WO2023032860A1 - 硬化性樹脂組成物及び電子部品装置 - Google Patents

硬化性樹脂組成物及び電子部品装置 Download PDF

Info

Publication number
WO2023032860A1
WO2023032860A1 PCT/JP2022/032271 JP2022032271W WO2023032860A1 WO 2023032860 A1 WO2023032860 A1 WO 2023032860A1 JP 2022032271 W JP2022032271 W JP 2022032271W WO 2023032860 A1 WO2023032860 A1 WO 2023032860A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
curable resin
tan
mass
Prior art date
Application number
PCT/JP2022/032271
Other languages
English (en)
French (fr)
Inventor
東哲 姜
恵一 畠山
智雄 西山
貴耶 山本
貴和 金
亜唯 横倉
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to CN202280057840.4A priority Critical patent/CN117858924A/zh
Priority to JP2023545532A priority patent/JPWO2023032860A1/ja
Publication of WO2023032860A1 publication Critical patent/WO2023032860A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to curable resin compositions and electronic component devices.
  • these packages are mounted differently than pin insertion packages. That is, in the pin-insertion type package, the pins are inserted into the wiring board and then soldered from the rear surface of the wiring board, so the package is not directly exposed to high temperatures.
  • surface-mounted ICs are temporarily fixed to the surface of the wiring board and processed by a solder bath, a reflow device, or the like, so the package is directly exposed to the soldering temperature (reflow temperature).
  • reflow temperature soldering temperature
  • the package absorbs moisture
  • the absorbed moisture evaporates during reflow, and the generated vapor pressure acts as peeling stress, causing peeling between the sealing material and the supporting member such as the element or lead frame. This may cause package cracks, poor electrical characteristics, and the like. Therefore, there is a demand for the development of a sealing material that is excellent in adhesion to a supporting member and, in turn, excellent in solder heat resistance (reflow resistance).
  • a curable resin composition containing an epoxy resin and a phenol-based curing agent is known as a sealing material.
  • Patent Document 1 There is room for further improvement in the reflow resistance of the curable resin composition proposed in Patent Document 1.
  • the present disclosure has been made in view of the above situation, and the problem to be solved is to provide a curable resin composition having excellent reflow resistance and an element sealed with this curable resin composition.
  • An object of the present invention is to provide an electronic component device.
  • ⁇ 2> In a chart obtained by performing dynamic viscoelasticity measurement on the resin cured product of the curable resin composition, the vertical axis is tan ⁇ and the horizontal axis is the temperature of 30 ° C. to 260 ° C., 70 ° C., 80 A curable resin composition, wherein the sum of tan ⁇ values at each temperature of °C and 90 °C is more than 0.600.
  • the maximum value of tan ⁇ in the above chart is 100
  • the value of tan ⁇ at at least one of ⁇ 10° C. at which tan ⁇ is maximum is greater than 60, according to the above ⁇ 1> or ⁇ 2> A curable resin composition as described.
  • ⁇ 4> Any of the above ⁇ 1> to ⁇ 3>, wherein the storage viscoelasticity at 260 ° C. obtained by performing dynamic viscoelasticity measurement on the resin cured product of the curable resin composition is 450 MPa or less. 1.
  • the curable resin composition according to one. ⁇ 5> The above ⁇ 1 containing an epoxy resin and a phenolic curing agent at an equivalent ratio of the phenolic hydroxyl group of the phenolic curing agent to the epoxy group of the epoxy resin of 0.5 or more and less than 1.0 > The curable resin composition according to any one of ⁇ 4>.
  • ⁇ 6> An electronic component device comprising an element and a resin cured product of the curable resin composition according to any one of ⁇ 1> to ⁇ 5> for sealing the element.
  • an electronic component device including a curable resin composition having excellent reflow resistance and an element sealed with this curable resin composition.
  • the numerical range indicated using “-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in Synthetic Examples.
  • each component may contain multiple types of applicable compounds. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • a plurality of types of particles corresponding to each component in the present disclosure may be contained.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term "laminate" refers to stacking layers, and two or more layers may be bonded or two or more layers may be detachable.
  • the notation without describing substitution and unsubstitution includes not only those not having substituents but also those having substituents.
  • the number of structural units represents an integer value for a single molecule, but represents a rational number which is an average value for an aggregate of multiple types of molecules.
  • the number of carbon atoms means the total number of carbon atoms contained in a group as a whole, and when the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group. When has a substituent, it represents the total sum of the number of carbon atoms forming the skeleton of the group plus the number of carbon atoms in the substituent.
  • the dynamic viscoelasticity measurement of the resin cured product of the curable resin composition can be performed using a dynamic viscoelasticity measuring device (for example, DMA8000 manufactured by PerkinElmer).
  • a dynamic viscoelasticity measuring device for example, DMA8000 manufactured by PerkinElmer.
  • test mode 3-point bending mode
  • measurement temperature 25 ° C.
  • the resin cured product was produced by molding the curable resin composition using a transfer molding machine under the conditions of a mold temperature of 175°C, a molding pressure of 8.3 MPa, and a curing time of 120 seconds. By carrying out curing.
  • the coefficient of thermal expansion (CTE) of the cured resin of the curable resin composition is measured using a thermomechanical analyzer, for example, on a cured resin of ⁇ 4 mm ⁇ 20 mm. .
  • the production of the resin cured product is as described above.
  • the measurement conditions are a load of 15 g, a measurement temperature of ⁇ 50° C. to 220° C., and a heating rate of 5° C./min.
  • TMA/SS6100 manufactured by Seiko Instruments Inc. can be used.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are measured using the following GPC measurement device under the following measurement conditions, and converted using a standard polystyrene calibration curve.
  • a calibration curve was prepared using a set of 5 samples (“PStQuick MP-H” and “PStQuick B”, manufactured by Tosoh Corporation) as standard polystyrene.
  • PStQuick MP-H and “PStQuick B”, manufactured by Tosoh Corporation
  • the molecular weight determined from the chemical structure of the compound is adopted as the Mw or Mn of the compound.
  • GPS measuring device high-speed GPC device “HCL-8320GPC”, detector is differential refractometer or UV, manufactured by Tosoh Corporation ⁇ Column: column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm), Manufactured by Tosoh Corporation (measurement conditions) ⁇ Solvent: Tetrahydrofuran (THF) ⁇ Measurement temperature: 40°C ⁇ Flow rate: 0.35 mL/min ⁇ Sample concentration: 10 mg/THF5 mL ⁇ Injection volume: 20 ⁇ L
  • the curable resin composition according to the first aspect is obtained by performing dynamic viscoelasticity measurement on the resin cured product of the curable resin composition.
  • the temperature at which tan ⁇ is maximum is less than 120 ° C.
  • the maximum value of tan ⁇ is greater than 0.400
  • 220 The sum of the tan ⁇ values at each temperature of °C, 230 °C, 240 °C and 250 °C is greater than 0.400.
  • the curable resin composition according to the first aspect has excellent reflow resistance.
  • the vertical axis is tan ⁇ and the horizontal axis is the temperature of 30 ° C. to 260 ° C.
  • tan ⁇ is the maximum
  • the maximum value of tan ⁇ is greater than 0.400
  • the temperatures of 220°C, 230°C, 240°C and 250°C According to the curable resin composition according to the first aspect, in which the sum of the tan ⁇ values in is more than 0.400, the internal stress of the cured resin that occurs during reflow tends to be relaxed.
  • the temperature at which tan ⁇ becomes maximum is preferably less than 110°C.
  • the lower limit of the temperature at which tan ⁇ is maximized is not particularly limited, it can be, for example, 50° C. or higher.
  • the maximum value of tan ⁇ is preferably more than 0.410.
  • the upper limit of the maximum value of tan ⁇ is not particularly limited, it can be, for example, 1.0 or less.
  • the upper limit of the total tan ⁇ at each temperature of 220°C, 230°C, 240°C and 250°C is not particularly limited. can be, for example, 2.0 or less.
  • the value of tan ⁇ at at least any temperature of -10 ° C. at which tan ⁇ becomes maximum is 60 It is preferably greater than, more preferably greater than 63, and even more preferably greater than 65.
  • the sum of tan ⁇ values at each temperature of 70°C, 80°C and 90°C is preferably more than 0.600. More preferably above 700.
  • the upper limit of the sum of tan ⁇ values at temperatures of 70° C., 80° C. and 90° C. is not particularly limited, but can be, for example, 2.0 or less.
  • the storage viscoelasticity at 260 ° C. obtained by performing dynamic viscoelasticity measurement on the resin cured product of the curable resin composition is It is preferably 450 MPa or less, more preferably 435 MPa or less, and even more preferably 420 MPa or less.
  • the lower limit of the storage modulus is not particularly limited, it can be, for example, 150 MPa or more.
  • the thermal expansion coefficient (CTE1) below the glass transition temperature of the resin cured product of the curable resin composition according to the first aspect obtained by thermomechanical analysis measurement is 15 ppm / ° C. or less from the viewpoint of followability to the support member. is preferred, 13 ppm/°C or less is more preferred, and 10 ppm/°C or less is even more preferred.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, it can be set to 3 ppm/°C, for example.
  • the coefficient of thermal expansion (CTE2) above the glass transition temperature is preferably 10 ppm/° C. to 45 ppm/° C., more preferably 12 ppm/° C. to 40 ppm/° C., more preferably 15 ppm/° C. to 38 ppm/° C. °C is more preferred.
  • the curable resin composition according to the first aspect contains an epoxy resin and a phenolic curing agent such that the equivalent ratio of the phenolic hydroxyl group of the phenolic curing agent to the epoxy group of the epoxy resin is 0.5. It is preferably contained at 5 or more and less than 1.0.
  • the equivalent ratio of the phenolic hydroxyl group (active hydrogen) of the phenolic curing agent to the epoxy group of the epoxy resin is the curability 1 H-NMR of the resin composition is measured, and it can be determined from the integral ratio of the protons of the epoxy group and the protons of the phenolic hydroxyl group. 1 H-NMR of the curable resin composition is measured under the following conditions.
  • the curable resin composition according to the first aspect can contain an epoxy resin.
  • the type of epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule.
  • the linear polysiloxane compound is not included in the epoxy resin. Specific examples of epoxy resins are described below, but are not limited thereto.
  • At least one phenol selected from the group consisting of phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • a novolak type epoxy resin phenol novolac type epoxy resin, ortho-cresol novolak-type epoxy resins, etc.
  • epoxidized triphenylmethane-type phenolic resins obtained by condensation or co-condensation of the above phenolic compounds and aromatic aldehyde compounds such as benzaldehyde and salicylaldehyde in the presence of an acidic catalyst.
  • a triphenylmethane type epoxy resin a copolymer type epoxy resin obtained by epoxidizing a novolak resin obtained by co-condensing the above phenol compound and naphthol compound with an aldehyde compound in the presence of an acidic catalyst; bisphenol A, bisphenol diphenylmethane-type epoxy resins that are diglycidyl ethers such as F; biphenyl-type epoxy resins that are diglycidyl ethers of alkyl-substituted or unsubstituted biphenols; stilbene-type epoxy resins that are diglycidyl ethers of stilbene-based phenol compounds; Sulfur atom-containing epoxy resins that are diglycidyl ethers; Epoxy resins that are glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; Glycidyl polyvalent carboxylic acid compounds such as phthalic acid, isophthalic acid and
  • co-condensation resins of dicyclopentadiene and phenol compounds Dicyclopentadiene type epoxy resin which is obtained by epoxidizing the; vinylcyclohexene diepoxide obtained by epoxidizing the olefin bond in the molecule, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, 2- (3,4-epoxy)cyclohexyl-5,5-spiro(3 ,4-epoxy)cyclohexane-m-dioxane and other alicyclic epoxy resins; para-xylylene-modified epoxy resins that are glycidyl ethers of para-xylylene-modified phenol resins; meta-xylylene-modified epoxy resins that are glycidyl ethers of meta-xylylene-modified phenol resins; terpene-modified phenol
  • the biphenyl-type epoxy resin is not particularly limited as long as it is an epoxy resin having a biphenyl skeleton.
  • an epoxy resin represented by the following general formula (II) is preferred.
  • R 8 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aromatic group having 4 to 18 carbon atoms, all of which may be the same or different.
  • n is an average value and represents an integer of 0-10.
  • the stilbene-type epoxy resin is not particularly limited as long as it is an epoxy resin having a stilbene skeleton.
  • an epoxy resin represented by the following general formula (III) is preferred.
  • R 9 and R 10 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • n is an average value and represents an integer of 0-10.
  • the diphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin having a diphenylmethane skeleton.
  • an epoxy resin represented by the following general formula (IV) is preferred.
  • R 11 and R 12 each represent a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • n is an average value and represents an integer of 0-10.
  • the sulfur atom-containing type epoxy resin is not particularly limited as long as it is an epoxy resin containing sulfur atoms.
  • examples thereof include epoxy resins represented by the following general formula (V).
  • R 13 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • n is an average value and represents an integer of 0-10.
  • the novolak type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a novolak type phenol resin.
  • R 14 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • R 15 represents a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is an average value and represents an integer of 0-10.
  • the dicyclopentadiene type epoxy resin is not particularly limited as long as it is an epoxy resin obtained by epoxidizing a compound having a dicyclopentadiene skeleton as a raw material.
  • R 16 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is an average value and represents an integer of 0-10.
  • the triphenylmethane-type epoxy resin is not particularly limited as long as it is an epoxy resin made from a compound having a triphenylmethane skeleton.
  • R 17 and R 18 each represent a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • Each i independently represents an integer of 0 to 3
  • each k independently represents an integer of 0 to 4.
  • n is an average value and represents an integer of 0-10.
  • the copolymer type epoxy resin obtained by epoxidizing a novolac resin obtained from a naphthol compound, a phenolic compound, and an aldehyde compound is not particularly limited as long as it is an epoxy resin made from a compound having a naphthol skeleton and a compound having a phenolic skeleton.
  • an epoxy resin obtained by glycidyl-etherifying a novolac-type phenol resin using a compound having a naphthol skeleton and a compound having a phenol skeleton is preferable, and an epoxy resin represented by the following general formula (IX) is more preferable.
  • R 19 to R 21 represent monovalent organic groups having 1 to 18 carbon atoms, and may be the same or different.
  • Each i independently represents an integer of 0 to 3
  • each j independently represents an integer of 0 to 2
  • each k independently represents an integer of 0 to 4.
  • l and m are average values, numbers from 0 to 10, and (l+m) shows numbers from 0 to 10.
  • the terminal of the epoxy resin represented by formula (IX) is either one of formula (IX-1) or (IX-2) below.
  • Definitions of R 19 to R 21 , i, j and k in formulas (IX-1) and (IX-2) are the same as definitions of R 19 to R 21 , i, j and k in formula (IX).
  • n is 1 (when linked via a methylene group) or 0 (when not linked via a methylene group).
  • the epoxy resin represented by the general formula (IX) includes a random copolymer having l structural units and m structural units at random, an alternating copolymer having alternating structural units, and a copolymer having regularly , a block copolymer having a block shape, and the like. Any one of these may be used alone, or two or more may be used in combination.
  • the aralkyl-type epoxy resin is composed of at least one selected from the group consisting of phenol compounds such as phenol and cresol, and naphthol compounds such as naphthol and dimethylnaphthol, and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof.
  • phenol compounds such as phenol and cresol
  • naphthol compounds such as naphthol and dimethylnaphthol
  • dimethoxyparaxylene bis(methoxymethyl)biphenyl or derivatives thereof.
  • an epoxy resin made from a synthesized phenol resin.
  • R 38 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • R 37 , R 39 to R 41 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • i is each independently an integer of 0 to 3
  • j is each independently an integer of 0 to 2
  • k is each independently an integer of 0 to 4
  • l is each independently an integer of 0 to 4 show.
  • n is an average value, each independently an integer of 0 to 10;
  • R 8 to R 21 and R 37 to R 41 in general formulas (II) to (XI) above “all of which may be the same or different” means, for example, 8 to R 41 in formula (II). It means that all 88 R 8 may be the same or different.
  • Other R 9 to R 21 and R 37 to R 41 also mean that the respective numbers contained in the formula may all be the same or different.
  • R 8 to R 21 and R 37 to R 41 may be the same or different.
  • all of R 9 and R 10 may be the same or different.
  • the monovalent organic group having 1 to 18 carbon atoms in general formulas (III) to (XI) is preferably an alkyl group or an aryl group.
  • n in the above general formulas (II) to (XI) is an average value, and each independently preferably ranges from 0 to 10.
  • n is 10 or less, the melt viscosity of the resin component does not become too high, and the viscosity decreases during melt molding of the curable resin composition, resulting in poor filling and bonding wires (gold wires that connect elements and leads). There is a tendency that the occurrence of deformation, etc., is suppressed.
  • n is set in the range of 0-4.
  • the epoxy resin is a copolymerized epoxy resin having a structural unit derived from alkylphenol and a structural unit derived from alkoxynaphthalene (hereinafter referred to as a specific copolymerized epoxy resin) is preferably included.
  • Structural units derived from alkylphenols include structural units (a) below.
  • each R 1 A independently represents a monovalent alkyl group having 1 to 18 carbon atoms, preferably a monovalent alkyl group having 1 to 6 carbon atoms.
  • X represents an integer of 1-3.
  • Structural units derived from alkoxynaphthalene include the following structural units (b).
  • each R 2 B independently represents a monovalent alkoxy group having 1 to 18 carbon atoms, preferably a monovalent alkoxy group having 1 to 6 carbon atoms.
  • y represents an integer of 1-6.
  • the two bonding sites in the structural unit (b) may exist in the same naphthalene ring or may exist in each of the two naphthalene rings.
  • the specific copolymerization type epoxy resin can have the following structural unit (c).
  • n is an integer of 1-10, preferably an integer of 2-8.
  • the two bonding sites of the naphthalene ring in the structural unit (c) may exist in the same naphthalene ring or may exist in each of the two naphthalene rings.
  • Structural units satisfying the above structural unit (c) include, for example, the following structural unit (d).
  • the epoxy resin preferably contains a specific copolymerization type epoxy resin. Moreover, from the viewpoint of reflow resistance, the epoxy resin preferably contains a biphenyl-type epoxy resin.
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of the balance of various properties such as moldability, heat resistance and electrical reliability, the epoxy equivalent of the epoxy resin is preferably 40 g/eq to 1000 g/eq, more preferably 45 g/eq to 500 g/eq, and 50 g/eq. eq to 350 g/eq is more preferred. Let the epoxy equivalent of an epoxy resin be the value measured by the method according to JISK7236:2009.
  • the epoxy resin may be solid or liquid at 25°C. If the epoxy resin is solid at 25°C, the softening point or melting point of the epoxy resin is not particularly limited. From the viewpoint of the balance between moldability and heat resistance, the softening point or melting point of the epoxy resin is preferably 40°C to 180°C. Also, from the viewpoint of handleability during production of the curable resin composition, the softening point or melting point of the epoxy resin is preferably 50°C to 130°C. In the present disclosure, softening point refers to a value measured by the ring and ball method of JIS K 7234:1986. In the present disclosure, melting point refers to a value measured according to the visual observation method of JIS K 0064:1992.
  • the Mw of the epoxy resin is preferably 550-1050, more preferably 650-950.
  • the Mn of the epoxy resin is preferably 250 to 800, more preferably 350 to 600.
  • the content of the epoxy resin with respect to the total mass of the curable resin composition is preferably 0.5% by mass to 60% by mass, and 2% by mass. It is more preferably 50% by mass, and even more preferably 3% by mass to 45% by mass.
  • the content of the specific copolymerization type epoxy resin with respect to the total mass of the epoxy resin is 50. It is preferably 90% by mass, more preferably 55% by mass to 80% by mass, and even more preferably 60% by mass to 75% by mass.
  • the content of the biphenyl-type epoxy resin with respect to the total weight of the epoxy resin is 5% by mass to 40% by mass. % by mass is preferable, 7% by mass to 35% by mass is more preferable, and 10% by mass to 30% by mass is even more preferable.
  • the curable resin composition according to the first aspect can contain a phenol-based curing agent.
  • the type of phenol-based curing agent is not particularly limited, and can be selected from those commonly used as components of curable resin compositions.
  • the phenol-based curing agents may be used singly or in combination of two or more.
  • Phenolic curing agents include, for example, phenol resins and polyhydric phenol compounds having two or more phenolic hydroxyl groups in one molecule. Specific examples of the phenol-based curing agent are described below, but are not limited to these. Phenolic curing agents include polyhydric phenol compounds such as resorcin, catechol, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, amino At least one phenolic compound selected from the group consisting of phenol compounds such as phenol and naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and aldehyde compounds such as formaldehyde, acetaldehyde and propionaldehyde under an acidic catalyst.
  • phenol-based curing agent include polyhydric phenol compounds
  • Novolac-type phenolic resins obtained by condensation or co-condensation Phenolic aralkyl resins synthesized from the above phenolic compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl, etc., aralkyl-type phenolic resins such as naphthol aralkyl resins; Para-xylylene and / or metaxylylene-modified phenolic resin; melamine-modified phenolic resin; terpene-modified phenolic resin; Pentadiene-modified phenolic resin; Polycyclic aromatic ring-modified phenolic resin; Biphenyl-type phenolic resin; Triphenyl obtained by condensation or co-condensation of the above phenolic compound with an aromatic aldehyde compound such as benzaldehyde and salicylaldehyde in the presence of an acidic catalyst.
  • Methane-type phenolic resin 2-[4-[(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1 triazine-type phenolic resins such as , 3,5-triazine; and phenolic resins obtained by copolymerizing two or more of these.
  • the phenolic curing agent includes one or more phenolic curing agents selected from the group consisting of aralkyl-type phenolic resins and novolac-type phenolic resins. It is preferably included, more preferably included together.
  • the phenol-based curing agent will be described in more detail below, but it is not limited to these.
  • the aralkyl-type phenolic resin is not particularly limited, and a phenol synthesized from at least one selected from the group consisting of phenolic compounds and naphthol compounds and dimethoxyparaxylene, bis(methoxymethyl)biphenyl or derivatives thereof. resin.
  • aralkyl-type phenol resins include phenol resins represented by the following general formulas (XII) to (XIV).
  • R 23 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • R 22 , R 24 , R 25 and R 28 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • R 26 and R 27 each represent a hydroxyl group or a monovalent organic group having 1 to 18 carbon atoms, and may be the same or different.
  • i is each independently an integer of 0 to 3
  • j is each independently an integer of 0 to 2
  • k is each independently an integer of 0 to 4
  • p is each independently an integer of 0 to 4 be.
  • n is an average value, each independently an integer of 0 to 10; “All may be the same or different" described for R 22 etc. in the above general formula means, for example, all i R 22 in general formula (XII) may be the same or different means that Further, R 22 to R 37 may be the same or different. For example, all of R 22 and R 23 may be the same or different.
  • the aralkyl-type phenolic resin is preferably a phenolic resin represented by general formula (XIII).
  • i and k are preferably 0 in general formula (XIII).
  • the aralkyl-type phenolic resin may be a copolymerized phenolic resin with other phenolic resins.
  • Copolymerized phenolic resins include copolymerized phenolic resins of triphenylmethane-type phenolic resin and aralkyl-type phenolic resin, copolymerized phenolic resins of salicylaldehyde-type phenolic resin and aralkyl-type phenolic resin, and novolac-type phenolic resin.
  • a copolymer type phenol resin with an aralkyl type phenol resin and the like can be mentioned.
  • the dicyclopentadiene-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained using a compound having a dicyclopentadiene skeleton as a raw material.
  • a phenol resin represented by the following general formula (XV) is preferred.
  • R 29 represents a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is an average value and represents an integer of 0-10.
  • the triphenylmethane-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained using an aromatic aldehyde compound as a raw material.
  • a phenol resin represented by the following general formula (XVI) is preferred.
  • R 30 and R 31 each represent a monovalent organic group having 1 to 18 carbon atoms and may be the same or different.
  • Each i is independently an integer of 0 to 3
  • each k is independently an integer of 0 to 4.
  • n is an average value and is an integer from 0 to 10;
  • the copolymerized phenolic resin of triphenylmethane-type phenolic resin and aralkyl-type phenolic resin is not particularly limited as long as it is a copolymerized-type phenolic resin of phenolic resin obtained using a compound having a benzaldehyde skeleton as a raw material and aralkyl-type phenolic resin. .
  • a phenol resin represented by the following general formula (XVII) is preferred.
  • R 32 to R 34 each represent a monovalent organic group having 1 to 18 carbon atoms, and all of them may be the same or different.
  • Each i is independently an integer of 0 to 3
  • each k is independently an integer of 0 to 4
  • each q is independently an integer of 0 to 5.
  • l and m are average values and independently integers from 0 to 11. However, the sum of l and m is an integer of 1-11.
  • the novolak-type phenolic resin is not particularly limited as long as it is a phenolic resin obtained by condensation or co-condensation of at least one phenolic compound selected from the group consisting of phenolic compounds and naphthol compounds and an aldehyde compound in the presence of an acidic catalyst.
  • a phenol resin represented by the following general formula (XVIII) is preferred.
  • R 35 represents a hydrogen atom or a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • R 36 represents a monovalent organic group having 1 to 18 carbon atoms, all of which may be the same or different.
  • i each independently represents an integer of 0 to 3;
  • n is an average value and represents an integer of 0-10.
  • R 22 to R 36 in the general formulas (XII) to (XVIII) means, for example, that all i R 22 in formula (XII) are the same However, it means that they may be different from each other.
  • Other R 23 to R 36 also mean that the respective numbers contained in the formula may all be the same or different from each other.
  • R 22 to R 36 may be the same or different.
  • all of R 22 and R 23 may be the same or different
  • all of R 30 and R 31 may be the same or different.
  • n in the above general formulas (XII) to (XVIII) is preferably an integer of 0 to 10. If it is 10 or less, the melt viscosity of the resin component does not become too high, and the viscosity becomes low when the curable resin is melt-molded, resulting in poor filling, deformation of the bonding wire (gold wire that connects the element and the lead), and the like. less likely to occur.
  • the average n in one molecule is preferably set in the range of 0-4.
  • the hydroxyl equivalent of the phenolic curing agent is not particularly limited. From the viewpoint of the balance of various properties such as reflow resistance, moldability, and electrical reliability, it is preferably 10 g/eq to 1000 g/eq, more preferably 30 g/eq to 500 g/eq.
  • the hydroxyl equivalent refers to a value calculated based on the hydroxyl value measured according to JIS K 0070:1992.
  • the softening point or melting point of the phenolic curing agent is preferably 40°C to 180°C. Also, from the viewpoint of handleability during production of the curable resin composition, the softening point or melting point of the phenol-based curing agent is preferably 50°C to 130°C.
  • the content of the phenolic curing agent with respect to the total mass of the curable resin composition is 0.5% by mass to 40% by mass. It is preferably from 1% by mass to 30% by mass, and even more preferably from 2% by mass to 20% by mass.
  • the content of the aralkyl-type phenol resin with respect to the total mass of the phenol-based curing agent is 60. It is preferably from 65% to 90% by mass, more preferably from 65% by mass to 95% by mass.
  • the content of the novolak-type phenolic resin with respect to the total mass of the phenolic curing agent is 5. It is preferably from 10% by mass to 40% by mass, more preferably from 10% by mass to 30% by mass.
  • the curable resin composition according to the first aspect includes, in addition to the components described above, a curing accelerator, an inorganic filler, a coupling agent, a stress relaxation agent, a release agent, a coloring agent, a flame retardant, an ion exchanger, Various additives such as resins other than epoxy resins and curing agents other than phenolic curing agents may be contained.
  • the curable resin composition may contain various additives known in the art as necessary, in addition to the additives exemplified below.
  • the curable resin composition according to the first aspect may contain a curing accelerator.
  • the type of curing accelerator is not particularly limited, and can be selected according to the type of epoxy resin, desired properties of the curable resin composition, and the like.
  • the curing accelerator preferably contains a phosphonium compound.
  • phosphonium compounds include triphenylphosphine, diphenyl(p-tolyl)phosphine, tris(alkylphenyl)phosphine, tris(alkoxyphenyl)phosphine, tris(alkyl/alkoxyphenyl)phosphine, tris(dialkylphenyl)phosphine, tris(trialkylphenyl)phosphine, tris(tetraalkylphenyl)phosphine, tris(dialkoxyphenyl)phosphine, tris(trialkoxyphenyl)phosphine, tris(tetraalkoxyphenyl)phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiaryl Tertiary phosphines such as phosphine, maleic anhydride, 1,
  • the phosphonium compound preferably contains a compound represented by the following general formula (I-1) (hereinafter also referred to as a specific curing accelerator).
  • R 1 to R 3 are each independently a hydrocarbon group having 1 to 18 carbon atoms, and two or more of R 1 to R 3 are bonded to each other to form a cyclic structure.
  • R 4 to R 7 each independently represent a hydrogen atom, a hydroxyl group or an organic group having 1 to 18 carbon atoms, and two or more of R 4 to R 7 are bonded to each other to form a cyclic structure. may be formed.
  • the “hydrocarbon group having 1 to 18 carbon atoms” described as R 1 to R 3 in general formula (I-1) includes an aliphatic hydrocarbon group having 1 to 18 carbon atoms and an aliphatic hydrocarbon group having 6 to 18 carbon atoms. Contains some aromatic hydrocarbon groups.
  • the aliphatic hydrocarbon group having 1 to 18 carbon atoms preferably has 1 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and even more preferably 4 to 6 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 18 carbon atoms may be a linear or branched aliphatic hydrocarbon group having 1 to 18 carbon atoms, or an alicyclic hydrocarbon group having 3 to 18 carbon atoms. good too. From the viewpoint of ease of production, it is preferably a straight-chain or branched aliphatic hydrocarbon group.
  • linear or branched aliphatic hydrocarbon groups having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, Alkyl groups such as t-butyl group, pentyl group, hexyl group, octyl group, decyl group and dodecyl group, allyl group, vinyl group and the like can be mentioned.
  • a linear or branched aliphatic hydrocarbon group may or may not have a substituent.
  • substituents include alkoxy groups such as methoxy group, ethoxy group, n-butoxy group and t-butoxy group, aryl groups such as phenyl group and naphthyl group, hydroxyl group, amino group and halogen atom.
  • a straight-chain or branched aliphatic hydrocarbon group may have two or more substituents, which may be the same or different. When the linear or branched aliphatic hydrocarbon group has a substituent, the total number of carbon atoms contained in the aliphatic hydrocarbon group and the substituent is preferably 1-18.
  • unsubstituted alkyl groups are preferred, and unsubstituted alkyl groups having 1 to 8 carbon atoms are more preferred, such as n-butyl, isobutyl, n-pentyl, n-hexyl and n-octyl. groups are more preferred.
  • alicyclic hydrocarbon groups having 3 to 18 carbon atoms include cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group, and cycloalkenyl groups such as cyclopentenyl group and cyclohexenyl group.
  • the alicyclic hydrocarbon group may or may not have a substituent.
  • substituents include alkyl groups such as methyl group, ethyl group, n-butyl group and t-butyl group, alkoxy groups such as methoxy group, ethoxy group, n-butoxy group and t-butoxy group, phenyl group and naphthyl group.
  • An alicyclic hydrocarbon group may have two or more substituents, in which case the substituents may be the same or different.
  • the total number of carbon atoms contained in the alicyclic hydrocarbon group and the substituent is preferably 3-18.
  • the position of the substituent is not particularly limited.
  • an unsubstituted cycloalkyl group is preferable, an unsubstituted cycloalkyl group having 4 to 10 carbon atoms is more preferable, and a cyclohexyl group, a cyclopentyl group and a cycloheptyl group are more preferable.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms preferably has 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms.
  • the aromatic hydrocarbon group may or may not have a substituent.
  • substituents include alkyl groups such as methyl group, ethyl group, n-butyl group and t-butyl group, alkoxy groups such as methoxy group, ethoxy group, n-butoxy group and t-butoxy group, phenyl group and naphthyl group. aryl groups, hydroxyl groups, amino groups, halogen atoms, and the like.
  • the aromatic hydrocarbon group may have two or more substituents, in which case the substituents may be the same or different.
  • the total number of carbon atoms contained in the aromatic hydrocarbon group and the substituent is preferably 6-18.
  • the position of the substituent is not particularly limited.
  • aromatic hydrocarbon groups having 6 to 18 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, tolyl, dimethylphenyl, ethylphenyl, butylphenyl and t-butyl. phenyl group, methoxyphenyl group, ethoxyphenyl group, n-butoxyphenyl group, t-butoxyphenyl group and the like.
  • the position of the substituent in these aromatic hydrocarbon groups may be any of the ortho position, meta position and para position.
  • an unsubstituted aryl group having 6 to 12 carbon atoms or 6 to 12 carbon atoms including substituents is preferable, and an unsubstituted aryl group having 6 to 10 carbon atoms or carbon atoms including substituents
  • An aryl group of numbers 6 to 10 is more preferred, and a phenyl group, p-tolyl group and p-methoxyphenyl group are even more preferred.
  • R 1 to R 3 may combine with each other to form a cyclic structure” described as R 1 to R 3 in general formula (I-1) means that R 1 to R 3 It means that two or three of them are combined to form one divalent or trivalent hydrocarbon group as a whole.
  • R 1 to R 3 examples include alkylene groups such as ethylene, propylene, butylene, pentylene and hexylene which can form a cyclic structure by bonding with a phosphorus atom; alkenylene groups such as ethylene, propylene and butylenylene groups; Substituents capable of forming a cyclic structure by bonding with a phosphorus atom, such as aralkylene groups such as methylenephenylene groups, and arylene groups such as phenylene, naphthylene and anthracenylene groups, can be mentioned. These substituents may be further substituted with alkyl groups, alkoxy groups, aryl groups, aryloxy groups, amino groups, hydroxyl groups, halogen atoms and the like.
  • alkylene groups such as ethylene, propylene, butylene, pentylene and hexylene which can form a cyclic structure by bonding with a phosphorus atom
  • the “organic group having 1 to 18 carbon atoms” described as R 4 to R 7 in general formula (I-1) above is an aliphatic group having 1 to 18 carbon atoms which may or may not be substituted. It is meant to include aromatic hydrocarbon groups, aromatic hydrocarbon groups, aliphatic hydrocarbon oxy groups, aromatic hydrocarbon oxy groups, acyl groups, hydrocarbon oxycarbonyl groups, and acyloxy groups.
  • Examples of the aliphatic hydrocarbon group and aromatic hydrocarbon group include those mentioned above as examples of the aliphatic hydrocarbon group and aromatic hydrocarbon group represented by R 1 to R 3 .
  • Examples of the aliphatic hydrocarbonoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, a 2-butoxy group, a t-butoxy group, a cyclopropyloxy group, a cyclohexyloxy group, and a cyclopentyloxy group.
  • an allyloxy group an oxy group having a structure in which an oxygen atom is bonded to the above-mentioned aliphatic hydrocarbon groups such as a vinyloxy group, and these aliphatic hydrocarbon oxy groups are further alkyl groups, alkoxy groups, aryl groups, aryloxy groups, amino and those substituted with groups, hydroxyl groups, halogen atoms, and the like.
  • aromatic hydrocarbon oxy group examples include a phenoxy group, a methylphenoxy group, an ethylphenoxy group, a methoxyphenoxy group, a butoxyphenoxy group, a phenoxyphenoxy group having a structure in which an oxygen atom is bonded to the above aromatic hydrocarbon group, such as a phenoxyphenoxy group.
  • acyl group examples include aliphatic hydrocarbon carbonyl groups such as formyl group, acetyl group, ethylcarbonyl group, butyryl group, cyclohexylcarbonyl group and allylcarbonyl group, and aromatic hydrocarbon carbonyl groups such as phenylcarbonyl group and methylphenylcarbonyl group. and the like, in which these aliphatic hydrocarbon carbonyl groups or aromatic hydrocarbon carbonyl groups are further substituted with an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an amino group, a halogen atom, or the like.
  • hydrocarbon oxycarbonyl group examples include aliphatic hydrocarbon oxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, butoxycarbonyl group, allyloxycarbonyl group and cyclohexyloxycarbonyl group, phenoxycarbonyl group, methylphenoxycarbonyl group and the like.
  • aromatic hydrocarbon oxycarbonyl groups these aliphatic hydrocarbon carbonyloxy groups or aromatic hydrocarbon carbonyloxy groups further substituted with alkyl groups, alkoxy groups, aryl groups, aryloxy groups, amino groups, halogen atoms, etc. things, etc.
  • acyloxy group examples include aliphatic hydrocarbon carbonyloxy groups such as a methylcarbonyloxy group, an ethylcarbonyloxy group, a butylcarbonyloxy group, an allylcarbonyloxy group and a cyclohexylcarbonyloxy group, a phenylcarbonyloxy group and a methylphenylcarbonyloxy group. etc., these aliphatic hydrocarbon carbonyloxy groups or aromatic hydrocarbon carbonyloxy groups are further substituted with alkyl groups, alkoxy groups, aryl groups, aryloxy groups, amino groups, halogen atoms, etc. and the like.
  • R 4 to R 7 may combine with each other to form a cyclic structure” described as R 4 to R 7 in the general formula (I-1) means that two to four may be combined to form one divalent to tetravalent organic group as a whole.
  • R 4 to R 7 include alkylene groups such as ethylene, propylene, butylene, pentylene and hexylene; alkenylene groups such as ethylene, propylene, butyleneylene; aralkylene groups such as methylenephenylene; and arylene groups such as phenylene, naphthylene and anthracenylene.
  • Substituents capable of forming a cyclic structure such as groups, their oxy groups or dioxy groups are included. These substituents may be further substituted with alkyl groups, alkoxy groups, aryl groups, aryloxy groups, amino groups, hydroxyl groups, halogen atoms and the like.
  • R 4 to R 7 in general formula (I-1) are not particularly limited.
  • a hydrogen atom, a hydroxyl group, an aryl group substituted with at least one selected from the group consisting of an unsubstituted or alkyl group and an alkoxy group, or a chain or cyclic alkyl group preferable.
  • Aryl groups that are unsubstituted or substituted with at least one selected from the group consisting of an alkyl group and an alkoxy group include a phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, p-methoxyphenyl group, and the like. is mentioned.
  • Chain or cyclic alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, t-butyl, octyl and cyclohexyl groups. From the viewpoint of curability, it is preferred that all of R 4 to R 7 are hydrogen atoms, or that at least one of R 4 to R 7 is a hydroxyl group and the rest are all hydrogen atoms.
  • R 1 to R 3 in general formula (I-1) are alkyl groups having 1 to 18 carbon atoms or cycloalkyl groups having 3 to 18 carbon atoms
  • R 4 to R 7 are All are hydrogen atoms, or at least one is a hydroxyl group and the rest are all hydrogen atoms.
  • all of R 1 to R 3 are alkyl groups having 1 to 18 carbon atoms or cycloalkyl groups having 3 to 18 carbon atoms
  • all of R 4 to R 7 are hydrogen atoms, or at least one is a hydroxyl group. and the rest are all hydrogen atoms.
  • the specific curing accelerator preferably contains a compound represented by the following general formula (I-2).
  • R 1 to R 3 are each independently a hydrocarbon group having 1 to 18 carbon atoms, and two or more of R 1 to R 3 are bonded to each other to form a cyclic structure.
  • R 4 to R 6 each independently represent a hydrogen atom or an organic group having 1 to 18 carbon atoms, and two or more of R 4 to R 6 are bonded to each other to form a cyclic structure.
  • R 1 to R 6 in general formula (I-2) are the same as specific examples of R 1 to R 6 in general formula (I-1), and preferred ranges are also the same.
  • a specific curing accelerator can be obtained, for example, as an adduct of a tertiary phosphine compound and a quinone compound.
  • the third phosphine compound include triphenylphosphine, tributylphosphine, dibutylphenylphosphine, butyldiphenylphosphine, ethyldiphenylphosphine, triphenylphosphine, tris(4-methylphenyl)phosphine, and tris(4-ethylphenyl)phosphine.
  • tris(4-n-propylphenyl)phosphine tris(4-n-butylphenyl)phosphine, tris(isopropylphenyl)phosphine, tris(t-butylphenyl)phosphine, tris(2,4-dimethylphenyl)phosphine, tris(2,6-dimethylphenyl)phosphine, tris(2,4,6-trimethylphenyl)phosphine, tris(2,6-dimethyl-4-ethoxyphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tris( 4-ethoxyphenyl)phosphine and the like. From the viewpoint of moldability, triphenylphosphine and tributylphosphine are preferred.
  • quinone compounds include 1,2-benzoquinone, 1,4-benzoquinone, diphenoquinone, 1,4-naphthoquinone, and anthraquinone. From the viewpoint of moisture resistance and storage stability, 1,4-benzoquinone is preferred.
  • the specific curing accelerator include an addition reaction product of triphenylphosphine and 1,4-benzoquinone, an addition reaction product of tri-n-butylphosphine and 1,4-benzoquinone, and tricyclohexylphosphine and 1,4-benzoquinone.
  • addition reaction product of dicyclohexylphenylphosphine and 1,4-benzoquinone addition reaction product of cyclohexyldiphenylphosphine and 1,4-benzoquinone
  • addition reaction product of triisobutylphosphine and 1,4-benzoquinone tricyclopentylphosphine and an addition reaction product of 1,4-benzoquinone.
  • the thermosetting resin composition may contain curing accelerators other than the phosphonium compound.
  • curing accelerators other than phosphonium compounds include 1,5-diazabicyclo[4.3.0]nonene-5 (DBN) and 1,8-diazabicyclo[5.4.0]undecene-7 (DBU).
  • Cyclic amidine compounds such as diazabicycloalkenes such as diazabicycloalkene, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole; derivatives of the cyclic amidine compounds; the cyclic amidine compounds or the Phenol novolak salts of derivatives; These compounds include maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3- quinone compounds such as dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1,4-benzoquinone; and compounds with ⁇ bonds such as diazophenylmethane.
  • diazabicycloalkenes such
  • Cyclic amidiniums such as tetraphenylborate salt of DBU, tetraphenylborate salt of DBN, tetraphenylborate salt of 2-ethyl-4-methylimidazole, tetraphenylborate salt of N-methylmorpholine, etc.
  • tertiary amine compounds such as pyridine, triethylamine, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol; derivatives of the tertiary amine compounds; tetra-n-butylammonium acetate , tetra-n-butylammonium phosphate, tetraethylammonium acetate, tetra-n-hexylammonium benzoate, and ammonium salt compounds such as tetrapropylammonium hydroxide.
  • thermosetting resin composition contains a specific curing accelerator as a curing accelerator
  • the content of the specific curing accelerator is preferably 30% by mass or more of the total curing accelerator, and is 50% by mass or more. is more preferable, and 70% by mass or more is even more preferable.
  • the amount thereof is preferably 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the resin component, and 1 part by mass to 15 parts by mass. It is more preferable to have When the amount of the curing accelerator is 0.1 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency for satisfactory curing in a short period of time. When the amount of the curing accelerator is 30 parts by mass or less with respect to 100 parts by mass of the resin component, the curing speed is not too fast and a good molded article tends to be obtained.
  • the curable resin composition according to the first aspect may contain an inorganic filler.
  • the curable resin composition contains an inorganic filler, the hygroscopicity of the curable resin composition tends to decrease, and the strength in the cured state tends to improve.
  • the curable resin composition is used as a sealing material for semiconductor packages, it preferably contains an inorganic filler.
  • inorganic filler is not particularly limited. Specifically, silica such as spherical silica and crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, Inorganic materials such as spinel, mullite, titania, talc, clay, and mica. Inorganic fillers having a flame retardant effect may also be used. Inorganic fillers having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate.
  • an inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types.
  • Examples of the state of the inorganic filler include powders, beads obtained by spheroidizing powders, fibers, and the like.
  • An inorganic filler may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the shape of the inorganic filler is not particularly limited, and examples include powdery, spherical, and fibrous shapes.
  • a spherical shape is preferable from the viewpoint of fluidity during molding of the curable resin composition and resistance to mold wear.
  • the average particle size of the inorganic filler is not particularly limited. From the viewpoint of the balance between the viscosity of the curable resin composition and the filling property, etc., the volume average particle size of the inorganic filler is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.3 ⁇ m to 30 ⁇ m. , 0.5 ⁇ m to 25 ⁇ m.
  • the average particle size of the inorganic filler can be measured as the volume average particle size (D50) with a laser diffraction scattering method particle size distribution analyzer. A volume average particle diameter can be measured by a known method.
  • an inorganic filler is extracted from a curable resin composition or cured resin using an organic solvent, nitric acid, aqua regia, etc., and sufficiently dispersed using an ultrasonic disperser or the like to prepare a dispersion.
  • the volume average particle diameter of the inorganic filler can be measured from the volume-based particle size distribution measured by a laser diffraction scattering particle size distribution analyzer.
  • the volume-average particle size of the inorganic filler is measured from the volume-based particle size distribution obtained by embedding the cured resin in a transparent epoxy resin or the like and polishing the resulting cross-section with a scanning electron microscope. be able to.
  • FIB device focused ion beam SEM
  • the curable resin composition contains an inorganic filler
  • its content is not particularly limited. It is preferably 30% by mass to 90% by mass, more preferably 35% by mass to 80% by mass, and even more preferably 40% by mass to 70% by mass of the total curable resin composition.
  • the content of the inorganic filler is 30% by mass or more of the entire curable resin composition, the properties of the cured resin, such as coefficient of thermal expansion, thermal conductivity and elastic modulus, tend to be further improved.
  • the content of the inorganic filler is 90% by mass or less of the entire curable resin composition, the increase in viscosity of the curable resin composition is suppressed, the fluidity is further improved, and the moldability tends to be better. It is in.
  • the curable resin composition according to the first aspect may contain a coupling agent.
  • the type of coupling agent is not particularly limited, and known coupling agents can be used. Examples of coupling agents include silane coupling agents and titanium coupling agents.
  • a coupling agent may be used individually by 1 type, or may use 2 or more types together.
  • the silane coupling agent is not particularly limited as long as it is a compound other than the linear polysiloxane compound described above. sidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)amino propyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercapto propyltriethoxysilane, 3-ureidopropyltriethoxysilane, octenyltrimethoxysilane, gly
  • Titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctylbis(ditridecylphosphite) titanate, tetra(2, 2-diallyloxymethyl-1-butyl)bis(ditridecylphosphite)titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctanoyltitanate, isopropyldimethacrylisostearoyltitanate , isopropyltridodecylbenzenesulfonyltitanate, isopropylisostearoyldiacryl
  • the curable resin composition according to the first aspect contains at least one of 3-aminopropyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane. preferably.
  • the content of the coupling agent should be the same as the inorganic filler contained in the curable resin composition, from the viewpoint of the adhesiveness of the interface between the epoxy resin and the inorganic filler.
  • 100 parts by mass it is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 8 parts by mass, and 0.05 to 5 parts by mass. is more preferred.
  • the curable resin composition according to the first aspect may contain stress relaxation agents such as silicone oil and silicone rubber particles.
  • stress relaxation agents such as silicone oil and silicone rubber particles.
  • the stress relaxation agent include commonly used known stress relaxation agents (flexible agents).
  • stress relaxation agents include thermoplastic elastomers such as silicone, styrene, olefin, urethane, polyester, polyether, polyamide, and polybutadiene, natural rubber (NR), and acrylonitrile-butadiene.
  • NBR Non-acrylate-styrene-butadiene copolymer
  • MVS methyl methacrylate-silicone copolymer
  • methacrylate-butyl acrylate examples include rubber particles having a core-shell structure such as copolymers.
  • a stress relaxation agent may be used individually by 1 type, or may be used in combination of 2 or more types. Among them, a silicone-based stress relieving agent is preferable. Examples of silicone-based stress relieving agents include those having epoxy groups, those having amino groups, and those modified with polyethers.
  • the content is preferably 0.1 parts by mass to 30 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. , more preferably 1 to 5 parts by mass.
  • the curable resin composition according to the first aspect may contain a release agent from the viewpoint of releasability from the mold.
  • the release agent is not particularly limited, and conventionally known agents can be used. Examples of release agents include carnauba wax, higher fatty acids such as montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, and polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene.
  • the release agent may be used singly or in combination of two or more.
  • the content of the release agent is 0.01 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. It is preferably from 0.1 to 10 parts by mass, more preferably from 0.1 to 10 parts by mass.
  • the amount of the release agent is 0.01 parts by mass or more with respect to 100 parts by mass of the resin component, there is a tendency that sufficient releasability can be obtained.
  • it is 15 parts by mass or less, there is a tendency that better releasability can be obtained.
  • the curable resin composition according to the first aspect may contain a colorant.
  • coloring agents include known coloring agents such as carbon black, organic dyes, organic pigments, titanium oxide, red lead, and red iron oxide.
  • the content of the coloring agent can be appropriately selected according to the purpose and the like.
  • the colorants may be used singly or in combination of two or more.
  • the curable resin composition contains a colorant
  • its content is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass, and 0 More preferably, it is 0.01% by mass to 1% by mass.
  • the curable resin composition according to the first aspect may contain a flame retardant.
  • the flame retardant is not particularly limited, and conventionally known ones can be used. Flame retardants include organic or inorganic compounds containing halogen atoms, antimony atoms, nitrogen atoms or phosphorus atoms, metal hydroxides, and the like. A flame retardant may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the curable resin composition according to the first aspect contains a flame retardant
  • its content is not particularly limited as long as it is sufficient to obtain the desired flame retardant effect.
  • the content of the flame retardant is preferably 1 part by mass to 300 parts by mass, more preferably 2 parts by mass to 150 parts by mass with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. .
  • the curable resin composition according to the first aspect may contain an ion exchanger.
  • an ion exchanger When the curable resin composition is used as a sealing material for a semiconductor package, it preferably contains an ion exchanger from the viewpoint of improving the moisture resistance and high-temperature storage characteristics of the electronic component device including the element to be sealed.
  • the ion exchanger is not particularly limited, and conventionally known ones can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth.
  • the ion exchangers may be used singly or in combination of two or more.
  • the ion exchanger includes hydrotalcite represented by the following general formula (A).
  • the curable resin composition according to the first aspect contains an ion exchanger
  • its content is not particularly limited as long as it is sufficient to trap ions such as halogen ions.
  • the content of the ion exchanger is preferably 0.1 to 30 parts by mass, more preferably 1 to 5 parts by mass, with respect to 100 parts by mass of the epoxy resin contained in the curable resin composition. is more preferred.
  • the curable resin composition according to the first aspect may contain resins other than epoxy resins.
  • the type of resin other than the epoxy resin is not particularly limited, and can be selected from those commonly used as components of curable resin compositions. Resins other than epoxy resins may be used singly or in combination of two or more.
  • Resins other than epoxy resins include thiol resins, urea resins, melamine resins, urethane resins, silicone resins, maleimide resins, Saturated polyester resin and the like can be mentioned.
  • the curable resin composition according to the first aspect may contain a curing agent other than the phenolic curing agent.
  • the type of curing agent other than the phenol-based curing agent is not particularly limited, and can be selected from those commonly used as components of curable resin compositions. Curing agents other than phenol-based curing agents may be used alone or in combination of two or more.
  • Curing agents other than phenolic curing agents include amine curing agents, acid anhydride curing agents, poly Mercaptan-based curing agents, polyaminoamide-based curing agents, isocyanate-based curing agents, blocked isocyanate-based curing agents, and the like are included.
  • the active hydrogen equivalent of the amine-based curing agent is not particularly limited. From the viewpoint of the balance of various properties such as reflow resistance, moldability, and electrical reliability, it is preferably 10 g/eq to 1000 g/eq, more preferably 30 g/eq to 500 g/eq.
  • the active hydrogen equivalent of the amine curing agent is a value calculated based on the amine value measured according to JIS K 7237:1995.
  • the content of the curing agent other than the phenolic curing agent with respect to the total mass of the curable resin composition is not particularly limited. It is preferably from 5% by mass to 35% by mass, more preferably from 5% by mass to 30% by mass.
  • the method for producing the curable resin composition is not particularly limited.
  • a general method there can be mentioned a method of thoroughly mixing components in predetermined amounts with a mixer or the like, melt-kneading the mixture with a mixing roll, an extruder or the like, cooling, and pulverizing. More specifically, for example, predetermined amounts of the components described above are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, or the like preheated to 70° C. to 140° C., cooled, and pulverized. can be mentioned.
  • the curable resin composition is preferably solid at 25°C.
  • the shape of the curable resin composition is not particularly limited, and examples thereof include powder, granules, tablets, and the like.
  • the curable resin composition is in the form of a tablet, it is preferable from the standpoint of handleability that the dimensions and mass are such that they meet the molding conditions of the package.
  • ⁇ Curable resin composition according to the second aspect is obtained by performing dynamic viscoelasticity measurement on the resin cured product of the curable resin composition.
  • the sum of the tan ⁇ values at each temperature of 70°C, 80°C and 90°C is over 0.600.
  • the curable resin composition according to the second aspect has excellent reflow resistance.
  • the vertical axis is tan ⁇ and the horizontal axis is the temperature from 30 ° C. to 260 ° C., 70 ° C., 80 ° C. and 90 ° C.
  • the curable resin composition according to the second aspect in which the total value of tan ⁇ at each temperature of ° C. exceeds 0.600, the internal stress of the cured resin that occurs during reflow tends to be relaxed. It is in.
  • the adhesiveness between the cured resin of the curable resin composition and the supporting member is improved, so that it is presumed to have excellent reflow resistance.
  • the curable resin composition of the present disclosure even after heating and humidifying under the conditions of 85 ° C. temperature, 85% relative humidity, and 168 hours (corresponding to MSL level 1), it exhibits excellent reflow resistance. is amazing.
  • the sum of tan ⁇ values at each temperature of 70°C, 80°C and 90°C is preferably more than 0.700.
  • the upper limit of the sum of tan ⁇ values at temperatures of 70° C., 80° C. and 90° C. is not particularly limited, but can be, for example, 2.0 or less.
  • the temperature at which tan ⁇ becomes maximum is preferably less than 120°C, more preferably less than 110°C.
  • the lower limit of the temperature at which tan ⁇ is maximized is not particularly limited, it can be, for example, 50° C. or higher.
  • the maximum value of tan ⁇ is preferably over 0.400, more preferably over 0.410.
  • the upper limit of the maximum value of tan ⁇ is not particularly limited, it can be, for example, 1.0 or less.
  • the sum of tan ⁇ values at each temperature of 20°C, 230°C, 240°C and 250°C is preferably more than 0.400.
  • the upper limit of the sum of tan ⁇ values at temperatures of 20° C., 230° C., 240° C. and 250° C. is not particularly limited, but can be, for example, 2.0 or less.
  • the value of tan ⁇ at at least any temperature of -10 ° C. at which tan ⁇ becomes maximum is 60 It is preferably greater than, more preferably greater than 63, and even more preferably greater than 65.
  • the storage viscoelasticity at 260 ° C. obtained by performing dynamic viscoelasticity measurement on the resin cured product of the curable resin composition is preferably 450 MPa or less, and is 435 MPa or less. is more preferably 420 MPa or less.
  • the lower limit of the storage modulus is not particularly limited, it can be, for example, 150 MPa or more.
  • the thermal expansion coefficient (CTE1) below the glass transition temperature of the resin cured product of the curable resin composition according to the second aspect obtained by thermomechanical analysis is 15 ppm / ° C. or less from the viewpoint of followability to the support member. is preferred, 13 ppm/°C or less is more preferred, and 10 ppm/°C or less is even more preferred.
  • the lower limit of the coefficient of thermal expansion is not particularly limited, it can be set to 3 ppm/°C, for example.
  • the coefficient of thermal expansion (CTE2) above the glass transition temperature is preferably 10 ppm/° C. to 45 ppm/° C., more preferably 12 ppm/° C. to 40 ppm/° C., more preferably 15 ppm/° C. to 38 ppm/° C. °C is more preferred.
  • the curable resin composition according to the second aspect contains the epoxy resin and the phenolic curing agent in such a manner that the equivalent ratio of the phenolic hydroxyl group of the phenolic curing agent to the epoxy group of the epoxy resin is 0.5. It is preferably contained at 5 or more and less than 1.0.
  • curable resin composition Applications of the curable resin composition according to the first aspect and the curable resin composition according to the second aspect are not particularly limited, and can be used in various mounting techniques, for example, as sealing materials for electronic component devices.
  • the curable resin composition is used for resin moldings for various modules, resin moldings for motors, vehicle-mounted resin moldings, sealing materials for protective materials for electronic circuits, etc.
  • the resin composition has good fluidity and curability. can be used in a variety of applications where it is desirable to have
  • An electronic component device of the present disclosure includes an element and a resin cured product of the curable resin composition according to the first aspect or the curable resin composition according to the second aspect for sealing the element.
  • the electronic component device can have a support member on which the element is mounted.
  • supporting members include lead frames, pre-wired tape carriers, wiring boards, glass, silicon wafers, organic substrates, and the like.
  • a lead frame is preferable from the viewpoint of adhesiveness to the resin cured product of the curable resin composition.
  • the lead frame may or may not have a roughened surface, but from the viewpoint of manufacturing cost, a non-roughened lead frame is preferable, and from the viewpoint of adhesiveness, a roughened lead frame is preferred. Planarized leadframes are preferred.
  • the roughening method is not particularly limited, and includes alkali treatment, silane coupling treatment, sand mat treatment, plasma treatment, corona discharge treatment and the like.
  • the lead frame can have a plated layer containing at least one of Au, Pd and Ni on at least part of the surface. Further, the plated layer may be a single layer or multiple layers.
  • the multi-layer plating layer a plating layer having a three-layer configuration in which a Ni plating layer, a Pd plating layer, and an Au plating layer are laminated from the lead frame side, or the like can be used.
  • the three-layer lead frame include a lead frame called PPF (Pre Plating Lead Frame), which is a copper lead frame plated with Ni--Pd--Au.
  • the thickness of the plating layer is not particularly limited, and is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • elements included in electronic component devices include active elements such as silicon chips, transistors, diodes, and thyristors, and passive elements such as capacitors, resistors, and coils.
  • Specific configurations of the electronic component device include, but are not limited to, the following configurations.
  • TCP Tape Carrier Package having a structure in which an element connected to a tape carrier using bumps is sealed with a curable resin composition
  • a COB (Chip On Board) module having a structure in which an element connected to wiring formed on a support member by wire bonding, flip chip bonding, soldering, or the like is sealed with
  • a curable resin composition is formed.
  • BGA Bit Grid Array
  • CSP Chip Size Package
  • MCP Multi Chip Package
  • SiP System in a Package
  • the method of sealing the element using the curable resin composition is not particularly limited, and known methods can be applied.
  • a sealing method for example, low-pressure transfer molding is generally used, but injection molding, compression molding, cast molding, or the like may also be used.
  • Examples 1 to 7 and Comparative Examples 1 to 3 After pre-mixing (dry blending) the materials of the formulation shown in Table 1, they are kneaded for about 15 minutes with a biaxial roll (roll surface temperature: about 80 ° C.), cooled, and pulverized to obtain a powdery curable resin composition. manufactured.
  • Epoxy resin A copolymer type epoxy resin having the following structural units, epoxy equivalent of 250 g/eq, melt viscosity at 150° C. of 0.7 dPa s, Mn of 350 to 600
  • Epoxy resin B biphenyl type epoxy resin, epoxy equivalent 196 g / eq, softening point 106 ° C., manufactured by Mitsubishi Chemical Corporation, trade name "YX-4000H", Mn350 ⁇ Epoxy resin C: biphenyl aralkyl type epoxy resin, epoxy equivalent 284 g / eq
  • Phenol-based curing agent A aralkyl-type phenolic resin, hydroxyl equivalent of 106 g/eq ⁇ Phenolic curing agent B: triphenylmethane type phenol resin, hydroxyl equivalent 95 g / eq - Phenol-based curing agent C: aralkyl-type phenolic resin, hydroxyl equivalent 203 g/eq - Phenol-based curing agent D: melamine-modified phenolic resin, hydroxyl equivalent 120 g/eq, softening point: 90°C Phenolic curing agent E: triazine-type phenolic resin, 2-[4-[(2-hydroxy-3-(2'-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2, 4-dimethylphenyl)-1,3,5-triazine, BASF, trade name "Tinuvin (registered trademark) 405" - Phenolic curing
  • Coupling agent A 3-aminopropyltrimethoxysilane ⁇
  • Coupling agent B 3-glycidoxypropyltrimethoxysilane ⁇
  • Coupling agent C linear polysiloxane, melting point: -70 ° C., epoxy equivalent 120 g / eq ⁇ 150g/eq
  • Coupling agent D tetrasulfide ditriethoxysilane
  • ⁇ Stress relaxation agent A Epoxy-modified silicone resin
  • ⁇ Stress relaxation agent B Indene-containing copolymer
  • ⁇ Stress relaxation agent C Phenyl group-containing silicone resin
  • ⁇ Inorganic filler A silica filler with an average particle size of 19.4 ⁇ m
  • ⁇ Inorganic filler B silica filler with an average particle size of 0.6 ⁇ m
  • ⁇ Inorganic filler C silica filler with an average particle size of 50 nm or less
  • ⁇ Inorganic filler D Metal hydroxide containing magnesium and zinc with an average particle size of 1.2 ⁇ m
  • the resin cured product was a cured product having a rectangular shape with a short side of 5.1 mm, a long side of 20 mm and a thickness of 2 mm. Then, the cured resin was allowed to stand for 168 hours under conditions of a temperature of 85° C. and a relative humidity of 85%. The mass (g) of the cured resin material after standing was measured, and the rate of increase (%) from the mass (g) of the cured resin material before standing was determined. The results are summarized in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、(1)tanδが最大となる温度が、120℃未満であり、(2)tanδの最大値が、0.400超であり、且つ(3)220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計が、0.400超である、又は70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.600超である、硬化性樹脂組成物。

Description

硬化性樹脂組成物及び電子部品装置
 本開示は、硬化性樹脂組成物及び電子部品装置に関する。
 近年、半導体素子の高密度実装化が進んでいる。これに伴い、樹脂封止型半導体装置は従来のピン挿入型のパッケージから面実装型のパッケージが主流になっている。面実装型のIC(Integrated Circuit)、LSI(Large Scale Integration)等は、実装密度を高くし、実装高さを低くするために薄型且つ小型のパッケージになっている。そのため、素子のパッケージに対する占有面積が大きくなり、パッケージの厚さは非常に薄くなってきている。
 さらに、これらのパッケージはピン挿入型パッケージとは実装方法が異なっている。すなわち、ピン挿入型パッケージはピンを配線板に挿入した後、配線板の裏面からはんだ付けを行うため、パッケージが直接高温に曝されることはなかった。
 しかし、面実装型ICは配線板表面に仮止めを行い、はんだバス、リフロー装置等で処理されるため、直接はんだ付け温度(リフロー温度)にパッケージが曝される。この結果、パッケージが吸湿している場合、リフローの際に吸湿水分が気化して、発生した蒸気圧が剥離応力として働き、素子、リードフレーム等の支持部材と封止材との間における剥離が発生し、パッケージクラックの発生、電気的特性不良等の原因となる。そのため、支持部材との接着性に優れ、ひいては、はんだ耐熱性(耐リフロー性)に優れる封止材料の開発が望まれている。
 封止材料として、エポキシ樹脂及びフェノール系硬化剤を含有する硬化性樹脂組成物が知られている。
 特許文献1において提案される硬化性樹脂組成物の耐リフロー性には、さらなる改善の余地があった。
 本開示は上記状況に鑑みてなされたものであり、その解決しようとする課題は、優れた耐リフロー性を有する、硬化性樹脂組成物及びこの硬化性樹脂組成物により封止される素子を備える電子部品装置を提供しようとするものである。
 上記課題を達成するための具体的手段は以下の通りである。
<1> 硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、(1)tanδが最大となる温度が、120℃未満であり、(2)tanδの最大値が、0.400超であり、且つ(3)220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計が、0.400超である、硬化性樹脂組成物。
<2> 硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.600超である、硬化性樹脂組成物。
<3> 上記チャートにおけるtanδの最大値を100としたとき、tanδが最大となる温度-10℃の少なくともいずれかの温度におけるtanδの値が60超である、上記<1>又は<2>に記載の硬化性樹脂組成物。
<4> 硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより求められる260℃における貯蔵粘弾性が、450MPa以下である、上記<1>~<3>のいずれか1つに記載の硬化性樹脂組成物。
<5> エポキシ樹脂と、フェノール系硬化剤とを、上記エポキシ樹脂のエポキシ基に対する上記フェノール系硬化剤のフェノール性水酸基の当量比0.5以上、1.0未満で、含有する、上記<1>~<4>のいずれか1つに記載の硬化性樹脂組成物。
<6> 素子と、上記素子を封止する上記<1>~<5>のいずれか1つに記載の硬化性樹脂組成物の樹脂硬化物とを備える、電子部品装置。
<7> 上記素子を一方の面に搭載する支持部材をさらに備える、上記<6>に記載の電子部品装置。
 本開示によれば、優れた耐リフロー性を有する、硬化性樹脂組成物及びこの硬化性樹脂組成物により封止される素子を備える電子部品装置を提供することができる。
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明表した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、合成例に示されている値に置き換えてもよい。
 本開示において各成分は該当する化合物を複数種含有してもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含有してもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「積層」との語は、層を積み重ねることを表し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示の基(原子団)の表記において、置換及び非置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。
 本開示において構造単位数は、単一の分子については整数値を表すが、複数種の分子の集合体としては平均値である有理数を表す。
 本開示において、炭素数とは、ある基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は当該基の骨格を形成する炭素原子の数を表し、該基が置換基を有する場合は当該基の骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
 本開示において、硬化性樹脂組成物の樹脂硬化物に対する動的粘弾性測定は、動的粘弾性測定装置(例えば、PerkinElmer社製、DMA8000)を用いて実施することができる。例えば、短辺5mm×長辺50mm×厚さ2mmの長方形形状の樹脂硬化物に対して、試験モード:3点曲げモード、測定温度:25℃~330℃、昇温速度:10℃/分、試験周波数:1Hzの条件で動的粘弾性測定を実施し、得られたチャート(縦軸:tanδ、横軸:温度)から貯蔵粘弾性の値、tanδの最大値、tanδが最大値となる温度等を特定することができる。
 なお、樹脂硬化物の作製は、トランスファ成形機により、金型温度175℃、成形圧力8.3MPa、硬化時間120秒の条件で硬化性樹脂組成物を成形し、次いで、175℃5時間の後硬化を実施することにより行う。
 本開示において、硬化性樹脂組成物の樹脂硬化物の熱膨張係数(CTE:Coefficient of Thermal Expansion)の測定は、例えば、φ4mm×20mmの樹脂硬化物に対して、熱機械分析装置を用いて行う。なお、樹脂硬化物の作製については、上記した通りである。
 測定条件は、荷重15g、測定温度-50℃~220℃、昇温速度5℃/分とする。
 熱機械分析装置としては、セイコーインスツルメンツ株式会社製TMA/SS6100を用いることができる。
 本開示において、重量平均分子量(Mw)及び数平均分子量(Mn)は、下記測定条件において、下記GPC測定装置を使用して測定し、標準ポリスチレンの検量線を使用して換算した値である。また、検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」、東ソー株式会社製)を用いた。
 但し、分子量が小さいためにGPCでは正確なMw又はMnを測定できない化合物については、化合物の化学構造から求められる分子量を、その化合物のMw又はMnとして採用する。
(GPC測定装置)
・GPC装置 :高速GPC装置「HCL-8320GPC」、検出器は示差屈折計又はUV、東ソー株式会社製
・カラム   :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)、東ソー株式会社製
(測定条件)
・溶媒    :テトラヒドロフラン(THF)
・測定温度  :40℃
・流量    :0.35mL/分
・試料濃度  :10mg/THF5mL
・注入量   :20μL
[硬化性樹脂組成物]
<第1の態様に係る硬化性樹脂組成物>
 第1の態様に係る硬化性樹脂組成物は、硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、(1)tanδが最大となる温度(いわゆるガラス転移温度)が、120℃未満であり、(2)tanδの最大値が、0.400超であり、且つ(3)220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計が、0.400超である。
 第1の態様に係る硬化性樹脂組成物は、優れた耐リフロー性を有する。
 第1の態様に係る硬化性樹脂組成物により上記効果が奏される理由は明らかではないが以下のように推察される。
 硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、(1)tanδが最大となる温度(いわゆるガラス転移温度)が、120℃未満であり、(2)tanδの最大値が、0.400超であり、且つ(3)220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計が、0.400超である、第1の態様に係る硬化性樹脂組成物によれば、リフローの際に生じる樹脂硬化物の内部応力が緩和される傾向にある。その結果、硬化性樹脂組成物の樹脂硬化物と支持部材との接着性が向上するため、優れた耐リフロー性を有すると推察される。
 耐リフロー性を評価するための試験として、JEDEC(Joint Electron Device Engineer Council)規格であるMSL(Moisture Sensitive Level)試験が知られる。
 本開示の硬化性樹脂組成物によれば、温度85℃、相対湿度85%、168時間の条件(MSLレベル1に相当)による加熱加湿後であっても、優れた耐リフロー性を示し、これは驚くべきものである。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点からは、tanδが最大となる温度は、110℃未満であることが好ましい。tanδが最大となる温度の下限値は特に限定されるものではないが、例えば、50℃以上とすることができる。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、tanδの最大値は、0.410超であることが好ましい。tanδの最大値の上限値は特に限定されるものではないが、例えば、1.0以下とすることができる。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計の上限値は特に限定されるものではないが、例えば、2.0以下とすることができる。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、tanδの最大値を100としたとき、tanδが最大となる温度-10℃の少なくともいずれかの温度におけるtanδの値が60超であることが好ましく、63超であることがより好ましく、65超であることがさらに好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.600超であることが好ましく、0.700超であることがより好ましい。70℃、80℃及び90℃の各温度におけるtanδの値の合計の上限値は特に限定されるものではないが、例えば、2.0以下とすることができる。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより求められる260℃における貯蔵粘弾性は、450MPa以下であることが好ましく、435MPa以下であることがより好ましく、420MPa以下であることがさらに好ましい。貯蔵弾性率の下限値は、特に限定されるものではないが、例えば、150MPa以上とすることができる。
 熱機械分析測定により求められる第1の態様に係る硬化性樹脂組成物の樹脂硬化物のガラス転移温度未満の熱膨張係数(CTE1)は、支持部材への追従性の観点から、15ppm/℃以下が好ましく、13ppm/℃以下がより好ましく、10ppm/℃以下がさらに好ましい。熱膨張係数の下限値は、特に限定されるものではないが、例えば、3ppm/℃とすることができる。
 支持部材との接着性の観点から、ガラス転移温度以上の熱膨張係数(CTE2)は、10ppm/℃~45ppm/℃が好ましく、12ppm/℃~40ppm/℃がより好ましく、15ppm/℃~38ppm/℃がさらに好ましい。
 耐リフロー性の観点から、第1の態様に係る硬化性樹脂組成物は、エポキシ樹脂と、フェノール系硬化剤とを、エポキシ樹脂のエポキシ基に対するフェノール系硬化剤のフェノール性水酸基の当量比0.5以上、1.0未満で含有することが好ましい。
 本開示において、エポキシ樹脂のエポキシ基に対するフェノール系硬化剤のフェノール性水酸基(活性水素)の当量比(フェノール系硬化剤の活性水素のモル数/エポキシ樹脂のエポキシ基のモル数)は、硬化性樹脂組成物のH-NMRを測定し、エポキシ基のプロトンと、フェノール性水酸基のプロトンとの積分比から求めることができる。なお、硬化性樹脂組成物のH-NMRは、以下の条件で測定する。
(測定条件)
・測定装置:Bruker社製、AVANCE3 HD 400 Nanobay
・測定溶媒:DMSO-d6(0.7ml)
・測定温度:25℃
H共鳴周波数:400MHz
・測定モード:NPROTON
・積算回数:16回
・緩和時間:1秒
 以下、第1の態様に係る硬化性樹脂組成物が含有しうる各種材料について説明する。
(エポキシ樹脂)
 第1の態様に係る硬化性樹脂組成物は、エポキシ樹脂を含有することができる。エポキシ樹脂は1分子中に2個以上のエポキシ基を有するものであればその種類は特に制限されない。なお、本開示において、上記直鎖状ポリシロキサン化合物は、エポキシ樹脂には含めないものとする。
 エポキシ樹脂の具体例を以下に記載するが、これらに限定されるものではない。
 具体的には、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したものであるノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等);上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂をエポキシ化したものであるトリフェニルメタン型エポキシ樹脂;上記フェノール化合物及びナフトール化合物と、アルデヒド化合物とを酸性触媒下で共縮合させて得られるノボラック樹脂をエポキシ化したものである共重合型エポキシ樹脂;ビスフェノールA、ビスフェノールF等のジグリシジルエーテルであるジフェニルメタン型エポキシ樹脂;アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂;スチルベン系フェノール化合物のジグリシジルエーテルであるスチルベン型エポキシ樹脂;ビスフェノールS等のジグリシジルエーテルである硫黄原子含有型エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテルであるエポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等の多価カルボン酸化合物のグリシジルエステルであるグリシジルエステル型エポキシ樹脂;アニリン、ジアミノジフェニルメタン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したものであるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノール化合物の共縮合樹脂をエポキシ化したものであるジシクロペンタジエン型エポキシ樹脂;分子内のオレフィン結合をエポキシ化したものであるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレン変性フェノール樹脂のグリシジルエーテルであるパラキシリレン変性エポキシ樹脂;メタキシリレン変性フェノール樹脂のグリシジルエーテルであるメタキシリレン変性エポキシ樹脂;テルペン変性フェノール樹脂のグリシジルエーテルであるテルペン変性エポキシ樹脂;ジシクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるジシクロペンタジエン変性エポキシ樹脂;シクロペンタジエン変性フェノール樹脂のグリシジルエーテルであるシクロペンタジエン変性エポキシ樹脂;多環芳香環変性フェノール樹脂のグリシジルエーテルである多環芳香環変性エポキシ樹脂;ナフタレン環含有フェノール樹脂のグリシジルエーテルであるナフタレン型エポキシ樹脂;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂をエポキシ化したものであるアラルキル型エポキシ樹脂;などが挙げられる。さらにはアミノフェノールのグリシジルエーテルであるアミノフェノール型エポキシ樹脂等もエポキシ樹脂として挙げられる。これらのエポキシ樹脂は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 ビフェニル型エポキシ樹脂は、ビフェニル骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(II)で表されるエポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(II)中、Rは水素原子、炭素数1~12のアルキル基又は炭素数4~18の芳香族基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の整数を示す。
 スチルベン型エポキシ樹脂は、スチルベン骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(III)で表されるエポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(III)中、R及びR10は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の整数を示す。
 ジフェニルメタン型エポキシ樹脂は、ジフェニルメタン骨格を有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(IV)で表されるエポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(IV)中、R11及びR12は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の整数を示す。
 硫黄原子含有型エポキシ樹脂は、硫黄原子を含有するエポキシ樹脂であれば特に限定されない。例えば、下記一般式(V)で表されるエポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(V)中、R13は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。nは平均値であり、0~10の整数を示す。
 ノボラック型エポキシ樹脂は、ノボラック型フェノール樹脂をエポキシ化して得られるエポキシ樹脂であれば、特に限定されない。
Figure JPOXMLDOC01-appb-C000005
 式(VI)中、R14は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R15は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の整数を示す。
 ジシクロペンタジエン型エポキシ樹脂は、ジシクロペンタジエン骨格を有する化合物を原料としてエポキシ化して得られるエポキシ樹脂であれば特に限定されない。
Figure JPOXMLDOC01-appb-C000006
 式(VII)中、R16は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の整数を示す。
 トリフェニルメタン型エポキシ樹脂は、トリフェニルメタン骨格を持つ化合物を原料とするエポキシ樹脂であれば特に制限されない。
Figure JPOXMLDOC01-appb-C000007
 式(VIII)中、R17及びR18は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数、kは各々独立に0~4の整数を示す。nは平均値であり、0~10の整数を示す。
 ナフトール化合物及びフェノール化合物と、アルデヒド化合物とから得られるノボラック樹脂をエポキシ化した共重合型エポキシ樹脂は、ナフトール骨格を有する化合物及びフェノール骨格を有する化合物を原料とするエポキシ樹脂であれば、特に限定されない。
 例えば、ナフトール骨格を有する化合物及びフェノール骨格を有する化合物を用いたノボラック型フェノール樹脂をグリシジルエーテル化して得られるエポキシ樹脂が好ましく、下記一般式(IX)で表されるエポキシ樹脂がより好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(IX)中、R19~R21は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数、jは各々独立に0~2の整数、kは各々独立に0~4の整数を示す。l及びmはそれぞれ平均値であり、0~10の数であり、(l+m)は0~10の数を示す。式(IX)で表されるエポキシ樹脂の末端は、下記式(IX-1)又は(IX-2)のいずれか一方である。式(IX-1)及び(IX-2)において、R19~R21、i、j及びkの定義は式(IX)におけるR19~R21、i、j及びkの定義と同じである。nは1(メチレン基を介して結合する場合)又は0(メチレン基を介して結合しない場合)である。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(IX)で表されるエポキシ樹脂としては、l個の構造単位及びm個の構造単位をランダムに有するランダム共重合体、交互に有する交互共重合体、規則的に有する共重合体、ブロック状に有するブロック共重合体等が挙げられる。これらのいずれか1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 アラルキル型エポキシ樹脂は、フェノール、クレゾール等のフェノール化合物及びナフトール、ジメチルナフトール等のナフトール化合物からなる群より選ばれる少なくとも1種と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル又はこれらの誘導体と、から合成されるフェノール樹脂を原料とするエポキシ樹脂であれば、特に限定されない。例えば、フェノール、クレゾール等のフェノール化合物及びナフトール、ジメチルナフトール等のナフトール化合物からなる群より選ばれる少なくとも1種と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル又はこれらの誘導体とから合成されるフェノール樹脂をグリシジルエーテル化して得られるエポキシ樹脂が好ましく、下記一般式(X)及び(XI)で表されるエポキシ樹脂がより好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(X)及び(XI)において、R38は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R37、R39~R41は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数であり、jは各々独立に0~2の整数であり、kは各々独立に0~4の整数であり、lは各々独立に0~4の整数を示す。nは平均値であり、各々独立に0~10の整数である。
 上記一般式(II)~(XI)中のR~R21及びR37~R41について、「それぞれ全てが同一でも異なっていてもよい」とは、例えば、式(II)中の8~88個のRの全てが同一でも異なっていてもよいことを意味している。他のR~R21及びR37~R41についても、式中に含まれるそれぞれの個数について全てが同一でも異なっていてもよいことを意味している。また、R~R21及びR37~R41はそれぞれが同一でも異なっていてもよい。例えば、RとR10の全てについて同一でも異なっていてもよい。
 また、一般式(III)~(XI)における炭素数1~18の1価の有機基はアルキル基又はアリール基であることが好ましい。
 上記一般式(II)~(XI)中のnは、平均値であり、各々独立に0~10の範囲であることが好ましい。nが10以下であると樹脂成分の溶融粘度が高くなりすぎず、硬化性樹脂組成物の溶融成形の際において、粘度が低下し、充填不良、ボンディングワイヤ(素子とリードを接続する金線)の変形等の発生が抑制される傾向にある。nは0~4の範囲に設定されることがより好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、エポキシ樹脂は、アルキルフェノール由来の構造単位及びアルコキシナフタレン由来の構造単位を有する共重合型エポキシ樹脂(以下、特定共重合型エポキシ樹脂という)を含むことが好ましい。アルキルフェノール由来の構造単位としては、下記構造単位(a)が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記構造単位中、Rは、各々独立に、炭素数1~18の1価のアルキル基を示し、好ましくは、炭素数1~6の1価のアルキル基を示す。Xは、1~3の整数を示す。
 アルコキシナフタレン由来の構造単位としては、以下の構造単位(b)が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記構造単位中、Rは、各々独立に炭素数1~18の1価のアルコキシ基を示し、好ましくは、炭素数1~6の1価のアルコキシ基を示す。yは、1~6の整数を示す。
 なお、上記構造単位(b)における2つの結合部位は、ナフタレン環の同一環に存在してもよく、ナフタレン環の2つの環それぞれに存在してもよい。
 特定共重合型エポキシ樹脂は、下記構造単位(c)を有することができる。
 下記構造単位では、nは、1~10の整数であり、2~8の整数であることが好ましい。
 なお、上記構造単位(c)におけるナフタレン環が有する2つの結合部位は、ナフタレン環の同一環に存在してもよく、ナフタレン環の2つの環それぞれに存在してもよい。
Figure JPOXMLDOC01-appb-C000013
 上記構造単位(c)を満たす構造単位としては、例えば、下記構造単位(d)が挙げられる。
Figure JPOXMLDOC01-appb-C000014

 
 
 上記エポキシ樹脂の中でも、本開示の硬化性樹脂組成物の耐リフロー性の観点からは、エポキシ樹脂は、特定共重合型エポキシ樹脂を含むことが好ましい。
 また、耐リフロー性の観点から、エポキシ樹脂は、ビフェニル型エポキシ樹脂を含むことが好ましい。
 エポキシ樹脂のエポキシ当量は特に制限されない。成形性、耐熱性及び電気的信頼性等の各種特性バランスの観点からは、エポキシ樹脂のエポキシ当量は、40g/eq~1000g/eqが好ましく、45g/eq~500g/eqがより好ましく、50g/eq~350g/eqがさらに好ましい。
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。
 エポキシ樹脂は、25℃において、固体であってもよく、液体であってもよい。25℃においてエポキシ樹脂が固体である場合、エポキシ樹脂の軟化点又は融点は特に制限されない。
 成形性と耐熱性とのバランスの観点からは、エポキシ樹脂の軟化点又は融点は、40℃~180℃であることが好ましい。また、硬化性樹脂組成物の製造の際の取扱い性の観点からは、エポキシ樹脂の軟化点又は融点は、50℃~130℃であることが好ましい。
 本開示において、軟化点は、JIS K 7234:1986の環球法により測定された値をいう。
 本開示において、融点は、JIS K 0064:1992の目視による方法に則って測定された値をいう。
 耐リフロー性、成形性、耐熱性等の観点から、エポキシ樹脂のMwは、550~1050であることが好ましく、650~950であることがより好ましい。
 また、耐リフロー性、成形性、耐熱性等の観点から、エポキシ樹脂のMnは、250~800であることが好ましく、350~600であることがより好ましい。
 耐リフロー性、強度、流動性、成形性等の観点から、硬化性樹脂組成物の全質量に対するエポキシ樹脂の含有率は、0.5質量%~60質量%であることが好ましく、2質量%~50質量%であることがより好ましく、3質量%~45質量%であることがさらに好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、エポキシ樹脂が特定共重合型エポキシ樹脂を含む場合、エポキシ樹脂の全質量に対する特定共重合型エポキシ樹脂の含有率は、50質量%~90質量%であることが好ましく、55質量%~80質量%であることがより好ましく、60質量%~75質量%であることがさらに好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、エポキシ樹脂がビフェニル型エポキシ樹脂を含む場合、エポキシ樹脂の全質量に対するビフェニル型エポキシ樹脂の含有率は、5質量%~40質量%であることが好ましく、7質量%~35質量%であることがより好ましく、10質量%~30質量%であることがさらに好ましい。
(フェノール系硬化剤)
 第1の態様に係る硬化性樹脂組成物は、フェノール系硬化剤を含有することができる。フェノール系硬化剤の種類は特に制限されず、硬化性樹脂組成物の成分として一般に使用されているものから選択できる。フェノール系硬化剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 フェノール系硬化剤としては、例えば、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂及び多価フェノール化合物が挙げられる。
 フェノール系硬化剤の具体例を以下に記載するが、これらに限定されるものではない。
 フェノール系硬化剤としては、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール等の多価フェノール化合物;フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール化合物及びα-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のナフトール化合物からなる群より選ばれる少なくとも一種のフェノール性化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;上記フェノール性化合物と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル等とから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレン及び/又はメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;上記フェノール性化合物と、ジシクロペンタジエンとから共重合により合成されるジシクロペンタジエン型フェノール樹脂及びジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;上記フェノール性化合物と、ベンズアルデヒド、サリチルアルデヒド等の芳香族アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるトリフェニルメタン型フェノール樹脂;2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン型フェノール樹脂;これら2種以上を共重合して得たフェノール樹脂などが挙げられる。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、フェノール系硬化剤は、アラルキル型フェノール樹脂及びノボラック型フェノール樹脂からなる群より選択される1つ以上のフェノール系硬化剤を含むことが好ましく、共に含むことがより好ましい。以下に、フェノール系硬化剤についてより具体的に説明するがこれらに限定されるものではない。
 アラルキル型フェノール樹脂は、特に限定されるものではなく、フェノール化合物及びナフトール化合物からなる群より選ばれる少なくとも1種と、ジメトキシパラキシレン、ビス(メトキシメチル)ビフェニル又はこれらの誘導体とから合成されるフェノール樹脂が挙げられる。
 アラルキル型フェノール樹脂の具体例としては、下記一般式(XII)~(XIV)で表されるフェノール樹脂が挙げられる。
 式(XII)~(XIV)において、R23は水素原子又は炭素数1~18の1価の有機基を表し、それぞれ全てが同一でも異なっていてもよい。R22、R24、R25及びR28は炭素数1~18の1価の有機基を表し、それぞれ全てが同一でも異なっていてもよい。R26及びR27は水酸基又は炭素数1~18の1価の有機基を表し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数であり、jは各々独立に0~2の整数であり、kは各々独立に0~4の整数であり、pは各々独立に0~4の整数である。nは平均値であり、各々独立に0~10の整数である。
 上記一般式におけるR22等ついて記載した「それぞれ全てが同一でも異なっていてもよい」は、例えば、一般式(XII)中のi個のR22の全てが同一でも相互に異なっていてもよいことを意味している。また、R22~R37は、それぞれが同一でも異なっていてもよい。例えば、R22及びR23の全てについて同一でも異なっていてもよい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、アラルキル型フェノール樹脂は、一般式(XIII)で表されるフェノール樹脂が好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、また、一般式(XIII)中、i及びkは共に0であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 アラルキル型フェノール樹脂はその他のフェノール樹脂との共重合型フェノール樹脂であってもよい。共重合型フェノール樹脂としては、トリフェニルメタン型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂、サリチルアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂、ノボラック型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂等が挙げられる。
 ジシクロペンタジエン型フェノール樹脂は、ジシクロペンタジエン骨格を有する化合物を原料として得られるフェノール樹脂であれば特に限定されない。例えば、下記一般式(XV)で表されるフェノール樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(XV)中、R29は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の整数を示す。
 トリフェニルメタン型フェノール樹脂は、芳香族アルデヒド化合物を原料として得られるフェノール樹脂であれば特に限定されない。例えば、下記一般式(XVI)で表されるフェノール樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(XVI)中、R30及びR31は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、kはそれぞれ独立に0~4の整数である。nは平均値であり、0~10の整数である。
 トリフェニルメタン型フェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂は、ベンズアルデヒド骨格を有する化合物を原料として得られるフェノール樹脂とアラルキル型フェノール樹脂との共重合型フェノール樹脂であれば特に限定されない。例えば、下記一般式(XVII)で表されるフェノール樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(XVII)中、R32~R34は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iはそれぞれ独立に0~3の整数であり、kはそれぞれ独立に0~4の整数であり、qはそれぞれ独立に0~5の整数である。l及びmはそれぞれ平均値であり、それぞれ独立に0~11の整数である。ただし、lとmの合計は1~11の整数である。
 ノボラック型フェノール樹脂は、フェノール化合物及びナフトール化合物からなる群より選ばれる少なくとも1種のフェノール性化合物と、アルデヒド化合物とを酸性触媒下で縮合又は共縮合させて得られるフェノール樹脂であれば特に限定されない。例えば、下記一般式(XVIII)で表されるフェノール樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(XVIII)中、R35は水素原子又は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。R36は炭素数1~18の1価の有機基を示し、それぞれ全てが同一でも異なっていてもよい。iは各々独立に0~3の整数を示す。nは平均値であり、0~10の整数を示す。
 上記一般式(XII)~(XVIII)におけるR22~R36について記載した「それぞれ全てが同一でも異なっていてもよい」は、例えば、式(XII)中のi個のR22の全てが同一でも相互に異なっていてもよいことを意味している。他のR23~R36についても、式中に含まれるそれぞれの個数について全てが同一でも相互に異なっていてもよいことを意味している。また、R22~R36は、それぞれが同一でも異なっていてもよい。例えば、R22及びR23の全てについて同一でも異なっていてもよく、R30及びR31の全てについて同一でも異なっていてもよい。
 上記一般式(XII)~(XVIII)におけるnは、0~10の整数であることが好ましい。10以下であると樹脂成分の溶融粘度が高くなりすぎず、硬化性樹脂の溶融成形の際において、粘度も低くなり、充填不良、ボンディングワイヤ(素子とリードを接続する金線)の変形等が発生し難くなる。1分子中の平均nは0~4の範囲に設定されることが好ましい。
 フェノール系硬化剤の水酸基当量は、特に制限されない。耐リフロー性、成形性、電気的信頼性等の各種特性バランスの観点からは、10g/eq~1000g/eqであることが好ましく、30g/eq~500g/eqであることがより好ましい。
 水酸基当量は、JIS K 0070:1992に準拠して測定された水酸基価に基づいて算出された値をいう。
 25℃においてフェノール系硬化剤が固体である場合、その軟化点又は融点は、特に制限されない。成形性と耐熱性の観点からは、フェノール系硬化剤の軟化点又は融点は、40℃~180℃であることが好ましい。また、硬化性樹脂組成物の製造の際の取扱い性の観点からは、フェノール系硬化剤の軟化点又は融点は、50℃~130℃であることが好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、硬化性樹脂組成物の全質量に対するフェノール系硬化剤の含有率は、0.5質量%~40質量%であることが好ましく、1質量%~30質量%であることがより好ましく、2質量%~20質量%であることがさらに好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、フェノール系硬化剤がアラルキル型フェノール樹脂を含む場合、フェノール系硬化剤の全質量に対するアラルキ
ル型フェノール樹脂の含有率は、60質量%~95質量%であることが好ましく、65質量%~90質量%であることがより好ましい。
 第1の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、フェノール系硬化剤がノボラック型フェノール樹脂を含む場合、フェノール系硬化剤の全質量に対するノボラック型フェノール樹脂の含有率は、5質量%~40質量%であることが好ましく、10量%~30質量%であることがより好ましい。
(各種添加材)
 第1の態様に係る硬化性樹脂組成物は、上述の成分に加えて、硬化促進剤、無機充填剤、カップリング剤、応力緩和剤、離型剤、着色剤、難燃剤、イオン交換体、エポキシ樹脂以外の樹脂、フェノール系硬化剤以外の硬化剤等の各種添加材を含有してもよい。硬化性樹脂組成物は、以下に例表する添加材以外にも必要に応じて当技術分野で周知の各種添加材を含有してもよい。
(硬化促進剤)
 第1の態様に係る硬化性樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤の種類は特に制限されず、エポキシ樹脂の種類、硬化性樹脂組成物の所望の特性等に応じて選択できる。
 硬化性及び流動性の観点からは、硬化促進剤はホスホニウム化合物を含むことが好ましい。ホスホニウム化合物として具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等の三級ホスフィンと、無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;三級ホスフィンと4-ブロモフェノール、3-ブロモフェノール、2-ブロモフェノール、4-クロロフェノール、3-クロロフェノール、2-クロロフェノール、4-ヨウ化フェノール、3-ヨウ化フェノール、2-ヨウ化フェノール、4-ブロモ-2-メチルフェノール、4-ブロモ-3-メチルフェノール、4-ブロモ-2,6-ジメチルフェノール、4-ブロモ-3,5-ジメチルフェノール、4-ブロモ-2,6-ジ-tert-ブチルフェノール、4-クロロ-1-ナフトール、1-ブロモ-2-ナフトール、6-ブロモ-2-ナフトール、4-ブロモ-4’-ヒドロキシビフェニル等のハロゲン化フェノール化合物を反応させた後に、脱ハロゲン化水素の工程を経て得られる、分子内分極を有する化合物;テトラフェニルホスホニウム等のテトラ置換ホスホニウムとテトラ-p-トリルボレート等のテトラ置換ボレートとの塩;テトラ置換ホスホニウムとフェノール化合物からプロトンが脱離したアニオンとの塩、テトラ置換ホスホニウムとカルボン酸化合物からプロトンが脱離したアニオンとの塩、などが挙げられる。
 上記ホスホニウム化合物は、下記一般式(I-1)で表される化合物(以下、特定硬化促進剤とも称する)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(I-1)中、R~Rは、各々独立して、炭素数1~18の炭化水素基であり、R~Rのうち2以上が互いに結合して環状構造を形成してもよく、R~Rは、各々独立して、水素原子、水酸基又は炭素数1~18の有機基であり、R~Rのうち2以上が互いに結合して環状構造を形成してもよい。
 一般式(I-1)のR~Rとして記載した「炭素数1~18の炭化水素基」は、炭素数が1~18である脂肪族炭化水素基及び炭素数が6~18である芳香族炭化水素基を含む。
 流動性の観点からは、炭素数1~18の脂肪族炭化水素基は炭素数1~8であることが好ましく、2~6であることがより好ましく、4~6であることがさらに好ましい。
 炭素数1~18の脂肪族炭化水素基は、炭素数1~18の直鎖又は分岐状の脂肪族炭化水素基であっても、炭素数3~18の脂環式炭化水素基であってもよい。製造しやすさの観点からは、直鎖又は分岐状の脂肪族炭化水素基であることが好ましい。
 炭素数1~18の直鎖又は分岐状の脂肪族炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基、アリル基、ビニル基などが挙げられる。直鎖又は分岐状の脂肪族炭化水素基は、置換基を有していても有していなくてもよい。置換基としては、メトキシ基、エトキシ基、n-ブトキシ基、t-ブトキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基、水酸基、アミノ基、ハロゲン原子などが挙げられる。直鎖又は分岐状の脂肪族炭化水素基は2以上の置換基を有してもよく、その場合の置換基は同じでも異なっていてもよい。直鎖又は分岐状の脂肪族炭化水素基が置換基を有する場合、脂肪族炭化水素基と置換基に含まれる炭素数の合計が1~18であることが好ましい。硬化性の観点からは無置換のアルキル基が好ましく、炭素数1~8の無置換のアルキル基がより好ましく、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基及びn-オクチル基がさらに好ましい。
 炭素数3~18の脂環式炭化水素基として具体的には、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、シクロペンテニル基、シクロヘキセニル基等のシクロアルケニル基などが挙げられる。脂環式炭化水素基は、置換基を有していても有していなくてもよい。置換基としては、メチル基、エチル基、n-ブチル基、t-ブチル基等のアルキル基、メトキシ基、エトキシ基、n-ブトキシ基、t-ブトキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基、水酸基、アミノ基、ハロゲン原子などが挙げられる。脂環式炭化水素基は2以上の置換基を有してもよく、その場合の置換基は同じでも異なっていてもよい。脂環式炭化水素基が置換基を有する場合、脂環式炭化水素基と置換基に含まれる炭素数の合計が3~18であることが好ましい。脂環式炭化水素基が置換基を有する場合、置換基の位置は特に限定されない。硬化性の観点からは無置換のシクロアルキル基が好ましく、炭素数4~10の無置換のシクロアルキル基がより好ましく、シクロヘキシル基、シクロペンチル基及びシクロヘプチル基がさらに好ましい。
 炭素数が6~18である芳香族炭化水素基は炭素数6~14であることが好ましく、6~10であることがより好ましい。芳香族炭化水素基は置換基を有していても、有していなくてもよい。置換基としては、メチル基、エチル基、n-ブチル基、t-ブチル基等のアルキル基、メトキシ基、エトキシ基、n-ブトキシ基、t-ブトキシ基等のアルコキシ基、フェニル基、ナフチル基等のアリール基、水酸基、アミノ基、ハロゲン原子などが挙げられる。芳香族炭化水素基は2以上の置換基を有してもよく、その場合の置換基は同じでも異なっていてもよい。芳香族炭化水素基が置換基を有する場合、芳香族炭化水素基と置換基に含まれる炭素数の合計が6~18であることが好ましい。芳香族炭化水素基が置換基を有する場合、置換基の位置は特に限定されない。
 炭素数が6~18である芳香族炭化水素基として具体的には、フェニル基、1-ナフチル基、2-ナフチル基、トリル基、ジメチルフェニル基、エチルフェニル基、ブチルフェニル基、t-ブチルフェニル基、メトキシフェニル基、エトキシフェニル基、n-ブトキシフェニル基、t-ブトキシフェニル基等が挙げられる。これらの芳香族炭化水素基における置換基の位置はオルト位、メタ位及びパラ位のうちいずれでもよい。流動性の観点からは、無置換で炭素数が6~12又は置換基を含めた炭素数が6~12のアリール基が好ましく、無置換で炭素数が6~10又は置換基を含めた炭素数6~10のアリール基がより好ましく、フェニル基、p-トリル基及びp-メトキシフェニル基がさらに好ましい。
 一般式(I-1)のR~Rとして記載した用語「R~Rのうち2以上が互いに結合して環状構造を形成してもよい」とは、R~Rのうち2個又は3個が結合し、全体としてひとつの2価又は3価の炭化水素基となる場合を意味する。この場合のR~Rの例としては、リン原子と結合して環状構造を形成し得るエチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン等のアルキレン基、エチレニレン、プロピレニレン、ブチレニレン基等のアルケニレン基、メチレンフェニレン基等のアラルキレン基、フェニレン、ナフチレン、アントラセニレン等のアリーレン基などの、リン原子と結合して環状構造を形成しうる置換基が挙げられる。これらの置換基はさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、水酸基、ハロゲン原子等で置換されていてもよい。
 上記一般式(I-1)のR~Rとして記載した「炭素数1~18の有機基」は、炭素数1~18であり、かつ置換されても置換されていなくてもよい脂肪族炭化水素基、芳香族炭化水素基、脂肪族炭化水素オキシ基、芳香族炭化水素オキシ基、アシル基、炭化水素オキシカルボニル基、及びアシルオキシ基を含むことを意味する。
 上記脂肪族炭化水素基及び芳香族炭化水素基の例としては、R~Rで表される脂肪族炭化水素基及び芳香族炭化水素基の例として上述したものが挙げられる。
 上記脂肪族炭化水素オキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、t-ブトキシ基、シクロプロピルオキシ基、シクロヘキシルオキシ基、シクロペンチルオキシ基、アリルオキシ基、ビニルオキシ基等の上述の脂肪族炭化水素基に酸素原子が結合した構造のオキシ基、これらの脂肪族炭化水素オキシ基がさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、水酸基、ハロゲン原子等で置換されたものなどが挙げられる。
 上記芳香族炭化水素オキシ基としては、フェノキシ基、メチルフェノキシ基、エチルフェノキシ基、メトキシフェノキシ基、ブトキシフェノキシ基、フェノキシフェノキシ基等の上述の芳香族炭化水素基に酸素原子が結合した構造のオキシ基、これらの芳香族炭化水素オキシ基がさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン原子等で置換されたものなどが挙げられる。
 上記アシル基としては、ホルミル基、アセチル基、エチルカルボニル基、ブチリル基、シクロヘキシルカルボニル基、アリルカルボニル等の脂肪族炭化水素カルボニル基、フェニルカルボニル基、メチルフェニルカルボニル基等の芳香族炭化水素カルボニル基等、これらの脂肪族炭化水素カルボニル基又は芳香族炭化水素カルボニル基がさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン原子等で置換されたものなどが挙げられる。
 上記炭化水素オキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基、アリルオキシカルボニル基、シクロヘキシルオキシカルボニル基等の脂肪族炭化水素オキシカルボニル基、フェノキシカルボニル基、メチルフェノキシカルボニル基等の芳香族炭化水素オキシカルボニル基、これらの脂肪族炭化水素カルボニルオキシ基又は芳香族炭化水素カルボニルオキシ基がさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン原子等で置換されたものなどが挙げられる。
 上記アシルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、アリルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等の脂肪族炭化水素カルボニルオキシ基、フェニルカルボニルオキシ基、メチルフェニルカルボニルオキシ基等の芳香族炭化水素カルボニルオキシ基、これらの脂肪族炭化水素カルボニルオキシ基又は芳香族炭化水素カルボニルオキシ基がさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、ハロゲン原子等で置換されたものなどが挙げられる。
 上記一般式(I-1)のR~Rとして記載した用語「R~Rのうち2以上が互いに結合して環状構造を形成してもよい」とは、2個~4個のR~Rが結合し、全体としてひとつの2価~4価の有機基を形成してもよいことを意味する。この場合のR~Rとしては、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン等のアルキレン基、エチレニレン、プロピレニレン、ブチレニレン等のアルケニレン基、メチレンフェニレン等のアラルキレン基、フェニレン、ナフチレン、アントラセニレン等のアリーレン基などの環状構造を形成しうる置換基、これらのオキシ基又はジオキシ基などが挙げられる。これらの置換基はさらにアルキル基、アルコキシ基、アリール基、アリールオキシ基、アミノ基、水酸基、ハロゲン原子等で置換されていてもよい。
 上記一般式(I-1)のR~Rとしては、特に限定されるものではない。例えば、各々独立に、水素原子、水酸基、置換又は非置換のアルキル基、置換又は非置換のアリール基、置換又は非置換のアルコキシ基、又は置換又は非置換のアリールオキシ基から選択されることが好ましい。中でも原料の入手しやすさの観点からは、水素原子、水酸基、非置換若しくはアルキル基及びアルコキシ基からなる群より選ばれる少なくとも1つで置換されたアリール基、又は鎖状若しくは環状のアルキル基が好ましい。非置換又はアルキル基及びアルコキシ基からなる群より選ばれる少なくとも1つで置換されたアリール基としては、フェニル基、p-トリル基、m-トリル基、o-トリル基、p-メトキシフェニル基等が挙げられる。鎖状又は環状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、t-ブチル基、オクチル基、シクロヘキシル基等が挙げられる。硬化性の観点からは、R~Rはすべて水素原子である場合か、又はR~Rの少なくとも一つが水酸基であり、残りがすべて水素原子である場合が好ましい。
 一般式(I-1)においてより好ましくは、R~Rのうち2個以上が炭素数1~18のアルキル基又は炭素数3~18のシクロアルキル基であり、R~Rがすべて水素原子であるか、少なくとも一つが水酸基であり残りがすべて水素原子である。さらに好ましくは、R~Rのすべてが炭素数1~18のアルキル基又は炭素数3~18のシクロアルキル基であり、R~Rがすべて水素原子であるか、少なくとも一つが水酸基であり残りがすべて水素原子である。
 速硬化性の観点からは、特定硬化促進剤は、下記一般式(I-2)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(I-2)中、R~Rは、各々独立して、炭素数1~18の炭化水素基であり、R~Rのうち2以上が互いに結合して環状構造を形成してもよく、R~Rは、各々独立して、水素原子又は炭素数1~18の有機基であり、R~Rのうち2以上が互いに結合して環状構造を形成してもよい。
 一般式(I-2)におけるR~Rの具体例はそれぞれ一般式(I-1)におけるR~Rの具体例と同様であり、好ましい範囲も同様である。
 特定硬化促進剤は、例えば、第三ホスフィン化合物とキノン化合物との付加物として得ることができる。
 第三ホスフィン化合物として具体的には、トリフェニルホスフィン、トリブチルホスフィン、ジブチルフェニルホスフィン、ブチルジフェニルホスフィン、エチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-n-プロピルフェニル)ホスフィン、トリス(4-n-ブチルフェニル)ホスフィン、トリス(イソプロピルフェニル)ホスフィン、トリス(t-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン等が挙げられる。成形性の観点からは、トリフェニルホスフィン及びトリブチルホスフィンが好ましい。
 キノン化合物として具体的には、1,2-ベンゾキノン、1,4-ベンゾキノン、ジフェノキノン、1,4-ナフトキノン、アントラキノン等が挙げられる。耐湿性と保存安定性の観点からは、1,4-ベンゾキノンが好ましい。
 特定硬化促進剤の具体例としては、トリフェニルホスフィンと1,4-ベンゾキノンの付加反応物、トリ-n-ブチルホスフィンと1,4-ベンゾキノンの付加反応物、トリシクロヘキシルホスフィンと1,4-ベンゾキノンの付加反応物、ジシクロヘキシルフェニルホスフィンと1,4-ベンゾキノンの付加反応物、シクロヘキシルジフェニルホスフィンと1,4-ベンゾキノンの付加反応物、トリイソブチルホスフィンと1,4-ベンゾキノンの付加反応物、トリシクロペンチルホスフィンと1,4-ベンゾキノンの付加反応物等が挙げられる。
 熱硬化性樹脂組成物は、ホスホニウム化合物以外の硬化促進剤を含有してもよい。
 ホスホニウム化合物以外の硬化促進剤として具体的には、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)等のジアザビシクロアルケン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等の環状アミジン化合物;前記環状アミジン化合物の誘導体;前記環状アミジン化合物又はその誘導体のフェノールノボラック塩;これらの化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタンなどの、π結合をもつ化合物を付加してなる分子内分極を有する化合物;DBUのテトラフェニルボレート塩、DBNのテトラフェニルボレート塩、2-エチル-4-メチルイミダゾールのテトラフェニルボレート塩、N-メチルモルホリンのテトラフェニルボレート塩等の環状アミジニウム化合物;ピリジン、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン化合物;前記三級アミン化合物の誘導体;酢酸テトラ-n-ブチルアンモニウム、リン酸テトラ-n-ブチルアンモニウム、酢酸テトラエチルアンモニウム、安息香酸テトラ-n-ヘキシルアンモニウム、水酸化テトラプロピルアンモニウム等のアンモニウム塩化合物などが挙げられる。
 熱硬化性樹脂組成物が硬化促進剤として特定硬化促進剤を含有する場合、特定硬化促進剤の含有率は、硬化促進剤全体の30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
 熱硬化性樹脂組成物が硬化促進剤を含有する場合、その量は、樹脂成分100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~15質量部であることがより好ましい。硬化促進剤の量が樹脂成分100質量部に対して0.1質量部以上であると、短時間で良好に硬化する傾向にある。硬化促進剤の量が樹脂成分100質量部に対して30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。
(無機充填材)
 第1の態様に係る硬化性樹脂組成物は、無機充填材を含有してもよい。硬化性樹脂組成物が無機充填材を含有することで、硬化性樹脂組成物の吸湿性が低減し、硬化状態での強度が向上する傾向にある。硬化性樹脂組成物を半導体パッケージの封止材として用いる場合には、無機充填材を含有することが好ましい。
 無機充填材の種類は、特に制限されない。具体的には、球状シリカ、結晶シリカ等のシリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカなどの無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。中でも、線膨張係数低減の観点からは球状シリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種類を単独で用いても2種類以上を組み合わせて用いてもよい。無機充填材の状態としては粉未、粉末を球形化したビーズ、繊維等が挙げられる。
 無機充填材は1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 無機充填材の形状は特に制限されず、粉状、球状、繊維状等の形状が挙げられる。硬化性樹脂組成物の成形の際の流動性及び金型摩耗性の点からは、球状であることが好ましい。
 無機充填材の平均粒子径は、特に制限されない。硬化性樹脂組成物の粘度、充填性等のバランスの観点からは、無機充填材の体積平均粒子径は、0.1μm~50μmであることが好ましく、0.3μm~30μmであることがより好ましく、0.5μm~25μmであることがさらに好ましい。
 無機充填材の平均粒子径は、レーザー回折散乱法粒度分布測定装置により、体積平均粒子径(D50)として測定することができる。
 体積平均粒子径は、公知の方法によって測定することができる。一例として、有機溶剤、硝酸、王水等を用いて、硬化性樹脂組成物又は樹脂硬化物から無機充填材を抽出し、超音波分散機等で充分に分散して分散液を調製する。この分散液を用いて、レーザー回折散乱法粒度分布測定装置により測定される体積基準の粒度分布から、無機充填材の体積平均粒子径を測定することができる。あるいは、樹脂硬化物を透明なエポキシ樹脂等に埋め込み、研磨して得られる断面を走査型電子顕微鏡にて観察して得られる体積基準の粒度分布から、無機充填材の体積平均粒子径を測定することができる。さらには、FIB装置(集束イオンビームSEM)等を用いて、樹脂硬化物の二次元の断面観察を連続的に行い、三次元構造解析を行なうことで測定することもできる。
 硬化性樹脂組成物が無機充填材を含有する場合、その含有率は特に制限されない。硬化性樹脂組成物全体の30質量%~90質量%であることが好ましく、35質量%~80質量%であることがより好ましく、40質量%~70質量%であることがさらに好ましい。
 無機充填材の含有率が硬化性樹脂組成物全体の30質量%以上であると、樹脂硬化物の熱膨張係数、熱伝導率、弾性率等の特性がより向上する傾向にある。
 無機充填材の含有率が硬化性樹脂組成物全体の90質量%以下であると、硬化性樹脂組成物の粘度の上昇が抑制され、流動性がより向上して成形性がより良好になる傾向にある。
(カップリング剤)
 第1の態様に係る硬化性樹脂組成物は、カップリング剤を含有してもよい。カップリング剤の種類は特に制限されず、公知のカップリング剤を使用することができる。カップリング剤としては、シランカップリング剤、チタンカップリング剤等が挙げられる。カップリング剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 シランカップリング剤は、上記直鎖状ポリシロキサン化合物以外の化合物であれば特に限定されるものではなく、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、オクテニルトリメトキシシラン、グリシドキシオクチルトリメトキシシラン、メタクリロキシオクチルトリメトキシシラン等が挙げられる。
 チタンカップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。
 上記したカップリング剤の中でも、耐リフロー性の観点から、第1の態様に係る硬化性樹脂組成物は、3-アミノプロピルトリメトキシシラン及び3-グリシドキシプロピルトリメトキシシランの少なくとも一方を含有することが好ましい。
 硬化性樹脂組成物がカップリング剤を含有する場合、カップリング剤の含有量は、エポキシ樹脂と無機充填材との界面の接着性の観点から、硬化性樹脂組成物に含有される無機充填材100質量部に対して、0.001質量部~10質量部であることが好ましく、0.01質量部~8質量部であることがより好ましく、0.05質量部~5質量部であることがさらに好ましい。
(応力緩和剤)
 第1の態様に係る硬化性樹脂組成物は、シリコーンオイル、シリコーンゴム粒子等の応力緩和剤を含有してもよい。硬化性樹脂組成物が応力緩和剤を含有することにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の応力緩和剤(可とう剤)が挙げられる。具体的には、応力緩和剤としては、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、天然ゴム(NR)、アクリロニトリル-ブタジエン共重合体(NBR)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル-スチレン-ブタジエン共重合体(MBS)、メタクリル酸メチル-シリコーン共重合体、メタクリル酸メチル-アクリル酸ブチル共重合体等のコア-シェル構造を有するゴム粒子などが挙げられる。応力緩和剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。中でも、シリコーン系応力緩和剤が好ましい。シリコーン系応力緩和剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられる。
 硬化性樹脂組成物が応力緩和剤を含有する場合、その含有量は、硬化性樹脂組成物に含
有されるエポキシ樹脂100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~5質量部であることがより好ましい。
(離型剤)
 第1の態様に係る硬化性樹脂組成物は、成形の際に金型を使用する場合、金型との離型性の観点から、離型剤を含有してもよい。離型剤は特に制限されず、従来公知のものを用いることができる。離型剤としては、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。離型剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 第1の態様に係る硬化性樹脂組成物が離型剤を含有する場合、離型剤の含有量は、硬化性樹脂組成物に含有されるエポキシ樹脂100質量部に対して0.01質量部~15質量部であることが好ましく、0.1質量部~10質量部であることがより好ましい。離型剤の量が樹脂成分100質量部に対して0.01質量部以上であると、離型性が充分に得られる傾向にある。15質量部以下であると、より良好な離型性が得られる傾向にある。
(着色剤)
 第1の態様に係る硬化性樹脂組成物は、着色剤を含有してもよい。着色剤としてはカーボンブラック、有機染料、有機顔料、酸化チタン、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。着色剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 硬化性樹脂組成物が着色剤を含有する場合、その含有率は、0.01質量%~5質量%であることが好ましく、0.05質量%~3質量%であることがより好ましく、0.01質量%~1質量%であることがさらに好ましい。
(難燃剤)
 第1の態様に係る硬化性樹脂組成物は、難燃剤を含有してもよい。難燃剤は特に制限されず、従来公知のものを用いることができる。難燃剤としては、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む有機又は無機の化合物、金属水酸化物等が挙げられる。難燃剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 第1の態様に係る硬化性樹脂組成物が難燃剤を含有する場合、その含有量は、所望の難燃効果を得るのに充分な量であれば特に制限されない。難燃剤の含有量は、硬化性樹脂組成物に含有されるエポキシ樹脂100質量部に対して1質量部~300質量部であることが好ましく、2質量部~150質量部であることがより好ましい。
(イオン交換体)
 第1の態様に係る硬化性樹脂組成物は、イオン交換体を含有してもよい。硬化性樹脂組成物を半導体パッケージの封止材として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含有することが好ましい。
 イオン交換体は特に制限されず、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びに、マグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。イオン交換体は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。具体的には、イオン交換体としては、下記一般式(A)で表されるハイドロタルサイトが挙げられる。
 Mg(1-X)Al(OH)(COX/2・mHO ……(A)
 (0<X≦0.5、mは正の数)
 第1の態様に係る硬化性樹脂組成物がイオン交換体を含有する場合、その含有量は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。イオン交換体の含有量は、硬化性樹脂組成物に含有されるエポキシ樹脂100質量部に対して0.1質量部~30質量部であることが好ましく、1質量部~5質量部であることがより好ましい。
(エポキシ樹脂以外の樹脂)
 第1の態様に係る硬化性樹脂組成物は、エポキシ樹脂以外の樹脂を含有してもよい。エポキシ樹脂以外の樹脂の種類は特に制限されず、硬化性樹脂組成物の成分として一般に使用されているものから選択できる。エポキシ樹脂以外の樹脂は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 エポキシ樹脂以外の樹脂の具体例を以下に記載するが、これらに限定されるものではない
 エポキシ樹脂以外の樹脂としては、チオール樹脂、ユリア樹脂、メラミン樹脂、ウレタン樹脂、シリコーン樹脂、マレイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。
(フェノール系硬化剤以外の硬化剤)
 第1の態様に係る硬化性樹脂組成物は、フェノール系硬化剤以外の硬化剤を含有してもよい。フェノール系硬化剤以外の硬化剤の種類は特に制限されず、硬化性樹脂組成物の成分として一般に使用されているものから選択できる。フェノール系硬化剤以外の硬化剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 フェノール系硬化剤以外の硬化剤の具体例を以下に記載するが、これらに限定されるものではない
 フェノール系硬化剤以外の硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ポリメルカプタン系硬化剤、ポリアミノアミド系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。
 フェノール系硬化剤以外の硬化剤がアミン系硬化剤を含む場合、アミン系硬化剤の活性水素当量は、特に制限されない。耐リフロー性、成形性、電気的信頼性等の各種特性バランスの観点からは、10g/eq~1000g/eqであることが好ましく、30g/eq~500g/eqであることがより好ましい。
 アミン系硬化剤の活性水素当量は、JIS K 7237:1995に準拠して測定されたアミン価に基づいて算出された値をいう。
 硬化性樹脂組成物が、フェノール系硬化剤以外の硬化剤を含有する場合、硬化性樹脂組成物の全質量に対するフェノール系硬化剤以外の硬化剤の含有率は特に限定されるものではなく、2質量%~35質量%であることが好ましく、5質量%~30質量%であることがより好ましい。
[第1の態様に係る硬化性樹脂組成物の製造方法]
 硬化性樹脂組成物の製造方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に攪拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
 硬化性樹脂組成物は、25℃において固体であることが好ましい。25℃において硬化性樹脂組成物が固体である場合、硬化性樹脂組成物の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。硬化性樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。
<第2の態様に係る硬化性樹脂組成物>
 第2の態様に係る硬化性樹脂組成物は、硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.600超である。
 第2の態様に係る硬化性樹脂組成物は、優れた耐リフロー性を有する。
 第2の態様に係る硬化性樹脂組成物により上記効果が奏される理由は明らかではないが以下のように推察される。
 硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.600超である、第2の態様に係る硬化性樹脂組成物によれば、リフローの際に生じる樹脂硬化物の内部応力が緩和される傾向にある。その結果、硬化性樹脂組成物の樹脂硬化物と支持部材との接着性が向上するため、優れた耐リフロー性を有すると推察される。
 本開示の硬化性樹脂組成物によれば、温度85℃、相対湿度85%、168時間の条件(MSLレベル1に相当)による加熱加湿後であっても、優れた耐リフロー性を示し、これは驚くべきものである。
 第2の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.700超であることが好ましい。70℃、80℃及び90℃の各温度におけるtanδの値の合計の上限値は特に限定されるものではないが、例えば、2.0以下とすることができる。
 第2の態様に係る硬化性樹脂組成物の耐リフロー性の観点からは、tanδが最大となる温度は、120℃未満であることが好ましく、110℃未満であることがより好ましい。tanδが最大となる温度の下限値は特に限定されるものではないが、例えば、50℃以上とすることができる。
 第2の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、tanδの最大値は、0.400超であることが好ましく、0.410超であることがより好ましい。tanδの最大値の上限値は特に限定されるものではないが、例えば、1.0以下とすることができる。
 第2の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、20℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計が0.400超であることが好ましい。20℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計の上限値は特に限定されるものではないが、例えば、2.0以下とすることができる。
 第2の態様に係る硬化性樹脂組成物の耐リフロー性の観点から、tanδの最大値を100としたとき、tanδが最大となる温度-10℃の少なくともいずれかの温度におけるtanδの値が60超であることが好ましく、63超であることがより好ましく、65超であることがさらに好ましい。
 耐リフロー性の観点から、硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより求められる260℃における貯蔵粘弾性は、450MPa以下であることが好ましく、435MPa以下であることがより好ましく、420MPa以下であることがさらに好ましい。貯蔵弾性率の下限値は、特に限定されるものではないが、例えば、150MPa以上とすることができる。
 熱機械分析測定により求められる第2の態様に係る硬化性樹脂組成物の樹脂硬化物のガラス転移温度未満の熱膨張係数(CTE1)は、支持部材への追従性の観点から、15ppm/℃以下が好ましく、13ppm/℃以下がより好ましく、10ppm/℃以下がさらに好ましい。熱膨張係数の下限値は、特に限定されるものではないが、例えば、3ppm/℃とすることができる。
 支持部材との接着性の観点から、ガラス転移温度以上の熱膨張係数(CTE2)は、10ppm/℃~45ppm/℃が好ましく、12ppm/℃~40ppm/℃がより好ましく、15ppm/℃~38ppm/℃がさらに好ましい。
 耐リフロー性の観点から、第2の態様に係る硬化性樹脂組成物は、エポキシ樹脂と、フェノール系硬化剤とを、エポキシ樹脂のエポキシ基に対するフェノール系硬化剤のフェノール性水酸基の当量比0.5以上、1.0未満で含有することが好ましい。
 第2の態様に係る硬化性樹脂組成物が含有しうる各種材料及び第2の態様に係る硬化性樹脂組成物の製造方法については、第1の態様に係る硬化性樹脂組成物と同様であるため、ここでは記載を省略する。
[硬化性樹脂組成物の用途]
 第1の態様に係る硬化性樹脂組成物及び第2の態様に係る硬化性樹脂組成物の用途は特に制限されず、例えば電子部品装置の封止材として種々の実装技術に用いることができる。また、硬化性樹脂組成物は、各種モジュール用樹脂成形体、モーター用樹脂成形体、車載用樹脂成形体、電子回路用保護材用封止材等、樹脂組成物が良好な流動性及び硬化性を有することが望ましい種々の用途に用いることができる。
[電子部品装置]
 本開示の電子部品装置は、素子と、素子を封止する第1の態様に係る硬化性樹脂組成物又は第2の態様に係る硬化性樹脂組成物の樹脂硬化物とを備える。
 電子部品装置は、素子を搭載する支持部材を備えることができる。
 支持部材としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等が挙げられる。上記支持部材の中でも、上記硬化性樹脂組成物の樹脂硬化物との接着性の観点からリードフレームが好ましい。
 リードフレームは、表面が粗面化されていてもよく、粗面化されていなくてもよいが、製造コストの観点からは、非粗面化リードフレームが好ましく、接着性の観点からは、粗面化リードフレームが好ましい。
 粗面化方法は、特に限定されるものではなく、アルカリ処理、シランカップリング処理、サンドマット処理、プラズマ処理、コロナ放電処理等が挙げられる。
 リードフレームは、Au、Pd及びNiの少なくとも1つを含むめっき層を表面の少なくとも一部に備えることができる。
 また、上記めっき層は、単層であっても、多層であってもよい。多層のめっき層としては、リードフレーム側から、Niめっき層、Pdめっき層及びAuめっき層が積層された3層構成のめっき層等が挙げられる。
 上記3層構成のリードフレームとしては、例えば、PPF(Pre Plating Lead Flame)と呼ばれる銅リードフレームにNi-Pd-Auめっきを施したリードフレームが挙げられる。
 めっき層の厚さは特に限定されるものではなく、5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下であることがさらに好ましい。
 電子部品装置が備える素子としては、例えば、シリコンチップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子などが挙げられる。
 電子部品装置の具体的な構成としては、以下の構成が挙げられるが、これらに限定されるものではない。
(1)リードフレーム上に素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング、バンプ等を用いて接続した後、硬化性樹脂組成物を用いて封止した構造を有するDIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead Package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の一般的な樹脂封止型IC;
(2)テープキャリアにバンプを用いて接続した素子を、硬化性樹脂組成物を用いて封止した構造を有するTCP(Tape Carrier Package);
(3)支持部材上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等を用いて接続した素子を、硬化性樹脂組成物を用いて封止した構造を有するCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール等;
(4)裏面に配線板接続用の端子を形成した支持部材の表面に素子を搭載し、バンプ又はワイヤボンディングを用いて素子と支持部材に形成された配線とを接続した後、硬化性樹脂組成物を用いて素子を封止した構造を有するBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)、SiP(System in a Package)等
 硬化性樹脂組成物を用いて素子を封止する方法は特に限定されず、公知の方法を適用することが可能である。封止方法としては、例えば、低圧トランスファ成形が一般的であるが、インジェクション成形、圧縮成形、注型等を用いてもよい。
 以下に、本開示を実施例により具体的に説明するが、本開示はこれらの実施例に限定されるものではない。また、表中の数値は特に断りのない限り「質量部」を意味する。
(実施例1~7及び比較例1~3)
 表1に示す配合の材料を予備混合(ドライブレンド)した後、二軸ロール(ロール表面温度:約80℃)で約15分間混練し、冷却し、粉砕して粉末状の硬化性樹脂組成物を製造した。
 表1中における材料の詳細は以下の通りである。なお、表1におけるエポキシ樹脂のエポキシ基に対するフェノール系硬化剤のフェノール性水酸基の当量比は上記方法により求めた。
・エポキシ樹脂A:下記構造単位を有する共重合型エポキシ樹脂、エポキシ当量250g/eq、150℃での溶融粘度0.7dPa・s、Mn350~600
Figure JPOXMLDOC01-appb-C000022
・エポキシ樹脂B:ビフェニル型エポキシ樹脂、エポキシ当量196g/eq、軟化点106℃、三菱ケミカル株式会社製、商品名「YX-4000H」、Mn350
・エポキシ樹脂C:ビフェニルアラルキル型エポキシ樹脂、エポキシ当量284g/eq
・フェノール系硬化剤A:アラルキル型フェノール樹脂、水酸基当量106g/eq
・フェノール系硬化剤B:トリフェニルメタン型フェノール樹脂、水酸基当量95g/eq
・フェノール系硬化剤C:アラルキル型フェノール樹脂、水酸基当量203g/eq
・フェノール系硬化剤D:メラミン変性フェノール樹脂、水酸基当量120g/eq、軟化点:90℃
・フェノール系硬化剤E:トリアジン型フェノール樹脂、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、BASF社、商品名「Tinuvin(登録商標)405」
・フェノール系硬化剤F:ノボラック型フェノール樹脂、水酸基当量223g/eq
・フェノール系硬化剤G:ノボラック型フェノール樹脂、水酸基当量156g/eq
・硬化促進剤:トリフェニルホスフィンと1,4-ベンゾキノンとの付加反応物
・カップリング剤A:3-アミノプロピルトリメトキシシラン
・カップリング剤B:3-グリシドキシプロピルトリメトキシシラン
・カップリング剤C:直鎖状ポリシロキサン、融点:-70℃、エポキシ当量120g/eq~150g/eq
・カップリング剤D:テトラスルフィドジトリエトキシシラン
・応力緩和剤A:エポキシ変性シリコーンレジン
・応力緩和剤B:インデン含有共重合体
・応力緩和剤C:フェニル基含有シリコーンレジン
・無機充填剤A:平均粒子径19.4μmのシリカフィラー
・無機充填剤B:平均粒子径0.6μmのシリカフィラー
・無機充填剤C:平均粒子径50nm以下のシリカフィラー
・無機充填剤D:平均粒子径1.2μmのマグネシウム及び亜鉛を含む金属水酸化物
<<硬化性樹脂組成物の評価>>
 実施例及び比較例において製造した硬化性樹脂組成物の特性を次の特性試験により評価した。評価結果を表1に示す。
 なお、硬化性樹脂組成物を用いた樹脂硬化物の作製は、明記しない限りトランスファ成形機により、金型温度175℃、成形圧力8.3MPa、硬化時間120秒の条件で成形した後、175℃で5時間の条件で後硬化を行うことにより行った。
<耐リフロー性評価>
 3.2mm×2.2mm×0.37mmのシリコンチップを5.2mm×4.1mmのダイパッドに搭載した28ピンのSO(Small Outline)パッケージ(リードフレーム材質:銅合金、Ni-Pd-Auメッキ処理品)を、硬化性樹脂組成物を用いて成形し、次いで175℃で5時間の条件で後硬化した。
 得られた成形品の外部のクラックなきことを目視で、内部の剥離発生のなきことを超音波探傷装置(株式会社日立製作所製、FS-200)でそれぞれ確認した。成形品を125℃で12時間乾燥後、温度85℃、相対湿度85%の条件で168時間加湿した。
 その後、JEDECの規定に準拠し、温度条件を260℃に設定し、同一温度で3回リフロー処理を行い、パッケージ外部のクラック有無を目視で、パッケージ内部の剥離発生の有無を超音波探傷装置でそれぞれ観察した。試験パッケージ数に対する、クラック及び剥離のいずれかが発生したパッケージ数の割合で耐リフロー性を評価した。評価結果を表1にまとめた。
(評価基準)
A:クラック及び剥離の発生が0%
B:クラック及び剥離の発生が0%超、60%未満
C:クラック及び剥離の発生が60%以上、100%未満
D:クラック及び剥離の発生が100%
<tanδ及び貯蔵弾性率の測定>
 上記条件に基づいて、上記実施例及び比較例において得られた硬化性樹脂組成物の樹脂硬化物を作製した。樹脂硬化物は、短辺5mm、長辺50mm、厚さ2mmの長方形形状を有する樹脂硬化物とした。
 上記樹脂硬化物に対し、試験モード:3点曲げモード、測定温度:25℃~330℃、昇温速度:10℃/分、試験周波数:1Hzの条件で動的粘弾性測定を実施し、得られたチャート(縦軸:tanδ、横軸:温度)から貯蔵粘弾性の値を求め、表1にまとめた。
 また、上記チャートから、(1)tanδが最大となる温度(ガラス転移温度)、(2)ガラス転移温度におけるtanδの値、(3)220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計(表1中では、tanδ合計220℃~250℃と記載)、(4)70℃、80℃及び90℃の各温度におけるtanδの値の合計(表1中では、tanδ合計70℃~90℃と記載)及び(5)ガラス転移温度におけるtanδの値を100としたとき、ガラス転移温度より10度低い温度におけるtanδの値(表1中では、tanδ比と記載)を求め、表1にまとめた。
<熱膨張係数(CTE1)の測定>
 上記条件に基づいて、上記実施例及び比較例において得られた硬化性樹脂組成物の樹脂硬化物を作製した。樹脂硬化物は、φ4mm×20mmの樹脂硬化物とした。
 次いで、JIS K 7197:2012に基づいて熱機械分析法により、樹脂硬化物の歪みを温度に対してプロットした場合の接線の傾きを、10℃~30℃の範囲において求めた。測定結果を表1にまとめた。
 なお、試験荷重は15g、昇温速度は5℃/分として測定した。
 また、線膨張率の測定には、セイコーインスルツメンツ株式会社製のTMA高精度二試料熱分析装置(装置名SS6100)を使用した。
<吸水率の測定>
 上記条件に基づいて、上記実施例及び比較例において得られた硬化性樹脂組成物の樹脂硬化物を作製した。樹脂硬化物は、短辺5.1mm、長辺20mm、厚さ2mmの長方形形状を有する硬化物とした。
 次いで、温度85℃、相対湿度85%の条件下に、上記樹脂硬化物を168時間静置した。
 静置後の樹脂硬化物の質量(g)を測定し、静置前の樹脂硬化物の質量(g)からの増加率(%)を求めた。結果を表1にまとめた。
<流動性評価(スパイラルフロー)>
 EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、実施例及び比較例において得られた硬化性樹脂組成物を金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。測定結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000023

 
 表1にまとめた結果から、実施例において得られた硬化性樹脂組成物は、比較例において得られた硬化性樹脂組成物に比べて、耐リフロー性が優れていることが分かる。
 2021年8月30日に出願された日本国特許出願2021-140407号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (7)

  1.  硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、(1)tanδが最大となる温度が、120℃未満であり、(2)tanδの最大値が、0.400超であり、且つ(3)220℃、230℃、240℃及び250℃の各温度におけるtanδの値の合計が、0.400超である、硬化性樹脂組成物。
  2.  硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより得られる縦軸をtanδ及び横軸を30℃~260℃の温度とするチャートにおいて、70℃、80℃及び90℃の各温度におけるtanδの値の合計が、0.600超である、硬化性樹脂組成物。
  3.  前記チャートにおけるtanδの最大値を100としたとき、tanδが最大となる温度-10℃の少なくともいずれかの温度におけるtanδの値が60超である、請求項1又は請求項2に記載の硬化性樹脂組成物。
  4.  硬化性樹脂組成物の樹脂硬化物に対して動的粘弾性測定を行うことにより求められる260℃における貯蔵粘弾性が、450MPa以下である、請求項1~請求項3のいずれか一項に記載の硬化性樹脂組成物。
  5.  エポキシ樹脂と、フェノール系硬化剤とを、前記エポキシ樹脂のエポキシ基に対する前記フェノール系硬化剤のフェノール性水酸基の当量比0.5以上、1.0未満で、含有する、請求項1~請求項4のいずれか一項に記載の硬化性樹脂組成物。
  6.  素子と、前記素子を封止する請求項1~請求項5のいずれか一項に記載の硬化性樹脂組成物の樹脂硬化物とを備える、電子部品装置。
  7.  前記素子を一方の面に搭載する支持部材をさらに備える、請求項6に記載の電子部品装置。
PCT/JP2022/032271 2021-08-30 2022-08-26 硬化性樹脂組成物及び電子部品装置 WO2023032860A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280057840.4A CN117858924A (zh) 2021-08-30 2022-08-26 硬化性树脂组合物及电子零件装置
JP2023545532A JPWO2023032860A1 (ja) 2021-08-30 2022-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140407 2021-08-30
JP2021140407 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032860A1 true WO2023032860A1 (ja) 2023-03-09

Family

ID=85412723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032271 WO2023032860A1 (ja) 2021-08-30 2022-08-26 硬化性樹脂組成物及び電子部品装置

Country Status (4)

Country Link
JP (1) JPWO2023032860A1 (ja)
CN (1) CN117858924A (ja)
TW (1) TW202313838A (ja)
WO (1) WO2023032860A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200121A (ja) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd 半導体封止用低圧トランスファ成形材料
US20140179834A1 (en) * 2012-12-24 2014-06-26 Seung HAN Epoxy resin composition for encapsulation of semiconductor device and semiconductor device encapsulated using the same
US20140179833A1 (en) * 2012-12-24 2014-06-26 Eun Jung Lee Epoxy resin composition for encapsulation of semiconductor device and semiconductor device encapsulated using the same
WO2019240079A1 (ja) * 2018-06-12 2019-12-19 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2020045380A (ja) * 2018-09-14 2020-03-26 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2020063388A (ja) * 2018-10-18 2020-04-23 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2020063404A (ja) * 2018-10-19 2020-04-23 日立化成株式会社 エポキシ樹脂組成物及び電子部品装置
WO2021075207A1 (ja) * 2019-10-16 2021-04-22 昭和電工マテリアルズ株式会社 エポキシ樹脂組成物、電子部品装置、及び電子部品装置の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200121A (ja) * 1993-01-06 1994-07-19 Nippon Steel Chem Co Ltd 半導体封止用低圧トランスファ成形材料
US20140179834A1 (en) * 2012-12-24 2014-06-26 Seung HAN Epoxy resin composition for encapsulation of semiconductor device and semiconductor device encapsulated using the same
US20140179833A1 (en) * 2012-12-24 2014-06-26 Eun Jung Lee Epoxy resin composition for encapsulation of semiconductor device and semiconductor device encapsulated using the same
WO2019240079A1 (ja) * 2018-06-12 2019-12-19 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2020045380A (ja) * 2018-09-14 2020-03-26 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2020063388A (ja) * 2018-10-18 2020-04-23 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
WO2020080370A1 (ja) * 2018-10-18 2020-04-23 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2020063404A (ja) * 2018-10-19 2020-04-23 日立化成株式会社 エポキシ樹脂組成物及び電子部品装置
WO2021075207A1 (ja) * 2019-10-16 2021-04-22 昭和電工マテリアルズ株式会社 エポキシ樹脂組成物、電子部品装置、及び電子部品装置の製造方法

Also Published As

Publication number Publication date
CN117858924A (zh) 2024-04-09
JPWO2023032860A1 (ja) 2023-03-09
TW202313838A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
JP7302598B2 (ja) 硬化性樹脂組成物及び電子部品装置
JP6435708B2 (ja) モールドアンダーフィル用樹脂組成物及び電子部品装置
JP2024092000A (ja) 硬化性樹脂組成物及び電子部品装置
JP2023068032A (ja) 硬化性樹脂組成物用添加剤、硬化性樹脂組成物及び電子部品装置
TW202120580A (zh) 環氧樹脂組成物、電子零件裝置、及電子零件裝置的製造方法
JP7322368B2 (ja) 硬化性樹脂組成物及び電子部品装置
JP7269579B2 (ja) エポキシ樹脂組成物及び電子部品装置
WO2023120739A1 (ja) エポキシ樹脂組成物及び電子部品装置
JP7119823B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP6705487B2 (ja) モールドアンダーフィル用樹脂組成物及び電子部品装置
WO2023032860A1 (ja) 硬化性樹脂組成物及び電子部品装置
WO2023032861A1 (ja) 硬化性樹脂組成物及び電子部品装置
JP6708242B2 (ja) モールドアンダーフィル用樹脂組成物及び電子部品装置
WO2022186361A1 (ja) 硬化性樹脂組成物及び電子部品装置
JP2023034255A (ja) 樹脂硬化物及び電子部品装置
WO2023032971A1 (ja) 圧縮成形用エポキシ樹脂組成物及び電子部品装置
WO2023120738A1 (ja) 封止材組成物及び電子部品装置
JP2023034256A (ja) 熱硬化性樹脂組成物及び半導体装置
JP2024086364A (ja) 硬化性樹脂組成物及び電子部品装置
JP2024086365A (ja) 硬化性樹脂組成物及び電子部品装置
WO2024128191A1 (ja) 硬化性樹脂組成物及び電子部品装置
JP2024086366A (ja) 硬化性樹脂組成物及び電子部品装置
TW202235510A (zh) 熱硬化樹脂組成物及電子零件裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545532

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280057840.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864444

Country of ref document: EP

Kind code of ref document: A1