JP2004163059A - Heat exchanger for hot water supply - Google Patents

Heat exchanger for hot water supply Download PDF

Info

Publication number
JP2004163059A
JP2004163059A JP2002331907A JP2002331907A JP2004163059A JP 2004163059 A JP2004163059 A JP 2004163059A JP 2002331907 A JP2002331907 A JP 2002331907A JP 2002331907 A JP2002331907 A JP 2002331907A JP 2004163059 A JP2004163059 A JP 2004163059A
Authority
JP
Japan
Prior art keywords
heat transfer
plate
heat exchanger
fins
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002331907A
Other languages
Japanese (ja)
Inventor
Shuichi Takemura
修一 竹村
Yoichi Kimura
洋一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002331907A priority Critical patent/JP2004163059A/en
Publication of JP2004163059A publication Critical patent/JP2004163059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for hot water supply for improving heat efficiency and durability of the heat exchanger (improving dew formation preventing performance and preventing retention of occurring moisture condensed water). <P>SOLUTION: The heat exchanger has a plurality of tiltingly arranged plate-like fins 1. The plate-like fins 1 are provided with a plurality of heat transfer pipes 2 horizontally and vertically tilted with respect to the passing direction of combustion gas, and with a guide plate 10 for changing flow direction of the combustion gas. The heat exchanger has projections 11 for surrounding the upstream side with respect to the passing direction of combustion gas of the heat transfer pipe (upper heat transfer pipe) on the downstream side of the passing direction of combustion gas of the heat transfer pipe, and a notch holes 12 near the heat transfer pipes. The projections are formed by cutting and folding the plate-like fins 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、給湯用熱交換器に関するものである。
【0002】
【従来の技術】
従来この種の熱交換器を図9に示す。給湯装置は、ガスまたはガス化した灯油を燃料とし、ファンで送られた空気と混合させたガスでバーナを燃焼させ、バーナの上部に燃焼室を構成する熱交換器が備えられている。熱交換器は、一定間隔で垂直に並べられた板状フィン1と、この板状フィン1に垂直に挿入された伝熱管2から構成されている。バーナで加熱された燃焼ガス5は流動して伝熱管2内の水と熱交換するが、熱交換された後の水の温度が低い時は結露が発生しやすく、この結露水が板状フィン1に付着滞留する。そのため、バーナの要求熱量に応じてファンの回転数を微妙に変更するなどの複雑な制御を行う必要があった。また、このとき吸収されなかった熱は、排気ガスとして高温のまま排気口から排出される(例えば、特許文献1参照)。
【0003】
【特開文献1】
特開2000−274673号公報
【0004】
【発明が解決しようとする課題】
しかしながら上記従来のこの種の熱交換器を備えた給湯装置では、ファンの制御が複雑で開発に手間がかかり、また燃焼ガス5は図9に示すように伝熱管2の間をすり抜けて高温のまま通過し、給湯装置の排気口より排出されるため、熱効率が低下するという問題点があった。
【0005】
そして、複雑なファン制御を行っても、燃焼ガス5中には燃焼によって発生した水分が水蒸気として含有しており、低空気過剰率で燃焼させた場合や燃焼量を絞って燃焼させた場合には燃焼ガスが熱交換器で冷却され飽和水蒸気となり、低温であるフィンに結露水となって着水することは避けられないものであった。この結露水は燃焼ガス中のCO2やNOxによって高酸性水となっており、銅フィンの酸化を促進し、酸化物によってフィン間の距離が短くなりフィン間の閉塞を生じ熱交換器の耐久性を著しく悪化さるとともに、不完全燃焼を誘発し、給湯機の故障要因となる。
【0006】
よって給湯用熱交換器としては簡単な制御で結露水の発生を抑えることはもちろんであるが、発生しても結露水が流れてしまう構成で、かつ熱効率を向上させることが重要な技術課題となる。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するために、伝熱管方向に傾斜をつけて並設した複数の板状フィンと、前記板状フィンに接続した傾斜をつけた複数の前記伝熱管と、前記伝熱管近傍の前記板状フィンに切り欠き穴を設けたものである。これにより、結露水が発生しても結露水は切り欠き穴を通り、傾斜に沿って流れてしまうため、フィン間の閉塞が防止でき熱交換器の耐久性の悪化およびに不完全燃焼を防止できる。
【0008】
【発明の実施の形態】
前記従来の問題を解決するために、請求項1記載の発明は、伝熱管方向に傾斜をつけて並設した複数の板状フィンと、前記板状フィンに接続した傾斜をつけた複数の前記伝熱管と、前記伝熱管近傍の前記板状フィンに切り欠き穴を設けたことにより、結露水が発生しても傾斜に沿って結露水が流れるので、結露水がフィンに滞留しないため銅フィンの酸化を防ぎ熱交換器の耐久性を悪化させないことができる。
【0009】
また、請求項2に記載の発明は、特に請求項1において、板状フィンに燃焼ガスの流れ方向を変更する案内板を有することにより、案内板によって燃焼ガスをもっともフィン効率の高い伝熱管の方向に導いて熱効率を向上させたり、結露が発生しやすい低温部に熱を導いたりすることで結露の発生を抑えることができるが、結露水が発生した場合には傾斜に沿って結露水が流れるので、結露水がフィンに滞留しないため銅フィンの酸化を防ぎ熱交換器の耐久性を悪化させないことができる。
【0010】
また、請求項3に記載の発明は、請求項1、2において、伝熱管の燃焼ガスの通過方向に対して上流側を囲う突起を有することにより、最もフィン効率の高い伝熱管の近くでの熱の吸収を多くすることで熱効率を高める。
【0011】
また、熱の吸収を多くするためフィン温度が高くなり結露も防止できるが、結露水が発生した場合には前記伝熱管の下部に設けられた穴を通じて傾斜により結露水が流れるので、結露水がフィンに滞留しないため銅フィンの酸化を防ぎ熱交換器の耐久性を悪化させないことができる。
【0012】
また、請求項4に記載の発明は、特に請求項3において、板状フィンには燃焼ガスの通過方向に対し複数段の傾斜をつけた伝熱管を有したものである。まず燃焼ガスの流れに対して上流側に設けられた伝熱管で燃焼ガスの熱を吸収するため、燃焼ガスの温度は低くなり、下流側の伝熱管の吸熱量は少なくなる。
【0013】
また、このことにより燃焼ガスの流れに対して下流程フィン温度が低くなり結露が発生しやすい。
【0014】
しかし、この方式によれば、伝熱管下流側に設けられた突起により、伝熱管下流側の吸熱量を増やすことができるため、更なる結露防止による耐久性能と熱効率の向上を望めるが、結露水が発生しても前記伝熱管の下部に設けられた穴を通じて傾斜により結露水が流れるので結露水がフィンに滞留しないため更に耐久性の向上が見込める。
【0015】
また、請求項5に記載の発明は、請求項3、4において、突起は板状フィンを切り起こすことにより設けることにより加工が簡単なうえ、切り起こしにより生じた穴により突起が吸収した熱は、下流側の伝熱管に伝わる。
【0016】
したがって伝熱管上流側に吸収される熱量が減少し、伝熱管下流側に流れ吸収される熱量が増加するため板状フィンの温度差が少なくなり、さらなる結露現象防止や温度差による熱応力発生による伝熱管等の亀裂の発生を防止することができる。
【0017】
また、請求項6に記載の発明は、請求項2〜5において、案内板や突起部の高さを、板状フィン間の間隔と同じ距離にしたものであり、フィン間距離を精度よく管理するものである。
【0018】
したがって熱交換器の伝熱性能のバラツキを減少し、機器の出湯能力を安定化できる。
【0019】
【実施例】
(実施例1)
以下、本発明の第1の実施例について図面に基づいて説明する。図1(a)は本発明の実施例1の給湯用熱交換器を組み込んだ給湯機の側断面図である。また、図1(b)は本発明の実施例1の給湯用熱交換器の正面断面図であり板状フィン1および伝熱管2が傾斜をつけて並べられていることがわかる。3はバーナ、7は燃焼室、6は排気口である。熱交換器4には一定間隔で板状フィン1が傾斜をつけて設けられ、胴体9で包囲される。
【0020】
また、伝熱管2も傾斜をつけて設けられている。図2は板状フィン1の正面図であり板状フィン1には切り欠き穴12が設けられている。一般に結露は伝熱管が抵抗になり燃焼ガス5が流れにくく、低温になりやすい伝熱管の下流側(A部)で発生しやすいことが分かっており、切り欠き穴12はこの辺りに設けるのがよい。
【0021】
この結果、結露水が発生しても結露水は切り欠き穴12を通りぬけて傾斜に沿って流れてしまうため、結露水が滞留せずフィン間の閉塞が防止でき熱交換器の耐久性の悪化およびに不完全燃焼を防止できる。
【0022】
(実施例2)
次に本発明の実施例2について図3を用いて説明する。図3は板状フィン1の正面図であり、実施例2において実施例1と相違するのは、板状フィン1には案内板10が設けられていることである。バーナ3で加熱された燃焼ガス5は案内板10によって最もフィン効率の高い伝熱管周辺に導かれるため熱効率を向上させることができる。
【0023】
この結果、同じ大きさの熱交換器4であれば熱効率を高くすることができ、燃料の削減を図り、エネルギーの有効利用、ひいてはCO2の削減、地球温暖化を防止できる。また、同じ熱効率で良いのであれば熱交換器4を小さくして小型軽量化できる。
【0024】
また、給湯用熱交換器の性能として熱効率とともに要求される性能には耐久性能があるが、耐久性能の大部分を占める結露について説明する。給湯機では燃焼ガス中に燃焼によって発生した水分が水蒸気として含有しており、低空気過剰率で燃焼させた場合や燃焼量を絞って燃焼させた場合には燃焼ガスが熱交換器で冷却され飽和水蒸気となり低温であるフィンの後流部に結露水となって付着する。
【0025】
この結露水は燃焼ガス中のCO2やNOxによって高酸性水となっており、銅フィンの酸化を促進し、酸化物の堆積によってフィン間の距離が短くなりフィン間の閉塞を生じ熱交換器の耐久性を著しく悪化させるとともに、不完全燃焼を誘発し、給湯機の故障原因となる。
【0026】
だから、結露水を発生をできるだけ抑えることはもちろんであるが、発生してもフィンに滞留させないでフィンから流れ落ちる構成にしておく必要がある。案内板10により、従来は伝熱管が抵抗になり燃焼ガス5が流れにくく、低温になりやすかった伝熱管の下流側(A部)にも高温の燃焼ガス5を導くことにより、フィン低温部に付着する結露水の発生をある程度防止することができるが、設けられた切り欠き穴12により結露水が発生しても結露水は切り欠き穴12を通りぬけて傾斜に沿って流れてしまうため、更に熱交換器の耐久性の悪化およびに不完全燃焼を防止できる。
【0027】
(実施例3)
次に本発明の実施例3について図4を用いて説明する。図4(a)は板状フィン1正面図、(b)は側断面図である。実施例3において実施例1、2と相違する点は、燃焼ガス5の通過方向に対して上流を囲う半円状の突起11を設け、突起11の近傍に切り欠き穴12を設けたことである。
【0028】
この構成では、半円状の突起11が燃焼ガス5の流れの抵抗となってバーナ3で加熱された高温の燃焼ガス5が突起11に当たることにより、従来では通り抜けていた熱も突起11を通じてフィンから伝熱管に有効に伝達される。
【0029】
さらに、フィン効率の高い伝熱管周辺でのフィン面積が突起11により増加することになる。これらのことから、熱効率を向上させることができる。また発生した結露水は突起11に一旦受けられることにより広範囲で結露水を受けられる。
【0030】
そして板状フィン1と伝熱管2は傾斜をつけて配置されているため、切り欠き穴12を通じて流れてしまうため、更に熱交換器の耐久性の悪化およびに不完全燃焼を防止できる。
【0031】
(実施例4)
次に本発明の実施例4について図5を用いて説明する。実施例4において実施例1、2、3と相違する点は、板状フィン1には燃焼ガスの通過方向に対し上下方向に複数段の伝熱管2a、2bを備えている点と(実施例3では一例として2段とした)、燃焼ガス5の通過方向に対して下流側(伝熱管2b)だけ、伝熱管を囲う半円状の突起11を設けたことである。
【0032】
また、図6には板状フィンの温度分布を示している。図6に示したように、従来の板状フィンでは図9に示す板状フィン1の高さ位置Hが大きいほど(燃焼ガス5の流れ方向に対して下流側に行くほど)温度が低くなり、特に複数段の伝熱管を備えている場合は結露の発生量も多くなり、高さ位置Hによる温度差も大きい。すなわちこのことは、バーナ3で加熱された高温の燃焼ガス5の熱が先に伝熱管下段2aで奪われて、燃焼ガス5の温度が低くなった後、伝熱管上段2bで熱交換されるために伝熱管上段2bの方が熱の吸収割合が低いことを意味している。実施例4に示す構成によれば、伝熱管上段2bに設けた突起11により、上段側だけ熱吸収を良くすることができる。
【0033】
すなわち上段側の突起11が燃焼ガス5の流れの抵抗となって燃焼ガスの熱を受ける。そしてフィン効率の高い伝熱管周辺でのフィン面積が突起11により増加することになる。よって高さ位置Hが下流側でのフィン温度が高くなるため結露を防止しながら、伝熱管を複数段備えることで更なる熱効率の向上が可能である。
【0034】
また発生した結露水は突起11に一旦受けられることにより広範囲で結露水を受けられる。そして板状フィン1と伝熱管2は傾斜をつけて配置されているため、切り欠き穴12を通じて流れてしまうので、更なる熱交換器の耐久性の悪化およびに不完全燃焼を防止できる。
【0035】
(実施例5)
次に本発明の実施例5について図7を用いて説明する。実施例5において実施例4と相違する点は、突起部11を板状フィン1の切り起しで設けることによって切り起こし穴14が設けられることである。板状フィン1の保有熱は伝熱管下段2a、伝熱管上段2bの双方に伝わり熱交換されていたが、突起部11を切り起こしにより設けることによって生じる切り起こし穴14により、突起11が受けた熱はほとんど伝熱管上段2bに伝わり熱交換されることになる(切り起こし穴14があることにより熱が伝熱管下段2a側に伝わらない)。
【0036】
したがって伝熱管下段2a側に流れ吸収される熱量が減少し、伝熱管上段2b側に流れ吸収される熱量が増加するため、図6に示す様に板状フィン高さHによる温度差が少なくなり、温度差による熱応力発生による伝熱管等の亀裂の防止やさらなる結露発生を防止することができるが、結露が発生した場合には板状フィン1と伝熱管2は傾斜をつけて配置されているため、切り欠き穴12を通じて流れてしまうので、更なる熱交換器の耐久性の悪化およびに不完全燃焼を防止できる。
【0037】
(実施例6)
次に本発明の実施例6について図8を用いて説明する。実施例6において実施例5と相違する点は案内板10や突起11の高さを板状フィン1の間隔13と同距離にすることである。従来フィン配置時にフィン間距離固定治具を要していたが本発明では板状フィン1を重ね合わせて組むだけでフィン間距離を精度よく管理することができ、燃焼ガス5を各板状フィン1間に均一に供給できることから熱交換器4の伝熱性能のバラツキを減少し、機器の出湯能力を安定化できる。
【0038】
【発明の効果】
以上の説明から明らかなように本発明の給湯用熱交換器によれば次の効果が得られる。すなわち、給湯用熱交換器の性能を左右する熱効率と結露性能において、熱効率を向上させながら結露の発生をおさえ、また結露が発生した場合でもフィン間に滞留することなく流れてしまう構成にすることにより、同じ大きさの熱交換器であれば熱効率を高くすることができ、燃料の削減を図り、エネルギーの有効利用、ひいてはCO2の削減、地球温暖化を防止できる。
【0039】
また、同じ熱効率で良いのであれば熱交換器を小さくして小型軽量化できる。
【0040】
また、結露水の発生をできるだけ少なくし発生した結露水は流れてしまう構成のため、結露水によるは銅フィンの酸化を防止し、この酸化物の堆積によるフィン間の閉塞を防げるため熱交換器の耐久性を著しく向上させるとともに、安全性も向上させることができる。
【図面の簡単な説明】
【図1】(a)本発明の第1の実施例の給湯用熱交換器を組み込んだ給湯装置の構成図
(b)本発明の第1の実施例における板状フィンの側断面図
【図2】本発明の第1の実施例における板状フィンの正面図
【図3】本発明の第2の実施例における板状フィンの正面図
【図4】(a)本発明の第3の実施例における板状フィンの正面図
(b)本発明の第3の実施例における板状フィンの側断面図
【図5】本発明の第4の実施例における板状フィンの正面図
【図6】板状フィンの温度分布図
【図7】本発明の第5の実施例における板状フィンの正面図
【図8】本発明の第6の実施例における板状フィンの側面図
【図9】従来の板状フィンの正面図
【符号の説明】
1 板状フィン
2 伝熱管
2a伝熱管下段複数段の伝熱管
2b伝熱管上段複数段の伝熱管
4 熱交換器
10 案内板
11 突起
12 切り欠き穴
13 フィン間隔
15 案内板高さ
16 突起高さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot water supply heat exchanger.
[0002]
[Prior art]
FIG. 9 shows a conventional heat exchanger of this type. The hot water supply device uses a gas or gasified kerosene as fuel, burns a burner with a gas mixed with air sent by a fan, and is provided with a heat exchanger that forms a combustion chamber above the burner. The heat exchanger is composed of plate-like fins 1 vertically arranged at regular intervals and a heat transfer tube 2 inserted vertically into the plate-like fins 1. The combustion gas 5 heated by the burner flows and exchanges heat with water in the heat transfer tube 2. When the temperature of the water after the heat exchange is low, dew condensation easily occurs. 1. Adhesion stays at 1. Therefore, it was necessary to perform complicated control such as changing the rotation speed of the fan delicately in accordance with the required amount of heat of the burner. Further, the heat not absorbed at this time is exhausted from the exhaust port at a high temperature as exhaust gas (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-274673
[Problems to be solved by the invention]
However, in the above-described conventional hot water supply apparatus equipped with this type of heat exchanger, the control of the fan is complicated and the development takes time, and the combustion gas 5 slips through the heat transfer tubes 2 as shown in FIG. Since the water passes through as it is and is discharged from the exhaust port of the hot water supply device, there is a problem that the thermal efficiency is reduced.
[0005]
Even if the complicated fan control is performed, the combustion gas 5 contains moisture generated by combustion as steam, and when the combustion is performed at a low excess air rate or when the combustion amount is reduced, It was inevitable that the combustion gas would be cooled by the heat exchanger to become saturated steam, and would be condensed on the low-temperature fins and land on it. The condensed water is highly acidic water due to CO2 and NOx in the combustion gas, and promotes oxidation of copper fins, and the distance between the fins is shortened by the oxides, resulting in clogging between the fins and durability of the heat exchanger. Is significantly deteriorated, and incomplete combustion is induced to cause a failure of the water heater.
[0006]
Therefore, as a heat exchanger for hot water supply, of course, it is important to control the generation of dew condensation water by simple control, but it is important to improve the thermal efficiency with a configuration in which dew condensation water flows even if generated. Become.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a plurality of plate-like fins arranged side by side with a slant in the direction of the heat transfer tube, a plurality of the slanted heat transfer tubes connected to the plate-like fin, and the heat transfer tube. A cutout hole is provided in the vicinity of the plate-like fin. As a result, even if condensed water is generated, the condensed water flows through the cutout holes and flows along the slope, so that clogging between the fins can be prevented and deterioration of the durability of the heat exchanger and incomplete combustion can be prevented. it can.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the conventional problem, the invention according to claim 1 includes a plurality of plate-like fins arranged side by side with a slant in the heat transfer tube direction, and a plurality of the slanted plurality of the plate-like fins connected to the plate-like fin. By providing notched holes in the heat transfer tube and the plate-shaped fins near the heat transfer tube, even if dew condensation water is generated, the dew condensation water flows along the slope. Of the heat exchanger can be prevented from deteriorating the durability of the heat exchanger.
[0009]
In addition, the invention according to claim 2 is the invention according to claim 1, in which the plate-like fin has a guide plate for changing the flow direction of the combustion gas, so that the combustion gas is transferred to the heat transfer tube having the highest fin efficiency by the guide plate. Direction in the direction to improve thermal efficiency, or to conduct heat to low-temperature parts where dew condensation is likely to occur, can suppress the occurrence of dew condensation.However, if dew condensation water occurs, the dew condensation Since it flows, dew condensation water does not stay in the fins, so that oxidation of the copper fins can be prevented, and the durability of the heat exchanger can be prevented from deteriorating.
[0010]
According to a third aspect of the present invention, in the first and second aspects, a projection surrounding the upstream side with respect to a direction in which the combustion gas passes through the heat transfer tube has a protrusion, so that the heat transfer tube near the heat transfer tube having the highest fin efficiency is provided. Increases heat absorption by increasing heat absorption.
[0011]
In addition, since the fin temperature is increased to increase heat absorption, dew condensation can be prevented.However, when dew condensation water is generated, the dew condensation water flows by inclination through a hole provided at a lower portion of the heat transfer tube. Since the fins do not stay, oxidization of the copper fins can be prevented and the durability of the heat exchanger can be prevented from deteriorating.
[0012]
According to a fourth aspect of the present invention, in particular, in the third aspect, the plate-like fin has a heat transfer tube inclined at a plurality of stages with respect to a direction in which the combustion gas passes. First, since the heat of the combustion gas is absorbed by the heat transfer tube provided on the upstream side with respect to the flow of the combustion gas, the temperature of the combustion gas decreases, and the amount of heat absorbed by the heat transfer tube on the downstream side decreases.
[0013]
In addition, due to this, the fin temperature becomes lower toward the downstream of the flow of the combustion gas, so that dew condensation easily occurs.
[0014]
However, according to this method, the protrusion provided on the downstream side of the heat transfer tube can increase the amount of heat absorbed on the downstream side of the heat transfer tube, so that it is possible to further improve durability performance and thermal efficiency by preventing dew condensation. Even if the water is generated, the condensed water flows due to the inclination through the hole provided in the lower part of the heat transfer tube, so that the condensed water does not stay in the fins, so that the durability can be further improved.
[0015]
According to a fifth aspect of the present invention, in the third and fourth aspects, the projections are provided by cutting and raising plate-like fins, so that the processing is simple, and the heat absorbed by the projections due to the holes generated by cutting and raising is provided. , To the downstream heat transfer tube.
[0016]
Therefore, the amount of heat absorbed on the upstream side of the heat transfer tube decreases, and the amount of heat absorbed on the downstream side of the heat transfer tube increases, so that the temperature difference between the plate-shaped fins is reduced. The generation of cracks in the heat transfer tube and the like can be prevented.
[0017]
According to a sixth aspect of the present invention, in each of the second to fifth aspects, the height of the guide plate or the projection is set to the same distance as the interval between the plate-like fins, and the distance between the fins is accurately managed. Is what you do.
[0018]
Therefore, variations in the heat transfer performance of the heat exchanger can be reduced, and the tapping capacity of the equipment can be stabilized.
[0019]
【Example】
(Example 1)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a side sectional view of a water heater incorporating a heat exchanger for hot water supply according to Embodiment 1 of the present invention. FIG. 1B is a front sectional view of the hot water supply heat exchanger according to the first embodiment of the present invention, and it can be seen that the plate-like fins 1 and the heat transfer tubes 2 are arranged with an inclination. 3 is a burner, 7 is a combustion chamber, and 6 is an exhaust port. At the heat exchanger 4, the plate-like fins 1 are provided at a certain interval with an inclination, and are surrounded by the body 9.
[0020]
Further, the heat transfer tube 2 is also provided with an inclination. FIG. 2 is a front view of the plate-like fin 1, and the plate-like fin 1 is provided with a cutout hole 12. In general, it has been found that dew condensation tends to occur on the downstream side (portion A) of the heat transfer tube where the heat transfer tube becomes resistant and the combustion gas 5 hardly flows, and the temperature tends to be low, and the notch hole 12 should be provided in this area. Good.
[0021]
As a result, even if condensed water is generated, the condensed water passes through the notch hole 12 and flows along the slope, so that the condensed water does not stay and clogging between the fins can be prevented, and the durability of the heat exchanger can be improved. Deterioration and incomplete combustion can be prevented.
[0022]
(Example 2)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a front view of the plate-like fin 1, and the difference between the second embodiment and the first embodiment is that the plate-like fin 1 is provided with a guide plate 10. Since the combustion gas 5 heated by the burner 3 is guided by the guide plate 10 to the vicinity of the heat transfer tube having the highest fin efficiency, the heat efficiency can be improved.
[0023]
As a result, if the heat exchangers 4 have the same size, the heat efficiency can be increased, the fuel can be reduced, the energy can be effectively used, CO2 can be reduced, and global warming can be prevented. In addition, if the same thermal efficiency is sufficient, the heat exchanger 4 can be made smaller to reduce the size and weight.
[0024]
The performance required of the heat exchanger for hot water supply together with the thermal efficiency has a durable performance, but dew condensation which occupies most of the durable performance will be described. In a water heater, the moisture generated by combustion is contained in the combustion gas as water vapor, and when the combustion is performed at a low excess air ratio or when the combustion amount is reduced, the combustion gas is cooled by the heat exchanger. It becomes saturated water vapor and adheres to the downstream part of the fin, which is low temperature, as dew condensation water.
[0025]
This condensed water becomes highly acidic water due to CO2 and NOx in the combustion gas, promotes oxidation of copper fins, and the distance between the fins is shortened due to the accumulation of oxides, and the fins are clogged. This significantly deteriorates durability and induces incomplete combustion, which causes a failure of the water heater.
[0026]
Therefore, it is, of course, necessary to suppress the generation of dew water as much as possible, but it is necessary to have a configuration in which even if the dew water is generated, it does not stay in the fins and flows down from the fins. The guide plate 10 guides the high-temperature combustion gas 5 to the downstream side (part A) of the heat transfer tube, where the heat transfer tube becomes a resistance and the flow of the combustion gas 5 becomes difficult, and the temperature tends to be low. Although the generation of the condensed water can be prevented to some extent, even if the condensed water is generated by the provided notch holes 12, the condensed water passes through the notch holes 12 and flows along the slope. Further, deterioration of durability of the heat exchanger and incomplete combustion can be prevented.
[0027]
(Example 3)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 4A is a front view of the plate-like fin 1, and FIG. 4B is a side sectional view. The third embodiment differs from the first and second embodiments in that a semicircular projection 11 is provided to surround the upstream with respect to the direction in which the combustion gas 5 passes, and a notch hole 12 is provided near the projection 11. is there.
[0028]
In this configuration, the semi-circular projection 11 acts as a resistance to the flow of the combustion gas 5, and the high-temperature combustion gas 5 heated by the burner 3 hits the projection 11. From the heat transfer tube.
[0029]
Further, the fin area around the heat transfer tube having high fin efficiency is increased by the protrusion 11. From these, the thermal efficiency can be improved. In addition, the generated dew water is once received by the projections 11 so that the dew water can be received in a wide range.
[0030]
Since the plate-like fins 1 and the heat transfer tubes 2 are arranged at an angle, they flow through the notch holes 12, so that the durability of the heat exchanger and the incomplete combustion can be further prevented.
[0031]
(Example 4)
Next, a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment differs from the first, second and third embodiments in that the plate-like fin 1 is provided with a plurality of stages of heat transfer tubes 2a and 2b in the vertical direction with respect to the direction in which the combustion gas passes. In FIG. 3, two stages are provided as an example), and a semicircular projection 11 surrounding the heat transfer tube is provided only on the downstream side (heat transfer tube 2b) with respect to the direction in which the combustion gas 5 passes.
[0032]
FIG. 6 shows the temperature distribution of the plate-like fins. As shown in FIG. 6, in the conventional plate-like fin, as the height position H of the plate-like fin 1 shown in FIG. 9 increases, the temperature decreases (as it goes downstream with respect to the flow direction of the combustion gas 5). In particular, when a plurality of heat transfer tubes are provided, the amount of dew condensation increases, and the temperature difference depending on the height position H is large. That is, this means that the heat of the high-temperature combustion gas 5 heated by the burner 3 is first taken away by the heat transfer tube lower stage 2a, and after the temperature of the combustion gas 5 is lowered, heat is exchanged by the heat transfer tube upper stage 2b. This means that the heat transfer tube upper stage 2b has a lower heat absorption ratio. According to the configuration shown in the fourth embodiment, heat absorption can be improved only on the upper stage side by the projections 11 provided on the upper stage 2b of the heat transfer tube.
[0033]
That is, the upper-stage projection 11 becomes a resistance of the flow of the combustion gas 5 and receives the heat of the combustion gas. Then, the fin area around the heat transfer tube with high fin efficiency is increased by the protrusion 11. Therefore, the fin temperature on the downstream side at the height position H becomes higher, so that dew condensation is prevented, and the heat efficiency is further improved by providing the heat transfer tubes in a plurality of stages.
[0034]
In addition, the generated dew water is once received by the projections 11 so that the dew water can be received in a wide range. Since the plate-like fins 1 and the heat transfer tubes 2 are arranged with an inclination, they flow through the notch holes 12, so that further deterioration of the durability of the heat exchanger and incomplete combustion can be prevented.
[0035]
(Example 5)
Next, a fifth embodiment of the present invention will be described with reference to FIG. The difference between the fifth embodiment and the fourth embodiment is that a cut-and-raised hole 14 is provided by providing the protrusion 11 by cutting and raising the plate-like fin 1. The heat held by the plate-like fin 1 was transmitted to both the lower heat transfer tube stage 2a and the upper heat transfer tube stage 2b and exchanged heat. However, the protrusion 11 was received by the cut-and-raised hole 14 generated by providing the protrusion 11 by cutting and raising. Most of the heat is transmitted to the heat transfer tube upper stage 2b and heat exchange is performed (the heat is not transmitted to the heat transfer tube lower stage 2a side due to the cut-and-raised holes 14).
[0036]
Therefore, the amount of heat flowing to and absorbed by the heat transfer tube lower stage 2a decreases, and the amount of heat flowing and absorbed by the heat transfer tube upper stage 2b increases, so that the temperature difference due to the plate-like fin height H decreases as shown in FIG. In addition, it is possible to prevent cracks in the heat transfer tube or the like due to thermal stress generated due to a temperature difference, and further prevent the occurrence of dew condensation. However, when dew condensation occurs, the plate-like fin 1 and the heat transfer tube 2 are arranged with an inclination. Therefore, since the heat flows through the notch hole 12, the durability of the heat exchanger and the incomplete combustion can be further prevented.
[0037]
(Example 6)
Next, a sixth embodiment of the present invention will be described with reference to FIG. The difference between the sixth embodiment and the fifth embodiment is that the height of the guide plate 10 and the protrusion 11 is the same as the distance 13 between the plate-like fins 1. Conventionally, an inter-fin distance fixing jig was required when fins were arranged. However, in the present invention, the inter-fin distance can be accurately controlled only by superposing the plate-like fins 1 and assembling them, and the combustion gas 5 is transferred to each plate-like fin. Since the heat can be supplied uniformly between the heat exchangers, variations in the heat transfer performance of the heat exchanger 4 can be reduced, and the tapping capacity of the equipment can be stabilized.
[0038]
【The invention's effect】
As is clear from the above description, the following effects can be obtained according to the hot water supply heat exchanger of the present invention. In other words, in the thermal efficiency and the dew condensation performance that affect the performance of the hot water supply heat exchanger, a configuration is adopted in which the dew condensation is suppressed while improving the thermal efficiency, and even when the dew condensation occurs, it flows without stagnating between the fins. Accordingly, if the heat exchangers have the same size, the heat efficiency can be increased, the fuel can be reduced, the energy can be effectively used, CO2 can be reduced, and global warming can be prevented.
[0039]
In addition, if the same thermal efficiency is sufficient, the heat exchanger can be made smaller to reduce the size and weight.
[0040]
In addition, since the condensed water is generated as much as possible and the generated condensed water flows, the heat exchanger is used to prevent oxidation of the copper fins due to the condensed water and to prevent blockage between the fins due to the accumulation of this oxide. And the safety can be improved.
[Brief description of the drawings]
FIG. 1A is a configuration diagram of a hot water supply apparatus incorporating a hot water supply heat exchanger according to a first embodiment of the present invention. FIG. 1B is a sectional side view of a plate-like fin according to the first embodiment of the present invention. 2 is a front view of a plate fin according to the first embodiment of the present invention. FIG. 3 is a front view of a plate fin according to a second embodiment of the present invention. FIG. 4A is a third embodiment of the present invention. FIG. 6B is a front view of the plate-shaped fin in the third embodiment of the present invention. FIG. 5B is a front view of the plate-shaped fin in the fourth embodiment of the present invention. FIG. 7 is a front view of a plate fin according to a fifth embodiment of the present invention. FIG. 8 is a side view of the plate fin according to a sixth embodiment of the present invention. Front view of plate fin
DESCRIPTION OF SYMBOLS 1 Plate-shaped fin 2 Heat transfer tube 2a Heat transfer tube lower stage heat transfer tube 2b Heat transfer tube upper stage multiple stage heat transfer tube 4 Heat exchanger 10 Guide plate 11 Projection 12 Notch hole 13 Fin spacing 15 Guide plate height 16 Projection height

Claims (6)

伝熱管方向に傾斜をつけて並設した複数の板状フィンと、前記板状フィンに接続した傾斜をつけた複数の前記伝熱管と、前記伝熱管近傍の前記板状フィンに切り欠き穴を設けた給湯用熱交換器。A plurality of plate-like fins arranged side by side with an inclination in the direction of the heat transfer tube, a plurality of the heat transfer tubes with an inclination connected to the plate-like fin, and a notch hole in the plate-like fin near the heat transfer tube. Heat exchanger for hot water supply provided. 板状フィンには燃焼ガスの流れ方向を変更する案内板を設けた請求項1記載の給湯機用熱交換器。The heat exchanger for a water heater according to claim 1, wherein the plate-like fin is provided with a guide plate for changing a flow direction of the combustion gas. 伝熱管の燃焼ガスの通過方向に対して上流側を囲う突起を設けた請求項1又は2記載の給湯用熱交換器。The hot water supply heat exchanger according to claim 1 or 2, further comprising a projection surrounding an upstream side of the heat transfer tube with respect to a direction in which the combustion gas passes. 板状フィンには燃焼ガスの通過方向に対し、複数段の傾斜をつけた伝熱管を有した請求項3記載の給湯用熱交換器。4. The hot water supply heat exchanger according to claim 3, wherein the plate-like fins have heat transfer tubes inclined at a plurality of stages with respect to the direction of passage of the combustion gas. 突起は、板状フィンを切り起こすことにより設けた請求項3又は4記載の給湯用給湯用熱交換器。The hot water supply heat exchanger according to claim 3, wherein the projection is provided by cutting and raising a plate-like fin. 案内板や突起の高さを、板状フィン間の間隔と同じ距離にした請求項2〜5のいずれか1項に記載の給湯用給湯用熱交換器。The hot water supply heat exchanger according to any one of claims 2 to 5, wherein the height of the guide plate and the projection is set to be equal to the distance between the plate-like fins.
JP2002331907A 2002-11-15 2002-11-15 Heat exchanger for hot water supply Pending JP2004163059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331907A JP2004163059A (en) 2002-11-15 2002-11-15 Heat exchanger for hot water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331907A JP2004163059A (en) 2002-11-15 2002-11-15 Heat exchanger for hot water supply

Publications (1)

Publication Number Publication Date
JP2004163059A true JP2004163059A (en) 2004-06-10

Family

ID=32809138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331907A Pending JP2004163059A (en) 2002-11-15 2002-11-15 Heat exchanger for hot water supply

Country Status (1)

Country Link
JP (1) JP2004163059A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010245A (en) * 2005-06-30 2007-01-18 Paloma Ind Ltd Water heating appliance
CN101033927B (en) * 2007-04-10 2010-12-08 宁波方太厨具有限公司 Highly effective heat exchange sheet of water heater
JP2013096609A (en) * 2011-10-29 2013-05-20 Noritz Corp Heat exchanger and water heating device including the same
WO2013161240A1 (en) * 2012-04-23 2013-10-31 パナソニック株式会社 Finned tube heat exchanger
CN104677163A (en) * 2015-02-16 2015-06-03 宁波市哈雷换热设备有限公司 Heat exchanger fin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010245A (en) * 2005-06-30 2007-01-18 Paloma Ind Ltd Water heating appliance
JP4728056B2 (en) * 2005-06-30 2011-07-20 株式会社パロマ Hot water equipment
CN101033927B (en) * 2007-04-10 2010-12-08 宁波方太厨具有限公司 Highly effective heat exchange sheet of water heater
JP2013096609A (en) * 2011-10-29 2013-05-20 Noritz Corp Heat exchanger and water heating device including the same
WO2013161240A1 (en) * 2012-04-23 2013-10-31 パナソニック株式会社 Finned tube heat exchanger
CN104677163A (en) * 2015-02-16 2015-06-03 宁波市哈雷换热设备有限公司 Heat exchanger fin

Similar Documents

Publication Publication Date Title
CN110779208B (en) Heat exchanger and water heating apparatus provided with same
US7707997B2 (en) Cooling apparatus of exhaust gas recirculation system and method using the same
JP3390456B2 (en) Absorption chiller / heater and its high temperature regenerator
CN110645711B (en) Heat exchanger and water heating apparatus provided with same
JP2018096622A (en) Heat exchanger, water heater, and method of manufacturing heat exchanger
CN107966046A (en) Fin tube type heat exchanger and the burner with the heat exchanger
JP2004037005A (en) Fin and tube type heat exchanger
JP2004163059A (en) Heat exchanger for hot water supply
JP2005337609A (en) Heat exchanger
JP2004003773A (en) Heat exchanger
JP4728056B2 (en) Hot water equipment
KR100471354B1 (en) Heat exchanger
JP2005180778A (en) Water heating appliance
JP2006349234A (en) Heat exchanger for gas water heater
JP2011144979A (en) Heat exchanger and water heater using the same
JP2005156033A (en) Fin for heat exchanger of water heater, and heat exchanger for water heater provided with the same
KR20160141321A (en) A heat transfer pin of heat exchanger for a boiler
JP2006153375A (en) Heat exchanging device and combustion device
JPH09126554A (en) Heat exchanger
JP3484297B2 (en) Heat exchanger
JP2000234809A (en) Heat exchanger
JP2001336887A (en) Heat exchanger
KR101282684B1 (en) Exhaust Gas Recirculation cooler
JPH09159390A (en) Heat exchanger for hot-water supply
JP4059702B2 (en) Water tube for boiler water wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051110

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20051213

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009