WO2023031997A1 - Hysteretic damper structure and method for assembling same - Google Patents

Hysteretic damper structure and method for assembling same Download PDF

Info

Publication number
WO2023031997A1
WO2023031997A1 PCT/JP2021/031718 JP2021031718W WO2023031997A1 WO 2023031997 A1 WO2023031997 A1 WO 2023031997A1 JP 2021031718 W JP2021031718 W JP 2021031718W WO 2023031997 A1 WO2023031997 A1 WO 2023031997A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate portion
damper structure
hysteretic damper
end side
hysteretic
Prior art date
Application number
PCT/JP2021/031718
Other languages
French (fr)
Japanese (ja)
Inventor
昭二 森川
清 相田
邦昭 三好
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2021/031718 priority Critical patent/WO2023031997A1/en
Publication of WO2023031997A1 publication Critical patent/WO2023031997A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the present invention relates to a hysteretic damper structure and its assembly method.
  • Patent Document 1 describes a hysteretic damper structure used as a diagonal member (brace) of a steel frame structure composed of columns and beams.
  • the hysteresis damper structure includes a pair of hysteresis damper portions arranged at both ends in the longitudinal direction, and an intermediate portion connecting the pair of hysteresis damper portions. fixed to the steel structure.
  • Each of the pair of hysteresis type damper parts has a core made of combined steel plates and a stiffening steel pipe arranged around the core.
  • the core material is plastically deformed to absorb the energy.
  • the intermediate portion is made of a round steel pipe having higher rigidity than the core material, and transmits the axial force to the pair of hysteresis type damper portions when the alternating axial force acts.
  • the hysteretic damper structure described in Patent Document 1 may be used to perform seismic reinforcement work on the boiler support steel frame.
  • various pipes, electrical cables and equipment have already been installed around the boiler support steel frame, limiting the space for fixing the hysteretic damper structure to the boiler support steel frame. Therefore, miniaturization of the outer shape of the hysteretic damper structure described in Patent Document 1 is required.
  • the present invention has been made in view of such circumstances, and its main purpose is to provide a hysteretic damper structure that can be miniaturized.
  • a typical present invention provides a hysteretic damper structure provided between a plurality of columns extending in a vertical direction and a plurality of beams extending horizontally between the columns.
  • a body comprising a pair of hysteresis type damper portions arranged at both ends in the longitudinal direction and absorbing energy by plastic deformation, and an intermediate portion connecting the pair of hysteresis type damper portions, the intermediate portion a hollow rectangular member extending in a direction and having four surfaces formed on said rectangular member, two of said four surfaces facing each other being formed by said posts and said beams; Parallel to a plane, the remaining two opposing surfaces are characterized by being orthogonal to said plane.
  • the outer shape of the hysteretic damper structure can be made smaller. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 2 is a side view showing the overall configuration of the hysteretic damper structure according to the first embodiment
  • 1 shows the configuration of a hysteretic damper structure according to the first embodiment
  • (a) is a partial vertical cross-sectional view
  • (b) is a cross-sectional view taken along line 2b-2b of (a)
  • (c) is 2c of (a).
  • (a) is a top view showing the overall configuration of the hysteresis damper structure shown in FIG. 1
  • (b) is a perspective view of an intermediate portion constituting the hysteresis damper structure shown in (a), (c) is ), and
  • (d) is a cross-sectional view along 3d-3d of (a).
  • FIG. 3(a) to 3(d) are diagrams for explaining a method of assembling the hysteretic damper structure shown in FIG. 1;
  • FIG. FIG. 5 is a diagram comparing the effect of the hysteretic damper structure according to the first embodiment with that of the conventional technique;
  • (a) is a side view illustrating the overall configuration of a hysteretic damper structure according to the second embodiment,
  • (b) is a cross-sectional view taken along line 6b-6b of (a)
  • (c) is a third embodiment.
  • FIG. 1 A side view for explaining the overall configuration of the hysteresis damper structure
  • (d) is a cross-sectional view taken along line 6d-6d of (c)
  • (e) is for explaining the overall configuration of the hysteresis damper structure according to the fourth embodiment.
  • (f) is a cross-sectional view taken along line 6f-6f of (e).
  • Figure 6(f) shows another embodiment of Figure 6(f);
  • the hysteretic damper structure 100 is a steel structure composed of a plurality of columns 2 extending in the vertical direction and a plurality of beams 3 extending horizontally between the columns 2. 1, it is provided on a diagonal line between these pillars 2 and beams 3 .
  • the hysteresis damper structure 100 includes a pair of hysteresis damper portions 11 arranged at both ends in the longitudinal direction, and an intermediate portion 20 connecting the pair of hysteresis damper portions 11 .
  • a pair of hysteretic damper portions 11 each includes a core member 12 and a stiffening steel pipe 18 .
  • the hysteresis type damper structure 100 is fixed via joint portions 13 by bolt joints 15 to the joint members 4 respectively attached to the diagonal joints between the columns 2 and the beams 3 .
  • the core material 12 has a cross-shaped cross section by combining steel plates of uniform thickness (FIG. 2(b)).
  • the core member 12 has one end connected to the intermediate portion 20 and the other end provided with the joint portion 13 .
  • the core member 12 is integrally formed in the axial direction from the connection end with the intermediate portion 20 to the joint portion 13 .
  • the hysteresis type damper portion 11 absorbs energy by plastically deforming the core member 12 when an alternating axial force of a predetermined magnitude or more acts.
  • the core member 12 and the intermediate portion 20 may be connected by a known method such as using an interrupted gusset plate.
  • the joint portion 13 is provided with a bolt hole 14 for joining the joint member 4 with a bolt joint 15 (FIG. 2(a)).
  • a plurality of stiffening plates 16 made of steel are fixed to the side where the joint part 13 is provided by a known technique such as welding (Fig. 2 ( c)).
  • the stiffening steel pipe 18 has a rectangular cross section and is arranged around the core material 12 with a predetermined gap d therebetween. Inside the stiffening steel pipe 18 , the tops of the projecting plates 12 a to 12 d forming the cross-shaped core member 12 face the corners of the stiffening steel pipe 18 .
  • the stiffening steel pipe 18 restrains the core member 12 from buckling by preventing deformation exceeding the predetermined gap d when the core member 12 receives alternating axial force. As a result, the core material 12 exhibits the same elastoplastic behavior when receiving a compressive axial force as when receiving a tensile force.
  • One end of the stiffening steel pipe 18 is connected to the intermediate portion 20, and the other end is provided with an open end portion 19 through which the core member 12 penetrates (FIG. 2(a)). Since the core material 12 penetrates through the open end portion 19, it is allowed to expand and contract when receiving an alternating axial force.
  • the intermediate portion 20 is positioned between the pair of hysteretic damper portions 11 to connect them.
  • the intermediate portion 20 has higher rigidity than the core member 12, and transmits the axial force to the pair of hysteresis type damper portions 11 when the alternating axial force acts.
  • the optimum member characteristics can be set for the hysteresis damper structure 100. becomes possible. Details of the shape of the intermediate portion 20 will be described later.
  • ⁇ Basic action of the hysteresis type damper structure For example, when an earthquake load acts on the hysteresis damper structure 100, the alternating axial force (tensile force and compression force) is applied to the hysteresis damper structure 100 via the joints 13 at both ends of the hysteresis damper structure 100. It is transmitted to the intermediate part 20 via the core material 12 of 11. Then, when the tensile axial force reaches the yield axial force (+Ny) of the core material 12, plastic deformation (+ ⁇ ) occurs, and when the compressive axial force reaches the yield axial force ( ⁇ Ny) of the core material 12, plastic deformation ( ⁇ ) occurs.
  • the core material 12 that receives the compressive axial force tends to undergo buckling deformation, but the stiffening steel pipe 18 restrains the deformation and prevents the buckling.
  • the entire hysteretic damper structure 100 responds with a hysteresis curve, resulting in absorption of seismic energy and damping of vibration.
  • the core material 12 passes through the open end 19 and is exposed to the outside of the stiffening steel pipe 18. In some cases, even if the core material 12 exposed to the outside receives a compressive axial force, the stiffening plate 16 prevents the core material 12 from locally buckling deformation.
  • the intermediate portion 20 is a hollow rectangular steel pipe (rectangular steel pipe) extending in the longitudinal direction (horizontal direction in FIG. 3(a), in other words, the axial direction).
  • shaped member has four surfaces formed on this rectangular steel tube and four back surfaces corresponding to these four surfaces.
  • the four surfaces consist of a front surface 20a, a rear surface 20b opposite the front surface 20a, an upper surface 20c perpendicular to the front surface 20a and the rear surface 20b, and a lower surface 20d opposite the upper surface 20c.
  • the front surface 20a and the rear surface 20b (two surfaces facing each other) of the intermediate portion 20 are the pillars 2 and the beams 3. It is a plane parallel to the plane R formed by and.
  • the upper surface 20c and the lower surface 20d (remaining two surfaces facing each other) of the intermediate portion 20 are surfaces orthogonal to the plane R thereof.
  • the shape of the longitudinal section obtained by cutting the intermediate portion 20 along a plane orthogonal to the longitudinal direction (axial direction) is "square", but it may be "rectangular".
  • square includes not only a shape whose four corners are completely right-angled, but also a shape in which the four corners are rounded for manufacturing reasons. The same applies to the case of "rectangle".
  • the intermediate portion 20 has a split structure that can be split into two along a direction perpendicular to the longitudinal direction at the central position. ing. Specifically, the intermediate portion 20 has a first intermediate portion 21 and a second intermediate portion 22 . One end of the first intermediate portion 21 is connected to the hysteretic damper portion 11 (core material 12 ), and the other end of the first intermediate portion 21 is connected to the second intermediate portion 22 . Similarly, one end of the second intermediate portion 22 is connected to the hysteretic damper portion 11 (core material 12 ), and the other end of the second intermediate portion 22 is connected to the first intermediate portion 21 .
  • the first intermediate portion 21 and the second intermediate portion 22 are a plurality of long flat plate-shaped splices arranged on the front side and the back side across the connecting portion of the first intermediate portion 21 and the second intermediate portion 22. It is connected via a plate (also called “splicing plate”) 23 .
  • a plate also called “splicing plate” 23 .
  • the splice plate (first connection plate) 23 arranged on the front side is referred to as “first splice plate 23”
  • the splice plate (second connection plate) 23 arranged on the back side is referred to as "second splice plate 23".
  • a plurality of (18 in the first embodiment) bolt holes 23a are formed in the first splice plate 23 and the second splice plate 23, and the first intermediate portion 21 and the second intermediate portion 22 each have a Bolt holes 20e are formed at positions corresponding to the bolt holes 23a when the splice plate 23 is attached. Then, bolts 24a are inserted into the bolt holes 23a of the first splice plate 23, the bolt holes 20e of the first intermediate portion 21 and the second intermediate portion 22, and the bolt holes 23a of the second splice plate 23. A nut 24b is attached to 24a (FIG. 3(c)).
  • the diameter and number of bolts are determined in consideration of the arrangement of the bolts 24a according to the alternating axial force acting on the hysteretic damper structure 100 and the size of the splice plate 23, so that the number of bolts varies. Therefore, the number of bolt holes 23a and 20e is not limited to 18 as described above, but may be 12, for example, and bolts 24a may be inserted into these bolt holes 23a and 20e.
  • Circular openings (through holes) 25 are formed in the first intermediate portion 21 and the second intermediate portion 22 near the positions where the first splice plate 23 and the second splice plate 23 are arranged, respectively. It is Specifically, an opening window 25 is formed in the front surface 20 a and the rear surface 20 b of the first intermediate portion 21 so as to be adjacent to one end of the first splice plate 23 and the second splice plate 23 . Similarly, the front surface 20a and the rear surface 20b of the second intermediate portion 22 are formed with opening windows 25 adjacent to the other ends of the first splice plate 23 and the second splice plate 23, respectively. The size of the opening window 25 is set so that the fingers, arms, elbows, etc. of the operator can be inserted. Note that the shape of the opening window 25 is not limited to a circular shape. A closing plate 26 is attached so as to close the opening window 25 (FIG. 3(d)).
  • the pair of hysteretic damper portions 11 are connected by welding, for example, an interrupt gusset plate to one end side of the first intermediate portion 21 and one end side of the second intermediate portion 22 (not shown).
  • one end side of the first splice plate 23 is arranged on the surface of the other end side of the second intermediate portion 22 (the side opposite to the end portion to which the hysteretic damper portion 11 is attached). Then, one end side of the second splice plate 23 is arranged on the back surface of the other end side of the second intermediate portion 22 . At this time, the plurality of bolt holes 23a provided in the first splice plate 23, the plurality of bolt holes 23a provided in the second splice plate 23, and the plurality of bolt holes 20e provided in the second intermediate portion 22 position.
  • first splice plate 23 and the second splice plate 23 are each fixed (semi-fixed) to the second intermediate portion 22 at one end, and have a gap S (for inserting the first intermediate portion 21) at the other end.
  • FIG. 4(a)) is formed.
  • the other end side of the first intermediate portion 21 is inserted into the gap S provided between the first splice plate 23 and the second splice plate 23, and the first The first intermediate portion 21 is pushed toward the second intermediate portion 22 until the ends of the intermediate portion 21 and the second intermediate portion 22 are in contact with each other (FIG. 4(c)).
  • the plurality of bolt holes 23a provided in the first splice plate 23, the plurality of bolt holes 23a provided in the second splice plate 23, and the bolt holes 20e provided in the first intermediate portion 21 are aligned. Then, an operator inserts fingers, arms, elbows, or the like from the opening window 25 of the first intermediate portion 21, inserts the bolt 24a into each of the bolt holes 20e and 23e, and tightens the nut 24b to the inserted bolt 24a. Then, in the state shown in FIG. 4(a), all the bolts 24a are tightened together with the temporarily tightened bolts 24a. In addition, in the state of FIG.
  • M is the bending moment
  • Z is the section modulus. From this equation, when the bending moment M is constant, the section modulus Z should be kept constant in order to keep the maximum stress ⁇ max generated in the member constant. Since the section modulus Z is determined according to the cross-sectional shape of the member, if the outer dimensions of each member are obtained and compared so that the cross-sectional area of each member and the section modulus Z are equal, the same design conditions (i.e. , the bending moment M is constant, and the maximum stress ⁇ max is constant), the cross-sectional shape with the smallest outer dimension can be known.
  • Fig. 5 compares the external dimensions for square, circular, and rhomboid cross-sectional shapes under the same design conditions as described above.
  • L1 is the neutral axis of each cross section
  • L2 is a straight line passing through the upper end of the square cross section
  • L3 is a straight line passing through the lower end of the square cross section
  • L4 is a straight line passing through the upper end of the circular cross section
  • L5 is the lower end of the circular cross section.
  • L6 is a straight line passing through the top end of the rhombic cross-section
  • L7 is a straight line passing through the bottom end of the rhombic cross-section.
  • the square outer dimension h1 corresponds to the length between the upper line L2 and the lower line L3
  • the circular outer dimension h2 corresponds to the length between the upper line L4 and the lower line L5.
  • the outer dimension h3 of the rhombus corresponds to the length between the upper line L6 and the lower line L7. Therefore, the size relationship of the outer dimensions of the square, the circle, and the rhombus is "h 1 ⁇ h 2 ⁇ h 3 ".
  • the outer dimensions can be reduced by (h 2 ⁇ h 1 ) compared to when the cross section is circular, and when compared to when the cross section is rhomboid, the outer dimensions can be reduced by ( h 3 -h 1 ).
  • the cross-sectional shape is square.
  • the outer dimensions can be minimized.
  • the intermediate portion 20 is made of a hollow rectangular steel pipe having a square cross section, so that the hysteretic damper structure 100 has a more compact outer dimension than the conventional one.
  • the hysteretic damper structure can be constructed even in a narrow space without performing large-scale modification work. 100 can be installed. More specifically, in order to install the hysteresis type damper structure 100, it is possible to reduce the number of man-hours for disassembly work and modification work for avoiding interference with pipes, electric cables, equipment, etc. attached to the boiler support steel frame. .
  • the intermediate portion 20 can be divided into the first intermediate portion 21 and the second intermediate portion 22 . Therefore, handling of the first intermediate portion 21 and the second intermediate portion 22 is easier than when the intermediate portion 20 is handled as a single unit. For example, compared to the case where the intermediate part 20 is hung integrally, the length is about half, so when moving the first intermediate part 21 and the second intermediate part 22 respectively, interference with equipment etc. is reduced. Since handling becomes easier and the suspension load is about half, the size of the suspension jig and suspension device can be reduced. In particular, in an existing boiler plant, the space for routing and the space after installation are limited, so it is very convenient if the intermediate section 20 has a split structure. In addition, since the intermediate part 20 can be disassembled for transportation, the size and weight of the maintenance floor and scaffolding can be reduced.
  • both the length and the mass can be approximately halved.
  • the hysteresis type damper structure 100 When such a hysteresis type damper structure 100 is attached to the existing steel frame structure 1, the hysteresis type damper structure 100 must be brought into the boiler building from outside the boiler building and moved to a predetermined installation location. During this movement, there are many obstacles (equipment, pipes, etc.) and, of course, there is no floor for access. Moreover, even if an access floor is installed, the strength of the floor may not be sufficient.
  • the second case there is no beam 3 at the position where the load for moving the hysteretic damper structure 100 is suspended. In this case, a new beam 3 must be installed. .
  • the strength of the beam 3 at the position where the load is suspended is insufficient. In this case, the existing beam 3 must be reinforced.
  • the fourth case is a case where the floor for access is installed in the existing steel structure 1 and this floor is moved. Reinforcement of floor beams and elimination of other obstacles must be carried out. Therefore, in the case of the third case and the fourth case described above, since the above-mentioned reinforcement and additional reinforcement occur, the hysteresis type damper structure 100 should have a shorter length, and the mass (load) should be reduced. A lighter one can reduce the reinforcement range and reinforcement content.
  • the first splice plate 23 is arranged on the front surface side across the connecting portion between the first intermediate portion 21 and the second intermediate portion 22, and the second splice plate is arranged on the back surface side. Since the first intermediate portion 21 and the second intermediate portion 22 are connected via the plate 23, the work of connecting the first intermediate portion 21 and the second intermediate portion 22 is simple. Furthermore, since the first intermediate portion 21 and the second intermediate portion 22 are connected by the two splice plates 23, even if the load acting on the hysteretic damper structure 100 is large, the load can be withstood.
  • the opening windows 25 are provided in the first intermediate portion 21 and the second intermediate portion 22, respectively, there is no need to prepare a special tool or the like when attaching the splice plate 23. , no complicated work is required.
  • the cover plate 26 that closes the opening window 25 is provided, there is an advantage that rainwater and dust can be prevented from entering the intermediate portion 20 . Note that the assembly method described in the first embodiment can be applied even if the intermediate portion 20 is a rectangular member with a rhombic cross section.
  • a hysteretic damper structure 200 according to the second embodiment will be described with reference to FIGS.
  • This hysteretic damper structure 200 differs from the first embodiment in that the first intermediate portion 21 and the second intermediate portion 22 are connected via flange portions 27a and 27b without using a splice plate 23. different.
  • first intermediate portion 21 is provided with a first flange portion 27a
  • second intermediate portion 22 is provided with a second flange portion 27b.
  • a plurality of (12 in the second embodiment) bolt holes are formed in each of the first flange portion 27a and the second flange portion 27b, and bolts 24a are inserted into these bolt holes.
  • a method of assembling the hysteretic damper structure 200 according to the second embodiment will be described.
  • the hysteretic damper section 11 is connected to one end side of each of the first intermediate section 21 and the second intermediate section 22 .
  • the first flange portion 27a of the first intermediate portion 21 and the second flange portion 27b of the second intermediate portion 22 are brought into contact with each other.
  • the bolts 24a are inserted from the first intermediate portion 21 side into the bolt holes formed in the respective flange portions 27a and 27b, and nuts (not shown) are attached from the second intermediate portion 22 side for fastening.
  • the first flange portion 27a and the second flange portion 27b are connected. This completes the assembly work of this hysteretic damper structure 200 .
  • the same effects as those of the first embodiment can be obtained.
  • the first intermediate portion 21 and the second intermediate portion 22 can be connected via the first flange portion 27a and the second flange portion 27b, the assembly work is easy.
  • the second embodiment is preferably adopted when the magnitude of the load acting on the steel frame structure 1 is relatively small.
  • a hysteretic damper structure 300 according to the third embodiment will be described with reference to FIGS.
  • This hysteretic damper structure 300 differs from the first embodiment in that the first intermediate portion 21 and the second intermediate portion 22 are joined by welding without using the splice plate 23 .
  • a method of assembling the hysteretic damper structure 300 according to the third embodiment will be described.
  • the hysteretic damper section 11 is connected to one end side of each of the first intermediate section 21 and the second intermediate section 22 .
  • the other end side of the second intermediate portion 22 and the other end side of the first intermediate portion 21 are butted against each other and joined by welding. This completes the assembly work of the hysteretic damper structure 300 .
  • the hysteretic damper structure 300 according to the third embodiment it is possible to achieve the same effects as those of the first embodiment. In particular, it is effective when the magnitude of the load acting on the steel frame structure 1 is very large.
  • a hysteretic damper structure 400 according to the fourth embodiment will be described with reference to FIGS.
  • This hysteretic damper structure 400 differs from the first embodiment in that the splice plate 23 is arranged only on the surface side of the connecting portion between the first intermediate portion 21 and the second intermediate portion 22 .
  • a method of assembling the hysteretic damper structure 400 according to the fourth embodiment will be described.
  • the hysteretic damper section 11 is connected to one end side of each of the first intermediate section 21 and the second intermediate section.
  • one end side of a splice plate (connection plate) 23 is attached to each of the four surfaces on the other end side of the second intermediate portion 22 using bolts 24a.
  • the other end side of the second intermediate portion 22 and the other end side of the first intermediate portion 21 are in contact with each other, four surfaces on the other end side of the first intermediate portion 21 are bolted using bolts 24a. Attach the other end of the splice plate 23 . This completes the assembly work of this hysteretic damper structure 400 .
  • the hysteretic damper structure 400 it is possible to achieve the same effects as those of the first embodiment.
  • the assembly work time can be shortened compared to the first embodiment.
  • the opening window 25 shown in the first embodiment may be provided.
  • a configuration such as that shown in FIG. 7 may be employed in which the splice plate 23 is attached to the intermediate portion 20 using bolts 24a and nuts 24b.
  • both ends of the hysteretic damper structure 100 are fixed to the joint members 4 respectively attached to the diagonal joints between the columns 2 and the beams 3. It is not limited to this.
  • one end of the hysteresis damper structure 100 may be fixed to the joint member 4 between the column 2 and the beam 3, while the other end of the hysteresis damper structure 100 may be fixed to the center of the beam 3. .
  • the intermediate portion 20 has a split structure, but it is not limited to this, and the intermediate portion 20 may have an integral structure.
  • the opening windows 25 are formed on the front surface 20a and the rear surface 20b of the intermediate portion 20, but are not limited to this configuration, and may be formed on the upper surface 20c and the lower surface 20d of the intermediate portion 20. Alternatively, they may be provided on all surfaces 20a, 20b, 20c, and 20d.
  • hysteretic damper section 20 intermediate section 20a front surface (two surfaces facing each other) 20b posterior surface (two opposing surfaces) 20c upper surface (remaining two opposing surfaces) 20d lower surface (remaining two opposing surfaces) 21 first intermediate portion 22 second intermediate portion 23 splice plate (connection plate, first connection plate, second connection plate) 25 opening window (through hole) 27a first flange portion 27b second flange portion 100, 200, 300, 400 hysteresis type damper structure R plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

Provided is a hysteretic damper structure of which the external form can be reduced in size. A hysteretic damper structure (10) is provided between a plurality of vertically extending columns (2) and a plurality of beams (3) extending horizontally between the plurality of columns. The hysteretic damper structure comprises a pair of hysteretic damper sections (11) that are disposed at both ends in the longitudinal direction and that absorb energy by plastic deformation, and an intermediate section (20) connecting the pair of hysteretic damper sections. The intermediate section is made of a longitudinally extending hollow rectangular member and has four surfaces (20a, 20b, 20c, 20d) formed on the rectangular member. Two opposing surfaces (20a, 20b) of the four surfaces are parallel to planes formed by the columns and the beams, and the remaining two opposing surfaces (20c, 20d) are orthogonal to the planes.

Description

履歴型ダンパ構造体およびその組立方法Hysteretic damper structure and its assembly method
 本発明は、履歴型ダンパ構造体およびその組立方法に関する。 The present invention relates to a hysteretic damper structure and its assembly method.
 本技術分野の背景技術として、例えば特許文献1には、柱および梁からなる鉄骨構造物の斜材(ブレース)として用いられる履歴型ダンパ構造体が記載されている。この履歴型ダンパ構造体は、長手方向の両端に配置される一対の履歴型ダンパ部と、一対の履歴型ダンパ部同士を繋ぐ中間部とを備えて構成され、その両端部がボルト継手を介して鉄骨構造物に固定されている。 As a background art of this technical field, Patent Document 1, for example, describes a hysteretic damper structure used as a diagonal member (brace) of a steel frame structure composed of columns and beams. The hysteresis damper structure includes a pair of hysteresis damper portions arranged at both ends in the longitudinal direction, and an intermediate portion connecting the pair of hysteresis damper portions. fixed to the steel structure.
 一対の履歴型ダンパ部は、各々、鋼板が組み合わされてなる芯材と、芯材の周囲に配設された補剛鋼管とを有している。地震により履歴型ダンパ構造体が所定の大きさ以上の交番軸力を受けると、芯材が塑性変形することでエネルギを吸収するようになっている。また、中間部は、芯材より高剛性な丸鋼管から構成されており、交番軸力が作用したときに、一対の履歴型ダンパ部に軸力を伝達する。 Each of the pair of hysteresis type damper parts has a core made of combined steel plates and a stiffening steel pipe arranged around the core. When the hysteresis type damper structure receives an alternating axial force of a predetermined magnitude or more due to an earthquake, the core material is plastically deformed to absorb the energy. Further, the intermediate portion is made of a round steel pipe having higher rigidity than the core material, and transmits the axial force to the pair of hysteresis type damper portions when the alternating axial force acts.
特許第5216050号公報Japanese Patent No. 5216050
 ところで、既設のボイラプラントにおいて、例えば特許文献1に記載の履歴型ダンパ構造体を用いて、ボイラ支持鉄骨の耐震補強工事を行う場合が考えられる。しかしながら、ボイラ支持鉄骨の周囲には、既に各種配管や各種電気ケーブルおよび機器類が設置されており、履歴型ダンパ構造体をボイラ支持鉄骨に固定するためのスペースが制限される。そのため、特許文献1に記載の履歴型ダンパ構造体の外形を小型化することが求められている。 By the way, in an existing boiler plant, for example, the hysteretic damper structure described in Patent Document 1 may be used to perform seismic reinforcement work on the boiler support steel frame. However, various pipes, electrical cables and equipment have already been installed around the boiler support steel frame, limiting the space for fixing the hysteretic damper structure to the boiler support steel frame. Therefore, miniaturization of the outer shape of the hysteretic damper structure described in Patent Document 1 is required.
 本発明は、このような実情に鑑みてなされたもので、その主な目的は、外形を小型化できる履歴型ダンパ構造体を提供することにある。 The present invention has been made in view of such circumstances, and its main purpose is to provide a hysteretic damper structure that can be miniaturized.
 上記目的を達成するために、代表的な本発明は、鉛直方向に延びる複数の柱と、複数の前記柱の間に亘って水平方向に延びる複数の梁との間に設けられる履歴型ダンパ構造体であって、長手方向の両端に配置され、塑性変形によりエネルギを吸収する一対の履歴型ダンパ部と、前記一対の履歴型ダンパ部を繋ぐ中間部と、を備え、前記中間部は、長手方向に延びる中空の矩形状部材から成ると共に、前記矩形状部材に形成された4つの表面を有し、前記4つの表面のうち対向する2つの表面は、前記柱と前記梁とによって形成される平面に対して平行であり、残りの対向する2つの表面は、前記平面に対して直交することを特徴とする。 In order to achieve the above object, a typical present invention provides a hysteretic damper structure provided between a plurality of columns extending in a vertical direction and a plurality of beams extending horizontally between the columns. A body comprising a pair of hysteresis type damper portions arranged at both ends in the longitudinal direction and absorbing energy by plastic deformation, and an intermediate portion connecting the pair of hysteresis type damper portions, the intermediate portion a hollow rectangular member extending in a direction and having four surfaces formed on said rectangular member, two of said four surfaces facing each other being formed by said posts and said beams; Parallel to a plane, the remaining two opposing surfaces are characterized by being orthogonal to said plane.
 本発明によれば、履歴型ダンパ構造体の外形を小型化できる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the outer shape of the hysteretic damper structure can be made smaller. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
第1実施形態に係る履歴型ダンパ構造体の全体構成を示す側面図。FIG. 2 is a side view showing the overall configuration of the hysteretic damper structure according to the first embodiment; 第1実施形態に係る履歴型ダンパ構造体の構成を示し、(a)は部分縦断面図、(b)は(a)の2b-2b矢視断面図、(c)は(a)の2c-2c矢視断面図。1 shows the configuration of a hysteretic damper structure according to the first embodiment, (a) is a partial vertical cross-sectional view, (b) is a cross-sectional view taken along line 2b-2b of (a), and (c) is 2c of (a). -2c arrow sectional view. (a)は図1に示す履歴型ダンパ構造体の全体構成を示す上面図、(b)は(a)に示す履歴型ダンパ構造体を構成する中間部の斜視図、(c)は(a)の3c-3c矢視断面図、(d)は(a)の3d-3d矢視断面図。(a) is a top view showing the overall configuration of the hysteresis damper structure shown in FIG. 1, (b) is a perspective view of an intermediate portion constituting the hysteresis damper structure shown in (a), (c) is ), and (d) is a cross-sectional view along 3d-3d of (a). (a)~(d)は、図1に示す履歴型ダンパ構造体の組立方法を説明する図。3(a) to 3(d) are diagrams for explaining a method of assembling the hysteretic damper structure shown in FIG. 1; FIG. 第1実施形態に係る履歴型ダンパ構造体の効果を従来技術と比較した図。FIG. 5 is a diagram comparing the effect of the hysteretic damper structure according to the first embodiment with that of the conventional technique; (a)は第2実施形態に係る履歴型ダンパ構造体の全体構成を説明する側面図、(b)は(a)の6b-6b矢視断面図、(c)は第3実施形態に係る履歴型ダンパ構造体の全体構成を説明する側面図、(d)は(c)の6d-6d矢視断面図、(e)は第4実施形態に係る履歴型ダンパ構造体の全体構成を説明する側面図、(f)は(e)の6f-6f矢視断面図。(a) is a side view illustrating the overall configuration of a hysteretic damper structure according to the second embodiment, (b) is a cross-sectional view taken along line 6b-6b of (a), and (c) is a third embodiment. A side view for explaining the overall configuration of the hysteresis damper structure, (d) is a cross-sectional view taken along line 6d-6d of (c), and (e) is for explaining the overall configuration of the hysteresis damper structure according to the fourth embodiment. (f) is a cross-sectional view taken along line 6f-6f of (e). 図6(f)の別の実施形態を示す図。Figure 6(f) shows another embodiment of Figure 6(f);
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)
 図1に示すように、履歴型ダンパ構造体100は、鉛直方向に延びる複数の柱2と、複数の柱2の間に亘って水平方向に延びる複数の梁3とから構成される鉄骨構造物1において、これら柱2、梁3間に対角線上に設けられている。この履歴型ダンパ構造体100は、長手方向の両端に配置される一対の履歴型ダンパ部11と、一対の履歴型ダンパ部11を繋ぐ中間部20とを備えている。一対の履歴型ダンパ部11は、各々、芯材12と補剛鋼管18を備える。履歴型ダンパ構造体100は、柱2と梁3の間の対角接合部にそれぞれ取付けられた接合部材4に、ボルト継手15により継手部13を介して固定される。
(First embodiment)
As shown in FIG. 1, the hysteretic damper structure 100 is a steel structure composed of a plurality of columns 2 extending in the vertical direction and a plurality of beams 3 extending horizontally between the columns 2. 1, it is provided on a diagonal line between these pillars 2 and beams 3 . The hysteresis damper structure 100 includes a pair of hysteresis damper portions 11 arranged at both ends in the longitudinal direction, and an intermediate portion 20 connecting the pair of hysteresis damper portions 11 . A pair of hysteretic damper portions 11 each includes a core member 12 and a stiffening steel pipe 18 . The hysteresis type damper structure 100 is fixed via joint portions 13 by bolt joints 15 to the joint members 4 respectively attached to the diagonal joints between the columns 2 and the beams 3 .
 <芯材12>
 芯材12は、均一な厚さの鋼板を組合せることで断面が十字状を成している(図2(b))。芯材12は、一端が中間部20に接続され、また他端に継手部13が設けられる。芯材12は、中間部20との接続端から継手部13を含め、軸方向に一体的に形成されている。履歴型ダンパ部11は、所定の大きさ以上の交番軸力が作用すると、芯材12が塑性変形することによりエネルギを吸収する。芯材12と中間部20とを接続するには、例えば割り込みガゼットプレートを用いる等の公知の方法で行えばよい。また、継手部13には接合部材4とボルト継手15により接合させるためのボルト孔14が設けられている(図2(a))。さらに、芯材12には、その剛性向上を目的として、継手部13が設けられる側に、例えば溶接等の公知の手法によって複数の鋼製の補剛板16が固定されている(図2(c))。
<Core material 12>
The core material 12 has a cross-shaped cross section by combining steel plates of uniform thickness (FIG. 2(b)). The core member 12 has one end connected to the intermediate portion 20 and the other end provided with the joint portion 13 . The core member 12 is integrally formed in the axial direction from the connection end with the intermediate portion 20 to the joint portion 13 . The hysteresis type damper portion 11 absorbs energy by plastically deforming the core member 12 when an alternating axial force of a predetermined magnitude or more acts. The core member 12 and the intermediate portion 20 may be connected by a known method such as using an interrupted gusset plate. Further, the joint portion 13 is provided with a bolt hole 14 for joining the joint member 4 with a bolt joint 15 (FIG. 2(a)). Furthermore, in order to improve the rigidity of the core material 12, a plurality of stiffening plates 16 made of steel are fixed to the side where the joint part 13 is provided by a known technique such as welding (Fig. 2 ( c)).
 <補剛鋼管18>
 補剛鋼管18は、断面が矩形であって、芯材12の周囲に所定の隙間dを介して配設される。補剛鋼管18内部では、十字状の芯材12を構成する突出板12a~12dの各頂部が補剛鋼管18の各角部に対向している。補剛鋼管18は、芯材12が交番軸力を受けた際に所定の隙間dを超える量の変形を阻止することにより、芯材12が座屈するのを拘束する。これにより、芯材12は圧縮軸力を受けたときにも引張り力を受けたときと同様の弾塑性挙動を示す。補剛鋼管18は、一端が中間部20に接続され、他端に芯材12が貫通する開放端部19が設けられている(図2(a))。芯材12は、開放端部19を貫通していることで、交番軸力を受けた際の伸縮が許容される。
<Stiffening steel pipe 18>
The stiffening steel pipe 18 has a rectangular cross section and is arranged around the core material 12 with a predetermined gap d therebetween. Inside the stiffening steel pipe 18 , the tops of the projecting plates 12 a to 12 d forming the cross-shaped core member 12 face the corners of the stiffening steel pipe 18 . The stiffening steel pipe 18 restrains the core member 12 from buckling by preventing deformation exceeding the predetermined gap d when the core member 12 receives alternating axial force. As a result, the core material 12 exhibits the same elastoplastic behavior when receiving a compressive axial force as when receiving a tensile force. One end of the stiffening steel pipe 18 is connected to the intermediate portion 20, and the other end is provided with an open end portion 19 through which the core member 12 penetrates (FIG. 2(a)). Since the core material 12 penetrates through the open end portion 19, it is allowed to expand and contract when receiving an alternating axial force.
 <中間部20>
 中間部20は、一対の履歴型ダンパ部11の間に位置して、両者を繋ぐ。中間部20は、芯材12よりも高剛性に構成されており、交番軸力が作用したときに、一対の履歴型ダンパ部11に軸力を伝達する。中間部20を設けることで、中間部20を設けない場合であって履歴型ダンパ構造が全長に亘って占めている構造に比べて、履歴型ダンパ部11の製作精度管理が容易になり、履歴型ダンパ構造体100の長尺化が可能となる。そして、降伏軸力の調整は履歴型ダンパ部11で、また、軸剛性の調整は中間部20でというように、個別に調整できるので、履歴型ダンパ構造体100について最適な部材特性を設定することが可能となる。なお、中間部20の形状の詳細については、後述する。
<Intermediate part 20>
The intermediate portion 20 is positioned between the pair of hysteretic damper portions 11 to connect them. The intermediate portion 20 has higher rigidity than the core member 12, and transmits the axial force to the pair of hysteresis type damper portions 11 when the alternating axial force acts. By providing the intermediate portion 20, compared to a structure in which the hysteresis damper structure occupies the entire length in the case where the intermediate portion 20 is not provided, the manufacturing accuracy control of the hysteresis damper portion 11 is facilitated. It is possible to lengthen the mold damper structure 100 . Since the yield axial force can be adjusted by the hysteresis damper portion 11 and the axial rigidity can be adjusted by the intermediate portion 20, the optimum member characteristics can be set for the hysteresis damper structure 100. becomes possible. Details of the shape of the intermediate portion 20 will be described later.
 <履歴型ダンパ構造体の基本的な作用>
 例えば、地震荷重が作用すると履歴型ダンパ構造体100は交番軸力(引張り力および圧縮力)を受けるが、この軸力は履歴型ダンパ構造体100両端の継手部13を介して履歴型ダンパ部11の芯材12を経て中間部20に伝わる。そして、引張り軸力が芯材12の降伏軸力(+Ny)に達すると塑性変形(+δ)が生じ、圧縮軸力が芯材12の降伏軸力(-Ny)に達すると塑性変形(-δ)が生ずる。この際、圧縮軸力を受けた芯材12は座屈変形しようとするが、補剛鋼管18によってその変形が拘束されて座屈が防止される。こうして、履歴型ダンパ構造体100の全体が履歴曲線を描いて応答し、その結果、地震エネルギが吸収されて振動は減衰する。
<Basic action of the hysteresis type damper structure>
For example, when an earthquake load acts on the hysteresis damper structure 100, the alternating axial force (tensile force and compression force) is applied to the hysteresis damper structure 100 via the joints 13 at both ends of the hysteresis damper structure 100. It is transmitted to the intermediate part 20 via the core material 12 of 11. Then, when the tensile axial force reaches the yield axial force (+Ny) of the core material 12, plastic deformation (+δ) occurs, and when the compressive axial force reaches the yield axial force (−Ny) of the core material 12, plastic deformation (−δ ) occurs. At this time, the core material 12 that receives the compressive axial force tends to undergo buckling deformation, but the stiffening steel pipe 18 restrains the deformation and prevents the buckling. Thus, the entire hysteretic damper structure 100 responds with a hysteresis curve, resulting in absorption of seismic energy and damping of vibration.
 なお、以上の履歴の過程において、交番軸力が作用しない定常な状態では芯材12に引張り力が作用すると、芯材12は開放端部19を通過して補剛鋼管18の外部に露出する場合があるが、仮にこの外部に露出した芯材12が圧縮軸力を受けても、補剛板16によってその芯材12は局部的な座屈変形を生じないようになっている。 In the course of the history described above, when a tensile force acts on the core material 12 in a steady state in which no alternating axial force acts, the core material 12 passes through the open end 19 and is exposed to the outside of the stiffening steel pipe 18. In some cases, even if the core material 12 exposed to the outside receives a compressive axial force, the stiffening plate 16 prevents the core material 12 from locally buckling deformation.
 <中間部20の形状>
 図1,3を参照して、第1実施形態に係る中間部20の形状の詳細について説明する。図1および図3(a),(b)に示すように、中間部20は、長手方向(図3(a)の左右方向、別言すれば軸方向)に延びる中空の矩形状鋼管(矩形状部材)から成り、この矩形状鋼管に形成された4つの表面とこれら4つの表面に対応する4つの裏面とを有している。4つの表面は、前面20a、この前面20aと対向する後面20b、これら前面20aおよび後面20bに対して直交する上面20c、この上面20cに対向する下面20dから成る。
<Shape of intermediate portion 20>
Details of the shape of the intermediate portion 20 according to the first embodiment will be described with reference to FIGS. As shown in FIGS. 1 and 3(a) and (b), the intermediate portion 20 is a hollow rectangular steel pipe (rectangular steel pipe) extending in the longitudinal direction (horizontal direction in FIG. 3(a), in other words, the axial direction). shaped member) and has four surfaces formed on this rectangular steel tube and four back surfaces corresponding to these four surfaces. The four surfaces consist of a front surface 20a, a rear surface 20b opposite the front surface 20a, an upper surface 20c perpendicular to the front surface 20a and the rear surface 20b, and a lower surface 20d opposite the upper surface 20c.
 図1に示すように、履歴型ダンパ構造体100が鉄骨構造物1に固定されている状態においては、中間部20の前面20aおよび後面20b(対向する2つの表面)は、柱2と梁3とによって形成される平面Rに対して平行な面となっている。一方、中間部20の上面20cおよび下面20d(残りの対向する2つの表面)は、その平面Rに対して直交する面となっている。なお、本実施形態では、中間部20を長手方向(軸方向)に直交する面で切断した縦断面の形状が「正方形」であるが、「長方形」であっても良い。ここで、「正方形」とは、四隅が完全に直角の形状だけでなく、製造上、四隅がR形状になっている場合も含む。「長方形」の場合も同様である。 As shown in FIG. 1, when the hysteretic damper structure 100 is fixed to the steel frame structure 1, the front surface 20a and the rear surface 20b (two surfaces facing each other) of the intermediate portion 20 are the pillars 2 and the beams 3. It is a plane parallel to the plane R formed by and. On the other hand, the upper surface 20c and the lower surface 20d (remaining two surfaces facing each other) of the intermediate portion 20 are surfaces orthogonal to the plane R thereof. In the present embodiment, the shape of the longitudinal section obtained by cutting the intermediate portion 20 along a plane orthogonal to the longitudinal direction (axial direction) is "square", but it may be "rectangular". Here, the term "square" includes not only a shape whose four corners are completely right-angled, but also a shape in which the four corners are rounded for manufacturing reasons. The same applies to the case of "rectangle".
 また、図3(a),(b)に示すように、中間部20は、長手方向に沿った中央位置において、この方向に直交する方向に沿って2つに分割可能な分割構造を有している。具体的には、中間部20は、第1中間部21と、第2中間部22とを有する。第1中間部21の一端部は履歴型ダンパ部11(芯材12)に接続され、第1中間部21の他端部は第2中間部22に接続されている。同様に、第2中間部22の一端部は履歴型ダンパ部11(芯材12)に接続され、第2中間部22の他端部は第1中間部21に接続されている。 In addition, as shown in FIGS. 3(a) and 3(b), the intermediate portion 20 has a split structure that can be split into two along a direction perpendicular to the longitudinal direction at the central position. ing. Specifically, the intermediate portion 20 has a first intermediate portion 21 and a second intermediate portion 22 . One end of the first intermediate portion 21 is connected to the hysteretic damper portion 11 (core material 12 ), and the other end of the first intermediate portion 21 is connected to the second intermediate portion 22 . Similarly, one end of the second intermediate portion 22 is connected to the hysteretic damper portion 11 (core material 12 ), and the other end of the second intermediate portion 22 is connected to the first intermediate portion 21 .
 第1中間部21と第2中間部22とは、これら第1中間部21および第2中間部22の接続部を跨いでその表面側および裏面側に配置される長尺平板状の複数のスプライスプレート(「スプライシングプレート」とも称される。)23を介して接続される。以下、第1実施形態において、表面側に配置されたスプライスプレート(第1連結プレート)23を「第1スプライスプレート23」と表記し、裏面側に配置されたスプライスプレート(第2連結プレート)23を「第2スプライスプレート23」と表記する。 The first intermediate portion 21 and the second intermediate portion 22 are a plurality of long flat plate-shaped splices arranged on the front side and the back side across the connecting portion of the first intermediate portion 21 and the second intermediate portion 22. It is connected via a plate (also called “splicing plate”) 23 . Hereinafter, in the first embodiment, the splice plate (first connection plate) 23 arranged on the front side is referred to as "first splice plate 23", and the splice plate (second connection plate) 23 arranged on the back side. is referred to as "second splice plate 23".
 第1スプライスプレート23および第2スプライスプレート23には、複数(第1実施形態例では18個)のボルト孔23aが形成されており、第1中間部21および第2中間部22には、各スプライスプレート23が取り付けられた状態において、そのボルト孔23aに対応する位置にそれぞれボルト孔20eが形成されている。そして、第1スプライスプレート23のボルト孔23a、第1中間部21および第2中間部22のボルト孔20e、および第2スプライスプレート23のボルト孔23aにボルト24aが挿入され、この挿入されたボルト24aにナット24bが取り付けられている(図3(c))。なお、履歴型ダンパ構造体100に作用する交番軸力およびスプライスプレート23の大きさ等により、ボルト24aの配置を考慮し、ボルト径、ボルト員数が決まるため、種々のボルト個数となる。よって、ボルト孔23a,20eの個数は上記した18個に限定されることなく、例えば12個とし、これらボルト孔23a,20eにボルト24aを挿入しても良い。 A plurality of (18 in the first embodiment) bolt holes 23a are formed in the first splice plate 23 and the second splice plate 23, and the first intermediate portion 21 and the second intermediate portion 22 each have a Bolt holes 20e are formed at positions corresponding to the bolt holes 23a when the splice plate 23 is attached. Then, bolts 24a are inserted into the bolt holes 23a of the first splice plate 23, the bolt holes 20e of the first intermediate portion 21 and the second intermediate portion 22, and the bolt holes 23a of the second splice plate 23. A nut 24b is attached to 24a (FIG. 3(c)). Note that the diameter and number of bolts are determined in consideration of the arrangement of the bolts 24a according to the alternating axial force acting on the hysteretic damper structure 100 and the size of the splice plate 23, so that the number of bolts varies. Therefore, the number of bolt holes 23a and 20e is not limited to 18 as described above, but may be 12, for example, and bolts 24a may be inserted into these bolt holes 23a and 20e.
 また、第1中間部21および第2中間部22には、それぞれ、第1スプライスプレート23および第2スプライスプレート23が配置される位置の近傍に、円形状の開口窓(貫通孔)25が形成されている。具体的には、第1中間部21の前面20aおよび後面20bには、第1スプライスプレート23および第2スプライスプレート23の一方の端部に隣接するように開口窓25が形成されている。また、同様に、第2中間部22の前面20aおよび後面20bには、第1スプライスプレート23および第2スプライスプレート23の他方の端部に隣接するように開口窓25が形成されている。開口窓25の大きさは、作業者の手指、腕、肘等が挿入可能な大きさに設定されている。なお、開口窓25の形状は円形状に限定されない。また、この開口窓25を塞ぐように塞ぎ板26が取り付けられている(図3(d))。 Circular openings (through holes) 25 are formed in the first intermediate portion 21 and the second intermediate portion 22 near the positions where the first splice plate 23 and the second splice plate 23 are arranged, respectively. It is Specifically, an opening window 25 is formed in the front surface 20 a and the rear surface 20 b of the first intermediate portion 21 so as to be adjacent to one end of the first splice plate 23 and the second splice plate 23 . Similarly, the front surface 20a and the rear surface 20b of the second intermediate portion 22 are formed with opening windows 25 adjacent to the other ends of the first splice plate 23 and the second splice plate 23, respectively. The size of the opening window 25 is set so that the fingers, arms, elbows, etc. of the operator can be inserted. Note that the shape of the opening window 25 is not limited to a circular shape. A closing plate 26 is attached so as to close the opening window 25 (FIG. 3(d)).
 <履歴型ダンパ構造体100の組立方法>
 次に、図4を参照して、第1実施形態に係る履歴型ダンパ構造体100の組立方法について説明する。なお、説明の便宜上、図4においては、中間部20のみを図示しており、履歴型ダンパ部11等の構成は図示していない。
<Method for assembling hysteretic damper structure 100>
Next, a method for assembling the hysteretic damper structure 100 according to the first embodiment will be described with reference to FIG. For convenience of explanation, only the intermediate portion 20 is shown in FIG. 4, and the configuration of the hysteretic damper portion 11 and the like is not shown.
 まず、第1中間部21の一端側および第2中間部22の一端側に、例えば割り込みガゼットプレートを溶接接合することにより、一対の履歴型ダンパ部11(芯材12の一端)を接続する(不図示)。 First, the pair of hysteretic damper portions 11 (one end of the core material 12) are connected by welding, for example, an interrupt gusset plate to one end side of the first intermediate portion 21 and one end side of the second intermediate portion 22 ( not shown).
 次に、図4(a)に示すように、第2中間部22の他端側(履歴型ダンパ部11が取り付けられる端部と反対側)の表面に第1スプライスプレート23の一端側を配置し、第2中間部22の他端側の裏面に第2スプライスプレート23の一端側を配置する。このとき、第1スプライスプレート23に設けられた複数のボルト孔23aと、第2スプライスプレート23に設けられた複数のボルト孔23aと、第2中間部22に設けられた複数のボルト孔20eとの位置合わせをする。 Next, as shown in FIG. 4A, one end side of the first splice plate 23 is arranged on the surface of the other end side of the second intermediate portion 22 (the side opposite to the end portion to which the hysteretic damper portion 11 is attached). Then, one end side of the second splice plate 23 is arranged on the back surface of the other end side of the second intermediate portion 22 . At this time, the plurality of bolt holes 23a provided in the first splice plate 23, the plurality of bolt holes 23a provided in the second splice plate 23, and the plurality of bolt holes 20e provided in the second intermediate portion 22 position.
 そして、第1スプライスプレート23、第2中間部22、および第2スプライスプレート23の全部又は一部のボルト孔20e,23aに対して、第2中間部22の開口窓25に作業者が手指、腕、肘等を入れて、ボルト24aを挿入し、挿入したボルト24aにナット24bを締結(仮締)する。これにより、第1スプライスプレート23の一端側と第2スプライスプレート23の一端側とが第2中間部22に固定(半固定)される。この一連の作業を第2中間部22の残りの表面および裏面についても行う。 Then, an operator puts his or her finger into the opening window 25 of the second intermediate portion 22 for the bolt holes 20e and 23a of all or part of the first splice plate 23, the second intermediate portion 22, and the second splice plate 23. Insert the arm, elbow, etc., insert the bolt 24a, and fasten (temporarily tighten) the nut 24b to the inserted bolt 24a. As a result, one end side of the first splice plate 23 and one end side of the second splice plate 23 are fixed (semi-fixed) to the second intermediate portion 22 . This series of operations is also performed on the remaining front and back surfaces of the second intermediate portion 22 .
 こうして、第1スプライスプレート23および第2スプライスプレート23は、それぞれの一端側が第2中間部22に固定(半固定)され、その他端側に、第1中間部21を挿入するための隙間S(図4(a))が形成される。 In this way, the first splice plate 23 and the second splice plate 23 are each fixed (semi-fixed) to the second intermediate portion 22 at one end, and have a gap S (for inserting the first intermediate portion 21) at the other end. FIG. 4(a)) is formed.
 次に、図4(b)に示すように、第1スプライスプレート23と第2スプライスプレート23との間に設けられた隙間Sに、第1中間部21の他端側を挿入し、第1中間部21と第2中間部22の端部同士が当接するまで、第1中間部21を第2中間部22に向かって押し込む(図4(c))。 Next, as shown in FIG. 4B, the other end side of the first intermediate portion 21 is inserted into the gap S provided between the first splice plate 23 and the second splice plate 23, and the first The first intermediate portion 21 is pushed toward the second intermediate portion 22 until the ends of the intermediate portion 21 and the second intermediate portion 22 are in contact with each other (FIG. 4(c)).
 第1スプライスプレート23に設けられた複数のボルト孔23aと、第2スプライスプレート23に設けられた複数のボルト孔23aと、第1中間部21に設けられたボルト孔20eの位置合わせをする。そして、第1中間部21の開口窓25から作業者が手指、腕、肘等を入れて、各ボルト孔20e,23eにボルト24aを挿入し、挿入されたボルト24aにナット24bを締結する。そして、図4(a)の状態で、仮締のボルト24aも合わせ全てのボルト24aを締結する。なお、図4(a)の状態で、ボルト24aを一部のボルト孔20e,23aにのみ挿入している場合には、ボルト24aを挿していない個所全てにボルト24aを挿入し、挿入されたボルト24aにナット24bを締結する。これにより、第1スプライスプレート23の他端側と第2スプライスプレート23の他端側とが第1中間部21に固定される(図4(d))。このような作業を第1中間部21の全ての表面および裏面について行った後に、最後に全ての開口窓25を塞ぎ板26で覆う。以上の手順により、第1中間部21および第2中間部22が、第1スプライスプレート23および第2スプライスプレート23を介して接続され、履歴型ダンパ構造体100の組立作業が完了する。 The plurality of bolt holes 23a provided in the first splice plate 23, the plurality of bolt holes 23a provided in the second splice plate 23, and the bolt holes 20e provided in the first intermediate portion 21 are aligned. Then, an operator inserts fingers, arms, elbows, or the like from the opening window 25 of the first intermediate portion 21, inserts the bolt 24a into each of the bolt holes 20e and 23e, and tightens the nut 24b to the inserted bolt 24a. Then, in the state shown in FIG. 4(a), all the bolts 24a are tightened together with the temporarily tightened bolts 24a. In addition, in the state of FIG. 4A, when the bolts 24a are inserted only into some of the bolt holes 20e and 23a, the bolts 24a are inserted into all the places where the bolts 24a are not inserted. A nut 24b is fastened to the bolt 24a. Thereby, the other end side of the first splice plate 23 and the other end side of the second splice plate 23 are fixed to the first intermediate portion 21 (FIG. 4(d)). After performing such work on all the front and back surfaces of the first intermediate portion 21 , all the opening windows 25 are finally covered with the closing plate 26 . By the above procedure, the first intermediate portion 21 and the second intermediate portion 22 are connected via the first splice plate 23 and the second splice plate 23, and the assembly work of the hysteretic damper structure 100 is completed.
 <効果の説明>
 まず、中間部20の断面形状を正方形にしたことによる外形寸法上の効果について説明する。部材に発生する最大応力σmaxは、σmax=M/Zの式により求まる。ここで、Mは曲げモーメント、Zは断面係数である。この式より、曲げモーメントMが一定のとき、部材に発生する最大応力σmaxを一定とするには、断面係数Zを一定にすれば良い。断面係数Zは、部材の断面形状に応じて定まるため、各種部材のそれぞれの断面積と断面係数Zが等しくなるように各部材の外形寸法を求めて比較すれば、同一の設計条件下(即ち、曲げモーメントMが一定、最大応力σmaxが一定の場合)において最も外形寸法が小さい断面形状を知ることができる。
<Description of effect>
First, the effects of the square cross-sectional shape of the intermediate portion 20 on the outer dimensions will be described. The maximum stress σ max generated in the member is obtained by the formula σ max =M/Z. where M is the bending moment and Z is the section modulus. From this equation, when the bending moment M is constant, the section modulus Z should be kept constant in order to keep the maximum stress σ max generated in the member constant. Since the section modulus Z is determined according to the cross-sectional shape of the member, if the outer dimensions of each member are obtained and compared so that the cross-sectional area of each member and the section modulus Z are equal, the same design conditions (i.e. , the bending moment M is constant, and the maximum stress σ max is constant), the cross-sectional shape with the smallest outer dimension can be known.
 図5は、上記した同一の設計条件下において、断面形状が正方形、円形、菱形の場合の外形寸法を比較したものである。なお、図5において、L1は各断面の中立軸、L2は正方形の断面上端を通る直線、L3は正方形の断面下端を通る直線、L4は円形の断面上端を通る直線、L5は円形の断面下端を通る直線、L6は菱形の断面上端を通る直線、L7は菱形の断面下端を通る直線である。 Fig. 5 compares the external dimensions for square, circular, and rhomboid cross-sectional shapes under the same design conditions as described above. In FIG. 5, L1 is the neutral axis of each cross section, L2 is a straight line passing through the upper end of the square cross section, L3 is a straight line passing through the lower end of the square cross section, L4 is a straight line passing through the upper end of the circular cross section, and L5 is the lower end of the circular cross section. , L6 is a straight line passing through the top end of the rhombic cross-section, and L7 is a straight line passing through the bottom end of the rhombic cross-section.
 図5に示すように、正方形の外形寸法hは上線L2と下線L3との間の長さに相当し、円形の外形寸法hは上線L4と下線L5との間の長さに相当し、菱形の外形寸法hは上線L6と下線L7との間の長さに相当する。そのため、正方形と円形と菱形との間の外形寸法の大小関係は、「h<h<h」となる。したがって、断面が正方形である場合には、断面が円形である場合に比べて外形寸法を(h-h)だけ小さくすることができ、断面が菱形である場合に比べて外形寸法を(h-h)だけ小さくすることができる。 As shown in FIG. 5, the square outer dimension h1 corresponds to the length between the upper line L2 and the lower line L3, and the circular outer dimension h2 corresponds to the length between the upper line L4 and the lower line L5. , the outer dimension h3 of the rhombus corresponds to the length between the upper line L6 and the lower line L7. Therefore, the size relationship of the outer dimensions of the square, the circle, and the rhombus is "h 1 <h 2 <h 3 ". Therefore, when the cross section is square, the outer dimensions can be reduced by (h 2 −h 1 ) compared to when the cross section is circular, and when compared to when the cross section is rhomboid, the outer dimensions can be reduced by ( h 3 -h 1 ).
 このように、断面積(単位長さ当たりの質量に対応)および曲げモーメントMが一定で、中間部20に作用する最大応力σmaxが一定になるように設計する場合、断面形状が正方形の方が、他の断面(円形、菱形)に比べて外形寸法を最も小型化ができる。そして、第1実施形態では、中間部20を、断面が正方形に形成された中空の矩形状鋼管で構成したので、履歴型ダンパ構造体100の外形寸法が従来に比べてコンパクトとなる。 Thus, when designing so that the cross-sectional area (corresponding to mass per unit length) and bending moment M are constant and the maximum stress σmax acting on the intermediate portion 20 is constant, the cross-sectional shape is square. However, compared to other cross sections (circular, rhomboid), the outer dimensions can be minimized. In the first embodiment, the intermediate portion 20 is made of a hollow rectangular steel pipe having a square cross section, so that the hysteretic damper structure 100 has a more compact outer dimension than the conventional one.
 また、既設のボイラプラントにおいて耐震補強工事を行う場合、ボイラ支持鉄骨の周囲には、既に各種配管や各種電気ケーブルおよび機器類を含む敷設物が設置されているため、履歴型ダンパ構造体を取り付けるスペースが非常に狭い場合が多い。ところが、第1実施形態によれば、中空の正方形断面を有する中間部20により小型化が図られているため、狭いスペースであっても、大がかりな改造工事を行うことなく、履歴型ダンパ構造体100を取り付けることができる。より具体的には、履歴型ダンパ構造体100を取り付けるために、ボイラ支持鉄骨に取り付けられている配管、電気ケーブル、機器類等との干渉を避けるための分解作業や改造工事の工数を低減できる。 In addition, when conducting seismic reinforcement work in an existing boiler plant, since various pipes, electrical cables, and equipment have already been installed around the boiler support steel frame, a hysteretic damper structure will be installed. Space is often very tight. However, according to the first embodiment, since the intermediate portion 20 having a hollow square cross section is designed to be compact, the hysteretic damper structure can be constructed even in a narrow space without performing large-scale modification work. 100 can be installed. More specifically, in order to install the hysteresis type damper structure 100, it is possible to reduce the number of man-hours for disassembly work and modification work for avoiding interference with pipes, electric cables, equipment, etc. attached to the boiler support steel frame. .
 また、第1実施形態において、中間部20は、第1中間部21と第2中間部22とに分割可能である。そのため、中間部20を一体で取り扱う場合に比べて、第1中間部21および第2中間部22の取り扱いが容易である。例えば、中間部20を一体で吊り下げる場合に比べて、長さが約半分となるため、第1中間部21および第2中間部22をそれぞれ移動させるとき、機器等との干渉が少なくなるため取り回しがし易くなり、かつ、吊り下げ荷重も約半分となるため、吊り下げ治具や吊り下げ装置を小型化できる。特に、既設のボイラプラントでは、取り回しのためのスペースおよび設置後のスペースが限られているため、中間部20が分割構造であると非常に利便性が高い。また、中間部20を分解して運搬することができるため、メンテナンス用の床や足場も小型・軽量化できる。 Also, in the first embodiment, the intermediate portion 20 can be divided into the first intermediate portion 21 and the second intermediate portion 22 . Therefore, handling of the first intermediate portion 21 and the second intermediate portion 22 is easier than when the intermediate portion 20 is handled as a single unit. For example, compared to the case where the intermediate part 20 is hung integrally, the length is about half, so when moving the first intermediate part 21 and the second intermediate part 22 respectively, interference with equipment etc. is reduced. Since handling becomes easier and the suspension load is about half, the size of the suspension jig and suspension device can be reduced. In particular, in an existing boiler plant, the space for routing and the space after installation are limited, so it is very convenient if the intermediate section 20 has a split structure. In addition, since the intermediate part 20 can be disassembled for transportation, the size and weight of the maintenance floor and scaffolding can be reduced.
 また、履歴型ダンパ構造体100は、中間部20を分割できるため、長さ、質量とも約半分にすることができる。このような履歴型ダンパ構造体100を既設の鉄骨構造物1に取り付ける際には、履歴型ダンパ構造体100をボイラ建屋外からボイラ建屋内に取り込み、所定の設置場所に移動させなければならないが、この移動途中には、干渉物(機器、配管等)が多く存在し、かつ、当然ながらアクセス用の床が設置されてない。また、仮にアクセス用の床が設置されていても床の強度が満足しない場合がある。 In addition, since the intermediate portion 20 of the hysteretic damper structure 100 can be divided, both the length and the mass can be approximately halved. When such a hysteresis type damper structure 100 is attached to the existing steel frame structure 1, the hysteresis type damper structure 100 must be brought into the boiler building from outside the boiler building and moved to a predetermined installation location. During this movement, there are many obstacles (equipment, pipes, etc.) and, of course, there is no floor for access. Moreover, even if an access floor is installed, the strength of the floor may not be sufficient.
 このような事情から履歴型ダンパ構造体100をボイラ建屋内の所定の設置場所に移動させるルートにおいて、既設の鉄骨構造物1の梁3に履歴型ダンパ構造体100の荷重を一時的に預ける場合がある。この場合、以下に示す第1ケース~第4ケースが考えられる。第1ケースは、単に、吊ラグを梁3に溶接等によって取り付けて、この吊ラグを介して梁3に履歴型ダンパ構造体100の荷重を預ける場合であり、この場合には、特に問題とならない。 Under such circumstances, when the load of the hysteresis damper structure 100 is temporarily deposited on the beam 3 of the existing steel frame structure 1 on the route to move the hysteresis damper structure 100 to a predetermined installation location in the boiler building. There is In this case, the following first to fourth cases are conceivable. In the first case, a suspension lug is simply attached to the beam 3 by welding or the like, and the load of the hysteretic damper structure 100 is transferred to the beam 3 via this suspension lug. not.
 これに対して、第2ケースは、履歴型ダンパ構造体100を移動させるための荷重を吊り下げる位置に梁3がない場合であり、この場合には、新たに梁3を設置しなければならない。また、第3ケースは、その荷重を吊り下げる位置の梁3の強度が不足する場合であり、この場合には、既設の梁3の補強を行わなければならない。さらに、第4ケースは、既設の鉄骨構造物1に上記したアクセス用の床が設置されており、この床を移動させる場合であり、この場合においても、強度不足が生じるときには、床の補強、床梁の補強およびその他支障項目の排除等を行わなければならない。従って、上記した第3ケースおよび第4ケースの場合には、上述のような補強、追設補強が生じるため、履歴型ダンパ構造体100は、長さは短い方が、また、質量(荷重)は軽い方が、補強範囲および補強内容を少なくすることができる。 On the other hand, in the second case, there is no beam 3 at the position where the load for moving the hysteretic damper structure 100 is suspended. In this case, a new beam 3 must be installed. . In the third case, the strength of the beam 3 at the position where the load is suspended is insufficient. In this case, the existing beam 3 must be reinforced. Furthermore, the fourth case is a case where the floor for access is installed in the existing steel structure 1 and this floor is moved. Reinforcement of floor beams and elimination of other obstacles must be carried out. Therefore, in the case of the third case and the fourth case described above, since the above-mentioned reinforcement and additional reinforcement occur, the hysteresis type damper structure 100 should have a shorter length, and the mass (load) should be reduced. A lighter one can reduce the reinforcement range and reinforcement content.
 また、第1実施形態において、第1中間部21と第2中間部22との接続部を跨いでその表面側に配置される第1スプライスプレート23と、その裏面側に配置される第2スプライスプレート23とを介して、第1中間部21および第2中間部22が接続される構成であるため、第1中間部21と第2中間部22とを接続する作業が簡単である。さらに、2つのスプライスプレート23で第1中間部21と第2中間部22とを接続しているため、履歴型ダンパ構造体100に作用する荷重が大きい場合でも、その荷重に耐えることができる。 Further, in the first embodiment, the first splice plate 23 is arranged on the front surface side across the connecting portion between the first intermediate portion 21 and the second intermediate portion 22, and the second splice plate is arranged on the back surface side. Since the first intermediate portion 21 and the second intermediate portion 22 are connected via the plate 23, the work of connecting the first intermediate portion 21 and the second intermediate portion 22 is simple. Furthermore, since the first intermediate portion 21 and the second intermediate portion 22 are connected by the two splice plates 23, even if the load acting on the hysteretic damper structure 100 is large, the load can be withstood.
 また、第1実施形態において、第1中間部21および第2中間部22には、それぞれ、開口窓25が設けられているため、スプライスプレート23の取付作業時に特殊工具等を用意する必要がなく、複雑な作業が不要である。また、開口窓25を塞ぐ塞ぎ板26が設けられているため、中間部20内に雨水や埃が入るのを防止できる利点もある。なお、第1実施形態で説明した組立方法は、中間部20が菱形断面の矩形状部材であっても適用可能である。 In addition, in the first embodiment, since the opening windows 25 are provided in the first intermediate portion 21 and the second intermediate portion 22, respectively, there is no need to prepare a special tool or the like when attaching the splice plate 23. , no complicated work is required. In addition, since the cover plate 26 that closes the opening window 25 is provided, there is an advantage that rainwater and dust can be prevented from entering the intermediate portion 20 . Note that the assembly method described in the first embodiment can be applied even if the intermediate portion 20 is a rectangular member with a rhombic cross section.
(その他の実施形態への言及)
 次に、中間部20の分割構造の他の実施形態について説明する。なお、以下の説明において、上記した第1実施形態と同一構成については、同一符号を付して説明を省略する。
(Reference to other embodiments)
Next, another embodiment of the divided structure of the intermediate portion 20 will be described. In addition, in the following description, the same reference numerals are given to the same configurations as those of the above-described first embodiment, and the description thereof is omitted.
(第2実施形態)
 図6(a),(b)を参照して、第2実施形態に係る履歴型ダンパ構造体200について説明する。この履歴型ダンパ構造体200は、第1中間部21と第2中間部22とが、スプライスプレート23を用いることなく、フランジ部27a,27bを介して接続されている点で第1実施形態と異なっている。
(Second embodiment)
A hysteretic damper structure 200 according to the second embodiment will be described with reference to FIGS. This hysteretic damper structure 200 differs from the first embodiment in that the first intermediate portion 21 and the second intermediate portion 22 are connected via flange portions 27a and 27b without using a splice plate 23. different.
 第1中間部21の他端部には第1フランジ部27aが設けられており、第2中間部22の他端部には第2フランジ部27bが設けられている。第1フランジ部27aおよび第2フランジ部27bには、それぞれ複数(第2実施形態では12個)のボルト孔(不図示)が形成されており、これらボルト孔にボルト24aが挿入されている。 The other end of the first intermediate portion 21 is provided with a first flange portion 27a, and the other end of the second intermediate portion 22 is provided with a second flange portion 27b. A plurality of (12 in the second embodiment) bolt holes (not shown) are formed in each of the first flange portion 27a and the second flange portion 27b, and bolts 24a are inserted into these bolt holes.
 第2実施形態に係る履歴型ダンパ構造体200の組立方法について説明する。まず、第1中間部21および第2中間部22の一端側に、それぞれ履歴型ダンパ部11を接続する。次いで、第1中間部21の第1フランジ部27aと第2中間部22の第2フランジ部27bとを当接させる。この状態で第1中間部21側から各フランジ部27a,27bに形成されたボルト孔にボルト24aを挿入し、第2中間部22側からナット(不図示)を取り付けて締結することにより、第1フランジ部27aと第2フランジ部27bとを接続する。これにより、この履歴型ダンパ構造体200の組立作業が完了する。 A method of assembling the hysteretic damper structure 200 according to the second embodiment will be described. First, the hysteretic damper section 11 is connected to one end side of each of the first intermediate section 21 and the second intermediate section 22 . Next, the first flange portion 27a of the first intermediate portion 21 and the second flange portion 27b of the second intermediate portion 22 are brought into contact with each other. In this state, the bolts 24a are inserted from the first intermediate portion 21 side into the bolt holes formed in the respective flange portions 27a and 27b, and nuts (not shown) are attached from the second intermediate portion 22 side for fastening. The first flange portion 27a and the second flange portion 27b are connected. This completes the assembly work of this hysteretic damper structure 200 .
 第2実施形態に係る履歴型ダンパ構造体200によれば、第1実施形態と同様の作用効果を奏することができる。特に、第1フランジ部27aおよび第2フランジ部27bを介して第1中間部21および第2中間部22を接続できるため、組立作業が簡単である。なお、第2実施形態は、鉄骨構造物1に作用する荷重の大きさが比較的小さい場合に採用することが好ましい。 According to the hysteretic damper structure 200 according to the second embodiment, the same effects as those of the first embodiment can be obtained. In particular, since the first intermediate portion 21 and the second intermediate portion 22 can be connected via the first flange portion 27a and the second flange portion 27b, the assembly work is easy. It should be noted that the second embodiment is preferably adopted when the magnitude of the load acting on the steel frame structure 1 is relatively small.
(第3実施形態)
 図6(c),(d)を参照して、第3実施形態に係る履歴型ダンパ構造体300について説明する。この履歴型ダンパ構造体300は、第1中間部21と第2中間部22とが、スプライスプレート23を用いることなく、溶接により接合されている点で第1実施形態と異なっている。
(Third embodiment)
A hysteretic damper structure 300 according to the third embodiment will be described with reference to FIGS. This hysteretic damper structure 300 differs from the first embodiment in that the first intermediate portion 21 and the second intermediate portion 22 are joined by welding without using the splice plate 23 .
 第3実施形態に係る履歴型ダンパ構造体300の組立方法について説明する。まず、第1中間部21および第2中間部22の一端側に、それぞれ履歴型ダンパ部11を接続する。次いで、第2中間部22の他端側と第1中間部21の他端側とを突き合わせて、溶接により両者を接合する。これにより、この履歴型ダンパ構造体300の組立作業が完了する。 A method of assembling the hysteretic damper structure 300 according to the third embodiment will be described. First, the hysteretic damper section 11 is connected to one end side of each of the first intermediate section 21 and the second intermediate section 22 . Next, the other end side of the second intermediate portion 22 and the other end side of the first intermediate portion 21 are butted against each other and joined by welding. This completes the assembly work of the hysteretic damper structure 300 .
 第3実施形態に係る履歴型ダンパ構造体300によれば、第1実施形態と同様の作用効果を奏することができる。特に、鉄骨構造物1に作用する荷重の大きさが非常に大きい場合に有効である。 According to the hysteretic damper structure 300 according to the third embodiment, it is possible to achieve the same effects as those of the first embodiment. In particular, it is effective when the magnitude of the load acting on the steel frame structure 1 is very large.
(第4実施形態)
 図6(e),(f)および図7を参照して、第4実施形態に係る履歴型ダンパ構造体400について説明する。この履歴型ダンパ構造体400は、スプライスプレート23が第1中間部21と第2中間部22との接続部の表面側にのみ配置されている点が、第1実施形態と異なっている。
(Fourth embodiment)
A hysteretic damper structure 400 according to the fourth embodiment will be described with reference to FIGS. This hysteretic damper structure 400 differs from the first embodiment in that the splice plate 23 is arranged only on the surface side of the connecting portion between the first intermediate portion 21 and the second intermediate portion 22 .
 第4実施形態に係る履歴型ダンパ構造体400の組立方法について説明する。まず、第1中間部21および第2中間部の一端側に、それぞれ履歴型ダンパ部11を接続する。次いで、第2中間部22の他端側における4つの表面に、それぞれ、ボルト24aを用いてスプライスプレート(連結プレート)23の一端側を取り付ける。次いで、第2中間部22の他端側と第1中間部21の他端側とを当接させた状態で、第1中間部21の他端側における4つの表面に、ボルト24aを用いてスプライスプレート23の他端側を取り付ける。これにより、この履歴型ダンパ構造体400の組立作業が完了する。 A method of assembling the hysteretic damper structure 400 according to the fourth embodiment will be described. First, the hysteretic damper section 11 is connected to one end side of each of the first intermediate section 21 and the second intermediate section. Next, one end side of a splice plate (connection plate) 23 is attached to each of the four surfaces on the other end side of the second intermediate portion 22 using bolts 24a. Next, while the other end side of the second intermediate portion 22 and the other end side of the first intermediate portion 21 are in contact with each other, four surfaces on the other end side of the first intermediate portion 21 are bolted using bolts 24a. Attach the other end of the splice plate 23 . This completes the assembly work of this hysteretic damper structure 400 .
 第4実施形態に係る履歴型ダンパ構造体400によれば、第1実施形態と同様の作用効果を奏することができる。特に、第4実施形態では、スプライスプレート23の枚数が第1実施形態より少ないため、第1実施形態より組立作業時間を短縮できる。なお、第4実施形態は、第1実施形態よりも鉄骨構造物1に作用する荷重が小さい場合に適用するのが好ましい。また、第4実施形態においても、第1実施形態に示す開口窓25を設けても良い。さらに、ボルト24aおよびナット24bを用いてスプライスプレート23を中間部20に取り付けた図7のような構成にしても良い。 According to the hysteretic damper structure 400 according to the fourth embodiment, it is possible to achieve the same effects as those of the first embodiment. In particular, in the fourth embodiment, since the number of splice plates 23 is smaller than that in the first embodiment, the assembly work time can be shortened compared to the first embodiment. In addition, it is preferable to apply 4th Embodiment when the load which acts on the steel-frame structure 1 is smaller than 1st Embodiment. Also in the fourth embodiment, the opening window 25 shown in the first embodiment may be provided. Furthermore, a configuration such as that shown in FIG. 7 may be employed in which the splice plate 23 is attached to the intermediate portion 20 using bolts 24a and nuts 24b.
 なお、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。 The present invention is not limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention. Subject to invention. Although the above embodiments show preferred examples, those skilled in the art can realize various alternatives, modifications, variations or improvements from the contents disclosed in this specification, These are included in the technical scope described in the appended claims.
 例えば上記実施形態では、図1に示すように、履歴型ダンパ構造体100の両端は、柱2と梁3の間の対角接合部にそれぞれ取付けられた接合部材4に固定されていたが、これに限られない。例えば履歴型ダンパ構造体100の一端部は柱2と梁3の間の接合部材4に固定される一方、履歴型ダンパ構造体100の他端部は梁3の中央部に固定されてもよい。 For example, in the above embodiment, as shown in FIG. 1, both ends of the hysteretic damper structure 100 are fixed to the joint members 4 respectively attached to the diagonal joints between the columns 2 and the beams 3. It is not limited to this. For example, one end of the hysteresis damper structure 100 may be fixed to the joint member 4 between the column 2 and the beam 3, while the other end of the hysteresis damper structure 100 may be fixed to the center of the beam 3. .
 また、第1実施形態では、中間部20は分割構造を有していたが、これに限られず、中間部20を一体構造としても良い。また、第1実施形態では、開口窓25は、中間部20の前面20aと後面20bに形成されていたが、この構成に限られず、中間部20の上面20cおよび下面20dに形成されていても良いし、全ての面20a,20b,20c,20dに設けても良い。 Also, in the first embodiment, the intermediate portion 20 has a split structure, but it is not limited to this, and the intermediate portion 20 may have an integral structure. In addition, in the first embodiment, the opening windows 25 are formed on the front surface 20a and the rear surface 20b of the intermediate portion 20, but are not limited to this configuration, and may be formed on the upper surface 20c and the lower surface 20d of the intermediate portion 20. Alternatively, they may be provided on all surfaces 20a, 20b, 20c, and 20d.
 2   柱
 3   梁
 11  履歴型ダンパ部
 20  中間部
 20a 前面(対向する2つの表面)
 20b 後面(対向する2つの表面)
 20c 上面(残りの対向する2つの表面)
 20d 下面(残りの対向する2つの表面)
 21  第1中間部
 22  第2中間部
 23  スプライスプレート(連結プレート、第1連結プレート、第2連結プレート)
 25  開口窓(貫通孔)
 27a 第1フランジ部
 27b 第2フランジ部
 100,200,300,400 履歴型ダンパ構造体
 R   平面
2 pillar 3 beam 11 hysteretic damper section 20 intermediate section 20a front surface (two surfaces facing each other)
20b posterior surface (two opposing surfaces)
20c upper surface (remaining two opposing surfaces)
20d lower surface (remaining two opposing surfaces)
21 first intermediate portion 22 second intermediate portion 23 splice plate (connection plate, first connection plate, second connection plate)
25 opening window (through hole)
27a first flange portion 27b second flange portion 100, 200, 300, 400 hysteresis type damper structure R plane

Claims (7)

  1.  鉛直方向に延びる複数の柱と、複数の前記柱の間に亘って水平方向に延びる複数の梁との間に設けられる履歴型ダンパ構造体であって、
     長手方向の両端に配置され、塑性変形によりエネルギを吸収する一対の履歴型ダンパ部と、
     前記一対の履歴型ダンパ部を繋ぐ中間部と、を備え、
     前記中間部は、長手方向に延びる中空の矩形状部材から成ると共に、前記矩形状部材に形成された4つの表面を有し、
     前記4つの表面のうち対向する2つの表面は、前記柱と前記梁とによって形成される平面に対して平行であり、残りの対向する2つの表面は、前記平面に対して直交することを特徴とする履歴型ダンパ構造体。
    A hysteretic damper structure provided between a plurality of columns extending in a vertical direction and a plurality of beams extending horizontally between the plurality of columns,
    a pair of hysteretic damper portions arranged at both ends in the longitudinal direction and absorbing energy by plastic deformation;
    an intermediate portion connecting the pair of hysteretic damper portions,
    said intermediate portion comprising a longitudinally extending hollow rectangular member and having four surfaces formed on said rectangular member;
    Of the four surfaces, two opposing surfaces are parallel to the plane formed by the pillar and the beam, and the remaining two opposing surfaces are orthogonal to the plane. A hysteresis type damper structure.
  2.  請求項1に記載の履歴型ダンパ構造体において、
     前記中間部は、長手方向に分割可能な第1中間部および第2中間部を有し、
     前記第1中間部と前記第2中間部とは、溶接により接合されることを特徴とする履歴型ダンパ構造体。
    The hysteretic damper structure according to claim 1,
    The intermediate portion has a first intermediate portion and a second intermediate portion that can be split in the longitudinal direction,
    A hysteretic damper structure, wherein the first intermediate portion and the second intermediate portion are joined by welding.
  3.  請求項1に記載の履歴型ダンパ構造体において、
     前記中間部は、長手方向に分割可能な第1中間部および第2中間部を有し、
     前記第1中間部には第1フランジ部が設けられ、前記第2中間部には第2フランジ部が設けられ、
     前記第1中間部と前記第2中間部とは、前記第1フランジ部および前記第2フランジ部を介して接続されることを特徴とする履歴型ダンパ構造体。
    The hysteretic damper structure according to claim 1,
    The intermediate portion has a first intermediate portion and a second intermediate portion that can be split in the longitudinal direction,
    The first intermediate portion is provided with a first flange portion, the second intermediate portion is provided with a second flange portion,
    A hysteretic damper structure, wherein the first intermediate portion and the second intermediate portion are connected via the first flange portion and the second flange portion.
  4.  請求項1に記載の履歴型ダンパ構造体において、
     前記中間部は、長手方向に分割可能な第1中間部および第2中間部を有し、
     前記第1中間部と前記第2中間部とは、両者を跨いで表面側に配置される連結プレートを介して接続されることを特徴とする履歴型ダンパ構造体。
    The hysteretic damper structure according to claim 1,
    The intermediate portion has a first intermediate portion and a second intermediate portion that can be split in the longitudinal direction,
    A hysteretic damper structure, wherein the first intermediate portion and the second intermediate portion are connected via a connecting plate arranged on the surface side across both.
  5.  請求項1に記載の履歴型ダンパ構造体において、
     前記中間部は、長手方向に分割可能な第1中間部および第2中間部を有し、
     前記第1中間部と前記第2中間部とは、両者を跨いで表面側に配置される第1連結プレートおよび裏面側に配置される第2連結プレートを介して接続されることを特徴とする履歴型ダンパ構造体。
    The hysteretic damper structure according to claim 1,
    The intermediate portion has a first intermediate portion and a second intermediate portion that can be split in the longitudinal direction,
    The first intermediate portion and the second intermediate portion are connected via a first connecting plate arranged on the front side and a second connecting plate arranged on the back side across both. History type damper structure.
  6.  請求項5に記載の履歴型ダンパ構造体において、
     前記第1中間部および前記第2中間部には、それぞれ、前記第1連結プレートおよび前記第2連結プレートが配置される位置の近傍に、作業者の手指、腕、肘等が挿入可能な大きさの貫通孔が設けられることを特徴とする履歴型ダンパ構造体。
    In the hysteretic damper structure according to claim 5,
    The first intermediate portion and the second intermediate portion are large enough to allow the operator's fingers, arms, elbows, etc. to be inserted near the positions where the first connecting plate and the second connecting plate are arranged, respectively. A hysteretic damper structure, characterized in that a through hole with a depth is provided.
  7.  長手方向の両端に配置され、塑性変形によりエネルギを吸収する一対の履歴型ダンパ部と、長手方向に延びる中空の矩形状部材から成り、前記一対の履歴型ダンパ部を繋ぐ中間部と、を備え、前記中間部は、長手方向に分割可能な第1中間部および第2中間部を有し、前記第1中間部および前記第2中間部には、それぞれ、作業者の手指、腕、肘等が挿入可能な大きさの貫通孔が設けられて構成された履歴型ダンパ構造体の組立方法であって、
     前記第1中間部の一端側および前記第2中間部の一端側に前記一対の履歴型ダンパ部をそれぞれ接続する工程と、
     前記第2中間部の他端側の表面に第1連結プレートの一端側を配置し、裏面に第2連結プレートの一端側を配置し、前記第2中間部の前記貫通孔に作業者が手指、腕、肘等を入れて、前記第1連結プレートの一端側と前記第2連結プレートの一端側とを前記第2中間部にボルトで仮固定し、前記第1連結プレートの他端側と前記第2連結プレートの他端側との間に前記第1中間部を挿入するための隙間を設ける工程と、
     前記第1連結プレートの他端側と前記第2連結プレートの他端側との間に設けられた前記隙間に前記第1中間部の他端側を挿入した後、前記第1中間部の前記貫通孔に作業者が手指、腕、肘等を入れて、前記第1連結プレートの他端側と前記第2連結プレートの他端側とを前記第1中間部にボルトで固定する工程と、を含むことを特徴とする履歴型ダンパ構造体の組立方法。
    A pair of hysteresis damper portions arranged at both ends in the longitudinal direction to absorb energy by plastic deformation, and an intermediate portion formed of a hollow rectangular member extending in the longitudinal direction and connecting the pair of hysteresis damper portions. , the intermediate portion has a first intermediate portion and a second intermediate portion that can be divided in the longitudinal direction, and the first intermediate portion and the second intermediate portion are provided with fingers, arms, elbows, etc. of the operator, respectively. A method for assembling a hysteretic damper structure having a through hole sized to allow insertion of
    connecting the pair of hysteretic damper portions to one end side of the first intermediate portion and one end side of the second intermediate portion;
    One end side of the first connection plate is arranged on the surface of the other end side of the second intermediate portion, one end side of the second connection plate is arranged on the back surface, and an operator inserts a finger into the through hole of the second intermediate portion. , arms, elbows, etc. are put in, one end side of the first connection plate and one end side of the second connection plate are temporarily fixed to the second intermediate portion with bolts, and the other end side of the first connection plate and providing a gap for inserting the first intermediate portion between the second connecting plate and the other end of the second connecting plate;
    After inserting the other end side of the first intermediate portion into the gap provided between the other end side of the first connecting plate and the other end side of the second connecting plate, a step of fixing the other end side of the first connection plate and the other end side of the second connection plate to the first intermediate portion by bolts by inserting fingers, arms, elbows, or the like of an operator into the through holes; A method for assembling a hysteretic damper structure, comprising:
PCT/JP2021/031718 2021-08-30 2021-08-30 Hysteretic damper structure and method for assembling same WO2023031997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031718 WO2023031997A1 (en) 2021-08-30 2021-08-30 Hysteretic damper structure and method for assembling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031718 WO2023031997A1 (en) 2021-08-30 2021-08-30 Hysteretic damper structure and method for assembling same

Publications (1)

Publication Number Publication Date
WO2023031997A1 true WO2023031997A1 (en) 2023-03-09

Family

ID=85412325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031718 WO2023031997A1 (en) 2021-08-30 2021-08-30 Hysteretic damper structure and method for assembling same

Country Status (1)

Country Link
WO (1) WO2023031997A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293461A (en) * 2002-01-29 2003-10-15 Univ Kanagawa Buckling restraining brace
JP3997289B2 (en) * 2007-02-08 2007-10-24 三菱重工業株式会社 Structural member with hysteretic damper
JP2016138399A (en) * 2015-01-28 2016-08-04 新日鐵住金株式会社 Damper structure
JP2018076639A (en) * 2016-11-07 2018-05-17 日本軽金属株式会社 Seismic response control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293461A (en) * 2002-01-29 2003-10-15 Univ Kanagawa Buckling restraining brace
JP3997289B2 (en) * 2007-02-08 2007-10-24 三菱重工業株式会社 Structural member with hysteretic damper
JP2016138399A (en) * 2015-01-28 2016-08-04 新日鐵住金株式会社 Damper structure
JP2018076639A (en) * 2016-11-07 2018-05-17 日本軽金属株式会社 Seismic response control apparatus

Similar Documents

Publication Publication Date Title
JP3842484B2 (en) Column and beam joint structure and building having the same
KR101348577B1 (en) Seismic retrofit method using lateral beam-type damper installed in opening space of building structure
KR101354857B1 (en) Strut having angle pipe section symmetrical with neural axis
WO2016068401A1 (en) Buckling-restrained brace for seismic retrofitting of steel frame structure
US6457284B1 (en) Structure for installing a viscous vibration damping wall and method of installing the same
JP2008180028A (en) Skeleton structure of wooden house and joining metal fitting
JP3277800B2 (en) Damping structure
KR101842593B1 (en) Method of construction to install a vibration control device
EP1126101A1 (en) Mounting structure and method for viscosity system damping wall
EP1111162B1 (en) Viscosity system damping wall mounting structure and mounting method
KR20040106829A (en) Steel structure equipped with connection damper
WO2023031997A1 (en) Hysteretic damper structure and method for assembling same
JP2003074126A (en) High strength bolt connecting structure of h-shaped sectional member having friction damper
JP2021193253A (en) Hysteretic damper structure and assembling method thereof
JP4664998B2 (en) Bonded hardware
TWI801994B (en) Hysteretic damping structure and assembly method thereof
KR100360377B1 (en) Steel structure with damper joint
JP6669088B2 (en) Steel plate shear walls, frames and buildings equipped with them
JP6838877B2 (en) Buckling restraint brace damper
JP7362534B2 (en) energy absorbing material
JPH03199582A (en) Vibration suppressing device for building
JP3215633U (en) Brace mounting structure
JP4030689B2 (en) Joint structure of steel pipe column and brace member
JP7456413B2 (en) Steel shear walls, buildings equipped with them, and installation methods for steel shear walls
JP3639552B2 (en) Damping structure for ramen frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE