WO2023032826A1 - ヒートポンプ空調システム - Google Patents

ヒートポンプ空調システム Download PDF

Info

Publication number
WO2023032826A1
WO2023032826A1 PCT/JP2022/032138 JP2022032138W WO2023032826A1 WO 2023032826 A1 WO2023032826 A1 WO 2023032826A1 JP 2022032138 W JP2022032138 W JP 2022032138W WO 2023032826 A1 WO2023032826 A1 WO 2023032826A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
waste heat
conditioning system
expansion valve
Prior art date
Application number
PCT/JP2022/032138
Other languages
English (en)
French (fr)
Inventor
子良 陰
敬怡 朱
兆良 徐
雲飛 胡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023032826A1 publication Critical patent/WO2023032826A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Definitions

  • This disclosure relates to the automotive air conditioning technology field, specifically heat pump air conditioning systems.
  • the object of this disclosure is to control the on/off of the waste heat recovery function based on the magnitude of the waste heat recovery characteristic value in the system in a plurality of operation modes, and activate the waste heat recovery function. It is an object of the present invention to provide a heat pump air-conditioning system which can ensure that the heating efficiency of the system always exceeds the heating efficiency when the waste heat recovery function is stopped and that the repetition of fluctuations in the system can be prevented.
  • a heat pump air conditioning system as one aspect of this disclosure includes: a compressor; a first heat exchanger; a refrigerant first flow path in which a first expansion valve and a second heat exchanger close to the downstream side thereof are installed; A refrigerant second flow path in which the first solenoid valve is installed; A refrigerant third flow path in which the second solenoid valve is installed; a refrigerant fourth flow path in which a second expansion valve and a third heat exchanger close to the downstream side thereof are installed; a refrigerant fifth flow path in which a third expansion valve and a fourth heat exchanger close to the downstream side thereof are installed; a reservoir tank; A controller is further installed in the heat pump air conditioning system, and the heat pump air conditioning system operates through the controller to control the first expansion valve, the second expansion valve, the first solenoid valve, and the second expansion valve.
  • the controller activates or deactivates the waste heat recovery function that absorbs the amount of heat from the vehicle-mounted heat-generating member through the fourth heat exchanger in the following manner: and comparing the waste heat recovery characteristic value of the heat pump air conditioning system with a preset first threshold value and a second threshold value larger than the first threshold value, and if the waste heat recovery function is in an off state, The waste heat recovery function is activated only when the waste heat recovery characteristic value exceeds the second threshold, and when the waste heat recovery function is in an ON state, the waste heat recovery characteristic value exceeds the first threshold. The waste heat recovery function is stopped only when
  • This disclosure can ensure that after activating the waste heat recovery function, the heating efficiency of the system always exceeds the efficiency when the waste heat recovery function is turned off, and prevents repeated fluctuations of the heat pump air conditioning system. .
  • a heat pump air conditioning system as another aspect of this disclosure includes: In the heat pump air conditioning system, a compressor; a first heat exchanger; a refrigerant first flow path in which a first expansion valve and a second heat exchanger close to the downstream side thereof are installed; A refrigerant second flow path in which the first solenoid valve is installed; A refrigerant third flow path in which the second solenoid valve is installed; a refrigerant fourth flow path in which a second expansion valve and a third heat exchanger close to the downstream side thereof are installed; a refrigerant fifth flow path in which a third expansion valve and a fourth heat exchanger close to the downstream side thereof are installed; a gas-liquid separator; A refrigerant sixth flow path in which a third solenoid valve is installed; a refrigerant seventh flow path connected to the liquid phase of the gas-liquid separator; a refrigerant branch connected to the gas phase of the gas-liquid separator; A controller is further installed in the heat pump air conditioning system, and the heat pump
  • the controller activates or stops the waste heat recovery function that absorbs the amount of heat from the vehicle-mounted heat-generating member through the fourth heat exchanger in the following manner: and comparing the waste heat recovery characteristic value of the heat pump air conditioning system with a preset first threshold value and a second threshold value larger than the first threshold value, and if the waste heat recovery function is in an off state, The waste heat recovery function is activated only when the waste heat recovery characteristic value exceeds the second threshold, and when the waste heat recovery function is in an ON state, the waste heat recovery characteristic value exceeds the first threshold. The waste heat recovery function is stopped only when
  • FIG. 1 is a structural schematic diagram of a heat pump air conditioning system according to an embodiment of this disclosure.
  • FIG. 2 shows the refrigerant flow state when the heat pump air conditioning system of FIG. This is the refrigerant flow state when the heat recovery function is turned on.
  • FIG. 3 is a schematic diagram showing the waste heat recovery control process based on the heat load characteristic value.
  • FIG. 4 is a schematic diagram showing the waste heat recovery control process based on the waste heat amount characteristic value.
  • FIG. 5 shows the refrigerant flow state when the heat pump air conditioning system in FIG. This is the refrigerant flow state when the waste heat recovery function is turned on.
  • FIG. 6 shows the refrigerant flow state when the heat pump air conditioning system in FIG.
  • FIG. 7 shows the refrigerant flow state when the heat pump air conditioning system in FIG. ) is the refrigerant flow state when the waste heat recovery function is turned on.
  • FIG. 8 is a structural schematic diagram of a heat pump air conditioning system according to another embodiment of this disclosure.
  • FIG. 9 shows the refrigerant flow state when the heat pump air conditioning system in FIG. This is the refrigerant flow state when the heat recovery function is turned on.
  • FIG. 10 shows the refrigerant flow state when the heat pump air conditioning system of FIG. This is the refrigerant flow state when the waste heat recovery function is turned on.
  • FIG. 11 shows the refrigerant flow state when the heat pump air conditioning system in FIG.
  • FIG. 12 shows the refrigerant flow state when the heat pump air conditioning system in FIG. ) is the refrigerant flow state when the waste heat recovery function is turned on.
  • FIG. 13 is a schematic configuration diagram of a modification of the heat pump air conditioning system shown in FIG.
  • the on/off of the waste heat recovery function is controlled based on the magnitude of the waste heat recovery characteristic value in the system. It discloses a heat pump air conditioning system that ensures that the heating efficiency is exceeded when the heat recovery function is turned off and that the system is prevented from repeating fluctuations.
  • a heat pump air-conditioning system is a vehicle-mounted air-conditioning system that controls the flow of refrigerant in the circuit to achieve functions such as heating, cooling, and heating and dehumidifying the interior of the vehicle.
  • FIG. 1 is a schematic diagram of a heat pump air conditioning system according to one embodiment of this disclosure. Specifically, FIG. ) 100.
  • a compressor 1 is installed in the heat pump air conditioning system, and the compressor 1 may be an electric compressor.
  • Refrigerant circulates in the heat pump air conditioning system, and the compressor 1 draws in low-temperature, low-pressure gaseous refrigerant from the suction port, moves the piston by operating the motor, compresses it, and then releases high-temperature, high-pressure gaseous refrigerant from the discharge port.
  • Lubricating oil for lubricating the compressor 1 is mixed in the refrigerant, and they circulate together in the heat pump air conditioning system under the action of the compressor 1 .
  • a first heat exchanger 2 is connected to the discharge port of the compressor 1, that is, the downstream side of the compressor 1.
  • the first heat exchanger 2 is a refrigerant-cooling water heat exchanger, which is a water-cooled condenser in this embodiment, and is provided in the engine room.
  • a first cooling water circuit which comprises a pump 9 for pumping and circulating the cooling water, and the air and heat entering the vehicle interior. and a heater core 11 to be replaced.
  • the high-temperature high-pressure refrigerant and the cooling water in the first cooling water circuit exchange heat in the first heat exchanger 2, and the cooling water is heated by the refrigerant, so that the heated cooling water enters the vehicle in the heater core 11. heat the air.
  • a PTC heater 10 for auxiliary heating of the cooling water may be installed in the first cooling water circuit, and the heat energy generated by the PTC heater 10 may be transmitted through the heater core 11 to the inside of the vehicle.
  • the first to fifth refrigerant passages are connected to the downstream side of the first heat exchanger 2, respectively.
  • these flow paths are selectively opened or closed to control the refrigerant flow conditions in the heat pump air conditioning system, thereby achieving different operating modes to meet the thermal management needs of the vehicle. be able to.
  • a first expansion valve 3 and a second heat exchanger 4 closer to the downstream side than the first expansion valve 3 are installed in this order along the refrigerant flow direction on the first refrigerant flow path.
  • the first expansion valve 3 is an electric variable throttle mechanism, that is, an electronic expansion valve, and can change the degree of opening based on a control signal output by a controller 50, which will be described later. not allow refrigerant to pass through.
  • the second heat exchanger 4 is an outdoor heat exchanger located outside the passenger compartment, and for example, heat-exchanges the refrigerant flowing out of the first expansion valve 3 in contact with the outside air such as wind when the vehicle is running. , absorbs environmental heat.
  • a first electromagnetic valve 12 a is installed on the second refrigerant flow path, and the first electromagnetic valve 12 a is a low-pressure electromagnetic valve capable of opening and closing the second refrigerant flow path under the control of the controller 50 .
  • the first coolant channel and the second coolant channel are connected in the following manner. That is, the inlet of the first expansion valve 3 is connected to the outlet side of the first heat exchanger 2, the outlet of the second heat exchanger 4 is connected to the inlet of the liquid storage tank 7 via the first electromagnetic valve 12a, The outlet of the reservoir tank 7 is connected to the suction port of the compressor 1 by a conduit. Further, in the liquid storage tank heat pump system 100, the third refrigerant flow path branches off from the first refrigerant flow path, and the details will be described later.
  • a second expansion valve 5 and a third heat exchanger 6 closer to the downstream side than the second expansion valve 5 are installed in this order along the refrigerant flow direction on the fourth refrigerant flow path.
  • the second expansion valve 5 is an electric variable throttle mechanism that can adjust the degree of opening based on a control signal output from the controller 50, and shuts off the fourth refrigerant flow path when fully closed.
  • the third heat exchanger 6 is installed in the housing of the in-vehicle air conditioning unit and exchanges heat with the low-temperature, low-pressure refrigerant discharged from the second expansion valve 5 with the air blown into the vehicle, thereby absorbing heat and cooling it. This dehumidifies or cools the interior of the vehicle.
  • a third expansion valve 13 and a fourth heat exchanger 14 closer to the downstream side than the third expansion valve 13 are installed in this order along the refrigerant flow direction on the fifth refrigerant flow path.
  • the third expansion valve 13 is an electric variable throttle mechanism that can adjust the degree of opening based on a control signal output from the controller 50, and shuts off the fifth refrigerant flow path when fully closed.
  • the fourth heat exchanger 14 is a water-cooled refrigerant-cooling water heat exchanger that exchanges heat with a second cooling water circuit, which will be described later.
  • cooling water circulates in the second cooling water circuit, and the cooling water cools the heat-generating members of the vehicle by exchanging heat with the heat-generating members of the vehicle.
  • heavy electrical system members 18 such as an electric motor, an inverter, and an on-board charger.
  • these high-temperature cooling water flows from the cooling water inlet of the fourth heat exchanger 14 and exchanges heat with the low-temperature refrigerant flowing from the refrigerant inlet in the fourth heat exchanger 14 to cool the low temperature. It turns into water, is discharged from the cooling water outlet, and flows into the battery 16 and the high-voltage system members by the action of the pumps 15 and 17, respectively, to perform heat exchange. This allows the fourth heat exchanger 14 to function as a battery cooler or waste heat recovery device.
  • the fourth refrigerant flow path and the fifth refrigerant flow path are cut into the circuit in parallel with the second refrigerant flow path. are connected in parallel to both sides of the first electromagnetic valve 12a. More specifically, the outlet of the second heat exchanger 4 is not only connected to the liquid storage tank 7 by the first electromagnetic valve 12a, but also connected to the second expansion valve of the fourth refrigerant flow path via a bypass line. 5 and the inlet of the third expansion valve 13 of the fifth refrigerant flow path, and a check valve is installed on the bypass pipe, and the check valve is installed when the refrigerant flows into the second heat exchanger.
  • the refrigerant outlets of the third heat exchanger 6 and the fourth heat exchanger 14 are each connected to the liquid storage tank 7 , and the refrigerant after heat exchange is returned to the compressor 1 through the liquid storage tank 7 .
  • the third refrigerant flow path branches off from the first refrigerant flow path, and one end of the third refrigerant flow path is located between the first heat exchanger 2 and the first expansion valve 3. and the other end is positioned on the above-described pipeline connecting the outlet of the second heat exchanger 4 and the inlets of the second expansion valve 5 and the third expansion valve 13 .
  • a second electromagnetic valve 12b is installed on the third refrigerant flow path, and the second electromagnetic valve 12b is a high-pressure electromagnetic valve capable of opening and closing the third refrigerant flow path under the control of a controller 50, which will be described later. be.
  • part of the refrigerant flowing out of the first heat exchanger 2 is branched into the fourth refrigerant flow path and/or the fifth refrigerant flow path through the third refrigerant flow path. It is possible.
  • the liquid storage tank heat pump system 100 also includes a controller 50 .
  • the controller 50 is an electrical circuit that includes at least one processor.
  • the controller 50 may be, for example, a microcomputer having a memory such as ROM and RAM and a CPU. In controller 50, the CPU performs the functions disclosed herein by executing programs stored in ROM.
  • the controller 50 may be a logic circuit such as a gate array as a processor or an FPGA (field programmable gate array). In this case, the logic circuit performs the functions disclosed in this specification.
  • the controller 50 transmits control commands to each expansion valve, each solenoid valve, etc. in the liquid storage tank heat pump system 100 to control the opening/closing status of each valve to realize different heat management modes, and to control the opening of each valve. By adjusting the degree magnitude, the operating loads in these thermal management modes are met.
  • the controller 50 controls at least one of the expansion valves and the electromagnetic valves to change the circuit structure so that the refrigerant flows through the circuit under the action of the compressor 1.
  • a plurality of heating modes including a normal heating mode, a parallel dehumidifying heating mode, a series dehumidifying heating mode, and an evaporator single dehumidifying heating mode are performed by circulating and flowing in the liquid storage tank heat pump system 100 with different structures.
  • the heating mode it is possible to activate or deactivate the waste heat recovery function for recovering and utilizing the waste heat generated by the in-vehicle heat generating components.
  • the multiple heating modes and corresponding waste heat recovery control functions of the reservoir heat pump system 100 are described below with reference to FIGS. 1-7.
  • FIG. 2 shows the refrigerant flow state when the heat pump air conditioning system of FIG. This is the refrigerant flow state when the heat recovery function is turned on.
  • FIG. 1 This is an operation mode in which the second heat exchanger 4 absorbs environmental heat while using the heat to heat the interior of the vehicle.
  • the controller 50 opens the first solenoid valve 12a to open the second refrigerant flow path, and closes the second expansion valve 5 to shut off the fourth refrigerant flow path. to execute the normal heating mode.
  • the controller 50 opens the second solenoid valve 12b and the third expansion valve 13, i.e., opens the third refrigerant flow path and the fifth refrigerant flow path to start the waste heat recovery function, At least one of the second solenoid valve 12b and the third expansion valve 13 is closed, that is, at least one of the third refrigerant flow path and the fifth refrigerant flow path is shut off to stop the waste heat recovery function.
  • the liquid storage tank heat pump system 100 closes at least one of the second solenoid valve 12b and the third expansion valve 13 to stop the waste heat recovery function.
  • the normal heating mode is executed in the state where the It circulates within the tank heat pump system 100 . That is, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1, becomes a high-temperature, high-pressure gas, is discharged from the discharge port, flows into the first heat exchanger 2, and is applied to the cooling water in the first cooling water circuit.
  • the controller 50 opens the second solenoid valve 12b and the third expansion valve 13 as shown in FIG. performs normal heating mode with the waste heat recovery function turned on.
  • a flow path formed by connecting the first refrigerant flow path and the second refrigerant flow path in series and a flow path formed by connecting the third refrigerant flow path and the fifth refrigerant flow path in series form a parallel connection.
  • the medium-temperature, high-pressure liquid refrigerant flowing out of the heat exchanger 2 is positioned between the first heat exchanger 2 and the first expansion valve 3 and branches into a first refrigerant flow path and a third refrigerant flow path.
  • the refrigerant that has flowed into the first refrigerant passage passes through the first expansion valve 3 and the second heat exchanger 4 in this order as described above, changes to low-pressure refrigerant, and passes through the first electromagnetic valve 12a.
  • the fourth refrigerant flow path is blocked by the closing of the second expansion valve 5, and the check valve prevents the refrigerant from flowing from the third refrigerant flow path through the bypass pipe into the second refrigerant flow path.
  • the refrigerant that has flowed into the third refrigerant flow path passes through the second solenoid valve 12b, enters the fifth refrigerant flow path, and when passing through the third expansion valve 13, is throttled and expanded to become a low-temperature, low-pressure two-phase refrigerant.
  • the refrigerant evaporates in the fourth heat exchanger 14 as a waste heat recovery device, absorbs the waste heat of the heat-generating member mounted on the vehicle, and turns into a low-pressure gaseous refrigerant.
  • the refrigerant returns to the compressor 1 through the liquid storage tank 7 after joining with the refrigerant in the other conduit of the first solenoid valve 12a.
  • the reservoir tank heat pump system 100 performs normal heating mode by turning on or off the waste heat recovery function, thereby providing normal heating to the vehicle interior. While doing so, waste heat recovery can be selectively performed based on the thermal management needs of the vehicle.
  • the controller 50 in the heat pump air conditioning system activates the waste heat recovery function to absorb heat from the on-board heat-generating components through the fourth heat exchanger 14 based on the heat management demand of the vehicle. or stop.
  • the heat pump air conditioning system activates the waste heat recovery function
  • the refrigerant fifth flow path is cut in parallel in the heat pump air conditioning system to divide the refrigerant flow.
  • this disclosure sets a waste heat recovery characteristic value and its specified value for predicting the system efficiency when recovering the waste heat of the in-vehicle heat generating member for the heat pump air conditioning system.
  • the controller 50 determines whether or not to perform waste heat recovery, and the fourth heat exchanger as a waste heat recovery device. By opening and closing the solenoid valve and/or the expansion valve on the upstream side of 14, the waste heat recovery function is started or stopped.
  • the controller 50 immediately activates the waste heat recovery function when the waste heat recovery characteristic value exceeds the specified value, and immediately stops the waste heat recovery function when the waste heat recovery characteristic value is below the specified value. If so, the heat pump air conditioning system constantly turns on and off the waste heat recovery function due to changes in the heat load of the system or changes in the amount of waste heat generated by the on-board heat generating components (for example, the expansion valve and solenoid valve are repeatedly opened and closed). As a result, the life of the valve is greatly shortened and the system is subject to repetitive fluctuations.
  • a first threshold value and a second threshold value are further set for the prescribed value of the waste heat recovery characteristic value.
  • the first threshold is a threshold that causes the heating efficiency of the heat pump air conditioning system to start exceeding the waste heat recovery characteristic value when the waste heat recovery function is not activated when the waste heat recovery function is activated.
  • 2 threshold is the operation of the third expansion valve 13 in a situation in which the heating efficiency of the heat pump air conditioning system is higher when the waste heat recovery function is activated than when the waste heat recovery function is not activated.
  • This is the threshold value of the waste heat recovery characteristic value that comprehensively considers two factors, namely, the service life and the heat loss of the waste heat amount of the in-vehicle heat generating member.
  • the refrigerant flow rate of the second heat exchanger 4 as an outdoor heat exchanger is related to the heat load of the system.
  • the refrigerant flow rate of the fourth heat exchanger 14 as a waste heat recovery device is related to the amount of waste heat.
  • the waste heat recovery characteristic can include two types of signals: heat load characteristic and waste heat amount characteristic.
  • FIG. 3 is a schematic diagram showing a waste heat recovery control process based on heat load characteristic values.
  • the rotational speed SPD (rpm) of the compressor is selected as the heat load characteristic value to represent the magnitude of the heat load of the vehicle, and the heat load characteristics A first threshold STH1 and a second threshold STH2 larger than the first threshold STH1 are set for the rotational speed SPD (rpm) of the compressor as a value.
  • this disclosure is not limited to this, and a physical quantity that is positively correlated with the rotational speed of the compressor, such as the power consumption of the compressor 1, can also be employed as the heat load characteristic value.
  • the control characteristics of the controller 50 in normal heating mode are as shown in FIG.
  • the controller 50 compares the rotational speed SPD (rpm) of the compressor as the thermal load characteristic value with the preset first threshold STH1 and second threshold STH2.
  • the controller 50 causes the vehicle side to recover waste heat when the rotation speed SPD (rpm) of the compressor exceeds the first threshold value STH1. Even if this is permitted, the air conditioning side does not actually perform waste heat recovery (HR-OFF).
  • the controller 50 performs waste heat recovery on the air conditioning side only when the rotation speed SPD (rpm) of the compressor exceeds the second threshold value STH2 (HR-ON). That is, as indicated by the arrow (OPN) in FIG.
  • the rotational speed SPD (rpm) of the compressor exceeds the first threshold value STH1. Waste heat recovery continues until the corresponding solenoid valves and expansion valves are closed to stop the waste heat recovery function.
  • the first threshold STH1 may be 1000-1800 rpm
  • the second threshold STH2 may be 2200-3000 rpm.
  • FIG. 4 is a schematic diagram showing the waste heat recovery control process based on the waste heat amount characteristic value.
  • any one point between the cooling water inlet and the cooling water outlet of the fourth heat exchanger 14 as a waste heat recovery device The difference value DT (°C) between the cooling water temperature and the saturated refrigerant temperature flowing through the fourth heat exchanger 14 (hereinafter sometimes referred to as “temperature difference value”) is selected to determine the amount of waste heat. represent.
  • a first threshold value TTH1 and a second threshold value TTH2 larger than the first threshold value TTH1 are also set for the temperature difference value DT (°C) as the waste heat amount characteristic value.
  • this disclosure is not limited to this, and in a circuit that employs a refrigerant direct cooling type waste heat recovery device, such as a gas-liquid separator heat pump system 200 or a liquid storage tank heat pump system 100A, which will be described later, for example
  • a refrigerant direct cooling type waste heat recovery device such as a gas-liquid separator heat pump system 200 or a liquid storage tank heat pump system 100A, which will be described later, for example
  • a difference value between the temperature of the on-vehicle heat generating member and the temperature of the saturated refrigerant flowing through the fourth heat exchangers 14 and 24 may be used as the waste heat amount characteristic value.
  • the configuration shown in FIG. 1 can be adopted.
  • a refrigerant temperature sensor 19 and a refrigerant pressure sensor 20 are installed on the downstream side of the fourth heat exchanger 14 in the fifth refrigerant flow path, that is, at the refrigerant outlet of the fourth heat exchanger 14 .
  • a cooling water temperature sensor 21 is installed at the cooling water outlet of the fourth heat exchanger 14 of the second cooling water circuit.
  • the saturated refrigerant temperature flowing through the fourth heat exchanger 14 can be calculated based on the measured value of the refrigerant pressure sensor 20 .
  • the saturated refrigerant temperature flowing through the fourth heat exchanger 14 can be determined by taking the smaller of the refrigerant inlet temperature and the refrigerant outlet temperature of the fourth heat exchanger 14 .
  • the control characteristics of the controller 50 in normal heating mode are as shown in FIG.
  • the controller 50 compares the temperature difference value DT (°C) as the waste heat amount characteristic value with the preset first threshold value TTH1 and second threshold value TTH2. If the temperature difference value DT (°C) exceeds the first threshold value TTH1 when the heat pump air conditioning system is in the waste heat recovery function OFF state (HR-OFF), the controller 50 causes the vehicle to perform waste heat recovery. is allowed, the air conditioning side does not actually perform waste heat recovery (HR-OFF). The controller 50 performs waste heat recovery on the air conditioning side only when the temperature difference value DT (°C) exceeds the second threshold value TTH2 (HR-ON). That is, as indicated by the arrow (OPN) in FIG.
  • the temperature difference value DT (°C) falls below the first threshold value TTH1.
  • the exhaust heat recovery continues until the corresponding solenoid valves and expansion valves are closed and the waste heat recovery function is stopped.
  • the first threshold TTH1 may be 0-5°C and the second threshold TTH2 may be 6-11°C.
  • the heat load characteristic value and the waste heat amount characteristic value are also possible to comprehensively consider the heat load characteristic value and the waste heat amount characteristic value to implement the above waste heat recovery control process.
  • the heat load characteristic value exceeds the second threshold of the heat load characteristic value
  • the waste heat amount characteristic value is the second threshold value of the waste heat amount characteristic value.
  • Controller 50 controls the waste heat recovery function to switch from the OFF state to the ON state only if the threshold is exceeded.
  • the heat load characteristic value is less than the first threshold value of the heat load characteristic value or the waste heat amount characteristic value is less than the first threshold value of the waste heat amount when the waste heat recovery function is on.
  • the controller 50 controls the waste heat recovery function to switch the ON state to the OFF state. This makes it possible to ensure that the heat pump air conditioning system always operates at optimum efficiency, taking into account both the situation of relatively low system heat load and the situation of relatively low overall vehicle waste heat.
  • FIG. 5 shows the refrigerant flow state when the heat pump air conditioning system in FIG. This is the refrigerant flow state when the waste heat recovery function is turned on.
  • the liquid storage tank heat pump system 100 heats the interior of the vehicle with the first heat exchanger 2 and heats the environment heat with the second heat exchanger 4 . is absorbed and the third heat exchanger 6 is used to dehumidify the interior of the vehicle.
  • the parallel dehumidification heating mode as shown in FIG.
  • the controller 50 opens the first electromagnetic valve 12a to open the second refrigerant flow path, and opens the second electromagnetic valve 12b to open the third refrigerant flow path.
  • the waste heat recovery function is started or stopped.
  • the parallel dehumidification heating mode is activated with the liquid storage tank heat pump system 100 closing the third expansion valve 13, that is, with the waste heat recovery function turned off.
  • the compressor 1, the first heat exchanger 2, the first refrigerant flow path and the second refrigerant flow path are connected in series in this order, and the first refrigerant flow path and the second refrigerant flow path are connected in series.
  • a parallel connection is formed between the flow path and the flow path formed by serially connecting the third refrigerant flow path and the fourth refrigerant flow path, and the refrigerant circulates in the reservoir tank heat pump system 100 in the following manner.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 dissipates heat in the first heat exchanger 2 and changes to medium-temperature, high-pressure liquid refrigerant. and branches into a first coolant channel and a third coolant channel.
  • the refrigerant that has flowed into the first refrigerant flow path passes through the first expansion valve 3 and the second heat exchanger 4 in this order, changes to low-pressure refrigerant, and passes through the first electromagnetic valve 12a.
  • the fifth refrigerant flow path is blocked by closing the third expansion valve 13, and the check valve prevents the refrigerant from flowing from the third refrigerant flow path through the bypass pipe into the second refrigerant flow path.
  • the refrigerant that has flowed into the third refrigerant flow path passes through the second solenoid valve 12b, enters the fourth refrigerant flow path, passes through the second expansion valve 5, and is converted into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion. , and then heat-exchanges with the vehicle interior air in the third heat exchanger 6 to dehumidify it.
  • the refrigerant returns to the compressor 1 through the liquid storage tank 7 after joining with the refrigerant in the other conduit of the first solenoid valve 12a.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 5(b). to run the parallel dehumidification heating mode.
  • the refrigerant that has flowed into the fourth refrigerant flow path exchanges heat with the vehicle interior air in the third heat exchanger 6 to dehumidify the refrigerant.
  • the refrigerant that has flowed into the fifth refrigerant passage is changed into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion when passing through the third expansion valve 13.
  • the refrigerant enters the vehicle in the fourth heat exchanger 14 as a waste heat recovery device. It absorbs the waste heat of the heat-generating member and turns into a refrigerant close to a low-pressure gaseous state.
  • the refrigerant flowing out of the fourth refrigerant flow path, and the refrigerant that has passed through the first electromagnetic valve 12a are joined together, they return to the compressor 1 via the liquid storage tank 7 .
  • the reservoir tank heat pump system 100 performs a parallel dehumidification heating mode by turning on or off the waste heat recovery function, thereby dehumidifying the vehicle interior in parallel. Heating can be combined with selective waste heat recovery based on the thermal management needs of the vehicle. Even in the parallel dehumidification heating mode, it is possible to implement waste heat recovery control processing as shown in FIGS. It guarantees that the heating efficiency is higher than that at the time of , and effectively prevents the shortening of the valve member life caused by repeated opening and closing of the valve member and the fluctuation that appears in the heat pump air conditioning system. is the same as the waste heat recovery control process in the normal heating mode, so the description is omitted.
  • FIG. 6 shows the refrigerant flow state when the heat pump air conditioning system in FIG. This is the refrigerant flow state when the waste heat recovery function is turned on.
  • the liquid storage tank heat pump system 100 heats the vehicle interior with the first heat exchanger 2 and heats the environment heat with the second heat exchanger 4 . is absorbed and the third heat exchanger 6 is used to dehumidify the interior of the vehicle.
  • the series dehumidification heating mode as shown in FIG.
  • the controller 50 controls the first expansion valve 3 and the second expansion valve 5 to throttle them, and closes the first electromagnetic valve 12a to cut off the refrigerant second flow path. Then, by closing the second electromagnetic valve 12b to block the third refrigerant flow path and opening and closing the third expansion valve 13, that is, by opening or blocking the fifth refrigerant flow path, the waste heat recovery function is performed. start or stop.
  • the liquid storage tank heat pump system 100 operates in series dehumidification heating mode with the third expansion valve 13 closed, that is, with the waste heat recovery function turned off.
  • the compressor 1, the first heat exchanger 2, the first refrigerant flow path and the fourth refrigerant flow path are connected in series in this order, and the refrigerant flows through the reservoir tank heat pump system 100 in the following manner: circulate. That is, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 radiates heat in the first heat exchanger 2 and changes into medium-temperature and high-pressure liquid refrigerant to flow into the first flow path.
  • the second heat exchanger 4 in this order, it changes to the medium-pressure refrigerant and flows into the fourth refrigerant flow path, and when passing through the second expansion valve 5, it becomes a low-temperature low-pressure two-phase refrigerant by throttling and expansion. Then, after exchanging heat with the inside air in the third heat exchanger 6 to dehumidify it, it returns to the compressor 1 via the liquid storage tank 7 .
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 6(b). to run the serial dehumidification heating mode.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 6(b). to run the serial dehumidification heating mode.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 6(b). to run the serial dehumidification heating mode.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 6(b). to run the serial dehumidification heating mode.
  • the compressor 1 the first heat exchanger 2
  • the first refrigerant passage and the fourth refrigerant passage are connected in series in this order
  • the fifth refrigerant passage and the fourth refrigerant passage are connected. Form a parallel connection.
  • the refrigerant After flowing out of the second heat exchanger 4, the refrigerant is
  • the medium-pressure refrigerant that has flowed into the fourth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant through throttling and expansion when passing through the second expansion valve 5 as described above. dehumidifies the air in the car.
  • the refrigerant that has flowed into the fifth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion when passing through the third expansion valve 13, and then in the fourth heat exchanger as a waste heat recovery device.
  • it absorbs the waste heat of the in-vehicle heat-generating member and turns into a low-pressure gaseous refrigerant.
  • the refrigerant flows back to the compressor 1 through the liquid storage tank 7 after joining with the refrigerant flowing out of the fourth refrigerant passage.
  • the reservoir tank heat pump system 100 implements the series dehumidification heating mode by turning on or off the waste heat recovery function, thereby dehumidifying the vehicle interior in series. Heating can be combined with selective waste heat recovery based on the thermal management needs of the vehicle. Even in series dehumidification heating mode, it is possible to implement waste heat recovery control processing as shown in Figs. At the same time, it effectively prevents shortening of the valve member life caused by repeated opening and closing of the valve member and fluctuations that appear in the heat pump air conditioning system. Since the waste heat recovery control process is the same as the waste heat recovery control process in the normal heating mode, the explanation is omitted.
  • FIG. 7 shows the refrigerant flow state when the heat pump air conditioning system in FIG. ) is the refrigerant flow state when the waste heat recovery function is turned on.
  • the liquid storage tank heat pump system 100 heats the vehicle interior with the first heat exchanger 2 and the third heat exchanger as the evaporator. This is an operation mode in which the heat exchanger 6 performs dehumidification.
  • the dehumidification heating mode as shown in FIG.
  • the controller 50 closes the first expansion valve 3 and the first electromagnetic valve 12a to block the first refrigerant flow path and the second refrigerant flow path, and the second electromagnetic valve By opening 12b to open the third refrigerant passage and by opening and closing the third expansion valve 13, that is, by opening or closing the fifth refrigerant passage, the waste heat recovery function is activated or stopped.
  • the evaporator single dehumidifying heating is performed with the liquid storage tank heat pump system 100 closing the third expansion valve 13, that is, with the waste heat recovery function turned off.
  • the compressor 1, the first heat exchanger 2, the third refrigerant flow path and the fourth refrigerant flow path are connected in series in this order, and the refrigerant is in the following form: It circulates inside. That is, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 radiates heat in the first heat exchanger 2, changes to medium-temperature and high-pressure liquid refrigerant, and flows into the third refrigerant flow path.
  • the refrigerant After passing through 12b, the refrigerant flows into the fourth flow path, and when passing through the second expansion valve 5, it is changed to a low-temperature, low-pressure two-phase refrigerant by throttling and expansion, and then in the third heat exchanger 6 with the vehicle air. After exchanging heat and dehumidifying it, it returns to the compressor 1 via the storage tank 7 .
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 7(b). , the evaporator-only dehumidification heating mode is executed. At this time, based on the fact that the compressor 1, the first heat exchanger 2, the third refrigerant flow path, and the fourth refrigerant flow path are connected in series in this order, the fifth refrigerant flow path and the fourth refrigerant flow path are connected. Form a parallel connection.
  • the refrigerant passes through the second electromagnetic valve 12b and branches into a fourth refrigerant flow path and a fifth refrigerant flow path.
  • the high-pressure refrigerant that has flowed into the fourth refrigerant passage changes into a low-temperature, low-pressure two-phase refrigerant through throttling and expansion when passing through the second expansion valve 5, and in the third heat exchanger 6 Dehumidify the air inside the car.
  • the refrigerant that has flowed into the fifth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion when passing through the third expansion valve 13, and then in the fourth heat exchanger as a waste heat recovery device.
  • the reservoir tank heat pump system 100 performs the evaporator-only dehumidification heating mode by turning on or off the waste heat recovery function, thereby Evaporator-only dehumidification heating can be performed simultaneously with selective waste heat recovery based on the thermal management needs of the vehicle. Even in the single evaporator dehumidification heating mode, it is possible to implement waste heat recovery control processing as shown in FIGS. While ensuring that the heating efficiency is higher than when the is off, it effectively prevents the shortening of the valve member life caused by repeated opening and closing of the valve member and the fluctuation that appears in the heat pump air conditioning system. Since the recovery control process is the same as the waste heat recovery control process in the normal heating mode, the explanation is omitted.
  • FIG. 8 is a schematic diagram of a heat pump air conditioning system according to another embodiment of the present disclosure, specifically FIG. ) 200 is shown.
  • a compressor 1 is installed in the gas-liquid separator heat pump system 200, and a first heat exchanger 2 is connected to the discharge port of the compressor 1, that is, the downstream side of the compressor 1. 2 are connected to the first to seventh coolant flow paths, respectively.
  • these flow paths are selectively opened or closed to control the refrigerant flow conditions within the heat pump air conditioning system, thereby achieving different modes of operation to meet the thermal management needs of the vehicle. ing.
  • the gas-liquid separator heat pump system 200 includes a compressor 1, a first heat exchanger 2, a sixth refrigerant flow path, a first refrigerant flow path, and a second refrigerant flow path. They are installed in series in this order. A first expansion valve 3 and a second heat exchanger 4 closer to the downstream side than the first expansion valve 3 are installed in this order along the refrigerant flow direction on the first refrigerant flow path. A first electromagnetic valve 12a is installed, and a third electromagnetic valve 12c is installed on the sixth refrigerant flow path.
  • a third refrigerant flow path provided with the second solenoid valve 12b is branched, and the other end is the inlet of the gas-liquid separator 8, that is, It is connected to the gas phase of the gas-liquid separator 8 .
  • a refrigerant branch path is branched between the second heat exchanger 4 and the first electromagnetic valve 12a, and the other end of the refrigerant branch path is connected to the inlet of the gas-liquid separator 8 together with the third refrigerant flow path.
  • a check valve is provided on the refrigerant branch passage, and the check valve allows the refrigerant to branch from the outlet of the second heat exchanger 4 and flow toward the inlet of the gas-liquid separator 8, Block the flow in the opposite direction.
  • a seventh refrigerant flow path branches between the third solenoid valve 12c and the first expansion valve 3, and the other end is connected to the outlet of the gas-liquid separator 8, that is, the liquid phase of the gas-liquid separator 8. ing.
  • a check valve is installed on the seventh refrigerant flow path, and the check valve allows the liquid refrigerant to flow from the outlet of the gas-liquid separator 8 to the inlet of the first expansion valve 3 and vice versa. Blocks directional flow.
  • the fourth coolant channel and the fifth coolant channel are branched from the seventh coolant channel.
  • a second expansion valve 5 and a third heat exchanger 6 closer to the downstream side than the second expansion valve 5 are installed in this order along the direction of refrigerant flow on the fourth refrigerant flow path.
  • a third expansion valve 13 and a fourth heat exchanger 14 closer to the downstream side than the third expansion valve 13 are installed in this order along the direction of refrigerant flow.
  • the fourth refrigerant flow path and the fifth refrigerant flow path are connected to the seventh refrigerant flow path at the inlet side of the second expansion valve 5 and the inlet side of the third expansion valve 13, respectively, and the outlet side of the third heat exchanger 6. and the outlet side of the fourth heat exchanger 14 are connected in parallel with each other by being connected to the suction port of the compressor 1 to circulate the refrigerant.
  • the gas-liquid separator heat pump system 200 further includes a controller 50 .
  • the controller 50 transmits control commands to each expansion valve, each solenoid valve, etc. in the gas-liquid separator heat pump system 200 to control the opening/closing status of each valve to realize different heat management modes, and to The operating loads in these thermal management modes are met by adjusting the opening magnitude of the .
  • the controller 50 controls at least one of the expansion valves and the electromagnetic valves to change the circuit structure so that the refrigerant is supplied under the action of the compressor 1.
  • Various heating modes including normal heating mode, parallel dehumidifying heating mode, series dehumidifying heating mode, and evaporator single dehumidifying heating mode are executed by circulating in the gas-liquid separator heat pump system 200 with different circuit structures, In these heating modes, it is possible to activate or deactivate a waste heat recovery function that recovers and utilizes waste heat generated by the on-board heat generating member.
  • the multiple heating modes of the gas-liquid separator heat pump system 200 and the waste heat recovery control function under these heating modes will now be described with reference to FIGS. 9-12.
  • FIG. 9 shows the refrigerant flow state when the heat pump air conditioning system in FIG. This is the refrigerant flow state when the heat recovery function is turned on.
  • the controller 50 opens the first electromagnetic valve 12a to open the second refrigerant flow path, and opens the second electromagnetic valve 12b to open the third refrigerant flow path.
  • the normal heating mode is executed by opening, closing the third electromagnetic valve 12c to block the sixth refrigerant flow path, and closing the second expansion valve 5 to block the fourth refrigerant flow path.
  • the controller 50 activates the waste heat recovery function by opening the third expansion valve 13, that is, by opening the fifth refrigerant flow path, and closing the third expansion valve 13, that is, by opening the fifth refrigerant flow path. to stop the waste heat recovery function.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1, becomes a high-temperature, high-pressure gas, is discharged from the outlet, flows into the first heat exchanger 2, and radiates heat, thereby changing to a medium-temperature, high-pressure liquid refrigerant.
  • the refrigerant After flowing in and changing into a low-temperature two-phase refrigerant through the throttle of the first expansion valve 3 in the first refrigerant flow path, the refrigerant evaporates when passing through the second heat exchanger 4 and absorbs the amount of environmental heat. , becomes a refrigerant close to a low-pressure gaseous state, flows into the second refrigerant flow path, and returns to the compressor 1 via the first electromagnetic valve 12a.
  • the refrigerant that has flowed into the fifth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion when passing through the third expansion valve 13, and then the fourth heat exchange as a waste heat recovery device.
  • the refrigerant evaporates in the vessel 14, absorbs the waste heat of the on-vehicle heating element, and turns into a refrigerant close to a low-pressure gaseous state.
  • the refrigerant returns to the compressor 1 after merging with the refrigerant in the other conduit of the first electromagnetic valve 12a.
  • the gas-liquid separator heat pump system 200 performs normal heating mode by turning on or off the waste heat recovery function, thereby normal heating to the vehicle interior. while performing selective waste heat recovery based on the thermal management needs of the vehicle.
  • waste heat recovery control processing can be performed as shown in FIGS. It ensures that the heating efficiency is always higher than when the waste heat recovery function is turned off, and at the same time, it effectively prevents shortening of the valve member life caused by repeated opening and closing of the valve member and fluctuations that appear in the heat pump air conditioning system. Since the waste heat recovery control process is the same as the waste heat recovery control process in the normal heating mode of the liquid storage tank heat pump system 100, a description thereof will be omitted.
  • FIG. 10 shows the refrigerant flow state when the heat pump air conditioning system of FIG. This is the refrigerant flow state when the waste heat recovery function is turned on.
  • the controller 50 opens the first electromagnetic valve 12a to open the second refrigerant flow path, and opens the second electromagnetic valve 12b to open the third refrigerant flow path.
  • the parallel dehumidifying and heating mode is executed by opening, closing the third electromagnetic valve 12c to shut off the sixth refrigerant flow path, and throttling the second expansion valve 5 to open the fourth refrigerant flow path.
  • the controller 50 activates the waste heat recovery function by opening the third expansion valve 13, i.e., opening the fifth refrigerant flow path, and closing the third expansion valve 13, i.e., opening the fifth refrigerant flow path. By interrupting the path, the waste heat recovery function is stopped.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 radiates heat in the first heat exchanger 2, changes to medium-temperature, high-pressure liquid refrigerant, and flows through the third refrigerant passage into the gas-liquid separator 8.
  • the liquid refrigerant flowing out of the gas-liquid separator 8 branches into the first refrigerant flow path and the fourth refrigerant flow path on the seventh refrigerant flow path.
  • the refrigerant that has flowed into the first refrigerant passage passes through the first expansion valve 3 and the second heat exchanger 4 in this order, changes to low-pressure refrigerant, and passes through the first electromagnetic valve 12a.
  • the refrigerant flowing in the seventh refrigerant flow path branches and enters the fourth refrigerant flow path, whereupon the second expansion valve 5, it is throttled and expanded into a low-temperature, low-pressure two-phase refrigerant, after which it exchanges heat with the air inside the vehicle in the third heat exchanger 6 to dehumidify it.
  • the refrigerant returns to the compressor 1 after merging with the refrigerant in the other conduit of the first electromagnetic valve 12a.
  • the refrigerant that has flowed into the first refrigerant flow path passes through the first expansion valve 3 and the second heat exchanger 4 in this order as described above, and then changes to a low-pressure refrigerant and flows through the first electromagnetic valve Pass 12a.
  • the refrigerant that has flowed into the fourth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant through throttling and expansion when passing through the second expansion valve 5 , and then enters the vehicle in the third heat exchanger 6 . It exchanges heat with air and dehumidifies it.
  • the refrigerant that has flowed into the fifth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant due to throttling and expansion when passing through the third expansion valve 13, and then the fourth refrigerant as a waste heat recovery device.
  • the refrigerant evaporates in the heat exchanger 14, absorbs waste heat from the on-vehicle heat-generating member, and transforms into a refrigerant close to a low-pressure gaseous state.
  • the refrigerants of the three paths described above return to the compressor 1 after joining.
  • the gas-liquid separator heat pump system 200 performs a parallel dehumidification heating mode by turning on or off the waste heat recovery function, thereby parallel While dehumidifying and heating, waste heat recovery can be selectively performed based on the thermal management needs of the vehicle.
  • waste heat recovery control processing can be implemented as shown in FIGS. It ensures that the heating efficiency is always higher than when the waste heat recovery function is turned off, and at the same time, it effectively prevents the shortening of the valve member life caused by repeated opening and closing of the valve member and the fluctuation that appears in the heat pump air conditioning system. Since the waste heat recovery control process is the same as the waste heat recovery control process in the normal heating mode of the liquid storage tank heat pump system 100, a description thereof will be omitted.
  • FIG. 11 shows the refrigerant flow state when the heat pump air conditioning system in FIG. This is the refrigerant flow state when the waste heat recovery function is turned on.
  • the controller 50 closes the first electromagnetic valve 12a to block the second refrigerant flow path, and closes the second electromagnetic valve 12b to open the third refrigerant flow path.
  • the series dehumidifying and heating mode is executed by shutting off, opening the third electromagnetic valve 12c to open the sixth refrigerant flow path, and throttling the second expansion valve 5 to open the fourth refrigerant flow path.
  • the controller 50 activates the waste heat recovery function by opening the third expansion valve 13, i.e., opening the fifth refrigerant flow path, and closing the third expansion valve 13, i.e., the fifth refrigerant flow path. By interrupting the path, the waste heat recovery function is stopped.
  • the compressor 1, the first heat exchanger 2, the sixth refrigerant flow path, the first refrigerant flow path, the refrigerant branch path, the gas-liquid separator 8, and the fourth refrigerant flow path are connected in series in this order, and the refrigerant is It circulates in the gas-liquid separator heat pump system 200 in the following manner.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 radiates heat in the first heat exchanger 2, changes to medium-temperature, high-pressure liquid refrigerant, passes through the sixth refrigerant passage, and flows into the first refrigerant passage.
  • the refrigerant changes to a low-temperature two-phase refrigerant, and when passing through the second heat exchanger 4, the refrigerant evaporates and absorbs the environmental heat, and the medium pressure
  • the liquid refrigerant flowing out of the gas-liquid separator 8 flows into the fourth refrigerant flow path and flows into the second expansion valve 5.
  • the fourth refrigerant flow path and the fifth refrigerant flow path form a parallel connection, and the liquid refrigerant flowing out of the gas-liquid separation device 8 branches into the fourth refrigerant flow path and the fifth refrigerant flow path.
  • the refrigerant that has flowed into the fourth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant through throttling and expansion when passing through the second expansion valve 5, and then exchanges heat with the vehicle interior air in the third heat exchanger 6. and dehumidify it.
  • the refrigerant that has flowed into the fifth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion when passing through the third expansion valve 13, and then the fourth heat as a waste heat recovery device.
  • the refrigerant evaporates in the exchanger 14, absorbs the waste heat of the on-vehicle heat-generating member, and turns into a low-pressure gaseous refrigerant.
  • the refrigerants of the two paths are returned to the compressor 1 after joining.
  • the gas-liquid separator heat pump system 200 performs a series dehumidification heating mode by turning on or off the waste heat recovery function, thereby providing series heat to the vehicle interior. While dehumidifying and heating, waste heat recovery can be selectively performed based on the thermal management needs of the vehicle. Even in the series dehumidification heating mode of the gas-liquid separator heat pump system 200, waste heat recovery control processing can be implemented as shown in FIGS. It ensures that the heating efficiency is always higher than when the waste heat recovery function is turned off, and at the same time, it effectively prevents the shortening of the valve member life caused by repeated opening and closing of the valve member and the fluctuation that appears in the heat pump air conditioning system. Since the waste heat recovery control process is the same as the waste heat recovery control process in the normal heating mode of the liquid storage tank heat pump system 100, a description thereof will be omitted.
  • FIG. 12 shows the refrigerant flow state when the heat pump air conditioning system in FIG. ) is the refrigerant flow state when the waste heat recovery function is turned on.
  • the controller 50 closes the first electromagnetic valve 12a to block the second refrigerant flow path, and opens the second electromagnetic valve 12b to open the third refrigerant flow path.
  • the single evaporator dehumidifying and heating mode is executed by opening, closing the third solenoid valve 12c to shut off the sixth refrigerant flow path, and throttling the second expansion valve 5 to open the fourth refrigerant flow path.
  • the controller 50 activates the waste heat recovery function by opening the third expansion valve 13, i.e., opening the fifth refrigerant flow path, and closing the third expansion valve 13, i.e., opening the refrigerant fifth flow path. 5
  • the waste heat recovery function is stopped by shutting off the flow path.
  • the gas-liquid separator heat pump system 200 is in a state where the third expansion valve 13 is closed, that is, in a state where the waste heat recovery function is turned off.
  • the compressor 1, the first heat exchanger 2, the third refrigerant flow path, and the fourth refrigerant flow path are connected in series in this order, and the refrigerant flows into the gas-liquid separator heat pump in the following form: It circulates through the system 200 .
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 radiates heat in the first heat exchanger 2, changes to medium-temperature, high-pressure liquid refrigerant, and flows through the third refrigerant passage into the gas-liquid separator 8.
  • the liquid refrigerant flowing out of the gas-liquid separator 8 flows into the fourth refrigerant passage, and when passing through the second expansion valve 5, it is changed into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion, followed by a third heat exchange. After exchanging heat with the air inside the vehicle in the vessel 6 and dehumidifying it, it returns to the compressor 1 via the liquid storage tank 7 .
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 12(b). to run the serial dehumidification heating mode.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 12(b). to run the serial dehumidification heating mode.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 12(b). to run the serial dehumidification heating mode.
  • the controller 50 opens the third expansion valve 13, that is, turns on the waste heat recovery function, as shown in FIG. 12(b). to run the serial dehumidification heating mode.
  • the compressor 1 the first heat exchanger 2
  • the third refrigerant flow path, and the fourth refrigerant flow path are connected in series in this order
  • the fifth refrigerant flow path and the fourth refrigerant flow path are connected. Form a parallel connection.
  • the refrigerant branches into a fourth refrigerant flow path
  • the high-pressure refrigerant that has flowed into the fourth refrigerant passage changes into a low-temperature, low-pressure two-phase refrigerant through throttling and expansion when passing through the second expansion valve 5 as described above. Dehumidify the air.
  • the refrigerant that has flowed into the fifth refrigerant flow path changes into a low-temperature, low-pressure two-phase refrigerant by throttling and expansion when passing through the third expansion valve 13, and then in the fourth heat exchanger as a waste heat recovery device. In 14, it absorbs the waste heat of the in-vehicle heat-generating member and turns into a low-pressure gaseous refrigerant.
  • the refrigerants of the two paths are returned to the compressor 1 after joining.
  • the gas-liquid separator heat pump system 200 performs the evaporator-only dehumidification heating mode by turning on or off the waste heat recovery function, thereby evaporator-only dehumidification heating can be performed at the same time, and waste heat recovery can be selectively performed based on the thermal management needs of the vehicle. Even in the evaporator single dehumidification heating mode of the gas-liquid separator heat pump system 200, waste heat recovery control processing can be performed as shown in FIGS.
  • the heating efficiency is always higher than the heating efficiency when the waste heat recovery function is turned off, and at the same time, it effectively reduces the shortening of the valve member life caused by repeated opening and closing of the valve member and the fluctuation that appears in the heat pump air conditioning system. Since the waste heat recovery control process is the same as the waste heat recovery control process in the normal heating mode of the liquid storage tank heat pump system 100, the explanation is omitted.
  • FIG. 13 shows a reservoir tank heat pump system 100A as a modification of the reservoir tank heat pump system 100.
  • the liquid storage tank heat pump system 100A is not provided with the first cooling water circuit. ) is used directly to dissipate heat to the air, optionally a PCT heater 23 can be installed at the air outlet of the air conditioning system to provide supplemental heating.
  • the liquid storage tank heat pump system 100A is not provided with a second cooling water circuit, and a refrigerant direct-cooling fourth heat exchanger 24 is installed on the fifth refrigerant flow path, and waste heat from the battery and the high-voltage system is installed. are collected directly.
  • gas-liquid separator heat pump system 200 described above is not limited to the structure shown in FIG. can be used instead of the air-cooled first heat exchanger 2.
  • the fourth heat exchanger 14 can be replaced by installing a second cooling water circuit as in the liquid storage tank heat pump system 100 and adopting a refrigerant-cooling water type waste heat recovery device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

圧縮機と、第1熱交換器と、第1膨張弁及び第2熱交換器が設けられた冷媒第1流路と、第1電磁弁が設けられた冷媒第2流路と、第2電磁弁が設けられた冷媒第3流路と、第2膨張弁及び第3熱交換器が設けられた冷媒第4流路と、第3膨張弁及び第4熱交換器が設けられた冷媒第5流路と、貯液タンクと、を含むヒートポンプ空調システムであって、さらにコントローラが設けられており、コントローラは第1~第2膨張弁及び第1~第2電磁弁のうちの少なくとも任意の一方を制御して様々な加熱モードを実行しており、様々な加熱モードにおいて、コントローラは、ヒートポンプ空調システムの廃熱回収特性値を第1閾値及び該第1閾値より大きい第2閾値と比較し、廃熱回収機能がオフの時は、廃熱回収特性値が第2閾値を上回る場合のみ廃熱回収機能をオンにし、廃熱回収機能がオンの時は、廃熱回収特性値が第1閾値を下回る場合のみ廃熱回収機能をオフにする。

Description

ヒートポンプ空調システム 関連出願の相互参照
 この出願は、2021年9月2日に中華人民共和国に出願された特許出願第202111027665.8を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この開示は自動車空調技術分野、具体的にはヒートポンプ空調システムに関する。
 自動車ヒートポンプ空調が冬季に加熱を行う場合は、環境温度が下がるにつれて、システムが環境から熱を吸収しにくくなり、最大加熱能力の不足、エネルギー効率比の低下といった問題を引き起こすことがある。既存の技術では、ヒートポンプ空調システムに廃熱回収機能を追加することが知られており、環境温度の熱量と強電系部材及び/またはバッテリ側の廃熱の熱量を同時に吸収することにより、システムの最大加熱能力及び加熱効率を有効に高めている。
 しかし、システムの熱負荷が低い、または強電系部材またはバッテリが生成する廃熱量が小さい時に廃熱回収を実施すると、分岐路流量が低下して油溜まりを招き、それによりシステムの油循環率を低下させるので、システムが圧縮機の油戻し保護処理を触発する頻度が増加する。圧縮機の油戻し保護処理では、システムは冷媒を油溜まり現象の発生している流路中に集中的に流入させることによって、溜まった潤滑油を圧縮機に押し戻す。該油戻し保護処理の応用により、システム効率が低下して、廃熱回収時のシステム効率が廃熱を回収していない時のシステム効率を下回るという現象が起きる可能性がある。
 上記の問題に対して、この開示の目的は、複数の運転モードにおいて、システム内の廃熱回収特性値の大きさに基づいて廃熱回収機能のオンオフを制御し、廃熱回収機能を起動させた後、システムの加熱効率が常に廃熱回収機能の停止時の加熱効率を上回り、かつシステムの変動の繰り返しを防止することを確保できるヒートポンプ空調システムを提供することにある。
 上記の問題を解決するために、この開示の一つの側面としてのヒートポンプ空調システムは、
 圧縮機と、
 第1熱交換器と、
 第1膨張弁及びそれより下流側に近い第2熱交換器が設置されている冷媒第1流路と、
 第1電磁弁が設置されている冷媒第2流路と、
 第2電磁弁が設置されている冷媒第3流路と、
 第2膨張弁及びそれより下流側に近い第3熱交換器が設置されている冷媒第4流路と、
 第3膨張弁及びそれより下流側に近い第4熱交換器が設置されている冷媒第5流路と、
 貯液タンクと、を含み、
 前記ヒートポンプ空調システム内にはさらにコントローラが設置されており、前記ヒートポンプ空調システムは、前記コントローラを通して前記第1膨張弁、および、前記第2膨張弁、並びに、前記第1電磁弁、および、前記第2電磁弁の中の少なくとも任意の一方を制御することにより、前記冷媒第1流路、前記冷媒第2流路、前記冷媒第3流路、および、前記冷媒第4流路の間の異なる接続方式を切り換え、それにより様々な加熱モードを実行しており、
 前記コントローラは、前記ヒートポンプ空調システムが前記様々な加熱モードを実行する際に、以下の形式によって、前記第4熱交換器を通して車載発熱部材からの熱量を吸収する廃熱回収機能の起動または停止を制御し、前記ヒートポンプ空調システムの廃熱回収特性値を予め設定された第1閾値及び該第1閾値より大きい第2閾値と比較して、前記廃熱回収機能がオフの状態にある場合は、前記廃熱回収特性値が前記第2閾値を上回る場合にのみ前記廃熱回収機能を起動し、前記廃熱回収機能がオンの状態にある場合は、前記廃熱回収特性値が前記第1閾値を下回る場合にのみ前記廃熱回収機能を停止する。
 この開示は、廃熱回収機能を起動させた後、システムの加熱効率が常に廃熱回収機能の停止時の効率を上回り、かつヒートポンプ空調システムの変動の繰り返しを防止することを確保することができる。
 この開示の他の一つの側面としてのヒートポンプ空調システムは、
 ヒートポンプ空調システムにおいて、
 圧縮機と、
 第1熱交換器と、
 第1膨張弁及びそれより下流側に近い第2熱交換器が設置されている冷媒第1流路と、
 第1電磁弁が設置されている冷媒第2流路と、
 第2電磁弁が設置されている冷媒第3流路と、
 第2膨張弁及びそれより下流側に近い第3熱交換器が設置されている冷媒第4流路と、
 第3膨張弁及びそれより下流側に近い第4熱交換器が設置されている冷媒第5流路と、
 気液分離器と、
 第3電磁弁が設置されている冷媒第6流路と、
 前記気液分離器の液相と接続されている冷媒第7流路と、
 前記気液分離器の気相と接続されている冷媒分岐路と、を含み、
 前記ヒートポンプ空調システム内にはさらにコントローラが設置されており、前記ヒートポンプ空調システムは、前記コントローラを通して前記第1膨張弁、および、前記第2膨張弁、並びに、前記第1電磁弁、前記第2電磁弁、および、前記第3電磁弁の中の少なくとも任意の一方を制御することにより、前記冷媒第1流路、前記冷媒第2流路、前記冷媒第3流路、および、前記冷媒第4流路、並びに、前記冷媒第6流路、および、前記冷媒第7流路の各流路間の異なる接続方式を切り換え、それにより様々な加熱モードを実行しており、
 前記コントローラは、前記ヒートポンプ空調システムが前記様々な加熱モードを実行する際に、以下の形式によって、前記第4熱交換器を通して車載発熱部材からの熱量を吸収する廃熱回収機能の起動または停止を制御し、前記ヒートポンプ空調システムの廃熱回収特性値を予め設定された第1閾値及び該第1閾値より大きい第2閾値と比較して、前記廃熱回収機能がオフの状態にある場合は、前記廃熱回収特性値が前記第2閾値を上回る場合にのみ前記廃熱回収機能を起動し、前記廃熱回収機能がオンの状態にある場合は、前記廃熱回収特性値が前記第1閾値を下回る場合にのみ前記廃熱回収機能を停止する。
図1は、この開示の実施形態に基づくヒートポンプ空調システムの構造略図である。 図2は、図1のヒートポンプ空調システムが通常加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図3は、熱負荷特性値に基づく廃熱回収制御処理を示した概略図である。 図4は、廃熱量特性値に基づく廃熱回収制御処理を示した概略図である。 図5は、図1のヒートポンプ空調システムが並列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図6は、図1のヒートポンプ空調システムが直列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図7は、図1のヒートポンプ空調システムが蒸発器単独除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図8は、この開示のもう1つの実施形態に基づくヒートポンプ空調システムの構造略図である。 図9は、図8のヒートポンプ空調システムが通常加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図10は、図8のヒートポンプ空調システムが並列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図11は、図8のヒートポンプ空調システムが直列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図12は、図8のヒートポンプ空調システムが蒸発器単独除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。 図13は、図1に示すヒートポンプ空調システムの変形例の構成概略図である。
 以下では、図面と下記の実施形態を結び付けてこの開示をさらに説明しているが、図面及び下記の実施形態はこの開示を説明するためのものであって、この開示を限定するものではないことを理解しておかなければならない。
 ここでは、複数の運転モードにおいて、システム内の廃熱回収特性値の大きさに基づいて廃熱回収機能のオンオフを制御し、廃熱回収機能を起動させた後、システムの加熱効率が常に廃熱回収機能の停止時の加熱効率を上回り、かつシステムの変動の繰り返しを防止することを確保するヒートポンプ空調システムを公開している。
 ヒートポンプ空調システムは、車両に搭載する車両用空調装置であり、回路内における冷媒の流動状態を制御することにより車内の加熱、冷却、加熱除湿などの機能を実現する。
 図1はこの開示の1つの実施形態に基づくヒートポンプ空調システムの概略図であり、具体的には、図1は貯液タンク付きのヒートポンプ空調システム(以下、「貯液タンクヒートポンプシステム」と略称する)100を示している。図1に示すように、ヒートポンプ空調システム内には圧縮機1が設置されており、該圧縮機1は電動圧縮機であってよい。ヒートポンプ空調システム内では冷媒が循環流動しており、圧縮機1は吸入口から低温低圧気体冷媒を吸入し、モータの稼動によってピストンを動かし、それを圧縮した後、吐出口から高温高圧気体冷媒を吐出する。該冷媒の中には圧縮機1に対して潤滑を行うための潤滑油が混合されており、それらが圧縮機1の作用下でヒートポンプ空調システム内を共に循環流動する。
 圧縮機1の吐出口、即ち圧縮機1の下流側には第1熱交換器2が接続されている。第1熱交換器2は冷媒-冷却水熱交換器であり、本実施形態では水冷凝縮器であり、エンジンルームに設けられている。貯液タンクヒートポンプシステム100内にはさらに第1冷却水回路が設置されており、該第1冷却水回路は冷却水をポンプ輸送して循環させるためのポンプ9と、車内に進入する空気と熱交換を行うヒータコア11とを含む。高温高圧冷媒と第1冷却水回路内の冷却水は第1熱交換器2において熱交換を行い、冷媒によって冷却水を加熱することにより、加熱された冷却水がヒータコア11内で車内に進入する空気を加熱する。また、第1冷却水回路内に冷却水を補助加熱するためのPTC加熱器10を設置し、PTC加熱器10が生成する熱エネルギーをヒータコア11を通して車内に伝達することもできる。
 ヒートポンプ空調システムでは、第1熱交換器2の下流側にそれぞれ冷媒第1~第5流路が接続されている。本実施形態では、これらの流路を選択的に連通または遮断することにより、ヒートポンプ空調システム内における冷媒の流動状況を制御し、それによって異なる動作モードを実現して、自動車の熱管理需要を満たすことができる。
 具体的に言うと、冷媒第1流路上の冷媒流動方向に沿って、第1膨張弁3及び該第1膨張弁3より下流側に近い第2熱交換器4がこの順で設置されている。第1膨張弁3は電動式可変絞り機構、即ち電子膨張弁であり、後述のコントローラ50が出力する制御信号に基づいて開度を変更することができ、全閉時には冷媒第1流路を遮断して冷媒の通過を許さない。第2熱交換器4は車室外に位置する室外熱交換器であり、例えば車両走行時の走行風などの外気と接触して第1膨張弁3から流出する冷媒を外気と熱交換させることで、環境熱量を吸収する。
 冷媒第2流路上には第1電磁弁12aが設置されており、該第1電磁弁12aは、コントローラ50の制御下で冷媒第2流路を開閉することができる低圧電磁弁である。
 図1に示すように、冷媒第1流路と冷媒第2流路は下記の形式で接続されている。即ち、第1膨張弁3の入口は第1熱交換器2の出口側に接続され、第2熱交換器4の出口は第1電磁弁12aを介して貯液タンク7の入口に接続され、貯液タンク7の出口は管路によって圧縮機1の吸入口に接続されている。また、貯液タンクヒートポンプシステム100では、冷媒第1流路上から冷媒第3流路が分岐しており、具体的な内容は後述する。
 冷媒第4流路上の冷媒流動方向に沿って、第2膨張弁5及び該第2膨張弁5より下流側に近い第3熱交換器6がこの順で設置されている。そのうち、第2膨張弁5はコントローラ50が出力する制御信号に基づいて開度を調節できる電動式の可変絞り機構であり、全閉時には冷媒第4流路を遮断する。第3熱交換器6は車内空調ユニットの筐体内に設置されており、第2膨張弁5から吐出される低温低圧冷媒を車内へ送風する送風空気と熱交換させて、吸熱してそれを冷却することで、車内に対する除湿または冷却を行う。
 冷媒第5流路上の冷媒流動方向に沿って、第3膨張弁13及び該第3膨張弁13より下流側に近い第4熱交換器14がこの順で設置されている。そのうち、第3膨張弁13はコントローラ50が出力する制御信号に基づいて開度を調節できる電動式の可変絞り機構であり、全閉時には冷媒第5流路を遮断する。本実施形態では、第4熱交換器14は後述する第2冷却水回路と熱交換する水冷式の冷媒-冷却水熱交換器である。
 貯液タンクヒートポンプシステム100では、第2冷却水回路内を冷却水が循環流動しており、冷却水は車載発熱部材と熱交換することによってそれを冷却しており、車載発熱部材は、バッテリ16と、例えば電動モータ、インバータ、車載充電器などの強電系部材18を含む。本実施形態では、これらの高温の冷却水は第4熱交換器14の冷却水入口から流入し、第4熱交換器14内で冷媒入口から流入した低温冷媒と熱交換を行って低温の冷却水に変わり、冷却水出口から排出され、ポンプ15とポンプ17の作用により、バッテリ16及び強電系部材内にそれぞれ流入して熱交換を行う。これにより、第4熱交換器14はバッテリ冷却器または廃熱回収器として機能を発揮できるのである。
 図1に示すように、本実施形態では、冷媒第4流路及び冷媒第5流路は冷媒第2流路と並列する形で回路にカットインしており、言い換えると、2本の流路がそれぞれ上記第1電磁弁12aの両側に並列接続されている。より具体的には、第2熱交換器4の出口は第1電磁弁12aによって貯液タンク7と連結されているだけでなく、バイパス管路を介して冷媒第4流路の第2膨張弁5の入口及び冷媒第5流路の第3膨張弁13の入口とも接続されており、該バイパス管路上には逆止弁が設置されており、該逆止弁は冷媒が第2熱交換器4の出口から第2膨張弁5及び第3膨張弁13の入口へ流れることを許し、その逆方向の流動を禁止している。その一方で、第3熱交換器6及び第4熱交換器14の冷媒出口はそれぞれ貯液タンク7と接続されており、熱交換後の冷媒を貯液タンク7を通して圧縮機1に戻す。
 上述のように、冷媒第1流路からは冷媒第3流路が分岐しており、該冷媒第3流路は、片端が第1熱交換器2と第1膨張弁3との間に位置し、他端が第2熱交換器4の出口と第2膨張弁5及び第3膨張弁13の入口を接続する上記の管路上に位置するように設置されている。該冷媒第3流路上には第2電磁弁12bが設置されており、該第2電磁弁12bは、後述するコントローラ50の制御下で冷媒第3流路を開閉することができる高圧電磁弁である。言い換えれば、第2電磁弁12bが開くと、第1熱交換器2から流出した冷媒中の一部が、冷媒第3流路を経て冷媒第4流路及び/または冷媒第5流路に分岐することができるのである。
 また、貯液タンクヒートポンプシステム100は、コントローラ50も含まれている。該コントローラ50は、少なくともひとつのプロセッサを含む電気的な回路である。コントローラ50は、例えばROM、RAMなどのメモリとCPUを有するマイクロコンピュータであってよい。コントローラ50において、CPUがROMに保存されているプログラムを実行することによりこの明細書に開示された機能を実行する。コントローラ50は、プロセッサとしてのゲートアレイ、FPGA(field programmable gate array)などの論理回路である場合がある。この場合、論理回路がこの明細書に開示された機能を実行する。コントローラ50は貯液タンクヒートポンプシステム100内の各膨張弁、各電磁弁などに制御命令を送信することにより、各弁の開閉状況を制御して異なる熱管理モードを実現すると共に、各弁の開度の大きさを調節することによって、これらの熱管理モードでの動作負荷を満たしている。
 上記の構造の貯液タンクヒートポンプシステム100では、コントローラ50が各膨張弁、各電磁弁のうちの少なくとも任意の一方を制御することにより回路構造を変更し、冷媒を圧縮機1の作用下で回路構造の異なる貯液タンクヒートポンプシステム100内で循環流動させて、通常加熱モード、並列除湿加熱モード、直列除湿加熱モード及び蒸発器単独除湿加熱モードを含む複数の加熱モードを実行しており、これらの加熱モードにおいて、車載発熱部材が生成する廃熱を回収利用する廃熱回収機能を起動し、または停止させることができる。以下では、図1~図7を参照して、貯液タンクヒートポンプシステム100の複数の加熱モード及びそれに対応する廃熱回収制御機能を説明する。
 (通常加熱モード)
 図2は、図1のヒートポンプ空調システムが通常加熱モードを実行する時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図2の(a)、(b)に示すように、通常加熱モードは、貯液タンクヒートポンプシステム100が第1熱交換器2によって第1冷却水回路内の冷却水を加熱し、ヒータコア11を利用して車内に対する加熱を行うと共に、第2熱交換器4によって環境熱量を吸収するという動作モードである。具体的には、図1に示すように、コントローラ50が第1電磁弁12aを開いて冷媒第2流路を開通させ、かつ第2膨張弁5を閉じて冷媒第4流路を遮断することにより、通常加熱モードを実行する。該通常加熱モードでは、コントローラ50が、第2電磁弁12b及び第3膨張弁13を開き、即ち冷媒第3流路と冷媒第5流路を開通させることにより廃熱回収機能を起動させ、第2電磁弁12b及び第3膨張弁13の少なくとも任意の一方を閉じ、即ち冷媒第3流路または冷媒第5流路のうちの少なくとも任意の一方を遮断することにより廃熱回収機能を停止させる。
 具体的に言うと、図2の(a)に示すように、貯液タンクヒートポンプシステム100が、第2電磁弁12b及び第3膨張弁13の少なくとも任意の一方を閉じて廃熱回収機能を停止させた状態で通常加熱モードを実行する場合、圧縮機1、第1熱交換器2、冷媒第1流路及び冷媒第2流路がこの順で直列接続され、冷媒は以下の形式で貯液タンクヒートポンプシステム100内を循環流動する。即ち、低温低圧気体冷媒は、圧縮機1によって圧縮された後、高温高圧気体になって吐出口から吐出され、第1熱交換器2に流入して第1冷却水回路内の冷却水に対して放熱することで中温高圧の液体冷媒に変わり、冷媒第1流路内で第1膨張弁3の絞りを経て低温二相冷媒に成った後、第2熱交換器4を経る時に、冷媒が蒸発して環境熱量を吸収し、低圧の気体状態に近い冷媒になって冷媒第2流路に流入し、第1電磁弁12aを経た後、貯液タンク7に流入し、かつ圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図2の(b)に示すように、コントローラ50が第2電磁弁12b及び第3膨張弁13を開き、貯液タンクヒートポンプシステム100が、廃熱回収機能をオンにした状態で通常加熱モードを実行する。この時、冷媒第1流路と冷媒第2流路が直列されて成る流路と、冷媒第3流路と冷媒第5流路が直列されて成る流路が並列接続を形成し、第1熱交換器2から流出した中温高圧の液体冷媒は、第1熱交換器2と第1膨張弁3との間に位置して冷媒第1流路と冷媒第3流路に分岐する。一方、冷媒第1流路に流入した冷媒は、上述のように第1膨張弁3、第2熱交換器4をこの順で通過して低圧冷媒に変わり、第1電磁弁12aを通過する。その一方で、冷媒第4流路は第2膨張弁5の閉鎖により遮断され、かつ冷媒が冷媒第3流路からバイパス管路を経て冷媒第2流路に流れ込むことを逆止弁が阻止しているので、冷媒第3流路に流入した冷媒は、第2電磁弁12bを経て冷媒第5流路に進入し、第3膨張弁13を経る際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で冷媒が蒸発して車載発熱部材の廃熱を吸収し、低圧の気体状態に近い冷媒に変わる。該冷媒は、上記の第1電磁弁12aのもう1本の管路の冷媒と合流した後、貯液タンク7を経て圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、貯液タンクヒートポンプシステム100は、廃熱回収機能をオンまたはオフの状態にすることにより通常加熱モードを実行し、それにより車内に対して通常加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。
 (廃熱回収制御処理)
 上述のように、ヒートポンプ空調システム内のコントローラ50は、通常加熱モードにおいて、車両の熱管理需要に基づいて、第4熱交換器14を通して車載発熱部材からの熱量を吸収する廃熱回収機能を起動し、または停止する。ヒートポンプ空調システムが廃熱回収機能を起動すると、冷媒第5流路がヒートポンプ空調システム内に並列にカットインされて、冷媒の分流を行う。システムの実行過程では、実験データに基づき、並列接続された2つの熱交換器(室外熱交換器としての第2熱交換器4と廃熱回収器としての第4熱交換器14)のうちの任意の一方の冷媒流量が、一定時間内で持続的に20~40kg/hを下回る場合は、圧縮機に油不足によるデッドロックが発生する可能性があるので、圧縮機の油不足によるデッドロックの発生を防止するために、システムが圧縮機油戻し保護処理を起動する。油戻し保護処理の実行期間中にシステムに変動が生じると、効率が低下し、廃熱回収時のシステム効率が、廃熱を回収しない時のシステム効率を下回るという現象が発生する可能性がある。そのような状況を避けるために、この開示では、ヒートポンプ空調システムに対して車載発熱部材の廃熱を回収する際のシステム効率を予測するための廃熱回収特性値及びその規定値を設定しており、コントローラ50が該規定値とヒートポンプ空調システムのリアルタイムの廃熱回収特性値を比較することで、廃熱回収を行うか否かを判定すると共に、廃熱回収器としての第4熱交換器14の上流側の電磁弁及び/または膨張弁を開閉することにより、廃熱回収機能の起動または停止を実現する。
 その一方で、コントローラ50が、廃熱回収特性値が該規定値を上回る場合は直ちに廃熱回収機能を起動し、廃熱回収特性値が該規定値を下回る場合は直ちに廃熱回収機能を停止するのであれば、ヒートポンプ空調システムは、システムの熱負荷の変化または車載発熱部材が生成する廃熱量の変化により廃熱回収機能のオンオフを絶え間なく繰り返す(例えば膨張弁及び電磁弁の開閉を繰り返す)ので、弁の寿命を大幅に縮め、システムにも繰り返し変動が発生することになる。
 そこで、この開示では、廃熱回収特性値の規定値に対して、さらに第1閾値及び第2閾値を設定している。そのうち、第1閾値は、ヒートポンプ空調システムの加熱効率が、廃熱回収機能を起動した時に廃熱回収機能を起動していない時の廃熱回収特性値を超え始めるようにする閾値であり、第2閾値は、ヒートポンプ空調システムの加熱効率を、廃熱回収機能を起動した時の方が廃熱回収機能を起動していない時よりも高くなるようにした状況において、第3膨張弁13の動作寿命と車載発熱部材の廃熱量の熱損失という2つの要素を総合的に考慮した廃熱回収特性値の閾値である。
 実験の結果から、室外熱交換器としての第2熱交換器4の冷媒流量はシステムの熱負荷と関係していることがわかった。実験の結果から、廃熱回収器としての第4熱交換器14の冷媒流量は廃熱量と関係していることがわかった。よって、この開示では、廃熱回収特性値は、熱負荷特性値及び廃熱量特性値という2種類の信号を含むことができる。
 一方で、システムの熱負荷が比較的低い場合(車両全体の廃熱量の多さに関係なく)、第2熱交換器4が設置されている冷媒第1流路の流量が20~40kg/hを下回る可能性があるので、システムを効率が通常加熱モードより低い状態で稼動させないために、この開示では、車両の熱負荷を表すための熱負荷特性値に基づいて廃熱回収制御を行うという処理を採用することができる。図3は、熱負荷特性値に基づく廃熱回収制御処理を示す概略図である。
 車両の熱負荷をリアルタイムで計算することは難易度がかなり高いので、熱負荷特性値として圧縮機の回転速度SPD(rpm)を選択し、車両の熱負荷の大きさを表すと共に、熱負荷特性値としての圧縮機の回転速度SPD(rpm)に対して第1閾値STH1及び該第1閾値STH1より大きい第2閾値STH2を設定している。しかし、この開示はこれに限定されるわけではなく、例えば圧縮機1の電力消費量など、圧縮機の回転速度と正相関する物理量を熱負荷特性値として採用することもできる。
 通常加熱モードでのコントローラ50の制御特性は図3に示す通りである。コントローラ50は、熱負荷特性値としての圧縮機の回転速度SPD(rpm)と予め設定された第1閾値STH1及び第2閾値STH2とを比較する。コントローラ50は、ヒートポンプ空調システムが廃熱回収機能オフの状態(HR-OFF)にある時に、圧縮機の回転速度SPD(rpm)が第1閾値STH1を上回る場合は、車両側が廃熱回収を行うことを許しても、空調側は実際には廃熱回収を行わない(HR-OFF)。コントローラ50は、圧縮機の回転速度SPD(rpm)が第2閾値STH2を上回った場合のみ、空調側が廃熱回収を行う(HR-ON)。つまり、図3の矢印(OPN)が示すように、ヒートポンプ空調システムが廃熱回収機能をオフにしている状態(HR-OFF)では、圧縮機の回転速度SPD(rpm)が第2閾値STH2を上回って対応する電磁弁及び膨張弁を開き、廃熱回収機能を起動させるまで、引き続き廃熱回収を行わないのである。その一方で、ヒートポンプ空調システムが廃熱回収機能オンの状態(HR-ON)にある時に、圧縮機の回転速度SPD(rpm)が第2閾値STH2を下回っても依然として廃熱回収を停止しない。圧縮機の回転速度SPD(rpm)が第1閾値STH1を下回った場合のみ、空調側が実際に廃熱回収を停止する。即ち、図3の矢印(CLS)が示すように、ヒートポンプ空調システムが廃熱回収機能をオンにしている状態(HR-ON)では、圧縮機の回転速度SPD(rpm)が第1閾値STH1を下回って対応する電磁弁及び膨張弁を閉じ、廃熱回収機能を停止させるまで、引き続き廃熱回収を行うのである。実験データによると、第1閾値STH1は1000~1800rpm、第2閾値STH2は2200~3000rpmであってよい。
 その一方で、車両全体の廃熱量が比較的低い場合(システムの熱負荷の大きさに関係なく)、第4熱交換器14が設置されている冷媒第5流路の流量が20~40kg/hを下回る可能性があるので、システムを通常加熱状態を下回る効率で稼動させないように、この開示では、車載発熱部材が生成する廃熱量を表すための廃熱量特性値に基づいて廃熱回収制御を行う処理を採用することができる。図4は、廃熱量特性値に基づく廃熱回収制御処理を示す概略図である。
 リアルタイムに廃熱量を計算することはかなり困難であるため、廃熱量特性値として、廃熱回収器としての第4熱交換器14の冷却水入口と冷却水出口との間の任意の1点の冷却水温度と該第4熱交換器14を流れる飽和冷媒温度との差値DT(°C)(以下では「温度差値」と略称することもある)を選択して廃熱量の大きさを表している。また、廃熱量特性値としての該温度差値DT(°C)に対しても、第1閾値TTH1及び該第1閾値TTH1より大きい第2閾値TTH2を設定している。しかし、この開示はこれに限定されるわけではなく、冷媒直冷式の廃熱回収器を採用する回路では、後述する気液分離器ヒートポンプシステム200や貯液タンクヒートポンプシステム100Aのように、例えば車載発熱部材の温度と第4熱交換器14、24を流れる飽和冷媒温度の差値を採用して廃熱量特性値とすることもできる。
 温度差値DT(°C)を計算する一例として、図1に示す構成を採用することができる。冷媒第5流路の第4熱交換器14の下流側、即ち第4熱交換器14の冷媒出口に冷媒温度センサ19及び冷媒圧力センサ20が設置されている。第2冷却水回路の第4熱交換器14の冷却水出口に冷却水水温センサ21が設置されている。第4熱交換器14を流れる飽和冷媒温度は、冷媒圧力センサ20の測定値に基づいて算出することができる。代替的に、第4熱交換器14を流れる飽和冷媒温度は、第4熱交換器14の冷媒入口温度と冷媒出口温度のうちの小さい方を取って求めることができる。
 通常加熱モードでのコントローラ50の制御特性は図4に示す通りである。コントローラ50は、廃熱量特性値としての温度差値DT(°C)と予め設定された第1閾値TTH1及び第2閾値TTH2とを比較する。コントローラ50は、ヒートポンプ空調システムが廃熱回収機能オフの状態(HR-OFF)にある時に、温度差値DT(°C)が第1閾値TTH1を上回る場合は、車両側が廃熱回収を行うことを許しても、空調側は実際には廃熱回収を行わない(HR-OFF)。コントローラ50は、温度差値DT(°C)が第2閾値TTH2を上回った場合のみ、空調側が廃熱回収を行う(HR-ON)。つまり、図4の矢印(OPN)が示すように、ヒートポンプ空調システムが廃熱回収機能をオフにしている状態(HR-OFF)では、温度差値DT(°C)が第2閾値TTH2を上回って対応する電磁弁及び膨張弁を開き、廃熱回収機能を起動させるまでは、引き続き廃熱回収を行わないのである。その一方で、ヒートポンプ空調システムが廃熱回収機能オンの状態(HR-ON)にある時に、温度差値DT(°C)が第2閾値TTH2を下回っても依然として廃熱回収を停止しない。温度差値DT(°C)が第1閾値TTH1を下回った場合のみ、空調側が実際に廃熱回収を停止する。即ち、図4の矢印(CLS)が示すように、ヒートポンプ空調システムが廃熱回収機能をオンにしている状態(HR-ON)では、温度差値DT(°C)が第1閾値TTH1を下回って対応する電磁弁及び膨張弁を閉じ、廃熱回収機能を停止するまでは、引き続き廃熱回収を行うのである。実験データによると、第1閾値TTH1は0~5°C、第2閾値TTH2は6~11°Cであってよい。
 廃熱回収特性値に対して2つの閾値を設定することにより、廃熱回収機能のオンオフの間に緩衝領域を形成することができ、これによってヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高いことを保証すると共に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止している。図3、および、図4に図示される反応特性は、ヒステリシス特性とも呼ばれる。
 さらに、この開示では、熱負荷特性値と廃熱量特性値を総合的に考慮して、上記の廃熱回収制御処理を実施することもできる。具体的には、ヒートポンプ空調システムは、廃熱回収機能がオフである状態において、熱負荷特性値が熱負荷特性値の第2閾値を上回り、かつ廃熱量特性値が廃熱量特性値の第2閾値を上回る場合にのみ、コントローラ50が廃熱回収機能を制御してオフ状態をオン状態に切り換える。ヒートポンプ空調システムは、廃熱回収機能がオンである状態において、熱負荷特性値が熱負荷特性値の第1閾値を下回るか、または廃熱量特性値が廃熱量特性値の第1閾値を下回る場合にのみ、コントローラ50が廃熱回収機能を制御してオン状態をオフ状態に切り換える。これによって、システムの熱負荷が比較的低い情況及び車両全体の廃熱量が比較的低い状況を共に考慮し、ヒートポンプ空調システムが常に最適な効率で動作することを確保することができる。
 (並列除湿加熱モード)
 図5は、図1のヒートポンプ空調システムが並列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図5の(a)、(b)に示すように、並列除湿加熱モードは、貯液タンクヒートポンプシステム100が第1熱交換器2によって車内に対する加熱を行い、第2熱交換器4によって環境熱量を吸収し、かつ第3熱交換器6によって車内の除湿作業を行うという動作モードである。該並列除湿加熱モードでは、図1に示すように、コントローラ50が第1電磁弁12aを開いて冷媒第2流路を開通させ、かつ第2電磁弁12bを開いて冷媒第3流路を連通させると共に、第3膨張弁13を開閉することにより、即ち冷媒第5流路を開通または遮断することにより、廃熱回収機能を起動または停止させる。
 具体的に言うと、図5の(a)に示すように、貯液タンクヒートポンプシステム100が第3膨張弁13を閉じた状態、即ち廃熱回収機能をオフにした状態で並列除湿加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第1流路及び冷媒第2流路がこの順で直列接続され、冷媒第1流路と冷媒第2流路が直列されて成る流路と冷媒第3流路と冷媒第4流路が直列されて成る流路とが並列接続を形成し、かつ冷媒が以下の形で貯液タンクヒートポンプシステム100内を循環流動する。即ち、圧縮機1から吐出された高温高圧気体冷媒は、第1熱交換器2内で放熱して中温高圧の液体冷媒に変わり、該冷媒が、第1熱交換器2と第1膨張弁3との間に位置して冷媒第1流路と冷媒第3流路に分岐する。一方、冷媒第1流路に流入した冷媒は、第1膨張弁3、第2熱交換器4をこの順で通過した後、低圧冷媒に変わり、第1電磁弁12aを通過する。その一方で、冷媒第5流路は第3膨張弁13の閉鎖により遮断され、かつ冷媒が冷媒第3流路からバイパス管路を経て冷媒第2流路に流れ込むことを逆止弁が阻止しているので、冷媒第3流路に流入した冷媒は、第2電磁弁12bを経て冷媒第4流路に進入し、第2膨張弁5を経る際に、絞り及び膨張によって低温低圧二相冷媒に変わり、その後、第3熱交換器6内で車内空気と熱交換してそれを除湿する。該冷媒は、上記の第1電磁弁12aのもう1本の管路の冷媒と合流した後、貯液タンク7を経て圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図5の(b)に示すように、コントローラ50が第3膨張弁13を開いた状態、即ち廃熱回収機能をオンにした状態で、並列除湿加熱モードを実行する。この時、冷媒第1流路と冷媒第2流路が直列して成る流路、冷媒第3流路と冷媒第4流路が直列して成る流路、及び冷媒第5流路の3路が並列接続され、冷媒第3流路に流入する冷媒が第2電磁弁12bを経て再度分岐され、それぞれが冷媒第4流路及び冷媒第5流路に流入する。冷媒第4流路に流入した冷媒は、前述のように、第2膨張弁5を経た後、第3熱交換器6内で車内空気と熱交換して除湿を行う。冷媒第5流路に流入した冷媒は、第3膨張弁13を経る際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で車載発熱部材の廃熱を吸収し、低圧の気体状態に近い冷媒に変わる。該冷媒、冷媒第4流路から流出した上記冷媒、及び第1電磁弁12aを経た冷媒の3つが合流した後、貯液タンク7を経て圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、貯液タンクヒートポンプシステム100は、廃熱回収機能をオンまたはオフの状態にすることにより並列除湿加熱モードを実行し、それにより車内に対して並列除湿加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。並列除湿加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証し、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止しており、該廃熱回収制御処理は通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 (直列除湿加熱モード)
 図6は、図1のヒートポンプ空調システムが直列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図6の(a)、(b)に示すように、直列除湿加熱モードは、貯液タンクヒートポンプシステム100が第1熱交換器2によって車内に対する加熱を行い、第2熱交換器4によって環境熱量を吸収し、かつ第3熱交換器6によって車内の除湿作業を行うという動作モードである。該直列除湿加熱モードでは、図1に示すように、コントローラ50が第1膨張弁3、第2膨張弁5を制御して絞り、かつ第1電磁弁12aを閉じて冷媒第2流路を遮断し、第2電磁弁12bを閉じて冷媒第3流路を遮断すると共に、第3膨張弁13を開閉することにより、即ち冷媒第5流路を開通または遮断することにより、廃熱回収機能を起動または停止させる。
 具体的に言うと、図6の(a)に示すように、貯液タンクヒートポンプシステム100が第3膨張弁13を閉めた状態、即ち廃熱回収機能をオフにした状態で直列除湿加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第1流路及び冷媒第4流路がこの順で直列接続され、かつ冷媒が以下の形で貯液タンクヒートポンプシステム100内を循環流動する。即ち、圧縮機1から吐出された高温高圧気体冷媒は、第1熱交換器2内で放熱して中温高圧の液体冷媒に変わって第1流路に流入し、冷媒は、第1膨張弁3、第2熱交換器4をこの順で通過した後、中圧冷媒に変わって冷媒第4流路に流入し、第2膨張弁5を経る際に、絞り及び膨張によって低温低圧二相冷媒に変わり、続いて第3熱交換器6内で車内空気と熱交換してそれを除湿した後、貯液タンク7を経て圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図6の(b)に示すように、コントローラ50が第3膨張弁13を開いた状態、即ち廃熱回収機能をオンにした状態で、直列除湿加熱モードを実行する。この時、圧縮機1、第1熱交換器2、冷媒第1流路及び冷媒第4流路がこの順で直列接続されることを基礎として、冷媒第5流路と冷媒第4流路が並列接続を形成する。冷媒は第2熱交換器4から流出した後、逆止弁が設けられているバイパス管路を経て冷媒第4流路と冷媒第5流路に分岐する。一方では、冷媒第4流路に流入した中圧冷媒は、前述のように第2膨張弁5を通過する際に、絞り及び膨張によって低温低圧二相冷媒に変わり、かつ第3熱交換器6において車内空気の除湿を行う。その一方で、冷媒第5流路に流入した冷媒は、第3膨張弁13を経る際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で車載発熱部材の廃熱を吸収し、低圧の気体状態に近い冷媒に変わる。該冷媒は、冷媒第4流路から流出した上記の冷媒と合流した後、貯液タンク7を経て圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、貯液タンクヒートポンプシステム100は、廃熱回収機能をオンまたはオフの状態にすることにより直列除湿加熱モードを実行し、それにより車内に対して直列除湿加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。直列除湿加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証すると同時に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止している。該廃熱回収制御処理は通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 (蒸発器単独除湿加熱モード)
 図7は、図1のヒートポンプ空調システムが蒸発器単独除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図7の(a)、(b)に示すように、蒸発器単独除湿加熱モードは、貯液タンクヒートポンプシステム100が第1熱交換器2によって車内に対する加熱を行い、かつ蒸発器としての第3熱交換器6によって除湿作業を行うという動作モードである。該除湿加熱モードでは、図1に示すように、コントローラ50が第1膨張弁3及び第1電磁弁12aを閉じて冷媒第1流路及び冷媒第2流路を遮断し、かつ第2電磁弁12bを開いて冷媒第3流路を開通させると共に、第3膨張弁13を開閉することにより、即ち冷媒第5流路を開通または遮断することにより、廃熱回収機能を起動または停止させる。
 具体的に言うと、図7の(a)に示すように、貯液タンクヒートポンプシステム100が第3膨張弁13を閉めた状態、即ち廃熱回収機能をオフにした状態で蒸発器単独除湿加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第3流路及び冷媒第4流路がこの順で直列接続され、かつ冷媒が以下の形で貯液タンクヒートポンプシステム100内を循環流動する。即ち、圧縮機1から吐出された高温高圧気体冷媒は、第1熱交換器2内で放熱して中温高圧の液体冷媒に変わって冷媒第3流路に流入し、冷媒は、第2電磁弁12bを通過した後、冷媒第4流路に流入し、第2膨張弁5を経る際に、絞り及び膨張によって低温低圧二相冷媒に変わり、続いて第3熱交換器6内で車内空気と熱交換してそれを除湿した後、貯液タンク7を経て圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図7の(b)に示すように、コントローラ50が第3膨張弁13を開いた状態、即ち廃熱回収機能をオンにした状態で、蒸発器単独除湿加熱モードを実行する。この時、圧縮機1、第1熱交換器2、冷媒第3流路及び冷媒第4流路がこの順で直列接続されることを基礎として、冷媒第5流路と冷媒第4流路が並列接続を形成する。冷媒は第2電磁弁12bを通過して冷媒第4流路及び冷媒第5流路に分岐する。一方、冷媒第4流路に流入した高圧冷媒は、上記のように、第2膨張弁5を通過する際に、絞り及び膨張によって低温低圧二相冷媒に変わり、かつ第3熱交換器6において車内空気の除湿を行う。その一方で、冷媒第5流路に流入した冷媒は、第3膨張弁13を経る際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で車載発熱部材の廃熱を吸収し、低圧の気体状態に近い冷媒に変わる。該冷媒は、冷媒第4流路から流出した上記の冷媒と合流した後、貯液タンク7を経て圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、貯液タンクヒートポンプシステム100は、廃熱回収機能をオンまたはオフの状態にすることにより蒸発器単独除湿加熱モードを実行し、それにより車内に対して蒸発器単独除湿加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。蒸発器単独除湿加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証すると同時に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止しており、該廃熱回収制御処理は通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 図8は、この開示のもう1つの実施形態に基づくヒートポンプ空調システムの概略図であり、具体的には、図8は気液分離器付きのヒートポンプ空調システム(以下、「気液分離器ヒートポンプシステム」と略称する)200を示している。気液分離器ヒートポンプシステム200内には圧縮機1が設置されており、圧縮機1の吐出口、即ち圧縮機1の下流側には第1熱交換器2が接続され、第1熱交換器2の下流側には冷媒第1~第7流路がそれぞれ接続されている。本実施形態では、これらの流路を選択的に連通または遮断することにより、ヒートポンプ空調システム内における冷媒の流動状況を制御し、それによって異なる動作モードを実現して、自動車の熱管理需要を満たしている。
 具体的に言うと、気液分離器ヒートポンプシステム200内には、圧縮機1と、第1熱交換器2と、冷媒第6流路と、冷媒第1流路と、冷媒第2流路がこの順に直列して設置されている。冷媒第1流路上の冷媒流動方向に沿って、第1膨張弁3及び該第1膨張弁3より下流側に近い第2熱交換器4がこの順で設置され、冷媒第2流路上には第1電磁弁12aが設置され、冷媒第6流路上には第3電磁弁12cが設置されている。
 第1熱交換器2と第3電磁弁12cとの間には、第2電磁弁12bが設けられた冷媒第3流路が分岐しており、その他端は気液分離器8の入口、即ち気液分離器8の気相と接続されている。第2熱交換器4と第1電磁弁12aとの間には冷媒分岐路が分岐しており、該冷媒分岐路の他端は冷媒第3流路と共に気液分離器8の入口に接続されており、該冷媒分岐路上には逆止弁が設けられ、該逆止弁は冷媒が第2熱交換器4の出口から分岐して気液分離器8の入口に向かって流れることを許し、その逆方向の流動を阻止する。
 第3電磁弁12cと第1膨張弁3との間には冷媒第7流路が分岐しており、その他端は気液分離器8の出口、即ち気液分離器8の液相と接続されている。該冷媒第7流路上には逆止弁が設置されており、該逆止弁は液体冷媒が気液分離器8の出口から第1膨張弁3の入口に向かって流れることを許し、その逆方向の流動を阻止している。
 本実施形態では、冷媒第7流路上に冷媒第4流路と冷媒第5流路が分岐している。冷媒第4流路上の冷媒流動方向に沿って、第2膨張弁5及び該第2膨張弁5より下流側に近い第3熱交換器6がこの順で設置されており、冷媒第5流路上の冷媒流動方向に沿って、第3膨張弁13及び該第3膨張弁13より下流側に近い第4熱交換器14がこの順で設置されている。該冷媒第4流路及び冷媒第5流路は、第2膨張弁5の入口側と第3膨張弁13の入口側がそれぞれ冷媒第7流路に接続され、第3熱交換器6の出口側及び第4熱交換器14の出口側がそれぞれ圧縮機1の吸入口に接続される形で並列接続され、冷媒を流通させている。
 また、気液分離器ヒートポンプシステム200は、コントローラ50をさらに含む。該コントローラ50は気液分離器ヒートポンプシステム200内の各膨張弁、各電磁弁などに制御命令を送信することにより、各弁の開閉状況を制御して異なる熱管理モードを実現すると共に、各弁の開度の大きさを調節することによって、これらの熱管理モードでの動作負荷を満たしている。
 上記の構造の気液分離器ヒートポンプシステム200では、コントローラ50が各膨張弁、各電磁弁のうちの少なくとも任意の一方を制御することにより回路構造を変更し、冷媒を圧縮機1の作用下で回路構造の異なる気液分離器ヒートポンプシステム200内で循環流動させて、通常加熱モード、並列除湿加熱モード、直列除湿加熱モード及び蒸発器単独除湿加熱モードを含む様々な加熱モードを実行しており、これらの加熱モードにおいて、車載発熱部材が生成する廃熱を回収利用する廃熱回収機能を起動または停止させることができる。以下では、図9~図12を参照して、気液分離器ヒートポンプシステム200の複数の加熱モード及びこれらの加熱モード下での廃熱回収制御機能を説明する。
 (通常加熱モード)
 図9は、図8のヒートポンプ空調システムが通常加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図9の(a)、(b)に示すように、コントローラ50は、第1電磁弁12aを開いて冷媒第2流路を開通させ、第2電磁弁12bを開いて冷媒第3流路を開通させ、第3電磁弁12cを閉じて冷媒第6流路を遮断し、かつ第2膨張弁5を閉じて冷媒第4流路を遮断することにより、通常加熱モードを実行する。該通常加熱モードでは、コントローラ50が、第3膨張弁13を開く、即ち冷媒第5流路を開通することにより廃熱回収機能を起動させ、第3膨張弁13閉じ、即ち冷媒第5流路を遮断することにより廃熱回収機能を停止させる。
 具体的に言うと、図9の(a)に示すように、気液分離器ヒートポンプシステム200が、第3膨張弁13を閉めた廃熱回収機能オフの状態で通常加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第3流路、気液分離器8、冷媒第7流路、冷媒第1流路及び冷媒第2流路がこの順で直列接続され、冷媒が以下の形で貯液タンクヒートポンプシステム100内を循環流動する。即ち、低温低圧気体冷媒は、圧縮機1によって圧縮された後、高温高圧気体になって吐出口から吐出され、第1熱交換器2に流入して放熱することで中温高圧の液体冷媒に変わり、冷媒第3流路を通って気液分離器8に流入して気液分離を行い、気液分離器8から流出した液体冷媒は、冷媒第7流路を通って冷媒第1流路に流入し、冷媒第1流路内で第1膨張弁3の絞りを経て低温二相冷媒に変わった後、第2熱交換器4を通過する際に、冷媒が蒸発して環境熱量を吸収し、低圧の気体状態に近い冷媒になって冷媒第2流路に流入し、第1電磁弁12aを経たて圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図9の(b)に示すように、コントローラ50が第3膨張弁13を開き、気液分離器ヒートポンプシステム200が、廃熱回収機能をオンにした状態で通常加熱モードを実行する。この時、冷媒第7流路、冷媒第1流路、冷媒第2流路が直列して成る流路と冷媒第5流路とが並列接続を形成し、気液分離器8から流出した液体冷媒は、冷媒第7流路上で冷媒第5流路に分岐する。一方、冷媒第1流路に流入した冷媒は、上記のように第1膨張弁3、第2熱交換器4をこの順で通過した後、低圧冷媒に変わり、第1電磁弁12aを通過する。その一方で、冷媒第5流路に流入した冷媒は、第3膨張弁13を通過する際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で冷媒が蒸発し、車載発熱部材の廃熱を吸収して、低圧の気体状態に近い冷媒に変わる。該冷媒は、上記の第1電磁弁12aのもう1本の管路の冷媒と合流した後、圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、気液分離器ヒートポンプシステム200は、廃熱回収機能をオンまたはオフの状態にすることにより通常加熱モードを実行し、それによって車内に対して通常加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。気液分離器ヒートポンプシステム200の通常加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証すると同時に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止しており、該廃熱回収制御処理は貯液タンクヒートポンプシステム100の通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 (並列除湿加熱モード)
 図10は、図8のヒートポンプ空調システムが並列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図10の(a)、(b)に示すように、コントローラ50は、第1電磁弁12aを開いて冷媒第2流路を開通させ、第2電磁弁12bを開いて冷媒第3流路を開通させ、第3電磁弁12cを閉じて冷媒第6流路を遮断し、かつ第2膨張弁5を絞って冷媒第4流路を連通させることにより、並列除湿加熱モードを実行する。該並列除湿加熱モードでは、コントローラ50が、第3膨張弁13を開く、即ち冷媒第5流路を開通させることにより廃熱回収機能を起動させ、第3膨張弁13閉じる、即ち冷媒第5流路を遮断することにより廃熱回収機能を停止させる。
 具体的に言うと、図10の(a)に示すように、気液分離器ヒートポンプシステム200が、第3膨張弁13を閉めた廃熱回収機能オフの状態で並列除湿加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第3流路、気液分離器8、冷媒第7流路、冷媒第1流路及び冷媒第2流路がこの順で直列接続され、冷媒第7流路、冷媒第1流路、冷媒第2流路が直列されて成る流路と冷媒第4流路とが並列接続を形成し、冷媒が以下の形で気液分離器ヒートポンプシステム200内を循環流動する。即ち、圧縮機1から吐出される高温高圧気体冷媒は、第1熱交換器2内で放熱して中温高圧の液体冷媒に変わり、冷媒第3流路を通って気液分離器8に流入して気液分離を行い、気液分離器8から流出した液体冷媒は、冷媒第7流路上で冷媒第1流路と冷媒第4流路に分岐する。一方、冷媒第1流路に流入した冷媒は、第1膨張弁3、第2熱交換器4をこの順で通過して低圧冷媒に変わり、第1電磁弁12aを通過する。その一方で、冷媒第5流路は第3膨張弁13の閉鎖によって遮断されるため、冷媒第7流路内を流動する冷媒は分岐して冷媒第4流路に進入し、第2膨張弁5を通過する際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、第3熱交換器6内で車内空気と熱交換し、その除湿を行う。該冷媒は、上記の第1電磁弁12aのもう1本の管路の冷媒と合流した後、圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図10の(b)に示すように、コントローラ50が第3膨張弁13を開き、気液分離器ヒートポンプシステム200が、廃熱回収機能をオンにした状態で並列除湿加熱モードを実行する。この時、冷媒第7流路、冷媒第1流路、冷媒第2流路が直列して成る流路と、冷媒第4流路と、冷媒第5流路の3路が並列接続を形成し、気液分離器8から流出した液体冷媒は、冷媒第7流路上で冷媒第4流路と冷媒第5流路に分岐する。第1の面では、冷媒第1流路に流入した冷媒は、上述のように第1膨張弁3、第2熱交換器4をこの順で通過した後、低圧冷媒に変わり、第1電磁弁12aを通過する。第2の面では、冷媒第4流路に流入した冷媒は、第2膨張弁5を経る際に、絞り及び膨張によって低温低圧二相冷媒に変わり、その後、第3熱交換器6内で車内空気と熱交換し、その除湿を行う。第3の面では、冷媒第5流路に流入した冷媒は、第3膨張弁13を通過する際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で冷媒が蒸発し、車載発熱部材の廃熱を吸収して、低圧の気体状態に近い冷媒に変わる。上記の3路の冷媒は、合流後、圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、気液分離器ヒートポンプシステム200は、廃熱回収機能をオンまたはオフの状態にすることにより並列除湿加熱モードを実行し、それにより車内に対して並列除湿加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。気液分離器ヒートポンプシステム200の並列除湿加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証すると同時に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止しており、該廃熱回収制御処理は貯液タンクヒートポンプシステム100の通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 (直列除湿加熱モード)
 図11は、図8のヒートポンプ空調システムが直列除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図11の(a)、(b)に示すように、コントローラ50は、第1電磁弁12aを閉じて冷媒第2流路を遮断し、第2電磁弁12bを閉じて冷媒第3流路を遮断し、第3電磁弁12cを開いて冷媒第6流路を開通させ、かつ第2膨張弁5を絞って冷媒第4流路を連通させることにより、直列除湿加熱モードを実行する。該直列除湿加熱モードでは、コントローラ50が、第3膨張弁13を開く、即ち冷媒第5流路を開通させることにより廃熱回収機能を起動させ、第3膨張弁13閉じる、即ち冷媒第5流路を遮断することにより廃熱回収機能を停止させる。
 具体的に言うと、図11の(a)に示すように、気液分離器ヒートポンプシステム200が、第3膨張弁13を閉めた廃熱回収機能オフの状態で直列除湿加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第6流路、冷媒第1流路、冷媒分岐路、気液分離器8及び冷媒第4流路がこの順で直列接続され、冷媒が以下の形で気液分離器ヒートポンプシステム200内を循環流動する。即ち、圧縮機1から吐出された高温高圧気体冷媒は、第1熱交換器2内で放熱して中温高圧の液体冷媒に変わり、冷媒第6流路を通って冷媒第1流路に流入し、冷媒第1流路内で第1膨張弁3の絞りを経て低温二相冷媒に変わった後、第2熱交換器4を通過する時に、冷媒が蒸発して環境熱量を吸収して中圧冷媒に変わり、冷媒分岐路を通って気液分離器8に流入して気液分離を行い、気液分離器8から流出した液体冷媒は冷媒第4流路に流入し、第2膨張弁5を経る際に、絞り及び膨張によって低温低圧二相冷媒に変わり、その後、第3熱交換器6内で車内空気と熱交換してそれを除湿した後、圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図11の(b)に示すように、コントローラ50が第3膨張弁13を開き、気液分離器ヒートポンプシステム200が、廃熱回収機能をオンにした状態で直列除湿加熱モードを実行する。この時、冷媒第4流路と冷媒第5流路が並列接続を形成し、気液分離装置8から流出した液体冷媒は、冷媒第4流路と冷媒第5流路に分岐する。一方、冷媒第4流路に流入した冷媒は、第2膨張弁5を経る際に、絞り及び膨張によって低温低圧二相冷媒に変わり、その後、第3熱交換器6内で車内空気と熱交換し、その除湿を行う。その一方で、冷媒第5流路に流入した冷媒は、第3膨張弁13を通過する際に、絞り及び膨張により低温低圧の二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で冷媒が蒸発して車載発熱部材の廃熱を吸収し、低圧の気体状態に近い冷媒に変わる。上記2路の冷媒は、合流後、圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、気液分離器ヒートポンプシステム200は、廃熱回収機能をオンまたはオフの状態にすることにより直列除湿加熱モードを実行し、それにより車内に対して直列除湿加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。気液分離器ヒートポンプシステム200の直列除湿加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証すると同時に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止しており、該廃熱回収制御処理は貯液タンクヒートポンプシステム100の通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 (蒸発器単独除湿加熱モード)
 図12は、図8のヒートポンプ空調システムが蒸発器単独除湿加熱モードを実行した時の冷媒流動状態を示しており、(a)は廃熱回収機能をオフにした時の冷媒流動状態、(b)は廃熱回収機能をオンにした時の冷媒流動状態である。図12の(a)、(b)に示すように、コントローラ50は、第1電磁弁12aを閉じて冷媒第2流路を遮断し、第2電磁弁12bを開いて冷媒第3流路を開通させ、第3電磁弁12cを閉じて冷媒第6流路を遮断し、かつ第2膨張弁5を絞って冷媒第4流路を連通させることにより、蒸発器単独除湿加熱モードを実行する。該蒸発器単独除湿加熱モードでは、コントローラ50が、第3膨張弁13を開く、即ち冷媒第5流路を開通させることにより廃熱回収機能を起動させ、第3膨張弁13閉じる、即ち冷媒第5流路を遮断することにより廃熱回収機能を停止させる。
 具体的に言うと、図12の(a)に示すように、気液分離器ヒートポンプシステム200が第3膨張弁13を閉じた状態、即ち廃熱回収機能をオフにした状態で蒸発器単独除湿加熱モードを実行する場合は、圧縮機1、第1熱交換器2、冷媒第3流路及び冷媒第4流路がこの順で直列接続され、かつ冷媒が以下の形で気液分離器ヒートポンプシステム200内を循環流動する。即ち、圧縮機1から吐出された高温高圧気体冷媒は、第1熱交換器2内で放熱して中温高圧の液体冷媒に変わり、冷媒第3流路を通って気液分離器8に流入し、気液分離器8から流出した液体冷媒は冷媒第4流路に流入し、第2膨張弁5を通過する際に、絞り及び膨張によって低温低圧二相冷媒に変わり、続いて第3熱交換器6内で車内空気と熱交換してそれを除湿した後、貯液タンク7を経て圧縮機1に戻る。
 システムが廃熱回収を行う必要があると判定した場合は、図12の(b)に示すように、コントローラ50が第3膨張弁13を開いた状態、即ち廃熱回収機能をオンにした状態で、直列除湿加熱モードを実行する。この時、圧縮機1、第1熱交換器2、冷媒第3流路及び冷媒第4流路がこの順で直列接続されることを基礎として、冷媒第5流路と冷媒第4流路が並列接続を形成する。冷媒は気液分離装置8から流出した後、冷媒第4流路及び冷媒第5流路に分岐する。一方、冷媒第4流路に流入した高圧冷媒は、上述のように第2膨張弁5を通過する際に、絞り及び膨張によって低温低圧二相冷媒に変わり、かつ第3熱交換器6において車内空気の除湿を行う。その一方で、冷媒第5流路に流入した冷媒は、第3膨張弁13を経る際に、絞り及び膨張により低温低圧二相冷媒に変わり、その後、廃熱回収器としての第4熱交換器14内で車載発熱部材の廃熱を吸収し、低圧の気体状態に近い冷媒に変わる。上記2路の冷媒は、合流後、圧縮機1に戻る。
 上記の構造により、コントローラ50の制御下で、気液分離器ヒートポンプシステム200は、廃熱回収機能をオンまたはオフの状態にすることにより蒸発器単独除湿加熱モードを実行し、それにより車内に対して蒸発器単独除湿加熱を行うと同時に、車両の熱管理需要に基づいて、選択的に廃熱回収を行うことができる。気液分離器ヒートポンプシステム200の蒸発器単独除湿加熱モードでも、図3、図4のように廃熱回収制御処理を講じることができ、それによりヒートポンプ空調システムの廃熱回収機能がオンの時の加熱効率が常に廃熱回収機能がオフの時の加熱効率より高くなることを保証すると同時に、弁部材の開閉を繰り返すことにより引き起こされる弁部材寿命の短縮やヒートポンプ空調システムに出現する変動を有効に防止しており、該廃熱回収制御処理は貯液タンクヒートポンプシステム100の通常加熱モードでの廃熱回収制御処理と同じなので、説明は省略する。
 なお、上記の貯液タンクヒートポンプシステム100は、図1に示す構成に限らないということを説明しておかなければならない。貯液タンクヒートポンプシステム100の変形として、図13は、貯液タンクヒートポンプシステム100の変形例としての貯液タンクヒートポンプシステム100Aを示している。
 図13に示すように、貯液タンクヒートポンプシステム100とは異なり、貯液タンクヒートポンプシステム100Aには第1冷却水回路が設けられておらず、その代わりに車内凝縮器(冷媒-空気熱交換器)としての第1熱交換器22を直接使用して空気への放熱を行っており、オプションとしては、空調システムの排風口にPCT加熱器23を設置して補助加熱を行うことができる。また、貯液タンクヒートポンプシステム100Aには第2冷却水回路も設けられておらず、冷媒第5流路上に冷媒直冷式の第4熱交換器24が設置され、バッテリ及び強電系の廃熱を直接回収している。
 同様に、上記の気液分離器ヒートポンプシステム200も、図8に示す構造に限られるわけではなく、貯液タンクヒートポンプシステム100のように第1冷却水回路を設置し、かつ冷媒-冷却水式の熱交換器を採用することで、空冷式の第1熱交換器2に代えることもできる。また、貯液タンクヒートポンプシステム100のように第2冷却水回路を設置し、かつ冷媒-冷却水式の廃熱回収器を採用することで、第4熱交換器14に代えることもできる。
 以上の具体的実施形態は、この開示の目的、技術手法及び有益な効果に対するより詳細な説明であり、上記はこの開示の1つの具体的な実施形態にすぎず、この開示の保護範囲を限定するものではないことを理解しておかなければならない。この開示の基本的特徴から逸脱しないことを旨として、この開示は様々な形式に具現化することができる。つまり、この開示の実施形態は、説明のためのものであって限定のためのものではなく、この開示の範囲は請求項によって限定されるものであって、明細書によって限定されるものではなく、また請求項で画定された範囲、またはその画定された範囲と同等の範囲内のすべての変化は、請求の範囲の中に含まれているものと理解しなければならない。この開示の主旨及び原則内で行われる修正、同等の置換、改良などは、すべてこの開示の保護範囲に含まれるものとする。

 

Claims (17)

  1.  ヒートポンプ空調システムにおいて、
     圧縮機と、
     第1熱交換器と、
     第1膨張弁及びそれより下流側に近い第2熱交換器が設置されている冷媒第1流路と、
     第1電磁弁が設置されている冷媒第2流路と、
     第2電磁弁が設置されている冷媒第3流路と、
     第2膨張弁及びそれより下流側に近い第3熱交換器が設置されている冷媒第4流路と、
     第3膨張弁及びそれより下流側に近い第4熱交換器が設置されている冷媒第5流路と、
     貯液タンクと、を含み、
     前記ヒートポンプ空調システム内にはさらにコントローラが設置されており、前記ヒートポンプ空調システムは、前記コントローラを通して前記第1膨張弁、および、前記第2膨張弁、並びに、前記第1電磁弁、および、前記第2電磁弁の中の少なくとも任意の一方を制御することにより、前記冷媒第1流路、前記冷媒第2流路、前記冷媒第3流路、および、前記冷媒第4流路の間の異なる接続方式を切り換え、それにより様々な加熱モードを実行しており、
     前記コントローラは、前記ヒートポンプ空調システムが前記様々な加熱モードを実行する際に、以下の形式によって、前記第4熱交換器を通して車載発熱部材からの熱量を吸収する廃熱回収機能の起動または停止を制御し、前記ヒートポンプ空調システムの廃熱回収特性値を予め設定された第1閾値及び該第1閾値より大きい第2閾値と比較して、前記廃熱回収機能がオフの状態にある場合、前記廃熱回収特性値が前記第2閾値を上回る場合にのみ前記廃熱回収機能を起動し、前記廃熱回収機能がオンの状態にある場合は、前記廃熱回収特性値が前記第1閾値を下回る場合にのみ前記廃熱回収機能を停止するヒートポンプ空調システム。
  2.  ヒートポンプ空調システムにおいて、
     圧縮機と、
     第1熱交換器と、
     第1膨張弁及びそれより下流側に近い第2熱交換器が設置されている冷媒第1流路と、
     第1電磁弁が設置されている冷媒第2流路と、
     第2電磁弁が設置されている冷媒第3流路と、
     第2膨張弁及びそれより下流側に近い第3熱交換器が設置されている冷媒第4流路と、
     第3膨張弁及びそれより下流側に近い第4熱交換器が設置されている冷媒第5流路と、
     気液分離器と、
     第3電磁弁が設置されている冷媒第6流路と、
     前記気液分離器の液相と接続されている冷媒第7流路と、
     前記気液分離器の気相と接続されている冷媒分岐路と、を含み、
     前記ヒートポンプ空調システム内にはさらにコントローラが設置されており、前記ヒートポンプ空調システムは、前記コントローラを通して前記第1膨張弁、および、前記第2膨張弁、並びに、前記第1電磁弁、および、前記第3電磁弁の中の少なくとも任意の一方を制御することにより、前記冷媒第1流路、前記冷媒第2流路、前記冷媒第3流路、および、前記冷媒第4流路、並びに、前記冷媒第6流路、および、前記冷媒第7流路の各流路間の異なる接続方式を切り換え、それにより様々な加熱モードを実行しており、
     前記コントローラは、前記ヒートポンプ空調システムが前記様々な加熱モードを実行する際に、以下の形式によって、前記第4熱交換器を通して車載発熱部材からの熱量を吸収する廃熱回収機能の起動または停止を制御し、前記ヒートポンプ空調システムの廃熱回収特性値を予め設定された第1閾値及び該第1閾値より大きい第2閾値と比較して、前記廃熱回収機能がオフの状態にある場合は、前記廃熱回収特性値が前記第2閾値を上回る場合にのみ前記廃熱回収機能を起動し、前記廃熱回収機能がオンの状態にある場合は、前記廃熱回収特性値が前記第1閾値を下回る場合にのみ前記廃熱回収機能を停止するヒートポンプ空調システム。
  3.  前記様々な加熱モードは通常加熱モードを含み、前記ヒートポンプ空調システムが前記通常加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第1流路、前記冷媒第2流路が直列接続され、かつ前記第1膨張弁が絞りを行い、前記第1電磁弁は開き、前記第2膨張弁は閉じており、
     前記コントローラは、前記第2電磁弁及び前記第3膨張弁を開いて前記冷媒第3流路と前記冷媒第5流路を連通させることにより前記廃熱回収機能の起動を制御し、前記第2電磁弁及び前記第3膨張弁のうちの少なくとも任意の一方を閉じて前記冷媒第3流路または前記冷媒第5流路を遮断することにより、前記廃熱回収機能の停止を制御する請求項1に記載のヒートポンプ空調システム。
  4.  前記様々な加熱モードは並列除湿加熱モードを含み、前記ヒートポンプ空調システムが前記並列除湿加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第1流路、前記冷媒第2流路が直列接続され、前記冷媒第1流路と前記冷媒第2流路が直列されて成る流路と前記冷媒第3流路と前記冷媒第4流路が直列されて成る流路が並列接続され、かつ前記第1膨張弁及び前記第2膨張弁が絞りを行い、前記第1電磁弁及び前記第2電磁弁は開いており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項1に記載のヒートポンプ空調システム。
  5.  前記様々な加熱モードは直列除湿加熱モードを含み、前記ヒートポンプ空調システムが前記直列除湿加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第1流路、前記冷媒第4流路が直列接続され、かつ前記第1膨張弁及び前記第2膨張弁が絞りを行い、前記第1電磁弁及び前記第2電磁弁は閉じており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項1に記載のヒートポンプ空調システム。
  6.  前記様々な加熱モードは蒸発器単独除湿加熱モードを含み、前記ヒートポンプ空調システムが前記蒸発器単独除湿加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第3流路、前記冷媒第4流路が直列接続され、かつ前記第2電磁弁は開き、前記第2膨張弁が絞りを行い、前記第1膨張弁及び前記第1電磁弁は閉じており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項1に記載のヒートポンプ空調システム。
  7.  前記様々な加熱モードは通常加熱モードを含み、前記ヒートポンプ空調システムが前記通常加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第3流路、前記冷媒第7流路、前記冷媒第1流路、前記冷媒第2流路が直列接続され、かつ前記第1膨張弁が絞りを行い、前記第1電磁弁及び前記第2電磁弁は開き、前記第3電磁弁及び前記第2膨張弁は閉じており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項2に記載のヒートポンプ空調システム。
  8.  前記様々な加熱モードは並列除湿加熱モードを含み、前記ヒートポンプ空調システムが前記並列除湿加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第3流路、前記冷媒第7流路、前記冷媒第1流路、前記冷媒第2流路が直列接続され、前記冷媒第1流路と前記冷媒第2流路が直列されて成る流路と前記冷媒第4流路とが並列接続され、かつ前記第1膨張弁及び前記第2膨張弁が絞りを行い、前記第1電磁弁及び前記第2電磁弁は開き、前記第3電磁弁は閉じており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項2に記載のヒートポンプ空調システム。
  9.  前記様々な加熱モードは直列除湿加熱モードを含み、前記ヒートポンプ空調システムが前記直列除湿加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第6流路、前記冷媒第1流路、前記冷媒分岐路、前記冷媒第4流路が直列接続され、かつ前記第1膨張弁及び前記第2膨張弁が絞りを行い、前記第1電磁弁及び前記第2電磁弁は閉じ、前記第3電磁弁は開いており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項2に記載のヒートポンプ空調システム。
  10.  前記様々な加熱モードは蒸発器単独除湿加熱モードを含み、前記ヒートポンプ空調システムが前記蒸発器単独除湿加熱モードを実行する場合、前記圧縮機、前記第1熱交換器、前記冷媒第3流路、前記冷媒第4流路が直列接続され、かつ前記第2電磁弁が開き、前記第2膨張弁が絞りを行い、前記第1膨張弁、前記第1電磁弁及び前記第3電磁弁は閉じており、
     前記コントローラが前記第3膨張弁を開閉して前記冷媒第5流路を連通または遮断することにより、前記廃熱回収機能の起動または停止を制御する請求項2に記載のヒートポンプ空調システム。
  11.  前記第1閾値は、前記ヒートポンプ空調システムの加熱効率が、前記廃熱回収機能を起動した時に前記廃熱回収機能を起動していない時の廃熱回収特性値を超え始めるようになる閾値であり、
     前記第2閾値は、前記ヒートポンプ空調システムの加熱効率が、前記廃熱回収機能を起動した時の方が前記廃熱回収機能を起動していない時より高くなるようにした状況において、前記第3膨張弁の動作寿命と廃熱量の熱損失という2つの要素を総合的に考慮した廃熱回収特性値の閾値である請求項1~10のいずれかに記載のヒートポンプ空調システム。
  12.  前記廃熱回収特性値は熱負荷特性値及び廃熱量特性値を含み、前記熱負荷特性値は前記ヒートポンプ空調システムの熱負荷を表すために用いられ、前記廃熱量特性値は前記車載発熱部材が生成する廃熱量を表すために用いられる請求項1~10のいずれかに記載のヒートポンプ空調システム。
  13.  前記ヒートポンプ空調システムは、前記廃熱回収機能を停止している状態において、前記熱負荷特性値が熱負荷特性値の第2閾値を上回り、かつ前記廃熱量特性値が廃熱量特性値の第2閾値を上回る場合にのみ、前記コントローラが前記廃熱回収機能を制御してオフ状態をオン状態に切り換える請求項12に記載のヒートポンプ空調システム。
  14.  前記ヒートポンプ空調システムは、前記廃熱回収機能を起動している状態において、前記熱負荷特性値が熱負荷特性値の第1閾値を下回るか、または前記廃熱量特性値が廃熱量特性値の第1閾値を下回る場合にのみ、前記コントローラが前記廃熱回収機能を制御してオン状態をオフ状態に切り換える請求項12に記載のヒートポンプ空調システム。
  15.  前記熱負荷特性値が前記圧縮機の回転速度または前記圧縮機の電力消費量である請求項12に記載のヒートポンプ空調システム。
  16.  前記廃熱量特性値は、前記第4熱交換器の冷却水入口と冷却水出口との間の任意の1点における冷却水温度と前記第4熱交換器を流れる飽和冷媒温度の差値であり、前記第4熱交換器を流れる飽和冷媒温度は、前記第4熱交換器の冷媒出口の圧力に基づいて算出され、または前記第4熱交換器の冷媒入口温度及び冷媒出口温度のうちの低い方を取って得られる請求項12に記載のヒートポンプ空調システム。
  17.  前記廃熱量特性値は、前記車載発熱部材の温度と前記第4熱交換器を流れる飽和冷媒温度との差値であり、前記第4熱交換器を流れる飽和冷媒温度は、前記第4熱交換器の冷媒出口の圧力に基づいて算出され、または前記第4熱交換器の冷媒入口温度及び冷媒出口温度のうちの低い方を取って得られる請求項12に記載のヒートポンプ空調システム。

     
PCT/JP2022/032138 2021-09-02 2022-08-26 ヒートポンプ空調システム WO2023032826A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111027665.8 2021-09-02
CN202111027665.8A CN115122862A (zh) 2021-09-02 2021-09-02 热泵空调系统

Publications (1)

Publication Number Publication Date
WO2023032826A1 true WO2023032826A1 (ja) 2023-03-09

Family

ID=83375663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032138 WO2023032826A1 (ja) 2021-09-02 2022-08-26 ヒートポンプ空調システム

Country Status (2)

Country Link
CN (1) CN115122862A (ja)
WO (1) WO2023032826A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075629A (ja) * 2011-09-30 2013-04-25 Daikin Industries Ltd 自動車用温調システム
JP2019130980A (ja) * 2018-01-30 2019-08-08 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2020176824A (ja) * 2019-04-19 2020-10-29 株式会社デンソー 冷凍サイクル装置
JP2020185969A (ja) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2021063644A (ja) * 2019-10-15 2021-04-22 株式会社デンソー 冷凍サイクル装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206709389U (zh) * 2017-03-24 2017-12-05 浙江智恩电子科技有限公司 一种用于空气源热泵的两路换热系统
US20190072006A1 (en) * 2017-09-05 2019-03-07 Thomas Edward Duffy Method and apparatus to reduce thermal stress when starting combined cycle power systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075629A (ja) * 2011-09-30 2013-04-25 Daikin Industries Ltd 自動車用温調システム
JP2019130980A (ja) * 2018-01-30 2019-08-08 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2020176824A (ja) * 2019-04-19 2020-10-29 株式会社デンソー 冷凍サイクル装置
JP2020185969A (ja) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2021063644A (ja) * 2019-10-15 2021-04-22 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
CN115122862A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
EP3800076B1 (en) Thermal management system
CN111688432B (zh) 车载调温装置
WO2013035130A1 (ja) 車両用空調装置
JP7159877B2 (ja) 電池冷却システム
WO2022070796A1 (ja) 車両熱管理システム
US11358438B2 (en) Automotive air conditioning system
KR20220122391A (ko) 차량용 열관리시스템의 난방 제어방법
JP2005306300A (ja) 車両用空調装置
JPH11344263A (ja) バイパス管路付冷凍サイクル
WO2023032826A1 (ja) ヒートポンプ空調システム
CN116215186A (zh) 车载热循环系统和车辆
KR101146477B1 (ko) 자동차용 히트펌프 시스템
CN115320326A (zh) 热管理系统
WO2022064946A1 (ja) 車両用空調装置
CN111854215B (zh) 热泵系统
WO2023032825A1 (ja) 車両用ヒートポンプ空調システム
JP5803526B2 (ja) 自動車用冷凍システム、及び、自動車用温調システム
KR20210126905A (ko) 차량의 열관리 시스템
WO2018159141A1 (ja) 車両用空気調和装置
JP7494139B2 (ja) 車両用空調装置
WO2023140210A1 (ja) 車両用空調装置
CN217574780U (zh) 热管理系统
CN219856733U (zh) 车载热循环系统和车辆
JP7387322B2 (ja) 車両用空気調和装置
CN220500436U (zh) 热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864410

Country of ref document: EP

Kind code of ref document: A1