WO2013161240A1 - Finned tube heat exchanger - Google Patents

Finned tube heat exchanger Download PDF

Info

Publication number
WO2013161240A1
WO2013161240A1 PCT/JP2013/002660 JP2013002660W WO2013161240A1 WO 2013161240 A1 WO2013161240 A1 WO 2013161240A1 JP 2013002660 W JP2013002660 W JP 2013002660W WO 2013161240 A1 WO2013161240 A1 WO 2013161240A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat transfer
tube
heat exchanger
fins
Prior art date
Application number
PCT/JP2013/002660
Other languages
French (fr)
Japanese (ja)
Inventor
明広 重田
横山 昭一
由樹 山岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380021261.5A priority Critical patent/CN104246409B/en
Publication of WO2013161240A1 publication Critical patent/WO2013161240A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Definitions

  • the present invention relates to a finned tube heat exchanger used for heat exchange of a refrigerant.
  • FIG. 14A is a partial plan view of a fin included in a conventional fin tube heat exchanger.
  • 14B is a cross-sectional view taken along line AA in FIG. 14A.
  • 14C is a cross-sectional view taken along line BB of FIG. 14A.
  • FIG. 14D is a partially enlarged view of a region C surrounded by a broken line in FIG. 14A and shows how air flows.
  • a conventional fin tube heat exchanger includes a plurality of fins 101 shown in FIG. 14A.
  • the plurality of fins 101 are arranged in parallel at regular intervals so that air flows between them.
  • Each fin 101 is provided with a plurality of heat transfer tubes 102 penetrating in the thickness direction of the fin 101. Inside each heat transfer tube 102, a refrigerant for performing heat exchange with air flowing between the plurality of fins 101 flows.
  • the fin 101 is formed with a plurality of cylindrical fin collars 103 into which the heat transfer tubes 102 are inserted.
  • a flat tube peripheral portion 104 is formed around the fin collar 103.
  • a substantially annular convex portion 105 is formed around the tube peripheral portion 104.
  • the convex portion 105 has a first inclined surface 105a and a second inclined surface 105b, and functions as a guide for the air flow S. As shown in FIG. 14D, the convex portion 105 reduces the dead water area D by attracting the air flows Sa and Sb that wrap around the downstream portion of the heat transfer tube 102.
  • the first inclined surface 105a is inclined from the ridge line of the convex portion 105 toward the heat transfer tube 2 side.
  • the second inclined surface 105 b is inclined from the ridge line of the convex portion 5 toward the side opposite to the heat transfer tube 2. Further, as shown in FIG. 14A, a flat portion 106 is provided in a part below the convex portion 105 with respect to the gravity direction G.
  • condensed water 120 in which moisture in the air is condensed is generated around the heat transfer tube 102 on the surface side of the fin 101 as shown in FIG. 15A.
  • the condensed water 120 is drained through the flat part 106 as shown in FIG. 15B.
  • the drainage property of the water generated on the surface of the fin 101 is improved by such a configuration.
  • the present invention solves the above-described conventional problems, and can improve the heat transfer performance of the downstream portion of the heat transfer tube without reducing the drainage of water generated on the surface of the fin.
  • the purpose is to provide an exchanger.
  • a finned tube heat exchanger includes a plurality of fins and a plurality of heat transfer tubes that pass through the plurality of fins and in which a fluid flows.
  • a finned tube heat exchanger that can improve the heat transfer performance of the downstream portion of the heat transfer tube without reducing the drainage of water generated on the surface of the fin. Can be provided.
  • FIG. 1 is a perspective view showing the configuration of the finned tube heat exchanger according to the first embodiment of the present invention. It is a partial top view of the fin with which the fin tube heat exchanger of FIG. 1 is provided, FIG. 2B is a cross-sectional view taken along line A1-A1 of FIG. 2A. FIG. 2B is a sectional view taken along line B1-B1 of FIG. 2A; FIG. 2B is an enlarged view of a region C1 surrounded by a broken line in FIG.
  • FIG. 2A shows how air flows; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 2A, It is the elements on larger scale which show a mode that the condensed water which occurred on the surface of the fin of Drawing 2A is drained on the back of a fin via notch, It is the elements on larger scale which show the state where most condensate generated on the surface of the fin of Drawing 2A was drained, It is the fragmentary top view which shows the modification which made the fin of FIG. 2A wave shape, FIG. 4B is a cross-sectional view taken along line A2-A2 when a plurality of the fins of FIG. 4A are stacked.
  • FIG. 4B is a cross-sectional view taken along line A2-A2 when a plurality of the fins of FIG. 4A are stacked.
  • FIG. 4B is a sectional view taken along line B2-B2 when a plurality of the fins of FIG. 4A are stacked; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 4A, It is the elements on larger scale which show a mode that the condensed water which occurred on the surface of the fin of Drawing 4A is drained on the back of a fin via notch, It is the elements on larger scale which show the state where most condensate generated on the surface of the fin of Drawing 4A was drained, It is a partial top view of the fin with which the finned-tube heat exchanger concerning 2nd Embodiment of this invention is provided, It is a partial top view which shows the modification which made the fin of FIG.
  • FIG. 6 the waveform shape
  • FIG. 8A It is a fragmentary top view of the fin with which the finned-tube heat exchanger concerning 3rd Embodiment of this invention is provided, It is the A3-A3 sectional view taken on the line of FIG. 8A
  • FIG. 8B is a sectional view taken along line B3-B3 of FIG. 8A
  • FIG. 8B is an enlarged view of a region C2 surrounded by a broken line in FIG. 8A and shows how air flows; It is the elements on larger scale which show the state where condensed water generate
  • FIG. 8A is drained by the back surface of a fin through a notch
  • FIG. 8A it is an image figure which shows a mode that heat conduction spreads radially, It is the fragmentary top view which shows the modification which made the fin of FIG. 8A wave shape
  • FIG. 11B is a cross-sectional view taken along line A4-A4 when a plurality of the fins of FIG. 11A are stacked;
  • FIG. 11B is a cross-sectional view taken along line B4-B4 when a plurality of the fins of FIG.
  • FIG. 11A are stacked; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 10A, It is the elements on larger scale which show a mode that the condensed water which generate
  • FIG. 14A is a sectional view taken along line BB in FIG. 14A;
  • FIG. 14B is an enlarged view of a region C surrounded by a broken line in FIG. 14A and shows how air flows;
  • the finned tube heat exchanger includes a plurality of fins and a plurality of heat transfer tubes that pass through the plurality of fins and allow fluid to flow therein, and the fins are formed around the heat transfer tubes. It has a pipe peripheral part and a convex part formed so as to surround the pipe peripheral part, and is configured to provide a fluid path that communicates the front and back of the fin with the convex part.
  • the air flow flowing into the wake portion of the heat transfer tube can be increased by the convex portion formed so as to surround the tube peripheral portion, and the heat transfer performance of the wake portion of the heat transfer tube is improved.
  • the fluid path formed in the convex portion can guide the water on the surface of the fin to the back surface of the fin and drain it smoothly downward in the direction of gravity, so that it is possible to suppress a decrease in drainage.
  • the fin includes an inclined portion inclined in a corrugated shape with respect to the air flow direction, and the convex portion is opposite to the first inclined surface inclined to the heat transfer tube side and the heat transfer tube. It has a 2nd inclined surface which inclines to the side, and it is preferable that the said inclined part and the said convex part are connected via the said 2nd inclined surface.
  • FIG. 1 is a perspective view showing the configuration of the finned tube heat exchanger according to the first embodiment.
  • the finned-tube heat exchanger according to the first embodiment is mounted on an outdoor unit such as an air conditioner, a heat pump water heater, or a heat pump hot water heater.
  • the finned-tube heat exchanger includes a plurality of fins 1, a plurality of heat transfer tubes 2 that respectively penetrate the plurality of fins 1, and a heat exchanger mounted on the outdoor unit.
  • An end plate 30 is provided for fixing at the time of placement or for connecting a plurality of heat exchangers.
  • the plurality of fins 1 are stacked substantially in parallel with a predetermined interval Fp so that a flow path is formed in the air flow direction S.
  • the plurality of heat transfer tubes 2 are arranged in parallel to each other in a direction intersecting (for example, orthogonal to) the stacking direction of the plurality of fins 1.
  • a fluid such as a refrigerant flows inside each heat transfer tube 2.
  • the finned tube heat exchanger according to the first embodiment is configured such that the air passing between the fins 1 and 1 adjacent to each other and the refrigerant flowing inside the heat transfer tube 2 exchange heat.
  • coolant which flows through the inside of the heat exchanger tube 2
  • coolant which flows through the inside of the heat exchanger tube 2
  • coolant which flows through the inside of the heat exchanger tube 2
  • coolant which flows through the inside of the heat exchanger tube 2
  • coolant such as R410A, a propane, a propylene, and a carbon dioxide, is suitable.
  • the heat transfer tubes 2 may be connected to each other by a plurality of curved tubes to form a single meandering heat transfer tube.
  • the end plate 30 is provided so as to be adjacent to the fin located at the end in the stacking direction among the plurality of fins 1.
  • FIG. 2A is a partial plan view of the fin 1.
  • 2B is a cross-sectional view taken along line A1-A1 of FIG. 2A.
  • 2C is a cross-sectional view taken along line B1-B1 of FIG. 2A.
  • FIG. 2D is an enlarged view of a region C1 surrounded by a broken line in FIG. 2A and shows how air flows.
  • the fin 1 is formed in a substantially flat plate shape as shown in FIG. 2A.
  • a plurality of cylindrical fin collars 3 are formed on the fin 1.
  • the heat transfer tube 2 is joined to the fin collar 3 by mechanical expansion or hydraulic expansion of the heat transfer tube 2.
  • a flat tube periphery 4 is formed around the fin collar 3 as shown in FIGS. 2A and 2C.
  • An annular convex portion 5 is formed around the tube peripheral portion 4 so as to surround the tube peripheral portion 4.
  • the convex part 5 has the 1st inclined surface 5a and the 2nd inclined surface 5b, and functions as a guide of the airflow S.
  • FIG. Moreover, the convex part 5 reduces the dead water area D by attracting the airflows Sa and Sb which wrap around the wake part of the heat exchanger tube 2, as shown in FIG. 2D.
  • the first inclined surface 5a is inclined from the ridge line of the convex portion 5 toward the heat transfer tube 2 side.
  • the second inclined surface 5 b is inclined from the ridge line of the convex portion 5 toward the side opposite to the heat transfer tube 2.
  • a notch 9 is formed along the ridge line of the convex part 5 to be a fluid path communicating with the front and back of the fin 1.
  • the cuts 9 are formed at two locations, a position including the upper end of the convex portion 5 and a position including the lower end of the convex portion 5.
  • each notch 9 is preferably about 0.05 mm to 0.5 mm. In this case, water generated on the surface of the fin 1 can be easily guided to the back surface of the fin 1 by capillary action.
  • each notch 9 is preferably about 0.5 to 1.5 times (0.5 Fp to 1.5 Fp) of the arrangement interval Fp of the fins 1. In this case, it is possible to suppress a phenomenon (bridge phenomenon) in which water generated on the surface of the fin 1 is formed so as to straddle the stacked fins 1.
  • condensed water 20 in which moisture in the air is condensed is generated around the heat transfer tube 2 on the surface side of the fin 1 as shown in FIG. 3A. Since the notch 9 is formed in the convex part 5 along the ridgeline, the condensed water 20 is guided from the surface of the fin 1 to the back surface through the notch 9 as shown in FIG. It is guided (drained) downward in the direction of gravity G along the back surface. Thereby, as shown in FIG. 3C, most of the condensed water 20 generated on the surface of the fin 1 is drained.
  • the condensed water 20 flowing along the surface of the fin 1 is guided to the back surface of the fin 1 through the notch 9 formed at the upper end of the convex portion 5.
  • the condensed water 20 guided to the back surface of the fin 1 is guided (drained) downward in the gravity direction G along the edge of the convex portion 5.
  • the condensate 20 on the surface of the fin 1 is guided to the back surface of the fin 1 by the notches 9 formed in the convex portion 5, and the gravity direction G It can drain smoothly downward. Thereby, the fall of the drainage property of the water which generate
  • the fins 1 are formed in a substantially flat plate shape, but the present invention is not limited to this.
  • the fin 1 may be formed in a corrugated shape. That is, the fin 1 may be formed in an M shape so as to be continuous in the order of the valley portion 14a, the mountain portion 13, the valley portion 14, the mountain portion 13, and the valley portion 14a with respect to the air flow direction S.
  • the peak part 13, the valley part 14, and the valley part 14a are formed by the inclination part 15 which inclines with respect to the air flow direction S.
  • the convex portion 5 is formed by an inclined surface 5a inclined toward the heat transfer tube 2 and an inclined surface 5b inclined toward the opposite side of the heat transfer tube 2 with the ridge line as a boundary.
  • the formed convex portion 5 and the inclined portion 15 are preferably connected via an inclined surface 5b.
  • the condensed water 20 generated on the surface of the fin 1 is guided to the back surface of the fin 1 through the cuts 9 as shown in FIG. 5A.
  • the condensed water 20 guided to the back surface of the fin 1 is guided to the peak portion 13 (becomes a valley when viewed from the back surface side of the fin 1) as shown in FIG. Induced (drained) at any time.
  • FIG. 5C most of the condensed water 20 generated on the surface of the fin 1 is drained. That is, according to this configuration, since the fluid flow path through which the condensed water 20 flows is formed by the corrugated fins 1 and the notches 9, the drainage of the condensed water 20 can be further improved. .
  • the air flow is like a meandering air flow Sc, so that the temperature boundary layer can be made thin to promote heat transfer. Thereby, the heat transfer performance of the fin tube heat exchanger can be further improved.
  • the fin 1 is formed as an M-shaped corrugated fin, but may be a V-shaped corrugated fin in which only one peak 13 is formed on the fin 1.
  • the heat transfer tube 2 is not limited to the round tube as shown in FIG. 2A, and may be a flat tube, for example.
  • the shape of the convex portion 5 is not limited to a circle as shown in FIG. 2A, and may be a polygon, for example.
  • FIG. 6 is a partial plan view showing the configuration of the fins of the finned tube heat exchanger according to the second embodiment of the present invention.
  • the fin tube heat exchanger of the second embodiment is different from the fin tube heat exchanger of the first embodiment in that a small hole 10 is formed as a fluid path communicating with the front and back of the fin 1 instead of the notch 9. It is a point that has been.
  • the small hole 10 is formed along the ridgeline of the convex portion 5.
  • the small holes 10 are formed at two locations, a position including the upper end of the convex portion 5 and a position including the lower end of the convex portion 5.
  • the drainage of the condensed water 20 can be improved while securing the rigidity of the fins 1 and the heat exchanger can be easily assembled. it can.
  • each small hole 10 is preferably about 0.2 mm to 1.0 mm. In this case, water generated on the surface of the fin 1 can be easily guided to the back surface of the fin 1 by capillary action.
  • the fin 1 may be formed in a corrugated shape as shown in FIG.
  • the temperature boundary layer can be thinned to promote heat transfer, and the heat transfer performance of the finned tube heat exchanger can be further improved.
  • FIG. 8A is a partial plan view of a fin included in the finned tube heat exchanger according to the third embodiment of the present invention.
  • 8B is a cross-sectional view taken along line A3-A3 of FIG. 8A.
  • 8C is a cross-sectional view taken along line B3-B3 of FIG. 8A.
  • FIG. 8D is an enlarged view of a region C2 surrounded by a broken line in FIG. 8A and shows how air flows.
  • the fin tube heat exchanger according to the third embodiment is different from the fin tube heat exchanger according to the first embodiment in that fluids communicating the front and back of the fin 1 with the inclined surfaces 5a and 5b forming the convex portion 5, respectively. This is the point where the notches 9a and 9b are formed as paths.
  • the convex portion 5 is inclined toward the heat transfer tube 2 side with the ridge line as a boundary, and is inclined toward the opposite side of the heat transfer tube 2 and connected to the inclined portion 15.
  • the inclined surface 5b is formed.
  • the convex portion 5 reduces the dead water area D by attracting the air flows Sa and Sb that wrap around the downstream portion of the heat transfer tube 2.
  • the notches 9a and 9b are formed at two locations below and above the convex portion 5.
  • the cut 9a is formed to extend in the direction in which the inclined surface 5a is inclined
  • the cut 9b is formed to extend in the direction in which the inclined surface 5b is inclined.
  • the width of the cuts 9a and 9b is preferably about 0.05 mm to 0.5 mm. In this case, water generated on the surface of the fin 1 can be easily guided to the back surface of the fin 1 by capillary action.
  • the lengths of the cuts 9a and 9b are not particularly limited.
  • the cut 9a may be formed up to a portion where the convex portion 5 and the tube surrounding portion 4 are in contact with each other.
  • the notch 9b may be formed up to a portion where the convex portion 5 and the flat plate-like portion of the fin 1 are in contact with each other.
  • the cut 9a and the cut 9b may be formed so as to be connected by a ridge line of the convex portion 5 and integrated.
  • condensed water 20 in which moisture in the air is condensed is generated around the heat transfer tube 2 on the surface side of the fin 1 as shown in FIG. 9A. Since the notch 9a is formed in the inclined surface 5a, and the notch 9b is formed in the inclined surface 5b, the condensed water 20 flows from the front surface of the fin 1 through the notches 9a and 9b as shown in FIG. 9B. And is guided (drained) downward in the direction of gravity G along the back surface of the fin 1. Thereby, as shown in FIG. 9C, most of the condensed water 20 generated on the surface of the fin 1 is drained.
  • the condensed water 20 flowing along the surface of the fin 1 is guided to the back surface of the fin 1 through the cuts 9 a and 9 b formed above the convex portion 5.
  • the condensed water 20 guided to the back surface of the fin 1 is guided (drained) downward in the gravity direction G along the edge of the convex portion 5.
  • the condensate 20 generated on the surface of the fin 1 is guided to the back surface of the fin 1 by the notches 9 a and 9 b formed in the convex portion 5.
  • the water can be smoothly drained downward in the direction of gravity G. Thereby, the fall of the drainage property of the water which generate
  • the notches 9a and 9b perpendicular to the ridgeline of the convex portion 5.
  • the heat conduction in the fin 1 spreads radially around the heat transfer tube 2. Thereby, the fall of the heat transfer rate of the fin 1 can be suppressed further.
  • the fin 1 is preferably formed in a corrugated shape as shown in FIGS. 11A to 11C. According to this configuration, since the air flow is like a meandering air flow Sc, the temperature boundary layer can be made thin to promote heat transfer. Thereby, the heat transfer performance of the fin tube heat exchanger can be further improved.
  • the fluid flow path through which the condensed water 20 flows is formed by the corrugated fin 1 and the cuts 9a and 9b, the drainage of the condensed water 20 can be further improved. Can do.
  • the air flow is like a meandering air flow Sc, so that the temperature boundary layer can be made thin to promote heat transfer. Thereby, the heat transfer performance of the fin tube heat exchanger can be further improved.
  • the fin 1 is formed as an M-shaped corrugated fin, but may be a V-shaped corrugated fin in which only one peak 13 is formed on the fin 1.
  • a plurality of cuts 9a and 9b may be provided.
  • the cuts 9a and 9b are formed radially around the heat transfer tube 2 side so that the end of the cuts 9a and 9b opposite to the heat transfer tube 2 is located outside the ridge line of the valley portion 14. Is preferred. Thereby, more condensed water 20 can be drained and heat transfer performance can be improved further.
  • the finned tube heat exchanger according to the present invention can improve the heat transfer performance of the downstream portion of the heat transfer tube without reducing the drainage of water generated on the surface of the fin. It is useful as a heat exchanger used in an air conditioner, a hot water supply device, a heating device or the like.

Abstract

The finned tube heat exchanger of the present invention is provided with a plurality of fins (1) and a plurality of heat transfer tubes (2) that pass through the plurality of fins (1) and have a fluid flowing therethrough. The fins (1) comprise a tube periphery section (4) that is formed on the periphery of the heat transfer tubes (2) and a convex section (5) that is formed so as to surround the tube periphery section (4). The convex section (5) is configured so as to comprise fluid paths (9, 9a, 9b, 10) that connect the front and the back of the fins (1).

Description

フィンチューブ熱交換器Finned tube heat exchanger
 本発明は、冷媒の熱交換に用いられるフィンチューブ熱交換器に関する。 The present invention relates to a finned tube heat exchanger used for heat exchange of a refrigerant.
 従来、この種のフィンチューブ熱交換器として、例えば、特許文献1(特開平9-203593号公報)に記載されたものが知られている。図14Aは、従来のフィンチューブ熱交換器が備えるフィンの部分平面図である。図14Bは、図14AのA-A線断面図である。図14Cは、図14AのB-B線断面図である。図14Dは、図14Aの破線で囲まれた領域Cの部分拡大図であって、空気の流れ方を示す図である。 Conventionally, as this kind of finned tube heat exchanger, for example, one described in Patent Document 1 (Japanese Patent Laid-Open No. 9-203593) is known. FIG. 14A is a partial plan view of a fin included in a conventional fin tube heat exchanger. 14B is a cross-sectional view taken along line AA in FIG. 14A. 14C is a cross-sectional view taken along line BB of FIG. 14A. FIG. 14D is a partially enlarged view of a region C surrounded by a broken line in FIG. 14A and shows how air flows.
 従来のフィンチューブ熱交換器は、図14Aに示すフィン101を複数備えている。複数のフィン101は、互いの間に空気が流動するように、一定間隔で平行に配置されている。各フィン101には、複数の伝熱管102がフィン101の厚み方向に貫通するように設けられている。各伝熱管102の内部には、複数のフィン101間を流動する空気と熱交換を行うための冷媒が流動する。 A conventional fin tube heat exchanger includes a plurality of fins 101 shown in FIG. 14A. The plurality of fins 101 are arranged in parallel at regular intervals so that air flows between them. Each fin 101 is provided with a plurality of heat transfer tubes 102 penetrating in the thickness direction of the fin 101. Inside each heat transfer tube 102, a refrigerant for performing heat exchange with air flowing between the plurality of fins 101 flows.
 また、フィン101には、伝熱管102が挿入される複数の筒状のフィンカラー103が形成されている。フィンカラー103の周囲には、平坦な管周囲部104が形成されている。管周囲部104の周囲には、略環状の凸部105が形成されている。凸部105は、第1の傾斜面105aと、第2の傾斜面105bとを有し、空気流Sのガイドとして機能する。凸部105は、図14Dに示すように、伝熱管102の後流部に回りこむ空気流Sa,Sbを誘引することにより、死水域Dを低減する。第1の傾斜面105aは、凸部105の稜線から伝熱管2側に向かって傾斜している。第2の傾斜面105bは、凸部5の稜線から、伝熱管2とは反対側に向かって傾斜している。また、図14Aに示すように、重力方向Gに対して凸部105の下方の一部には、平坦部106が設けられている。 Also, the fin 101 is formed with a plurality of cylindrical fin collars 103 into which the heat transfer tubes 102 are inserted. A flat tube peripheral portion 104 is formed around the fin collar 103. A substantially annular convex portion 105 is formed around the tube peripheral portion 104. The convex portion 105 has a first inclined surface 105a and a second inclined surface 105b, and functions as a guide for the air flow S. As shown in FIG. 14D, the convex portion 105 reduces the dead water area D by attracting the air flows Sa and Sb that wrap around the downstream portion of the heat transfer tube 102. The first inclined surface 105a is inclined from the ridge line of the convex portion 105 toward the heat transfer tube 2 side. The second inclined surface 105 b is inclined from the ridge line of the convex portion 5 toward the side opposite to the heat transfer tube 2. Further, as shown in FIG. 14A, a flat portion 106 is provided in a part below the convex portion 105 with respect to the gravity direction G.
 例えば、従来のフィンチューブ熱交換器を蒸発器として使用する場合、フィン101の表面側の伝熱管102の周囲には、図15Aに示すように、空気中の水分が凝縮した凝縮水120が発生する。凸部105の下方の一部に平坦部106が形成されているので、凝縮水120は、図15Bに示すように、平坦部106を介して排水される。従来のフィンチューブ熱交換器においては、このような構成により、フィン101の表面に発生する水の排水性の向上を図っている。 For example, when a conventional fin tube heat exchanger is used as an evaporator, condensed water 120 in which moisture in the air is condensed is generated around the heat transfer tube 102 on the surface side of the fin 101 as shown in FIG. 15A. To do. Since the flat part 106 is formed in a part below the convex part 105, the condensed water 120 is drained through the flat part 106 as shown in FIG. 15B. In the conventional fin tube heat exchanger, the drainage property of the water generated on the surface of the fin 101 is improved by such a configuration.
特開平9-203593号公報JP-A-9-203593
 しかしながら、前記従来の構成では、図14Dにおいて破線矢印で示すように、平坦部106から漏れ出る空気流Scが発生し、伝熱管102の後流部の風量を増加させることが困難である。このため、伝熱管102の後流部の伝熱性能が低下するという課題がある。 However, in the conventional configuration, as indicated by a broken line arrow in FIG. 14D, an air flow Sc leaking from the flat portion 106 is generated, and it is difficult to increase the air volume at the downstream portion of the heat transfer tube 102. For this reason, there exists a subject that the heat-transfer performance of the downstream part of the heat exchanger tube 102 falls.
 また、従来の構成では、平坦部106を設けることによって、伝熱面積が減少し、伝熱性能が低下するという課題がある。 Further, in the conventional configuration, there is a problem that the heat transfer area is reduced and the heat transfer performance is lowered by providing the flat portion 106.
 本発明は、前記従来の課題を解決するものであり、フィンの表面に発生する水の排水性を低下させることなく、伝熱管の後流部の伝熱性能を向上させることができるフィンチューブ熱交換器を提供することを目的とする。 The present invention solves the above-described conventional problems, and can improve the heat transfer performance of the downstream portion of the heat transfer tube without reducing the drainage of water generated on the surface of the fin. The purpose is to provide an exchanger.
 前記従来の課題を解決するために、本発明のフィンチューブ熱交換器は、複数のフィンと、前記複数のフィンを貫通し、内部を流体が流動する複数の伝熱管とを備え、前記フィンは、前記伝熱管の周囲に形成された管周囲部と、前記管周囲部を取り囲むように形成された凸部とを有し、前記凸部に前記フィンの表裏を連通する流体経路を設けるように構成されている。 In order to solve the conventional problem, a finned tube heat exchanger according to the present invention includes a plurality of fins and a plurality of heat transfer tubes that pass through the plurality of fins and in which a fluid flows. A pipe peripheral part formed around the heat transfer pipe and a convex part formed so as to surround the pipe peripheral part, and a fluid path communicating the front and back of the fin is provided in the convex part. It is configured.
 本発明のフィンチューブ熱交換器によれば、フィンの表面に発生する水の排水性を低下させることなく、伝熱管の後流部の伝熱性能を向上させることができるフィンチューブ熱交換器を提供することができる。 According to the finned tube heat exchanger of the present invention, there is provided a finned tube heat exchanger that can improve the heat transfer performance of the downstream portion of the heat transfer tube without reducing the drainage of water generated on the surface of the fin. Can be provided.
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施形態にかかるフィンチューブ熱交換器の構成を示す斜視図であり、 図1のフィンチューブ熱交換器が備えるフィンの部分平面図であり、 図2AのA1-A1線断面図であり、 図2AのB1-B1線断面図であり、 図2Aの破線で囲まれた領域C1の拡大図であって、空気の流れ方を示す図であり、 図2Aのフィンの表面に凝縮水が発生した状態を示す部分拡大図であり、 図2Aのフィンの表面に発生した凝縮水が切込みを介してフィンの裏面に排水される様子を示す部分拡大図であり、 図2Aのフィンの表面に発生した凝縮水の大部分が排水された状態を示す部分拡大図であり、 図2Aのフィンを波型形状にした変形例を示す部分平面図であり、 図4Aのフィンを複数積層したときのA2-A2線断面図であり、 図4Aのフィンを複数積層したときのB2-B2線断面図であり、 図4Aのフィンの表面に凝縮水が発生した状態を示す部分拡大図であり、 図4Aのフィンの表面に発生した凝縮水が切込みを介してフィンの裏面に排水される様子を示す部分拡大図であり、 図4Aのフィンの表面に発生した凝縮水の大部分が排水された状態を示す部分拡大図であり、 本発明の第2実施形態にかかるフィンチューブ熱交換器が備えるフィンの部分平面図であり、 図6のフィンを波型形状にした変形例を示す部分平面図であり、 本発明の第3実施形態にかかるフィンチューブ熱交換器が備えるフィンの部分平面図であり、 図8AのA3-A3線断面図であり、 図8AのB3-B3線断面図であり、 図8Aの破線で囲まれた領域C2の拡大図であって、空気の流れ方を示す図であり、 図8Aのフィンの表面に凝縮水が発生した状態を示す部分拡大図であり、 図8Aのフィンの表面に発生した凝縮水が切込みを介してフィンの裏面に排水される様子を示す部分拡大図であり、 図8Aのフィンの表面に発生した凝縮水の大部分が排水された状態を示す部分拡大図であり、 図8Aのフィンにおいて、熱伝導が放射状に広がる様子を示すイメージ図であり、 図8Aのフィンを波型形状にした変形例を示す部分平面図であり、 図11Aのフィンを複数積層したときのA4-A4線断面図であり、 図11Aのフィンを複数積層したときのB4-B4線断面図であり、 図10Aのフィンの表面に凝縮水が発生した状態を示す部分拡大図であり、 図11Aのフィンの表面に発生した凝縮水が切込みを介してフィンの裏面に排水される様子を示す部分拡大図であり、 図11Aのフィンの表面に発生した凝縮水の大部分が排水された状態を示す部分拡大図であり、 図11Aのフィンの切込みの変形例を示す部分平面図であり、 従来のフィンチューブ熱交換器のフィンの部分平面図であり、 図14AのA-A線断面図であり、 図14AのB-B線断面図であり、 図14Aの破線で囲まれた領域Cの拡大図であって、空気の流れ方を示す図であり、 図14Aのフィンの表面に凝縮水が発生した状態を示す部分拡大図であり、 図14Aのフィンの表面に発生した凝縮水が切込みを介してフィンの裏面に排水される様子を示す部分拡大図であり、 図14Aのフィンの表面に発生した凝縮水の大部分が排水された状態を示す部分拡大図である。
These and other objects and features of the invention will become apparent from the following description taken in conjunction with the preferred embodiments with reference to the accompanying drawings. In this drawing,
FIG. 1 is a perspective view showing the configuration of the finned tube heat exchanger according to the first embodiment of the present invention. It is a partial top view of the fin with which the fin tube heat exchanger of FIG. 1 is provided, FIG. 2B is a cross-sectional view taken along line A1-A1 of FIG. 2A. FIG. 2B is a sectional view taken along line B1-B1 of FIG. 2A; FIG. 2B is an enlarged view of a region C1 surrounded by a broken line in FIG. 2A and shows how air flows; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 2A, It is the elements on larger scale which show a mode that the condensed water which occurred on the surface of the fin of Drawing 2A is drained on the back of a fin via notch, It is the elements on larger scale which show the state where most condensate generated on the surface of the fin of Drawing 2A was drained, It is the fragmentary top view which shows the modification which made the fin of FIG. 2A wave shape, FIG. 4B is a cross-sectional view taken along line A2-A2 when a plurality of the fins of FIG. 4A are stacked. FIG. 4B is a sectional view taken along line B2-B2 when a plurality of the fins of FIG. 4A are stacked; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 4A, It is the elements on larger scale which show a mode that the condensed water which occurred on the surface of the fin of Drawing 4A is drained on the back of a fin via notch, It is the elements on larger scale which show the state where most condensate generated on the surface of the fin of Drawing 4A was drained, It is a partial top view of the fin with which the finned-tube heat exchanger concerning 2nd Embodiment of this invention is provided, It is a partial top view which shows the modification which made the fin of FIG. 6 the waveform shape, It is a fragmentary top view of the fin with which the finned-tube heat exchanger concerning 3rd Embodiment of this invention is provided, It is the A3-A3 sectional view taken on the line of FIG. 8A, FIG. 8B is a sectional view taken along line B3-B3 of FIG. 8A; FIG. 8B is an enlarged view of a region C2 surrounded by a broken line in FIG. 8A and shows how air flows; It is the elements on larger scale which show the state where condensed water generate | occur | produced on the surface of the fin of FIG. 8A, It is the elements on larger scale which show a mode that the condensed water which generate | occur | produced on the surface of the fin of FIG. 8A is drained by the back surface of a fin through a notch | incision, It is the elements on larger scale which show the state where most of the condensed water which generate | occur | produced on the surface of the fin of FIG. 8A was drained, In the fin of FIG. 8A, it is an image figure which shows a mode that heat conduction spreads radially, It is the fragmentary top view which shows the modification which made the fin of FIG. 8A wave shape, FIG. 11B is a cross-sectional view taken along line A4-A4 when a plurality of the fins of FIG. 11A are stacked; FIG. 11B is a cross-sectional view taken along line B4-B4 when a plurality of the fins of FIG. 11A are stacked; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 10A, It is the elements on larger scale which show a mode that the condensed water which generate | occur | produced on the surface of the fin of FIG. 11A is drained by the back surface of a fin through a notch | incision, It is the elements on larger scale which show the state where most condensate generated on the surface of the fin of Drawing 11A was drained, It is a fragmentary top view which shows the modification of the notch | incision of the fin of FIG. 11A, It is the fragmentary top view of the fin of the conventional fin tube heat exchanger, FIG. 14B is a sectional view taken along line AA in FIG. 14A; FIG. 14B is a sectional view taken along line BB in FIG. 14A; FIG. 14B is an enlarged view of a region C surrounded by a broken line in FIG. 14A and shows how air flows; It is the elements on larger scale which show the state where condensed water occurred on the surface of the fin of Drawing 14A, It is the elements on larger scale which show a mode that the condensed water generated on the surface of the fin of Drawing 14A is drained on the back of a fin via a cut. It is the elements on larger scale which show the state from which the majority of the condensed water which generate | occur | produced on the surface of the fin of FIG. 14A was drained.
 本発明のフィンチューブ熱交換器は、複数のフィンと、前記複数のフィンを貫通し、内部を流体が流動する複数の伝熱管とを備え、前記フィンは、前記伝熱管の周囲に形成された管周囲部と、前記管周囲部を取り囲むように形成された凸部とを有し、前記凸部に前記フィンの表裏を連通する流体経路を設けるように構成されている。 The finned tube heat exchanger according to the present invention includes a plurality of fins and a plurality of heat transfer tubes that pass through the plurality of fins and allow fluid to flow therein, and the fins are formed around the heat transfer tubes. It has a pipe peripheral part and a convex part formed so as to surround the pipe peripheral part, and is configured to provide a fluid path that communicates the front and back of the fin with the convex part.
 この構成によれば、管周囲部を取り囲むように形成された凸部により、伝熱管の後流部に流入する空気流を増加させることができ、伝熱管の後流部の伝熱性能を向上させることができる。また、凸部に形成された流体経路により、フィンの表面の水をフィンの裏面に誘導して重力方向の下方へと円滑に排水することができるので、排水性の低下を抑えることができる。 According to this configuration, the air flow flowing into the wake portion of the heat transfer tube can be increased by the convex portion formed so as to surround the tube peripheral portion, and the heat transfer performance of the wake portion of the heat transfer tube is improved. Can be made. Further, the fluid path formed in the convex portion can guide the water on the surface of the fin to the back surface of the fin and drain it smoothly downward in the direction of gravity, so that it is possible to suppress a decrease in drainage.
 なお、前記フィンは、空気の流れ方向に対して波型形状に傾いている傾斜部を備え、前記凸部は、前記伝熱管側に傾斜する第1の傾斜面と、前記伝熱管とは反対側に傾斜する第2の傾斜面とを有し、前記傾斜部と前記凸部とは、前記第2の傾斜面を介して接続されることが好ましい。 The fin includes an inclined portion inclined in a corrugated shape with respect to the air flow direction, and the convex portion is opposite to the first inclined surface inclined to the heat transfer tube side and the heat transfer tube. It has a 2nd inclined surface which inclines to the side, and it is preferable that the said inclined part and the said convex part are connected via the said 2nd inclined surface.
 この構成によれば、流体経路を通る水が波型形状の谷部へと誘導されることになるので、フィンの表面に発生する水の排水性をより一層向上させることができる。 According to this configuration, water passing through the fluid path is guided to the corrugated valley, so that the drainage of water generated on the fin surface can be further improved.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
 (第1実施形態)
 図1は、本第1実施形態にかかるフィンチューブ熱交換器の構成を示す斜視図である。本第1実施形態にかかるフィンチューブ熱交換器は、例えば、空気調和機、ヒートポンプ給湯機、ヒートポンプ温水暖房などの室外機に搭載されるものである。
(First embodiment)
FIG. 1 is a perspective view showing the configuration of the finned tube heat exchanger according to the first embodiment. The finned-tube heat exchanger according to the first embodiment is mounted on an outdoor unit such as an air conditioner, a heat pump water heater, or a heat pump hot water heater.
 図1に示すように、本第1実施形態にかかるフィンチューブ熱交換器は、複数のフィン1と、複数のフィン1をそれぞれ貫通する複数の伝熱管2と、熱交換器を室外機に載置する際の固定のため又は複数の熱交換器同士をつなぎ合わせるための端板30を備えている。 As shown in FIG. 1, the finned-tube heat exchanger according to the first embodiment includes a plurality of fins 1, a plurality of heat transfer tubes 2 that respectively penetrate the plurality of fins 1, and a heat exchanger mounted on the outdoor unit. An end plate 30 is provided for fixing at the time of placement or for connecting a plurality of heat exchangers.
 複数のフィン1は、空気の流れ方向Sに流路が形成されるように、所定の間隔Fpを置いて略平行に積層されている。 The plurality of fins 1 are stacked substantially in parallel with a predetermined interval Fp so that a flow path is formed in the air flow direction S.
 複数の伝熱管2は、複数のフィン1の積層方向と交差(例えば、直交)する方向に、互いに並列に配置されている。各伝熱管2の内部には、冷媒などの流体が流動する。本第1実施形態にかかるフィンチューブ熱交換器は、互いに隣接するフィン1,1間を通過する空気と、伝熱管2の内部を流れる冷媒とが熱交換を行うように構成されている。伝熱管2の内部を流れる冷媒としては、特に限定されるものではないが、例えば、R410A、プロパン、プロピレン、二酸化炭素などの環境負荷の少ないものが適している。なお、各伝熱管2は、複数の曲管により互いに連結され、一本の蛇行状の伝熱管となるように構成されてもよい。 The plurality of heat transfer tubes 2 are arranged in parallel to each other in a direction intersecting (for example, orthogonal to) the stacking direction of the plurality of fins 1. A fluid such as a refrigerant flows inside each heat transfer tube 2. The finned tube heat exchanger according to the first embodiment is configured such that the air passing between the fins 1 and 1 adjacent to each other and the refrigerant flowing inside the heat transfer tube 2 exchange heat. Although it does not specifically limit as a refrigerant | coolant which flows through the inside of the heat exchanger tube 2, For example, what has little environmental loads, such as R410A, a propane, a propylene, and a carbon dioxide, is suitable. Note that the heat transfer tubes 2 may be connected to each other by a plurality of curved tubes to form a single meandering heat transfer tube.
 端板30は、複数のフィン1のうち積層方向の端部に位置するフィンに隣接するように設けられている。 The end plate 30 is provided so as to be adjacent to the fin located at the end in the stacking direction among the plurality of fins 1.
 図2Aは、フィン1の部分平面図である。図2Bは、図2AのA1-A1線断面図である。図2Cは、図2AのB1-B1線断面図である。図2Dは、図2Aの破線が囲まれた領域C1の拡大図であって、空気の流れ方を示す図である。 FIG. 2A is a partial plan view of the fin 1. 2B is a cross-sectional view taken along line A1-A1 of FIG. 2A. 2C is a cross-sectional view taken along line B1-B1 of FIG. 2A. FIG. 2D is an enlarged view of a region C1 surrounded by a broken line in FIG. 2A and shows how air flows.
 フィン1は、図2Aに示すように、略平板状に形成されている。フィン1には、複数の筒状のフィンカラー3が形成されている。フィンカラー3には、伝熱管2を機械拡管又は液圧拡管することにより伝熱管2が接合されている。フィンカラー3の周囲には、図2A及び図2Cに示すように、平坦な管周囲部4が形成されている。 The fin 1 is formed in a substantially flat plate shape as shown in FIG. 2A. A plurality of cylindrical fin collars 3 are formed on the fin 1. The heat transfer tube 2 is joined to the fin collar 3 by mechanical expansion or hydraulic expansion of the heat transfer tube 2. A flat tube periphery 4 is formed around the fin collar 3 as shown in FIGS. 2A and 2C.
 管周囲部4の周囲には、当該管周囲部4を取り囲むように環状の凸部5が形成されている。凸部5は、第1の傾斜面5aと、第2の傾斜面5bとを有し、空気流Sのガイドとして機能する。また、凸部5は、図2Dに示すように、伝熱管2の後流部に回りこむ空気流Sa,Sbを誘引することにより、死水域Dを低減する。第1の傾斜面5aは、凸部5の稜線から伝熱管2側に向かって傾斜している。第2の傾斜面5bは、凸部5の稜線から、伝熱管2とは反対側に向かって傾斜している。 An annular convex portion 5 is formed around the tube peripheral portion 4 so as to surround the tube peripheral portion 4. The convex part 5 has the 1st inclined surface 5a and the 2nd inclined surface 5b, and functions as a guide of the airflow S. FIG. Moreover, the convex part 5 reduces the dead water area D by attracting the airflows Sa and Sb which wrap around the wake part of the heat exchanger tube 2, as shown in FIG. 2D. The first inclined surface 5a is inclined from the ridge line of the convex portion 5 toward the heat transfer tube 2 side. The second inclined surface 5 b is inclined from the ridge line of the convex portion 5 toward the side opposite to the heat transfer tube 2.
 凸部5には、フィン1の表裏を連通する流体経路となる切込み9が凸部5の稜線に沿って形成されている。本第1実施形態において、切込み9は、凸部5の上端を含む位置と、凸部5の下端を含む位置の2カ所に形成されている。 In the convex part 5, a notch 9 is formed along the ridge line of the convex part 5 to be a fluid path communicating with the front and back of the fin 1. In the first embodiment, the cuts 9 are formed at two locations, a position including the upper end of the convex portion 5 and a position including the lower end of the convex portion 5.
 なお、各切込み9の幅は、0.05mm~0.5mm程度であることが好ましい。この場合、フィン1の表面に発生する水を、毛細管現象によってフィン1の裏面に誘導しやすくすることができる。 It should be noted that the width of each notch 9 is preferably about 0.05 mm to 0.5 mm. In this case, water generated on the surface of the fin 1 can be easily guided to the back surface of the fin 1 by capillary action.
 また、各切込み9の長さL1は、フィン1の配置間隔Fpの0.5倍~1.5倍(0.5Fp~1.5Fp)程度であることが好ましい。この場合、フィン1の表面に発生する水が、積層されたフィン1同士をまたぐように形成される現象(ブリッジ現象)を抑制することができる。 Also, the length L1 of each notch 9 is preferably about 0.5 to 1.5 times (0.5 Fp to 1.5 Fp) of the arrangement interval Fp of the fins 1. In this case, it is possible to suppress a phenomenon (bridge phenomenon) in which water generated on the surface of the fin 1 is formed so as to straddle the stacked fins 1.
 また、各切込み9は、伝熱管2の重力方向Gと平行な中心線CLに対する角度θがθ=±45°程度の範囲に形成されていることが好ましい。この場合、フィン1の表面の水が溜まりやすい位置に切込み9が形成されることとなるので、フィン1の表面に発生した水を円滑にフィン1の裏面へと誘導することができる。 Further, each of the cuts 9 is preferably formed in a range where the angle θ with respect to the center line CL parallel to the gravity direction G of the heat transfer tube 2 is about θ = ± 45 °. In this case, since the cut 9 is formed at a position where water on the surface of the fin 1 is likely to accumulate, the water generated on the surface of the fin 1 can be smoothly guided to the back surface of the fin 1.
 次に、フィン1の排水作用について説明する。 Next, the drainage action of the fin 1 will be described.
 例えば、フィンチューブ熱交換器を蒸発器として使用する場合、フィン1の表面側の伝熱管2の周囲には、図3Aに示すように、空気中の水分が凝縮した凝縮水20が発生する。凸部5には、その稜線に沿って切込み9が形成されているので、凝縮水20は、図3Bに示すように、切込み9を介してフィン1の表面から裏面に誘導され、フィン1の裏面に沿って重力方向Gの下方へと誘導(排水)される。これにより、図3Cに示すように、フィン1の表面に発生した凝縮水20の大部分が排水される。 For example, when a fin tube heat exchanger is used as an evaporator, condensed water 20 in which moisture in the air is condensed is generated around the heat transfer tube 2 on the surface side of the fin 1 as shown in FIG. 3A. Since the notch 9 is formed in the convex part 5 along the ridgeline, the condensed water 20 is guided from the surface of the fin 1 to the back surface through the notch 9 as shown in FIG. It is guided (drained) downward in the direction of gravity G along the back surface. Thereby, as shown in FIG. 3C, most of the condensed water 20 generated on the surface of the fin 1 is drained.
 また、フィン1の表面に沿って流れる凝縮水20は、凸部5の上端に形成された切込み9を介してフィン1の裏面へと誘導される。フィン1の裏面へ誘導された凝縮水20は、凸部5の縁を伝って重力方向Gの下方へと誘導(排水)される。 Further, the condensed water 20 flowing along the surface of the fin 1 is guided to the back surface of the fin 1 through the notch 9 formed at the upper end of the convex portion 5. The condensed water 20 guided to the back surface of the fin 1 is guided (drained) downward in the gravity direction G along the edge of the convex portion 5.
 以上のように、本第1実施形態にかかるフィンチューブ熱交換器によれば、管周囲部4を取り巻くように形成された凸部5によって、伝熱管2の後流部に回りこむ空気流Sa,Sbを誘引して死水域Dを低減することができる。これにより、伝熱管2の後流部に流入する空気流Sa,Sbを増加させることができ、伝熱管2の後流部の伝熱性能を向上させることができる。 As described above, according to the finned tube heat exchanger according to the first embodiment, the air flow Sa that wraps around the wake portion of the heat transfer tube 2 by the convex portion 5 formed so as to surround the tube peripheral portion 4. , Sb can be attracted and the dead water area D can be reduced. Thereby, the air flows Sa and Sb flowing into the downstream portion of the heat transfer tube 2 can be increased, and the heat transfer performance of the downstream portion of the heat transfer tube 2 can be improved.
 また、本第1実施形態にかかるフィンチューブ熱交換器によれば、凸部5に形成された切込み9により、フィン1の表面の凝縮水20をフィン1の裏面に誘導して重力方向Gの下方へと円滑に排水することができる。これにより、フィン1の表面に発生する水の排水性の低下を抑えることができる。 Further, according to the fin tube heat exchanger according to the first embodiment, the condensate 20 on the surface of the fin 1 is guided to the back surface of the fin 1 by the notches 9 formed in the convex portion 5, and the gravity direction G It can drain smoothly downward. Thereby, the fall of the drainage property of the water which generate | occur | produces on the surface of the fin 1 can be suppressed.
 また、本第1実施形態にかかるフィンチューブ熱交換器によれば、切込み9を凸部5の稜線に沿って設けているので、フィン1の向きに関係なく熱交換器の組立を行うことができる。その結果、製造工程での作業時間を短縮することができ、生産コストを低減することができる。 Moreover, according to the fin tube heat exchanger concerning this 1st Embodiment, since the notch 9 is provided along the ridgeline of the convex part 5, an assembly of a heat exchanger can be performed irrespective of the direction of the fin 1. FIG. it can. As a result, the working time in the manufacturing process can be shortened, and the production cost can be reduced.
 なお、本第1実施形態では、フィン1が略平板状に形成されるものとしたが、本発明はこれに限定されない。例えば、図4A~図4Cに示すように、フィン1は、波型(コルゲート)形状に形成されてもよい。すなわち、フィン1は、空気の流れ方向Sに対して谷部14a、山部13、谷部14、山部13、谷部14aの順に連続するようにM字型に形成されてもよい。なお、山部13、谷部14、及び谷部14aは、空気の流れ方向Sに対して傾斜する傾斜部15によって形成されている。 In the first embodiment, the fins 1 are formed in a substantially flat plate shape, but the present invention is not limited to this. For example, as shown in FIGS. 4A to 4C, the fin 1 may be formed in a corrugated shape. That is, the fin 1 may be formed in an M shape so as to be continuous in the order of the valley portion 14a, the mountain portion 13, the valley portion 14, the mountain portion 13, and the valley portion 14a with respect to the air flow direction S. In addition, the peak part 13, the valley part 14, and the valley part 14a are formed by the inclination part 15 which inclines with respect to the air flow direction S.
 また、図4Aに示すように、凸部5は、その稜線を境として、伝熱管2側へと傾斜する傾斜面5aと、伝熱管2とは反対側に向かって傾斜する傾斜面5bとによって形成され、凸部5と傾斜部15とは、傾斜面5bを介して接続されることが好ましい。 Further, as shown in FIG. 4A, the convex portion 5 is formed by an inclined surface 5a inclined toward the heat transfer tube 2 and an inclined surface 5b inclined toward the opposite side of the heat transfer tube 2 with the ridge line as a boundary. The formed convex portion 5 and the inclined portion 15 are preferably connected via an inclined surface 5b.
 この構成によれば、図5Aに示すようにフィン1の表面に発生した凝縮水20は、切込み9を介してフィン1の裏面へと誘導される。当該フィン1の裏面へと誘導された凝縮水20は、図5Bに示すように山部13(フィン1の裏面側から見ると谷部となる)へと誘導され、重力方向Gの下方へと随時誘導(排水)される。これにより、図5Cに示すように、フィン1の表面に発生した凝縮水20の大部分が排水される。すなわち、この構成によれば、波型形状のフィン1と切込み9とによって凝縮水20が流れる流体流路が形成されることとなるので、凝縮水20の排水性をより一層向上させることができる。 According to this configuration, the condensed water 20 generated on the surface of the fin 1 is guided to the back surface of the fin 1 through the cuts 9 as shown in FIG. 5A. The condensed water 20 guided to the back surface of the fin 1 is guided to the peak portion 13 (becomes a valley when viewed from the back surface side of the fin 1) as shown in FIG. Induced (drained) at any time. Thereby, as shown in FIG. 5C, most of the condensed water 20 generated on the surface of the fin 1 is drained. That is, according to this configuration, since the fluid flow path through which the condensed water 20 flows is formed by the corrugated fins 1 and the notches 9, the drainage of the condensed water 20 can be further improved. .
 また、この構成によれば、図4Bに示すように、空気の流れは、蛇行する空気流Scのようになるので、温度境界層を薄膜化して伝熱を促進させることができる。これにより、フィンチューブ熱交換器の伝熱性能をより一層向上させることができる。 Also, according to this configuration, as shown in FIG. 4B, the air flow is like a meandering air flow Sc, so that the temperature boundary layer can be made thin to promote heat transfer. Thereby, the heat transfer performance of the fin tube heat exchanger can be further improved.
 なお、前記では、フィン1をM字型コルゲートフィンとして形成したが、フィン1上に山部13が1箇所のみ形成されるV字型コルゲートフィンとしてもよい。 In the above description, the fin 1 is formed as an M-shaped corrugated fin, but may be a V-shaped corrugated fin in which only one peak 13 is formed on the fin 1.
 また、伝熱管2は、図2Aに示すような丸管に限定されるものではなく、例えば、偏平管であってもよい。 Further, the heat transfer tube 2 is not limited to the round tube as shown in FIG. 2A, and may be a flat tube, for example.
 また、凸部5の形状は、図2Aに示すような円形に限定されるものでなく、例えば、多角形であってもよい。 Further, the shape of the convex portion 5 is not limited to a circle as shown in FIG. 2A, and may be a polygon, for example.
 (第2実施形態)
 図6は、本発明の第2実施形態にかかるフィンチューブ熱交換器のフィンの構成を示す部分平面図である。本第2実施形態のフィンチューブ熱交換器が前記第1実施形態のフィンチューブ熱交換器と異なる点は、切込み9に代えて、フィン1の表裏を連通する流体経路となる小孔10が形成されている点である。
(Second Embodiment)
FIG. 6 is a partial plan view showing the configuration of the fins of the finned tube heat exchanger according to the second embodiment of the present invention. The fin tube heat exchanger of the second embodiment is different from the fin tube heat exchanger of the first embodiment in that a small hole 10 is formed as a fluid path communicating with the front and back of the fin 1 instead of the notch 9. It is a point that has been.
 小孔10は、凸部5の稜線に沿うように形成されている。本第2実施形態において、小孔10は、凸部5の上端を含む位置と、凸部5の下端を含む位置の2カ所に形成されている。 The small hole 10 is formed along the ridgeline of the convex portion 5. In the second embodiment, the small holes 10 are formed at two locations, a position including the upper end of the convex portion 5 and a position including the lower end of the convex portion 5.
 本第2実施形態にかかるフィンチューブ熱交換器によれば、フィン1の剛性を確保しながら、凝縮水20の排水性を向上させることができるとともに、熱交換器の組立性を向上させることができる。 According to the finned tube heat exchanger according to the second embodiment, the drainage of the condensed water 20 can be improved while securing the rigidity of the fins 1 and the heat exchanger can be easily assembled. it can.
 なお、各小孔10の直径は、0.2mm~1.0mm程度であることが好ましい。この場合、フィン1の表面に発生する水を、毛細管現象によってフィン1の裏面に誘導しやすくすることができる。 The diameter of each small hole 10 is preferably about 0.2 mm to 1.0 mm. In this case, water generated on the surface of the fin 1 can be easily guided to the back surface of the fin 1 by capillary action.
 また、フィン1は、図7に示すように、波型形状に形成されてもよい。この場合、温度境界層を薄膜化して伝熱を促進させることができ、フィンチューブ熱交換器の伝熱性能をより一層向上させることができる。 Further, the fin 1 may be formed in a corrugated shape as shown in FIG. In this case, the temperature boundary layer can be thinned to promote heat transfer, and the heat transfer performance of the finned tube heat exchanger can be further improved.
 (第3実施形態)
 図8Aは、本発明の第3実施形態にかかるフィンチューブ熱交換器が備えるフィンの部分平面図である。図8Bは、図8AのA3-A3線断面図である。図8Cは、図8AのB3-B3線断面図である。図8Dは、図8Aの破線で囲まれた領域C2の拡大図であって、空気の流れ方を示す図である。
(Third embodiment)
FIG. 8A is a partial plan view of a fin included in the finned tube heat exchanger according to the third embodiment of the present invention. 8B is a cross-sectional view taken along line A3-A3 of FIG. 8A. 8C is a cross-sectional view taken along line B3-B3 of FIG. 8A. FIG. 8D is an enlarged view of a region C2 surrounded by a broken line in FIG. 8A and shows how air flows.
 本第3実施形態のフィンチューブ熱交換器が前記第1実施形態のフィンチューブ熱交換器と異なる点は、凸部5を形成する傾斜面5a,5bにそれぞれ、フィン1の表裏を連通する流体経路となる切込み9a,9bが形成されている点である。 The fin tube heat exchanger according to the third embodiment is different from the fin tube heat exchanger according to the first embodiment in that fluids communicating the front and back of the fin 1 with the inclined surfaces 5a and 5b forming the convex portion 5, respectively. This is the point where the notches 9a and 9b are formed as paths.
 図8Aに示すように、凸部5は、その稜線を境として、伝熱管2側に向かって傾斜する傾斜面5aと、伝熱管2とは反対側に向かって傾斜し、傾斜部15と接続される傾斜面5bとによって形成されている。凸部5は、図8Dに示すように、伝熱管2の後流部に回りこむ空気流Sa,Sbを誘引することにより、死水域Dを低減する。 As shown in FIG. 8A, the convex portion 5 is inclined toward the heat transfer tube 2 side with the ridge line as a boundary, and is inclined toward the opposite side of the heat transfer tube 2 and connected to the inclined portion 15. The inclined surface 5b is formed. As shown in FIG. 8D, the convex portion 5 reduces the dead water area D by attracting the air flows Sa and Sb that wrap around the downstream portion of the heat transfer tube 2.
 切込み9a,9bは、凸部5の下方及び上方の2箇所に形成されている。切込み9aは傾斜面5aの傾斜する方向に伸びるように形成され、切込み9bは傾斜面5bの傾斜する方向に伸びるように形成されている。 The notches 9a and 9b are formed at two locations below and above the convex portion 5. The cut 9a is formed to extend in the direction in which the inclined surface 5a is inclined, and the cut 9b is formed to extend in the direction in which the inclined surface 5b is inclined.
 なお、切込み9a,9bの幅は、0.05mm~0.5mm程度であることが好ましい。この場合、フィン1の表面に発生する水を、毛細管現象によってフィン1の裏面に誘導しやすくすることができる。 The width of the cuts 9a and 9b is preferably about 0.05 mm to 0.5 mm. In this case, water generated on the surface of the fin 1 can be easily guided to the back surface of the fin 1 by capillary action.
 なお、切込み9a,9bの長さは、特に限定されない。例えば、切込み9aは、凸部5と管周囲部4とが接する部分まで形成されてもよい。また、切込み9bは、凸部5とフィン1の平板状の箇所とが接する部分まで形成されていてもよい。また、切込み9aと切込み9bとは、凸部5の稜線で接続されて一体となるように形成されていてもよい。 Note that the lengths of the cuts 9a and 9b are not particularly limited. For example, the cut 9a may be formed up to a portion where the convex portion 5 and the tube surrounding portion 4 are in contact with each other. Further, the notch 9b may be formed up to a portion where the convex portion 5 and the flat plate-like portion of the fin 1 are in contact with each other. Further, the cut 9a and the cut 9b may be formed so as to be connected by a ridge line of the convex portion 5 and integrated.
 次に、フィン1の排水作用について説明する。 Next, the drainage action of the fin 1 will be described.
 例えば、フィンチューブ熱交換器を蒸発器として使用する場合、フィン1の表面側の伝熱管2の周囲には、図9Aに示すように、空気中の水分が凝縮した凝縮水20が発生する。傾斜面5aには切込み9aが形成され、傾斜面5bには切込み9bが形成されているので、凝縮水20は、図9Bに示すように、切込み9a,9bを介してフィン1の表面から裏面に誘導され、フィン1の裏面に沿って重力方向Gの下方へと誘導(排水)される。これにより、図9Cに示すように、フィン1の表面に発生した凝縮水20の大部分が排水される。 For example, when a finned tube heat exchanger is used as an evaporator, condensed water 20 in which moisture in the air is condensed is generated around the heat transfer tube 2 on the surface side of the fin 1 as shown in FIG. 9A. Since the notch 9a is formed in the inclined surface 5a, and the notch 9b is formed in the inclined surface 5b, the condensed water 20 flows from the front surface of the fin 1 through the notches 9a and 9b as shown in FIG. 9B. And is guided (drained) downward in the direction of gravity G along the back surface of the fin 1. Thereby, as shown in FIG. 9C, most of the condensed water 20 generated on the surface of the fin 1 is drained.
 また、フィン1の表面に沿って流れる凝縮水20は、凸部5の上方に形成された切込み9a,9bを介してフィン1の裏面へと誘導される。フィン1の裏面へ誘導された凝縮水20は、凸部5の縁を伝って重力方向Gの下方へと誘導(排水)される。 Further, the condensed water 20 flowing along the surface of the fin 1 is guided to the back surface of the fin 1 through the cuts 9 a and 9 b formed above the convex portion 5. The condensed water 20 guided to the back surface of the fin 1 is guided (drained) downward in the gravity direction G along the edge of the convex portion 5.
 以上のように、本第3実施形態にかかるフィンチューブ熱交換器によれば、管周囲部4を取り巻くように形成された凸部5によって、伝熱管2の後流部に回りこむ空気流Sa,Sbを誘引して死水域Dを低減することができる。これにより、伝熱管2の後流部に流入する空気流Sa,Sbを増加させることができ、伝熱管2の後流部の伝熱性能を向上させることができる。 As described above, according to the finned tube heat exchanger according to the third embodiment, the air flow Sa that wraps around the downstream portion of the heat transfer tube 2 by the convex portion 5 formed so as to surround the tube surrounding portion 4. , Sb can be attracted and the dead water area D can be reduced. Thereby, the air flows Sa and Sb flowing into the downstream portion of the heat transfer tube 2 can be increased, and the heat transfer performance of the downstream portion of the heat transfer tube 2 can be improved.
 また、本第3実施形態にかかるフィンチューブ熱交換器によれば、凸部5に形成された切込み9a,9bにより、フィン1の表面に発生した凝縮水20をフィン1の裏面に誘導して重力方向Gの下方へと円滑に排水することができる。これにより、フィン1の表面に発生する水の排水性の低下を抑えることができる。 Further, according to the finned tube heat exchanger according to the third embodiment, the condensate 20 generated on the surface of the fin 1 is guided to the back surface of the fin 1 by the notches 9 a and 9 b formed in the convex portion 5. The water can be smoothly drained downward in the direction of gravity G. Thereby, the fall of the drainage property of the water which generate | occur | produces on the surface of the fin 1 can be suppressed.
 なお、切込み9a,9bは、凸部5の稜線に対して垂直に形成することが好ましい。この場合、図10に示すように、フィン1における熱伝導が伝熱管2を中心として放射状に広がる。これにより、フィン1の熱伝達率の低下を一層抑えることができる。 In addition, it is preferable to form the notches 9a and 9b perpendicular to the ridgeline of the convex portion 5. In this case, as shown in FIG. 10, the heat conduction in the fin 1 spreads radially around the heat transfer tube 2. Thereby, the fall of the heat transfer rate of the fin 1 can be suppressed further.
 また、フィン1は、図11A~図11Cに示すように、波型形状に形成されることが好ましい。この構成によれば、空気の流れは、蛇行する空気流Scのようになるので、温度境界層を薄膜化して伝熱を促進させることができる。これにより、フィンチューブ熱交換器の伝熱性能をより一層向上させることができる。 Also, the fin 1 is preferably formed in a corrugated shape as shown in FIGS. 11A to 11C. According to this configuration, since the air flow is like a meandering air flow Sc, the temperature boundary layer can be made thin to promote heat transfer. Thereby, the heat transfer performance of the fin tube heat exchanger can be further improved.
 また、この構成によれば、波型形状のフィン1と切込み9a,9bとによって凝縮水20が流れる流体流路が形成されることとなるので、凝縮水20の排水性をより一層向上させることができる。 Moreover, according to this structure, since the fluid flow path through which the condensed water 20 flows is formed by the corrugated fin 1 and the cuts 9a and 9b, the drainage of the condensed water 20 can be further improved. Can do.
 また、この構成によれば、図11Bに示すように、空気の流れは、蛇行する空気流Scのようになるので、温度境界層を薄膜化して伝熱を促進させることができる。これにより、フィンチューブ熱交換器の伝熱性能をより一層向上させることができる。 Also, according to this configuration, as shown in FIG. 11B, the air flow is like a meandering air flow Sc, so that the temperature boundary layer can be made thin to promote heat transfer. Thereby, the heat transfer performance of the fin tube heat exchanger can be further improved.
 なお、前記では、フィン1をM字型コルゲートフィンとして形成したが、フィン1上に山部13が1箇所のみ形成されるV字型コルゲートフィンとしてもよい。 In the above description, the fin 1 is formed as an M-shaped corrugated fin, but may be a V-shaped corrugated fin in which only one peak 13 is formed on the fin 1.
 また、図13に示すように、切込み9a,9bは、複数設けられていてもよい。このとき、切込み9a,9bは、切込み9a,9bの伝熱管2と反対側の端部が谷部14の稜線の外側に位置するように、伝熱管2側を中心として放射状に形成されることが好ましい。これにより、凝縮水20をより多く排水して、伝熱性能をより一層向上させることができる。 Further, as shown in FIG. 13, a plurality of cuts 9a and 9b may be provided. At this time, the cuts 9a and 9b are formed radially around the heat transfer tube 2 side so that the end of the cuts 9a and 9b opposite to the heat transfer tube 2 is located outside the ridge line of the valley portion 14. Is preferred. Thereby, more condensed water 20 can be drained and heat transfer performance can be improved further.
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 以上のように、本発明にかかるフィンチューブ熱交換器は、フィンの表面に発生する水の排水性を低下させることなく、伝熱管の後流部の伝熱性能を向上させることができるので、空気調和装置、給湯装置、暖房装置などに用いられる熱交換器として有用である。 As described above, the finned tube heat exchanger according to the present invention can improve the heat transfer performance of the downstream portion of the heat transfer tube without reducing the drainage of water generated on the surface of the fin. It is useful as a heat exchanger used in an air conditioner, a hot water supply device, a heating device or the like.
 1 フィン
 2 伝熱管
 4 管周囲部
 5 凸部
 5a 第1の傾斜面
 5b 第2の傾斜面
 9、9a、9b 切込み(流体経路)
 10 小孔(流体経路)
 13 山部
 14、14a 谷部
 15 傾斜部
 30 端板
 S  空気の流れ方向
 Sa、Sb、Sc 空気流
 G 重力方向
DESCRIPTION OF SYMBOLS 1 Fin 2 Heat transfer tube 4 Tube surrounding part 5 Convex part 5a 1st inclined surface 5b 2nd inclined surface 9, 9a, 9b Cutting (fluid path)
10 Small hole (fluid path)
13 Mountain portion 14, 14a Valley portion 15 Inclined portion 30 End plate S Air flow direction Sa, Sb, Sc Air flow G Gravitational direction

Claims (2)

  1. 複数のフィンと、前記複数のフィンを貫通し、内部を流体が流動する複数の伝熱管とを備え、前記フィンは、前記伝熱管の周囲に形成された管周囲部と、前記管周囲部を取り囲むように形成された凸部とを有し、前記凸部に前記フィンの表裏を連通する流体経路を設けた、フィンチューブ熱交換器。 A plurality of fins, and a plurality of heat transfer tubes that pass through the plurality of fins and in which a fluid flows, and the fins include a tube peripheral portion formed around the heat transfer tubes, and the tube peripheral portion. A finned tube heat exchanger having a convex portion formed so as to surround, and provided with a fluid path that communicates the front and back of the fin with the convex portion.
  2. 前記フィンは、空気の流れ方向に対して波型形状に傾いている傾斜部を備え、前記凸部は、前記伝熱管側に傾斜する第1の傾斜面と、前記伝熱管とは反対側に傾斜する第2の傾斜面とを有し、前記傾斜部と前記凸部とは、前記第2の傾斜面を介して接続されている、請求項1に記載のフィンチューブ熱交換器。 The fin includes an inclined portion that is inclined in a wave shape with respect to the air flow direction, and the convex portion is provided on a side opposite to the heat transfer tube, and a first inclined surface that is inclined toward the heat transfer tube side. 2. The finned tube heat exchanger according to claim 1, further comprising an inclined second inclined surface, wherein the inclined portion and the convex portion are connected via the second inclined surface.
PCT/JP2013/002660 2012-04-23 2013-04-19 Finned tube heat exchanger WO2013161240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380021261.5A CN104246409B (en) 2012-04-23 2013-04-19 Fin-tube heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-097381 2012-04-23
JP2012097381A JP5974276B2 (en) 2012-04-23 2012-04-23 Finned tube heat exchanger

Publications (1)

Publication Number Publication Date
WO2013161240A1 true WO2013161240A1 (en) 2013-10-31

Family

ID=49482586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002660 WO2013161240A1 (en) 2012-04-23 2013-04-19 Finned tube heat exchanger

Country Status (3)

Country Link
JP (1) JP5974276B2 (en)
CN (1) CN104246409B (en)
WO (1) WO2013161240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975350A1 (en) * 2014-06-25 2016-01-20 Gea Maschinenkühltechnik Gmbh Heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724442A (en) * 2017-10-30 2019-05-07 美的集团股份有限公司 Fins set and finned tube exchanger
CN113375347B (en) * 2021-07-13 2023-01-06 西安热工研究院有限公司 Honeycomb-shaped particle heat exchanger and heat storage power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203593A (en) * 1996-01-30 1997-08-05 Matsushita Electric Ind Co Ltd Heat exchanger
JPH10281674A (en) * 1997-04-07 1998-10-23 Daikin Ind Ltd Cross fin heat exchanger for outdoor machine
JP2004163059A (en) * 2002-11-15 2004-06-10 Matsushita Electric Ind Co Ltd Heat exchanger for hot water supply
JP2006038311A (en) * 2004-07-26 2006-02-09 Daikin Ind Ltd Fin-tube heat exchanger
JP2010255974A (en) * 2009-04-28 2010-11-11 Daikin Ind Ltd Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049048A (en) * 1975-12-19 1977-09-20 Borg-Warner Corporation Finned tube bundle heat exchanger
JPS55105194A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Heat-exchanger
JPS5761375U (en) * 1980-09-19 1982-04-12
JP3852464B2 (en) * 2004-11-25 2006-11-29 ダイキン工業株式会社 Heat exchanger inside the air conditioner
JP4169079B2 (en) * 2006-10-02 2008-10-22 ダイキン工業株式会社 Finned tube heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203593A (en) * 1996-01-30 1997-08-05 Matsushita Electric Ind Co Ltd Heat exchanger
JPH10281674A (en) * 1997-04-07 1998-10-23 Daikin Ind Ltd Cross fin heat exchanger for outdoor machine
JP2004163059A (en) * 2002-11-15 2004-06-10 Matsushita Electric Ind Co Ltd Heat exchanger for hot water supply
JP2006038311A (en) * 2004-07-26 2006-02-09 Daikin Ind Ltd Fin-tube heat exchanger
JP2010255974A (en) * 2009-04-28 2010-11-11 Daikin Ind Ltd Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975350A1 (en) * 2014-06-25 2016-01-20 Gea Maschinenkühltechnik Gmbh Heat exchanger

Also Published As

Publication number Publication date
CN104246409B (en) 2016-12-14
JP5974276B2 (en) 2016-08-23
CN104246409A (en) 2014-12-24
JP2013224800A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
US7913750B2 (en) Louvered air center with vortex generating extensions for compact heat exchanger
JP6294497B2 (en) Heat exchanger
EP3018439B1 (en) Fin tube heat exchanger
JP4775429B2 (en) Finned tube heat exchanger
JP5945806B2 (en) Finned tube heat exchanger
JPWO2013054540A1 (en) Finned tube heat exchanger
JP2010025477A (en) Heat exchanger
WO2013161240A1 (en) Finned tube heat exchanger
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
JP5958744B2 (en) Finned tube heat exchanger
WO2016008427A1 (en) Fin for heat exchanger and heat exchanger having fin
JP2019504983A (en) Arrowhead fins for heat exchange tubes
JP2009121708A (en) Heat exchanger
JP5958917B2 (en) Finned tube heat exchanger
WO2013161290A1 (en) Finned tube heat exchanger
JP2010025482A (en) Heat exchanger
KR101572674B1 (en) Heat exchanger improving the drainage
JP6379352B2 (en) Finned tube heat exchanger
KR20110083016A (en) Fin for heat exchanger and heat exchanger having the same
KR20220101401A (en) Fin tube heat exchanger
WO2016031032A1 (en) Heat exchanger and air conditioner
JP2013221679A (en) Fin tube heat exchanger
JP6972947B2 (en) Fin tube heat exchanger
JP5835907B2 (en) Heat exchanger
JP2015001307A (en) Fin tube heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781447

Country of ref document: EP

Kind code of ref document: A1