り、画像を追加撮影し、nが500を超えるまで測定した。
 手順(5):手順(4)で測定した繊維状フィラーの繊維長から、長さ加重平均繊維長lm=(Σli×ni)/(Σli×ni)を求めた(Σni>500)。
 li:繊維状フィラーの繊維長
 ni:繊維長liの繊維状フィラーの本数
 その結果を表1~3に示した。
 (射出成形体の製造2)
 (実施例1)
 実施例1の熱可塑性樹脂ペレットを射出成形機TR450EH3(ソディック社製)のホッパーへ投入し、シリンダー温度360℃の前記射出成形機内へ金型温度100℃の金型内に射出速度200mm/sにて射出することにより、150mm×150mm×厚さ4mmの実施例1の平板状成形品を作製した。
 ゲートは実施例1の平板状成形品の1辺より厚さ4mmのフィルムゲートとした。
 その他の射出条件は以下の通りである。
 ≪射出条件≫
 スクリュー回転数(可塑化部)100rpm、背圧0MPa保圧100MPa、保圧時間5秒間。
 (実施例2~4、6、7、比較例1~4、6、7)
 実施例1の熱可塑性樹脂ペレットを、それぞれ実施例2~4、6、7、比較例1~4、6、7の熱可塑性樹脂ペレットに変更したこと以外は、実施例1と同様の条件で、実施例2~4、6、7、比較例1~4、6、7の平板状成形品をそれぞれ作製した。
 (実施例5、比較例5)
 実施例1の熱可塑性樹脂ペレットを、実施例5又は比較例5の熱可塑性樹脂ペレットに変更し、シリンダー温度を360℃から380℃に変更した以外は、実施例1と同様の条件で、実施例5及び比較例5の平板状成形品をそれぞれ作製した。
 [計量時間の測定2]
 上述した射出成形体の製造2において、各例の平板状成形品をそれぞれ15本連続で成形し、3本目から13本目までの成形時の合計11ショット分の計量時間をそれぞれ測定した。合計11ショット分の計量時間の平均値とその標準偏差を算出し、その結果を表1~3に示した。
 [射出成形体中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定2]
 上述した[射出成形体中の繊維状フィラー(炭素繊維、ガラス繊維)の長さ加重平均繊維長の測定1]における手順(1)において、各例の平板状成形品の中央部から幅20mm×長さ20mm×厚さ4mmの試験片を切り出したこと以外は、同様の方法で、各例の平板状成形品中の繊維状フィラーの長さ加重平均繊維長を測定した。
 その結果を表1~3に示した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1~3に示す通り、同一のペレット組成である、実施例1と比較例1及び2、実施例3と比較例3、実施例4と比較例4、実施例5と比較例5、実施例6と比較例6、実施例7と比較例7の多目的試験片及び平板状成形品の成形時の計量時間をそれぞれ比較すると、表面の最大断面高さRtが120μm未満である熱可塑性樹脂ペレットを用いて作製した実施例の多目的試験片及び平板状成形品の方が、成形時の計量時間が短く、かつ、標準偏差が小さいことが確認できた。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 1P:熱可塑性樹脂ペレット、1:端面、2:外周面、L:ペレット長、1’:断面、D1:長径、D2:短径
 100:製造装置、101~108:搬送ロール、109:整形ロール、120:押出機、121:予備加熱部、123:含浸部、125:冷却部、127:引取部、129:切断部

Claims (5)

  1.  熱可塑性樹脂(A)と、繊維状フィラー(B)とを含有する熱可塑性樹脂ペレットであって、
     前記繊維状フィラー(B)の長さ加重平均繊維長は、5mm以上50mm未満であり、
     前記熱可塑性樹脂ペレットのペレット長と前記繊維状フィラー(B)の長さ加重平均繊維長とは、実質的に同じ長さであり、
     前記熱可塑性樹脂ペレット表面の最大断面高さRtは、120μm未満である、熱可塑性樹脂ペレット。
  2.  前記熱可塑性樹脂(A)は、液晶ポリエステル樹脂である、請求項1に記載の熱可塑性樹脂ペレット。
  3.  前記繊維状フィラー(B)は、炭素繊維又はガラス繊維を含む、請求項1又は2に記載の熱可塑性樹脂ペレット。
  4.  前記熱可塑性樹脂ペレット表面の算術平均粗さRaは、11μm以下である、請求項1~3のいずれか一項に記載の熱可塑性樹脂ペレット。
  5.  請求項1~4のいずれか一項に記載の熱可塑性樹脂ペレットの製造方法であって、
     前記繊維状フィラー(B)の原材料である繊維束に、溶融状態の前記熱可塑性樹脂(A)を含浸させてストランド状の樹脂構造体を得る工程と、
     前記ストランド状の樹脂構造体を、最大断面高さRtが120μm未満になるように圧延する工程と、
     前記圧延した樹脂構造体を切断して、ペレット化する工程とを含む、熱可塑性樹脂ペレットの製造方法。
PCT/JP2022/033268 2021-09-06 2022-09-05 熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法 WO2023033171A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023545711A JPWO2023033171A1 (ja) 2021-09-06 2022-09-05
CN202280059792.2A CN117916069A (zh) 2021-09-06 2022-09-05 热塑性树脂粒料及热塑性树脂粒料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144889 2021-09-06
JP2021144889 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023033171A1 true WO2023033171A1 (ja) 2023-03-09

Family

ID=85412467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033268 WO2023033171A1 (ja) 2021-09-06 2022-09-05 熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法

Country Status (3)

Country Link
JP (1) JPWO2023033171A1 (ja)
CN (1) CN117916069A (ja)
WO (1) WO2023033171A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229856A (en) * 1975-09-02 1977-03-07 Teijin Ltd Process for producing polyester particles
JPH05162124A (ja) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd 長繊維強化熱可塑性樹脂ペレット
JPH0953005A (ja) * 1995-08-17 1997-02-25 Teijin Ltd 成形安定性に優れたポリブチレンテレフタレート樹脂組成物ペレット
JP2000019168A (ja) 1998-07-01 2000-01-21 Agency Of Ind Science & Technol 全芳香族液晶ポリエステル樹脂組成の分析方法
JP2013177007A (ja) 2013-06-06 2013-09-09 Panasonic Corp 液晶ポリマー成形材料のペレット
WO2019039458A1 (ja) * 2017-08-21 2019-02-28 株式会社クラレ 溶融成形材料
WO2021029271A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体、並びに液晶ポリエステル樹脂成形体の製造方法
WO2021029275A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂ペレット、及びその製造方法、並びに成形体の製造方法
WO2021029265A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂組成物及びその製造方法並びに成形体
JP2021144889A (ja) 2020-03-13 2021-09-24 パナソニック株式会社 電池の製造方法および電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229856A (en) * 1975-09-02 1977-03-07 Teijin Ltd Process for producing polyester particles
JPH05162124A (ja) * 1991-12-11 1993-06-29 Asahi Chem Ind Co Ltd 長繊維強化熱可塑性樹脂ペレット
JPH0953005A (ja) * 1995-08-17 1997-02-25 Teijin Ltd 成形安定性に優れたポリブチレンテレフタレート樹脂組成物ペレット
JP2000019168A (ja) 1998-07-01 2000-01-21 Agency Of Ind Science & Technol 全芳香族液晶ポリエステル樹脂組成の分析方法
JP2013177007A (ja) 2013-06-06 2013-09-09 Panasonic Corp 液晶ポリマー成形材料のペレット
WO2019039458A1 (ja) * 2017-08-21 2019-02-28 株式会社クラレ 溶融成形材料
WO2021029271A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体、並びに液晶ポリエステル樹脂成形体の製造方法
WO2021029275A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂ペレット、及びその製造方法、並びに成形体の製造方法
WO2021029265A1 (ja) * 2019-08-09 2021-02-18 住友化学株式会社 液晶ポリエステル樹脂組成物及びその製造方法並びに成形体
JP2021144889A (ja) 2020-03-13 2021-09-24 パナソニック株式会社 電池の製造方法および電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Liquid Crystal Polymer, - Synthesis, Molding, and Application", 5 June 1987, CMC PUBLISHING CO., pages: 95

Also Published As

Publication number Publication date
JPWO2023033171A1 (ja) 2023-03-09
CN117916069A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
EP4011942A1 (en) Liquid-crystal polyester resin composition and molded object
EP4011975A1 (en) Liquid crystal polyester resin pellet, and production method therefor, and production method for molded article
EP4011585A1 (en) Liquid crystal polyester resin composition, method for producing same and molded body of same
EP4011943A1 (en) Resin composition and molded body
WO2023033171A1 (ja) 熱可塑性樹脂ペレット及び熱可塑性樹脂ペレットの製造方法
WO2023033169A1 (ja) 液晶ポリエステル樹脂ペレット及び成形体
WO2021029271A1 (ja) 液晶ポリエステル樹脂ペレット、及び液晶ポリエステル樹脂成形体、並びに液晶ポリエステル樹脂成形体の製造方法
EP4011949A1 (en) Liquid crystal polyester resin molded body
WO2021029263A1 (ja) 射出成形品及びその製造方法
TWI844715B (zh) 液晶聚酯樹脂顆粒及其製造方法,以及成形體之製造方法
JP6741833B1 (ja) 射出成形品
TWI839505B (zh) 樹脂組成物及成形體
EP4011950A1 (en) Liquid crystal polyester resin pellets and liquid crystal polyester resin molded article
CN117580910A (zh) 树脂组合物及成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864753

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280059792.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023545711

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022864753

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864753

Country of ref document: EP

Effective date: 20240408