JP2006200788A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006200788A
JP2006200788A JP2005011466A JP2005011466A JP2006200788A JP 2006200788 A JP2006200788 A JP 2006200788A JP 2005011466 A JP2005011466 A JP 2005011466A JP 2005011466 A JP2005011466 A JP 2005011466A JP 2006200788 A JP2006200788 A JP 2006200788A
Authority
JP
Japan
Prior art keywords
louver
heat exchanger
fin
louvers
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005011466A
Other languages
Japanese (ja)
Inventor
Tatsuo Ozaki
竜雄 尾崎
Shigeki Okochi
大河内  隆樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005011466A priority Critical patent/JP2006200788A/en
Priority to US11/331,439 priority patent/US20060157233A1/en
Publication of JP2006200788A publication Critical patent/JP2006200788A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a heat transfer coefficient of a fin without shortening a pitch of louvers of the fin in a heat exchanger provided with the fins among tubes. <P>SOLUTION: In this heat exchanger wherein the louvers 3c are twisted to plane portions 3a of the fins 3 at a prescribed angle θ1, and a louver passage 5 is formed between the louvers 3c adjacent to each other, step portions 3d projecting to the louver passage 5 side are formed on the louvers 3c. When the cooling air flows in the louver passage 5, the flow of the cooling air is disturbed by the step portions 3d, and a temperature boundary layer is broken, thus a local heat transfer coefficient can be improved at positions of the step portions 3d. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱交換器に関するもので、内燃機関の冷却水と空気とを熱交換するラジエータ等に適用して有効である。   The present invention relates to a heat exchanger and is effective when applied to a radiator or the like for exchanging heat between cooling water and air of an internal combustion engine.

従来の熱交換器におけるフィンは鎧窓状のルーバを有し、ルーバの先端効果によりフィンの熱伝達率を向上させている。また、平面部に対してルーバを所定の角度傾けることにより、冷却用空気の流れを変えて隣接するルーバ間のルーバ間通路に冷却用空気を導き、これによってもフィンの熱伝達率を向上させている(例えば、特許文献1参照)。
特開2003−83690号公報
The fin in the conventional heat exchanger has an armor window-like louver, and the heat transfer coefficient of the fin is improved by the tip effect of the louver. In addition, by inclining the louver at a predetermined angle with respect to the plane portion, the cooling air flow is changed to guide the cooling air to the passage between louvers between adjacent louvers, thereby improving the heat transfer coefficient of the fins. (For example, refer to Patent Document 1).
JP 2003-83690 A

しかしながら、上記の従来の熱交換器は、更なる性能向上にむけてルーバピッチを短くすると、冷却用空気をルーバ間通路に導けなくなってしまい、先端効果は向上するも結果としてフィンの熱伝達率を向上させることができないという問題があった。   However, in the conventional heat exchanger described above, if the louver pitch is shortened for further performance improvement, the cooling air cannot be guided to the passage between the louvers, and the tip effect is improved, but as a result, the heat transfer coefficient of the fin is increased. There was a problem that it could not be improved.

本発明は上記点に鑑みて、ルーバピッチを短くすることなく、フィンの熱伝達率を向上させることを目的とする。   In view of the above points, an object of the present invention is to improve the heat transfer coefficient of a fin without shortening the louver pitch.

上記目的を達成するため、請求項1に記載の発明では、内部を内部流体が流通するとともに、積層配置された複数のチューブ(2)と、チューブ(2)間に配置されるとともに、チューブ(2)間を流れる外部流体の流通方向(X2)と略平行な平面部(3a)を有するフィン(3)とを備え、平面部(3a)に対して所定の角度(θ1)で捻られたルーバ(3c)が外部流体の流通方向(X2)に沿って平面部(3a)に複数設けられ、隣接するルーバ(3c)間にルーバ間通路(5)が形成された熱交換器において、所定の角度(θ1)に沿った方向をルーバ巾方向(X4)としたとき、ルーバ(3c)におけるルーバ巾方向(X4)の中間部に、ルーバ間通路(5)側に突出した段差部(3d)が設けられていることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the internal fluid circulates in the interior, and the tubes (2) and the tubes (2) arranged in a stacked manner are disposed between the tubes (2). 2) A fin (3) having a plane part (3a) substantially parallel to the flow direction (X2) of the external fluid flowing between them, and twisted at a predetermined angle (θ1) with respect to the plane part (3a) In the heat exchanger in which a plurality of louvers (3c) are provided in the plane portion (3a) along the flow direction (X2) of the external fluid, and a passage between louvers (5) is formed between the adjacent louvers (3c). When the direction along the angle (θ1) is defined as the louver width direction (X4), a stepped portion (3d) projecting toward the louver passage (5) side in the middle portion of the louver width direction (X4) in the louver (3c) ) Is provided.

これによると、外部流体がルーバ間通路を流れる際に、外部流体の流れが段差部によって乱されて温度境界層が破壊されるため、段差部の部位で局所熱伝達率が再度向上する。したがって、ルーバピッチを短くすることなく、フィンの熱伝達率を向上させることができる。   According to this, when the external fluid flows through the inter-louver passage, the flow of the external fluid is disturbed by the stepped portion and the temperature boundary layer is destroyed, so that the local heat transfer coefficient is improved again at the stepped portion. Therefore, the heat transfer coefficient of the fin can be improved without shortening the louver pitch.

請求項2に記載の発明では、請求項1に記載の熱交換器において、ルーバ(3c)の両側に位置するルーバ間通路(5)のうち、外部流体の流通方向(X2)上流側に位置するルーバ間通路(5)側に、段差部(3d)が設けられていることを特徴とする。   According to the second aspect of the present invention, in the heat exchanger according to the first aspect, among the louver passages (5) located on both sides of the louver (3c), the heat exchanger is located upstream of the external fluid flow direction (X2). A step portion (3d) is provided on the side of the inter-louver passage (5).

これによると、外部流体の流れがより強く乱されるため、フィンの熱伝達率をさらに向上させることができる。   According to this, since the flow of the external fluid is more strongly disturbed, the heat transfer coefficient of the fin can be further improved.

請求項3に記載の発明では、内部を内部流体が流通するとともに、積層配置された複数のチューブ(2)と、チューブ(2)間に配置されるとともに、チューブ(2)間を流れる外部流体の流通方向(X2)と略平行な平面部(3a)を有するフィン(3)とを備、平面部(3a)に対して所定の角度(θ1)で捻られたルーバ(3c)が外部流体の流通方向(X2)に沿って平面部(3a)に複数設けられ、隣接するルーバ(3c)間にルーバ間通路(5)が形成された熱交換器において、所定の角度(θ1)に沿った方向をルーバ巾方向(X4)としたとき、ルーバ(3c)におけるルーバ巾方向(X4)の中間部に、ルーバ(3c)の両側に位置するルーバ間通路(5)を連通させる連通路(3e、3g)が設けられていることを特徴とする。   In the invention according to claim 3, the internal fluid flows through the inside, and the external fluid that flows between the tubes (2) is disposed between the tubes (2) and the tubes (2) arranged in a stacked manner. Fin (3) having a plane portion (3a) substantially parallel to the flow direction (X2) of the louver, and a louver (3c) twisted at a predetermined angle (θ1) with respect to the plane portion (3a) is an external fluid. In a heat exchanger in which a plurality of flat portions (3a) are provided along the flow direction (X2) of the louver and a louver passage (5) is formed between adjacent louvers (3c), along a predetermined angle (θ1). Communication direction (5) between the louvers (3c) located on both sides of the louver (3c) is communicated with the middle part of the louver width direction (X4) in the louver (3c). 3e, 3g) are provided. To do.

これによると、外部流体がルーバ間通路を流れる際に、外部流体が連通路を通過して温度境界層の発達が抑制されるため、ルーバピッチを短くすることなく、フィンの熱伝達率を向上させることができる。   According to this, when the external fluid flows through the louver passage, the external fluid passes through the communication passage and the development of the temperature boundary layer is suppressed, so that the heat transfer coefficient of the fin is improved without shortening the louver pitch. be able to.

請求項4に記載の発明では、請求項3に記載の熱交換器において、連通路は、チューブの積層方向(X3)に沿って切り込みを入れた後に、切り込みの両側を変形させて形成した、チューブの積層方向(X3)に細長いスリット(3g)であることを特徴とする。   In the invention according to claim 4, in the heat exchanger according to claim 3, the communication path is formed by making cuts along the stacking direction (X3) of the tubes and then deforming both sides of the cuts. It is characterized by a slit (3g) that is elongated in the tube stacking direction (X3).

これによると、廃材を出さずに連通路を形成することができる。   According to this, a communicating path can be formed without taking out waste material.

請求項5に記載の発明のように、請求項1ないし4のいずれか1つに記載の熱交換器は、内部流体の流通方向(X1)に沿って複数配置された平面部(3a)及び隣接する平面部(3a)間を繋ぐ湾曲部(3b)を有するように波状に形成されたフィン(3)を用いることができる。   As in the invention described in claim 5, the heat exchanger according to any one of claims 1 to 4 includes a plurality of flat portions (3a) arranged along the flow direction (X1) of the internal fluid, and A fin (3) formed in a wave shape so as to have a curved portion (3b) connecting between adjacent flat portions (3a) can be used.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本実施形態は、本発明に係る熱交換器を走行用エンジン(内燃機関)の冷却水と空気とを熱交換して冷却水を冷却するラジエータ1に適用したもので、図1(a)はラジエータ1の正面図、図1(b)は図1(a)のA部の拡大図、図2(a)は図1のフィン3を一部破断して示す斜視図、図2(b)は図2(a)のB部の拡大図、図3(a)は図1のフィン3をチューブ積層方向X3から見た断面図、図3(b)は図3(a)のC部の拡大図である。
(First embodiment)
In the present embodiment, the heat exchanger according to the present invention is applied to a radiator 1 that cools cooling water by exchanging heat between cooling water and air of a traveling engine (internal combustion engine). FIG. FIG. 1B is an enlarged view of a portion A in FIG. 1A, FIG. 2A is a perspective view in which the fin 3 in FIG. 1 is partially broken, and FIG. 2 is an enlarged view of a portion B in FIG. 2A, FIG. 3A is a cross-sectional view of the fin 3 in FIG. 1 viewed from the tube stacking direction X3, and FIG. 3B is a view of a portion C in FIG. It is an enlarged view.

図1に示すように、ラジエータ1は、内部をエンジン冷却水が流れるチューブ2、チューブ2の外表面に接合された波状のフィン3、並びにチューブ2内での冷却水の流通方向X1(以下、冷却水流通方向X1という)端部に設けられて各チューブ2と連通するヘッダタンク4等を有している。なお、エンジン冷却水は本発明の内部流体に相当する。   As shown in FIG. 1, the radiator 1 includes a tube 2 through which engine cooling water flows, a corrugated fin 3 joined to the outer surface of the tube 2, and a flow direction X1 of cooling water in the tube 2 (hereinafter referred to as “cooling water flow direction”). It has a header tank 4 provided at an end portion (referred to as a cooling water flow direction X1) and communicating with each tube 2. The engine coolant corresponds to the internal fluid of the present invention.

チューブ2は、金属製(本実施形態では、アルミニウム合金)であり、冷却水が流れる冷却水通路が内部に形成され、扁平状に形成されている。また、チューブ2は、多数積層配置されていて、隣接するチューブ2間にフィン3が配置されるとともに、隣接するチューブ2間を冷却用空気が流れるようになっている。なお、冷却用空気は本発明の外部流体に相当する。   The tube 2 is made of metal (in this embodiment, an aluminum alloy), and a cooling water passage through which the cooling water flows is formed inside, and is formed in a flat shape. A large number of tubes 2 are arranged in a stacked manner, fins 3 are arranged between adjacent tubes 2, and cooling air flows between the adjacent tubes 2. The cooling air corresponds to the external fluid of the present invention.

フィン3は、冷却用空気と冷却水との熱交換を促進するものであり、金属(本実施形態では、アルミニウム合金)よりなり、プレス成型もしくはローラ成型にて製造される。   The fins 3 promote heat exchange between the cooling air and the cooling water, are made of metal (in this embodiment, an aluminum alloy), and are manufactured by press molding or roller molding.

このフィン3は、図2、図3に示すように、チューブ2間を流れる冷却用空気の流通方向X2(以下、気流方向X2という)と略平行な面を有する平面部3a及び隣り合う平面部3a間を繋ぐ湾曲部3bを有しており、気流方向X2から見て波状に成形されている。この平面部3aは、冷却水流通方向X1に沿って複数配置されている。   As shown in FIGS. 2 and 3, the fin 3 includes a plane portion 3 a having a plane substantially parallel to the flow direction X2 of cooling air flowing between the tubes 2 (hereinafter referred to as the airflow direction X2) and an adjacent plane portion. It has a curved portion 3b connecting between 3a, and is formed into a wave shape when viewed from the airflow direction X2. A plurality of the flat portions 3a are arranged along the coolant flow direction X1.

また、平面部3aには、平面部3aを切り起こすことにより鎧窓状のルーバ3cが一体形成されている。ルーバ3cは、チューブ2の積層方向X3(以下、チューブ積層方向X3という)から見たとき、平面部3aに対して所定の角度θ1(以下、捻り角度θ1という)で捻られており、気流方向X2に沿って平面部3aに複数設けられている。そして、隣接するルーバ3c間にルーバ間通路5が形成されている。気流方向X2の上流側に位置するルーバ3cの捻り方向と、気流方向X2の下流側に位置するルーバ3cの捻り方向とは、異なっている。なお、捻り角度θ1は、本実施形態では23°としている。   Further, an armor window-like louver 3c is integrally formed on the flat surface portion 3a by cutting and raising the flat surface portion 3a. The louver 3c is twisted at a predetermined angle θ1 (hereinafter referred to as twist angle θ1) with respect to the flat surface portion 3a when viewed from the stacking direction X3 (hereinafter referred to as tube stacking direction X3) of the tube 2, and the airflow direction A plurality of flat portions 3a are provided along X2. A louver passage 5 is formed between adjacent louvers 3c. The twist direction of the louver 3c located upstream of the airflow direction X2 is different from the twist direction of the louver 3c located downstream of the airflow direction X2. The twist angle θ1 is 23 ° in the present embodiment.

ここで、捻り角度θ1に沿った方向をルーバ巾方向X4としたとき、ルーバ3cにおけるルーバ巾方向X4の中間部に、チューブ積層方向X3に延びるとともに、ルーバ間通路5側に突出した段差部3dが設けられている。   Here, when the direction along the twist angle θ1 is the louver width direction X4, the step portion 3d that extends in the tube stacking direction X3 and protrudes toward the inter-louver passage 5 side at the middle portion of the louver width direction X4 in the louver 3c. Is provided.

段差部3dは、各ルーバ3cに1つ設けられ、各ルーバ3cの両側に位置するルーバ間通路5のうち、気流方向X2上流側に位置するルーバ間通路5側に、段差部3dが設けられている。また、段差部3dをチューブ積層方向X3から見たときの曲げ角度θ2は、本実施形態では90°としている。   One step portion 3d is provided for each louver 3c, and among the louver passages 5 located on both sides of each louver 3c, the step portion 3d is provided on the louver passage 5 side located upstream in the airflow direction X2. ing. In addition, the bending angle θ2 when the step 3d is viewed from the tube stacking direction X3 is 90 ° in the present embodiment.

なお、本実施形態では、フィン3はアルミニウム合金製であり、フィン3の厚みtは0.05mm、ルーバ3cにおけるルーバ巾方向X4の長さL(以下、ルーバ巾Lという)は0.8mm、段差部3dの突出量Sは0.05mm、としている。   In the present embodiment, the fin 3 is made of an aluminum alloy, the thickness t of the fin 3 is 0.05 mm, and the length L in the louver width direction X4 (hereinafter referred to as louver width L) in the louver 3c is 0.8 mm. The protrusion amount S of the step portion 3d is 0.05 mm.

そして、段差部3dの突出量Sは、フィン3の厚みt以上とするのが望ましい。また、波状に形成されたフィン3の1周期分の長さをフィンピッチFPとし、ルーバ3cにおける冷却水流通方向X1の寸法をルーバピッチ高さHLPとしたとき、FP/HLPは、10以下とするのが望ましい。   The protrusion amount S of the stepped portion 3d is desirably equal to or greater than the thickness t of the fin 3. Further, when the length of one cycle of the fin 3 formed in a wave shape is the fin pitch FP, and the dimension of the cooling water flow direction X1 in the louver 3c is the louver pitch height HLP, FP / HLP is 10 or less. Is desirable.

次に、本実施形態の作用効果を述べる。   Next, the function and effect of this embodiment will be described.

図4(a)は本実施形態に係るフィン3の局所熱伝達率の変化を示すもので、図4(b)は特許文献1に記載の発明と同様な構成を有するフィンの局所熱伝達率の変化を示すものである。   FIG. 4A shows a change in the local heat transfer coefficient of the fin 3 according to this embodiment, and FIG. 4B shows the local heat transfer coefficient of the fin having the same configuration as that of the invention described in Patent Document 1. It shows the change of.

図4(a)に示すように、各ルーバ3cにおける気流方向X2の上流側端部は、先端効果により局所熱伝達率が高くなる。次いで、冷却用空気がルーバ間通路5を流れる際には、温度境界層が発達して局所熱伝達率が次第に低下する。   As shown to Fig.4 (a), the local heat transfer coefficient becomes high at the upstream edge part of the airflow direction X2 in each louver 3c by a front-end | tip effect. Next, when cooling air flows through the inter-louver passage 5, a temperature boundary layer develops and the local heat transfer coefficient gradually decreases.

しかし、本実施形態のラジエータ1は、ルーバ間通路5側に突出した段差部3dを有していて、冷却用空気が段差部3dに当たることにより、冷却用空気の流れが段差部3dによって乱されて温度境界層が破壊されるため、段差部3dの部位で局所熱伝達率が再度向上し、平均熱伝達率が向上する。したがって、ルーバピッチを短くすることなく、フィン3の熱伝達率を向上させることができる。   However, the radiator 1 of the present embodiment has the step portion 3d that protrudes toward the inter-louver passage 5 and the cooling air hits the step portion 3d, so that the flow of the cooling air is disturbed by the step portion 3d. Since the temperature boundary layer is destroyed, the local heat transfer coefficient is improved again at the stepped portion 3d, and the average heat transfer coefficient is improved. Therefore, the heat transfer coefficient of the fin 3 can be improved without shortening the louver pitch.

また、段差部3dは、気流方向X2上流側に位置するルーバ間通路5側に設けられているため、気流方向X2下流側に位置するルーバ間通路5側に段差部3dを設ける場合よりも、冷却用空気の流れがより強く乱される。したがって、フィン3の熱伝達率をさらに向上させることができる。   Further, since the step portion 3d is provided on the inter-louver passage 5 side located on the upstream side in the airflow direction X2, rather than the case where the step portion 3d is provided on the inter-louver passage 5 side located on the downstream side in the airflow direction X2, The flow of cooling air is more strongly disturbed. Therefore, the heat transfer coefficient of the fin 3 can be further improved.

なお、図5は、本実施形態のフィン3の変形例を示すものであり、段差部3dをチューブ積層方向X3から見たときの図である。   FIG. 5 shows a modification of the fin 3 of the present embodiment, and is a view when the stepped portion 3d is viewed from the tube stacking direction X3.

図5(a)は、段差部3dの曲げ角度θ2を鈍角にしたものである。図5(b)は、段差部3dの一端側のルーバ巾L1と、段差部3dの他端側のルーバ巾L2とを、異ならせたものである。図5(c)は、段差部3dを各ルーバ3cに複数設けたものである。   FIG. 5A shows the step portion 3d having an obtuse bending angle θ2. FIG. 5B shows a difference between the louver width L1 on one end side of the step portion 3d and the louver width L2 on the other end side of the step portion 3d. FIG. 5C shows a case where a plurality of step portions 3d are provided in each louver 3c.

(第2実施形態)
本発明の第2実施形態について説明する。図6は第2実施形態に係る熱交換器におけるフィン3の斜視図である。
(Second Embodiment)
A second embodiment of the present invention will be described. FIG. 6 is a perspective view of the fin 3 in the heat exchanger according to the second embodiment.

本実施形態は、第1実施形態における段差部3dの代わりに、ルーバ3cに穴3eを設けたものであり、その他の点は第1実施形態と共通している。   In this embodiment, instead of the step 3d in the first embodiment, a hole 3e is provided in the louver 3c, and other points are common to the first embodiment.

穴3eは、ルーバ3cの両側に位置するルーバ間通路5を連通させるように貫通しており、打ち抜きされている。また、穴3eは、楕円形状であり、ルーバ3cにおけるルーバ巾方向X4の中間部に設けられるとともに、チューブ積層方向X3に沿って各ルーバ3cに複数(本例では3個)設けられている。なお、穴3eは本発明の連通路に相当する。   The hole 3e penetrates and is punched out so as to allow communication between the louver passages 5 located on both sides of the louver 3c. Further, the hole 3e has an elliptical shape, and is provided in an intermediate portion of the louver width direction X4 in the louver 3c, and a plurality (three in this example) are provided in each louver 3c along the tube stacking direction X3. The hole 3e corresponds to the communication path of the present invention.

これによると、冷却用空気がルーバ間通路5を流れる際に、冷却用空気の一部が穴3eを通過して隣のルーバ間通路5に流れることにより、温度境界層の発達が抑制されるため、平均熱伝達率が向上する。したがって、ルーバピッチを短くすることなく、フィン3の熱伝達率を向上させることができる。   According to this, when the cooling air flows through the inter-louver passage 5, a part of the cooling air passes through the hole 3e and flows into the adjacent inter-louver passage 5, thereby suppressing the development of the temperature boundary layer. Therefore, the average heat transfer rate is improved. Therefore, the heat transfer coefficient of the fin 3 can be improved without shortening the louver pitch.

(第3実施形態)
本発明の第3実施形態について説明する。図7は第3実施形態に係る熱交換器におけるフィン3の斜視図である。
(Third embodiment)
A third embodiment of the present invention will be described. FIG. 7 is a perspective view of the fin 3 in the heat exchanger according to the third embodiment.

第2実施形態では、穴3eを打ち抜きによって形成したが、本実施形態は、ルーバ3cの一部を切り起こして穴3eを形成したもので、これにより、廃材を出さずに穴3eを形成することができる。なお、3fは切り起こされた切り起こし片である。   In the second embodiment, the hole 3e is formed by punching. However, in this embodiment, a part of the louver 3c is cut and raised to form the hole 3e, thereby forming the hole 3e without producing waste material. be able to. Reference numeral 3f denotes a cut and raised piece.

(第4実施形態)
本発明の第4実施形態について説明する。図8(a)は第4実施形態に係る熱交換器におけるフィン3を一部破断して示す斜視図、図8(b)は図8(a)のD部の拡大図、図9(a)は図8のフィン3をチューブ積層方向X3から見た断面図、図9(b)は図9(a)のE部の拡大図である。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. FIG. 8A is a perspective view showing a partially broken fin 3 in the heat exchanger according to the fourth embodiment, FIG. 8B is an enlarged view of a portion D in FIG. 8A, and FIG. ) Is a cross-sectional view of the fin 3 of FIG. 8 viewed from the tube stacking direction X3, and FIG. 9B is an enlarged view of an E portion of FIG. 9A.

第2実施形態では、各ルーバ3cに複数の穴3eを設けて、ルーバ3cの両側に位置するルーバ間通路5を連通させるようにしたが、本実施形態は、チューブ積層方向X3に細長いスリット3gを各ルーバ3cに1つ設けて、ルーバ3cの両側に位置するルーバ間通路5を連通させるようにしている。なお、スリット3gは本発明の連通路に相当する。   In the second embodiment, each louver 3c is provided with a plurality of holes 3e so that the inter-louver passages 5 located on both sides of the louver 3c communicate with each other. However, in this embodiment, the slit 3g elongated in the tube stacking direction X3. Is provided for each louver 3c so that the inter-louver passages 5 located on both sides of the louver 3c communicate with each other. The slit 3g corresponds to the communication path of the present invention.

スリット3gは、次のようにして形成される。すなわち、ルーバ3cにおけるルーバ巾方向X4の中間部に、チューブ積層方向X3に沿って切り込みを入れた後に、その切り込みの両側を変形させて形成する。これにより、廃材を出さずにスリット3gを形成することができる。   The slit 3g is formed as follows. In other words, the louver 3c is formed by cutting the middle portion of the louver width direction X4 along the tube stacking direction X3 and then deforming both sides of the cut. Thereby, the slit 3g can be formed without taking out waste material.

(他の実施形態)
上記各実施形態では、気流方向X2の上流側に位置するルーバ3cの捻り方向と、気流方向X2の下流側に位置するルーバ3cの捻り方向とを異ならせたが、全てのルーバ3の捻り方向を同じにしてもよい。
(Other embodiments)
In each of the above embodiments, the twisting direction of the louver 3c located upstream of the airflow direction X2 is different from the twisting direction of the louver 3c located downstream of the airflow direction X2, but the twisting direction of all the louvers 3 May be the same.

(a)は本発明の第1実施形態に係る熱交換器の正面図、(b)は(a)のA部の拡大図である。(A) is a front view of the heat exchanger which concerns on 1st Embodiment of this invention, (b) is an enlarged view of the A section of (a). (a)は図1のフィン3を一部破断して示す斜視図、(b)は(a)のB部の拡大図である。(A) is a perspective view showing a partially broken fin 3 of FIG. 1, and (b) is an enlarged view of a B portion of (a). (a)は図1のフィン3をチューブ積層方向X3から見た断面図、(b)は(a)のC部の拡大図である。(A) is sectional drawing which looked at the fin 3 of FIG. 1 from the tube lamination direction X3, (b) is an enlarged view of the C section of (a). (a)は第1実施形態に係る熱交換器におけるフィン3の局所熱伝達率及び平均熱伝達率を示す特性図、(b)は従来の熱交換器におけるフィン3の局所熱伝達率及び平均熱伝達率を示す特性図である。(A) is a characteristic diagram which shows the local heat transfer rate and average heat transfer rate of the fin 3 in the heat exchanger which concerns on 1st Embodiment, (b) is the local heat transfer rate and average of the fin 3 in the conventional heat exchanger. It is a characteristic view which shows a heat transfer rate. 第1実施形態に係る熱交換器におけるフィン3の変形例を示す要部の断面図である。It is sectional drawing of the principal part which shows the modification of the fin 3 in the heat exchanger which concerns on 1st Embodiment. 本発明の第2実施形態に係る熱交換器におけるフィン3の斜視図である。It is a perspective view of the fin 3 in the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱交換器におけるフィン3の斜視図である。It is a perspective view of the fin 3 in the heat exchanger which concerns on 3rd Embodiment of this invention. (a)は本発明の第4実施形態に係る熱交換器におけるフィン3を一部破断して示す斜視図、(b)は(a)のD部の拡大図である。(A) is a perspective view which partially shows and shows the fin 3 in the heat exchanger which concerns on 4th Embodiment of this invention, (b) is an enlarged view of the D section of (a). (a)は図8のフィン3をチューブ積層方向X3から見た断面図、(b)は(a)のE部の拡大図である。(A) is sectional drawing which looked at the fin 3 of FIG. 8 from the tube lamination direction X3, (b) is an enlarged view of the E section of (a).

符号の説明Explanation of symbols

2…チューブ、3…フィン、3a…平面部、3c…ルーバ、3d…段差部、5…ルーバ間通路、X2…冷却用空気の流通方向、X4…ルーバ巾方向、θ1…所定の角度。   2 ... Tube, 3 ... Fin, 3a ... Planar part, 3c ... Louver, 3d ... Stepped part, 5 ... Passage between louvers, X2 ... Flow direction of cooling air, X4 ... Louver width direction, [theta] 1 ... Predetermined angle.

Claims (5)

内部を内部流体が流通するとともに、積層配置された複数のチューブ(2)と、前記チューブ(2)間に配置されるとともに、前記チューブ(2)間を流れる外部流体の流通方向(X2)と略平行な平面部(3a)を有するフィン(3)とを備え、
前記平面部(3a)に対して所定の角度(θ1)で捻られたルーバ(3c)が前記外部流体の流通方向(X2)に沿って前記平面部(3a)に複数設けられ、隣接する前記ルーバ(3c)間にルーバ間通路(5)が形成された熱交換器において、
前記所定の角度(θ1)に沿った方向をルーバ巾方向(X4)としたとき、
前記ルーバ(3c)における前記ルーバ巾方向(X4)の中間部に、前記ルーバ間通路(5)側に突出した段差部(3d)が設けられていることを特徴とする熱交換器。
The internal fluid circulates in the interior, the plurality of tubes (2) arranged in a stack, and the flow direction (X2) of the external fluid that is disposed between the tubes (2) and flows between the tubes (2). A fin (3) having a substantially parallel plane part (3a),
A plurality of louvers (3c) twisted at a predetermined angle (θ1) with respect to the plane portion (3a) are provided in the plane portion (3a) along the flow direction (X2) of the external fluid, and adjacent to the plane portion (3a). In the heat exchanger in which the louver passage (5) is formed between the louvers (3c),
When the direction along the predetermined angle (θ1) is the louver width direction (X4),
A heat exchanger, wherein a step portion (3d) protruding toward the inter-louver passage (5) is provided at an intermediate portion of the louver (3c) in the louver width direction (X4).
前記ルーバ(3c)の両側に位置する前記ルーバ間通路(5)のうち、前記外部流体の流通方向(X2)上流側に位置する前記ルーバ間通路(5)側に、前記段差部(3d)が設けられていることを特徴とする請求項1に記載の熱交換器。 Of the inter-louver passages (5) located on both sides of the louver (3c), on the side of the inter-louver passage (5) located upstream in the flow direction (X2) of the external fluid, the step portion (3d) The heat exchanger according to claim 1, wherein the heat exchanger is provided. 内部を内部流体が流通するとともに、積層配置された複数のチューブ(2)と、前記チューブ(2)間に配置されるとともに、前記チューブ(2)間を流れる外部流体の流通方向(X2)と略平行な平面部(3a)を有するフィン(3)とを備え、
前記平面部(3a)に対して所定の角度(θ1)で捻られたルーバ(3c)が前記外部流体の流通方向(X2)に沿って前記平面部(3a)に複数設けられ、隣接する前記ルーバ(3c)間にルーバ間通路(5)が形成された熱交換器において、
前記所定の角度(θ1)に沿った方向をルーバ巾方向(X4)としたとき、
前記ルーバ(3c)における前記ルーバ巾方向(X4)の中間部に、前記ルーバ(3c)の両側に位置する前記ルーバ間通路(5)を連通させる連通路(3e、3g)が設けられていることを特徴とする熱交換器。
The internal fluid circulates in the interior, the plurality of tubes (2) arranged in a stack, and the flow direction (X2) of the external fluid that is disposed between the tubes (2) and flows between the tubes (2). A fin (3) having a substantially parallel plane part (3a),
A plurality of louvers (3c) twisted at a predetermined angle (θ1) with respect to the plane portion (3a) are provided in the plane portion (3a) along the flow direction (X2) of the external fluid, and adjacent to the plane portion (3a). In the heat exchanger in which the louver passage (5) is formed between the louvers (3c),
When the direction along the predetermined angle (θ1) is the louver width direction (X4),
In the middle part of the louver (3c) in the louver width direction (X4), communication passages (3e, 3g) are provided for communicating the louver passages (5) located on both sides of the louver (3c). A heat exchanger characterized by that.
前記連通路は、前記チューブの積層方向(X3)に沿って切り込みを入れた後に、前記切り込みの両側を変形させて形成した、前記チューブの積層方向(X3)に細長いスリット(3g)であることを特徴とする請求項3に記載の熱交換器。 The communication path is a slit (3g) elongated in the tube stacking direction (X3) formed by cutting both sides of the cut after cutting along the tube stacking direction (X3). The heat exchanger according to claim 3. 前記フィン(3)は、前記内部流体の流通方向(X1)に沿って複数配置された前記平面部(3a)及び隣接する前記平面部(3a)間を繋ぐ湾曲部(3b)を有するように波状に形成されていることを特徴とする請求項1ないし4のいずれか1つに記載の熱交換器。 The fin (3) has a plurality of the planar portions (3a) arranged along the flow direction (X1) of the internal fluid and a curved portion (3b) connecting between the adjacent planar portions (3a). The heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is formed in a wave shape.
JP2005011466A 2005-01-19 2005-01-19 Heat exchanger Withdrawn JP2006200788A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005011466A JP2006200788A (en) 2005-01-19 2005-01-19 Heat exchanger
US11/331,439 US20060157233A1 (en) 2005-01-19 2006-01-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011466A JP2006200788A (en) 2005-01-19 2005-01-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2006200788A true JP2006200788A (en) 2006-08-03

Family

ID=36682686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011466A Withdrawn JP2006200788A (en) 2005-01-19 2005-01-19 Heat exchanger

Country Status (2)

Country Link
US (1) US20060157233A1 (en)
JP (1) JP2006200788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100114B1 (en) * 2009-11-27 2011-12-29 한국델파이주식회사 Fin for heat exchanger
KR101441123B1 (en) * 2006-04-25 2014-09-17 한라비스테온공조 주식회사 Louvered fin for heat exchanger

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163083A (en) * 2005-12-16 2007-06-28 Denso Corp Corrugated fin and heat exchanger using the same
FR2924491B1 (en) * 2007-12-04 2009-12-18 Valeo Systemes Thermiques WIRELESS INTERCALIARY WITH PERSIANS FOR HEAT EXCHANGER
US20130199760A1 (en) * 2008-08-06 2013-08-08 Delphi Technologies, Inc. Heat exchanger assembly having split mini-louvered fins
WO2010019401A2 (en) * 2008-08-15 2010-02-18 Carrier Corporation Heat exchanger fin including louvers
JP5422977B2 (en) * 2008-11-20 2014-02-19 ソニー株式会社 Projection display
CN104089517B (en) * 2014-07-18 2016-08-17 丹佛斯微通道换热器(嘉兴)有限公司 Fin and the heat exchanger with this fin for heat exchanger
DE102015205902A1 (en) 2015-04-01 2016-10-06 Mahle International Gmbh Rib for a heat exchanger
DE102016210159A1 (en) * 2016-06-08 2017-12-14 Mahle International Gmbh Ribbed element for a heat exchanger
EP3330657B1 (en) * 2016-12-01 2020-10-28 Modine Manufacturing Company Air fin for a heat exchanger, and method of making the same
CN111912279B (en) * 2020-08-13 2021-05-07 西安交通大学 Twisted zigzag louver fin
USD967361S1 (en) * 2020-08-17 2022-10-18 Mercracing, Llc Heat exchanger
EP4023996A1 (en) * 2020-12-29 2022-07-06 Valeo Autosystemy SP. Z.O.O. Heat exchanger
EP4023995A1 (en) * 2020-12-29 2022-07-06 Valeo Autosystemy SP. Z.O.O. Heat exchanger
EP4023994A1 (en) * 2020-12-29 2022-07-06 Valeo Autosystemy SP. Z.O.O. Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003749A (en) * 1957-09-09 1961-10-10 Modine Mfg Co Automotive strip serpentine fin
JPH0610591B2 (en) * 1983-07-29 1994-02-09 三菱電機株式会社 Heat exchanger
EP1167909A3 (en) * 2000-02-08 2005-10-12 Calsonic Kansei Corporation Core structure of integral heat-exchanger
US6672376B2 (en) * 2000-12-27 2004-01-06 Visteon Global Technologies, Inc. Twisted-louver high performance heat exchanger fin
US6874345B2 (en) * 2003-01-02 2005-04-05 Outokumpu Livernois Engineering Llc Serpentine fin with extended louvers for heat exchanger and roll forming tool for manufacturing same
DE102004012796A1 (en) * 2003-03-19 2004-11-11 Denso Corp., Kariya Heat exchanger and heat transfer element with symmetrical angle sections

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441123B1 (en) * 2006-04-25 2014-09-17 한라비스테온공조 주식회사 Louvered fin for heat exchanger
KR101100114B1 (en) * 2009-11-27 2011-12-29 한국델파이주식회사 Fin for heat exchanger

Also Published As

Publication number Publication date
US20060157233A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP2006200788A (en) Heat exchanger
JP4674602B2 (en) Heat exchanger
JP5803768B2 (en) Heat exchanger fins and heat exchangers
US20090308585A1 (en) Method for Manufacturing Tube and Fin Heat Exchanger with Reduced Tube Diameter and Optimized Fin Produced Thereby
EP2778592B1 (en) Heat exchanger assembly having split mini-louvered fins
JP6011481B2 (en) Heat exchanger fins
JP2001174179A (en) Heat exchanger
JP2002372389A (en) Heat exchanger
US20120024511A1 (en) Intercooler
WO2009144909A1 (en) Fin-tube heat exchanger
JP2006064345A (en) Heat transfer fin
WO2013001744A1 (en) Fin tube heat exchanger
JP2005090806A (en) Heat exchanger
JP2006266628A (en) Fin for heat exchanger, and heat exchanger using the same
WO2012102053A1 (en) Finned-tube heat exchanger
JP2006207966A (en) Heat exchanger
JP4884140B2 (en) Finned tube heat exchanger and heat pump device
JP4626422B2 (en) Finned tube heat exchanger
JP2017040446A (en) Heat exchanger
JP2006320910A (en) Tube for heat exchanger, and method for manufacturing the same
JP2008209025A (en) Heat transfer member and heat exchanger using the same
JP6599023B2 (en) Heat exchanger, heat exchanger manufacturing method and fin assembly
JP2006162136A (en) Duplex heat exchanger
JP2019132455A (en) Heat exchanger
JP5337402B2 (en) Finned tube heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081216