WO2023032140A1 - 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法 - Google Patents

結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法 Download PDF

Info

Publication number
WO2023032140A1
WO2023032140A1 PCT/JP2021/032392 JP2021032392W WO2023032140A1 WO 2023032140 A1 WO2023032140 A1 WO 2023032140A1 JP 2021032392 W JP2021032392 W JP 2021032392W WO 2023032140 A1 WO2023032140 A1 WO 2023032140A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
gas
main surface
laminated
crystal
Prior art date
Application number
PCT/JP2021/032392
Other languages
English (en)
French (fr)
Inventor
洋平 湯田
達郎 綿引
義直 熊谷
健 後藤
Original Assignee
三菱電機株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人東京農工大学 filed Critical 三菱電機株式会社
Priority to CN202180101847.7A priority Critical patent/CN117941041A/zh
Priority to PCT/JP2021/032392 priority patent/WO2023032140A1/ja
Priority to JP2022527788A priority patent/JP7158627B1/ja
Priority to US18/685,510 priority patent/US20240352619A1/en
Priority to DE112021008176.4T priority patent/DE112021008176T5/de
Publication of WO2023032140A1 publication Critical patent/WO2023032140A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present disclosure relates to a crystalline laminated structure, a semiconductor device, and a method for manufacturing a crystalline laminated structure.
  • a Schottky barrier diode using gallium oxide which is a kind of wide-gap semiconductor, can have a higher reverse breakdown voltage than a Schottky barrier diode using silicon (Si), silicon carbide (SiC), or the like. can.
  • Various techniques have been proposed for Schottky barrier diodes using such gallium oxide (for example, Patent Documents 1 and 2).
  • the present disclosure has been made in view of the problems described above, and aims to provide a technique capable of improving device characteristics.
  • a crystal laminated structure includes a Ga 2 O 3 single crystal substrate having a first main surface , and provided on the first main surface of the Ga 2 O 3 single crystal substrate, A Ga 2 O 3 single crystal layer which is an epitaxial growth layer having a second main surface on the opposite side of the crystal substrate, the first main surface of the Ga 2 O 3 single crystal substrate, and the Ga 2 O 3 single
  • the plane orientation of each of the second main surfaces of the crystal layer is the (011) plane.
  • the plane orientation of each of the first main surface of the Ga 2 O 3 single crystal substrate and the second main surface of the Ga 2 O 3 single crystal layer is the (011) plane. According to such a configuration, device characteristics can be improved.
  • FIG. 1 is a cross-sectional view schematically illustrating a Ga 2 O 3 single crystal multilayer structure according to Embodiment 1;
  • FIG. 2 is a perspective view showing plane orientations according to Embodiment 1.
  • FIG. 4 is a schematic diagram for explaining plane orientations according to Embodiment 1.
  • FIG. 1 is a cross-sectional view schematically illustrating a vapor phase growth apparatus according to Embodiment 1;
  • FIG. 10 is a cross-sectional view schematically illustrating a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view schematically illustrating a semiconductor device according to a third embodiment;
  • FIG. 1 is a cross-sectional view schematically illustrating a Ga 2 O 3 single crystal multilayer structure, which is a crystal multilayer structure according to the first embodiment.
  • the Ga 2 O 3 single crystal laminated structure includes a Ga 2 O 3 single crystal substrate 1 and a Ga 2 O 3 epitaxial growth layer 2 formed on the main surface of the Ga 2 O 3 single crystal substrate 1 .
  • the method of forming the Ga 2 O 3 epitaxially grown layer 2 is not particularly limited as long as it is a method of forming a Ga 2 O 3 single crystal layer (also referred to as a Ga 2 O 3 single crystal film) using epitaxial growth.
  • the Ga 2 O 3 single crystal substrate 1 is a substrate made of a Ga 2 O 3 system single crystal having a ⁇ -type crystal structure.
  • ⁇ -Ga 2 O 3 is used as the basic material for the Ga 2 O 3 single crystal substrate 1.
  • the material of the Ga 2 O 3 single crystal substrate 1 is not limited to this, and examples include copper (Cu), silver (Ag), zinc (Zn), cadmium (Cd), aluminum (Al), indium (In), silicon (Si), germanium (Ge), tin (Sn), iron (Fe), or magnesium (Mg).
  • Cu copper
  • silver Ag
  • Cd cadmium
  • Al aluminum
  • silicon (Si) silicon
  • tin (Sn) iron (Fe), or magnesium (Mg).
  • Mg magnesium
  • the material of the Ga 2 O 3 single crystal substrate 1 is (Al x In y Ga 1-xy ) 2 O 3 (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ Gallium oxide represented by 1) can be used.
  • Al Al is added, the bandgap of the Ga 2 O 3 single crystal substrate 1 widens, and when In is added, the bandgap of the Ga 2 O 3 single crystal substrate 1 narrows.
  • the material of the Ga 2 O 3 single crystal substrate 1 may contain conductive impurities such as Si.
  • the Ga 2 O 3 single crystal substrate 1 includes a substrate exhibiting n-type conductivity due to only oxygen deficiency, a substrate exhibiting n-type conductivity due to only n-type impurities, and a substrate exhibiting n-type conductivity due to both oxygen deficiency and n-type impurities. It can be any substrate that exhibits conductivity of the type.
  • the Ga 2 O 3 single crystal substrate 1 is, for example, bulk crystal of Ga 2 O 3 system single crystal produced by a melt growth method such as FZ (Floating Zone) method or EFG (Edge-Defined Film-Fed Growth) method. is formed by slicing and polishing the surface.
  • the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1 is determined by the amount of oxygen defects formed during fabrication of the Ga 2 O 3 single crystal substrate 1 and the amount of impurities such as Si and Sn. By controlling the impurity amount and its activation rate, the electron carrier concentration in the Ga 2 O 3 single crystal substrate 1 can be controlled.
  • the Ga 2 O 3 single crystal substrate 1 has a first main surface, which is the upper surface in the example of FIG.
  • the plane orientation of the first main surface is preferably the (011) plane, and most preferably the offset angle of the first main surface with respect to the (011) plane is 0°.
  • the plane orientation of the first main surface may be any plane orientation between the (021) plane and the (012) plane, excluding the (021) plane and the (012) plane. This will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 is a perspective view showing the plane orientation of ⁇ -Ga 2 O 3 . Since the crystal of ⁇ -Ga 2 O 3 is monoclinic, the (100) plane is parallel to the plane formed by the b-axis and the c-axis (that is, the bc plane).
  • FIG. 3 is a schematic diagram showing the offset angle when viewing the a-plane, that is, the (100) plane in front of the origin of the three lattice vectors along the a-axis lattice vector.
  • An asterisk attached to the c-axis means that the c-axis, which is slanted toward the back of the drawing, is represented as a conventional in-drawing direction.
  • the plane orientation of the first principal plane is the (011) plane.
  • the (011) plane may be any plane orientation rotated by 18.8292° or less in the positive direction from .
  • the offset angle of the first main surface with respect to the (011) plane may be an angle at which the (012) plane does not appear as the plane orientation of the first main surface.
  • the plane orientation of the first main surface may be any plane orientation rotated from the (011) plane in the negative direction by 13.2504° or less.
  • the offset angle of the first main surface with respect to the (011) plane may be an angle at which the (021) plane does not appear as the plane orientation of the first main surface.
  • the Ga 2 O 3 epitaxial growth layer 2 is made of a Ga 2 O 3 system single crystal having a ⁇ -type crystal structure.
  • the Ga 2 O 3 epitaxial growth layer 2 may contain conductive impurities such as Si, like the Ga 2 O 3 single crystal substrate 1 .
  • the Ga 2 O 3 epitaxial growth layer 2 is, like the Ga 2 O 3 single crystal substrate 1, a layer exhibiting n-type conductivity only with oxygen defects, a layer exhibiting n-type conductivity only with n-type impurities, Also, any layer that exhibits n-type conductivity due to both oxygen deficiency and n-type impurities may be used.
  • the electron carrier concentration of the Ga 2 O 3 epitaxial growth layer 2 can be adjusted, for example, by controlling the supply amount of impurities or oxygen defects during epitaxial growth.
  • Ga 2 O 3 epitaxial growth layer 2 is provided on the first main surface of Ga 2 O 3 single crystal substrate 1 and has a second main surface opposite to Ga 2 O 3 single crystal substrate 1 .
  • the second main surface is the upper surface.
  • the plane orientation of the second main surface of the Ga 2 O 3 epitaxial growth layer 2 is preferably the (011) plane, and most preferably the offset angle of the second main surface with respect to the (011) plane is 0°.
  • the plane orientation of the second main surface may be any plane orientation between the (021) plane and the (012) plane, excluding the (021) plane and the (012) plane. That is, the plane orientation of the second main surface may be a plane orientation rotated from the (011) plane in the positive direction by 18.8292° or less, and the offset angle of the second main surface with respect to the (011) plane is Any angle may be used as long as the (012) plane does not appear as the plane orientation of the two principal planes.
  • the plane orientation of the second main surface may be any plane orientation rotated from the (011) plane in the negative direction by 13.2504° or less, in other words, the offset of the second main surface with respect to the (011) plane. Any angle may be used as long as the (021) plane does not appear as the plane orientation of the second main surface.
  • defects are formed in the single crystal substrate due to various factors during the formation of the Ga 2 O 3 single crystal substrate.
  • a Ga 2 O 3 single crystal substrate having the (001) plane as the main surface defects caused by slip planes appear on the main surface.
  • the defect is taken over by the epitaxially grown layer and appears on the main surface of the epitaxially grown layer.
  • the defect density can be reduced.
  • the MBE method epitaxial growth can be performed on the Ga 2 O 3 single crystal substrate 1 by supplying gallium vapor and an oxygen-based gas into the vacuum chamber, but the growth rate is relatively low, Since it takes a long time to form a thick layer, it is not suitable for mass production.
  • the source which is the raw material supply source to the substrate, is a point source, and the growth rate differs between directly above the source and other locations. It is unsuitable for growing films with a large
  • the PLD method is not suitable for mass production because the growth rate is relatively low.
  • the mist CVD method it is relatively easy to increase the diameter . Layers are difficult to obtain.
  • the film formation rate of the Ga 2 O 3 epitaxial growth layer is high compared to the MBE method, the PLD method, etc., the uniformity of the in-plane distribution of the film thickness is high, and it is possible to increase the diameter. Therefore, it is suitable for mass production.
  • FIG. 3 is a cross-sectional view schematically illustrating a vapor phase growth apparatus for the HVPE method.
  • the vapor phase growth apparatus for the HVPE method includes a reaction chamber 20 and first heating means 26 and second heating means 27 installed around the reaction chamber 20 to heat the interior of the reaction chamber 20 .
  • the reaction chamber 20 has a raw material reaction region R1 and a crystal growth region R2.
  • a reaction vessel 25 containing a gallium raw material is arranged, and a gallium chloride-based gas is generated.
  • the gallium raw material accommodated in the reaction vessel 25 is a gallium metal body, but it is not limited to this.
  • the Ga 2 O 3 single crystal substrate 1 is arranged, and the gallium chloride-based gas, which is the raw material gas of gallium, and the oxygen-containing gas, which is the raw material gas of oxygen, generated in the raw material reaction region R1.
  • the growth of the Ga 2 O 3 epitaxial growth layer 2 is carried out.
  • the material of the reaction chamber 20 is, for example, silica glass, but is not particularly limited to this.
  • the first heating means 26 and the second heating means 27 can heat the raw material reaction region R1 and the crystal growth region R2 of the reaction chamber 20, respectively.
  • Each of the first heating means 26 and the second heating means 27 is, for example, a resistance heating type or a radiation heating type heating device, but is not particularly limited to these.
  • the reaction chamber 20 has a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust port 24.
  • the first gas introduction port 21 is a port for introducing a chlorine-containing gas containing Cl 2 gas or HCl gas into the raw material reaction region R1 of the reaction chamber 20 using an inert carrier gas.
  • the inert carrier gas is, for example, nitrogen gas (N 2 ), argon gas (Ar), helium gas (He) or the like, and the same applies hereinafter.
  • the second gas introduction port 22 uses an inert carrier gas to introduce an oxygen-containing gas containing oxygen gas (O 2 ) or water vapor gas (H 2 O) and impurities such as Si into the Ga 2 O 3 epitaxial growth layer 2 .
  • the third gas introduction port 23 is a port for introducing an inert carrier gas into the crystal growth region R2 of the reaction chamber 20.
  • the exhaust port 24 is a port for exhausting gas not used in the crystal growth region R2 of the reaction chamber 20 to the outside of the reaction chamber 20.
  • the ambient temperature of the raw material reaction region R1 is maintained at a predetermined temperature.
  • a chlorine-containing gas is introduced from the first gas introduction port 21 using a carrier gas, and the gallium metal body in the reaction vessel 25 and the gallium metal body in the reaction vessel 25 are introduced in the raw material reaction region R1 under an atmospheric temperature maintained at a predetermined temperature. It reacts with a chlorine-containing gas to generate a gallium chloride-based gas.
  • Gallium chloride-based gases to be generated include GaCl gas and other gallium chloride-based gases other than GaCl gas.
  • Other gallium chloride-based gases include, for example, GaCl 2 gas, GaCl 3 gas, and (GaCl 3 ). 2 gases, etc. are envisioned.
  • the GaCl gas can be maintained at a temperature that can increase the growth driving force of the Ga 2 O 3 -based single crystal, in other words, improve the growth rate, more than other gallium chloride-based gases.
  • growth at a high temperature is effective for forming the Ga 2 O 3 epitaxial growth layer 2 of high purity and quality. From the above, it is preferable to generate a gallium chloride-based gas having a high partial pressure of GaCl gas.
  • the ambient temperature in the raw material reaction region R1 is preferably such that the partial pressure ratio of GaCl gas is higher than the partial pressure ratio of other gallium chloride-based gases.
  • the atmosphere temperature in the raw material reaction region R1 is maintained at 300° C. or higher at which the partial pressure ratio of the GaCl gas is increased by the first heating means 26, and the gallium metal body and the chlorine-containing gas in the reaction vessel 25 are heated. is preferably reacted with.
  • the ambient temperature of the raw material reaction region R1 is 850° C.
  • the partial pressure ratio of the GaCl gas becomes overwhelmingly high, and the other gallium chloride-based gases hardly contribute to the growth of the Ga 2 O 3 -based single crystal. Gone.
  • the temperature of the atmosphere in the raw material reaction region R1 is maintained at 1000° C. or less, and the temperature inside the reaction vessel 25 is reduced. It is preferred to react the gallium metal body with the chlorine-containing gas.
  • the gallium chloride-based gas may be, for example, a hydrogen-free Cl2 gas produced by the reaction of a gallium source with a hydrogen-free chlorine-containing gas, and the oxygen-containing gas may be hydrogen-free. It may be O 2 gas or the like that does not contain.
  • the growth rate of the Ga 2 O 3 epitaxial growth layer 2 can be 1 ⁇ m or more per hour, that is, 1 ⁇ m/h or more.
  • the gallium chloride-based gas generated in the raw material reaction region R1 and the oxygen-containing gas introduced from the second gas introduction port 22 are mixed, and Ga 2 O 3 alone is added to the mixed gas.
  • the crystal substrate 1 is exposed.
  • a Ga 2 O 3 epitaxial growth layer 2 is epitaxially grown on the Ga 2 O 3 single crystal substrate 1 .
  • the pressure in the crystal growth region R2 inside the furnace housing the reaction chamber 20 is maintained at, for example, 1 atm.
  • the raw material gas of the additive element is added to the gallium chloride-based gas and the oxygen-containing gas, and the crystal is supplied from the second gas introduction port 22. It is introduced into the growth region R2.
  • a chloride-based gas such as silicon tetrachloride (SiCl 4 ) is used as the material gas for the additive element.
  • the Ga 2 O 3 epitaxial growth layer 2 is formed when the ratio of the supply partial pressure of O 2 gas to the supply partial pressure of GaCl gas in the crystal growth region R2 is 0.5 or more and the growth temperature is 900° C. or more. It is preferable from the viewpoint of efficient growth. Moreover, if attention is paid only to efficient growth of the Ga 2 O 3 epitaxial growth layer 2, it is more preferable that the growth temperature is about 1000° C. or higher.
  • the growth temperature corresponds to at least one of the ambient temperature in the reaction chamber 20 and the temperature of the Ga 2 O 3 single crystal substrate 1, for example.
  • the Ga 2 O 3 epitaxial growth layer 2 formed using the HVPE method contains chlorine at a concentration of approximately 5 ⁇ 10 16 atoms/cm 3 or less. This is due to the Ga 2 O 3 epitaxial growth layer 2 being formed using a chlorine-containing gas.
  • the Ga 2 O 3 epitaxial growth layer 2 formed by a method other than the HVPE method that does not use a chlorine-containing gas usually does not contain chlorine of 1 ⁇ 10 16 atoms/cm 3 or more.
  • the residual carrier concentration of the Ga 2 O 3 epitaxially grown layer 2 formed using the HVPE method is 1 ⁇ 10 13 /cm 3 or less. Therefore, by doping the group IV element such as Si as an impurity, the carrier concentration of the Ga 2 O 3 epitaxial growth layer 2 can be reduced to, for example, the range of 1 ⁇ 10 13 to 1 ⁇ 10 20 /cm 3 , that is, 3 ⁇ 10 15 /cm 3 . It is possible to control in a range including cm 3 .
  • the carrier concentration can be measured, for example, by a CV (capacitance-voltage) method.
  • the plane orientations of the first main surface of the Ga 2 O 3 single crystal substrate 1 and the second main surface of the Ga 2 O 3 epitaxial growth layer 2 are (011 ) plane and its vicinity.
  • the Ga 2 O 3 epitaxial growth layer 2 is formed by the HVPE method using a gallium chloride-based gas and an oxygen-containing gas, the uniformity of the film formation rate and the in-plane distribution of the film thickness can be increased. It is possible to increase the diameter.
  • the Ga 2 O 3 epitaxial growth layer 2 with high purity and high quality can be formed.
  • the growth driving force can be enhanced.
  • the surface flatness of the Ga 2 O 3 epitaxial growth layer 2 can be improved.
  • FIG. 4 is a cross-sectional view schematically illustrating the configuration of the semiconductor device according to the second embodiment.
  • a semiconductor device according to the second embodiment is a Schottky barrier diode (SBD) including the Ga 2 O 3 single crystal multilayer structure according to the first embodiment.
  • SBD Schottky barrier diode
  • the semiconductor device according to the second embodiment is not limited to the SBD, and may be other semiconductor diodes or other semiconductor devices.
  • the semiconductor device of FIG. 4 includes the above-described Ga 2 O 3 single crystal substrate 1 and Ga 2 O 3 epitaxial growth layer 2 , anode electrode 3 and cathode electrode 4 .
  • Anode electrode 3 is a Schottky electrode provided on the upper surface of Ga 2 O 3 epitaxial growth layer 2 and electrically Schottky-junctioned with Ga 2 O 3 epitaxial growth layer 2 .
  • the cathode electrode 4 was provided on the lower surface of the Ga 2 O 3 single crystal substrate 1 opposite to the Ga 2 O 3 epitaxial growth layer 2 , and was electrically ohmic-connected to the Ga 2 O 3 single crystal substrate 1 . It is an ohmic electrode.
  • the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1 containing n-type impurities is the total concentration of oxygen vacancies and n-type impurities.
  • the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1 may be, for example, 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 19 cm ⁇ 3 or less.
  • the impurity concentration of the Ga 2 O 3 single crystal substrate 1 may be higher than the above numerical range.
  • Ga 2 O 3 epitaxial growth layer 2 is arranged on the upper surface of Ga 2 O 3 single crystal substrate 1 .
  • the electron carrier concentration of the Ga 2 O 3 epitaxial growth layer 2 is preferably lower than the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1, for example, 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm. -3 or less.
  • Anode electrode 3 is arranged on the upper surface of Ga 2 O 3 epitaxial growth layer 2 . Since the anode electrode 3 is Schottky-junctioned with the Ga 2 O 3 epitaxial growth layer 2 , it is preferably made of a metal material having a higher work function than the Ga 2 O 3 epitaxial growth layer 2 .
  • the anode electrode 3 may have a laminated structure in which a plurality of metal materials are laminated. For example, a first layer made of a metal material suitable for a Schottky junction with the Ga 2 O 3 epitaxial growth layer 2 is arranged in contact with the Ga 2 O 3 epitaxial growth layer 2, and another The anode electrode 3 may be constructed by disposing a second layer made of a metal material.
  • Cathode electrode 4 is arranged on the lower surface of Ga 2 O 3 single crystal substrate 1 . Since the cathode electrode 4 is ohmic-connected to the Ga 2 O 3 single crystal substrate 1 , it is preferably made of a metal material having a smaller work function than the Ga 2 O 3 single crystal substrate 1 . Moreover, it is preferable that the cathode electrode 4 is made of a metal material that reduces the contact resistance with the Ga 2 O 3 single crystal substrate 1 by heat treatment after forming on the Ga 2 O 3 single crystal substrate 1 .
  • Such a metal material may be, for example, titanium (Ti).
  • the cathode electrode 4 may have a laminated structure in which a plurality of metal materials are laminated in the same manner as the anode electrode 3 .
  • the cathode electrode 4 having a laminated structure in which a metal material that is not easily oxidized is further formed on the lower surface of the metal material. may be configured.
  • a first layer made of Ti suitable for ohmic contact is provided in contact with the Ga 2 O 3 single crystal substrate 1, and gold (Au) or silver (Ag) is formed on the lower surface of the first layer.
  • the cathode electrode 4 may be constructed by providing a second layer. Moreover, the cathode electrode 4 may be arranged on the entire lower surface of the Ga 2 O 3 single crystal substrate 1 or may be arranged on a part of the lower surface of the Ga 2 O 3 single crystal substrate 1 .
  • Embodiment 2 by using the laminated crystal structure of Embodiment 1, a semiconductor device with improved device characteristics can be realized.
  • FIG. 5 is a cross-sectional view schematically illustrating the configuration of the semiconductor device according to the third embodiment.
  • a semiconductor device according to the third embodiment is a lateral Schottky gate transistor including the Ga 2 O 3 single crystal multilayer structure according to the first embodiment.
  • the semiconductor device according to the third embodiment is not limited to the lateral Schottky gate transistor, and may be other semiconductor switching elements having a gate insulating film, or semiconductor devices other than these. good too.
  • the semiconductor device of FIG. 5 includes the above-described Ga 2 O 3 single crystal substrate 1 and Ga 2 O 3 epitaxial growth layer 2 , source electrode 5 , drain electrode 6 and gate electrode 7 .
  • the source electrode 5 and the drain electrode 6 are ohmic electrodes provided separately from each other on the upper surface of the Ga 2 O 3 epitaxial growth layer 2 and electrically in ohmic contact with the Ga 2 O 3 epitaxial growth layer 2 .
  • the gate electrode 7 is provided on the upper surface of the Ga 2 O 3 epitaxial growth layer 2 and between the source electrode 5 and the drain electrode 6, and is Schottky electrically connected to the Ga 2 O 3 epitaxial growth layer 2. an electrode.
  • the electron carrier concentration of the Ga 2 O 3 epitaxial growth layer 2 is higher than the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1. . This point is different from the vertical semiconductor device shown in the second embodiment, and such a Ga 2 O 3 epitaxial growth layer 2 can be formed by adjusting the concentration of the n-type impurity.
  • the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1 containing n-type impurities is the total concentration of oxygen vacancies and n-type impurities.
  • the electron carrier concentration of the Ga 2 O 3 single crystal substrate 1 may be, for example, 1 ⁇ 10 12 cm ⁇ 3 or more and 1 ⁇ 10 15 cm ⁇ 3 or less.
  • the impurity concentration may be lower than the above numerical range. In other words, iron (Fe) or the like may be added to the Ga 2 O 3 single crystal substrate 1 in order to intentionally make the Ga 2 O 3 single crystal substrate 1 semi-insulating.
  • the impurity concentration and electron carrier concentration of the Ga 2 O 3 epitaxial growth layer 2 are preferably higher than those of the Ga 2 O 3 single crystal substrate 1, and the electron carrier concentration is, for example, 1 ⁇ 10 15 cm ⁇ It may be 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the source electrode 5 and the drain electrode 6 are in ohmic contact with the Ga 2 O 3 epitaxial growth layer 2 , they are preferably made of a metal material having a smaller work function than the Ga 2 O 3 epitaxial growth layer 2 .
  • the source electrode 5 and the drain electrode 6 may be made of a metal material that reduces the contact resistance with the Ga 2 O 3 epitaxial growth layer 2 by heat treatment after the Ga 2 O 3 epitaxial growth layer 2 is formed. preferable.
  • a metal material may be, for example, titanium (Ti).
  • the source electrode 5 and the drain electrode 6 may have a laminated structure like the cathode electrode 4 described in the second embodiment.
  • the gate electrode 7 forms a Schottky junction with the Ga 2 O 3 epitaxial growth layer 2 , it is preferably made of a metal material having a higher work function than the Ga 2 O 3 epitaxial growth layer 2 .
  • a metal material may be, for example, platinum (Pt), nickel (Ni), gold (Au), or palladium (Pd).
  • the gate electrode 7 may have a laminated structure, like the anode electrode 3 described in the second embodiment.
  • Ga 2 O 3 single crystal substrate 2 Ga 2 O 3 epitaxial growth layer, 3 anode electrode, 4 cathode electrode, 5 source electrode, 6 drain electrode, 7 gate electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

デバイス特性を高めることが可能な技術を提供することを目的とする。結晶積層構造体は、第1主面を有するGa2O3単結晶基板を備える。また、結晶積層構造体は、Ga2O3単結晶基板の第1主面上に設けられ、Ga2O3単結晶基板と逆側に第2主面を有するエピタキシャル成長層であるGa2O3単結晶層を備える。Ga2O3単結晶基板の第1主面の面方位は、(011)面である。また、Ga2O3単結晶層の第2主面は、(011)面である。

Description

結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
 本開示は、結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法に関する。
 近年、半導体素子の高耐圧化を図るために、半導体素子に用いられる材料がワイドギャップ半導体(ワイドバンドギャップ半導体ともいう)に移行しつつある。そのワイドギャップ半導体の一種である酸化ガリウムを用いたショットキーバリアダイオードでは、珪素(Si)及び炭化珪素(SiC)などを用いたショットキーバリアダイオードと比較して、逆方向耐圧を高くすることができる。このような酸化ガリウムを用いたショットキーバリアダイオードについて、様々な技術が提案されている(例えば特許文献1及び2)。
特開2020-096197号公報 特開2016-029735号公報
 しかしながら、酸化ガリウムを用いた半導体素子では、酸化ガリウムのエピタキシャル成長層内の欠陥密度が高くなると、デバイス特性の低下を招くという問題があった。
 そこで、本開示は、上記のような問題点に鑑みてなされたものであり、デバイス特性を高めることが可能な技術を提供することを目的とする。
 本開示に係る結晶積層構造体は、第1主面を有するGa単結晶基板と、前記Ga単結晶基板の前記第1主面上に設けられ、前記Ga単結晶基板と逆側に第2主面を有するエピタキシャル成長層であるGa単結晶層とを備え、前記Ga単結晶基板の前記第1主面、及び、前記Ga単結晶層の前記第2主面のそれぞれの面方位は、(011)面である。
 本開示によれば、Ga単結晶基板の第1主面、及び、Ga単結晶層の第2主面のそれぞれの面方位は、(011)面である。このような構成によれば、デバイス特性を高めることができる。
 本開示の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係るGa単結晶積層構造体を概略的に例示する断面図である。 実施の形態1に係る面方位を示す斜視図である。 実施の形態1に係る面方位を説明するための概略図である。 実施の形態1に係る気相成長装置を概略的に例示する断面図である。 実施の形態2に係る半導体装置を概略的に例示する断面図である。 実施の形態3に係る半導体装置を概略的に例示する断面図である。
 以下、添付される図面を参照しながら本実施の形態について説明する。なお、図面は概略的に示されるものであり、以下の図面では適宜、構成の省略、または、構成の簡略化がなされる。また、異なる図面にそれぞれ示される構成の大きさ及び位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得る。
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様である。したがって、同様の構成要素などについての詳細な説明については、重複を避けるために省略する場合がある。
 <実施の形態1>
 図1は、本実施の形態1に係る結晶積層構造体であるGa単結晶積層構造体を概略的に例示する断面図である。Ga単結晶積層構造体は、Ga単結晶基板1と、Ga単結晶基板1の主面上に形成されたGaエピタキシャル成長層2とを備える。Gaエピタキシャル成長層2の形成方法は、エピタキシャル成長を用いて、Ga単結晶層(Ga単結晶膜ともいう)を形成する方法であれば特に限定されるものではない。
 Ga単結晶基板1は、β型の結晶構造を有するGa系単結晶からなる基板である。以下の説明では、β-Gaを、Ga単結晶基板1の材料の基本とする。ただし、Ga単結晶基板1の材料は、これに限ったものではなく、例えば、銅(Cu)、銀(Ag)、亜鉛(Zn)、カドミウム(Cd)、アルミニウム(Al)、インジウム(In)、シリコン(Si)、ゲルマニウム(Ge)、錫(Sn)、鉄(Fe)またはマグネシウム(Mg)からなる群のうちの1種以上を添加したGaを主成分とする酸化物であってもよい。
 その一例として、Ga単結晶基板1の材料に、(AlInGa1-x-y(ただし、0≦x<1、0≦y<1、0≦x+y<1)で表わされるガリウム酸化物を用いることができる。Alを添加した場合には、Ga単結晶基板1のバンドギャップが広がり、Inを添加した場合には、Ga単結晶基板1のバンドギャップが狭くなる。また、Ga単結晶基板1の材料は、Si等の導電型不純物を含んでもよい。Ga単結晶基板1は、酸素欠損のみでn型の伝導性を示す基板、n型不純物のみでn型の伝導性を示す基板、及び、酸素欠損とn型不純物との両方でn型の伝導性を示す基板のいずれであってもよい。
 Ga単結晶基板1は、例えば、FZ(Floating Zone)法やEFG(Edge-Defined Film-Fed Growth)法等の融液成長法により生成されたGa系単結晶のバルク結晶をスライスして表面を研磨することにより形成される。Ga単結晶基板1の電子キャリア濃度は、Ga単結晶基板1の作製時に形成される酸素欠陥の量と、SiやSn等の不純物の量とによって決まる。不純物量の制御及びその活性化率を制御することにより、Ga単結晶基板1中の電子キャリア濃度を制御することができる。
 Ga単結晶基板1は第1主面を有しており、図1の例では第1主面は上面である。第1主面の面方位は(011)面であることが好ましく、第1主面の(011)面に対するオフセット角度は0°であることが最も望ましい。しかしながら、第1主面の面方位は、(021)面及び(012)面を除く(021)面から(012)面までの間の面方位であればよい。以下、このことについて、図2及び図3を用いて説明する。
 図2は、β-Gaの面方位を示す斜視図である。β-Gaの結晶は、単斜晶系であるため、(100)面はb軸とc軸とが成す面(つまりbc面)に平行な面である。
 図3は、a軸の格子ベクトルに沿って、3つの格子ベクトルの原点の手前にa面、つまり(100)面を見たときのオフセット角度を示す概略図である。c軸に付されたアスタリスクは、図面の奥方向に傾くc軸を、慣例的な図面内の方向として表すことを意味する。
 原点からa面へa軸方向に沿って進む右ねじの回転方向(図3では反時計回りの方向に対応)を正方向とした場合に、第1主面の面方位は、(011)面から正方向に18.8292°以下で回転させた面方位であればよい。換言すれば、第1主面の(011)面に対するオフセット角度は、第1主面の面方位として(012)面が現れない角度であればよい。また、第1主面の面方位は、(011)面から負方向に13.2504°以下で回転させた面方位であればよい。換言すれば、第1主面の(011)面に対するオフセット角度は、第1主面の面方位として(021)面が現れない角度であればよい。
 Gaエピタキシャル成長層2は、Ga単結晶基板1と同様に、β型の結晶構造を有するGa系単結晶からなる。Gaエピタキシャル成長層2は、Ga単結晶基板1と同様に、Si等の導電型不純物を含んでもよい。また、Gaエピタキシャル成長層2は、Ga単結晶基板1と同様に、酸素欠損のみでn型の伝導性を示す層、n型不純物のみでn型の伝導性を示す層、及び、酸素欠損とn型不純物との両方でn型の伝導性を示す層のいずれであってもよい。なお、Gaエピタキシャル成長層2の電子キャリア濃度は、例えば、エピタキシャル成長中における不純物の供給量または酸素欠陥を制御することで調節することができる。
 Gaエピタキシャル成長層2は、Ga単結晶基板1の第1主面上に設けられており、Ga単結晶基板1と逆側に第2主面を有する。図1の例では第2主面は上面である。
 Gaエピタキシャル成長層2の第2主面の面方位は、(011)面であることが好ましく、第2主面の(011)面に対するオフセット角度は0°であることが最も望ましい。しかしながら、第2主面の面方位は、(021)面及び(012)面を除く(021)面から(012)面までの間の面方位であればよい。すなわち、第2主面の面方位は、(011)面から正方向に18.8292°以下で回転させた面方位であればよく、第2主面の(011)面に対するオフセット角度は、第2主面の面方位として(012)面が現れない角度であればよい。また、第2主面の面方位は、(011)面から負方向に13.2504°以下で回転させた面方位であればよく、換言すれば、第2主面の(011)面に対するオフセット角度は、第2主面の面方位として(021)面が現れない角度であればよい。
 一般的にGa単結晶基板の形成時には、様々な要因により単結晶基板中に欠陥が形成されることが知られている。例えば、(001)面を主面としたGa単結晶基板では、すべり面を起因とした欠陥が当該主面上に現れることになる。また、その単結晶基板上にエピタキシャル成長層を形成した場合には、その欠陥がエピタキシャル成長層に引き継がれ、エピタキシャル成長層の主面にも現れる。
 これに対して本実施の形態1のように第1主面及び第2主面のそれぞれの面方位が(011)面及びその付近である構成では、すべり面を起因とした欠陥が、第1主面及び第2主面に現れることが抑制されるので、欠陥密度を低減することができる。デバイスの特性に直接影響する因子である欠陥密度を低減化することにより、デバイスの漏れ電流の低減、または、逆方向耐圧の向上などが可能となるため、デバイス特性を高めることができる。
 <製造方法>
 本実施の形態1に係るGa単結晶積層構造体の製造方法のうち、Gaエピタキシャル成長層2のエピタキシャル成長について主に説明する。以下、Gaエピタキシャル成長層2の形成方法に、HVPE(Halide Vapor Phase Epitaxy)法を用いる場合について説明するが、これに限ったものではない。例えば、Gaエピタキシャル成長層2の形成方法に、MBE(Molecular Beam Epitaxy)法、PLD(Pulsed Laser Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、または、ミストCVD法などが用いられてもよい。
 ただし、MBE法では、真空槽内にガリウム蒸気と酸素系ガスとを供給することによって、Ga単結晶基板1上にエピタキシャル成長を行うことが可能であるが、成長レートが比較的低く、厚い層の形成には長い時間を要するため、大量生産には不向きである。PLD法では、基板への原料供給源であるソースが点源であり、ソース直上とそれ以外の場所との間で成長レートが異なるため、膜厚の面内分布が不均一になりやすく、面積の大きい膜の成長に不向きである。また、PLD法では、成長レートが比較的低いため、大量生産には不向きである。ミストCVD法では、大口径化は比較的容易であるが、使用原料に含まれている不純物がエピタキシャル成長中にGa単結晶層に取り込まれてしまうため、高純度なGaエピタキシャル成長層を得ることが困難である。
 これに対して、HVPE法では、MBE法やPLD法等と比較して、Gaエピタキシャル成長層の成膜レートが高く、膜厚の面内分布の均一性が高く、大口径化が可能であるため、大量生産に適している。
 図3は、HVPE法用の気相成長装置を概略的に例示する断面図である。HVPE法用の気相成長装置は、反応チャンバー20と、反応チャンバー20の周囲に設置され、反応チャンバー20内を加熱する第1加熱手段26及び第2加熱手段27とを備える。
 反応チャンバー20は、原料反応領域R1と、結晶成長領域R2とを有する。原料反応領域R1では、ガリウム原料が収容された反応容器25が配置されており、塩化ガリウム系ガスが生成される。本実施の形態1では、反応容器25に収容されるガリウム原料はガリウム金属体であるが、これに限ったものではない。
 結晶成長領域R2では、Ga単結晶基板1が配置されており、原料反応領域R1で生成されたガリウムの原料ガスである塩化ガリウム系ガスと、酸素の原料ガスである酸素含有ガスとによって、Gaエピタキシャル成長層2の成長が行われる。反応チャンバー20の材質は、例えば、石英ガラスなどであるが、特にこれに限定されるものではない。
 第1加熱手段26及び第2加熱手段27は、反応チャンバー20の原料反応領域R1及び結晶成長領域R2をそれぞれ加熱することが可能である。第1加熱手段26及び第2加熱手段27のそれぞれは、例えば、抵抗加熱式や輻射加熱式の加熱装置であるが、特にこれらに限定されるものではない。
 反応チャンバー20は、第1ガス導入ポート21、第2ガス導入ポート22、第3ガス導入ポート23、及び、排気ポート24を有する。
 第1ガス導入ポート21は、不活性のキャリアガスを用いて、ClガスまたはHClガスを含む塩素含有ガスを、反応チャンバー20の原料反応領域R1内に導入するためのポートである。不活性のキャリアガスは、例えば、窒素ガス(N)、アルゴンガス(Ar)またはヘリウムガス(He)などであり、以下において同様である。
 第2ガス導入ポート22は、不活性のキャリアガスを用いて、酸素ガス(O)または水蒸気ガス(HO)を含む酸素含有ガスと、Gaエピタキシャル成長層2にSi等の不純物を添加するための添加元素の原料ガスとを、反応チャンバー20の結晶成長領域R2へ導入するためのポートである。
 第3ガス導入ポート23は、不活性のキャリアガスを反応チャンバー20の結晶成長領域R2へ導入するためのポートである。
 排気ポート24は、反応チャンバー20の結晶成長領域R2で用いられなかったガスなどを、反応チャンバー20外に排気するためのポートである。
 次に、HVPE法を用いて本実施の形態1に係るGaエピタキシャル成長層2を形成する例について説明する。
 まず、第1加熱手段26を用いて反応チャンバー20の原料反応領域R1を加熱することによって、原料反応領域R1の雰囲気温度を、予め定められた温度に保つ。
 次に、第1ガス導入ポート21からキャリアガスを用いて塩素含有ガスを導入し、原料反応領域R1において、予め定められた温度に保たれた雰囲気温度下で反応容器25内のガリウム金属体と塩素含有ガスとを反応させ、塩化ガリウム系ガスを生成する。生成される塩化ガリウム系ガスは、GaClガスと、GaClガスを除く他の塩化ガリウム系ガスとを含み、他の塩化ガリウム系ガスとしては、例えば、GaClガス、GaClガス、(GaClガス等が想定される。
 GaClガスは、他の塩化ガリウム系ガスよりも、Ga系単結晶の成長駆動力を高めることができる、換言すれば成長速度を向上させることができる温度に保つことができる。また、高純度、高品質のGaエピタキシャル成長層2を形成するためには、高い温度での成長が有効である。以上のことから、GaClガスの分圧が高い塩化ガリウム系ガスを生成することが好ましい。
 これを実現するために、原料反応領域R1内の雰囲気温度は、GaClガスの分圧比が、他の塩化ガリウム系ガスの分圧比よりも高くなるような温度であることが好ましい。具体的には、原料反応領域R1の雰囲気温度を、GaClガスの分圧比が高くなる300℃以上の状態に第1加熱手段26で保持して、反応容器25内のガリウム金属体と塩素含有ガスとを反応させることが好ましい。例えば、原料反応領域R1の雰囲気温度が850℃である場合には、GaClガスの分圧比が圧倒的に高くなり、他の塩化ガリウム系ガスはGa系単結晶の成長にほとんど寄与しなくなる。
 また、第1加熱手段26の寿命と、石英ガラス等からなる反応チャンバー20の耐熱性とを考慮して、原料反応領域R1の雰囲気温度を1000℃以下に保持した状態で、反応容器25内のガリウム金属体と塩素含有ガスを反応させることが好ましい。
 ところで、Gaエピタキシャル成長層2を成長させる雰囲気に水素を含まないようにすると、Gaエピタキシャル成長層2の結晶成長駆動力が向上し、成長速度を向上させることができる。このため、塩化ガリウム系ガスは、ガリウム原料と、水素を含まない塩素含有ガスとの反応によって生成された、例えば水素を含まないClガスなどであってもよく、酸素含有ガスは、水素を含まないOガスなどであってもよい。
 以上の製造方法によれば、Gaエピタキシャル成長層2の成長速度は、1時間当たり1μm以上、つまり1μm/h以上にすることができる。
 次に、結晶成長領域R2において、原料反応領域R1で生成された塩化ガリウム系ガスと、第2ガス導入ポート22から導入された酸素含有ガスとを混合させ、その混合ガスにGa単結晶基板1を曝す。これにより、Ga単結晶基板1上にGaエピタキシャル成長層2をエピタキシャル成長させる。このとき、反応チャンバー20を収容する炉内の結晶成長領域R2における圧力は、例えば1atmに保たれる。
 添加元素としてSiまたはAl等を含むGaエピタキシャル成長層2を形成する場合には、添加元素の原料ガスを、塩化ガリウム系ガス及び酸素含有ガスに加えて、第2ガス導入ポート22から結晶成長領域R2に導入する。例えば、添加元素としてSiを含むGaエピタキシャル成長層2を形成する場合には、添加元素の原料ガスとして、四塩化ケイ素(SiCl)などの塩化物系ガスが用いられる。
 なお、結晶成長領域R2におけるOガスの供給分圧のGaClガスの供給分圧に対する比が0.5以上であり、成長温度が900℃以上であることが、Gaエピタキシャル成長層2を効率的に成長させる観点から好ましい。また、Gaエピタキシャル成長層2の効率的な成長だけに着目すれば、成長温度が約1000℃以上であることがより好ましい。なお、成長温度は、例えば、反応チャンバー20内の雰囲気温度と、Ga単結晶基板1の温度との少なくともいずれか1つに相当する。
 また、HVPE法を用いて形成されるGaエピタキシャル成長層2には、およそ5×1016atoms/cm以下の濃度の塩素が含まれる。これは、塩素含有ガスを用いてGaエピタキシャル成長層2が形成されることに起因する。HVPE法以外の塩素含有ガスを用いない方法によって形成されるGaエピタキシャル成長層2には、通常、1×1016atoms/cm以上の塩素が含まれることはない。
 また、HVPE法を用いて形成されるGaエピタキシャル成長層2の残留キャリア濃度は、1×1013/cm以下となる。このため、SiなどのIV族元素を不純物ドーピングすれば、Gaエピタキシャル成長層2のキャリア濃度を、例えば、1×1013~1×1020/cmの範囲、つまり3×1015/cmを含む範囲で制御することが可能である。なお、キャリア濃度は、例えばC-V(capacitance-voltage)法によって測定することができる。
 <実施の形態1のまとめ>
 以上のような本実施の形態1によれば、Ga単結晶基板1の第1主面、及び、Gaエピタキシャル成長層2の第2主面のそれぞれの面方位は、(011)面及びその付近である。このような構成によれば、第1主面及び第2主面の欠陥密度を低減することができ、デバイスの漏れ電流の低減、及び、逆方向耐圧の向上などが可能となるので、デバイス特性を高めることができる。
 また、塩化ガリウム系ガスと酸素含有ガスとを用いるHVPE法によってGaエピタキシャル成長層2を形成すれば、成膜レート、及び、膜厚の面内分布の均一性を高くすることができ、大口径化が可能となる。
 また、塩化ガリウム系ガスにおいて、GaClガスの分圧比を、他の塩化ガリウム系ガスの分圧比よりも高くすれば、高純度、高品質のGaエピタキシャル成長層2を形成することができ、その成長駆動力を高めることができる。
 また、酸素の原料としてHOを利用した場合、Gaエピタキシャル成長層2の表面平坦性を向上させることができる。
 <実施の形態2>
 図4は、本実施の形態2に係る半導体装置の構成を概略的に例示する断面図である。本実施の形態2に係る半導体装置は、実施の形態1に係るGa単結晶積層構造体を備えるショットキーバリアダイオード(SBD)である。しかしながら本実施の形態2に係る半導体装置は、SBDに限定されるものではなく、他の半導体ダイオードであってもよいし、これら以外の半導体装置であってもよい。
 図4の半導体装置は、上述したGa単結晶基板1及びGaエピタキシャル成長層2と、アノード電極3と、カソード電極4とを備える。アノード電極3は、Gaエピタキシャル成長層2の上面上に設けられ、Gaエピタキシャル成長層2と電気的にショットキー接合されたショットキー電極である。カソード電極4は、Ga単結晶基板1のGaエピタキシャル成長層2と逆側の面である下面上に設けられ、Ga単結晶基板1と電気的にオーミック接合されたオーミック電極である。
 n型不純物を含むGa単結晶基板1の電子キャリア濃度は、酸素欠損とn型不純物との合計の濃度となる。Ga単結晶基板1の電子キャリア濃度は、例えば、1×1017cm-3以上、かつ、1×1019cm-3以下であってよい。また、Ga単結晶基板1とカソード電極4とのコンタクト抵抗を低減するために、Ga単結晶基板1の不純物濃度は、上記数値範囲よりも高濃度であってもよい。
 Gaエピタキシャル成長層2は、Ga単結晶基板1の上面上に配設される。Gaエピタキシャル成長層2の電子キャリア濃度は、Ga単結晶基板1の電子キャリア濃度よりも低いことが望ましく、例えば、1×1015cm-3以上、かつ、1×1017cm-3以下であってよい。
 アノード電極3は、Gaエピタキシャル成長層2の上面上に配設される。アノード電極3は、Gaエピタキシャル成長層2とショットキー接合されるため、Gaエピタキシャル成長層2の仕事関数よりも仕事関数が大きい金属材料で構成されることが好ましい。
 このような金属材料としては、例えば、白金(Pt)、ニッケル(Ni)、金(Au)、または、パラジウム(Pd)であってよい。アノード電極3は、複数の金属材料を積層した積層構造であってよい。例えば、Gaエピタキシャル成長層2とのショットキー接合に適した金属材料からなる第1層を、Gaエピタキシャル成長層2に接触させて配設し、第1層の上面上に、他の金属材料からなる第2層を配設することによってアノード電極3を構成してもよい。
 カソード電極4は、Ga単結晶基板1の下面上に配設される。カソード電極4は、Ga単結晶基板1とオーミック接合されるため、Ga単結晶基板1の仕事関数よりも仕事関数が小さい金属材料で構成されることが好ましい。また、Ga単結晶基板1に形成した後の熱処理によって、Ga単結晶基板1との接触抵抗が小さくなるような金属材料で、カソード電極4が構成されることが好ましい。
 このような金属材料としては、例えば、チタン(Ti)であってよい。また、カソード電極4は、アノード電極3と同様に、複数の金属材料を積層した積層構造であってもよい。例えば、Ga単結晶基板1の下面に酸化しやすい金属材料が接触している場合には、当該金属材料の下面上に酸化しにくい金属材料をさらに形成した積層構造のカソード電極4を構成してもよい。また例えば、Ga単結晶基板1に接触し、オーミック接合に適したTiからなる第1層を配設し、第1層の下面上に、金(Au)または銀(Ag)からなる第2層を配設することによってカソード電極4を構成してもよい。また、カソード電極4は、Ga単結晶基板1の下面の全体に配設されてもよく、Ga単結晶基板1の下面の一部に配設されてもよい。
 以上のような実施の形態2によれば、実施の形態1の積層結晶構造体を利用することにより、デバイス特性が高められた半導体装置を実現することができる。
 <実施の形態3>
 図5は、本実施の形態3に係る半導体装置の構成を概略的に例示する断面図である。本実施の形態3に係る半導体装置は、実施の形態1に係るGa単結晶積層構造体を備える横型ショットキーゲートトランジスタである。しかしながら本実施の形態3に係る半導体装置は、横型ショットキーゲートトランジスタに限定されるものではなく、ゲート絶縁膜を有する他の半導体スイッチング素子であってもよいし、これら以外の半導体装置であってもよい。
 図5の半導体装置は、上述したGa単結晶基板1及びGaエピタキシャル成長層2と、ソース電極5と、ドレイン電極6と、ゲート電極7とを備える。ソース電極5及びドレイン電極6は、Gaエピタキシャル成長層2の上面上に互いに離間して設けられ、Gaエピタキシャル成長層2と電気的にオーミック接合されたオーミック電極である。ゲート電極7は、Gaエピタキシャル成長層2の上面上、かつ、ソース電極5とドレイン電極6との間に設けられ、Gaエピタキシャル成長層2と電気的にショットキー接合されたショットキー電極である。
 本実施の形態3に係る半導体装置は、電流の流れる方向が横方向であるため、Gaエピタキシャル成長層2の電子キャリア濃度は、Ga単結晶基板1の電子キャリア濃度よりも高い。この点は、実施の形態2に示した縦型の半導体素子と異なる点であり、このようなGaエピタキシャル成長層2はそのn型不純物の濃度を調節することにより形成することができる。
 n型不純物を含むGa単結晶基板1の電子キャリア濃度は、酸素欠損とn型不純物との合計の濃度となる。Ga単結晶基板1の電子キャリア濃度は、例えば、1×1012cm-3以上、かつ、1×1015cm-3以下であってよい。また、Ga単結晶基板1の電子キャリア濃度は電流の流れに寄与しないので、不純物濃度は、上記数値範囲よりも低濃度であってもよい。つまり、Ga単結晶基板1を意図的に半絶縁化するために、鉄(Fe)等をGa単結晶基板1に添加してもよい。
 一方、Gaエピタキシャル成長層2の不純物濃度及び電子キャリア濃度は、Ga単結晶基板1よりも高濃度であることが望ましく、その電子キャリア濃度は、例えば、1×1015cm-3以上、かつ、1×1017cm-3以下であってよい。
 ソース電極5及びドレイン電極6は、Gaエピタキシャル成長層2とオーミック接合されるため、Gaエピタキシャル成長層2の仕事関数よりも仕事関数が小さい金属材料で構成されることが好ましい。また、Gaエピタキシャル成長層2に形成した後の熱処理によって、Gaエピタキシャル成長層2との接触抵抗が小さくなるような金属材料で、ソース電極5及びドレイン電極6が構成されることが好ましい。このような金属材料としては、例えば、チタン(Ti)であってよい。また、ソース電極5及びドレイン電極6は、実施の形態2で説明したカソード電極4と同様に、積層構造であってもよい。
 ゲート電極7は、Gaエピタキシャル成長層2とショットキー接合されるため、Gaエピタキシャル成長層2の仕事関数よりも仕事関数が大きい金属材料で構成されることが好ましい。このような金属材料としては、例えば、白金(Pt)、ニッケル(Ni)、金(Au)、または、パラジウム(Pd)であってよい。また、ゲート電極7は、実施の形態2で説明したアノード電極3と同様に、積層構造であってもよい。
 なお、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態及び各変形例を適宜、変形、省略したりすることが可能である。
 上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。
 1 Ga単結晶基板、2 Gaエピタキシャル成長層、3 アノード電極、4 カソード電極、5 ソース電極、6 ドレイン電極、7 ゲート電極。

Claims (14)

  1.  第1主面を有するGa単結晶基板と、
     前記Ga単結晶基板の前記第1主面上に設けられ、前記Ga単結晶基板と逆側に第2主面を有するエピタキシャル成長層であるGa単結晶層と
    を備え、
     前記Ga単結晶基板の前記第1主面、及び、前記Ga単結晶層の前記第2主面のそれぞれの面方位は、(011)面である、結晶積層構造体。
  2.  請求項1に記載の結晶積層構造体であって、
     前記Ga単結晶層は塩素を含む、結晶積層構造体。
  3.  請求項1に記載の結晶積層構造体であって、
     前記Ga単結晶層の残留キャリア濃度は3×1015/cm以下である、結晶積層構造体。
  4.  請求項2に記載の結晶積層構造体であって、
     前記Ga単結晶層の塩素の濃度は、5×1016atoms/cm以下である、結晶積層構造体。
  5.  第1主面を有するGa単結晶基板を準備する工程と、
     塩化ガリウム系ガスと酸素含有ガスとによって、前記Ga単結晶基板の前記第1主面上に、前記Ga単結晶基板と逆側に第2主面を有するエピタキシャル成長層であるGa単結晶層を形成する工程と
    を備え、
     前記Ga単結晶基板の前記第1主面、及び、前記Ga単結晶層の前記第2主面のそれぞれの面方位は、(011)面である、結晶積層構造体の製造方法。
  6.  請求項5に記載の結晶積層構造体の製造方法であって、
     前記Ga単結晶層は900℃以上の成長温度下で形成され、
     前記塩化ガリウム系ガスは、ガリウム原料と、水素を含まない塩素含有ガスとの反応によって生成され、
     前記塩化ガリウム系ガス及び前記酸素含有ガスのそれぞれは、水素を含まない、結晶積層構造体の製造方法。
  7.  請求項6に記載の結晶積層構造体の製造方法であって、
     前記酸素含有ガスはOガスである、結晶積層構造体の製造方法。
  8.  請求項6または請求項7に記載の結晶積層構造体の製造方法であって、
     前記塩素含有ガスはClガスである、結晶積層構造体の製造方法。
  9.  請求項5に記載の結晶積層構造体の製造方法であって、
     前記塩化ガリウム系ガスは、ガリウム金属体と、ClガスまたはHClガスを含む塩素含有ガスとの反応によって生成される、結晶積層構造体の製造方法。
  10.  請求項6から請求項9のうちのいずれか1項に記載の結晶積層構造体の製造方法であって、
     前記塩化ガリウム系ガスは、300℃以上の雰囲気温度下で生成される、結晶積層構造体の製造方法。
  11.  請求項6から請求項10のうちのいずれか1項に記載の結晶積層構造体の製造方法であって、
     前記塩化ガリウム系ガスは、GaClガスと、GaClガスを除く他の塩化ガリウム系ガスとを含み、
     GaClガスの分圧比は、前記他の塩化ガリウム系ガスの分圧比よりも高い、結晶積層構造体の製造方法。
  12.  請求項5から請求項11のうちのいずれか1項に記載の結晶積層構造体の製造方法であって、
     前記Ga単結晶層の成長速度が1μm/h以上である、結晶積層構造体の製造方法。
  13.  請求項1から請求項4のうちのいずれか1項に記載の結晶積層構造体と、
     前記Ga単結晶層の前記第2主面上に設けられたショットキー電極と、
     前記Ga単結晶基板の前記Ga単結晶層と逆側の面上に設けられたオーミック電極と
    を備え、
     前記Ga単結晶層のキャリア濃度は、前記Ga単結晶基板のキャリア濃度よりも低い、半導体装置。
  14.  請求項13に記載の半導体装置であって、
     前記Ga単結晶層の前記第2主面上に互いに離間して設けられたソース電極及びドレイン電極と、
     前記Ga単結晶層の前記第2主面上、かつ、前記ソース電極と前記ドレイン電極との間に設けられたゲート電極と
    をさらに備える、半導体装置。
PCT/JP2021/032392 2021-09-03 2021-09-03 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法 WO2023032140A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180101847.7A CN117941041A (zh) 2021-09-03 2021-09-03 晶体层叠构造体、半导体装置及晶体层叠构造体的制造方法
PCT/JP2021/032392 WO2023032140A1 (ja) 2021-09-03 2021-09-03 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
JP2022527788A JP7158627B1 (ja) 2021-09-03 2021-09-03 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
US18/685,510 US20240352619A1 (en) 2021-09-03 2021-09-03 Crystal lamination structure, semiconductor device, and method of manufacturing crystal lamination structure
DE112021008176.4T DE112021008176T5 (de) 2021-09-03 2021-09-03 Kristall-laminierungsstruktur, halbleitereinrichtung und verfahren zum herstellen einer kristall-laminierungsstruktur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032392 WO2023032140A1 (ja) 2021-09-03 2021-09-03 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2023032140A1 true WO2023032140A1 (ja) 2023-03-09

Family

ID=83691984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032392 WO2023032140A1 (ja) 2021-09-03 2021-09-03 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法

Country Status (5)

Country Link
US (1) US20240352619A1 (ja)
JP (1) JP7158627B1 (ja)
CN (1) CN117941041A (ja)
DE (1) DE112021008176T5 (ja)
WO (1) WO2023032140A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086458A (ja) * 2012-10-19 2014-05-12 Tamura Seisakusho Co Ltd 酸化ガリウム系基板の製造方法
JP2015091740A (ja) * 2013-09-30 2015-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP2015214448A (ja) * 2014-05-09 2015-12-03 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
JP2017109902A (ja) * 2015-12-16 2017-06-22 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6204436B2 (ja) 2015-10-21 2017-09-27 株式会社タムラ製作所 ショットキーバリアダイオード
JP7142047B2 (ja) 2020-03-05 2022-09-26 株式会社タムラ製作所 ショットキーバリアダイオード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086458A (ja) * 2012-10-19 2014-05-12 Tamura Seisakusho Co Ltd 酸化ガリウム系基板の製造方法
JP2015091740A (ja) * 2013-09-30 2015-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP2015214448A (ja) * 2014-05-09 2015-12-03 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
JP2017109902A (ja) * 2015-12-16 2017-06-22 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法

Also Published As

Publication number Publication date
US20240352619A1 (en) 2024-10-24
JP7158627B1 (ja) 2022-10-21
CN117941041A (zh) 2024-04-26
JPWO2023032140A1 (ja) 2023-03-09
DE112021008176T5 (de) 2024-06-27

Similar Documents

Publication Publication Date Title
Gogova et al. Homo-and heteroepitaxial growth of Sn-doped β-Ga 2 O 3 layers by MOVPE
EP3190608B1 (en) Laminated structure and method for manufacturing same
JP5818853B2 (ja) n型窒化アルミニウム単結晶基板を用いた縦型窒化物半導体デバイス
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6849862B2 (en) III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
CN107534062B (zh) 高耐压肖特基势垒二极管
US6476420B2 (en) P-N homojunction-based structures utilizing HVPE growth III-V compound layers
CN106471163B (zh) 半导体衬底、外延片及其制造方法
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
JP7220257B2 (ja) 積層体、半導体装置、ミストcvd装置及び成膜方法
US20020028565A1 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
US6479839B2 (en) III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6559467B2 (en) P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
US20020017650A1 (en) III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer
JP2020073425A (ja) 結晶積層構造体、及びそれを製造する方法
US7135347B2 (en) Method for manufacturing nitride film including high-resistivity GaN layer and epitaxial substrate manufactured by the method
JP6842128B2 (ja) α−Ga2O3単結晶の製造装置
JP7158627B1 (ja) 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
US20020047135A1 (en) P-N junction-based structures utilizing HVPE grown III-V compound layers
JP2010157574A (ja) 酸化亜鉛系半導体、酸化亜鉛系半導体の製造方法および製造装置
Alema et al. Metalorganic Chemical Vapor Deposition
Yuk et al. Effects of thermal annealing on the microstructural properties of the lower region in ZnO thin films grown on n-Si (001) substrates
ZHANG Fabrication of Oxide Semiconductors and Formation of the Heterostructures by UV Oxidation of Metallic Thin Films
張東元 et al. Fabrication of Oxide Semiconductors and Fromation of the Heterostructure by UV Oxidation of Metallic Thin Films

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022527788

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18685510

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180101847.7

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21956029

Country of ref document: EP

Kind code of ref document: A1