WO2023032385A1 - Fin for heat exchanger - Google Patents

Fin for heat exchanger Download PDF

Info

Publication number
WO2023032385A1
WO2023032385A1 PCT/JP2022/022801 JP2022022801W WO2023032385A1 WO 2023032385 A1 WO2023032385 A1 WO 2023032385A1 JP 2022022801 W JP2022022801 W JP 2022022801W WO 2023032385 A1 WO2023032385 A1 WO 2023032385A1
Authority
WO
WIPO (PCT)
Prior art keywords
louver
upstream
downstream
heat transfer
axis direction
Prior art date
Application number
PCT/JP2022/022801
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 増田
康弘 内藤
恵介 三苫
丈幸 是澤
国広 東浦
和也 縄田
泰高 青木
陽一 上藤
泰明 兼子
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to JP2023545092A priority Critical patent/JPWO2023032385A1/ja
Priority to AU2022337252A priority patent/AU2022337252A1/en
Priority to EP22863973.8A priority patent/EP4372303A1/en
Publication of WO2023032385A1 publication Critical patent/WO2023032385A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present disclosure relates to heat exchanger fins.
  • an indoor unit of an air conditioner includes a heat exchanger that exchanges heat between refrigerant and air, and a blower that sends air to the heat exchanger.
  • the heat exchanger has, for example, a heat transfer tube through which a refrigerant flows, and fins provided on the outer peripheral surface of the heat transfer tube. By sending air to the heat transfer tubes and the fins with the blower, the heat exchanger performs heat exchange between the air and the refrigerant through the heat transfer tubes and the fins.
  • a fin provided in such a heat exchanger is disclosed, for example, in Japanese Unexamined Patent Application Publication No. 2002-200013.
  • Patent Document 1 describes a plate fin for a heat exchanger formed with a plurality of pipe holes penetrating therethrough. Reinforcement areas are provided with slits formed between the tube holes. The portions separated by longitudinal slits in the reinforced area are reinforced elements forming separate portions of the sinusoidal and deviated lancet elements.
  • the lancet element is displaced from the substrate in the -y or +y direction. Opposite ends of the coupling elements are displaced in opposite directions from the substrate.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a heat exchanger fin that can reduce the pressure loss that occurs when air flows.
  • a heat exchanger fin according to an aspect of the present disclosure exchanges heat between a refrigerant flowing inside a heat transfer tube extending in a predetermined direction and air flowing outside the heat transfer tube in a direction intersecting the predetermined direction.
  • a heat exchanger fin provided in a heat exchanger and attached to the heat transfer tube, the heat transfer tube passing portion having a circular shape centered on the central axis extending in the predetermined direction and through which the heat transfer tube passes and a louver portion in which a slit is formed by the louver cut and raised in the predetermined direction.
  • the louver portion includes a flat portion, a first louver provided downstream of the flat portion and protruding in the predetermined direction from the flat portion, and the first louver. and a second louver provided on the downstream side of the louver, wherein the second louver has a cross-sectional shape when cut along a plane formed in the predetermined direction and the direction in which the air flows. an upstream portion that extends linearly by bending obliquely upstream from the upstream end of the linear portion; and an upstream portion that extends linearly by bending obliquely downstream from the downstream end of the linear portion. and a downstream portion, wherein the linear portion is arranged so as to overlap with the heat transfer tube passage portion when the cross section is viewed.
  • pressure loss that occurs when air flows can be reduced.
  • FIG. 1 is a perspective view of a plate fin according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a plan view showing a main portion (B portion) of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line AA of FIGS. 1 and 2
  • FIG. 3 is an end view taken along line AA of FIGS. 1 and 2
  • FIG. 4 is a perspective view of a plate fin according to a second embodiment of the present disclosure
  • FIG. 6 is a plan view showing a main part (E portion) of FIG. 5
  • FIG. 7 is a cross-sectional view taken along line DD of FIGS. 5 and 6
  • FIG. 7 is an end view taken along line DD of FIGS. 5 and 6;
  • the direction in which the heat transfer tubes extend is referred to as the Z-axis direction
  • the direction of air flow among the directions orthogonal to the Z-axis direction is referred to as the X-axis direction
  • the direction orthogonal to the Z-axis direction and the X-axis direction is referred to as the Y-axis direction
  • the Z-axis direction is the up-down direction, so the Z-axis direction may also be referred to as the up-down direction.
  • FIG. 1 A first embodiment of a heat exchanger fin according to the present disclosure will be described with reference to FIGS. 1 to 4.
  • FIG. The fins 1 according to this embodiment are heat exchanger fins provided in a heat exchanger.
  • the heat exchanger is provided, for example, in an indoor unit (not shown) of an air conditioner (not shown), and air is sent by a blower (not shown).
  • the heat exchanger extends in the Z-axis direction (predetermined direction) and includes a plurality of heat transfer tubes (not shown) through which a refrigerant flows.
  • a plurality of fins 1 are provided on the outer peripheral surface of the heat transfer tube.
  • the heat exchanger exchanges heat between the refrigerant flowing inside the heat transfer tubes and the air flowing outside the heat transfer tubes in the X-axis direction, via the heat transfer tubes and the fins 1 .
  • a plurality of heat transfer tubes are arranged side by side at predetermined intervals along the Y-axis direction.
  • the plurality of heat transfer tubes are also arranged side by side in the X-axis direction, but in the X-axis direction, adjacent heat transfer tubes are arranged so as not to overlap each other when viewed from the X-axis direction. That is, the plurality of heat transfer tubes are arranged in a so-called staggered arrangement in the X-axis direction.
  • upstream and downstream mean upstream and downstream in air flow.
  • a plurality of fins 1 are provided as shown in FIG.
  • a plurality of fins 1 are arranged side by side at predetermined intervals along the Z-axis direction.
  • the gap formed between the fins 1 adjacent in the Z-axis direction will be referred to as "fin pitch P".
  • the length of the fin pitch P is L1.
  • the fins 1 are made of a metal material (eg, aluminum). As shown in FIGS. 1 and 2, the fin 1 integrally has a plate-like substrate portion 10 and a cylindrical portion 30 projecting from the substrate portion 10 in the Z-axis direction.
  • a metal material eg, aluminum
  • the substrate part 10 is a plate-like member.
  • the substrate portion 10 is provided along the air circulation direction (X-axis direction). Specifically, the substrate section 10 is provided along a plane intersecting the Z-axis direction (a plane formed by the X-axis direction and the Y-axis direction).
  • the substrate portion 10 is a plate-like member and has a predetermined plate thickness.
  • the substrate portion 10 is manufactured by, for example, press-molding a flat plate material.
  • the substrate portion 10 includes a plurality of heat transfer tube passing portions 11 through which heat transfer tubes pass, and a plurality of louver portions 12 in which first slits 25 and the like are formed by first louvers 21 and the like cut and raised in the Z-axis direction. have.
  • a heat transfer tube passes through each heat transfer tube passing portion 11 .
  • Each heat transfer tube passing portion 11 is a circular hole centered on the central axis C extending in the Z-axis direction.
  • Each heat transfer tube passing portion 11 penetrates the substrate portion 10 in the plate thickness direction (Z-axis direction). As shown in FIG. 2, in this embodiment, the radius of the heat transfer tube passing portion 11 is R1.
  • a plurality of heat transfer tube passing portions 11 are provided at positions corresponding to the arrangement of the heat transfer tubes. That is, as shown in FIG. 2, the plurality of heat transfer tube passage portions 11 are arranged side by side at predetermined intervals along the Y-axis direction, like the plurality of heat transfer tubes. In this embodiment, the distance between the center axes C of the heat transfer tube passing portions 11 adjacent to each other in the Y-axis direction is set to D1. In addition, the plurality of heat transfer tube passage portions 11 are also arranged side by side in the X-axis direction, but in the X-axis direction, adjacent heat transfer tube passage portions 11 are arranged so as not to overlap each other when viewed from the X-axis direction. in line. That is, the plurality of heat transfer tube passage portions 11 are arranged in a so-called staggered arrangement in the X-axis direction.
  • annular ring portion 13 is provided around each heat transfer tube passing portion 11 .
  • the annular portion 13 is formed in a flat plate shape.
  • the annular portion 13 is provided concentrically with the heat transfer tube passing portion 11 . That is, the annular portion 13 is centered on the central axis C.
  • a part of the outer peripheral edge of the ring portion 13 is the end portion of the louver portion 12 in the Y-axis direction.
  • the radius of the outer periphery of the annular portion 13 is R2.
  • two louver sections 12 are provided between heat transfer tube passage sections 11 adjacent in the Y-axis direction.
  • the two louver portions 12 are arranged side by side at a predetermined interval in the Y-axis direction.
  • a planar dividing portion 15 is provided between the louver portions 12 adjacent to each other in the Y-axis direction.
  • the dividing portion 15 is formed in a planar shape.
  • the dividing portion 15 is provided at the same height position as the annular portion 13 .
  • the dividing portion 15 is provided over substantially the entire area of the louver portion 12 in the X-axis direction. In this embodiment, the length of the dividing portion 15 in the Y-axis direction is L2.
  • the louver portions 12 adjacent in the Y-axis direction are symmetrical with respect to the reference plane S2. Therefore, in the following description, one louver portion 12 will be described, and description of the other louver portion 12 will be omitted.
  • the reference plane S2 is a plane formed by the X-axis direction and the Z-axis direction and includes the center of the dividing portion 15 in the Y-axis direction.
  • the louver portion 12 includes an upstream flat portion (flat portion) 16, an upstream louver 17 connected to the downstream end of the upstream flat portion 16, and a downstream portion of the upstream louver 17.
  • a first louver 21 provided on the side;
  • a second louver 22 provided downstream of the first louver 21;
  • a third louver 23 provided downstream of the second louver 22;
  • It has a downstream louver 18 provided and a downstream flat portion 19 connected to the downstream end of the downstream louver 18 .
  • An end portion of the louver portion 12 on the side of the heat transfer tube passing portion 11 is formed in an arc shape concentric with the heat transfer tube passing portion 11 .
  • the upstream flat portion 16 is provided at the end (upstream end) of the louver portion 12 in the Y-axis direction.
  • the length of the upstream flat portion 16 in the X-axis direction is L3.
  • the upstream flat portion 16 is a plate-like member provided substantially horizontally.
  • the upstream flat portion 16 has a linear cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction.
  • the upstream flat portion 16 is provided at the same height position as the annular portion 13, the downstream flat portion 19, and the like.
  • the upstream louver 17 bends obliquely downward from the downstream end of the upstream flat portion 16 and extends in the downstream direction.
  • the length of the upstream louver 17 in the X-axis direction is L4.
  • the upstream louver 17 has a linear shape that slopes obliquely downward when cut along a plane formed in the Z-axis direction and the X-axis direction (XZ plane).
  • the upstream louver 17 protrudes downward from the upstream flat portion 16 .
  • the upstream louver 17 is formed by cutting and raising a portion of a flat plate material.
  • the first louver 21 has a cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction from the upstream end to the downstream end. It slopes linearly downward.
  • the length of the first louver 21 in the X-axis direction is L5.
  • the first louver 21 is arranged so that the upstream end thereof does not overlap the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided.
  • the first louver 21 has a first louver upstream portion 21a provided upstream of the center point CP in the X-axis direction and a first louver downstream portion 21b provided downstream of the center point CP in the X-axis direction. have integrally. The downstream end of the first louver upstream portion 21a and the upstream end of the first louver downstream portion 21b are connected. The center point CP in the X-axis direction of the first louver 21 is positioned at the same height as the upstream flat portion 16 and the like.
  • the first louver upstream portion 21 a is located above the upstream flat portion 16 .
  • the first louver downstream portion 21 b is located below the upstream flat portion 16 .
  • the first louver upstream portion 21a is formed by cutting and raising a portion of a flat plate material upward.
  • the first louver downstream portion 21b is formed by cutting and raising a portion of a flat plate member downward.
  • the second louver 22 has a cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction.
  • a second louver upstream portion (upstream portion) 22a that extends linearly in the upstream direction by bending obliquely upward from the upstream end of the straight portion 22b; and a linearly extending second louver downstream portion (downstream portion) 22c.
  • the straight portion 22b is arranged so that the center in the X-axis direction is positioned on the center axis C, as shown in FIGS.
  • the length of the linear portion 22b in the X-axis direction is L7.
  • the straight portion 22b is a plate-like member provided substantially horizontally.
  • the linear portion 22b has a linear cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction.
  • the straight portion 22b is provided at the same height position as the annular portion 13, the upstream flat portion 16, and the like.
  • the length of the second louver upstream portion 22a in the X-axis direction is L6.
  • the second louver upstream portion 22a has a linear shape that slopes obliquely upward when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction.
  • the second louver upstream portion 22a protrudes upward from the straight portion 22b.
  • the second louver upstream portion 22a is formed by cutting and raising a portion of a flat plate material.
  • the second louver downstream portion 22c is symmetrical with the second louver upstream portion 22a with reference to the reference plane S1.
  • the third louver 23 is symmetrical with the first louver 21 with respect to the reference plane S1.
  • the downstream louver 18 is symmetrical with the upstream louver 17 with respect to the reference plane S1.
  • the downstream flat portion 19 is symmetrical with the upstream flat portion 16 with respect to the reference plane S1. Therefore, detailed description of the second louver downstream portion 22c, the third louver 23, the downstream louver 18 and the downstream flat portion 19 is omitted.
  • the reference plane S1 is a plane formed by the Y-axis direction and the Z-axis direction, and is a plane including the central axis C. As shown in FIG.
  • the cross-sectional shape of the louver portion 12 is symmetrical with respect to the center point CP in the X-axis direction of the first louver 21 on one side and the other side of the reference plane S1. ing.
  • the upstream louver 17, the first louver 21, and the second louver upstream portion 22a are arranged in parallel.
  • the angle ⁇ between the upstream louver 17, the first louver 21, the second louver upstream portion 22a, and the horizontal plane is set so that the flow of air flowing between the fins 1 is preferably divided into two.
  • a first slit 25 (see FIGS. 1 and 3) is formed between the downstream end of the upstream louver 17 and the upstream end of the first louver 21 .
  • a second slit 26 (see FIGS. 1 and 3) is formed between the upstream end of the second louver 22 and the downstream end of the first louver 21 . Further, as shown in FIG. 1, the length of the first slit 25 in the Y-axis direction is longer than the length of the second slit 26 in the Y-axis direction. The first slit 25 and the second slit 26 are open in the upstream direction.
  • a third slit 27 (see FIG. 3) is formed between the downstream end of the second louver 22 and the upstream end of the third louver 23 .
  • a fourth slit 28 (see FIG. 3) is formed between the downstream end of the third louver 23 and the upstream end of the downstream louver 18 .
  • the third slit 27 and the fourth slit 28 are open downstream.
  • the cylindrical portion 30 is a cylindrical member erected along the edge of the heat transfer tube passage portion 11 and connected to the substrate portion 10 at its lower end. Further, the upper end of the cylindrical portion 30 is in contact with the lower surface of the substrate portion 10 (more specifically, the annular portion 13) positioned above.
  • the flow of air passing through the fins 1 will be described with reference to FIG.
  • the air that has flowed into the fin pitch P collides with the upstream end of the first louver 21.
  • the first louvers 21 divide the air flow. Specifically, the air flow flows along the upper surface of the first louver 21 (see arrow F2a), and the air flow passes through the first slit 25 and flows along the lower surface of the first louver 21 ( (See arrow F2b).
  • the flow that circulates along the upper surface of the first louver 21 passes through the second slit 26 and circulates along the lower surface of the second louver 22 (see arrow F3a).
  • the flow that has circulated along the lower surface of the second louver 22 circulates along the upper surface of the third louver 23 (see arrow F4a), and then flows along the lower surface of the downstream louver 18 and the downstream flat portion 19. (See arrow F5a).
  • the flow circulating along the lower surface of the first louver 21 circulates along the upper surface of the second louver 22 (see arrow F3b).
  • the flow that has circulated along the upper surface of the second louver 22 circulates along the lower surface of the third louver 23 (see arrow F4b), and then circulates along the upper surfaces of the downstream louver 18 and the downstream flat portion 19. (See arrow F5b).
  • the air that has flowed into the fin pitch P flows through two flow paths, the flow path a indicated by arrows F1 and arrows F2a to F5a and the flow path b indicated by arrows F1 and arrows F2b to F5b.
  • the flow path a and the flow path b are flow paths obtained by dividing the fin pitch P into two equal parts.
  • the air that has flowed into the fin pitch P first flows downward, changes its flow direction to flow upward in the vicinity of the central axis C, and then flows upward as it is. It circulates meandering and is discharged from the fin pitch P. As described above, in the fin 1 of the present embodiment, the direction of the air is changed only once from entering the fin pitch P to being discharged.
  • the louver part 12 has a plurality of louvers (first louver 21, second louver 22, etc.).
  • the air flowing along the louver portion 12 meanders along the plurality of louvers. Therefore, compared to the case where the air flows linearly, the contact distance between the air and the louver portion 12 can be increased, so that the heat transfer coefficient can be improved.
  • a plurality of flow paths are formed in the fin pitch P by dividing the air flow by the first louvers 21 . Since the air flow can be divided appropriately in this way, the pressure loss that occurs when the air flows can be reduced.
  • the second louver 22 provided downstream of the first louver 21 has a linear portion 22b, a second louver upstream portion 22a, and a second louver downstream portion 22c.
  • the air flow can be more easily divided by the first louver 21 . Therefore, the air flow can be divided more preferably, and the pressure loss of the air flow can be further reduced.
  • all the louvers are formed linearly.
  • the pressure loss of the circulating air can be reduced compared to the case where the louvers are curved.
  • the louvers can be formed more easily than when the louvers are curved.
  • planar dividing portions 15 are provided between the louver portions 12 .
  • the rigidity of the louver portion 12 can be improved. Therefore, the rigidity of the fin 1 as a whole can also be improved.
  • the end portion of the louver portion 12 on the side of the heat-transfer-tube passage portion 11 has an arc shape concentric with the heat-transfer-tube passage portion 11 .
  • the length of the louver portion 12 can be increased toward the heat transfer tube passage portion 11 side. Therefore, more air flow can be divided, and thermal conductivity can be further improved.
  • the first louver 21 is arranged so that the upstream end thereof does not overlap the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided.
  • the upstream end of the first louver 21 and the heat transfer tube passing portion 11 are less likely to interfere with each other. Therefore, since the length of the upper end portion of the first louver 21 that divides the air flow can be increased in the Y-axis direction, more air flow can be divided. Therefore, thermal conductivity can be further improved.
  • one side of the central axis C of the louver portion 12 is point symmetric with respect to the central point CP of the first louver 21 .
  • FIG. 5 to 8 A second embodiment of a heat exchanger fin according to the present disclosure will be described with reference to FIGS. 5 to 8.
  • FIG. This embodiment differs from the first embodiment in the number of first louvers and third louvers. Since the other points are the same as those of the first embodiment, the same reference numerals are assigned to the same configurations, and detailed description thereof will be omitted.
  • the substrate portion 41 of the fin 40 includes two first louvers and two third louvers.
  • the two first louvers are referred to as an upstream first louver 42 and a downstream first louver 43 .
  • the two third louvers are referred to as an upstream third louver 46 and a downstream third louver 47 .
  • the first upstream louver 42 has a cross-sectional shape that extends from the upstream end to the downstream end when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. It slopes linearly downward.
  • the length of the first upstream louver 42 in the X-axis direction is L8.
  • the upstream end of the first upstream louver 42 does not overlap the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided as follows.
  • the first upstream louver 42 has a substantially center point in the X-axis direction located at the same height as the upstream flat portion 16 and the like.
  • the first downstream louver 43 is provided downstream of the first upstream louver 42, as shown in FIGS.
  • the first downstream louver 43 has a cross-sectional shape taken along a plane defined by the Z-axis direction and the X-axis direction (XZ plane), and the shape of the cross section is linear so as to go downward from the upstream end to the downstream end. Inclined.
  • the length of the first downstream louver 43 in the X-axis direction is L9.
  • the downstream first louver 43 is arranged so that the entirety thereof overlaps the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided in The first downstream louver 43 has a substantially center point in the X-axis direction located at the same height as the upstream flat portion 16 and the like.
  • the first upstream louver 42 and the first downstream louver 43 are each located above the upstream flat portion 16 on the upstream side of the approximate center point in the X-axis direction.
  • Each of the first upstream louver 42 and the first downstream louver 43 is located below the upstream flat portion 16 on the downstream side of the approximate center point in the X-axis direction.
  • the upstream side of the substantially center point of the first upstream louver 42 and the first downstream louver 43 in the X-axis direction is formed by cutting and raising a portion of a flat plate material upward.
  • the downstream side of the substantially center point of the first upstream louver 42 and the first downstream louver 43 in the X-axis direction is formed by cutting and raising a portion of a flat plate member downward.
  • the third upstream louver 46 is symmetrical with the first downstream louver 43 with reference to the reference plane S1.
  • the third downstream louver 47 is symmetrical with the first upstream louver 42 with respect to the reference plane S1. Therefore, detailed description of the third upstream louver 46 and the first downstream louver 43 is omitted.
  • the upstream louver 17, the first upstream louver 42, the first downstream louver 43, and the second louver upstream portion 22a are arranged in parallel.
  • the angle ⁇ between the first upstream louver 42 and the first downstream louver 43 and the horizontal plane is set so that the flow of air flowing between the fins 1 is preferably divided into two.
  • a first upstream slit 44 (see FIGS. 5 and 7) is formed between the downstream end of the upstream louver 17 and the upstream end of the first upstream louver 42 .
  • a first upstream slit 44 is formed between the downstream end of the first upstream louver 42 and the upstream end of the first downstream louver 43 .
  • a second slit 26 is formed between the upstream end of the second louver 22 and the downstream end of the first downstream louver 43 . Further, as shown in FIG. 1, the length of the first upstream slit 44 in the Y-axis direction is longer than the length of the first downstream slit 45 in the Y-axis direction.
  • the length of the first downstream slit 45 in the Y-axis direction is longer than the length of the second slit 26 in the Y-axis direction.
  • the first upstream slit 44 and the first downstream slit 45 are open in the upstream direction.
  • an upstream third slit 48 is formed between the downstream end of the second louver 22 and the upstream end of the upstream third louver 46 .
  • a third downstream slit 49 is formed between the downstream end of the upstream third louver 46 and the upstream end of the downstream third louver 47 .
  • a fourth slit 28 is formed between the downstream end of the downstream third louver 47 and the upstream end of the downstream louver 18 .
  • the upstream third louver 46 and the downstream third louver 47 are open downstream.
  • the air that has flowed into the fin pitch P collides with the upstream end of the first upstream louver 42.
  • the upstream first louvers 42 divide the air flow. Specifically, the flow of air along the upper surface of the first upstream louver 42 (see arrows F2c and F2d) and the flow of the first upstream louver 42 through the first slit 44 on the upstream side. and a flow (see arrow F2e) flowing along the lower surface.
  • the arrows F2c and F2d are shown as separate arrows for convenience, they are integrally distributed at this stage.
  • the flow of air flowing along the upper surface of the first upstream louver 42 collides with the upstream end of the first downstream louver 43 .
  • the first downstream louver 43 divides the flow of air. Specifically, the air flow flows along the upper surface of the downstream first louver 43 (see arrow F2c) and passes through the downstream first slit 45 to the lower surface of the downstream first louver 43.
  • the air flow (see arrow F2c) that circulates along the upper surface of the downstream first louver 43 passes through the second slit 26 and circulates along the lower surface of the second louver 22 (see arrow F3c).
  • the flow that has circulated along the lower surface of the second louver 22 circulates along the upper surface of the upstream third louver 46 and also circulates above the downstream third louver 47 (see arrow F4c). 18 and the lower surface of the downstream flat portion 19 (see arrow F5c).
  • the air flow (see arrow F2d) that circulates along the lower surface of the first downstream louver 43 circulates below the second louver 22 (see arrow F3d).
  • the air flowing under the second louver 22 flows along the lower surface of the upstream third louver 46 and along the upper surface of the downstream third louver 47 (see arrow F4d), and then flows downstream. It flows above the side louver 18 and the downstream flat portion 19 (see arrow F5d).
  • the air flowing along the lower surface of the upstream first louver 42 flows along the upper surface of the second louver 22 of the adjacent fin in the Z-axis direction (see arrow F3e).
  • the flow that has circulated along the upper surface of the second louver 22 circulates below the upstream third louver 46 and along the lower surface of the downstream third louver 47 (see arrow F4e), and then flows through the downstream louver 18 and downstream. It flows along the upper surface of the side flat portion 19 (see arrow F5e).
  • the air that has flowed into the fin pitch P is divided into three flow paths: a flow path c indicated by arrows F2c to F5c, a flow path d indicated by arrows F2d to F5d, and a flow path e indicated by arrows F2e to F5e.
  • circulate in The flow path c, the flow path d, and the flow path e are flow paths obtained by dividing the fin pitch P into three equal parts.
  • a plurality of first louvers (the first upstream louver 42 and the first downstream louver 43) are provided (in the present embodiment, two as an example).
  • the total length of the upstream ends of the first louvers in the Y-axis direction (the total length of the upstream ends of all the first louvers in the Y-axis direction) ) can be lengthened.
  • more airflow can be split. Therefore, it is possible to further reduce the pressure loss that occurs when the air flows.
  • a plurality of first louvers are arranged along the X-axis direction.
  • first louvers 42 and first downstream louvers 43 are arranged along the X-axis direction.
  • the length of each first louver in the X-axis direction can be shortened compared to the case where there is only one first louver. Therefore, since the first louver has an angle ⁇ with respect to the horizontal plane, the length of each first louver in the Z-axis direction (extending direction of the heat transfer tube) (in other words, the length of the first louver projecting in the Z-axis direction) length of one louver) can be shortened.
  • the length of the heat exchange fins themselves in the Z-axis direction can be shortened, so that when a plurality of fins 40 are arranged side by side in the Z-axis direction, the fins 40 can be arranged densely. Alternatively, if the same number of fins 40 are provided, the size of the heat exchanger provided with the fins 40 can be reduced.
  • the distance between adjacent fins 40 in the Z-axis direction is L1, which is the same as in the first embodiment, but it may be shorter than L1.
  • the numbers of the first louvers and the third louvers are not limited thereto.
  • the numbers of the first louvers and the number of the third louvers may each be three or more.
  • the optimal number of first louvers and third louvers may be determined from the viewpoint of air resistance.
  • a heat exchanger fin according to an embodiment of the present disclosure includes a refrigerant flowing inside a heat transfer tube extending in a predetermined direction (Z-axis direction), and a direction intersecting the predetermined direction (X-axis)
  • XZ plane plane
  • the louver section has the first louver and the second louver.
  • the air flowing along the louver section meanders along the first louver and the second louver. Therefore, compared to the case where the air flows linearly, the contact distance between the air and the louver portion can be increased, so that the heat transfer coefficient can be improved.
  • the air flowing along the louver portion collides with the upstream end portion of the first louver after flowing along the flat portion. When the air hits the upstream end of the first louver, the first louver splits the air flow. Specifically, the air flow is divided into a flow that circulates along one surface of the louver portion and a flow that passes through the slit and circulates along the other surface of the louver portion.
  • first louvers since the air flow is divided by the first louvers, for example, a plurality of fins are arranged in a predetermined direction at predetermined intervals (hereafter, fins adjacent to each other in a predetermined direction are referred to as "first fin” and “second fin”). fins”) are arranged, a plurality of flows are formed in the gaps formed between the first fins and the second fins. Specifically, an air flow that circulates along the other surface of the first fin and an air flow that circulates along one surface of the second fin are formed. In this way, the first louvers can suitably divide the air flow, so that the pressure loss that occurs when the air flows can be reduced.
  • the second louver provided on the downstream side of the first louver has a linear portion, an upstream portion, and a downstream portion.
  • the straight portion, the upstream portion, and the downstream portion are all formed straight.
  • the first louver is formed linearly in the cross section.
  • the first louvers are formed linearly. Thereby, for example, the pressure loss of the circulating air can be reduced compared to the case where the first louver is curved. Also, the first louver can be formed more easily than when the first louver is curved.
  • a plurality of the louver portions are provided, and the plurality of the louver portions are arranged side by side in a direction crossing the direction in which the air flows.
  • a planar dividing portion (15) is provided between the louver portions.
  • a planar dividing portion is provided between the louver portions.
  • the end portion of the louver portion on the side of the heat transfer tube passing portion has an arc shape concentric with the heat transfer tube passing portion.
  • the end portion of the louver portion on the side of the heat-transfer-tube passing portion has an arc shape concentric with the heat-transfer-tube passing portion.
  • the first louver is provided so that the upstream end does not overlap the heat transfer tube passing portion in the cross section.
  • the first louver is provided so that the upstream end does not overlap the heat transfer tube passing portion in cross section.
  • interference between the upstream end of the first louver and the heat transfer tube passing portion is less likely to occur. Therefore, since the length of the upstream end of the first louver that divides the air flow can be increased, more air flow can be divided. Therefore, it is possible to further reduce the pressure loss that occurs when the air flows.
  • the shape of the cross section of the louver portion is line symmetrical with respect to the central axis, and one side of the central axis is the center of the first louver. It is symmetrical with respect to the point (CP).
  • one side of the central axis of the louver is point symmetric with respect to the central point of the first louver.
  • a plurality of the first louvers (42, 43) are provided, and the plurality of the first louvers are arranged side by side in the direction in which the air flows.
  • a plurality of first louvers are provided.
  • the total length of the upstream ends of the first louvers (total length of the upstream ends of all the first louvers) can be made longer than when there is only one first louver. Therefore, more airflow can be split. Therefore, it is possible to further reduce the pressure loss that occurs when the air flows.
  • the plurality of first louvers are arranged along the air flow direction. Thereby, the size of each first louver can be reduced compared to the case where only one first louver is provided. Therefore, the length of each first louver in the predetermined direction (extending direction of the heat transfer tubes) (in other words, the length of the first louver projecting in the predetermined direction) can be shortened.
  • the length of the heat exchange fins themselves in the predetermined direction can be shortened, so that when a plurality of heat exchange fins are arranged side by side in the predetermined direction, the heat exchange fins can be densely arranged.
  • the size of the heat exchanger provided with the heat exchange fins configured as described above can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This fin comprises a plate-shaped substrate part (10) having a heat transfer tube passing part, which is a circular shape centered on a central axis C and through which a heat transfer tube passes, and a louver part at which a first silt is formed by a first louver (21). The louver part has a flat section (16), the first louver (21) that is provided on the downstream side of the flat section (16) and protrudes more in the Z-axis direction than the flat section (16), and a second louver (22) that is provided on the downstream side of the first louver (21). The second louver (22) has a linear part (22b) at which the shape of the cross-section thereof when cut in the XZ plane is linear, a second louver upstream part (22a) bending obliquely in the upstream direction from the upstream end of the linear part (22b) and extending linearly, and a second louver downstream part (22c) bending obliquely in the downstream direction from the downstream end of the linear part (22b) and extending linearly. The linear part (22b) is disposed so as to overlap with the heat transfer tube passing part when viewing the cross-section.

Description

熱交換器用フィンheat exchanger fins
 本開示は、熱交換器用フィンに関するものである。 The present disclosure relates to heat exchanger fins.
 例えば、空気調和機の室内機は、冷媒と空気との熱交換を行う熱交換器と、熱交換器へ空気を送る送風機と、を備えている。熱交換器は、例えば、内部を冷媒が流通する伝熱管と、伝熱管の外周面に設けられるフィンとを有している。送風機によって伝熱管及びフィンへ空気を送ることで、熱交換器は伝熱管及びフィンを介して、空気と冷媒との熱交換を行う。このような熱交換器に設けられるフィンは、例えば、特許文献1に開示されている。 For example, an indoor unit of an air conditioner includes a heat exchanger that exchanges heat between refrigerant and air, and a blower that sends air to the heat exchanger. The heat exchanger has, for example, a heat transfer tube through which a refrigerant flows, and fins provided on the outer peripheral surface of the heat transfer tube. By sending air to the heat transfer tubes and the fins with the blower, the heat exchanger performs heat exchange between the air and the refrigerant through the heat transfer tubes and the fins. A fin provided in such a heat exchanger is disclosed, for example, in Japanese Unexamined Patent Application Publication No. 2002-200013.
 特許文献1には、複数の管穴が貫通して形成されている熱交換器用プレートフィンが記載されている。管穴の間にはスリットが形成されている強化領域が備えられている。強化領域で長手方向のスリットによって分離されている部分は、正弦波形と波形から変位したランセット要素の別々の部分を形成する強化要素である。ランセット要素は、基板から-y方向又は+y方向に変位している。結合要素の対向する端は、基板から対向する方向に変位している。 Patent Document 1 describes a plate fin for a heat exchanger formed with a plurality of pipe holes penetrating therethrough. Reinforcement areas are provided with slits formed between the tube holes. The portions separated by longitudinal slits in the reinforced area are reinforced elements forming separate portions of the sinusoidal and deviated lancet elements. The lancet element is displaced from the substrate in the -y or +y direction. Opposite ends of the coupling elements are displaced in opposite directions from the substrate.
特開平9-166392号公報JP-A-9-166392
 空気調和機のエネルギ効率(例えば、通年エネルギ消費効率)を向上させるためには、中間能力で運転する際(すなわち、定格能力の半分の能力で運転する際)におけるエネルギ効率の向上が有効である。中間能力で運転する際には、圧縮機の仕事量が減少するため、室内機に設けられた送風機の消費電力の低減が重要となる。
 しかしながら、特許文献1に記載のフィンは、ランセット要素及び結合要素の全て湾曲している。これにより、導入された空気が好適に分割されないので、フィンを通過する空気の圧力損失が増大してしまう可能性があった。フィンを通過する空気の圧力損失が増大すると、フィンへ空気を送る送風機の消費電力が増大してしまう可能性があった。
In order to improve the energy efficiency (for example, year-round energy consumption efficiency) of an air conditioner, it is effective to improve the energy efficiency when operating at intermediate capacity (that is, when operating at half the rated capacity). . Since the workload of the compressor is reduced when the air conditioner is operated at the intermediate capacity, it is important to reduce the power consumption of the blower provided in the indoor unit.
However, in the fin described in Patent Document 1, both the lancet element and the coupling element are curved. As a result, the introduced air is not properly divided, which may increase the pressure loss of the air passing through the fins. If the pressure loss of the air passing through the fins increases, there is a possibility that the power consumption of the blower that sends the air to the fins will increase.
 本開示は、このような事情に鑑みてなされたものであって、空気が流れる際に発生する圧力損失を低減することができる熱交換器用フィンを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object thereof is to provide a heat exchanger fin that can reduce the pressure loss that occurs when air flows.
 上記課題を解決するために、本開示の熱交換器用フィンは以下の手段を採用する。
 本開示の一形態に係る熱交換器用フィンは、所定方向に延在する伝熱管の内部を流通する冷媒と、前記伝熱管の外部を前記所定方向と交差する方向に流通する空気とを熱交換する熱交換器に設けられ、前記伝熱管に取り付けられる熱交換器用フィンであって、前記所定方向に延在する中心軸線を中心とした円形状であって前記伝熱管が通過する伝熱管通過部と、前記所定方向に切り起されたルーバーによってスリットが形成されるルーバー部と、を有し、前記空気の流通方向に沿うように設けられる板状の基板部を備え、前記スリットは、前記基板部の一面側と他面側とを連通し、前記ルーバー部は、平坦部と、前記平坦部の下流側に設けられ前記平坦部よりも前記所定方向に突出する第1ルーバーと、前記第1ルーバーの下流側に設けられる第2ルーバーとを有し、前記第2ルーバーは、前記所定方向及び前記空気が流通する方向で形成される面で切断した際の断面の形状が、前記空気が流通する方向に延びる直線部と、前記直線部の上流端から上流方向へ斜めに曲折して直線状に延びる上流部と、前記直線部の下流端から下流方向へ斜めに曲折して直線状に延びる下流部と、を有し、前記直線部は、前記断面を見た際に、前記伝熱管通過部と重複するように配置されている。
In order to solve the above problems, the heat exchanger fin of the present disclosure employs the following means.
A heat exchanger fin according to an aspect of the present disclosure exchanges heat between a refrigerant flowing inside a heat transfer tube extending in a predetermined direction and air flowing outside the heat transfer tube in a direction intersecting the predetermined direction. A heat exchanger fin provided in a heat exchanger and attached to the heat transfer tube, the heat transfer tube passing portion having a circular shape centered on the central axis extending in the predetermined direction and through which the heat transfer tube passes and a louver portion in which a slit is formed by the louver cut and raised in the predetermined direction. The louver portion includes a flat portion, a first louver provided downstream of the flat portion and protruding in the predetermined direction from the flat portion, and the first louver. and a second louver provided on the downstream side of the louver, wherein the second louver has a cross-sectional shape when cut along a plane formed in the predetermined direction and the direction in which the air flows. an upstream portion that extends linearly by bending obliquely upstream from the upstream end of the linear portion; and an upstream portion that extends linearly by bending obliquely downstream from the downstream end of the linear portion. and a downstream portion, wherein the linear portion is arranged so as to overlap with the heat transfer tube passage portion when the cross section is viewed.
 本開示によれば、空気が流れる際に発生する圧力損失を低減することができる。 According to the present disclosure, pressure loss that occurs when air flows can be reduced.
本開示の第1実施形態に係るプレートフィンの斜視図である。1 is a perspective view of a plate fin according to a first embodiment of the present disclosure; FIG. 図1の要部(B部分)を示す平面図である。FIG. 2 is a plan view showing a main portion (B portion) of FIG. 1; 図1及び図2のA-A矢視断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIGS. 1 and 2; 図1及び図2のA-A矢視端面図である。FIG. 3 is an end view taken along line AA of FIGS. 1 and 2; 本開示の第2実施形態に係るプレートフィンの斜視図である。FIG. 4 is a perspective view of a plate fin according to a second embodiment of the present disclosure; 図5の要部(E部分)を示す平面図である。FIG. 6 is a plan view showing a main part (E portion) of FIG. 5; 図5及び図6のD-D矢視断面図である。FIG. 7 is a cross-sectional view taken along line DD of FIGS. 5 and 6; 図5及び図6のD-D矢視端面図である。FIG. 7 is an end view taken along line DD of FIGS. 5 and 6;
 以下に、本開示に係る熱交換器用フィンの一実施形態について、図面を参照して説明する。以下の説明では、伝熱管の延在する方向をZ軸方向と称し、Z軸方向と直交する方向のうち空気の流通方向をX軸方向と称し、Z軸方向及びX軸方向と直交する方向をY軸方向と称する。なお、以下の説明では、Z軸方向が上下方向である場合について説明するので、Z軸方向を上下方向と称する場合もある。 An embodiment of a heat exchanger fin according to the present disclosure will be described below with reference to the drawings. In the following description, the direction in which the heat transfer tubes extend is referred to as the Z-axis direction, the direction of air flow among the directions orthogonal to the Z-axis direction is referred to as the X-axis direction, and the direction orthogonal to the Z-axis direction and the X-axis direction. is referred to as the Y-axis direction. In the following description, the Z-axis direction is the up-down direction, so the Z-axis direction may also be referred to as the up-down direction.
[第1実施形態]
 本開示に係る熱交換器用フィンの第1実施形態について、図1から図4を用いて説明する。
 本実施形態に係るフィン1は、熱交換器に設けられる熱交換器用のフィンである。熱交換器は、例えば、空気調和機(図示省略)の室内機(図示省略)に設けられ、送風機(図示省略)によって空気が送られる。熱交換器は、Z軸方向(所定方向)に延在し、内部に冷媒が流通する複数の伝熱管(図示省略)を備えている。伝熱管の外周面には、フィン1が複数設けられている。熱交換器は、伝熱管及びフィン1を介して、伝熱管の内部を流通する冷媒と伝熱管の外部をX軸方向に流通する空気との熱交換を行う。
 複数の伝熱管は、Y軸方向に沿って所定の間隔で並んで配置されている。また、複数の伝熱管は、X軸方向にも並んで配置されているが、X軸方向においては、隣接する伝熱管同士がX軸方向から見た際に重複しないように並んでいる。すなわち、複数の伝熱管は、X軸方向においては、いわゆる千鳥配置となるように並んでいる。
[First embodiment]
A first embodiment of a heat exchanger fin according to the present disclosure will be described with reference to FIGS. 1 to 4. FIG.
The fins 1 according to this embodiment are heat exchanger fins provided in a heat exchanger. The heat exchanger is provided, for example, in an indoor unit (not shown) of an air conditioner (not shown), and air is sent by a blower (not shown). The heat exchanger extends in the Z-axis direction (predetermined direction) and includes a plurality of heat transfer tubes (not shown) through which a refrigerant flows. A plurality of fins 1 are provided on the outer peripheral surface of the heat transfer tube. The heat exchanger exchanges heat between the refrigerant flowing inside the heat transfer tubes and the air flowing outside the heat transfer tubes in the X-axis direction, via the heat transfer tubes and the fins 1 .
A plurality of heat transfer tubes are arranged side by side at predetermined intervals along the Y-axis direction. In addition, the plurality of heat transfer tubes are also arranged side by side in the X-axis direction, but in the X-axis direction, adjacent heat transfer tubes are arranged so as not to overlap each other when viewed from the X-axis direction. That is, the plurality of heat transfer tubes are arranged in a so-called staggered arrangement in the X-axis direction.
 次に、本実施形態に係るフィン1について、図1から図4を用いて詳細に説明する。なお、以下の説明において、「上流」及び「下流」とは、空気流れにおける上流及び下流を意味している。 Next, the fin 1 according to this embodiment will be described in detail with reference to FIGS. 1 to 4. FIG. In the following description, "upstream" and "downstream" mean upstream and downstream in air flow.
 フィン1は、図3に示すように、複数設けられている。複数のフィン1は、Z軸方向に沿って所定の間隔で並んで配置されている。以下の説明において、Z軸方向に隣接するフィン1同士の間に形成される隙間のことを「フィンピッチP」と称する。本実施形態では、フィンピッチPの長さをL1としている。 A plurality of fins 1 are provided as shown in FIG. A plurality of fins 1 are arranged side by side at predetermined intervals along the Z-axis direction. In the following description, the gap formed between the fins 1 adjacent in the Z-axis direction will be referred to as "fin pitch P". In this embodiment, the length of the fin pitch P is L1.
 フィン1は、金属材料(例えば、アルミ)で形成されている。フィン1は、図1及び図2に示すように、板状の基板部10と、基板部10からZ軸方向に突出する円筒部30と、を一体的に有している。 The fins 1 are made of a metal material (eg, aluminum). As shown in FIGS. 1 and 2, the fin 1 integrally has a plate-like substrate portion 10 and a cylindrical portion 30 projecting from the substrate portion 10 in the Z-axis direction.
 基板部10は、板状の部材である。基板部10は、空気の流通方向(X軸方向)に沿うように設けられている。詳細には、基板部10は、Z軸方向と交差する面(X軸方向及びY軸方向によって形成される面)に沿うように設けられる。基板部10は、板状の部材であって、所定の板厚を有している。基板部10は、例えば、平板状の板材をプレス成形することで製造される。 The substrate part 10 is a plate-like member. The substrate portion 10 is provided along the air circulation direction (X-axis direction). Specifically, the substrate section 10 is provided along a plane intersecting the Z-axis direction (a plane formed by the X-axis direction and the Y-axis direction). The substrate portion 10 is a plate-like member and has a predetermined plate thickness. The substrate portion 10 is manufactured by, for example, press-molding a flat plate material.
 基板部10は、伝熱管が通過する複数の伝熱管通過部11と、Z軸方向に切り起された第1ルーバー21等によって第1スリット25等が形成される複数のルーバー部12と、を有している。 The substrate portion 10 includes a plurality of heat transfer tube passing portions 11 through which heat transfer tubes pass, and a plurality of louver portions 12 in which first slits 25 and the like are formed by first louvers 21 and the like cut and raised in the Z-axis direction. have.
 各伝熱管通過部11には、伝熱管が1本ずつ通過している。各伝熱管通過部11は、Z軸方向に延在する中心軸線Cを中心とした円形状の孔である。各伝熱管通過部11は、基板部10を板厚方向(Z軸方向)に貫通している。図2に示すように、本実施形態では伝熱管通過部11の半径をR1としている。 A heat transfer tube passes through each heat transfer tube passing portion 11 . Each heat transfer tube passing portion 11 is a circular hole centered on the central axis C extending in the Z-axis direction. Each heat transfer tube passing portion 11 penetrates the substrate portion 10 in the plate thickness direction (Z-axis direction). As shown in FIG. 2, in this embodiment, the radius of the heat transfer tube passing portion 11 is R1.
 複数の伝熱管通過部11は、伝熱管の配置に応じた位置に設けられている。すなわち、複数の伝熱管通過部11は、図2に示すように、複数の伝熱管と同様に、Y軸方向に沿って所定の間隔で並んで配置されている。本実施形態では、Y軸方向に隣接する伝熱管通過部11の中心軸線C同士の距離をD1としている。
 また、複数の伝熱管通過部11は、X軸方向にも並んで配置されているが、X軸方向においては、隣接する伝熱管通過部11同士がX軸方向から見た際に重複しないように並んでいる。すなわち、複数の伝熱管通過部11は、X軸方向においては、いわゆる千鳥配置となるように並んでいる。
A plurality of heat transfer tube passing portions 11 are provided at positions corresponding to the arrangement of the heat transfer tubes. That is, as shown in FIG. 2, the plurality of heat transfer tube passage portions 11 are arranged side by side at predetermined intervals along the Y-axis direction, like the plurality of heat transfer tubes. In this embodiment, the distance between the center axes C of the heat transfer tube passing portions 11 adjacent to each other in the Y-axis direction is set to D1.
In addition, the plurality of heat transfer tube passage portions 11 are also arranged side by side in the X-axis direction, but in the X-axis direction, adjacent heat transfer tube passage portions 11 are arranged so as not to overlap each other when viewed from the X-axis direction. in line. That is, the plurality of heat transfer tube passage portions 11 are arranged in a so-called staggered arrangement in the X-axis direction.
 各伝熱管通過部11の周りには、円環状の円環部13が設けられている。円環部13は、平板状に形成されている。円環部13は、伝熱管通過部11と同心円状に設けられている。すなわち、円環部13は、中心軸線Cを中心としている。円環部13の外周縁の一部は、ルーバー部12のY軸方向の端部とされている。本実施形態では、図2に示すように、円環部13の外周の半径をR2としている。 An annular ring portion 13 is provided around each heat transfer tube passing portion 11 . The annular portion 13 is formed in a flat plate shape. The annular portion 13 is provided concentrically with the heat transfer tube passing portion 11 . That is, the annular portion 13 is centered on the central axis C. As shown in FIG. A part of the outer peripheral edge of the ring portion 13 is the end portion of the louver portion 12 in the Y-axis direction. In this embodiment, as shown in FIG. 2, the radius of the outer periphery of the annular portion 13 is R2.
 ルーバー部12は、図2に示すように、Y軸方向に隣接する伝熱管通過部11の間に、2つ設けられている。2つのルーバー部12は、Y軸方向に所定の間隔で並んで配置されている。Y軸方向に隣接するルーバー部12同士の間には、平面状の分断部15が設けられている。分断部15は、平面状に形成されている。分断部15は、円環部13と同じ高さ位置に設けられている。分断部15は、ルーバー部12のX軸方向の略全域に亘って設けられている。本実施形態では、分断部15のY軸方向の長さをL2としている。 As shown in FIG. 2, two louver sections 12 are provided between heat transfer tube passage sections 11 adjacent in the Y-axis direction. The two louver portions 12 are arranged side by side at a predetermined interval in the Y-axis direction. A planar dividing portion 15 is provided between the louver portions 12 adjacent to each other in the Y-axis direction. The dividing portion 15 is formed in a planar shape. The dividing portion 15 is provided at the same height position as the annular portion 13 . The dividing portion 15 is provided over substantially the entire area of the louver portion 12 in the X-axis direction. In this embodiment, the length of the dividing portion 15 in the Y-axis direction is L2.
 Y軸方向に隣接するルーバー部12は、基準面S2を基準として、対称とされている。したがって、以下の説明では、一方のルーバー部12について説明し、もう一方のルーバー部12についての説明を省略する。基準面S2は、X軸方向及びZ軸方向によって形成される面であって、分断部15のY軸方向の中心を含む面である。 The louver portions 12 adjacent in the Y-axis direction are symmetrical with respect to the reference plane S2. Therefore, in the following description, one louver portion 12 will be described, and description of the other louver portion 12 will be omitted. The reference plane S2 is a plane formed by the X-axis direction and the Z-axis direction and includes the center of the dividing portion 15 in the Y-axis direction.
 ルーバー部12は、図1及び図2に示すように、上流側平坦部(平坦部)16と、上流側平坦部16の下流端に接続される上流側ルーバー17と、上流側ルーバー17の下流側に設けられる第1ルーバー21と、第1ルーバー21の下流側に設けられる第2ルーバー22と、第2ルーバー22の下流側に設けられる第3ルーバー23と、第3ルーバー23の下流側に設けられる下流側ルーバー18と、下流側ルーバー18の下流端に接続される下流側平坦部19と、を有している。ルーバー部12の伝熱管通過部11側の端部は、伝熱管通過部11と同心状の円弧形状とされている。 1 and 2, the louver portion 12 includes an upstream flat portion (flat portion) 16, an upstream louver 17 connected to the downstream end of the upstream flat portion 16, and a downstream portion of the upstream louver 17. a first louver 21 provided on the side; a second louver 22 provided downstream of the first louver 21; a third louver 23 provided downstream of the second louver 22; It has a downstream louver 18 provided and a downstream flat portion 19 connected to the downstream end of the downstream louver 18 . An end portion of the louver portion 12 on the side of the heat transfer tube passing portion 11 is formed in an arc shape concentric with the heat transfer tube passing portion 11 .
 上流側平坦部16は、図1及び図2に示すように、ルーバー部12のY軸方向の端部(上流端部)に設けられている。本実施形態では、図4に示すように、上流側平坦部16のX軸方向の長さをL3としている。上流側平坦部16は、略水平に設けられる平板状の部材である。上流側平坦部16は、図3及び図4に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、直線状とされている。上流側平坦部16は、円環部13及び下流側平坦部19等と同じ高さ位置に設けられている。 As shown in FIGS. 1 and 2, the upstream flat portion 16 is provided at the end (upstream end) of the louver portion 12 in the Y-axis direction. In this embodiment, as shown in FIG. 4, the length of the upstream flat portion 16 in the X-axis direction is L3. The upstream flat portion 16 is a plate-like member provided substantially horizontally. As shown in FIGS. 3 and 4, the upstream flat portion 16 has a linear cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. The upstream flat portion 16 is provided at the same height position as the annular portion 13, the downstream flat portion 19, and the like.
 上流側ルーバー17は、図3及び図4に示すように、上流側平坦部16の下流端から斜め下方に曲折して下流側方向へ延びている。本実施形態では、図4に示すように、上流側ルーバー17のX軸方向の長さをL4としている。上流側ルーバー17は、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、斜め下方に向かって傾斜する直線状とされている。上流側ルーバー17は、上流側平坦部16から下方に突出している。上流側ルーバー17は、平板状の板材の一部を下方に切り起すことで形成される。 As shown in FIGS. 3 and 4, the upstream louver 17 bends obliquely downward from the downstream end of the upstream flat portion 16 and extends in the downstream direction. In this embodiment, as shown in FIG. 4, the length of the upstream louver 17 in the X-axis direction is L4. The upstream louver 17 has a linear shape that slopes obliquely downward when cut along a plane formed in the Z-axis direction and the X-axis direction (XZ plane). The upstream louver 17 protrudes downward from the upstream flat portion 16 . The upstream louver 17 is formed by cutting and raising a portion of a flat plate material.
 第1ルーバー21は、図3及び図4に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、上流端から下流端に向かって下方に向かうように直線状に傾斜している。本実施形態では、図4に示すように、第1ルーバー21のX軸方向の長さをL5としている。第1ルーバー21は、図3に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面において、上流端が伝熱管通過部11と重複しないように設けられている。第1ルーバー21は、X軸方向の中心点CPよりも上流側に設けられる第1ルーバー上流部21aと、X軸方向の中心点CPよりも下流側に設けられる第1ルーバー下流部21bとを一体的に有している。第1ルーバー上流部21aの下流端と第1ルーバー下流部21bの上流端とは接続されている。第1ルーバー21は、X軸方向の中心点CPは、上流側平坦部16等と同じ高さに位置している。 As shown in FIGS. 3 and 4, the first louver 21 has a cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction from the upstream end to the downstream end. It slopes linearly downward. In this embodiment, as shown in FIG. 4, the length of the first louver 21 in the X-axis direction is L5. As shown in FIG. 3, the first louver 21 is arranged so that the upstream end thereof does not overlap the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided. The first louver 21 has a first louver upstream portion 21a provided upstream of the center point CP in the X-axis direction and a first louver downstream portion 21b provided downstream of the center point CP in the X-axis direction. have integrally. The downstream end of the first louver upstream portion 21a and the upstream end of the first louver downstream portion 21b are connected. The center point CP in the X-axis direction of the first louver 21 is positioned at the same height as the upstream flat portion 16 and the like.
 第1ルーバー上流部21aは、上流側平坦部16よりも上方に位置している。第1ルーバー下流部21bは、上流側平坦部16よりも下方に位置している。第1ルーバー上流部21aは、平板状の板材の一部を上方に切り起すことで形成される。第1ルーバー下流部21bは、平板状の板材の一部を下方に切り起すことで形成される。 The first louver upstream portion 21 a is located above the upstream flat portion 16 . The first louver downstream portion 21 b is located below the upstream flat portion 16 . The first louver upstream portion 21a is formed by cutting and raising a portion of a flat plate material upward. The first louver downstream portion 21b is formed by cutting and raising a portion of a flat plate member downward.
 第2ルーバー22は、図3及び図4に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、X軸方向に延びる直線部22bと、直線部22bの上流端から斜め上方へ曲折して上流方向へ直線状に延びる第2ルーバー上流部(上流部)22aと、直線部22bの下流端から斜め上方へ曲折して下流方向へ直線状に延びる第2ルーバー下流部(下流部)22cと、を有している。 As shown in FIGS. 3 and 4, the second louver 22 has a cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. a second louver upstream portion (upstream portion) 22a that extends linearly in the upstream direction by bending obliquely upward from the upstream end of the straight portion 22b; and a linearly extending second louver downstream portion (downstream portion) 22c.
 直線部22bは、図3及び図4に示すように、X軸方向の中心が中心軸線C上に位置するように配置されている。本実施形態では、図4に示すように、直線部22bのX軸方向の長さをL7としている。直線部22bは、略水平に設けられる平板状の部材である。直線部22bは、図3及び図4に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、直線状とされている。直線部22bは、円環部13及び上流側平坦部16等と同じ高さ位置に設けられている。 The straight portion 22b is arranged so that the center in the X-axis direction is positioned on the center axis C, as shown in FIGS. In this embodiment, as shown in FIG. 4, the length of the linear portion 22b in the X-axis direction is L7. The straight portion 22b is a plate-like member provided substantially horizontally. As shown in FIGS. 3 and 4, the linear portion 22b has a linear cross-sectional shape when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. The straight portion 22b is provided at the same height position as the annular portion 13, the upstream flat portion 16, and the like.
 本実施形態では、図4に示すように、第2ルーバー上流部22aのX軸方向の長さをL6としている。第2ルーバー上流部22aは、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、斜め上方に向かって傾斜する直線状とされている。第2ルーバー上流部22aは、直線部22bから上方に突出している。第2ルーバー上流部22aは、平板状の板材の一部を上方に切り起すことで形成される。 In this embodiment, as shown in FIG. 4, the length of the second louver upstream portion 22a in the X-axis direction is L6. The second louver upstream portion 22a has a linear shape that slopes obliquely upward when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. The second louver upstream portion 22a protrudes upward from the straight portion 22b. The second louver upstream portion 22a is formed by cutting and raising a portion of a flat plate material.
 第2ルーバー下流部22cは、図3及び図4に示すように、基準面S1を基準として、第2ルーバー上流部22aと対称とされている。また、第3ルーバー23は、図3及び図4に示すように、基準面S1を基準として、第1ルーバー21と対称とされている。また、下流側ルーバー18は、基準面S1を基準として、上流側ルーバー17と対称とされている。また、下流側平坦部19は、基準面S1を基準として、上流側平坦部16と対称とされている。したがって、第2ルーバー下流部22c、第3ルーバー23、下流側ルーバー18及び下流側平坦部19の詳細な説明は省略する。なお、基準面S1は、Y軸方向及びZ軸方向によって形成される面であって、中心軸線Cを含む面である。 As shown in FIGS. 3 and 4, the second louver downstream portion 22c is symmetrical with the second louver upstream portion 22a with reference to the reference plane S1. Also, as shown in FIGS. 3 and 4, the third louver 23 is symmetrical with the first louver 21 with respect to the reference plane S1. The downstream louver 18 is symmetrical with the upstream louver 17 with respect to the reference plane S1. The downstream flat portion 19 is symmetrical with the upstream flat portion 16 with respect to the reference plane S1. Therefore, detailed description of the second louver downstream portion 22c, the third louver 23, the downstream louver 18 and the downstream flat portion 19 is omitted. Note that the reference plane S1 is a plane formed by the Y-axis direction and the Z-axis direction, and is a plane including the central axis C. As shown in FIG.
 また、ルーバー部12は、図4に示すように、断面の形状が、基準面S1よりも一側及び他側において、第1ルーバー21のX軸方向の中心点CPを基準として点対称とされている。 Further, as shown in FIG. 4, the cross-sectional shape of the louver portion 12 is symmetrical with respect to the center point CP in the X-axis direction of the first louver 21 on one side and the other side of the reference plane S1. ing.
 また、上流側ルーバー17と第1ルーバー21と第2ルーバー上流部22aとは、平行となるように配置されている。上流側ルーバー17と第1ルーバー21と第2ルーバー上流部22aと水平面とが為す角度θは、フィン1同士の間を流通する空気の流れが好適に2分割されるように設定される。 Also, the upstream louver 17, the first louver 21, and the second louver upstream portion 22a are arranged in parallel. The angle θ between the upstream louver 17, the first louver 21, the second louver upstream portion 22a, and the horizontal plane is set so that the flow of air flowing between the fins 1 is preferably divided into two.
 上流側ルーバー17の下流端と、第1ルーバー21の上流端との間には、第1スリット25(図1及び図3参照)が形成されている。また、第2ルーバー22の上流端と、第1ルーバー21の下流端との間には、第2スリット26(図1及び図3参照)が形成されている。また、図1に示すように、第1スリット25のY軸方向の長さは、第2スリット26のY軸方向の長さよりも長くなっている。第1スリット25及び第2スリット26は、上流方向に開口している。 A first slit 25 (see FIGS. 1 and 3) is formed between the downstream end of the upstream louver 17 and the upstream end of the first louver 21 . A second slit 26 (see FIGS. 1 and 3) is formed between the upstream end of the second louver 22 and the downstream end of the first louver 21 . Further, as shown in FIG. 1, the length of the first slit 25 in the Y-axis direction is longer than the length of the second slit 26 in the Y-axis direction. The first slit 25 and the second slit 26 are open in the upstream direction.
 第2ルーバー22の下流端と、第3ルーバー23の上流端との間には、第3スリット27(図3参照)が形成されている。また、第3ルーバー23の下流端と、下流側ルーバー18の上流端との間には、第4スリット28(図3参照)が形成されている。第3スリット27及び第4スリット28は、下流側に開口している。 A third slit 27 (see FIG. 3) is formed between the downstream end of the second louver 22 and the upstream end of the third louver 23 . A fourth slit 28 (see FIG. 3) is formed between the downstream end of the third louver 23 and the upstream end of the downstream louver 18 . The third slit 27 and the fourth slit 28 are open downstream.
 円筒部30は、伝熱管通過部11の縁に沿って立設する円筒状の部材であって、下端が基板部10に接続されている。また、円筒部30は、上端が上方に位置する基板部10(詳細には円環部13)の下面に当接している。 The cylindrical portion 30 is a cylindrical member erected along the edge of the heat transfer tube passage portion 11 and connected to the substrate portion 10 at its lower end. Further, the upper end of the cylindrical portion 30 is in contact with the lower surface of the substrate portion 10 (more specifically, the annular portion 13) positioned above.
 次に、フィン1を通過する空気の流れについて、図3を用いて説明する。
 図3の矢印F1に示すように、フィンピッチPに流入した空気は、第1ルーバー21の上流端部に衝突する。空気が第1ルーバー21の上流端部に衝突すると、第1ルーバー21によって空気の流れが分割される。具体的には、空気の流れが、第1ルーバー21の上面に沿って流通する流れ(矢印F2a参照)と、第1スリット25を通過して第1ルーバー21の下面に沿って流通する流れ(矢印F2b参照)と、に分割される。
Next, the flow of air passing through the fins 1 will be described with reference to FIG.
As indicated by an arrow F1 in FIG. 3, the air that has flowed into the fin pitch P collides with the upstream end of the first louver 21. As shown in FIG. When the air hits the upstream end of the first louvers 21, the first louvers 21 divide the air flow. Specifically, the air flow flows along the upper surface of the first louver 21 (see arrow F2a), and the air flow passes through the first slit 25 and flows along the lower surface of the first louver 21 ( (See arrow F2b).
 第1ルーバー21の上面に沿って流通する流れは、第2スリット26を通過して第2ルーバー22の下面に沿って流通する(矢印F3a参照)。第2ルーバー22の下面に沿って流通した流れは、第3ルーバー23の上面に沿って流通し(矢印F4a参照)、その後に下流側ルーバー18及び下流側平坦部19の下面に沿って流通する(矢印F5a参照)。 The flow that circulates along the upper surface of the first louver 21 passes through the second slit 26 and circulates along the lower surface of the second louver 22 (see arrow F3a). The flow that has circulated along the lower surface of the second louver 22 circulates along the upper surface of the third louver 23 (see arrow F4a), and then flows along the lower surface of the downstream louver 18 and the downstream flat portion 19. (See arrow F5a).
 一方、第1ルーバー21の下面に沿って流通する流れは、第2ルーバー22の上面に沿って流通する(矢印F3b参照)。第2ルーバー22の上面に沿って流通した流れは、第3ルーバー23の下面に沿って流通し(矢印F4b参照)、その後に下流側ルーバー18及び下流側平坦部19の上面に沿って流通する(矢印F5b参照)。 On the other hand, the flow circulating along the lower surface of the first louver 21 circulates along the upper surface of the second louver 22 (see arrow F3b). The flow that has circulated along the upper surface of the second louver 22 circulates along the lower surface of the third louver 23 (see arrow F4b), and then circulates along the upper surfaces of the downstream louver 18 and the downstream flat portion 19. (See arrow F5b).
 このように、フィンピッチPに流入した空気は、矢印F1及び矢印F2aからF5aに示す流路aと、矢印F1及び矢印F2bからF5bに示す流路bとの2つの流路で流通する。流路aと流路bとは、フィンピッチPを2等分に分割にした流路である。 In this way, the air that has flowed into the fin pitch P flows through two flow paths, the flow path a indicated by arrows F1 and arrows F2a to F5a and the flow path b indicated by arrows F1 and arrows F2b to F5b. The flow path a and the flow path b are flow paths obtained by dividing the fin pitch P into two equal parts.
 また、いずれの流路においても、フィンピッチPに流入した空気は、まず下方に向かうように流通するとともに、中心軸線C近傍で上方に向かうように流通方向を変換し、そのまま上方に向かうように蛇行しながら流通し、フィンピッチPから排出される。このように、本実施形態のフィン1では、フィンピッチPに流入してから排出されるまでに行われる空気の方向転換は1度とされている。 Also, in any flow path, the air that has flowed into the fin pitch P first flows downward, changes its flow direction to flow upward in the vicinity of the central axis C, and then flows upward as it is. It circulates meandering and is discharged from the fin pitch P. As described above, in the fin 1 of the present embodiment, the direction of the air is changed only once from entering the fin pitch P to being discharged.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、ルーバー部12が複数のルーバー(第1ルーバー21及び第2ルーバー22等)を有している。これにより、ルーバー部12に沿って流通する空気が、複数のルーバーに沿うように蛇行する。したがって、空気が直線状に流通する場合と比較して、空気とルーバー部12とが接触する距離を増大させることができるので、熱伝達率を向上させることができる。
According to this embodiment, the following effects are obtained.
In this embodiment, the louver part 12 has a plurality of louvers (first louver 21, second louver 22, etc.). As a result, the air flowing along the louver portion 12 meanders along the plurality of louvers. Therefore, compared to the case where the air flows linearly, the contact distance between the air and the louver portion 12 can be increased, so that the heat transfer coefficient can be improved.
 また、本実施形態では、第1ルーバー21によって空気の流れを分割することで、フィンピッチPに複数の流路が形成される。このように、好適に空気の流れを分割することができるので、空気が流れる際に発生する圧力損失を低減することができる。 Also, in this embodiment, a plurality of flow paths are formed in the fin pitch P by dividing the air flow by the first louvers 21 . Since the air flow can be divided appropriately in this way, the pressure loss that occurs when the air flows can be reduced.
 また、本実施形態では、第1ルーバー21の下流側に設けられる第2ルーバー22が、直線部22bと、第2ルーバー上流部22aと、第2ルーバー下流部22cと、を有している。これにより、第1ルーバー21によって、空気の流れをより分割し易くすることができる。したがって、より好適に空気の流れを分割することができるので、空気の流れの圧力損失をより低減することができる。 Further, in the present embodiment, the second louver 22 provided downstream of the first louver 21 has a linear portion 22b, a second louver upstream portion 22a, and a second louver downstream portion 22c. Thereby, the air flow can be more easily divided by the first louver 21 . Therefore, the air flow can be divided more preferably, and the pressure loss of the air flow can be further reduced.
 また、本実施形態では、全てのルーバー(第1ルーバー21及び第2ルーバー22等)が、直線状に形成されている。これにより、例えば、ルーバーが湾曲している場合と比較して、流通する空気の圧力損失を低減することができる。また、ルーバーが湾曲している場合と比較して、ルーバーを容易に形成することができる。 Also, in the present embodiment, all the louvers (first louver 21, second louver 22, etc.) are formed linearly. Thereby, for example, the pressure loss of the circulating air can be reduced compared to the case where the louvers are curved. Also, the louvers can be formed more easily than when the louvers are curved.
 また、本実施形態では、ルーバー部12同士の間には、平面状の分断部15が設けられている。これにより、ルーバー部12の剛性を向上させることができる。したがって、フィン1全体の剛性も向上させることができる。 In addition, in the present embodiment, planar dividing portions 15 are provided between the louver portions 12 . Thereby, the rigidity of the louver portion 12 can be improved. Therefore, the rigidity of the fin 1 as a whole can also be improved.
 また、本実施形態では、ルーバー部12の伝熱管通過部11側の端部は、伝熱管通過部11と同心状の円弧形状とされている。これにより、ルーバー部12の長さを、伝熱管通過部11側に長くすることができる。したがって、より多くの空気の流れを分割することができるので、熱伝導率をより向上させることができる。 In addition, in the present embodiment, the end portion of the louver portion 12 on the side of the heat-transfer-tube passage portion 11 has an arc shape concentric with the heat-transfer-tube passage portion 11 . Thereby, the length of the louver portion 12 can be increased toward the heat transfer tube passage portion 11 side. Therefore, more air flow can be divided, and thermal conductivity can be further improved.
 また、本実施形態では、第1ルーバー21は、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面において、上流端が伝熱管通過部11と重複しないように設けられている。これにより、第1ルーバー21の上流端と伝熱管通過部11とが干渉し難い。したがって、空気の流れを分割する第1ルーバー21の上端部の長さをY軸方向に長くすることができるので、より多くの空気の流れを分割することができる。よって、熱伝導率をより向上させることができる。 In addition, in the present embodiment, the first louver 21 is arranged so that the upstream end thereof does not overlap the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided. Thereby, the upstream end of the first louver 21 and the heat transfer tube passing portion 11 are less likely to interfere with each other. Therefore, since the length of the upper end portion of the first louver 21 that divides the air flow can be increased in the Y-axis direction, more air flow can be divided. Therefore, thermal conductivity can be further improved.
 また、本実施形態では、ルーバー部12の中心軸線Cよりも一側が、第1ルーバー21の中心点CPを基準として点対称とされている。これにより、空気が流れる際に発生する圧力損失をより低減することができる。 In addition, in this embodiment, one side of the central axis C of the louver portion 12 is point symmetric with respect to the central point CP of the first louver 21 . Thereby, the pressure loss that occurs when the air flows can be further reduced.
[第2実施形態]
 本開示に係る熱交換器用フィンの第2実施形態について、図5から図8を用いて説明する。
 本実施形態は、第1ルーバー及び第3ルーバーの数が上記第1実施形態と異なっている。その他の点は第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明を省略する。
[Second embodiment]
A second embodiment of a heat exchanger fin according to the present disclosure will be described with reference to FIGS. 5 to 8. FIG.
This embodiment differs from the first embodiment in the number of first louvers and third louvers. Since the other points are the same as those of the first embodiment, the same reference numerals are assigned to the same configurations, and detailed description thereof will be omitted.
 図5及び図6に示すように、本実施形態に係るフィン40の基板部41は、第1ルーバー及び第3ルーバーを2つずつ備えている。以下の説明では、2つの第1ルーバーを上流側第1ルーバー42及び下流側第1ルーバー43と称する。また、2つの第3ルーバーを上流側第3ルーバー46及び下流側第3ルーバー47と称する。 As shown in FIGS. 5 and 6, the substrate portion 41 of the fin 40 according to this embodiment includes two first louvers and two third louvers. In the following description, the two first louvers are referred to as an upstream first louver 42 and a downstream first louver 43 . Also, the two third louvers are referred to as an upstream third louver 46 and a downstream third louver 47 .
 上流側第1ルーバー42は、図7及び図8に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、上流端から下流端に向かって下方に向かうように直線状に傾斜している。本実施形態では、図8に示すように、上流側第1ルーバー42のX軸方向の長さをL8としている。上流側第1ルーバー42は、図7に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面において、上流端が伝熱管通過部11と重複しないように設けられている。上流側第1ルーバー42は、X軸方向の略中心点は、上流側平坦部16等と同じ高さに位置している。 As shown in FIGS. 7 and 8, the first upstream louver 42 has a cross-sectional shape that extends from the upstream end to the downstream end when cut along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. It slopes linearly downward. In this embodiment, as shown in FIG. 8, the length of the first upstream louver 42 in the X-axis direction is L8. As shown in FIG. 7 , the upstream end of the first upstream louver 42 does not overlap the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided as follows. The first upstream louver 42 has a substantially center point in the X-axis direction located at the same height as the upstream flat portion 16 and the like.
 下流側第1ルーバー43は、図7及び図8に示すように、上流側第1ルーバー42の下流側に設けられている。下流側第1ルーバー43は、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面の形状が、上流端から下流端に向かって下方に向かうように直線状に傾斜している。本実施形態では、図8に示すように、下流側第1ルーバー43のX軸方向の長さをL9としている。下流側第1ルーバー43は、図7に示すように、Z軸方向及びX軸方向で形成される面(XZ平面)で切断した際の断面において、全体が伝熱管通過部11と重複するように設けられている。下流側第1ルーバー43は、X軸方向の略中心点は、上流側平坦部16等と同じ高さに位置している。 The first downstream louver 43 is provided downstream of the first upstream louver 42, as shown in FIGS. The first downstream louver 43 has a cross-sectional shape taken along a plane defined by the Z-axis direction and the X-axis direction (XZ plane), and the shape of the cross section is linear so as to go downward from the upstream end to the downstream end. Inclined. In this embodiment, as shown in FIG. 8, the length of the first downstream louver 43 in the X-axis direction is L9. As shown in FIG. 7 , the downstream first louver 43 is arranged so that the entirety thereof overlaps the heat transfer tube passing portion 11 in a cross section taken along a plane (XZ plane) formed in the Z-axis direction and the X-axis direction. is provided in The first downstream louver 43 has a substantially center point in the X-axis direction located at the same height as the upstream flat portion 16 and the like.
 上流側第1ルーバー42及び下流側第1ルーバー43は、各々、X軸方向の略中心点よりも上流側が上流側平坦部16よりも上方に位置している。上流側第1ルーバー42及び下流側第1ルーバー43は、各々、X軸方向の略中心点よりも下流側が上流側平坦部16よりも下方に位置している。上流側第1ルーバー42及び下流側第1ルーバー43のX軸方向の略中心点よりも上流側は、平板状の板材の一部を上方に切り起すことで形成される。上流側第1ルーバー42及び下流側第1ルーバー43のX軸方向の略中心点よりも下流側は、平板状の板材の一部を下方に切り起すことで形成される。 The first upstream louver 42 and the first downstream louver 43 are each located above the upstream flat portion 16 on the upstream side of the approximate center point in the X-axis direction. Each of the first upstream louver 42 and the first downstream louver 43 is located below the upstream flat portion 16 on the downstream side of the approximate center point in the X-axis direction. The upstream side of the substantially center point of the first upstream louver 42 and the first downstream louver 43 in the X-axis direction is formed by cutting and raising a portion of a flat plate material upward. The downstream side of the substantially center point of the first upstream louver 42 and the first downstream louver 43 in the X-axis direction is formed by cutting and raising a portion of a flat plate member downward.
 上流側第3ルーバー46は、図7及び図8に示すように、基準面S1を基準として、下流側第1ルーバー43と対称とされている。また、下流側第3ルーバー47は、基準面S1を基準として、上流側第1ルーバー42と対称とされている。したがって、上流側第3ルーバー46及び下流側第1ルーバー43の詳細な説明は省略する。 As shown in FIGS. 7 and 8, the third upstream louver 46 is symmetrical with the first downstream louver 43 with reference to the reference plane S1. The third downstream louver 47 is symmetrical with the first upstream louver 42 with respect to the reference plane S1. Therefore, detailed description of the third upstream louver 46 and the first downstream louver 43 is omitted.
 また、図8に示すように、上流側ルーバー17と上流側第1ルーバー42と下流側第1ルーバー43と第2ルーバー上流部22aとは、平行となるように配置されている。上流側第1ルーバー42及び下流側第1ルーバー43と水平面とが為す角度θは、フィン1同士の間を流通する空気の流れが好適に2分割されるように設定される。 Further, as shown in FIG. 8, the upstream louver 17, the first upstream louver 42, the first downstream louver 43, and the second louver upstream portion 22a are arranged in parallel. The angle θ between the first upstream louver 42 and the first downstream louver 43 and the horizontal plane is set so that the flow of air flowing between the fins 1 is preferably divided into two.
 上流側ルーバー17の下流端と、上流側第1ルーバー42の上流端との間には、上流側第1スリット44(図5及び図7参照)が形成されている。また、上流側第1ルーバー42の下流端と、下流側第1ルーバー43の上流端との間には、上流側第1スリット44が形成されている。また、第2ルーバー22の上流端と、下流側第1ルーバー43の下流端との間には、第2スリット26が形成されている。また、図1に示すように、上流側第1スリット44のY軸方向の長さは、下流側第1スリット45のY軸方向の長さよりも長くなっている。また、下流側第1スリット45のY軸方向の長さは、第2スリット26のY軸方向の長さよりも長くなっている。上流側第1スリット44及び下流側第1スリット45は、上流方向に開口している。 A first upstream slit 44 (see FIGS. 5 and 7) is formed between the downstream end of the upstream louver 17 and the upstream end of the first upstream louver 42 . A first upstream slit 44 is formed between the downstream end of the first upstream louver 42 and the upstream end of the first downstream louver 43 . A second slit 26 is formed between the upstream end of the second louver 22 and the downstream end of the first downstream louver 43 . Further, as shown in FIG. 1, the length of the first upstream slit 44 in the Y-axis direction is longer than the length of the first downstream slit 45 in the Y-axis direction. In addition, the length of the first downstream slit 45 in the Y-axis direction is longer than the length of the second slit 26 in the Y-axis direction. The first upstream slit 44 and the first downstream slit 45 are open in the upstream direction.
 図7に示すように、第2ルーバー22の下流端と、上流側第3ルーバー46の上流端との間には、上流側第3スリット48が形成されている。また、上流側第3ルーバー46の下流端と、下流側第3ルーバー47の上流端との間には、下流側第3スリット49が形成されている。また、下流側第3ルーバー47の下流端と、下流側ルーバー18の上流端との間には、第4スリット28が形成されている。上流側第3ルーバー46及び下流側第3ルーバー47は、下流側に開口している。 As shown in FIG. 7 , an upstream third slit 48 is formed between the downstream end of the second louver 22 and the upstream end of the upstream third louver 46 . A third downstream slit 49 is formed between the downstream end of the upstream third louver 46 and the upstream end of the downstream third louver 47 . A fourth slit 28 is formed between the downstream end of the downstream third louver 47 and the upstream end of the downstream louver 18 . The upstream third louver 46 and the downstream third louver 47 are open downstream.
 次に、フィン1を通過する空気の流れについて、図7を用いて説明する。
 図7の矢印F1に示すように、フィンピッチPに流入した空気は、上流側第1ルーバー42の上流端部に衝突する。空気が上流側第1ルーバー42の上流端部に衝突すると、上流側第1ルーバー42によって空気の流れが分割される。具体的には、空気の流れが、上流側第1ルーバー42の上面に沿って流通する流れ(矢印F2c及びF2d参照)と、上流側第1スリット44を通過して上流側第1ルーバー42の下面に沿って流通する流れ(矢印F2e参照)と、に分割される。なお、矢印F2c及びF2dは、便宜上別々の矢印で示しているが、この段階では一体的に流通している。
Next, the flow of air passing through the fins 1 will be described with reference to FIG.
As indicated by an arrow F1 in FIG. 7, the air that has flowed into the fin pitch P collides with the upstream end of the first upstream louver 42. As shown in FIG. When the air hits the upstream end of the upstream first louvers 42 , the upstream first louvers 42 divide the air flow. Specifically, the flow of air along the upper surface of the first upstream louver 42 (see arrows F2c and F2d) and the flow of the first upstream louver 42 through the first slit 44 on the upstream side. and a flow (see arrow F2e) flowing along the lower surface. Although the arrows F2c and F2d are shown as separate arrows for convenience, they are integrally distributed at this stage.
 上流側第1ルーバー42の上面に沿って流通する空気の流れは、下流側第1ルーバー43の上流端部に衝突する。空気が下流側第1ルーバー43の上流端部に衝突すると、下流側第1ルーバー43によって空気の流れが分割される。具体的には、空気の流れが、下流側第1ルーバー43の上面に沿って流通する流れ(矢印F2c参照)と、下流側第1スリット45を通過して下流側第1ルーバー43の下面に沿って流通する流れ(矢印F2d参照)と、に分割される。 The flow of air flowing along the upper surface of the first upstream louver 42 collides with the upstream end of the first downstream louver 43 . When the air hits the upstream end of the first downstream louver 43 , the first downstream louver 43 divides the flow of air. Specifically, the air flow flows along the upper surface of the downstream first louver 43 (see arrow F2c) and passes through the downstream first slit 45 to the lower surface of the downstream first louver 43. The flow (see arrow F2d) circulating along the
 下流側第1ルーバー43の上面に沿って流通する空気の流れ(矢印F2c参照)は、第2スリット26を通過して第2ルーバー22の下面に沿って流通する(矢印F3c参照)。第2ルーバー22の下面に沿って流通した流れは、上流側第3ルーバー46の上面に沿って流通するとともに下流側第3ルーバー47の上方を流通し(矢印F4c参照)、その後に下流側ルーバー18及び下流側平坦部19の下面に沿って流通する(矢印F5c参照)。 The air flow (see arrow F2c) that circulates along the upper surface of the downstream first louver 43 passes through the second slit 26 and circulates along the lower surface of the second louver 22 (see arrow F3c). The flow that has circulated along the lower surface of the second louver 22 circulates along the upper surface of the upstream third louver 46 and also circulates above the downstream third louver 47 (see arrow F4c). 18 and the lower surface of the downstream flat portion 19 (see arrow F5c).
 下流側第1ルーバー43の下面に沿って流通する空気の流れ(矢印F2d参照)は、第2ルーバー22の下方を流通する(矢印F3d参照)。第2ルーバー22の下方を流通した空気の流れは、上流側第3ルーバー46の下面に沿って流通するとともに下流側第3ルーバー47の上面に沿って流通し(矢印F4d参照)、その後に下流側ルーバー18及び下流側平坦部19の上方を流通する(矢印F5d参照)。 The air flow (see arrow F2d) that circulates along the lower surface of the first downstream louver 43 circulates below the second louver 22 (see arrow F3d). The air flowing under the second louver 22 flows along the lower surface of the upstream third louver 46 and along the upper surface of the downstream third louver 47 (see arrow F4d), and then flows downstream. It flows above the side louver 18 and the downstream flat portion 19 (see arrow F5d).
 一方、上流側第1ルーバー42の下面に沿って流通する空気の流れ(矢印F2e参照)は、Z軸方向に隣接するフィンの第2ルーバー22の上面に沿って流通する(矢印F3e参照)。第2ルーバー22の上面に沿って流通した流れは、上流側第3ルーバー46の下方及び下流側第3ルーバー47の下面に沿って流通し(矢印F4e参照)、その後に下流側ルーバー18及び下流側平坦部19の上面に沿って流通する(矢印F5e参照)。 On the other hand, the air flowing along the lower surface of the upstream first louver 42 (see arrow F2e) flows along the upper surface of the second louver 22 of the adjacent fin in the Z-axis direction (see arrow F3e). The flow that has circulated along the upper surface of the second louver 22 circulates below the upstream third louver 46 and along the lower surface of the downstream third louver 47 (see arrow F4e), and then flows through the downstream louver 18 and downstream. It flows along the upper surface of the side flat portion 19 (see arrow F5e).
 このように、フィンピッチPに流入した空気は、矢印F2cからF5cに示す流路cと、矢印F2dからF5dに示す流路dと、矢印F2eからF5eに示す流路eとの3つの流路で流通する。流路cと流路dと流路eとは、フィンピッチPを3等分に分割にした流路である。 Thus, the air that has flowed into the fin pitch P is divided into three flow paths: a flow path c indicated by arrows F2c to F5c, a flow path d indicated by arrows F2d to F5d, and a flow path e indicated by arrows F2e to F5e. circulate in The flow path c, the flow path d, and the flow path e are flow paths obtained by dividing the fin pitch P into three equal parts.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、第1ルーバー(上流側第1ルーバー42及び下流側第1ルーバー43)が複数(本実施形態では、一例として2つ)設けられている。これにより、第1ルーバーが1つの場合と比較して、第1ルーバーの上流端のY軸方向の合計長さ(すべての第1ルーバーの上流端のY軸方向の長さを合計した長さ)を長くすることができる。したがって、より多くの空気の流れを分割することができる。よって、空気が流れる際に発生する圧力損失をより低減することができる。
According to this embodiment, the following effects are obtained.
In the present embodiment, a plurality of first louvers (the first upstream louver 42 and the first downstream louver 43) are provided (in the present embodiment, two as an example). As a result, the total length of the upstream ends of the first louvers in the Y-axis direction (the total length of the upstream ends of all the first louvers in the Y-axis direction) ) can be lengthened. Thus, more airflow can be split. Therefore, it is possible to further reduce the pressure loss that occurs when the air flows.
 また、本実施形態では、複数の第1ルーバー(上流側第1ルーバー42及び下流側第1ルーバー43)がX軸方向に沿って並んでいる。これにより、第1ルーバーを1つのみとする場合と比較して、各第1ルーバーのX軸方向の長さを短くすることができる。したがって、第1ルーバーは水平面に対して角度θを有しているので、各第1ルーバーのZ軸方向(伝熱管の延在方向)の長さ(換言すれば、Z軸方向に突出する第1ルーバーの長さ)を短くすることができる。よって、熱交換用フィン自体のZ軸方向の長さも短くすることができるので、Z軸方向に複数のフィン40を並べて設ける場合には、フィン40を密に配置することができる。もしくは、同じ数のフィン40を設ける場合には、フィン40を設けた熱交換器を小型化することができる。 Also, in the present embodiment, a plurality of first louvers (first upstream louvers 42 and first downstream louvers 43) are arranged along the X-axis direction. As a result, the length of each first louver in the X-axis direction can be shortened compared to the case where there is only one first louver. Therefore, since the first louver has an angle θ with respect to the horizontal plane, the length of each first louver in the Z-axis direction (extending direction of the heat transfer tube) (in other words, the length of the first louver projecting in the Z-axis direction) length of one louver) can be shortened. Therefore, the length of the heat exchange fins themselves in the Z-axis direction can be shortened, so that when a plurality of fins 40 are arranged side by side in the Z-axis direction, the fins 40 can be arranged densely. Alternatively, if the same number of fins 40 are provided, the size of the heat exchanger provided with the fins 40 can be reduced.
 なお、本実施形態では、Z軸方向に隣接するフィン40の離間距離を第1実施形態と同様のL1としているが、L1よりも短い距離としてもよい。 In this embodiment, the distance between adjacent fins 40 in the Z-axis direction is L1, which is the same as in the first embodiment, but it may be shorter than L1.
 なお、本開示は、上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上記実施形態で説明したフィン1の各部分の寸法は、一例であって、上記記載の寸法に限定されない。
It should be noted that the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate without departing from the scope of the present disclosure.
For example, the dimensions of each portion of the fin 1 described in the above embodiment are examples, and are not limited to the dimensions described above.
 また、第1実施形態では第1ルーバー及び第3ルーバーの数が1つずつの例を説明し、第2実施形態では第1ルーバー及び第3ルーバーの数が2つずつの例を説明したが、第1ルーバー及び第3ルーバーの数はこれに限定されない。例えば、第1ルーバー及び第3ルーバーの数を各々3つ以上としてもよい。ただし、第1ルーバー及び第3ルーバーの数が多すぎると空気抵抗が上がり、熱交換器用フィンを通過する空気の圧力損失が増大してしまう可能性がある。したがって、最適な第1ルーバー及び第3ルーバーの数は、空気抵抗の観点から決定してもよい。 In the first embodiment, an example in which the first louver and the third louver are one each is described, and in the second embodiment, an example in which the first louver and the third louver are two each is described. , the numbers of the first louvers and the third louvers are not limited thereto. For example, the numbers of the first louvers and the number of the third louvers may each be three or more. However, if the numbers of the first louvers and the third louvers are too large, the air resistance may increase and the pressure loss of the air passing through the heat exchanger fins may increase. Therefore, the optimal number of first louvers and third louvers may be determined from the viewpoint of air resistance.
 以上説明した実施形態に記載の熱交換器用フィンは、例えば以下のように把握される。
 本開示の実施形態に係る熱交換器用フィンは、所定方向(Z軸方向)に延在する伝熱管の内部を流通する冷媒と、前記伝熱管の外部を前記所定方向と交差する方向(X軸方向)に流通する空気とを熱交換する熱交換器に設けられ、前記伝熱管に取り付けられる熱交換器用フィン(1)であって、前記所定方向に延在する中心軸線(C)を中心とした円形状であって前記伝熱管が通過する伝熱管通過部(11)と、前記所定方向に切り起されたルーバー(21,22)によってスリット(25)が形成されるルーバー部(12)と、を有し、前記空気の流通方向に沿うように設けられる板状の基板部(10)を備え、前記スリットは、前記基板部の一面側と他面側とを連通し、前記ルーバー部は、平坦部(16)と、前記平坦部の下流側に設けられ前記平坦部よりも前記所定方向に突出する第1ルーバー(21)と、前記第1ルーバーの下流側に設けられる第2ルーバー(22)とを有し、前記第2ルーバーは、前記所定方向及び前記空気が流通する方向で形成される面(XZ平面)で切断した際の断面の形状が、前記空気が流通する方向に延びる直線部(22b)と、前記直線部の上流端から上流方向へ斜めに曲折して直線状に延びる上流部(22a)と、前記直線部の下流端から下流方向へ斜めに曲折して直線状に延びる下流部(22c)と、を有し、前記直線部は、前記断面を見た際に、前記伝熱管通過部と重複するように配置されている。
The heat exchanger fins described in the embodiments described above are grasped, for example, as follows.
A heat exchanger fin according to an embodiment of the present disclosure includes a refrigerant flowing inside a heat transfer tube extending in a predetermined direction (Z-axis direction), and a direction intersecting the predetermined direction (X-axis A heat exchanger fin (1) provided in a heat exchanger that exchanges heat with air flowing in the direction) and attached to the heat transfer tube, wherein the central axis (C) extending in the predetermined direction is the center. a circular heat transfer tube passing portion (11) through which the heat transfer pipes pass; and a plate-shaped substrate portion (10) provided along the air circulation direction, the slit communicating between one surface side and the other surface side of the substrate portion, and the louver portion , a flat portion (16), a first louver (21) provided on the downstream side of the flat portion and protruding in the predetermined direction from the flat portion, and a second louver (21) provided on the downstream side of the first louver ( 22), wherein the second louver has a cross-sectional shape when cut along a plane (XZ plane) formed in the predetermined direction and the direction in which the air flows, and extends in the direction in which the air flows. a straight part (22b), an upstream part (22a) bent obliquely in the upstream direction from the upstream end of the straight part and extending linearly, and a straight part bent obliquely in the downstream direction from the downstream end of the straight part (22a). and a downstream portion (22c) extending to the straight portion, and the straight portion is arranged so as to overlap with the heat transfer tube passing portion when the cross section is viewed.
 上記構成では、ルーバー部が第1ルーバー及び第2ルーバーを有している。これにより、ルーバー部に沿って流通する空気が、第1ルーバー及び第2ルーバーに沿うように蛇行する。したがって、空気が直線状に流通する場合と比較して、空気とルーバー部とが接触する距離を増大させることができるので、熱伝達率を向上させることができる。
 また、上記構成では、ルーバー部に沿って流通する空気は、平坦部に沿って流通した後に、第1ルーバーの上流端部に衝突する。空気が第1ルーバーの上流端部に衝突すると、第1ルーバーによって空気の流れが分割される。具体的には、空気の流れが、ルーバー部の一面に沿って流通する流れと、スリットを通過してルーバー部の他面に沿って流通する流れと、に分割される。このように、第1ルーバーによって空気の流れが分割されるので、例えば、所定方向に所定の間隔で並んで複数のフィン(以下、所定方向に隣接するフィンを「第1フィン」及び「第2フィン」と称する)が配置された場合、第1フィンと第2フィンとの間に形成された隙間には、複数の流れが形成されることとなる。詳細には、第1フィンの他面に沿って流通する空気の流れと、第2フィンの一面に沿って流通する空気の流れとが形成されることとなる。このように、第1ルーバーによって、好適に空気の流れを分割することができるので、空気が流れる際に発生する圧力損失を低減することができる。
 また、上記構成では、第1ルーバーの下流側に設けられる第2ルーバーが、直線部と、上流部と、下流部と、を有している。直線部、上流部及び下流部は、いずれも直線状に形成されている。これにより、例えば、直線部、上流部及び下流部を湾曲形状で形成する場合と比較して、加工し易くすることができる。
In the above configuration, the louver section has the first louver and the second louver. Thereby, the air flowing along the louver section meanders along the first louver and the second louver. Therefore, compared to the case where the air flows linearly, the contact distance between the air and the louver portion can be increased, so that the heat transfer coefficient can be improved.
Further, in the above configuration, the air flowing along the louver portion collides with the upstream end portion of the first louver after flowing along the flat portion. When the air hits the upstream end of the first louver, the first louver splits the air flow. Specifically, the air flow is divided into a flow that circulates along one surface of the louver portion and a flow that passes through the slit and circulates along the other surface of the louver portion. In this way, since the air flow is divided by the first louvers, for example, a plurality of fins are arranged in a predetermined direction at predetermined intervals (hereafter, fins adjacent to each other in a predetermined direction are referred to as "first fin" and "second fin"). fins”) are arranged, a plurality of flows are formed in the gaps formed between the first fins and the second fins. Specifically, an air flow that circulates along the other surface of the first fin and an air flow that circulates along one surface of the second fin are formed. In this way, the first louvers can suitably divide the air flow, so that the pressure loss that occurs when the air flows can be reduced.
Further, in the above configuration, the second louver provided on the downstream side of the first louver has a linear portion, an upstream portion, and a downstream portion. The straight portion, the upstream portion, and the downstream portion are all formed straight. As a result, for example, compared to the case where the linear portion, the upstream portion, and the downstream portion are formed in curved shapes, it is possible to facilitate processing.
 また、本開示の実施形態に係る熱交換器用フィンは、前記第1ルーバーは、前記断面において、直線状に形成されている。 Further, in the heat exchanger fin according to the embodiment of the present disclosure, the first louver is formed linearly in the cross section.
 上記構成では、第1ルーバーは、直線状に形成されている。これにより、例えば、第1ルーバーが湾曲している場合と比較して、流通する空気の圧力損失を低減することができる。また、第1ルーバーが湾曲している場合と比較して、第1ルーバーを容易に形成することができる。 In the above configuration, the first louvers are formed linearly. Thereby, for example, the pressure loss of the circulating air can be reduced compared to the case where the first louver is curved. Also, the first louver can be formed more easily than when the first louver is curved.
 また、本開示の実施形態に係る熱交換器用フィンは、前記ルーバー部は、複数設けられていて、複数の前記ルーバー部は、前記空気が流通する方向と交差する方向に並んで配置されていて、前記ルーバー部同士の間には、平面状の分断部(15)が設けられている。 Further, in the heat exchanger fin according to the embodiment of the present disclosure, a plurality of the louver portions are provided, and the plurality of the louver portions are arranged side by side in a direction crossing the direction in which the air flows. A planar dividing portion (15) is provided between the louver portions.
 上記構成では、ルーバー部同士の間には、平面状の分断部が設けられている。これにより、ルーバー部の剛性を向上させることができる。したがって、フィン全体の剛性も向上させることができる。 In the above configuration, a planar dividing portion is provided between the louver portions. Thereby, the rigidity of the louver portion can be improved. Therefore, the rigidity of the fin as a whole can also be improved.
 また、本開示の実施形態に係る熱交換器用フィンは、前記ルーバー部の前記伝熱管通過部側の端部は、前記伝熱管通過部と同心状の円弧形状とされている。 In addition, in the heat exchanger fin according to the embodiment of the present disclosure, the end portion of the louver portion on the side of the heat transfer tube passing portion has an arc shape concentric with the heat transfer tube passing portion.
 上記構成では、ルーバー部の伝熱管通過部側の端部は、伝熱管通過部と同心状の円弧形状とされている。これにより、ルーバー部の長さを、伝熱管通過部側に長くすることができる。したがって、より多くの空気の流れを分割することができるので、空気が流れる際に発生する圧力損失をより低減することができる。 In the above configuration, the end portion of the louver portion on the side of the heat-transfer-tube passing portion has an arc shape concentric with the heat-transfer-tube passing portion. As a result, the length of the louver portion can be increased toward the heat transfer tube passage portion. Therefore, since more air flows can be divided, the pressure loss that occurs when the air flows can be further reduced.
 また、本開示の実施形態に係る熱交換器用フィンは、前記第1ルーバーは、前記断面において、上流端が前記伝熱管通過部と重複しないように設けられている。 Further, in the heat exchanger fin according to the embodiment of the present disclosure, the first louver is provided so that the upstream end does not overlap the heat transfer tube passing portion in the cross section.
 上記構成では、第1ルーバーは、断面において、上流端が伝熱管通過部と重複しないように設けられている。これにより、第1ルーバーの上流端と伝熱管通過部とが干渉し難い。したがって、空気の流れを分割する第1ルーバーの上流端の長さを長くすることができるので、より多くの空気の流れを分割することができる。よって、空気が流れる際に発生する圧力損失をより低減することができる。 In the above configuration, the first louver is provided so that the upstream end does not overlap the heat transfer tube passing portion in cross section. As a result, interference between the upstream end of the first louver and the heat transfer tube passing portion is less likely to occur. Therefore, since the length of the upstream end of the first louver that divides the air flow can be increased, more air flow can be divided. Therefore, it is possible to further reduce the pressure loss that occurs when the air flows.
 また、本開示の実施形態に係る熱交換器用フィンは、前記ルーバー部の前記断面の形状は、前記中心軸線を基準として線対称となるとともに、前記中心軸線よりも一側が前記第1ルーバーの中心点(CP)を基準として点対称とされている。 Further, in the heat exchanger fin according to the embodiment of the present disclosure, the shape of the cross section of the louver portion is line symmetrical with respect to the central axis, and one side of the central axis is the center of the first louver. It is symmetrical with respect to the point (CP).
 上記構成では、ルーバー部の中心軸線よりも一側が、第1ルーバーの中心点を基準として点対称とされている。これにより、空気が流れる際に発生する圧力損失を低減することができる。 In the above configuration, one side of the central axis of the louver is point symmetric with respect to the central point of the first louver. Thereby, the pressure loss that occurs when the air flows can be reduced.
 また、本開示の実施形態に係る熱交換器用フィンは、前記第1ルーバー(42,43)は、複数設けられ、複数の前記第1ルーバーは、前記空気が流通する方向に並んで配置されている。 Further, in the heat exchanger fin according to the embodiment of the present disclosure, a plurality of the first louvers (42, 43) are provided, and the plurality of the first louvers are arranged side by side in the direction in which the air flows. there is
 上記構成では、第1ルーバーが複数設けられている。これにより、第1ルーバーが1つの場合と比較して、第1ルーバーの上流端の合計長さ(すべての第1ルーバーの上流端の長さを合計した長さ)を長くすることができる。したがって、より多くの空気の流れを分割することができる。よって、空気が流れる際に発生する圧力損失をより低減することができる。
 また、上記構成では、複数の第1ルーバーが空気の流れ方向に沿って並んでいる。これにより、第1ルーバーを1つのみとする場合と比較して、各第1ルーバーの大きさを小さくすることができる。したがって、各第1ルーバーの所定方向(伝熱管の延在方向)の長さ(換言すれば、所定方向に突出する第1ルーバーの長さ)を短くすることができる。よって、熱交換用フィン自体の所定方向の長さも短くすることができるので、所定方向に複数の熱交換用フィンを並べて設ける場合には、熱交換用フィンを密に配置することができる。もしくは、同じ数の熱交換用フィンを設ける場合には、上記構成の熱交換用フィンを設けた熱交換器を小型化することができる。
In the above configuration, a plurality of first louvers are provided. As a result, the total length of the upstream ends of the first louvers (total length of the upstream ends of all the first louvers) can be made longer than when there is only one first louver. Therefore, more airflow can be split. Therefore, it is possible to further reduce the pressure loss that occurs when the air flows.
Moreover, in the above configuration, the plurality of first louvers are arranged along the air flow direction. Thereby, the size of each first louver can be reduced compared to the case where only one first louver is provided. Therefore, the length of each first louver in the predetermined direction (extending direction of the heat transfer tubes) (in other words, the length of the first louver projecting in the predetermined direction) can be shortened. Therefore, the length of the heat exchange fins themselves in the predetermined direction can be shortened, so that when a plurality of heat exchange fins are arranged side by side in the predetermined direction, the heat exchange fins can be densely arranged. Alternatively, when the same number of heat exchange fins are provided, the size of the heat exchanger provided with the heat exchange fins configured as described above can be reduced.
1   :フィン
10  :基板部
11  :伝熱管通過部
12  :ルーバー部
13  :円環部
15  :分断部
16  :上流側平坦部(平坦部)
17  :上流側ルーバー
18  :下流側ルーバー
19  :下流側平坦部
21  :第1ルーバー
21a :第1ルーバー上流部
21b :第1ルーバー下流部
22  :第2ルーバー
22a :第2ルーバー上流部(上流部)
22b :直線部
22c :第2ルーバー下流部(下流部)
23  :第3ルーバー
25  :第1スリット
26  :第2スリット
27  :第3スリット
28  :第4スリット
30  :円筒部
40  :フィン
41  :基板部
42  :上流側第1ルーバー
43  :下流側第1ルーバー
44  :上流側第1スリット
45  :下流側第1スリット
46  :上流側第3ルーバー
47  :下流側第3ルーバー
48  :上流側第3スリット
49  :下流側第3スリット
Reference Signs List 1: fin 10: substrate portion 11: heat transfer tube passing portion 12: louver portion 13: annular portion 15: dividing portion 16: upstream flat portion (flat portion)
17: Upstream louver 18: Downstream louver 19: Downstream flat portion 21: First louver 21a: First louver upstream portion 21b: First louver downstream portion 22: Second louver 22a: Second louver upstream portion (upstream portion )
22b: Straight portion 22c: Second louver downstream portion (downstream portion)
23 : Third louver 25 : First slit 26 : Second slit 27 : Third slit 28 : Fourth slit 30 : Cylindrical portion 40 : Fin 41 : Substrate portion 42 : First upstream louver 43 : First downstream louver 44: first upstream slit 45: first downstream slit 46: third upstream louver 47: third downstream louver 48: third upstream slit 49: third downstream slit

Claims (7)

  1.  所定方向に延在する伝熱管の内部を流通する冷媒と、前記伝熱管の外部を前記所定方向と交差する方向に流通する空気とを熱交換する熱交換器に設けられ、前記伝熱管に取り付けられる熱交換器用フィンであって、
     前記所定方向に延在する中心軸線を中心とした円形状であって前記伝熱管が通過する伝熱管通過部と、前記所定方向に切り起されたルーバーによってスリットが形成されるルーバー部と、を有し、前記空気の流通方向に沿うように設けられる板状の基板部を備え、
     前記スリットは、前記基板部の一面側と他面側とを連通し、
     前記ルーバー部は、平坦部と、前記平坦部の下流側に設けられ前記平坦部よりも前記所定方向に突出する第1ルーバーと、前記第1ルーバーの下流側に設けられる第2ルーバーとを有し、
     前記第2ルーバーは、前記所定方向及び前記空気が流通する方向で形成される面で切断した際の断面の形状が、前記空気が流通する方向に延びる直線部と、前記直線部の上流端から上流方向へ斜めに曲折して直線状に延びる上流部と、前記直線部の下流端から下流方向へ斜めに曲折して直線状に延びる下流部と、を有し、
     前記直線部は、前記断面を見た際に、前記伝熱管通過部と重複するように配置されている熱交換器用フィン。
    Provided in a heat exchanger that exchanges heat between a refrigerant flowing inside a heat transfer tube extending in a predetermined direction and air flowing outside the heat transfer tube in a direction intersecting the predetermined direction, and attached to the heat transfer tube A heat exchanger fin comprising:
    A heat-transfer-tube-passing portion, which has a circular shape centered on the central axis extending in the predetermined direction and through which the heat-transfer-tube passes, and a louver portion in which a slit is formed by the louver cut and raised in the predetermined direction. and a plate-shaped substrate provided along the direction of air flow;
    the slit communicates one surface side and the other surface side of the substrate portion,
    The louver portion has a flat portion, a first louver provided downstream of the flat portion and protruding in the predetermined direction from the flat portion, and a second louver provided downstream of the first louver. death,
    The second louver has a cross-sectional shape when cut along a plane formed in the predetermined direction and the direction in which the air flows. an upstream portion that is obliquely bent in the upstream direction and extends linearly; and a downstream portion that is obliquely bent in the downstream direction from the downstream end of the linear portion and extends linearly;
    The heat exchanger fin, wherein the linear portion is arranged so as to overlap with the heat transfer tube passing portion when the cross section is viewed.
  2.  前記第1ルーバーは、前記断面において、直線状に形成されている請求項1に記載の熱交換器用フィン。 The heat exchanger fin according to claim 1, wherein the first louver is linear in the cross section.
  3.  前記ルーバー部は、複数設けられていて、
     複数の前記ルーバー部は、前記空気が流通する方向と交差する方向に並んで配置されていて、
     前記ルーバー部同士の間には、平面状の分断部が設けられている請求項1または請求項2に記載の熱交換器用フィン。
    A plurality of the louver parts are provided,
    the plurality of louver portions are arranged side by side in a direction crossing the direction in which the air flows,
    3. The heat exchanger fin according to claim 1, wherein a planar dividing portion is provided between said louver portions.
  4.  前記ルーバー部の前記伝熱管通過部側の端部は、前記伝熱管通過部と同心状の円弧形状とされている請求項1から請求項3のいずれかに記載の熱交換器用フィン。 The heat exchanger fin according to any one of claims 1 to 3, wherein the end portion of the louver portion on the side of the heat transfer tube passing portion has an arc shape concentric with the heat transfer tube passing portion.
  5.  前記第1ルーバーは、前記断面において、上流端が前記伝熱管通過部と重複しないように設けられている請求項4に記載の熱交換器用フィン。 The heat exchanger fin according to claim 4, wherein the first louver is provided so that the upstream end of the first louver does not overlap the heat transfer tube passing portion in the cross section.
  6.  前記ルーバー部の前記断面の形状は、前記中心軸線を基準として線対称となるとともに、前記中心軸線よりも一側が前記第1ルーバーの中心点を基準として点対称とされている請求項1から請求項5のいずれかに記載の熱交換器用フィン。 The shape of the cross section of the louver portion is line symmetrical with respect to the central axis, and one side of the central axis is point symmetrical with respect to the central point of the first louver. Item 6. The heat exchanger fin according to any one of items 5.
  7.  前記第1ルーバーは、複数設けられ、
     複数の前記第1ルーバーは、前記空気が流通する方向に並んで配置されている請求項1から請求項5のいずれかに記載の熱交換器用フィン。
     
    A plurality of the first louvers are provided,
    The heat exchanger fin according to any one of claims 1 to 5, wherein the plurality of first louvers are arranged side by side in a direction in which the air flows.
PCT/JP2022/022801 2021-09-06 2022-06-06 Fin for heat exchanger WO2023032385A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023545092A JPWO2023032385A1 (en) 2021-09-06 2022-06-06
AU2022337252A AU2022337252A1 (en) 2021-09-06 2022-06-06 Fin for heat exchanger
EP22863973.8A EP4372303A1 (en) 2021-09-06 2022-06-06 Fin for heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144960 2021-09-06
JP2021-144960 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023032385A1 true WO2023032385A1 (en) 2023-03-09

Family

ID=85411189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022801 WO2023032385A1 (en) 2021-09-06 2022-06-06 Fin for heat exchanger

Country Status (4)

Country Link
EP (1) EP4372303A1 (en)
JP (1) JPWO2023032385A1 (en)
AU (1) AU2022337252A1 (en)
WO (1) WO2023032385A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166392A (en) 1991-11-07 1997-06-24 Carrier Corp Plate fin for heat exchanger
US20140034272A1 (en) * 2012-08-01 2014-02-06 Lg Electronics Inc. Heat exchanger
JP2019052830A (en) * 2017-09-19 2019-04-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166392A (en) 1991-11-07 1997-06-24 Carrier Corp Plate fin for heat exchanger
US20140034272A1 (en) * 2012-08-01 2014-02-06 Lg Electronics Inc. Heat exchanger
JP2019052830A (en) * 2017-09-19 2019-04-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner

Also Published As

Publication number Publication date
JPWO2023032385A1 (en) 2023-03-09
EP4372303A1 (en) 2024-05-22
AU2022337252A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US7578339B2 (en) Heat exchanger of plate fin and tube type
US4832117A (en) Fin tube heat exchanger
US8656986B2 (en) Fin, heat exchanger and heat exchanger assembly
US9441890B2 (en) Heat exchanger fin with corrugated portion and louvers
US6349761B1 (en) Fin-tube heat exchanger with vortex generator
US9476656B2 (en) Heat exchanger having U-shaped tube arrangement and staggered bent array for enhanced airflow
US5755281A (en) Fin tube heat exchanger
US11561014B2 (en) Air conditioner including a heat exchanger
EP1977180B1 (en) Fin and tube heat exchanger
WO2023032385A1 (en) Fin for heat exchanger
JP7001917B2 (en) Heat exchanger with heat transfer tube unit
WO2013161240A1 (en) Finned tube heat exchanger
JP2018087687A (en) Heat exchanger
JP2018004090A (en) Indoor unit for air conditioner
JPH11337284A (en) Heat exchanger
JP7128091B2 (en) Plate fin heat exchanger and plate fin tube heat exchanger
JP2008185307A (en) Fin for heat exchanger
WO2023233725A1 (en) Heat exchanger
JP2002195774A (en) Air heat exchanger
JP5835907B2 (en) Heat exchanger
US20220325956A1 (en) Heat exchanger
KR20110080899A (en) Fin for heat exchanger
WO2023053319A1 (en) Heat exchanger and refrigeration cycle device
TW202234010A (en) Heat exchanger and refrigeration cycle apparatus
KR20110081632A (en) Fin for heat exchanger and heat exchanger having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545092

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: AU2022337252

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022863973

Country of ref document: EP

Ref document number: 22 863 973.

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022863973

Country of ref document: EP

Effective date: 20240215

ENP Entry into the national phase

Ref document number: 2022337252

Country of ref document: AU

Date of ref document: 20220606

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE