WO2023233725A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2023233725A1
WO2023233725A1 PCT/JP2023/005565 JP2023005565W WO2023233725A1 WO 2023233725 A1 WO2023233725 A1 WO 2023233725A1 JP 2023005565 W JP2023005565 W JP 2023005565W WO 2023233725 A1 WO2023233725 A1 WO 2023233725A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tubes
protrusion
heat
upstream side
Prior art date
Application number
PCT/JP2023/005565
Other languages
French (fr)
Japanese (ja)
Inventor
紘章 中西
喜之 近藤
吉輝 小室
浩一 谷本
雅哉 畑中
陽一 上藤
駿作 江口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023233725A1 publication Critical patent/WO2023233725A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • Patent Document 1 discloses that plate fins around a heat transfer tube are cut and raised to form guide fins that are inclined with respect to the gas flow direction, and the guide fins guide the gas flow to a downstream region of the heat transfer tube in the gas flow direction. The configuration is disclosed.
  • Patent Document 2 discloses that a cutout portion that widens toward the upstream side in the gas flow direction is provided at each position equidistant from two adjacent heat exchanger tubes among the edge portions of the plate fins on the upstream side in the gas flow direction.
  • a configuration is disclosed in which ventilation resistance is reduced by providing a.
  • Patent Document 3 discloses that plate fins are cut so that curved lines or bent lines are continuous in the row direction of the heat exchanger tubes at a distance that is approximately half the distance between the heat exchanger tubes in the row direction of the heat exchanger tubes, and the unevenness engages with each other as a whole. A configuration is disclosed. In Patent Document 3, by forming the plate fins in this way, it is possible to reduce the variation in heat conduction distance from each heat transfer tube to the edge of the plate fins without changing the area of the plate fins, thereby increasing the fin efficiency. We are trying to improve.
  • the amount of heat exchanged can be efficiently increased by increasing the heat transfer coefficient from the gas flow to the plate fins. That is, in the heat exchanger described above, the heat exchange amount can be easily improved by expanding the heat transfer area. However, when the heat transfer area is expanded, there is a problem that the heat exchanger becomes larger and it becomes difficult to reduce the weight of the heat exchanger.
  • the present disclosure has been made in view of the above circumstances, and provides a heat exchanger that can reduce the weight while increasing the amount of heat exchanged.
  • the heat exchanger is disposed in a gas flow, and includes a plurality of heat exchangers arranged at intervals, extending in a second direction intersecting a first direction in which the gas flows.
  • a heat tube and a plurality of plate fins that extend in the first direction, are provided so as to straddle the plurality of heat transfer tubes, and are arranged at intervals in the second direction; a plurality of slits extending in a third direction that intersects both one direction and the second direction and arranged at intervals in the first direction; It has a zigzag shape that extends obliquely toward the upstream side and the downstream side in the first direction, and the periods of the zigzag shapes are the same.
  • the heat exchanger is disposed in the gas flow and extends in a second direction intersecting the first direction of the gas flow, and mutually extends in the first direction and the first direction.
  • a plurality of heat exchanger tubes staggered alternately in a third direction, which is a direction intersecting both the first direction and the second direction;
  • a plurality of plate fins arranged at intervals in the second direction, the plate fins penetrating upstream of the plurality of heat transfer tubes in the first direction in the second direction; Equipped with a hole.
  • the heat exchanger according to the present disclosure, it is possible to reduce the weight while increasing the amount of heat exchange.
  • FIG. 1 is a diagram showing a schematic configuration of a heat exchanger in a first embodiment of the present disclosure.
  • 2 is a sectional view taken along line II-II in FIG. 1.
  • FIG. FIG. 3 is a sectional view corresponding to FIG. 2 of a heat exchanger according to a second embodiment of the present disclosure.
  • FIG. 4 is an enlarged view of the main part of FIG. 3;
  • FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a first modification of the second embodiment of the present disclosure.
  • FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a second modified example of the second embodiment of the present disclosure.
  • FIG. 5 is an enlarged view corresponding to FIG.
  • FIG. 4 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a third modification of the second embodiment of the present disclosure.
  • FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a fourth modification of the second embodiment of the present disclosure.
  • FIG. 3 is a sectional view corresponding to FIG. 2 of a heat exchanger in a fifth modification of the second embodiment of the present disclosure. 2 is a sectional view taken along line XX in FIG. 1.
  • FIG. FIG. 11 is a sectional view corresponding to FIG. 10 of a heat exchanger according to a fourth embodiment of the present disclosure.
  • FIG. 12 is an enlarged view of the main part of FIG. 11;
  • FIG. 13 is an enlarged view corresponding to FIG.
  • FIG. 12 of a heat exchanger in a first modified example of the fourth embodiment of the present disclosure is an enlarged view corresponding to FIG. 12 of a heat exchanger in a second modified example of the fourth embodiment of the present disclosure.
  • FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a third modified example of the fourth embodiment of the present disclosure.
  • FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a fourth modification of the fourth embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a schematic configuration of a heat exchanger in a first embodiment of the present disclosure.
  • the heat exchanger 101 of the first embodiment exchanges heat between gas G and refrigerant R, which are supplied from the outside.
  • the heat exchanger 101 includes heat exchanger tubes 102 and plate fins 103.
  • the flow of the gas G heat-exchanged within a heat exchanger is simply called a gas flow.
  • first direction D1 the direction in which the gas G flows is referred to as a first direction D1
  • the upstream side of the gas flow is referred to as a first direction upstream side D1u
  • the downstream side is referred to as a first direction downstream side D1d.
  • the heat exchanger tube 102 is placed in the gas flow.
  • the heat exchanger tube 102 extends in a second direction D2 that intersects the first direction D1.
  • a plurality of heat exchanger tubes 102 are arranged at intervals in the gas flow.
  • a heat exchanger tube group 105 is constituted by a plurality of these heat exchanger tubes 102 arranged.
  • the heat exchanger tubes 102 of the heat exchanger tube group 105 illustrated in this embodiment all have the same shape, and the refrigerant R is circulated inside the heat exchanger tubes 102 .
  • the second direction D2 in this embodiment is exemplified as being perpendicular to the first direction D1, it is not limited to being perpendicular.
  • the direction which intersects the first direction D1 and the second direction D2 is called the third direction D3 (refer FIG. 2).
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • the heat exchanger tubes 102 constituting the heat exchanger tube group 105 are arranged in a so-called staggered arrangement.
  • the heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged in a rhombic lattice. That is, a plurality of heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged so as to be alternately shifted in the first direction D1 and the third direction D3.
  • the heat exchanger tubes 102 of the heat exchanger tube group 105 of this embodiment form a first row C1 and a second row C2 extending in the first direction D1, and these first row C1 and second row C2 are arranged in a third row. They are arranged alternately in direction D3. Moreover, the heat exchanger tubes 102 in the first row C1 are arranged at intervals of a distance L1 in the first direction D1. The heat exchanger tubes 102 in the second row C2 are arranged at intervals of a distance L1 in the first direction D1, and are spaced apart by a distance L2, which is half the distance L1, from the position of the heat exchanger tubes 102 in the first row C1. They are arranged shifted in one direction D1.
  • the heat exchanger tubes 102 arranged in the first direction D1 are sometimes referred to as rows (C), and those arranged in the third direction D3 are sometimes referred to as stages (S).
  • the heat exchanger tube group 105 of this embodiment includes heat exchanger tubes 102 in multiple rows and stages. Further, for convenience of illustration, in FIG. 2, in order to indicate the rows C (C1, C2) and the stages S, the axes passing through the centers of the heat exchanger tubes 102 constituting each are labeled.
  • the plate fins 103 extend in the first direction D1 and are provided so as to straddle the plurality of heat exchanger tubes 102.
  • a plurality of plate fins 103 are arranged at intervals in the second direction D2 (see FIG. 1).
  • the plurality of plate fins 103 in this embodiment are each formed into a thin plate shape and arranged at equal intervals in the second direction D2. The above-described gas flow flows between these plate fins 103 from the upstream side D1u in the first direction to the downstream side D1d in the first direction.
  • the plate fin 103 includes a slit 104.
  • the slit 104 extends in the third direction D3. More specifically, the slit 104 is formed to cross the plate fin 103 in the third direction D3.
  • a plurality of slits 104 are arranged at intervals in the first direction D1. These plurality of slits 104 penetrate in the second direction D2, which is the thickness direction of the plate fin 103.
  • the slit 104 of this embodiment is provided for each two-stage heat exchanger tube 102 adjacent in the first direction D1 of the heat exchanger tube group 105.
  • the plurality of slits 104 have a zigzag shape that alternately extends diagonally on the upstream side D1u in the first direction and on the downstream side D1d in the first direction. These plurality of slits 104 have the same zigzag period. In other words, the plurality of slits 104 are located at, for example, the position of the convex portion 106 formed in a convex shape toward the first direction upstream side D1u in the third direction D3, and the first direction downstream side D1d in the third direction D3. The positions of the concave portions 107 formed in a concave shape toward each other coincide with each other.
  • the zigzag period of the slits 104 illustrated in this embodiment matches the period at which the heat exchanger tubes 102 are arranged at regular intervals in the third direction D3. Further, the amplitude of the zigzag shape of the slit 104 is constant.
  • the slit 104 extends toward the upstream side D1u in the first direction at a position between the heat transfer tubes 102 adjacent in the third direction D3 of the stage S adjacent to the upstream side D1u in the first direction. Further, the slit 104 extends toward the downstream side D1d in the first direction at a position between the heat exchanger tubes 102 adjacent in the third direction D3 of the stage S adjacent to the downstream side D1d in the first direction.
  • the positions of the zigzag-shaped tops t in the third direction D3 correspond to the positions of the heat exchanger tubes 102 in the third direction D3.
  • the folded positions of the convex portions 106 which are the tops t of the slits 104 in the third direction D3, respectively coincide with the center positions of the heat exchanger tubes 102 in the first row C1.
  • the folded positions of the recesses 107 which are the tops t of the slits 104 in the third direction D3, respectively coincide with the center positions of the heat exchanger tubes 102 in the second row C2.
  • the distances in the first direction D1 between the tops t and the heat exchanger tubes 102 arranged closest to the tops t in the first direction D1 are all equal distances. .
  • the folded positions of these convex portions 106 and recessed portions 107 are not limited to being coincident with the center position of the heat exchanger tube 102, and may be slightly shifted from the center position of the heat exchanger tube 102, for example.
  • the portion extending toward the upstream side D1u in the first direction is a portion of the slit 104 that is located at the first direction from the center of the heat exchanger tube 102 of the stage S adjacent to the upstream side D1u of the slit 104 in the first direction. It extends to the upstream side D1u in the direction.
  • the portion of the slit 104 extending toward the upstream side D1u in the first direction extends to the upstream side D1u in the first direction from the heat exchanger tube 102 of the stage adjacent to the upstream side D1u in the first direction of the slit 104. has not extended.
  • the slit 104 is located at the same position as the point P1 of the heat exchanger tube 102 of the stage S adjacent to the upstream side D1u in the first direction, which is the most upstream side D1u in the first direction, or at the downstream side D1d in the first direction.
  • the portion of the slit 104 illustrated in this embodiment that extends toward the downstream side D1d in the first direction is from the center of the heat exchanger tube 102 of the stage S adjacent to the downstream side D1d of the slit 104 in the first direction. It also extends to the downstream side D1d in the first direction.
  • the portion of the slit 104 extending toward the downstream side D1d in the first direction extends further downstream D1d in the first direction than the heat exchanger tube 102 of the stage S adjacent to the downstream side D1d of the slit 104 in the first direction. do not have.
  • the slit 104 is located at the same position as the point P2 of the heat exchanger tube 102 of the stage S adjacent to the downstream side D1d in the first direction, which is the most downstream side D1d in the first direction, or at the upstream side D1u in the first direction.
  • the plate fins 103 are provided with a plurality of slits 104 extending in the third direction D3 and arranged at intervals in the first direction D1.
  • it has a zigzag shape that extends diagonally alternately toward the upstream side D1u and the first direction downstream side D1d, and the periods of the zigzag shapes are the same. Therefore, when the gas G flows from the upstream side D1u in the first direction to the downstream side D1d in the first direction, the gas flow is disturbed by the slit 104, and the temperature boundary layer of the gas flow can be thinned. It is possible to increase the amount of heat exchange by making the temperature gradient steeper.
  • the length of the slits 104 can be increased compared to when the slits 104 are formed in a straight line, so that the weight of the plate fin 103 can be reduced. I can do it. Furthermore, since the zigzag periods of the plurality of slits 104 extending in the third direction D3 are the same, it is possible to equalize the distance between adjacent slits 104 in the first direction D1, and also to improve gas flow and plate fins. It is possible to secure a contact area of As a result, it is possible to suppress a decrease in the amount of heat exchange while reducing the development of a temperature boundary layer.
  • the heat exchanger tubes 102 are arranged in a staggered manner, and the slits 104 are adjacent to the slits 104 on the upstream side D1u in the first direction, and the plurality of heat exchanger tubes 102 are arranged in the third direction D3.
  • the heat pipes 102 extend toward the upstream side D1u in the first direction.
  • the heat exchanger tubes 102 when the heat exchanger tubes 102 are arranged in a staggered manner, the heat exchanger tubes 102 disposed on the upstream side D1u in the first direction by one stage than the heat exchanger tubes 102 in the stage adjacent to the upstream side D1u in the first direction;
  • the distance from the slit 104 on the first direction downstream side D1d of 102 can be reduced. Therefore, it is possible to suppress the development of a temperature boundary layer on the downstream side D1d of the heat exchanger tube 102 in the first direction, so that the amount of heat exchange can be increased.
  • the position of the zigzag top portion t in the third direction D3 further coincides with the position of the heat exchanger tube 102 in the third direction D3.
  • the distances between the staggered heat exchanger tubes 102 and the slits 104 can be made even more uniform.
  • the slits 104 are further provided for each two-stage heat exchanger tube 102 arranged in the third direction D3 and adjacent in the first direction D1. Thereby, the amount of heat exchange can be increased more effectively.
  • the width dimension of the slit 104 in the first direction D1 in the first embodiment described above may be made narrower as the flow rate of the gas flow is higher, and wider as the flow rate of the gas flow is lower, for example. By doing so, it is possible to more effectively suppress the development of the temperature boundary layer even when the flow rate of the gas flow is low.
  • FIG. 3 is a sectional view corresponding to FIG. 2 of a heat exchanger according to a second embodiment of the present disclosure.
  • the heat exchanger 201 in the second embodiment like the heat exchanger 101 in the first embodiment described above, exchanges gas G and refrigerant R supplied from the outside, respectively. exchange heat.
  • Heat exchanger 201 includes heat exchanger tubes 102, plate fins 103, and protrusions 110.
  • FIG. 4 is an enlarged view of the main part of FIG. 3.
  • the protrusion 110 protrudes from the plate fin 103 in the second direction D2 and extends in the first direction D1.
  • the protrusion 110 of this embodiment extends so as to straddle adjacent plate fins 103 in the second direction D2.
  • Two protrusions 110 are provided in pairs on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively.
  • the two protrusions 110 provided on the upstream side D1u of the heat exchanger tube 102 in the first direction are arranged at a distance L3 in the third direction D3.
  • the two protrusions 110 provided on the first direction downstream side D1d of the heat exchanger tube 102 are also arranged with an interval L3 in the third direction D3.
  • the interval L3 is smaller than the outer diameter R1 of the heat exchanger tube 102.
  • the interval L3 is exemplified to be half the outer diameter R1 of the heat exchanger tubes 102.
  • the length of the protrusion 110 in the first direction D1 may be any length as long as it can protrude beyond the heat exchanger tube 102 in the first direction.
  • the thickness of the protrusion 110 in the third direction D3 is smaller than the thickness of the tube wall of the heat exchanger tube 102. In this embodiment, a case is illustrated in which the thickness of the protrusion 110 is about half the thickness of the tube wall of the heat exchanger tube 102, but the thickness is not limited to this.
  • the protrusion 110 of the second embodiment is formed in a flat plate shape extending in the first direction D1 when viewed from the second direction D2, the protrusion 110 is not limited to a flat plate shape, and may be slightly curved, for example. It may have a shape that looks like this.
  • the heat exchanger 201 includes a pair of protrusions 110 on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively.
  • the gas flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, thereby reducing the flow path area of the first direction upstream side D1u and the first direction upstream side D1u of the heat exchanger tube 102.
  • Gas flow rate can be increased. Therefore, in addition to suppressing the development of the temperature boundary layer by the slits 104, it is possible to further suppress the development of the temperature boundary layer on the plate fins 103.
  • the heat transfer area of the heat transfer tube 102 can be expanded by the protrusion 110, the amount of heat exchange can be further increased.
  • FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a first modified example of the second embodiment of the present disclosure.
  • the protrusion 110 is not limited to a configuration in which it is formed integrally with the heat exchanger tube 102.
  • the protrusion 110 shown in FIG. 5 may be formed by cutting and raising the plate fin 103.
  • FIG. 6 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a second modified example of the second embodiment of the present disclosure. Since the protrusion 110 of the second embodiment described above is formed integrally with the heat exchanger tube 102, it is necessary to attach the protrusion 110 by welding, adhesive, etc. after the heat exchanger tube 102 is penetrated through the plate fin 103. However, as in a second modified example of the second embodiment shown in FIG. Even after the heat exchanger tubes 102 are attached, it is possible to penetrate the plate fins 103. Thereby, the heat exchanger 201 provided with the protrusion 110 can be easily assembled.
  • FIG. 7 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a third modification of the second embodiment of the present disclosure.
  • the projection 110 of the second embodiment described above is formed integrally with the heat exchanger tube 102, the structure is not limited to this.
  • a gap G1 through which gas can flow may be provided between the protrusion 110 and the heat exchanger tube 102.
  • the length of the gap G1 in the first direction D1 may be approximately the thickness of the tube wall of the heat exchanger tube 102 described above.
  • the protrusion 110 of the third modification of the second embodiment may be formed by cutting and raising it from the plate fin 103 similarly to the protrusion 110 of the first modification of the second embodiment, for example.
  • a protrusion through hole through which the protrusion 110 can pass is provided, the protrusion 110 is inserted into the protrusion through hole, and then the protrusion 110 and the plate fin 103 are fixed by welding, adhesive, etc. You may also do so.
  • the protrusions 110 can be easily provided. becomes possible. Furthermore, since the gas G flows through the gap G1 between the protrusion 110 and the heat transfer tube 102, the stagnation area of the gas G between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect. Become.
  • FIG. 8 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a fourth modification of the second embodiment of the present disclosure.
  • the protrusions 110 are provided on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tubes 102, but for example, among the heat exchanger tube group 105, the first direction
  • a protrusion 112 protrudes in a direction away from the heat exchanger tubes 102 in the third direction D3, as in the fourth modification of the second embodiment shown in FIG. may be provided.
  • the heat transfer area of the heat transfer tube 102 can be expanded, so especially on the downstream side D1d in the first direction where the temperature difference during heat exchange between the gas G and the refrigerant R is small. It becomes possible to ensure the amount of heat transfer in some of the heat exchanger tubes 102.
  • the shape of the protrusion 112 may be any shape that can expand the heat transfer area, and is not limited to the shape shown in FIG. 8 .
  • FIG. 9 is a sectional view corresponding to FIG. 2 of a heat exchanger in a fifth modification of the second embodiment of the present disclosure.
  • the heat exchanger tubes 102 are not limited to the case where they are arranged in a staggered manner.
  • the heat exchanger tubes 102 may be arranged in a so-called square lattice or rectangular lattice when viewed from the second direction D2.
  • the slits 104 are provided at intervals in the first direction D1 for every two stages S of the heat exchanger tubes 102 arranged in the third direction D3.
  • the zigzag-shaped slits 104 may be provided at intervals in the first direction D1 for each stage S of the heat exchanger tubes 102.
  • the width dimension in the first direction D1 of the slit 104 in the second embodiment and each modification described above is narrower as the flow rate of the gas flow is higher, and wider as the flow rate of the gas flow is lower. It may also be formed. Further, the length of the protrusion 110 in the first direction D1 may be formed to be shorter as the flow rate of the gas flow is higher, and longer as the flow rate of the gas flow is lower. By doing so, it becomes possible to more effectively suppress the development of the temperature boundary layer even when the flow rate of the gas flow is low.
  • the heat exchanger 301 of this third embodiment differs from the heat exchanger 101 of the first embodiment described above in the shape of plate fins. Therefore, the description will be made with reference to FIG. 1 and with the same reference numerals attached to the same parts as in the first embodiment described above.
  • the heat exchanger 301 of the third embodiment exchanges heat between gas G and refrigerant R supplied from the outside.
  • the heat exchanger 301 includes heat exchanger tubes 102 and plate fins 303. Note that the flow of gas G that undergoes heat exchange within the heat exchanger 301 is simply referred to as a gas flow. Further, the direction in which the gas G flows is referred to as a first direction D1, the upstream side of the gas flow is referred to as a first direction upstream side D1u, and the downstream side is referred to as a first direction downstream side D1d.
  • the heat exchanger tube 102 is placed in the gas flow.
  • the heat exchanger tube 102 extends in a second direction D2 that intersects the first direction D1.
  • a plurality of heat transfer tubes 102 are arranged at intervals in the gas flow.
  • a heat exchanger tube group 105 is constituted by a plurality of these heat exchanger tubes 102 arranged.
  • the heat exchanger tubes 102 of the heat exchanger tube group 105 illustrated in this embodiment all have the same shape, and the refrigerant R is circulated inside the heat exchanger tubes 102 .
  • the second direction D2 in this embodiment is exemplified as being perpendicular to the first direction D1, it is not limited to being perpendicular.
  • the direction which intersects the first direction D1 and the second direction D2 is called the third direction D3.
  • FIG. 10 is a sectional view taken along line XX in FIG. 1.
  • the heat exchanger tubes 102 constituting the heat exchanger tube group 105 are arranged in a so-called staggered arrangement.
  • the heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged in a rhombic lattice arrangement with respect to the first direction D1. That is, a plurality of heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged so as to be alternately shifted in the first direction D1 and the third direction D3.
  • the heat exchanger tubes 102 of the heat exchanger tube group 105 of this embodiment form a first row C1 and a second row C2 extending in the first direction D1, and these first row C1 and second row C2 are arranged in a third row. They are arranged alternately in direction D3. Moreover, the heat exchanger tubes 102 in the first row C1 are arranged at intervals of a distance L1 in the first direction D1. The heat exchanger tubes 102 in the second row C2 are arranged at intervals of a distance L1 in the first direction D1, and are spaced apart by a distance L2, which is half the distance L1, from the position of the heat exchanger tubes 102 in the first row C1. They are arranged shifted in one direction D1.
  • the heat exchanger tubes 102 arranged in the first direction D1 are sometimes referred to as rows (C), and those arranged in the third direction D3 are sometimes referred to as stages (S).
  • the heat exchanger tube group 105 of this embodiment includes heat exchanger tubes 102 in multiple rows and stages. In addition, although only two rows of heat exchanger tubes 102 are shown in this third embodiment, three or more rows may be provided.
  • the plate fins 303 extend in the first direction D1 and are provided so as to straddle the plurality of heat exchanger tubes 102.
  • a plurality of plate fins 103 are arranged at intervals in the second direction D2.
  • the plurality of plate fins 103 in this embodiment are each formed into a thin plate shape and arranged at equal intervals in the second direction D2. The above-described gas flow flows between these plate fins 103 from the upstream side D1u in the first direction to the downstream side D1d in the first direction.
  • the plate fin 103 includes a hole 304 penetrating in the second direction D2.
  • the holes 304 are formed on the upstream side D1u of the plurality of heat exchanger tubes 102 in the first direction, respectively.
  • the hole 304 in this third embodiment has a rectangular shape whose longitudinal direction is the first direction D1 when viewed from the second direction D2.
  • the holes 304 in this third embodiment are formed on the extension line of the axis passing through the center of the rectangular shape in the third direction D3 when viewed from the second direction D2, in the heat exchanger tube 102 adjacent to the downstream side D1d in the first direction. The center is located.
  • center position of the hole 304 in this third embodiment is the same in the first direction D1 as the center position of the heat exchanger tube 102 in the row C adjacent in the third direction D3 to the row C in which the hole 304 is formed. Although the center positions are shown as examples, these center positions may be shifted in the first direction D1.
  • the hole 304 is formed in a region of the plate fin 303 that has been found to have a small contribution to heat transfer through optimization analysis performed in advance.
  • the short side of the rectangular hole 304 is formed to be smaller than the outer diameter R1 of the heat exchanger tube 102. Further, in this third embodiment, the short side of the rectangular hole 304 is slightly shorter than half the outer diameter of the heat exchanger tube 102, and the longer side of the hole 304 is slightly shorter than the inner diameter R2 of the heat exchanger tube 102. This shows the case where it is formed small.
  • the shape of the hole 304 is not limited to the above shape and size as long as it includes the region of the plate fin 303 that has been found to have a small contribution to heat transfer through optimization analysis or the like. When the shape of the hole 304 is made into the above-mentioned rectangular shape, it is advantageous in that it can be easily machined.
  • the plurality of heat exchanger tubes 102 are arranged in the gas flow, extend in the second direction D2, and are arranged in a staggered manner alternately shifted from each other in the first direction D1 and the third direction D3. It is said that
  • the plate fins 303 extend in the first direction D1 and are provided so as to straddle the plurality of heat transfer tubes 102, and are arranged in plurality at intervals in the second direction D2.
  • the plate fin 303 is provided with a hole 304 penetrating in the second direction D2 on the upstream side D1u of the plurality of heat exchanger tubes 102 in the first direction.
  • the gas G flows from the upstream side D1u in the first direction to the downstream side D1d in the first direction, the gas flow is disturbed by the holes 304, and the temperature boundary layer of the gas flow can be thinned, so the plate fin The temperature gradient from 303 can be made steeper to increase the amount of heat exchange. Furthermore, since the holes 304 penetrate the plate fins 303, the weight of the plate fins 303 can be reduced by the opening area of the holes 304 compared to a case where the holes 304 are not provided. As a result, it is possible to suppress a decrease in the amount of heat exchange while reducing the development of a temperature boundary layer.
  • the heat exchanger 401 of the fourth embodiment has a protrusion added to the heat exchanger 301 of the third embodiment described above. Therefore, while referring to FIG. 1, the same parts as those in the third embodiment described above will be described with the same reference numerals, and explanations that overlap with those in the third embodiment will be omitted.
  • FIG. 11 is a sectional view corresponding to FIG. 10 of the heat exchanger in the fourth embodiment of the present disclosure.
  • the heat exchanger 401 in the fourth embodiment like the heat exchanger 101 in the first embodiment described above, exchanges gas G and refrigerant R supplied from the outside, respectively. exchange heat.
  • Heat exchanger 401 includes heat exchanger tubes 102, plate fins 303, and protrusions 110.
  • FIG. 12 is an enlarged view of the main part of FIG. 11.
  • the protrusion 110 protrudes from the plate fin 303 in the second direction D2 and extends in the first direction D1.
  • the protrusion 110 of the fourth embodiment extends so as to straddle adjacent plate fins 303 in the second direction D2.
  • Two protrusions 110 are provided in pairs on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively.
  • the two protrusions 110 provided on the upstream side D1u of the heat exchanger tube 102 in the first direction are arranged at a distance L3 in the third direction D3.
  • the two protrusions 110 provided on the first direction downstream side D1d of the heat exchanger tube 102 are also arranged with an interval L3 in the third direction D3.
  • the interval L3 is smaller than the outer diameter of the heat exchanger tube 102.
  • the interval L3 is exemplified to be half the outer diameter of the heat exchanger tubes 102.
  • the length of the protrusion 110 in the first direction D1 may be any length as long as it can protrude beyond the heat exchanger tube 102 in the first direction.
  • the thickness of the protrusion 110 in the third direction D3 is smaller than the thickness of the tube wall of the heat exchanger tube 102. In this embodiment, a case is illustrated in which the thickness of the protrusion 110 is about half the thickness of the tube wall of the heat exchanger tube 102, but the thickness is not limited to this.
  • the protrusion 110 of the fourth embodiment is formed in a flat plate shape extending in the first direction D1 when viewed from the second direction D2, the protrusion 110 is not limited to a flat plate shape, and may be slightly curved, for example. It may have a shape that looks like this.
  • the heat exchanger 401 includes a pair of protrusions 110 on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively.
  • the gas flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, thereby reducing the flow path area of the first direction upstream side D1u and the first direction upstream side D1u of the heat exchanger tube 102.
  • Gas flow rate can be increased. Therefore, in addition to suppressing the development of the temperature boundary layer by the holes 304, it is possible to further suppress the development of the temperature boundary layer on the plate fins 103.
  • the heat transfer area of the heat transfer tube 102 can be expanded by the protrusion 110, the amount of heat exchange can be further increased.
  • FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a first modified example of the fourth embodiment of the present disclosure.
  • the protrusion 110 is not limited to a configuration in which it is formed integrally with the heat exchanger tube 102.
  • the protrusion 110 shown in FIG. 13 may be formed by cutting and raising the plate fin 303.
  • FIG. 14 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a second modified example of the fourth embodiment of the present disclosure.
  • the protrusion 110 of the fourth embodiment described above is formed integrally with the heat exchanger tube 102, it is necessary to attach the protrusion 110 by welding, adhesive, etc. after the heat exchanger tube 102 is penetrated through the plate fin 303.
  • the protrusion 110 can be inserted into the heat exchanger tube 102. Even after the heat exchanger tubes 102 are attached, it is possible to penetrate the plate fins 303. Thereby, the heat exchanger 401 provided with the protrusion 110 can be easily assembled.
  • FIG. 15 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a third modification of the fourth embodiment of the present disclosure.
  • the projection 110 of the fourth embodiment described above is formed integrally with the heat exchanger tube 102, it is not limited to this configuration.
  • a gap G1 through which gas can flow may be provided between the protrusion 110 and the heat exchanger tube 102.
  • the length of the gap G1 in the first direction D1 may be approximately the thickness of the tube wall of the heat exchanger tube 102 described above.
  • the protrusion 110 of the third modification of the fourth embodiment may be formed by cutting and raising it from the plate fin 303 similarly to the protrusion 110 of the first modification of the fourth embodiment, for example.
  • a protrusion through hole through which the protrusion 110 can pass is provided, the protrusion 110 is inserted into the protrusion through hole, and then the protrusion 110 and the plate fin 303 are fixed by welding, adhesive, etc. You may also do so.
  • the protrusions 110 can be easily provided. becomes possible. Further, since gas flows through the gap G1 between the protrusions 110 and the heat transfer tube 102, the gas stagnation area between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect.
  • FIG. 16 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a fourth modification of the fourth embodiment of the present disclosure.
  • the case where the protrusions 110 are provided on the upstream side D1u in the first direction and the downstream side D1d in the first direction of the heat exchanger tubes 102 has been described.
  • a protruding portion 112 protrudes in a direction away from the heat exchanger tubes 102 in the third direction D3, as in the fourth modification of the fourth embodiment shown in FIG. may be provided.
  • the heat transfer area of the heat transfer tube 102 can be expanded, so especially on the downstream side D1d in the first direction where the temperature difference during heat exchange between the gas G and the refrigerant R is small. It becomes possible to ensure the amount of heat transfer in some of the heat exchanger tubes 102.
  • the shape of the protrusion 112 may be any shape that can expand the heat transfer area, and is not limited to the shape shown in FIG. 16.
  • the length of the protrusion 110 in the first direction D1 may be formed to be shorter as the flow velocity of the gas flow is higher, and longer as the flow velocity of the gas flow is lower. By doing so, it becomes possible to more effectively suppress the development of the temperature boundary layer even when the flow rate of the gas flow is low.
  • the present disclosure is not limited to the configurations of the embodiments and modifications described above, and design changes can be made without departing from the gist thereof.
  • the slits 104 in the first and second embodiments are formed like a triangular wave, the edges forming the slits 104 are formed linearly when viewed from the second direction D2.
  • the shape may be a combination of straight lines and curved lines.
  • the number of rows and the number of stages of the heat exchanger tubes 102 constituting the heat exchanger tube group 105 may be plural, and are not limited to the number of rows and the number of stages of each of the embodiments and modifications described above.
  • a plurality of heat exchangers are disposed in the flow of gas, extend in a second direction D2 intersecting the first direction D1 in which the gas flows, and are arranged at intervals from each other. and a plurality of plate fins 103 that extend in the first direction D1, are provided so as to straddle the plurality of heat transfer tubes 102, and are arranged in plurality at intervals in the second direction D2, The plate fin 103 extends in a third direction D3 that intersects both the first direction D1 and the second direction D2, and has a plurality of slits 104 arranged at intervals in the first direction D1.
  • the plurality of slits 104 have a zigzag shape that alternately extends obliquely toward an upstream side D1u and a downstream side D1d in the first direction D1 through which the gas flows, and the periods of the zigzag shapes match each other. ing.
  • the gas flow is disturbed by the slits 104 and the temperature boundary layer of the gas flow can be thinned, so that the temperature gradient from the plate fins 103 can be made steeper and the amount of heat exchange can be increased. Furthermore, since the length of the slit 104 can be increased by forming the slit 104 in a zigzag shape, the weight of the plate fin 103 can be reduced.
  • the heat exchanger is the heat exchanger of (1), in which the heat exchanger tubes 102 are arranged in a staggered manner alternately shifted in the first direction D1 and the third direction D3.
  • the slit 104 is arranged between the plurality of heat transfer tubes 102 arranged in the third direction D3 so as to be adjacent to each other on the upstream side D1u of the first direction D1 with respect to the slit 104. It extends toward the upstream side D1u in one direction D1.
  • the heat exchanger tubes 102 when the heat exchanger tubes 102 are arranged in a staggered manner, the heat exchanger tubes 102 disposed on the upstream side D1u in the first direction by one stage than the heat exchanger tubes 102 in the stage adjacent to the upstream side D1u in the first direction; The distance from the slit 104 on the first direction downstream side D1d of 102 can be reduced.
  • the heat exchanger is the heat exchanger of (2), in which the position of the zigzag-shaped top t in the third direction D3 is This corresponds to the position of the heat tube 102.
  • the distances between the staggered heat exchanger tubes 102 and the slits 104 can be made even more uniform.
  • the heat exchanger is the heat exchanger of (2) or (3), in which the slits 104 are arranged in the third direction D3 and adjacent in the first direction D1. It is provided for each of the two heat exchanger tubes 102 that match. Thereby, the amount of heat exchange can be increased more effectively.
  • the heat exchanger is any one of (1) to (4), in which the heat exchanger protrudes from the plate fin 103 in the second direction D2 and A pair of protrusions 110 extending in one direction D1 and spaced apart in the third direction D3 are provided, and the pair of protrusions 110 are arranged on an upstream side D1u and a downstream side D1d of the heat exchanger tube 102 in the first direction D1. located respectively.
  • the gas G flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, so that the flow path area on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102 is reduced.
  • the flow rate of gas G can be increased. Therefore, development of a temperature boundary layer on the plate fins 103 can be suppressed.
  • the heat exchanger is the heat exchanger of (5), and has a gap G1 between the protrusion 110 and the heat transfer tube 102 through which the gas G can flow. This makes it possible to easily provide the protrusion 110. Furthermore, since the gas G flows through the gap G1 between the protrusion 110 and the heat transfer tube 102, the stagnation area of the gas G between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect. Become.
  • the heat exchanger is the heat exchanger according to (5) or (6), in which one of the plurality of heat transfer tubes 102 is located on the downstream side D1d in the first direction D1.
  • the heat exchanger tube 102 includes a protrusion 112 that protrudes from the heat exchanger tube 102 in the third direction D3.
  • the heat transfer area of the heat transfer tubes 102 can be expanded, so that the temperature difference during heat exchange between the gas G and the refrigerant R is particularly small in the part of the heat transfer tubes 102 on the downstream side D1d in the first direction. It becomes possible to secure the amount of heat.
  • the heat exchanger is disposed in the flow of gas G, extends in a second direction D2 intersecting the first direction D1 in which the gas G flows, and mutually extends in the first direction D1. and a plurality of heat exchanger tubes 102 arranged in a staggered arrangement alternately in a third direction D3, which is a direction intersecting both the first direction D1 and the second direction D2, and extending in the first direction D1. and a plurality of plate fins 303 arranged so as to straddle the plurality of heat exchanger tubes 102 and arranged at intervals in the second direction D2, and the plate fins 303 are arranged so as to straddle the plurality of heat exchanger tubes 102.
  • a hole 304 penetrating in the second direction D2 is provided on the upstream side D1u in the first direction.
  • the gas flow is disturbed by the holes 304, and the temperature boundary layer of the gas flow can be thinned, so the plate fin The temperature gradient from 303 can be made steeper to increase the amount of heat exchange.
  • the weight of the plate fins 303 can be reduced by the opening area of the holes 304 compared to a case where the holes 304 are not provided.
  • the heat exchanger is the heat exchanger according to (8), which protrudes from the plate fin 103 in the second direction D2 and extends in the first direction D1.
  • a pair of protrusions 110 are provided at intervals in three directions D3, and the pair of protrusions 110 are located on the upstream side D1u and downstream side D1d of the heat exchanger tube 102 in the first direction D1, respectively.
  • the gas G flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, so that the flow path area on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102 is reduced. gas flow rate can be increased. Therefore, development of a temperature boundary layer on the plate fins 103 can be suppressed.
  • the heat exchanger is the heat exchanger of (9), and has a gap G1 between the protrusion 110 and the heat transfer tube 102 through which the gas G can flow. This makes it possible to easily provide the protrusion 110. Furthermore, since the gas G flows through the gap G1 between the protrusion 110 and the heat transfer tube 102, the stagnation area of the gas G between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect. Become.
  • the heat exchanger is the heat exchanger according to (9) or (10), and is one of the plurality of heat transfer tubes 102 on the downstream side D1d in the first direction D1.
  • the heat exchanger tube 102 includes a protrusion 112 that protrudes from the heat exchanger tube 102 in the third direction D3.
  • the heat transfer area of the heat transfer tubes 102 can be expanded, so that the temperature difference during heat exchange between the gas G and the refrigerant R is particularly small in the part of the heat transfer tubes 102 on the downstream side D1d in the first direction. It becomes possible to secure the amount of heat.
  • the heat exchanger of the above aspect it is possible to reduce the weight while increasing the amount of heat exchange.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger according to the present disclosure comprises: a plurality of heat exchanger tubes that are arranged in a gas flow, extend in a second direction intersecting a first direction in which the gas flows, and are arrayed in spaced relation to each other; and a plurality of plate fins that extend in the first direction, and are disposed so as to straddle the plurality of heat exchanger tubes, and are arrayed spaced apart from each other in the second direction. The plate fins are provided with a plurality of slits that extend in a third direction intersecting both the first direction and the second direction and that are arrayed spaced apart in the first direction. The plurality of slits each have a zigzag shape that extends diagonally toward the upstream side and the downstream side alternately in the first direction in which the gas flows, and the slits have identical intervals at which the zigzag shape is repeated.

Description

熱交換器Heat exchanger
 本開示は、熱交換器に関する。
 本願は、2022年5月31日に日本に出願された特願2022-089006号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to heat exchangers.
This application claims priority to Japanese Patent Application No. 2022-089006 filed in Japan on May 31, 2022, the contents of which are incorporated herein.
 プレートフィンと伝熱管とを備えたいわゆるフィンチューブ型の熱交換器にあっては、熱交換効率を高めるために、プレートフィンにおける熱伝達率の向上が望まれている。 特許文献1には、伝熱管の周囲のプレートフィンを切り起こしてガス流れ方向に対して傾斜する案内フィンを形成し、この案内フィンによって伝熱管のガス流れ方向下流側領域にガス流れを案内する構成が開示されている。 In a so-called fin-tube type heat exchanger equipped with plate fins and heat transfer tubes, it is desired to improve the heat transfer coefficient in the plate fins in order to increase heat exchange efficiency. Patent Document 1 discloses that plate fins around a heat transfer tube are cut and raised to form guide fins that are inclined with respect to the gas flow direction, and the guide fins guide the gas flow to a downstream region of the heat transfer tube in the gas flow direction. The configuration is disclosed.
 特許文献2には、プレートフィンのガス流れ方向上流側の端縁部のうち、隣接する二つの伝熱管から等距離となる各位置に、ガス流れ方向上流側に向かって拡開する切欠き部を設けることで通風抵抗を低減する構成が開示されている。 Patent Document 2 discloses that a cutout portion that widens toward the upstream side in the gas flow direction is provided at each position equidistant from two adjacent heat exchanger tubes among the edge portions of the plate fins on the upstream side in the gas flow direction. A configuration is disclosed in which ventilation resistance is reduced by providing a.
 特許文献3には、伝熱管の列方向において伝熱管同士の距離の約半分の距離で、曲線または屈曲線を伝熱管の段方向に連続させ、全体として凹凸が互いに噛み合うようにプレートフィンを切断する構成が開示されている。この特許文献3では、このようにプレートフィンを形成することで、プレートフィンの面積を変えることなくそれぞれの伝熱管からプレートフィンの縁までの熱伝導距離のバラツキを小さくすることで、フィン効率の向上を図っている。 Patent Document 3 discloses that plate fins are cut so that curved lines or bent lines are continuous in the row direction of the heat exchanger tubes at a distance that is approximately half the distance between the heat exchanger tubes in the row direction of the heat exchanger tubes, and the unevenness engages with each other as a whole. A configuration is disclosed. In Patent Document 3, by forming the plate fins in this way, it is possible to reduce the variation in heat conduction distance from each heat transfer tube to the edge of the plate fins without changing the area of the plate fins, thereby increasing the fin efficiency. We are trying to improve.
国際公開第2007/004457号International Publication No. 2007/004457 日本国特許第3910475号公報Japanese Patent No. 3910475 特開2001-033183号公報Japanese Patent Application Publication No. 2001-033183
 特許文献1から特許文献3に記載されているようなフィンチューブ型の熱交換器では、ガス流れからプレートフィンへの熱伝達率を高めることで効率よく熱交換量を増加させることができる。つまり、上記熱交換器では、伝熱面積を拡大することで容易に熱交換量を向上させることができる。しかしながら、伝熱面積を拡大させた場合、熱交換器が大型化して熱交換器の軽量化が困難になるという課題がある。
 本開示は、上記事情に鑑みてなされたものであり、熱交換量を増加させつつ軽量化することが可能な熱交換器を提供するものである。
In fin-tube heat exchangers such as those described in Patent Documents 1 to 3, the amount of heat exchanged can be efficiently increased by increasing the heat transfer coefficient from the gas flow to the plate fins. That is, in the heat exchanger described above, the heat exchange amount can be easily improved by expanding the heat transfer area. However, when the heat transfer area is expanded, there is a problem that the heat exchanger becomes larger and it becomes difficult to reduce the weight of the heat exchanger.
The present disclosure has been made in view of the above circumstances, and provides a heat exchanger that can reduce the weight while increasing the amount of heat exchanged.
 上記の課題を解決するために以下の構成を採用する。
 本開示の第一態様によれば、熱交換器は、ガスの流れの中に配置され、前記ガスの流れる第一方向と交差する第二方向に延びて互いに間隔をあけて複数配列された伝熱管と、前記第一方向に延びると共に複数の前記伝熱管を跨るように設けられて互いに前記第二方向に間隔をあけて複数配列されたプレートフィンと、を備え、前記プレートフィンは、前記第一方向と前記第二方向との両方に交差する方向である第三方向に延びるとともに前記第一方向に間隔をあけて複数配列されたスリットを備え、複数の前記スリットは、前記ガスの流れる前記第一方向の上流側と下流側とに向かって交互に斜めに延びるジグザグ状をなし、互いの前記ジグザグ状の周期が一致している。
In order to solve the above problems, the following configuration is adopted.
According to a first aspect of the present disclosure, the heat exchanger is disposed in a gas flow, and includes a plurality of heat exchangers arranged at intervals, extending in a second direction intersecting a first direction in which the gas flows. a heat tube; and a plurality of plate fins that extend in the first direction, are provided so as to straddle the plurality of heat transfer tubes, and are arranged at intervals in the second direction; a plurality of slits extending in a third direction that intersects both one direction and the second direction and arranged at intervals in the first direction; It has a zigzag shape that extends obliquely toward the upstream side and the downstream side in the first direction, and the periods of the zigzag shapes are the same.
 本開示の第二態様によれば、熱交換器は、ガスの流れの中に配置され、前記ガスの流れる第一方向と交差する第二方向に延び、互いに前記第一方向及び、前記第一方向と前記第二方向との両方に交差する方向である第三方向に交互にずらした千鳥配置とされた複数の伝熱管と、前記第一方向に延びると共に複数の前記伝熱管を跨るように設けられて互いに前記第二方向に間隔をあけて複数配列されたプレートフィンと、を備え、前記プレートフィンは、複数の前記伝熱管の前記第一方向上流側に、前記第二方向に貫通する孔を備える。 According to a second aspect of the present disclosure, the heat exchanger is disposed in the gas flow and extends in a second direction intersecting the first direction of the gas flow, and mutually extends in the first direction and the first direction. a plurality of heat exchanger tubes staggered alternately in a third direction, which is a direction intersecting both the first direction and the second direction; a plurality of plate fins arranged at intervals in the second direction, the plate fins penetrating upstream of the plurality of heat transfer tubes in the first direction in the second direction; Equipped with a hole.
 本開示に係る熱交換器によれば、熱交換量を増加させつつ軽量化することができる。 According to the heat exchanger according to the present disclosure, it is possible to reduce the weight while increasing the amount of heat exchange.
本開示の第一実施形態における熱交換器の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a heat exchanger in a first embodiment of the present disclosure. 図1のII-II線に沿う断面図である。2 is a sectional view taken along line II-II in FIG. 1. FIG. 本開示の第二実施形態における熱交換器の図2に相当する断面図である。FIG. 3 is a sectional view corresponding to FIG. 2 of a heat exchanger according to a second embodiment of the present disclosure. 図3の要部を拡大した拡大図である。FIG. 4 is an enlarged view of the main part of FIG. 3; 本開示の第二実施形態の第一変形例における熱交換器の図4に相当する拡大図である。FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a first modification of the second embodiment of the present disclosure. 本開示の第二実施形態の第二変形例における熱交換器の図4に相当する拡大図である。FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a second modified example of the second embodiment of the present disclosure. 本開示の第二実施形態の第三変形例における熱交換器の図4に相当する拡大図である。FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a third modification of the second embodiment of the present disclosure. 本開示の第二実施形態の第四変形例における熱交換器の図4に相当する拡大図である。FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a fourth modification of the second embodiment of the present disclosure. 本開示の第二実施形態の第五変形例における熱交換器の図2に相当する断面図である。FIG. 3 is a sectional view corresponding to FIG. 2 of a heat exchanger in a fifth modification of the second embodiment of the present disclosure. 図1のX-X線に沿う断面図である。2 is a sectional view taken along line XX in FIG. 1. FIG. 本開示の第四実施形態における熱交換器の図10に相当する断面図である。FIG. 11 is a sectional view corresponding to FIG. 10 of a heat exchanger according to a fourth embodiment of the present disclosure. 図11の要部を拡大した拡大図である。FIG. 12 is an enlarged view of the main part of FIG. 11; 本開示の第四実施形態の第一変形例における熱交換器の図12に相当する拡大図である。FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a first modified example of the fourth embodiment of the present disclosure. 本開示の第四実施形態の第二変形例における熱交換器の図12に相当する拡大図である。FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a second modified example of the fourth embodiment of the present disclosure. 本開示の第四実施形態の第三変形例における熱交換器の図12に相当する拡大図である。FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a third modified example of the fourth embodiment of the present disclosure. 本開示の第四実施形態の第四変形例における熱交換器の図12に相当する拡大図である。FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a fourth modification of the fourth embodiment of the present disclosure.
≪第一実施形態≫
 次に、本開示の第一実施形態における熱交換器を図面に基づき説明する。
 図1は、本開示の第一実施形態における熱交換器の概略構成を示す図である。
 図1に示すように、第一実施形態の熱交換器101は、それぞれ外部から供給されるガスGと冷媒Rとを熱交換する。熱交換器101は、伝熱管102と、プレートフィン103と、を備えている。なお、以下の説明において、熱交換器内で熱交換されるガスGの流れを単にガス流れと称する。また、ガスGの流れる方向を第一方向D1と称し、ガス流れの上流側を第一方向上流側D1u、下流側を第一方向下流側D1dと称する。
≪First embodiment≫
Next, a heat exchanger according to a first embodiment of the present disclosure will be described based on the drawings.
FIG. 1 is a diagram showing a schematic configuration of a heat exchanger in a first embodiment of the present disclosure.
As shown in FIG. 1, the heat exchanger 101 of the first embodiment exchanges heat between gas G and refrigerant R, which are supplied from the outside. The heat exchanger 101 includes heat exchanger tubes 102 and plate fins 103. In addition, in the following description, the flow of the gas G heat-exchanged within a heat exchanger is simply called a gas flow. Further, the direction in which the gas G flows is referred to as a first direction D1, the upstream side of the gas flow is referred to as a first direction upstream side D1u, and the downstream side is referred to as a first direction downstream side D1d.
 伝熱管102は、ガス流れの中に配置されている。伝熱管102は、第一方向D1と交差する第二方向D2に延びている。伝熱管102は、ガス流れの中で互いに間隔をあけて複数配列されている。これら複数配列された伝熱管102により伝熱管群105が構成されている。本実施形態で例示する伝熱管群105の伝熱管102は、何れも同一形状をなしており、その内部に上記冷媒Rが流通される。本実施形態における第二方向D2は、第一方向D1と垂直な方向である場合を例示しているが、垂直に限られない。なお、以下の説明において、第一方向D1及び第二方向D2と交差する方向を第三方向D3(図2参照)と称する。 The heat exchanger tube 102 is placed in the gas flow. The heat exchanger tube 102 extends in a second direction D2 that intersects the first direction D1. A plurality of heat exchanger tubes 102 are arranged at intervals in the gas flow. A heat exchanger tube group 105 is constituted by a plurality of these heat exchanger tubes 102 arranged. The heat exchanger tubes 102 of the heat exchanger tube group 105 illustrated in this embodiment all have the same shape, and the refrigerant R is circulated inside the heat exchanger tubes 102 . Although the second direction D2 in this embodiment is exemplified as being perpendicular to the first direction D1, it is not limited to being perpendicular. In addition, in the following description, the direction which intersects the first direction D1 and the second direction D2 is called the third direction D3 (refer FIG. 2).
 図2は、図1のII-II線に沿う断面図である。
 図2に示すように、伝熱管群105を構成する伝熱管102は、いわゆる千鳥配置で配置されている。言い換えれば、伝熱管群105の伝熱管102は、斜方格子の格子配列とされている。つまり、伝熱管群105の伝熱管102は、第一方向D1及び第三方向D3に交互にずらして複数配列されている。
FIG. 2 is a sectional view taken along line II-II in FIG.
As shown in FIG. 2, the heat exchanger tubes 102 constituting the heat exchanger tube group 105 are arranged in a so-called staggered arrangement. In other words, the heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged in a rhombic lattice. That is, a plurality of heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged so as to be alternately shifted in the first direction D1 and the third direction D3.
 本実施形態の伝熱管群105の伝熱管102は、第一方向D1に延びる第一列C1と第二列C2とを形成しており、これら第一列C1と第二列C2とが第三方向D3に交互に並んでいる。また、第一列C1の伝熱管102は、第一方向D1に距離L1の間隔をあけて配置されている。第二列C2の各伝熱管102は、第一方向D1に距離L1の間隔をあけて配置されるとともに、第一列C1の伝熱管102の位置に対し、距離L1の半分の距離L2だけ第一方向D1にずらして配置されている。なお、以下の説明においては、伝熱管102について第一方向D1に並んでいるものを列(C)、第三方向D3に並んでいるものを段(S)と称する場合がある。本実施形態の伝熱管群105は、複数列及び複数段の伝熱管102を備えている。また図示都合上、図2においては、列C(C1,C2)と、段Sとを示すために、それぞれを構成する伝熱管102の中心を通る軸線に符号を付している。 The heat exchanger tubes 102 of the heat exchanger tube group 105 of this embodiment form a first row C1 and a second row C2 extending in the first direction D1, and these first row C1 and second row C2 are arranged in a third row. They are arranged alternately in direction D3. Moreover, the heat exchanger tubes 102 in the first row C1 are arranged at intervals of a distance L1 in the first direction D1. The heat exchanger tubes 102 in the second row C2 are arranged at intervals of a distance L1 in the first direction D1, and are spaced apart by a distance L2, which is half the distance L1, from the position of the heat exchanger tubes 102 in the first row C1. They are arranged shifted in one direction D1. In the following description, the heat exchanger tubes 102 arranged in the first direction D1 are sometimes referred to as rows (C), and those arranged in the third direction D3 are sometimes referred to as stages (S). The heat exchanger tube group 105 of this embodiment includes heat exchanger tubes 102 in multiple rows and stages. Further, for convenience of illustration, in FIG. 2, in order to indicate the rows C (C1, C2) and the stages S, the axes passing through the centers of the heat exchanger tubes 102 constituting each are labeled.
 プレートフィン103は、第一方向D1に延びると共に複数の伝熱管102を跨るように設けられている。プレートフィン103は、第二方向D2に間隔をあけて複数配列されている(図1参照)。本実施形態における複数のプレートフィン103は、それぞれ薄板状に形成されて第二方向D2に等間隔で配置されている。上述したガス流れは、これらプレートフィン103の間を第一方向上流側D1uから第一方向下流側D1dへ流れる。 The plate fins 103 extend in the first direction D1 and are provided so as to straddle the plurality of heat exchanger tubes 102. A plurality of plate fins 103 are arranged at intervals in the second direction D2 (see FIG. 1). The plurality of plate fins 103 in this embodiment are each formed into a thin plate shape and arranged at equal intervals in the second direction D2. The above-described gas flow flows between these plate fins 103 from the upstream side D1u in the first direction to the downstream side D1d in the first direction.
 プレートフィン103は、スリット104を備えている。スリット104は、第三方向D3に延びている。より具体的には、スリット104は、プレートフィン103を第三方向D3に横断するように形成されている。スリット104は、第一方向D1に間隔をあけて複数配列されている。これら複数のスリット104は、プレートフィン103の厚さ方向である第二方向D2に貫通している。本実施形態のスリット104は、伝熱管群105の第一方向D1で隣り合う二段の伝熱管102毎に設けられている。 The plate fin 103 includes a slit 104. The slit 104 extends in the third direction D3. More specifically, the slit 104 is formed to cross the plate fin 103 in the third direction D3. A plurality of slits 104 are arranged at intervals in the first direction D1. These plurality of slits 104 penetrate in the second direction D2, which is the thickness direction of the plate fin 103. The slit 104 of this embodiment is provided for each two-stage heat exchanger tube 102 adjacent in the first direction D1 of the heat exchanger tube group 105.
 複数のスリット104は、第一方向上流側D1uと第一方向下流側D1dとに交互に斜めに延びるジグザグ状をなしている。これら複数のスリット104は、互いのジグザグ状の周期が一致している。言い換えれば、複数のスリット104は、例えば、第三方向D3における第一方向上流側D1uに向かって凸状に形成される凸部106の位置、及び、第三方向D3における第一方向下流側D1dに向かって凹状に形成される凹部107の位置がそれぞれ一致している。また、本実施形態で例示するスリット104のジグザグ状の周期は、第三方向D3に等間隔に並んだ伝熱管102の配置される周期と一致している。また、スリット104のジグザグ状の振幅は、一定とされている。 The plurality of slits 104 have a zigzag shape that alternately extends diagonally on the upstream side D1u in the first direction and on the downstream side D1d in the first direction. These plurality of slits 104 have the same zigzag period. In other words, the plurality of slits 104 are located at, for example, the position of the convex portion 106 formed in a convex shape toward the first direction upstream side D1u in the third direction D3, and the first direction downstream side D1d in the third direction D3. The positions of the concave portions 107 formed in a concave shape toward each other coincide with each other. Further, the zigzag period of the slits 104 illustrated in this embodiment matches the period at which the heat exchanger tubes 102 are arranged at regular intervals in the third direction D3. Further, the amplitude of the zigzag shape of the slit 104 is constant.
 スリット104は、第一方向上流側D1uに隣り合う段Sの第三方向D3に隣り合う伝熱管102の間の位置で第一方向上流側D1uに向かって延びている。また、スリット104は、第一方向下流側D1dに隣り合う段Sの第三方向D3に隣り合う伝熱管102の間の位置で、第一方向下流側D1dに向かって延びている。本実施形態では、第三方向D3におけるジグザグ状の頂部tの位置が、第三方向D3における伝熱管102の位置とそれぞれ一致している。 The slit 104 extends toward the upstream side D1u in the first direction at a position between the heat transfer tubes 102 adjacent in the third direction D3 of the stage S adjacent to the upstream side D1u in the first direction. Further, the slit 104 extends toward the downstream side D1d in the first direction at a position between the heat exchanger tubes 102 adjacent in the third direction D3 of the stage S adjacent to the downstream side D1d in the first direction. In this embodiment, the positions of the zigzag-shaped tops t in the third direction D3 correspond to the positions of the heat exchanger tubes 102 in the third direction D3.
 より具体的には、本実施形態では、第三方向D3におけるスリット104の頂部tである凸部106の折り返しの位置が、第一列C1の伝熱管102の中心の位置とそれぞれ一致している。同様に、第三方向D3におけるスリット104の頂部tである凹部107の折り返し位置が、第二列C2の伝熱管102の中心の位置とそれぞれ一致している。また、本実施形態では、頂部tと、これら頂部tに対して第一方向D1で最も近い位置に配置される伝熱管102との第一方向D1の距離は、全て同等の距離とされている。なお、これら凸部106や凹部107の折り返しの位置が伝熱管102の中心位置と一致する場合に限られず、例えば、伝熱管102の中心位置に対して僅かにずれていてもよい。 More specifically, in the present embodiment, the folded positions of the convex portions 106, which are the tops t of the slits 104 in the third direction D3, respectively coincide with the center positions of the heat exchanger tubes 102 in the first row C1. . Similarly, the folded positions of the recesses 107, which are the tops t of the slits 104 in the third direction D3, respectively coincide with the center positions of the heat exchanger tubes 102 in the second row C2. Further, in the present embodiment, the distances in the first direction D1 between the tops t and the heat exchanger tubes 102 arranged closest to the tops t in the first direction D1 are all equal distances. . Note that the folded positions of these convex portions 106 and recessed portions 107 are not limited to being coincident with the center position of the heat exchanger tube 102, and may be slightly shifted from the center position of the heat exchanger tube 102, for example.
 本実施形態で例示するスリット104のうち、第一方向上流側D1uに向かって延びている部分は、スリット104の第一方向上流側D1uに隣り合う段Sの伝熱管102の中心よりも第一方向上流側D1uにまで延びている。その一方で、スリット104のうち第一方向上流側D1uに向かって延びている部分は、スリット104の第一方向上流側D1uに隣り合う段の伝熱管102よりも第一方向上流側D1uにまでは延びていない。すなわち、スリット104は、上記第一方向上流側D1uに隣り合う段Sの伝熱管102の最も第一方向上流側D1uの点P1と同一位置又は第一方向下流側D1dに位置している。 Of the slits 104 exemplified in this embodiment, the portion extending toward the upstream side D1u in the first direction is a portion of the slit 104 that is located at the first direction from the center of the heat exchanger tube 102 of the stage S adjacent to the upstream side D1u of the slit 104 in the first direction. It extends to the upstream side D1u in the direction. On the other hand, the portion of the slit 104 extending toward the upstream side D1u in the first direction extends to the upstream side D1u in the first direction from the heat exchanger tube 102 of the stage adjacent to the upstream side D1u in the first direction of the slit 104. has not extended. That is, the slit 104 is located at the same position as the point P1 of the heat exchanger tube 102 of the stage S adjacent to the upstream side D1u in the first direction, which is the most upstream side D1u in the first direction, or at the downstream side D1d in the first direction.
 同様に、本実施形態で例示するスリット104のうち、第一方向下流側D1dに向かって延びている部分は、スリット104の第一方向下流側D1dに隣り合う段Sの伝熱管102の中心よりも第一方向下流側D1dにまで延びている。その一方で、スリット104のうち第一方向下流側D1dに延びている部分は、スリット104の第一方向下流側D1dに隣り合う段Sの伝熱管102よりも第一方向下流側D1dまで延びていない。すなわち、スリット104は、上記第一方向下流側D1dに隣り合う段Sの伝熱管102の最も第一方向下流側D1dの点P2と同一位置又は第一方向上流側D1uに位置している。 Similarly, the portion of the slit 104 illustrated in this embodiment that extends toward the downstream side D1d in the first direction is from the center of the heat exchanger tube 102 of the stage S adjacent to the downstream side D1d of the slit 104 in the first direction. It also extends to the downstream side D1d in the first direction. On the other hand, the portion of the slit 104 extending toward the downstream side D1d in the first direction extends further downstream D1d in the first direction than the heat exchanger tube 102 of the stage S adjacent to the downstream side D1d of the slit 104 in the first direction. do not have. That is, the slit 104 is located at the same position as the point P2 of the heat exchanger tube 102 of the stage S adjacent to the downstream side D1d in the first direction, which is the most downstream side D1d in the first direction, or at the upstream side D1u in the first direction.
(作用効果)
 上記第一実施形態の熱交換器101では、プレートフィン103が、第三方向D3に延びるとともに第一方向D1に間隔をあけて複数配列されたスリット104を備え、これら複数のスリット104が、第一方向上流側D1uと第一方向下流側D1dとに向かって交互に斜めに延びるジグザグ状をなし、互いのジグザグ状の周期が一致している。
 そのため、第一方向上流側D1uから第一方向下流側D1dへガスGが流れる際に、スリット104によってガス流れが乱されて、ガス流れの温度境界層を薄くすることができるため、プレートフィン103からの温度勾配を急峻にして熱交換量を増加させることができる。また、スリット104がジグザグ状に形成されることで、スリット104を直線状に形成された場合にと比較して、スリット104の長さを増やすことができるため、プレートフィン103を軽量化することができる。さらに、第三方向D3に延びる複数のスリット104のジグザグ状の周期が一致しているため、第一方向D1で隣り合うスリット104同士の距離を均一化することができるとともにガス流れとプレートフィンとの接触面積を確保することができる。その結果、温度境界層の発達を低減しつつ熱交換量が減少することを抑制できる。
(effect)
In the heat exchanger 101 of the first embodiment, the plate fins 103 are provided with a plurality of slits 104 extending in the third direction D3 and arranged at intervals in the first direction D1. On the other hand, it has a zigzag shape that extends diagonally alternately toward the upstream side D1u and the first direction downstream side D1d, and the periods of the zigzag shapes are the same.
Therefore, when the gas G flows from the upstream side D1u in the first direction to the downstream side D1d in the first direction, the gas flow is disturbed by the slit 104, and the temperature boundary layer of the gas flow can be thinned. It is possible to increase the amount of heat exchange by making the temperature gradient steeper. Furthermore, by forming the slits 104 in a zigzag shape, the length of the slits 104 can be increased compared to when the slits 104 are formed in a straight line, so that the weight of the plate fin 103 can be reduced. I can do it. Furthermore, since the zigzag periods of the plurality of slits 104 extending in the third direction D3 are the same, it is possible to equalize the distance between adjacent slits 104 in the first direction D1, and also to improve gas flow and plate fins. It is possible to secure a contact area of As a result, it is possible to suppress a decrease in the amount of heat exchange while reducing the development of a temperature boundary layer.
 上記第一実施形態の熱交換器101では、更に、伝熱管102が千鳥配置とされ、スリット104が該スリット104と第一方向上流側D1uに隣り合い第三方向D3に配列された複数の伝熱管102同士の間で第一方向上流側D1uに向かって延びている。
 これにより、伝熱管102が千鳥配置された場合に、第一方向上流側D1uに隣り合う段の伝熱管102よりも一段だけ第一方向上流側D1uに配置された伝熱管102と、該伝熱管102の第一方向下流側D1dのスリット104との距離を低減できる。したがって、伝熱管102の第一方向下流側D1dで温度境界層が発達することを抑制できるため、熱交換量を増加できる。
In the heat exchanger 101 of the first embodiment, the heat exchanger tubes 102 are arranged in a staggered manner, and the slits 104 are adjacent to the slits 104 on the upstream side D1u in the first direction, and the plurality of heat exchanger tubes 102 are arranged in the third direction D3. The heat pipes 102 extend toward the upstream side D1u in the first direction.
Thereby, when the heat exchanger tubes 102 are arranged in a staggered manner, the heat exchanger tubes 102 disposed on the upstream side D1u in the first direction by one stage than the heat exchanger tubes 102 in the stage adjacent to the upstream side D1u in the first direction; The distance from the slit 104 on the first direction downstream side D1d of 102 can be reduced. Therefore, it is possible to suppress the development of a temperature boundary layer on the downstream side D1d of the heat exchanger tube 102 in the first direction, so that the amount of heat exchange can be increased.
 上記第一実施形態の熱交換器101では、更に、第三方向D3におけるジグザグ状の頂部tの位置は、第三方向D3における伝熱管102の位置と一致している。
 これにより、千鳥配置された伝熱管102と、スリット104との距離をより一層均一化することができる。
In the heat exchanger 101 of the first embodiment, the position of the zigzag top portion t in the third direction D3 further coincides with the position of the heat exchanger tube 102 in the third direction D3.
Thereby, the distances between the staggered heat exchanger tubes 102 and the slits 104 can be made even more uniform.
 上記第一実施形態の熱交換器101では、更に、スリット104は、第三方向D3に配列され第一方向D1で隣り合う二段の伝熱管102毎に設けられている。
 これにより、より効果的に熱交換量を増加させることができる。
In the heat exchanger 101 of the first embodiment, the slits 104 are further provided for each two-stage heat exchanger tube 102 arranged in the third direction D3 and adjacent in the first direction D1.
Thereby, the amount of heat exchange can be increased more effectively.
(第一実施形態の変形例)
 上述した第一実施形態におけるスリット104の第一方向D1における幅寸法は、例えば、ガス流れの流速が高いほど狭く、ガス流れの流速が低いほど広く形成するようにしてもよい。このようにすることで、ガス流れの流速が低い場合でも、より効果的に温度境界層の発達を抑制することができる。
(Modified example of first embodiment)
The width dimension of the slit 104 in the first direction D1 in the first embodiment described above may be made narrower as the flow rate of the gas flow is higher, and wider as the flow rate of the gas flow is lower, for example. By doing so, it is possible to more effectively suppress the development of the temperature boundary layer even when the flow rate of the gas flow is low.
≪第二実施形態≫
 次に、本開示の第二実施形態を図面に基づき説明する。この第二実施形態の熱交換器201は、上述した第一実施形態の熱交換器101に対して、突起を追加したものである。そのため、図1を援用するとともに、上述した第一実施形態と同一部分に同一符号を付して説明し、第一実施形態と重複する説明については省略する。
≪Second embodiment≫
Next, a second embodiment of the present disclosure will be described based on the drawings. The heat exchanger 201 of this second embodiment has a protrusion added to the heat exchanger 101 of the first embodiment described above. Therefore, while referring to FIG. 1, the same parts as those in the first embodiment described above will be described with the same reference numerals, and explanations that overlap with those in the first embodiment will be omitted.
 図3は、本開示の第二実施形態における熱交換器の図2に相当する断面図である。
 図1、図3に示すように、この第二実施形態における熱交換器201は、上述した第一実施形態の熱交換器101と同様に、それぞれ外部から供給されるガスGと冷媒Rとを熱交換する。熱交換器201は、伝熱管102と、プレートフィン103と、突起110と、を備えている。
FIG. 3 is a sectional view corresponding to FIG. 2 of a heat exchanger according to a second embodiment of the present disclosure.
As shown in FIGS. 1 and 3, the heat exchanger 201 in the second embodiment, like the heat exchanger 101 in the first embodiment described above, exchanges gas G and refrigerant R supplied from the outside, respectively. exchange heat. Heat exchanger 201 includes heat exchanger tubes 102, plate fins 103, and protrusions 110.
 図4は、図3の要部を拡大した拡大図である。
 図3、図4に示すように、突起110は、プレートフィン103から第二方向D2に突出するとともに第一方向D1に延びている。本実施形態の突起110は、第二方向D2で隣り合うプレートフィン103に跨るように延びている。突起110は、伝熱管102の第一方向上流側D1uと第一方向下流側D1dとにそれぞれ二つずつ対をなして設けられている。伝熱管102の第一方向上流側D1uに設けられた二つの突起110は、第三方向D3に間隔L3をあけて配置されている。同様に、伝熱管102の第一方向下流側D1dに設けられた二つの突起110も、第三方向D3に間隔L3をあけて配置されている。
FIG. 4 is an enlarged view of the main part of FIG. 3.
As shown in FIGS. 3 and 4, the protrusion 110 protrudes from the plate fin 103 in the second direction D2 and extends in the first direction D1. The protrusion 110 of this embodiment extends so as to straddle adjacent plate fins 103 in the second direction D2. Two protrusions 110 are provided in pairs on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively. The two protrusions 110 provided on the upstream side D1u of the heat exchanger tube 102 in the first direction are arranged at a distance L3 in the third direction D3. Similarly, the two protrusions 110 provided on the first direction downstream side D1d of the heat exchanger tube 102 are also arranged with an interval L3 in the third direction D3.
 間隔L3は、伝熱管102の外径R1よりも小さい。本実施形態の間隔L3は、伝熱管102の外径R1の半分の大きさである場合を例示している。さらに、第一方向D1における突起110の長さは、伝熱管102よりも第一方向に突出可能な長さであれば如何なるながさであってもよい。また、第三方向D3における突起110の厚さは、伝熱管102の管壁の厚さよりも小さい。本実施形態では、伝熱管102の管壁の厚さに対して、突起110の厚さが半分程度である場合を例示しているが、これに限られるものでは無い。 The interval L3 is smaller than the outer diameter R1 of the heat exchanger tube 102. In this embodiment, the interval L3 is exemplified to be half the outer diameter R1 of the heat exchanger tubes 102. Furthermore, the length of the protrusion 110 in the first direction D1 may be any length as long as it can protrude beyond the heat exchanger tube 102 in the first direction. Further, the thickness of the protrusion 110 in the third direction D3 is smaller than the thickness of the tube wall of the heat exchanger tube 102. In this embodiment, a case is illustrated in which the thickness of the protrusion 110 is about half the thickness of the tube wall of the heat exchanger tube 102, but the thickness is not limited to this.
 本実施形態では、対をなす突起110がそれぞれ同一の間隔L3をあけて配置される場合について説明したが、対をなす突起110の間隔は、第一方向上流側D1uと第一方向下流側D1dとで異なる間隔としてもよい。また、この第二実施形態の突起110は、第二方向D2から見て第一方向D1に延びる平板状に形成されている場合を例示したが、平板状に限られず、例えば僅かに湾曲しているような形状であってもよい。 In the present embodiment, a case has been described in which the pair of protrusions 110 are arranged with the same distance L3, but the distance between the pair of protrusions 110 is the first direction upstream side D1u and the first direction downstream side D1d. It is also possible to set different intervals between the two. Further, although the protrusion 110 of the second embodiment is formed in a flat plate shape extending in the first direction D1 when viewed from the second direction D2, the protrusion 110 is not limited to a flat plate shape, and may be slightly curved, for example. It may have a shape that looks like this.
(作用効果)
 上記第二実施形態では、熱交換器201が伝熱管102の第一方向上流側D1uと第一方向下流側D1dとにそれぞれ対をなす突起110を備えている。
 これにより、対をなす突起110の第三方向D3外側を第一方向D1にガスが流れるため、伝熱管102の第一方向上流側D1u及び第一方向上流側D1uの流路面積を減少させてガスの流速を高めることができる。したがって、スリット104による温度境界層の発達抑制に加えて、更に、プレートフィン103上の温度境界層が発達することを抑制できる。
(effect)
In the second embodiment, the heat exchanger 201 includes a pair of protrusions 110 on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively.
As a result, the gas flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, thereby reducing the flow path area of the first direction upstream side D1u and the first direction upstream side D1u of the heat exchanger tube 102. Gas flow rate can be increased. Therefore, in addition to suppressing the development of the temperature boundary layer by the slits 104, it is possible to further suppress the development of the temperature boundary layer on the plate fins 103.
 さらに、突起110によって伝熱管102の伝熱面積を拡大することができるため、更なる熱交換量の増加を図ることができる。 Furthermore, since the heat transfer area of the heat transfer tube 102 can be expanded by the protrusion 110, the amount of heat exchange can be further increased.
≪第二実施形態の第一変形例≫
 図5は、本開示の第二実施形態の第一変形例における熱交換器の図4に相当する拡大図である。
 上述した第二実施形態の突起110は、伝熱管102と一体に形成されている場合について説明した。しかし、突起110は、伝熱管102と一体に形成される構成に限られない。例えば、図5に示す突起110のように、プレートフィン103から切り起こすなどして形成するようにしてもよい。
≪First modification of second embodiment≫
FIG. 5 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a first modified example of the second embodiment of the present disclosure.
The case where the projection 110 of the second embodiment described above is formed integrally with the heat exchanger tube 102 has been described. However, the protrusion 110 is not limited to a configuration in which it is formed integrally with the heat exchanger tube 102. For example, the protrusion 110 shown in FIG. 5 may be formed by cutting and raising the plate fin 103.
≪第二実施形態の第二変形例≫
 図6は、本開示の第二実施形態の第二変形例における熱交換器の図4に相当する拡大図である。
 上述した第二実施形態の突起110は、伝熱管102と一体に形成されるため、プレートフィン103に伝熱管102を貫通させた後に突起110を溶接や接着等で取り付ける必要がある。
 しかし、図6に示す第二実施形態の第二変形例のように、第二方向D2に突起110を貫通させることが可能な突起貫通孔111を形成することで、伝熱管102に突起110を取り付けた後であっても、伝熱管102をプレートフィン103に貫通させることが可能となる。これにより、突起110を備えた熱交換器201を容易に組立可能となる。
<<Second modification of the second embodiment>>
FIG. 6 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a second modified example of the second embodiment of the present disclosure.
Since the protrusion 110 of the second embodiment described above is formed integrally with the heat exchanger tube 102, it is necessary to attach the protrusion 110 by welding, adhesive, etc. after the heat exchanger tube 102 is penetrated through the plate fin 103.
However, as in a second modified example of the second embodiment shown in FIG. Even after the heat exchanger tubes 102 are attached, it is possible to penetrate the plate fins 103. Thereby, the heat exchanger 201 provided with the protrusion 110 can be easily assembled.
≪第二実施形態の第三変形例≫
 図7は、本開示の第二実施形態の第三変形例における熱交換器の図4に相当する拡大図である。
 上述した第二実施形態の突起110は、伝熱管102と一体に形成されている場合について説明したが、この構成に限られない。
 例えば、図7に示す第二実施形態の第三変形例のように、突起110と伝熱管102との間にガスが流通可能な隙間G1を設けてもよい。第一方向D1における隙間G1の長さは、上述した伝熱管102の管壁の厚さ程度としてもよい。なお、第二実施形態の第三変形例の突起110は、上記第二実施形態の第一変形例の突起110と同様に、プレートフィン103から切り起こすようにして形成してもよいし、例えば、第二実施形態の第二変形例のように突起110を貫通可能な突起貫通孔を設けて、突起貫通孔に突起110を差し込んでから突起110とプレートフィン103とを溶接や接着等により固定するようにしてもよい。
<<Third modification of the second embodiment>>
FIG. 7 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a third modification of the second embodiment of the present disclosure.
Although the projection 110 of the second embodiment described above is formed integrally with the heat exchanger tube 102, the structure is not limited to this.
For example, as in a third modification of the second embodiment shown in FIG. 7, a gap G1 through which gas can flow may be provided between the protrusion 110 and the heat exchanger tube 102. The length of the gap G1 in the first direction D1 may be approximately the thickness of the tube wall of the heat exchanger tube 102 described above. Note that the protrusion 110 of the third modification of the second embodiment may be formed by cutting and raising it from the plate fin 103 similarly to the protrusion 110 of the first modification of the second embodiment, for example. As in the second modification of the second embodiment, a protrusion through hole through which the protrusion 110 can pass is provided, the protrusion 110 is inserted into the protrusion through hole, and then the protrusion 110 and the plate fin 103 are fixed by welding, adhesive, etc. You may also do so.
 この第二実施形態の第三変形例のように構成することで、例えば、伝熱管102の周囲のプレートフィン103にバーリングが施されているような場合であっても、容易に突起110を設けることが可能となる。また、突起110と伝熱管102との隙間G1を通じてガスGが流動するため、対をなす突起110の間におけるガスGのよどみ領域が低減され、その結果、伝熱効果を促進することが可能となる。 By configuring as in the third modification of the second embodiment, for example, even if the plate fins 103 around the heat exchanger tubes 102 are burred, the protrusions 110 can be easily provided. becomes possible. Furthermore, since the gas G flows through the gap G1 between the protrusion 110 and the heat transfer tube 102, the stagnation area of the gas G between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect. Become.
≪第二実施形態の第四変形例≫
 図8は、本開示の第二実施形態の第四変形例における熱交換器の図4に相当する拡大図である。
 上述した第二実施形態では、伝熱管102の第一方向上流側D1uと第一方向下流側D1dとにそれぞれ突起110を設ける場合について説明したが、例えば、伝熱管群105のうち、第一方向下流側D1dの一部の伝熱管102に対して、図8に示す第二実施形態の第四変形例のように伝熱管102から第三方向D3に離間する方向に向かって突出する突出部112を設けるようにしてもよい。このような突出部112を設けることで、伝熱管102の伝熱面積を拡大させることができるため、特にガスGと冷媒Rとの熱交換時の温度差が小さくなる第一方向下流側D1dの一部の伝熱管102における伝熱量を確保することが可能となる。なお、突出部112の形状は、伝熱面積を拡大可能な形状であれば良く、図8に示す形状に限られるものではない。
≪Fourth modification of the second embodiment≫
FIG. 8 is an enlarged view corresponding to FIG. 4 of a heat exchanger in a fourth modification of the second embodiment of the present disclosure.
In the second embodiment described above, a case has been described in which the protrusions 110 are provided on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tubes 102, but for example, among the heat exchanger tube group 105, the first direction For some of the heat exchanger tubes 102 on the downstream side D1d, a protrusion 112 protrudes in a direction away from the heat exchanger tubes 102 in the third direction D3, as in the fourth modification of the second embodiment shown in FIG. may be provided. By providing such a protrusion 112, the heat transfer area of the heat transfer tube 102 can be expanded, so especially on the downstream side D1d in the first direction where the temperature difference during heat exchange between the gas G and the refrigerant R is small. It becomes possible to ensure the amount of heat transfer in some of the heat exchanger tubes 102. Note that the shape of the protrusion 112 may be any shape that can expand the heat transfer area, and is not limited to the shape shown in FIG. 8 .
≪第二実施形態の第五変形例≫
 図9は、本開示の第二実施形態の第五変形例における熱交換器の図2に相当する断面図である。
 上述した第二実施形態では、第二方向D2から見て伝熱管102が千鳥配置とされている場合について説明したが、伝熱管102は千鳥配置されている場合に限られない。例えば、図9に示す第二実施形態の第五変形例のように、第二方向D2から見て伝熱管102をいわゆる正方格子や矩形格子の格子配列としてもよい。
 さらに、上記千鳥配置の場合、スリット104を設ける第一方向D1の間隔を、第三方向D3に配列された伝熱管102の段Sで二段毎としている場合を例示した。しかし、図9に示すように、正方格子や矩形格子の格子配列とした場合は、ジグザグ状のスリット104を設ける第一方向D1の間隔を伝熱管102の段Sで一段毎としてもよい。
 このようにスリット104を配置することで、上記のような正方格子や矩形格子の格子配列の場合に、熱交換器201におけるガス流れ方向である第一方向D1における熱伝達率を平均化して、効率よく熱交換を行うことが可能となる。
<<Fifth modification of the second embodiment>>
FIG. 9 is a sectional view corresponding to FIG. 2 of a heat exchanger in a fifth modification of the second embodiment of the present disclosure.
In the second embodiment described above, the case where the heat exchanger tubes 102 are arranged in a staggered manner when viewed from the second direction D2 has been described, but the heat exchanger tubes 102 are not limited to the case where they are arranged in a staggered manner. For example, as in a fifth modification of the second embodiment shown in FIG. 9, the heat exchanger tubes 102 may be arranged in a so-called square lattice or rectangular lattice when viewed from the second direction D2.
Furthermore, in the case of the staggered arrangement, the slits 104 are provided at intervals in the first direction D1 for every two stages S of the heat exchanger tubes 102 arranged in the third direction D3. However, as shown in FIG. 9, in the case of a square lattice or rectangular lattice arrangement, the zigzag-shaped slits 104 may be provided at intervals in the first direction D1 for each stage S of the heat exchanger tubes 102.
By arranging the slits 104 in this way, in the case of a square lattice or rectangular lattice arrangement as described above, the heat transfer coefficient in the first direction D1, which is the gas flow direction in the heat exchanger 201, is averaged. It becomes possible to efficiently exchange heat.
(第二実施形態の他の変形例)
 上述した第二実施形態及び各変形例におけるスリット104の第一方向D1における幅寸法は、第一実施形態と同様に、例えば、ガス流れの流速が高いほど狭く、ガス流れの流速が低いほど広く形成するようにしてもよい。また、第一方向D1における突起110の長さは、ガス流れの流速が高いほど短く、ガス流れの流速が低いほど長く形成するようにしてもよい。このようにすることで、ガス流れの流速が低い場合でも、より効果的に温度境界層の発達を抑制することが可能となる。
(Other variations of the second embodiment)
Similarly to the first embodiment, the width dimension in the first direction D1 of the slit 104 in the second embodiment and each modification described above is narrower as the flow rate of the gas flow is higher, and wider as the flow rate of the gas flow is lower. It may also be formed. Further, the length of the protrusion 110 in the first direction D1 may be formed to be shorter as the flow rate of the gas flow is higher, and longer as the flow rate of the gas flow is lower. By doing so, it becomes possible to more effectively suppress the development of the temperature boundary layer even when the flow rate of the gas flow is low.
≪第三実施形態≫
 次に、本開示の第三実施形態における熱交換器を図面に基づき説明する。この第三実施形態の熱交換器301は、上述した第一実施形態の熱交換器101とプレートフィンの形状が異なる。そのため、図1を援用するとともに、上述した第一実施形態と同一部分に同一符号を付して説明する。
≪Third embodiment≫
Next, a heat exchanger according to a third embodiment of the present disclosure will be described based on the drawings. The heat exchanger 301 of this third embodiment differs from the heat exchanger 101 of the first embodiment described above in the shape of plate fins. Therefore, the description will be made with reference to FIG. 1 and with the same reference numerals attached to the same parts as in the first embodiment described above.
 図1に示すように、第三実施形態の熱交換器301は、それぞれ外部から供給されるガスGと冷媒Rとを熱交換する。熱交換器301は、伝熱管102と、プレートフィン303と、を備えている。なお、熱交換器301内で熱交換されるガスGの流れを単にガス流れと称する。また、ガスGの流れる方向を第一方向D1と称し、ガス流れの上流側を第一方向上流側D1u、下流側を第一方向下流側D1dと称する。 As shown in FIG. 1, the heat exchanger 301 of the third embodiment exchanges heat between gas G and refrigerant R supplied from the outside. The heat exchanger 301 includes heat exchanger tubes 102 and plate fins 303. Note that the flow of gas G that undergoes heat exchange within the heat exchanger 301 is simply referred to as a gas flow. Further, the direction in which the gas G flows is referred to as a first direction D1, the upstream side of the gas flow is referred to as a first direction upstream side D1u, and the downstream side is referred to as a first direction downstream side D1d.
 伝熱管102は、ガス流れの中に配置されている。伝熱管102は、第一方向D1と交差する第二方向D2に延びている。伝熱管102は、ガス流れの中で互いに間隔をあけて複数配列されている。これら複数配列された伝熱管102により伝熱管群105が構成されている。本実施形態で例示する伝熱管群105の伝熱管102は、何れも同一形状をなしており、その内部に上記冷媒Rが流通される。本実施形態における第二方向D2は、第一方向D1と垂直な方向である場合を例示しているが、垂直に限られない。なお、以下の説明において、第一方向D1及び第二方向D2と交差する方向を第三方向D3と称する。 The heat exchanger tube 102 is placed in the gas flow. The heat exchanger tube 102 extends in a second direction D2 that intersects the first direction D1. A plurality of heat transfer tubes 102 are arranged at intervals in the gas flow. A heat exchanger tube group 105 is constituted by a plurality of these heat exchanger tubes 102 arranged. The heat exchanger tubes 102 of the heat exchanger tube group 105 illustrated in this embodiment all have the same shape, and the refrigerant R is circulated inside the heat exchanger tubes 102 . Although the second direction D2 in this embodiment is exemplified as being perpendicular to the first direction D1, it is not limited to being perpendicular. In addition, in the following description, the direction which intersects the first direction D1 and the second direction D2 is called the third direction D3.
 図10は、図1のX-X線に沿う断面図である。
 図10に示すように、伝熱管群105を構成する伝熱管102は、いわゆる千鳥配置で配置されている。言い換えれば、伝熱管群105の伝熱管102は、第一方向D1に対して斜方格子の格子配列とされている。つまり、伝熱管群105の伝熱管102は、第一方向D1及び第三方向D3に交互にずらして複数配列されている。
FIG. 10 is a sectional view taken along line XX in FIG. 1.
As shown in FIG. 10, the heat exchanger tubes 102 constituting the heat exchanger tube group 105 are arranged in a so-called staggered arrangement. In other words, the heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged in a rhombic lattice arrangement with respect to the first direction D1. That is, a plurality of heat exchanger tubes 102 of the heat exchanger tube group 105 are arranged so as to be alternately shifted in the first direction D1 and the third direction D3.
 本実施形態の伝熱管群105の伝熱管102は、第一方向D1に延びる第一列C1と第二列C2とを形成しており、これら第一列C1と第二列C2とが第三方向D3に交互に並んでいる。また、第一列C1の伝熱管102は、第一方向D1に距離L1の間隔をあけて配置されている。第二列C2の各伝熱管102は、第一方向D1に距離L1の間隔をあけて配置されるとともに、第一列C1の伝熱管102の位置に対し、距離L1の半分の距離L2だけ第一方向D1にずらして配置されている。なお、以下の説明においては、伝熱管102について第一方向D1に並んでいるものを列(C)、第三方向D3に並んでいるものを段(S)と称する場合がある。本実施形態の伝熱管群105は、複数列及び複数段の伝熱管102を備えている。なお、この第三実施形態では、伝熱管102を二列のみ示しているが、三列以上設けてもよい。 The heat exchanger tubes 102 of the heat exchanger tube group 105 of this embodiment form a first row C1 and a second row C2 extending in the first direction D1, and these first row C1 and second row C2 are arranged in a third row. They are arranged alternately in direction D3. Moreover, the heat exchanger tubes 102 in the first row C1 are arranged at intervals of a distance L1 in the first direction D1. The heat exchanger tubes 102 in the second row C2 are arranged at intervals of a distance L1 in the first direction D1, and are spaced apart by a distance L2, which is half the distance L1, from the position of the heat exchanger tubes 102 in the first row C1. They are arranged shifted in one direction D1. In the following description, the heat exchanger tubes 102 arranged in the first direction D1 are sometimes referred to as rows (C), and those arranged in the third direction D3 are sometimes referred to as stages (S). The heat exchanger tube group 105 of this embodiment includes heat exchanger tubes 102 in multiple rows and stages. In addition, although only two rows of heat exchanger tubes 102 are shown in this third embodiment, three or more rows may be provided.
 プレートフィン303は、第一方向D1に延びると共に複数の伝熱管102を跨るように設けられている。プレートフィン103は、第二方向D2に間隔をあけて複数配列されている。本実施形態における複数のプレートフィン103は、それぞれ薄板状に形成されて第二方向D2に等間隔で配置されている。上述したガス流れは、これらプレートフィン103の間を第一方向上流側D1uから第一方向下流側D1dへ流れる。 The plate fins 303 extend in the first direction D1 and are provided so as to straddle the plurality of heat exchanger tubes 102. A plurality of plate fins 103 are arranged at intervals in the second direction D2. The plurality of plate fins 103 in this embodiment are each formed into a thin plate shape and arranged at equal intervals in the second direction D2. The above-described gas flow flows between these plate fins 103 from the upstream side D1u in the first direction to the downstream side D1d in the first direction.
 プレートフィン103は、第二方向D2に貫通する孔304を備えている。孔304は、複数の伝熱管102の第一方向上流側D1uにそれぞれ形成されている。この第三実施形態における孔304は、第二方向D2から見て第一方向D1を長手方向とする長方形をなしている。さらに、この第三実施形態における孔304は、第二方向D2から見て、上記の長方形の第三方向D3中央を通る軸線の延長線上に、第一方向下流側D1dに隣り合う伝熱管102の中心が位置している。また、この第三実施形態の孔304の中心位置は、当該孔304の形成される列Cに対し第三方向D3で隣り合う列Cの伝熱管102の中心位置と、第一方向D1で同一の位置とされている場合を例示しているが、これら中心位置は、第一方向D1にずれていてもよい。 The plate fin 103 includes a hole 304 penetrating in the second direction D2. The holes 304 are formed on the upstream side D1u of the plurality of heat exchanger tubes 102 in the first direction, respectively. The hole 304 in this third embodiment has a rectangular shape whose longitudinal direction is the first direction D1 when viewed from the second direction D2. Furthermore, the holes 304 in this third embodiment are formed on the extension line of the axis passing through the center of the rectangular shape in the third direction D3 when viewed from the second direction D2, in the heat exchanger tube 102 adjacent to the downstream side D1d in the first direction. The center is located. Further, the center position of the hole 304 in this third embodiment is the same in the first direction D1 as the center position of the heat exchanger tube 102 in the row C adjacent in the third direction D3 to the row C in which the hole 304 is formed. Although the center positions are shown as examples, these center positions may be shifted in the first direction D1.
 孔304は、予め行った最適化解析等により伝熱寄与が小さいと判明したプレートフィン303の領域に形成されている。この第三実施形態では、長方形をなす孔304の短辺が伝熱管102の外径R1よりも小さく形成されている。また、この第三実施形態では、長方形をなす孔304の短辺が伝熱管102の外径の半分の長さよりも僅かに短く、孔304の長辺が伝熱管102の内径R2よりも僅かに小さく形成されている場合を示している。孔304の形状は、最適化解析等により伝熱寄与が小さいと判明したプレートフィン303の領域を含む形状であれば上記形状や大きさに限られるものではない。孔304の形状を上記の長方形状とした場合、容易に加工できる点で有利となる。 The hole 304 is formed in a region of the plate fin 303 that has been found to have a small contribution to heat transfer through optimization analysis performed in advance. In this third embodiment, the short side of the rectangular hole 304 is formed to be smaller than the outer diameter R1 of the heat exchanger tube 102. Further, in this third embodiment, the short side of the rectangular hole 304 is slightly shorter than half the outer diameter of the heat exchanger tube 102, and the longer side of the hole 304 is slightly shorter than the inner diameter R2 of the heat exchanger tube 102. This shows the case where it is formed small. The shape of the hole 304 is not limited to the above shape and size as long as it includes the region of the plate fin 303 that has been found to have a small contribution to heat transfer through optimization analysis or the like. When the shape of the hole 304 is made into the above-mentioned rectangular shape, it is advantageous in that it can be easily machined.
 (作用効果)
 上記第三実施形態の熱交換器301では、複数の伝熱管102がガス流れの中に配置され、第二方向D2に延び、互いに第一方向D1及び第三方向D3に交互にずらした千鳥配置とされている。プレートフィン303は、第一方向D1に延びると共に複数の伝熱管102を跨るように設けられ、互いに第二方向D2に間隔をあけて複数配列されている。そして、プレートフィン303は、複数の伝熱管102の第一方向上流側D1uに、第二方向D2に貫通する孔304を備えている。
 これにより、第一方向上流側D1uから第一方向下流側D1dへガスGが流れる際に、孔304によってガス流れが乱されて、ガス流れの温度境界層を薄くすることができるため、プレートフィン303からの温度勾配を急峻にして熱交換量を増加させることができる。また、孔304がプレートフィン303を貫通していることで、孔304の開口面積の分だけ、孔304を有していない場合よりもプレートフィン303を軽量化することができる。その結果、温度境界層の発達を低減しつつ熱交換量が減少することを抑制できる。
(effect)
In the heat exchanger 301 of the third embodiment, the plurality of heat exchanger tubes 102 are arranged in the gas flow, extend in the second direction D2, and are arranged in a staggered manner alternately shifted from each other in the first direction D1 and the third direction D3. It is said that The plate fins 303 extend in the first direction D1 and are provided so as to straddle the plurality of heat transfer tubes 102, and are arranged in plurality at intervals in the second direction D2. The plate fin 303 is provided with a hole 304 penetrating in the second direction D2 on the upstream side D1u of the plurality of heat exchanger tubes 102 in the first direction.
As a result, when the gas G flows from the upstream side D1u in the first direction to the downstream side D1d in the first direction, the gas flow is disturbed by the holes 304, and the temperature boundary layer of the gas flow can be thinned, so the plate fin The temperature gradient from 303 can be made steeper to increase the amount of heat exchange. Furthermore, since the holes 304 penetrate the plate fins 303, the weight of the plate fins 303 can be reduced by the opening area of the holes 304 compared to a case where the holes 304 are not provided. As a result, it is possible to suppress a decrease in the amount of heat exchange while reducing the development of a temperature boundary layer.
 さらに、プレートフィン303に第二方向D2に貫通する孔304を形成するだけで良いため、製作が容易であり、加工工程が複雑化することを抑制できる。 Further, since it is only necessary to form the hole 304 penetrating the plate fin 303 in the second direction D2, manufacturing is easy and the processing process can be prevented from becoming complicated.
≪第四実施形態≫
 次に、本開示の第四実施形態を図面に基づき説明する。この第四実施形態の熱交換器401は、上述した第三実施形態の熱交換器301に対して、突起を追加したものである。そのため、図1を援用するとともに、上述した第三実施形態と同一部分に同一符号を付して説明し、第三実施形態と重複する説明については省略する。
≪Fourth embodiment≫
Next, a fourth embodiment of the present disclosure will be described based on the drawings. The heat exchanger 401 of the fourth embodiment has a protrusion added to the heat exchanger 301 of the third embodiment described above. Therefore, while referring to FIG. 1, the same parts as those in the third embodiment described above will be described with the same reference numerals, and explanations that overlap with those in the third embodiment will be omitted.
 図11は、本開示の第四実施形態における熱交換器の図10に相当する断面図である。 図1、図11に示すように、この第四実施形態における熱交換器401は、上述した第一実施形態の熱交換器101と同様に、それぞれ外部から供給されるガスGと冷媒Rとを熱交換する。熱交換器401は、伝熱管102と、プレートフィン303と、突起110と、を備えている。 FIG. 11 is a sectional view corresponding to FIG. 10 of the heat exchanger in the fourth embodiment of the present disclosure. As shown in FIGS. 1 and 11, the heat exchanger 401 in the fourth embodiment, like the heat exchanger 101 in the first embodiment described above, exchanges gas G and refrigerant R supplied from the outside, respectively. exchange heat. Heat exchanger 401 includes heat exchanger tubes 102, plate fins 303, and protrusions 110.
 図12は、図11の要部を拡大した拡大図である。
 図11、図12に示すように、突起110は、プレートフィン303から第二方向D2に突出するとともに第一方向D1に延びている。第四実施形態の突起110は、第二方向D2で隣り合うプレートフィン303に跨るように延びている。突起110は、伝熱管102の第一方向上流側D1uと第一方向下流側D1dとにそれぞれ二つずつ対をなして設けられている。伝熱管102の第一方向上流側D1uに設けられた二つの突起110は、第三方向D3に間隔L3をあけて配置されている。同様に、伝熱管102の第一方向下流側D1dに設けられた二つの突起110も、第三方向D3に間隔L3をあけて配置されている。
FIG. 12 is an enlarged view of the main part of FIG. 11.
As shown in FIGS. 11 and 12, the protrusion 110 protrudes from the plate fin 303 in the second direction D2 and extends in the first direction D1. The protrusion 110 of the fourth embodiment extends so as to straddle adjacent plate fins 303 in the second direction D2. Two protrusions 110 are provided in pairs on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively. The two protrusions 110 provided on the upstream side D1u of the heat exchanger tube 102 in the first direction are arranged at a distance L3 in the third direction D3. Similarly, the two protrusions 110 provided on the first direction downstream side D1d of the heat exchanger tube 102 are also arranged with an interval L3 in the third direction D3.
 間隔L3は、伝熱管102の外径よりも小さい。本実施形態の間隔L3は、伝熱管102の外径の半分の大きさである場合を例示している。さらに、第一方向D1における突起110の長さは、伝熱管102よりも第一方向に突出可能な長さであれば如何なるながさであってもよい。また、第三方向D3における突起110の厚さは、伝熱管102の管壁の厚さよりも小さい。本実施形態では、伝熱管102の管壁の厚さに対して、突起110の厚さが半分程度である場合を例示しているが、これに限られるものでは無い。 The interval L3 is smaller than the outer diameter of the heat exchanger tube 102. In this embodiment, the interval L3 is exemplified to be half the outer diameter of the heat exchanger tubes 102. Furthermore, the length of the protrusion 110 in the first direction D1 may be any length as long as it can protrude beyond the heat exchanger tube 102 in the first direction. Further, the thickness of the protrusion 110 in the third direction D3 is smaller than the thickness of the tube wall of the heat exchanger tube 102. In this embodiment, a case is illustrated in which the thickness of the protrusion 110 is about half the thickness of the tube wall of the heat exchanger tube 102, but the thickness is not limited to this.
 この第四実施形態では、対をなす突起110がそれぞれ同一の間隔L3をあけて配置される場合について説明したが、対をなす突起110の間隔は、第一方向上流側D1uと第一方向下流側D1dとで異なる間隔としてもよい。また、この第四実施形態の突起110は、第二方向D2から見て第一方向D1に延びる平板状に形成されている場合を例示したが、平板状に限られず、例えば僅かに湾曲しているような形状であってもよい。 In the fourth embodiment, a case has been described in which the pair of protrusions 110 are arranged with the same distance L3, but the distance between the pair of protrusions 110 is on the upstream side D1u in the first direction and on the downstream side in the first direction. The spacing may be different between the side D1d and the side D1d. Further, although the protrusion 110 of the fourth embodiment is formed in a flat plate shape extending in the first direction D1 when viewed from the second direction D2, the protrusion 110 is not limited to a flat plate shape, and may be slightly curved, for example. It may have a shape that looks like this.
(作用効果)
 上記第四実施形態では、熱交換器401が伝熱管102の第一方向上流側D1uと第一方向下流側D1dとにそれぞれ対をなす突起110を備えている。
 これにより、対をなす突起110の第三方向D3外側を第一方向D1にガスが流れるため、伝熱管102の第一方向上流側D1u及び第一方向上流側D1uの流路面積を減少させてガスの流速を高めることができる。したがって、孔304による温度境界層の発達抑制に加えて、更に、プレートフィン103上の温度境界層が発達することを抑制できる。
(effect)
In the fourth embodiment, the heat exchanger 401 includes a pair of protrusions 110 on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102, respectively.
As a result, the gas flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, thereby reducing the flow path area of the first direction upstream side D1u and the first direction upstream side D1u of the heat exchanger tube 102. Gas flow rate can be increased. Therefore, in addition to suppressing the development of the temperature boundary layer by the holes 304, it is possible to further suppress the development of the temperature boundary layer on the plate fins 103.
 さらに、突起110によって伝熱管102の伝熱面積を拡大することができるため、更なる熱交換量の増加を図ることができる。 Furthermore, since the heat transfer area of the heat transfer tube 102 can be expanded by the protrusion 110, the amount of heat exchange can be further increased.
≪第四実施形態の第一変形例≫
 図13は、本開示の第四実施形態の第一変形例における熱交換器の図12に相当する拡大図である。
 上述した第四実施形態の突起110は、伝熱管102と一体に形成されている場合について説明した。しかし、突起110は、伝熱管102と一体に形成される構成に限られない。例えば、図13に示す突起110のように、プレートフィン303から切り起こすなどして形成するようにしてもよい。
<<First modification of the fourth embodiment>>
FIG. 13 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a first modified example of the fourth embodiment of the present disclosure.
The case where the projection 110 of the fourth embodiment described above is formed integrally with the heat exchanger tube 102 has been described. However, the protrusion 110 is not limited to a configuration in which it is formed integrally with the heat exchanger tube 102. For example, the protrusion 110 shown in FIG. 13 may be formed by cutting and raising the plate fin 303.
≪第四実施形態の第二変形例≫
 図14は、本開示の第四実施形態の第二変形例における熱交換器の図12に相当する拡大図である。
 上述した第四実施形態の突起110は、伝熱管102と一体に形成されるため、プレートフィン303に伝熱管102を貫通させた後に突起110を溶接や接着等で取り付ける必要がある。
 しかし、図14に示す第四実施形態の第二変形例のように、第二方向D2に突起110を貫通させることが可能な突起貫通孔111を形成することで、伝熱管102に突起110を取り付けた後であっても、伝熱管102をプレートフィン303に貫通させることが可能となる。これにより、突起110を備えた熱交換器401を容易に組立可能となる。
<<Second modification of the fourth embodiment>>
FIG. 14 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a second modified example of the fourth embodiment of the present disclosure.
Since the protrusion 110 of the fourth embodiment described above is formed integrally with the heat exchanger tube 102, it is necessary to attach the protrusion 110 by welding, adhesive, etc. after the heat exchanger tube 102 is penetrated through the plate fin 303.
However, as in the second modified example of the fourth embodiment shown in FIG. 14, by forming a protrusion through hole 111 through which the protrusion 110 can pass in the second direction D2, the protrusion 110 can be inserted into the heat exchanger tube 102. Even after the heat exchanger tubes 102 are attached, it is possible to penetrate the plate fins 303. Thereby, the heat exchanger 401 provided with the protrusion 110 can be easily assembled.
≪第四実施形態の第三変形例≫
 図15は、本開示の第四実施形態の第三変形例における熱交換器の図12に相当する拡大図である。
 上述した第四実施形態の突起110は、伝熱管102と一体に形成されている場合について説明したが、この構成に限られない。
 例えば、図15に示す第四実施形態の第三変形例のように、突起110と伝熱管102との間にガスが流通可能な隙間G1を設けてもよい。第一方向D1における隙間G1の長さは、上述した伝熱管102の管壁の厚さ程度としてもよい。なお、第四実施形態の第三変形例の突起110は、上記第四実施形態の第一変形例の突起110と同様に、プレートフィン303から切り起こすようにして形成してもよいし、例えば、第四実施形態の第二変形例のように突起110を貫通可能な突起貫通孔を設けて、突起貫通孔に突起110を差し込んでから突起110とプレートフィン303とを溶接や接着等により固定するようにしてもよい。
<<Third modification of the fourth embodiment>>
FIG. 15 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a third modification of the fourth embodiment of the present disclosure.
Although the projection 110 of the fourth embodiment described above is formed integrally with the heat exchanger tube 102, it is not limited to this configuration.
For example, as in a third modification of the fourth embodiment shown in FIG. 15, a gap G1 through which gas can flow may be provided between the protrusion 110 and the heat exchanger tube 102. The length of the gap G1 in the first direction D1 may be approximately the thickness of the tube wall of the heat exchanger tube 102 described above. Note that the protrusion 110 of the third modification of the fourth embodiment may be formed by cutting and raising it from the plate fin 303 similarly to the protrusion 110 of the first modification of the fourth embodiment, for example. , as in the second modification of the fourth embodiment, a protrusion through hole through which the protrusion 110 can pass is provided, the protrusion 110 is inserted into the protrusion through hole, and then the protrusion 110 and the plate fin 303 are fixed by welding, adhesive, etc. You may also do so.
 この第四実施形態の第三変形例のように構成することで、例えば、伝熱管102の周囲のプレートフィン303にバーリングが施されているような場合であっても、容易に突起110を設けることが可能となる。また、突起110と伝熱管102との隙間G1を通じてガスが流動するため、対をなす突起110の間におけるガスのよどみ領域が低減され、その結果、伝熱効果を促進することが可能となる。 By configuring as in the third modification of the fourth embodiment, for example, even if the plate fins 303 around the heat exchanger tubes 102 are burred, the protrusions 110 can be easily provided. becomes possible. Further, since gas flows through the gap G1 between the protrusions 110 and the heat transfer tube 102, the gas stagnation area between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect.
≪第四実施形態の第四変形例≫
 図16は、本開示の第四実施形態の第四変形例における熱交換器の図12に相当する拡大図である。
 上述した第四実施形態では、伝熱管102の第一方向上流側D1uと第一方向下流側D1dとにそれぞれ突起110を設ける場合について説明したが、例えば、伝熱管群105のうち、第一方向下流側D1dの一部の伝熱管102に対して、図16に示す第四実施形態の第四変形例のように伝熱管102から第三方向D3に離間する方向に向かって突出する突出部112を設けるようにしてもよい。このような突出部112を設けることで、伝熱管102の伝熱面積を拡大させることができるため、特にガスGと冷媒Rとの熱交換時の温度差が小さくなる第一方向下流側D1dの一部の伝熱管102における伝熱量を確保することが可能となる。なお、突出部112の形状は、伝熱面積を拡大可能な形状であれば良く、図16に示す形状に限られるものではない。
≪Fourth modification of the fourth embodiment≫
FIG. 16 is an enlarged view corresponding to FIG. 12 of a heat exchanger in a fourth modification of the fourth embodiment of the present disclosure.
In the fourth embodiment described above, the case where the protrusions 110 are provided on the upstream side D1u in the first direction and the downstream side D1d in the first direction of the heat exchanger tubes 102 has been described. For some of the heat exchanger tubes 102 on the downstream side D1d, a protruding portion 112 protrudes in a direction away from the heat exchanger tubes 102 in the third direction D3, as in the fourth modification of the fourth embodiment shown in FIG. may be provided. By providing such a protrusion 112, the heat transfer area of the heat transfer tube 102 can be expanded, so especially on the downstream side D1d in the first direction where the temperature difference during heat exchange between the gas G and the refrigerant R is small. It becomes possible to ensure the amount of heat transfer in some of the heat exchanger tubes 102. Note that the shape of the protrusion 112 may be any shape that can expand the heat transfer area, and is not limited to the shape shown in FIG. 16.
(第四実施形態の他の変形例)
 上述した第四実施形態及び各変形例では、第一方向D1における突起110の長さが、ガス流れの流速が高いほど短く、ガス流れの流速が低いほど長く形成するようにしてもよい。このようにすることで、ガス流れの流速が低い場合でも、より効果的に温度境界層の発達を抑制することが可能となる。
(Other variations of the fourth embodiment)
In the fourth embodiment and each modified example described above, the length of the protrusion 110 in the first direction D1 may be formed to be shorter as the flow velocity of the gas flow is higher, and longer as the flow velocity of the gas flow is lower. By doing so, it becomes possible to more effectively suppress the development of the temperature boundary layer even when the flow rate of the gas flow is low.
≪その他の実施形態≫
 本開示は上述した各実施形態及び各変形例の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、第一、第二実施形態におけるスリット104は、三角波の如く形成されている場合を例示したが、スリット104を形成する縁部は、第二方向D2から見て直線状に形成されるものに限られない。例えば、直線と曲線とを組み合わせた形状としてもよい。 また、伝熱管群105を構成する伝熱管102の列数及び段数は、複数であれば良く、上記各実施形態及び各変形例の列数及び段数に限られない。
≪Other embodiments≫
The present disclosure is not limited to the configurations of the embodiments and modifications described above, and design changes can be made without departing from the gist thereof.
For example, although the slits 104 in the first and second embodiments are formed like a triangular wave, the edges forming the slits 104 are formed linearly when viewed from the second direction D2. Not limited to. For example, the shape may be a combination of straight lines and curved lines. Moreover, the number of rows and the number of stages of the heat exchanger tubes 102 constituting the heat exchanger tube group 105 may be plural, and are not limited to the number of rows and the number of stages of each of the embodiments and modifications described above.
<付記>
 上記の実施形態に記載の熱交換器101,201,301,401は、例えば以下のように把握される。
<Additional notes>
The heat exchangers 101, 201, 301, and 401 described in the above embodiments can be understood, for example, as follows.
(1)第1の態様によれば熱交換器は、ガスの流れの中に配置され、前記ガスの流れる第一方向D1と交差する第二方向D2に延びて互いに間隔をあけて複数配列された伝熱管102と、前記第一方向D1に延びると共に複数の前記伝熱管102を跨るように設けられて互いに前記第二方向D2に間隔をあけて複数配列されたプレートフィン103と、を備え、前記プレートフィン103は、前記第一方向D1と前記第二方向D2との両方に交差する方向である第三方向D3に延びるとともに前記第一方向D1に間隔をあけて複数配列されたスリット104を備え、複数の前記スリット104は、前記ガスの流れる前記第一方向D1の上流側D1uと下流側D1dとに向かって交互に斜めに延びるジグザグ状をなし、互いの前記ジグザグ状の周期が一致している。 (1) According to the first aspect, a plurality of heat exchangers are disposed in the flow of gas, extend in a second direction D2 intersecting the first direction D1 in which the gas flows, and are arranged at intervals from each other. and a plurality of plate fins 103 that extend in the first direction D1, are provided so as to straddle the plurality of heat transfer tubes 102, and are arranged in plurality at intervals in the second direction D2, The plate fin 103 extends in a third direction D3 that intersects both the first direction D1 and the second direction D2, and has a plurality of slits 104 arranged at intervals in the first direction D1. The plurality of slits 104 have a zigzag shape that alternately extends obliquely toward an upstream side D1u and a downstream side D1d in the first direction D1 through which the gas flows, and the periods of the zigzag shapes match each other. ing.
 これにより、スリット104によってガス流れが乱されて、ガス流れの温度境界層を薄くすることができるため、プレートフィン103からの温度勾配を急峻にして熱交換量を増加させることができる。さらに、スリット104をジグザグ状とすることでスリット104の長さを増やすことができるため、プレートフィン103を軽量化することができる。 As a result, the gas flow is disturbed by the slits 104 and the temperature boundary layer of the gas flow can be thinned, so that the temperature gradient from the plate fins 103 can be made steeper and the amount of heat exchange can be increased. Furthermore, since the length of the slit 104 can be increased by forming the slit 104 in a zigzag shape, the weight of the plate fin 103 can be reduced.
(2)第2の態様によれば熱交換器は、(1)の熱交換器であって、前記伝熱管102は、前記第一方向D1及び前記第三方向D3に交互にずらした千鳥配置とされ、前記スリット104は、該スリット104に対して前記第一方向D1の上流側D1uに隣り合うように前記第三方向D3に配列された複数の前記伝熱管102同士の間で、前記第一方向D1の上流側D1uに向かって延びている。
 これにより、伝熱管102が千鳥配置された場合に、第一方向上流側D1uに隣り合う段の伝熱管102よりも一段だけ第一方向上流側D1uに配置された伝熱管102と、該伝熱管102の第一方向下流側D1dのスリット104との距離を低減できる。
(2) According to the second aspect, the heat exchanger is the heat exchanger of (1), in which the heat exchanger tubes 102 are arranged in a staggered manner alternately shifted in the first direction D1 and the third direction D3. The slit 104 is arranged between the plurality of heat transfer tubes 102 arranged in the third direction D3 so as to be adjacent to each other on the upstream side D1u of the first direction D1 with respect to the slit 104. It extends toward the upstream side D1u in one direction D1.
Thereby, when the heat exchanger tubes 102 are arranged in a staggered manner, the heat exchanger tubes 102 disposed on the upstream side D1u in the first direction by one stage than the heat exchanger tubes 102 in the stage adjacent to the upstream side D1u in the first direction; The distance from the slit 104 on the first direction downstream side D1d of 102 can be reduced.
(3)第3の態様によれば熱交換器は、(2)の熱交換器であって、前記第三方向D3における前記ジグザグ状の頂部tの位置は、前記第三方向D3における前記伝熱管102の位置と一致している。
 これにより、千鳥配置された伝熱管102と、スリット104との距離をより一層均一化することができる。
(3) According to a third aspect, the heat exchanger is the heat exchanger of (2), in which the position of the zigzag-shaped top t in the third direction D3 is This corresponds to the position of the heat tube 102.
Thereby, the distances between the staggered heat exchanger tubes 102 and the slits 104 can be made even more uniform.
(4)第4の態様によれば熱交換器は、(2)又は(3)の熱交換器であって、前記スリット104は、前記第三方向D3に配列され前記第一方向D1で隣り合う二段の前記伝熱管102毎に設けられている。
 これにより、より効果的に熱交換量を増加させることができる。
(4) According to the fourth aspect, the heat exchanger is the heat exchanger of (2) or (3), in which the slits 104 are arranged in the third direction D3 and adjacent in the first direction D1. It is provided for each of the two heat exchanger tubes 102 that match.
Thereby, the amount of heat exchange can be increased more effectively.
(5)第5の態様によれば熱交換器は、(1)から(4)の何れか一つの熱交換器であって、前記プレートフィン103から前記第二方向D2に突出するとともに前記第一方向D1に延びて前記第三方向D3に間隔をあけて対をなす突起110を備え、対をなす前記突起110は、前記伝熱管102の前記第一方向D1の上流側D1u及び下流側D1dにそれぞれ位置する。
 これにより、対をなす突起110の第三方向D3外側を第一方向D1にガスGが流れるため、伝熱管102の第一方向上流側D1u及び第一方向下流側D1dの流路面積を減少させてガスGの流速を高めることができる。そのため、プレートフィン103上の温度境界層が発達することを抑制できる。
(5) According to the fifth aspect, the heat exchanger is any one of (1) to (4), in which the heat exchanger protrudes from the plate fin 103 in the second direction D2 and A pair of protrusions 110 extending in one direction D1 and spaced apart in the third direction D3 are provided, and the pair of protrusions 110 are arranged on an upstream side D1u and a downstream side D1d of the heat exchanger tube 102 in the first direction D1. located respectively.
As a result, the gas G flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, so that the flow path area on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102 is reduced. Thus, the flow rate of gas G can be increased. Therefore, development of a temperature boundary layer on the plate fins 103 can be suppressed.
(6)第6の態様によれば熱交換器は、(5)の熱交換器であって、前記突起110と前記伝熱管102との間に前記ガスGが流通可能な隙間G1を有する。
 これにより、容易に突起110を設けることが可能となる。また、突起110と伝熱管102との隙間G1を通じてガスGが流動するため、対をなす突起110の間におけるガスGのよどみ領域が低減され、その結果、伝熱効果を促進することが可能となる。
(6) According to the sixth aspect, the heat exchanger is the heat exchanger of (5), and has a gap G1 between the protrusion 110 and the heat transfer tube 102 through which the gas G can flow.
This makes it possible to easily provide the protrusion 110. Furthermore, since the gas G flows through the gap G1 between the protrusion 110 and the heat transfer tube 102, the stagnation area of the gas G between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect. Become.
(7)第7の態様によれば熱交換器は、(5)又は(6)の熱交換器であって、複数の前記伝熱管102のうち、前記第一方向D1の下流側D1dの一部の前記伝熱管102から前記第三方向D3に向かって突出する突出部112を備える。
 これにより、伝熱管102の伝熱面積を拡大させることができるため、特にガスGと冷媒Rとの熱交換時の温度差が小さくなる第一方向下流側D1dの一部の伝熱管102における伝熱量を確保することが可能となる。
(7) According to the seventh aspect, the heat exchanger is the heat exchanger according to (5) or (6), in which one of the plurality of heat transfer tubes 102 is located on the downstream side D1d in the first direction D1. The heat exchanger tube 102 includes a protrusion 112 that protrudes from the heat exchanger tube 102 in the third direction D3.
As a result, the heat transfer area of the heat transfer tubes 102 can be expanded, so that the temperature difference during heat exchange between the gas G and the refrigerant R is particularly small in the part of the heat transfer tubes 102 on the downstream side D1d in the first direction. It becomes possible to secure the amount of heat.
(8)第8の態様によれば熱交換器は、ガスGの流れの中に配置され、前記ガスGの流れる第一方向D1と交差する第二方向D2に延び、互いに前記第一方向D1及び、前記第一方向D1と前記第二方向D2との両方に交差する方向である第三方向D3に交互にずらした千鳥配置とされた複数の伝熱管102と、前記第一方向D1に延びると共に複数の前記伝熱管102を跨るように設けられて互いに前記第二方向D2に間隔をあけて複数配列されたプレートフィン303と、を備え、前記プレートフィン303は、複数の前記伝熱管102の前記第一方向上流側D1uに、前記第二方向D2に貫通する孔304を備える。 これにより、第一方向上流側D1uから第一方向下流側D1dへガスGが流れる際に、孔304によってガス流れが乱されて、ガス流れの温度境界層を薄くすることができるため、プレートフィン303からの温度勾配を急峻にして熱交換量を増加させることができる。また、孔304がプレートフィン303を貫通していることで、孔304の開口面積の分だけ、孔304を有していない場合よりもプレートフィン303を軽量化することができる。 (8) According to the eighth aspect, the heat exchanger is disposed in the flow of gas G, extends in a second direction D2 intersecting the first direction D1 in which the gas G flows, and mutually extends in the first direction D1. and a plurality of heat exchanger tubes 102 arranged in a staggered arrangement alternately in a third direction D3, which is a direction intersecting both the first direction D1 and the second direction D2, and extending in the first direction D1. and a plurality of plate fins 303 arranged so as to straddle the plurality of heat exchanger tubes 102 and arranged at intervals in the second direction D2, and the plate fins 303 are arranged so as to straddle the plurality of heat exchanger tubes 102. A hole 304 penetrating in the second direction D2 is provided on the upstream side D1u in the first direction. As a result, when the gas G flows from the upstream side D1u in the first direction to the downstream side D1d in the first direction, the gas flow is disturbed by the holes 304, and the temperature boundary layer of the gas flow can be thinned, so the plate fin The temperature gradient from 303 can be made steeper to increase the amount of heat exchange. Furthermore, since the holes 304 penetrate the plate fins 303, the weight of the plate fins 303 can be reduced by the opening area of the holes 304 compared to a case where the holes 304 are not provided.
(9)第9の態様によれば熱交換器は、(8)の熱交換器であって、前記プレートフィン103から前記第二方向D2に突出するとともに前記第一方向D1に延びて前記第三方向D3に間隔をあけて設けられた対をなす突起110を備え、対をなす前記突起110は、前記伝熱管102の前記第一方向D1の上流側D1u及び下流側D1dにそれぞれ位置する。
 これにより、対をなす突起110の第三方向D3外側を第一方向D1にガスGが流れるため、伝熱管102の第一方向上流側D1u及び第一方向下流側D1dの流路面積を減少させてガスの流速を高めることができる。そのため、プレートフィン103上の温度境界層が発達することを抑制できる。
(9) According to a ninth aspect, the heat exchanger is the heat exchanger according to (8), which protrudes from the plate fin 103 in the second direction D2 and extends in the first direction D1. A pair of protrusions 110 are provided at intervals in three directions D3, and the pair of protrusions 110 are located on the upstream side D1u and downstream side D1d of the heat exchanger tube 102 in the first direction D1, respectively.
As a result, the gas G flows in the first direction D1 outside the third direction D3 of the pair of protrusions 110, so that the flow path area on the first direction upstream side D1u and the first direction downstream side D1d of the heat exchanger tube 102 is reduced. gas flow rate can be increased. Therefore, development of a temperature boundary layer on the plate fins 103 can be suppressed.
(10)第10の態様によれば熱交換器は、(9)の熱交換器であって、前記突起110と前記伝熱管102との間に前記ガスGが流通可能な隙間G1を有する。
 これにより、容易に突起110を設けることが可能となる。また、突起110と伝熱管102との隙間G1を通じてガスGが流動するため、対をなす突起110の間におけるガスGのよどみ領域が低減され、その結果、伝熱効果を促進することが可能となる。
(10) According to the tenth aspect, the heat exchanger is the heat exchanger of (9), and has a gap G1 between the protrusion 110 and the heat transfer tube 102 through which the gas G can flow.
This makes it possible to easily provide the protrusion 110. Furthermore, since the gas G flows through the gap G1 between the protrusion 110 and the heat transfer tube 102, the stagnation area of the gas G between the pair of protrusions 110 is reduced, and as a result, it is possible to promote the heat transfer effect. Become.
(11)第11の態様によれば熱交換器は、(9)又は(10)の熱交換器であって、複数の前記伝熱管102のうち、前記第一方向D1の下流側D1dの一部の前記伝熱管102から前記第三方向D3に向かって突出する突出部112を備える。
 これにより、伝熱管102の伝熱面積を拡大させることができるため、特にガスGと冷媒Rとの熱交換時の温度差が小さくなる第一方向下流側D1dの一部の伝熱管102における伝熱量を確保することが可能となる。
(11) According to the eleventh aspect, the heat exchanger is the heat exchanger according to (9) or (10), and is one of the plurality of heat transfer tubes 102 on the downstream side D1d in the first direction D1. The heat exchanger tube 102 includes a protrusion 112 that protrudes from the heat exchanger tube 102 in the third direction D3.
As a result, the heat transfer area of the heat transfer tubes 102 can be expanded, so that the temperature difference during heat exchange between the gas G and the refrigerant R is particularly small in the part of the heat transfer tubes 102 on the downstream side D1d in the first direction. It becomes possible to secure the amount of heat.
 上記態様の熱交換器によれば、熱交換量を増加させつつ軽量化することができる。 According to the heat exchanger of the above aspect, it is possible to reduce the weight while increasing the amount of heat exchange.
101,201,301,401…熱交換器 102,…伝熱管 103,303…プレートフィン 104…スリット 105…伝熱管群 106…凸部 107…凹部 110…突起 111…突起貫通孔 112…突出部 304…孔 G…ガス G1…隙間 R…冷媒 t…頂部 101,201,301,401...Heat exchanger 102,...Heat transfer tube 103,303...Plate fin 104...Slit 105...Heat transfer tube group 106...Protrusion 107...Recess 110...Protrusion 111...Protrusion through hole 112...Protrusion 304 ...hole G...gas G1...gap R...refrigerant t...top

Claims (11)

  1.  ガスの流れの中に配置され、前記ガスの流れる第一方向と交差する第二方向に延びて互いに間隔をあけて複数配列された伝熱管と、
     前記第一方向に延びると共に複数の前記伝熱管を跨るように設けられて互いに前記第二方向に間隔をあけて複数配列されたプレートフィンと、
    を備え、
     前記プレートフィンは、
     前記第一方向と前記第二方向との両方に交差する方向である第三方向に延びるとともに前記第一方向に間隔をあけて複数配列されたスリットを備え、
     複数の前記スリットは、
     前記ガスの流れる前記第一方向の上流側と下流側とに向かって交互に斜めに延びるジグザグ状をなし、互いの前記ジグザグ状の周期が一致している
    熱交換器。
    A plurality of heat transfer tubes arranged in a gas flow, extending in a second direction intersecting the first direction in which the gas flows, and arranged at intervals from each other;
    a plurality of plate fins extending in the first direction, provided so as to straddle the plurality of heat transfer tubes, and arranged in plurality at intervals in the second direction;
    Equipped with
    The plate fin is
    A plurality of slits extending in a third direction, which is a direction intersecting both the first direction and the second direction, and arranged at intervals in the first direction,
    The plurality of slits are
    The heat exchanger has a zigzag shape that alternately extends diagonally toward an upstream side and a downstream side in the first direction in which the gas flows, and the periods of the zigzag shapes match each other.
  2.  前記伝熱管は、前記第一方向及び前記第三方向に交互にずらした千鳥配置とされ、
     前記スリットは、該スリットに対して前記第一方向の上流側に隣り合うように前記第三方向に配列された複数の前記伝熱管同士の間で、前記第一方向の上流側に向かって延びている
    請求項1に記載の熱交換器。
    The heat exchanger tubes are arranged in a staggered manner alternately shifted in the first direction and the third direction,
    The slit extends toward the upstream side in the first direction between the plurality of heat transfer tubes arranged in the third direction so as to be adjacent to each other on the upstream side in the first direction with respect to the slit. The heat exchanger according to claim 1.
  3.  前記第三方向における前記ジグザグ状の頂部の位置は、前記第三方向における前記伝熱管の位置と一致している
    請求項2に記載の熱交換器。
    The heat exchanger according to claim 2, wherein the position of the zigzag top in the third direction matches the position of the heat exchanger tube in the third direction.
  4.  前記スリットは、前記第三方向に配列され前記第一方向で隣り合う二段の前記伝熱管毎に設けられている
    請求項2又は3に記載の熱交換器。
    The heat exchanger according to claim 2 or 3, wherein the slit is arranged in the third direction and provided for each of two stages of the heat transfer tubes adjacent in the first direction.
  5.  前記プレートフィンから前記第二方向に突出するとともに前記第一方向に延びて前記第三方向に間隔をあけて対をなす突起を備え、
     対をなす前記突起は、前記伝熱管の前記第一方向の上流側及び下流側にそれぞれ位置する
    請求項1から3の何れか一項に記載の熱交換器。
    comprising a pair of protrusions that protrude from the plate fin in the second direction, extend in the first direction, and are spaced apart in the third direction;
    The heat exchanger according to any one of claims 1 to 3, wherein the paired protrusions are located on the upstream and downstream sides of the heat exchanger tube in the first direction, respectively.
  6.  前記突起と前記伝熱管との間に前記ガスが流通可能な隙間を有する
    請求項5に記載の熱交換器。
    The heat exchanger according to claim 5, wherein there is a gap between the protrusion and the heat exchanger tube through which the gas can flow.
  7.  複数の前記伝熱管のうち、前記第一方向の下流側の一部の前記伝熱管から前記第三方向に向かって突出する突出部を備える
    請求項5に記載の熱交換器。
    The heat exchanger according to claim 5, further comprising a protrusion that protrudes toward the third direction from some of the heat exchanger tubes on the downstream side in the first direction, among the plurality of heat exchanger tubes.
  8.  ガスの流れの中に配置され、前記ガスの流れる第一方向と交差する第二方向に延び、互いに前記第一方向及び、前記第一方向と前記第二方向との両方に交差する方向である第三方向に交互にずらした千鳥配置とされた複数の伝熱管と、
     前記第一方向に延びると共に複数の前記伝熱管を跨るように設けられて互いに前記第二方向に間隔をあけて複数配列されたプレートフィンと、
    を備え、
     前記プレートフィンは、複数の前記伝熱管の前記第一方向の上流側に、前記第二方向に貫通する孔を備える
    熱交換器。
    disposed in a gas flow, extending in a second direction that intersects the first direction in which the gas flows, and intersects each other in the first direction and both the first direction and the second direction. A plurality of heat exchanger tubes arranged in a staggered arrangement alternately shifted in a third direction;
    a plurality of plate fins extending in the first direction, provided so as to straddle the plurality of heat transfer tubes, and arranged in plurality at intervals in the second direction;
    Equipped with
    The plate fin is a heat exchanger including holes penetrating in the second direction on the upstream side of the plurality of heat exchanger tubes in the first direction.
  9.  前記プレートフィンから前記第二方向に突出するとともに前記第一方向に延びて前記第三方向に間隔をあけて設けられた対をなす突起を備え、
     対をなす前記突起は、前記伝熱管の前記第一方向の上流側及び下流側にそれぞれ位置する
    請求項8に記載の熱交換器。
    comprising a pair of protrusions that protrude from the plate fin in the second direction, extend in the first direction, and are spaced apart in the third direction;
    The heat exchanger according to claim 8, wherein the paired protrusions are located on the upstream and downstream sides of the heat exchanger tube in the first direction, respectively.
  10.  前記突起と前記伝熱管との間に前記ガスが流通可能な隙間を有する
    請求項9に記載の熱交換器。
    The heat exchanger according to claim 9, wherein there is a gap between the protrusion and the heat exchanger tube through which the gas can flow.
  11.  複数の前記伝熱管のうち、前記第一方向の下流側の一部の前記伝熱管から前記第三方向に向かって突出する突出部を備える
    請求項9又は10に記載の熱交換器。
    The heat exchanger according to claim 9 or 10, further comprising a protrusion that protrudes toward the third direction from a portion of the plurality of heat exchanger tubes on the downstream side in the first direction.
PCT/JP2023/005565 2022-05-31 2023-02-16 Heat exchanger WO2023233725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022089006A JP2023176623A (en) 2022-05-31 2022-05-31 Heat exchanger
JP2022-089006 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023233725A1 true WO2023233725A1 (en) 2023-12-07

Family

ID=89026084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005565 WO2023233725A1 (en) 2022-05-31 2023-02-16 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2023176623A (en)
WO (1) WO2023233725A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139779U (en) * 1983-03-08 1984-09-18 三菱重工業株式会社 Heat exchanger
JP2001012885A (en) * 1999-06-29 2001-01-19 Hirano Giken Kogyo Kk Plate fin-and-tube type heat exchanger and manufacture of flat plate fin therefor
WO2001067020A1 (en) * 2000-03-06 2001-09-13 Hitachi, Ltd. Heat exchanger, air conditioner, outdoor device, and indoor device
WO2016189686A1 (en) * 2015-05-27 2016-12-01 三菱電機株式会社 Heat exchanger, and cooling machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139779U (en) * 1983-03-08 1984-09-18 三菱重工業株式会社 Heat exchanger
JP2001012885A (en) * 1999-06-29 2001-01-19 Hirano Giken Kogyo Kk Plate fin-and-tube type heat exchanger and manufacture of flat plate fin therefor
WO2001067020A1 (en) * 2000-03-06 2001-09-13 Hitachi, Ltd. Heat exchanger, air conditioner, outdoor device, and indoor device
WO2016189686A1 (en) * 2015-05-27 2016-12-01 三菱電機株式会社 Heat exchanger, and cooling machine

Also Published As

Publication number Publication date
JP2023176623A (en) 2023-12-13

Similar Documents

Publication Publication Date Title
JP5156773B2 (en) Corrugated fin and heat exchanger provided with the same
KR100543599B1 (en) Heat exchanger
US4832117A (en) Fin tube heat exchanger
JP3110196U (en) Thin tube heat exchanger
JP5453797B2 (en) Heat exchanger
JP4041654B2 (en) Louver fin of heat exchanger, heat exchanger thereof, and method of assembling the louver fin
JPH09133488A (en) Heat exchanger with fin
JP2006200788A (en) Heat exchanger
US11454448B2 (en) Enhanced heat transfer surface
WO2016190445A1 (en) Heat exchanger tank structure and production method therefor
JP2006064345A (en) Heat transfer fin
EP1977180B1 (en) Fin and tube heat exchanger
WO2023233725A1 (en) Heat exchanger
JP2007073816A (en) Duct type cooling structure
JPH04136692A (en) Fin for heat exchanger
JP2015113983A (en) Heat exchanger
JPS59185992A (en) Heat exchanger
JPS6361892A (en) Heat exchanger for automobile
WO2023032385A1 (en) Fin for heat exchanger
JP2013050303A (en) Corrugated fin and heat exchanger including the same
CA1239927A (en) High heat transfer means for flat tube and fin heat exchangers
JP2019045048A (en) Flat tube for heat exchanger
US11828545B2 (en) Corrugated fin type heat exchanger
JP2010286133A (en) Plate fin type heat exchanger
JP5753725B2 (en) Corrugated fin heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815489

Country of ref document: EP

Kind code of ref document: A1