WO2023030551A1 - 海水无淡化原位直接电解制氢方法、装置及系统 - Google Patents

海水无淡化原位直接电解制氢方法、装置及系统 Download PDF

Info

Publication number
WO2023030551A1
WO2023030551A1 PCT/CN2022/128225 CN2022128225W WO2023030551A1 WO 2023030551 A1 WO2023030551 A1 WO 2023030551A1 CN 2022128225 W CN2022128225 W CN 2022128225W WO 2023030551 A1 WO2023030551 A1 WO 2023030551A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis
anode
cathode
hydrogen production
seawater
Prior art date
Application number
PCT/CN2022/128225
Other languages
English (en)
French (fr)
Inventor
谢和平
刘涛
赵治宇
吴一凡
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2023030551A1 publication Critical patent/WO2023030551A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention belongs to the technical field of electrochemistry, and in particular relates to a method, device and system for in-situ direct electrolysis of seawater without desalination.
  • Hydrogen energy has the advantages of wide sources, storability, multiple uses, zero carbon, zero pollution, and high energy density. It is a key component of the future energy field.
  • aqueous solutions such as seawater, river water or lake water in nature.
  • seawater electrolysis there are the following problems: 1
  • the composition of seawater is complex, and the composition will change with factors such as seasons, climate, temperature, region and human activities. Therefore, direct seawater hydrogen production electrolysis devices in different regions cannot directly Compatible; 2The content of Cl - in seawater is the highest.
  • Cl - can be oxidized in the oxygen evolution reaction to produce toxic, harmful to the environment, and corrosive ClO - and Cl 2 ; 3H + when seawater directly produces hydrogen and OH - ion concentrations are tiny, or the buffer molecules cannot transport OH - and H + in the cathode and anode respectively, resulting in low electrolysis efficiency, so additional additives or ion exchange membranes are required, which greatly increases the cost, while the exchange membrane is resistant to impurities The sensitivity is high, and there may be inactivation or maintenance costs; 4 Due to the local pH difference during electrolysis, it may cause precipitation with calcium and magnesium ions, etc., and it is necessary to use acid for precipitation treatment, resulting in additional costs.
  • the second is to purify various non-pure aqueous solutions to produce pure water and use it in electrolytic cells. Still taking seawater as an example, it needs to go through the desalination process. This method requires the establishment of seawater desalination plants on the coast, which greatly increases the cost in terms of construction, operation, manpower, and maintenance; and it is difficult to use offshore wind power coupling on a large scale to form an in-situ integrated ocean.
  • the green hydrogen production system is difficult to realize the stable storage of renewable energy, the multi-energy complementary energy system and the construction of offshore energy ecological floating islands.
  • the present invention aims to provide Based on the method, device and system of in-situ direct electrolysis hydrogen production without desalination of seawater, it can fundamentally solve the complex ionic composition in natural seawater, which leads to the failure of ion exchange membrane, catalyst deactivation, low conversion efficiency, alkaline precipitation and toxic gas, etc.
  • seawater direct electrolysis hydrogen production method in situ without desalination the hydrogen production method includes:
  • the seawater (impure aqueous solution) and impurity ions are blocked by the solution mass transfer layer to realize the selective passage of water vapor, and the phase change of the aqueous solution is induced by the self-driven electrolyte through the interface pressure difference or osmotic pressure difference to obtain impurity-free ion water;
  • Hydrogen and OH - are produced by the hydrogen evolution reaction of the water in the self-driven electrolyte from the cathode side in the hydrogen production electrolysis, and the OH - is transferred from the ion to the anode side in the hydrogen production electrolysis and oxygen is produced through the oxygen evolution reaction on the anode side;
  • the present invention also provides an in-situ direct electrolysis hydrogen production device without desalination of seawater, and the hydrogen production device includes:
  • a self-capture container through which impurity-free water is spontaneously obtained; the self-capture container induces and drives the moisture in the external solution to pass through the solution under the action of the interface pressure difference or osmotic pressure difference between seawater (impure aqueous solution) and the self-driven electrolyte layer, and a phase transition is induced by the self-driven electrolyte;
  • a catalytic electrolysis module arranged in the self-capture container, through which the self-capture container is divided into an anode electrolysis chamber and a cathode electrolysis chamber, and at least a self-driven electrolyte is formed in the anode electrolysis chamber or the cathode electrolysis chamber, and the self-driven electrolyte first Hydrogen and OH - are produced by electrolysis in the cathodic electrolysis chamber, and OH - enters the anode chamber through the catalytic electrolysis module and is electrolyzed to produce oxygen.
  • the catalytic electrolysis module prepares oxygen and hydrogen through the chemical principle of catalytic electrolysis, and couples various technologies to form a complete in-situ direct electrolysis hydrogen production process system without desalination of seawater.
  • the available self-driven electrolytes include but are not limited to: K 2 CO 3 , KOH, NaOH, Ca(OH) 2 , Na 2 CO 3 , etc.
  • the self-capturing container includes:
  • a porous insulating mesh tank, the porous insulating mesh groove is provided with a cavity, and the catalytic electrolysis module is built in the cavity;
  • the catalytic electrolysis module is embedded in the cavity of the porous insulating grid tank and the cavity is divided into an anode electrolysis chamber and a cathode electrolysis chamber.
  • the impurity solution is blocked from the system through the hydrophobic effect of the solution mass transfer layer, and the capture is induced by the self-driven electrolyte.
  • the impurity-free moisture in seawater (non-pure aqueous solution) is removed to form an electrolyte in the anolyte and catholyte chambers.
  • the catalytic electrolysis module includes:
  • An ion transport layer is used to transmit OH- ions between the anode electrolysis chamber and the cathode electrolysis chamber, and block the O produced on the anode side from mixing with the H produced on the cathode side; wherein the ion transport layer includes but Not limited to polymer films such as polyester diaphragm, nylon diaphragm, ceramic porous diaphragm, anion exchange membrane or PVA;
  • An anode catalytic electrode and a cathode catalytic electrode symmetrically arranged on both sides of the ion transfer layer, the surfaces of the anode catalytic electrode and the cathode catalytic electrode are respectively attached with an anode plate and a cathode plate, and the anode plate and the cathode plate are respectively connected to forming said anolyte and catholyte compartments from a capture vessel;
  • the ion transfer layer, the anode catalytic electrode, the cathode catalytic electrode, the anode plate and the cathode plate are all embedded in the inner cavity of the self-capturing container;
  • Both the cathode electrolysis chamber and the anode electrolysis chamber store self-driven electrolytes. After the device is immersed in the seawater (impure aqueous solution) system, under the action of the interface pressure difference, the seawater (impure aqueous solution) vapor spontaneously transfers through the solution mass transfer layer.
  • the phase change is induced by the self-driven electrolyte to form liquid water, so that the catalytic electrolysis module is immersed in the self-driven electrolyte environment in the porous insulating grid tank; after the electrolysis is started, the cathode catalytic electrode first undergoes a reduction reaction to generate hydrogen, and the generated OH - in the ion transfer Under the action of the layer, it is transferred to the anode and an oxygen evolution reaction occurs on the anode catalytic electrode; wherein, the anode catalytic electrode includes but is not limited to: nickel molybdenum, iridium tantalum, ruthenium iridium, NiFe-LDH, NiFeCu alloy catalyst supported titanium mesh, foam Nickel, etc.; available cathode catalytic electrodes include, but are not limited to: platinum mesh, nickel-plated platinum mesh, nickel foam and titanium felt supported by F x Co y N z type catalysts, etc.
  • the self-capturing container includes:
  • a solution mass transfer layer, the solution mass transfer layer is provided with a cavity, and the catalytic electrolysis module is built in the cavity;
  • the anode plate and the cathode plate are respectively attached to the two sides of the catalytic electrolysis module, the anode plate and the cavity are closely attached to the anode porous insulating mesh groove, and the cathode plate and the cavity are closely attached to the cathode porous Insulation slot;
  • the anode electrolysis chamber and the cathode electrolysis chamber are opened on the anode plate and the cathode plate respectively.
  • the catalytic electrolysis module includes:
  • the ion transfer layer is used to transfer OH - ions between the anode electrolysis chamber and the cathode electrolysis chamber; wherein, the ion transfer layer includes but not limited to polyester diaphragm, nylon diaphragm, ceramic porous diaphragm, anion exchange membrane or PVA and other polymer films.
  • the anode catalytic electrode and the cathode catalytic electrode are symmetrically arranged on both sides of the ion transfer layer, the anode catalytic electrode is closely attached to the anode plate, and the cathode catalytic electrode is closely attached to the cathode plate.
  • the present invention also discloses an in-situ direct electrolysis hydrogen production device without desalination of seawater.
  • the hydrogen production device includes:
  • a cavity and a self-driven electrolyte layer arranged in the cavity the cavity is separated into an anode electrolysis chamber and a cathode electrolysis chamber by the self-drive electrolyte layer, and the anode electrolysis chamber and the cathode electrolysis chamber are respectively equipped with a a solution mass transfer layer for mass transfer;
  • the catalytic electrolysis module installed in the cavity, in the cathodic electrolysis chamber, hydrogen and OH - are produced by electrolyzing the water in the self-driving electrolyte layer through the catalytic electrolysis module, and OH - enters the anode electrolysis chamber through the self-driving electrolyte layer and produces oxygen by electrolysis .
  • the catalytic electrolysis module includes:
  • An anode catalytic electrode and a cathode catalytic electrode that are closely attached to both sides of the self-driven electrolyte layer, and the sides of the anode catalytic electrode and the cathode catalytic electrode are respectively attached to an anode plate and a cathode plate;
  • the anode plate and the cathode plate are respectively provided with exhaust grooves, and the sides of the anode plate and the cathode plate are respectively pasted with the solution mass transfer layer.
  • the solution mass transfer layer adopts any one of TPU membrane, PTFE membrane, and PDMS membrane with a pore size of 0.1-100um; the impurity solution is blocked from the system by the hydrophobic effect of the solution mass transfer layer, and the aqueous solution is driven quality, cooperate with the self-driven electrolyte to induce the phase transition of the aqueous solution to form impurity-free liquid water.
  • the solution mass transfer layer is a porous solution mass transfer layer prepared by spraying, screen printing, and electrostatic adsorption of graphene, PVDF particles, and PTFE particles;
  • the in-situ direct electrolysis hydrogen production system without desalination of seawater further includes an energy supply module, the energy supply module is electrically connected to the anode plate and the cathode plate respectively, and supplies power to the anode plate and the cathode plate respectively;
  • the energy supply module can also directly use thermal power, hydropower, etc., and further, it can also be coupled with renewable energy such as wind power, photovoltaics, and nuclear energy to realize green hydrogen production, so as to realize the energy conversion of non-stable renewable energy, and the hydrogen energy formed Conducive to stable storage.
  • renewable energy such as wind power, photovoltaics, and nuclear energy to realize green hydrogen production, so as to realize the energy conversion of non-stable renewable energy, and the hydrogen energy formed Conducive to stable storage.
  • the present invention also provides a seawater non-desalination in-situ direct electrolysis hydrogen production system
  • the hydrogen production system includes at least one above-mentioned seawater non-desalination in-situ direct electrolysis hydrogen production device, the hydrogen production system also includes:
  • At least one oxygen collection unit and at least one hydrogen collection unit each of the oxygen collection unit and hydrogen collection unit is respectively communicated with the anode electrolysis chamber and the cathode electrolysis chamber;
  • the system When the system is applied, it can be designed adaptively according to the demand of hydrogen production.
  • the oxygen collection unit includes: an oxygen scrubber connected to the anode electrolysis chamber, the oxygen scrubber is connected to an oxygen dryer, the oxygen dryer is connected to an oxygen collection bottle, and the oxygen is stored through the oxygen collection bottle and used in the next step;
  • the hydrogen collection unit includes: a hydrogen scrubber connected to the cathode electrolysis chamber, the hydrogen scrubber is connected to a hydrogen dryer, the hydrogen dryer is connected to a hydrogen collection bottle, and the hydrogen is stored and utilized in the next step through the hydrogen collection bottle.
  • the self-driving electrolyte spontaneously induces the phase transition of the aqueous solution to form impurity-free water, And through in-situ catalytic electrolysis to produce hydrogen, consume the water in the self-driven electrolyte in the system, and induce the electrolyte to regenerate, maintain the interface pressure difference, realize the self-circulation excitation drive of the system without additional energy consumption, and realize the continuous and stable hydrogen production process without desalination At the same time, the total energy consumption of the system is equivalent to that of hydrogen production by electrolysis of fresh water.
  • Fig. 1 is the overall schematic diagram of the in-situ direct electrolysis hydrogen production device without desalination of seawater provided by the present invention in Example 1;
  • Fig. 2 is the overall schematic diagram of the in-situ direct electrolysis hydrogen production device without desalination of seawater provided by the present invention in embodiment 2;
  • Fig. 3 is the overall schematic diagram of the in-situ direct electrolysis hydrogen production device without desalination of seawater provided by the present invention in Embodiment 3;
  • Fig. 4 is the lsv curve diagram in embodiment 1 of the in-situ direct electrolysis hydrogen production device without desalination of seawater provided by the present invention
  • Fig. 5 is a diagram of the stable operation effect of the in-situ direct electrolysis hydrogen production device without desalination of seawater provided by the present invention in Example 1;
  • Fig. 6 is a diagram showing the stable operation of the in-situ direct electrolysis hydrogen production device without desalination of seawater provided by the present invention in Example 3;
  • 1-A energy supply module 2-A anode plate, 3-A anode catalytic electrode, 4-A ion transport layer, 5-A cathode catalytic electrode, 6-A cathode plate, 7-A anode electrolysis chamber, 8 -A cathodic electrolysis chamber, 9-porous insulation grid tank, 10-A solution mass transfer layer, 11-A oxygen scrubber, 12-A oxygen dryer, 13-A oxygen collection bottle, 14-A hydrogen scrubber, 15 -A hydrogen dryer, 16-A hydrogen collection bottle, 17-A catalytic electrolysis module;
  • 18-B energy supply module 19-anode porous insulation grid tank, 20-B anode plate, 21-B anode electrolysis chamber, 22-B anode catalytic electrode, 23-B ion transfer layer, 24-B cathode catalytic electrode, 25-B cathode plate, 26-B cathode electrolysis chamber, 27-cathode porous insulation grid tank, 28-B solution mass transfer layer, 29-B oxygen scrubber, 30-B oxygen dryer, 31-B oxygen collection bottle , 32-B hydrogen scrubber, 33-B hydrogen dryer, 34-B hydrogen collection bottle, 35-B catalytic electrolysis module, 36-C energy supply module, 37-anode solution mass transfer layer, 38-C anode plate , 39-C anode catalytic electrode, 40-C ion transport layer, 41-C cathode catalytic electrode, 42-C cathode plate, 43-cathode solution mass transfer layer, 44-C oxygen scrubber, 45-C oxygen dryer , 46-C oxygen collection bottle
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship that is usually placed when the product of the invention is used, or the orientation or positional relationship of this invention.
  • the orientation or positional relationship commonly understood by those skilled in the art, or the orientation or positional relationship that is usually placed when the product of the invention is used is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must be Having a particular orientation, being constructed and operating in a particular orientation, and therefore not to be construed as limiting the invention.
  • the terms “first” and “second” are only used for distinguishing descriptions, and should not be understood as indicating or implying relative importance.
  • the terms "setting” and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it can be directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in the present invention can be understood in specific situations; the drawings in the embodiments are used to clearly and completely describe the technical solutions in the embodiments of the present invention.
  • the The described embodiments are some, but not all, embodiments of the present invention.
  • the components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.
  • an in-situ direct electrolysis hydrogen production device without desalination of seawater is specifically provided.
  • the hydrogen production device When the hydrogen production device is applied, it can be immersed in various impure aqueous solutions such as seawater, sludge, swamp, etc., through the impure water system and The driving effect of the self-propelled electrolyte interface pressure difference promotes the self-propelled electrolyte to spontaneously induce the phase transition of seawater (impure aqueous solution) and produce hydrogen gas under the electrolysis reaction.
  • the hydrogen production device includes: a self-capture container and an A catalytic electrolysis module 17 located in the self-capture container, through which the self-capture container spontaneously obtains impurity-free moisture, and then through the A catalytic electrolysis module 17
  • the self-capturing container is divided into A anode electrolysis chamber 7 and A cathode electrolysis chamber 8, A anode electrolysis chamber 7 and A cathode electrolysis chamber 8 are equipped with self-driven electrolytes to prepare oxygen and hydrogen respectively, wherein the available self-driven electrolytes include But not limited to: K 2 CO 3 , NaOH, KOH, Ca(OH) 2 , Na 2 CO 3 and other solids or their solutions, the self-propelled electrolyte can also be replaced by other hygroscopic media, such as glycerol, polyethylene glycol , sodium acrylate, sulfuric acid, etc.
  • the self-capturing container includes: a porous insulating mesh tank 9 and an A solution mass transfer layer 10 coated on the outside of the porous insulating mesh groove 9;
  • the A catalytic electrolysis module 17 is used to block impurities in seawater (impure aqueous solution) through the A solution mass transfer layer 10 .
  • the A solution mass transfer layer 10 adopts any one of TPU membrane, PDMS membrane, and PTFE membrane with a pore size of 0.1-100 ⁇ m; of course, in addition to the above methods, the A solution mass transfer layer 10 can also be made of graphene, PVDF , The porous solution mass transfer layer prepared by spraying, screen printing and electrostatic adsorption of PTFE particles.
  • a solution mass transfer layer 10 is coated on the outside of the entire porous insulating mesh tank 9.
  • the A solution mass transfer layer 10 isolates seawater (impure aqueous solution) and drives the aqueous solution for mass transfer, Prompting the self-driven electrolyte to induce the phase transition of seawater (impure aqueous solution) to form impurity-free liquid water.
  • the A catalytic electrolysis module 17 includes: A ion transfer layer 4, A anode catalytic electrode 3 and A cathode catalytic electrode 5 symmetrically arranged on both sides of the A ion transfer layer 4, and the A ion transfer layer 4 includes but is not limited to a polyester diaphragm , Nylon diaphragm, ceramic porous diaphragm, anion exchange membrane or PVA and other polymer films.
  • a anode catalytic electrode 3 and A cathode catalytic electrode 5 are respectively attached with A anode plate 2 and A cathode plate 6, and A anode plate 2 and A cathode plate 6 are respectively located in A anode electrolysis chamber 7 and A In the cathode electrolysis chamber 8; wherein, the A ion transfer layer 4, the A anode catalytic electrode 3, the A cathode catalytic electrode 5, the A anode plate 2 and the A cathode plate 6 are all embedded in the bottom of the inner cavity of the self-capturing container , and then isolate the porous insulating grid tank 9 from the A anode electrolysis chamber 7 and the A cathode electrolysis chamber 8 for storing the self-driven electrolyte.
  • the generated OH - transmits to the A anode catalytic electrode 3 through the A ion transport layer 4 (polyester membrane, nylon membrane, ceramic porous membrane, anion exchange membrane or PVA and other polymer films), and an oxidation reaction occurs to generate oxygen.
  • the reaction formula is as follows:
  • a anode catalytic electrodes 3 include but are not limited to: nickel molybdenum foam, iridium tantalum, ruthenium iridium, NiFe-LDH, NiFeCu alloy, Ni x Fe y O z catalyst supported titanium mesh; available A cathode catalytic electrodes 5 Including but not limited to: platinum mesh, nickel-plated platinum mesh, FexCoyNiz type catalyst, etc.
  • the A energy supply module 1 is respectively connected to the A anode plate 2 and the A cathode plate 6, and supplies power to the A anode plate 2 and the A cathode plate 6, for example: the energy source of the A energy supply module 1 can be solar energy, Electric energy converted from renewable energy such as wind energy, electricity or thermal power generated by renewable energy such as solar energy and wind energy are stored in the A energy supply module 1, and the A energy supply module 1 is connected to the A anode plate 2 and the A cathode plate respectively. 6 connections for providing electrical energy for the hydrogen production reaction.
  • the A catalytic electrolysis module 17 is powered by the A energy supply module 1, and impurity-free water is directly obtained spontaneously from the seawater (impure aqueous solution), and the whole seawater (impure aqueous solution) is not desalinated by electrolytic catalytic hydrogen production by the A catalytic electrolysis module 17 In situ direct electrolysis of hydrogen.
  • the A energy supply module 1 can also directly use thermal power, hydropower, etc., and further, it can also be coupled with renewable energy such as wind power, photovoltaic, nuclear energy, etc., to achieve green hydrogen production, so as to realize the integration of non-stable renewable energy. Energy conversion, the hydrogen energy formed is conducive to stable storage.
  • the A energy supply module 1 provides power for the A catalytic electrolysis module 17;
  • the in-situ direct electrolysis hydrogen production system without desalination of seawater is directly submerged in water, under the positive force of pressure difference or osmotic pressure at the interface between seawater (impure aqueous solution) and self-driven electrolyte, seawater (impure aqueous solution) is transmitted through A solution
  • the mass layer 10 enters the self-capturing container and is induced by a low vapor pressure self-driven electrolyte to induce a phase change and form an electrolyte.
  • the hydrophobic effect of the A solution mass transfer layer 10 blocks the impurities dissolved in seawater (impure aqueous solution) from the system;
  • the catalytic hydrogen production module electrolyzes the pure water induced by the self-driven electrolyte to produce hydrogen under the catalytic system.
  • the water in the self-driven electrolyte is continuously consumed by electrolysis, and the regeneration of the self-driven electrolyte is induced to maintain the interface pressure difference to achieve
  • the system has self-circulation excitation-driven hydrogen production without additional energy consumption, and the total energy consumption is equivalent to hydrogen production by fresh water electrolysis.
  • the in-situ direct electrolysis hydrogen production device without desalination of seawater provides electric energy through the A energy supply module 1, and obtains pure liquid water through self-driven electrolyte-induced phase change, and then uses the principle of catalytic electrolysis to produce hydrogen.
  • it can realize the dynamic and continuous process of spontaneous hydrogen capture and production in any seawater (non-pure aqueous solution) environment; on the other hand, it can realize energy conversion and stable storage of non-stable renewable energy, providing future energy System construction provides technical means.
  • the in-situ direct electrolysis hydrogen production device without desalination of seawater is not only suitable for regular shapes, but also can be replaced with special shapes, so as to adapt to different regional environments.
  • self-driven electrolyte is placed in the cathode and anode electrolysis chamber, and the electrolyte is formed by inducing the phase transition of the aqueous solution.
  • the system has a current density of 200mA/cm 2 at a voltage of 2v, as shown in Figure 4, and has a high-efficiency current density.
  • the system can run stably for more than 60 hours at room temperature at a high current density of 2v and 200mA/cm 2 , and has good stability at high current density, as shown in Figure 5.
  • an in-situ direct electrolytic hydrogen production device without desalination of seawater is provided, and the electricity or thermal power generated by renewable energy such as solar energy and wind energy is stored in the B energy supply module 18, and the B energy is supplied
  • the module 18 is connected with the B anode plate 20 and the B cathode plate 25 in the in-situ self-capture hydrogen production device, and is used to provide electric energy for the hydrogen production reaction.
  • the B catalytic electrolysis module 35 is composed of the B anode catalytic electrode 22, the B ion transfer layer 23, and the B cathode catalytic electrode 24.
  • the whole system is immersed in seawater (non-pure aqueous solution), and the mass transfer occurs spontaneously through the B solution mass transfer layer 28, and the impurity components are isolated outside, and the self-driven electrolyte induces a phase change to form liquid water in the B anode electrolysis chamber 21 and the B cathode electrolysis chamber 26 , and a reduction hydrogen evolution reaction occurs on the surface of the B negative catalytic electrode 24, the reaction formula is as follows:
  • the produced OH - transfers to the B anode catalytic electrode 22 through the B ion transfer layer 23 (anion exchange membrane), and an oxidation reaction occurs to generate oxygen.
  • the reaction formula is as follows:
  • the seawater non-desalination in-situ direct electrolysis hydrogen production device works as follows:
  • the B cathode electrolysis chamber 26 is vacant, and provides electric power for the B catalytic electrolysis module 35 through the B energy supply module 18, and the specific elaboration of the B energy supply module 18 refers to embodiment 1, and is not repeated here;
  • the in-situ direct electrolytic hydrogen production device without desalination of seawater is directly immersed in seawater (impure aqueous solution), and under the action of the pressure difference between the interface of seawater (impure aqueous solution) and the self-driven electrolyte interface, it enters the B solution through the B solution mass transfer layer 28.
  • the anode electrolysis chamber 21 is driven by the low vapor pressure K 2 CO 3 self-driven electrolyte to induce a phase change to form liquid water, and at the same time, the hydrophobic effect of the B solution mass transfer layer 28 blocks the impurities dissolved in the impure water from the system; the B anode electrolysis chamber Moisture in the K 2 CO 3 solution in 21 infiltrates to the surface of B cathode catalytic electrode 24, water is reduced to hydrogen and OH - on the cathode side, and OH - is transferred to the anode side through the anion exchange membrane to be oxidized to generate oxygen.
  • the catalytic hydrogen production module electrolyzes the pure water captured by K 2 CO 3 deliquescence to produce hydrogen under the catalytic system, and the water in the K 2 CO 3 self-driven electrolyte is continuously consumed by electrolysis, which induces electrolyte regeneration and maintains the interface pressure difference , thus forming a continuous and stable electrolytic hydrogen production process.
  • the in-situ direct electrolysis hydrogen production device without desalination of seawater provides electric energy through the B energy supply module 18, induces a phase transition through a self-driven electrolyte to form pure liquid water, and then uses the principle of catalytic electrolysis to produce hydrogen.
  • it can realize the dynamic and continuous process of spontaneous capture hydrogen production in any non-pure water environment without time and space difference; on the other hand, it can realize energy conversion and stable storage of non-stable renewable energy, providing a new source of energy for the construction of future energy systems technical means.
  • the in-situ direct electrolysis hydrogen production device without desalination of seawater is not only suitable for regular shapes, but also can be replaced with special shapes, so as to adapt to different regional environments.
  • an in-situ direct electrolysis hydrogen production device without desalination of seawater is provided.
  • Electricity or thermal power generated by renewable energy sources such as solar energy and wind energy are stored in the C energy supply module 36, and the C energy supply module 36 is connected to the in-situ
  • the C anode electrode 38 and the C cathode electrode 42 in the self-capturing hydrogen production device are connected to provide electrical energy for the hydrogen production reaction.
  • the outer frame of container is formed jointly by C anode pole plate 38 and C cathode pole plate 42, and C anode catalytic electrode 39, C ion exchange are arranged between C anode pole plate 38 and C cathode pole plate 42
  • Layer 40, C cathode catalytic electrode 41, are close to the anode solution mass transfer layer 37 and the cathode solution mass transfer layer 43 on the outer sides of the C anode plate 38 and the C cathode plate 42, so that impurity-free water is automatically captured into the container .
  • the C anode catalytic electrode 39 and the C cathode catalytic electrode 41 are respectively attached to the surfaces of the corresponding C anode plate 38 and C cathode plate 42 .
  • the C catalytic electrolysis module 50 is composed of the C anode plate 38, the C anode catalytic electrode 39, the C ion exchange layer 40, the C cathode catalytic electrode 41 and the C cathode plate 42, and is respectively attached to the anode solution on both sides of the C catalytic electrolysis module 50.
  • Mass transfer layer 37 and cathode solution mass transfer layer 43 Mass transfer layer 37 and cathode solution mass transfer layer 43 .
  • the C anode plate 38 and the C cathode plate 42 are respectively provided with exhaust grooves to discharge oxygen and hydrogen produced by electrolysis respectively.
  • the whole system is immersed in seawater (non-pure aqueous solution), the anode solution mass transfer layer 37 and the cathode solution mass transfer layer 43 isolate liquid water, drive spontaneous mass transfer, and self-drive electrolyte to induce phase transition.
  • the C ion exchange layer 40 adopts a self-driven electrolyte layer.
  • the self-driven electrolyte layer has the ability to induce phase transition and ion conduction, and a reduction hydrogen evolution reaction occurs on the surface of the C cathode catalytic electrode 41.
  • the reaction formula is as follows:
  • the produced hydrogen passes through the C hydrogen scrubber 47 and the C hydrogen drier 48 to remove what is entrained in the hydrogen, and is collected through pipelines into the C hydrogen collection bottle 49 for storage and next-step utilization.
  • the produced OH - transmits to the C anode catalytic electrode 39 through the C ion exchange layer 40 (the C ion exchange layer 40 is a self-driven electrolyte layer formed by KOH compounding on the PVA gel), and an oxidation reaction occurs to generate oxygen.
  • the reaction formula is as follows:
  • the oxygen produced by the oxygen evolution reaction passes through the C oxygen scrubber 44 and the C oxygen dryer 45 through the pipeline, and is collected in the C oxygen collection bottle 46 .
  • the C energy supply module 36 provides power for the C catalytic electrolysis module 50;
  • the in-situ direct electrolysis hydrogen production system without desalination of seawater is directly immersed in seawater (impure aqueous solution), and under the push of the interface pressure difference between seawater (impure aqueous solution) and the self-driven electrolyte, the anode solution mass transfer layer 37 and the cathode
  • the energy-free solution mass transfer layer 43 enters the self-capture container and is driven by the self-driven electrolyte layer (basic polymer material, such as PAA-KOH composite membrane, PVA-KOH composite membrane, PVA-K 2 CO 3 composite membrane) to induce phase change
  • the hydrophobic effect of the anode solution mass transfer layer 37 and the cathode solution mass transfer layer 43 blocks the impurities dissolved in seawater (impure aqueous solution) from the system; the moisture inside the self-driven electrolyte is oxidized and reduced into oxygen and hydrogen , while the OH - produced in the process is transported by the self-
  • the catalytic hydrogen production module electrolyzes the pure water induced by the self-driven electrolyte to produce hydrogen under the catalytic system.
  • the water in the self-driven electrolyte is continuously consumed by electrolysis, which induces the regeneration of the self-driven electrolyte and maintains the stability of the interface pressure difference, thereby Form continuous and stable seawater (impure aqueous solution) without desalination in situ direct electrolysis hydrogen production process.
  • the in-situ direct electrolysis hydrogen production device without desalination of seawater provides electric energy through the C energy supply module 36, induces the phase transition of the aqueous solution through the self-driven electrolyte, and then uses the principle of catalytic electrolysis to produce hydrogen.
  • it can realize the dynamic and continuous process of spontaneous capture hydrogen production in any non-pure water environment without time and space difference; on the other hand, it can realize energy conversion and stable storage of non-stable renewable energy, providing a new source of energy for the construction of future energy systems technical means.
  • the in-situ direct electrolysis hydrogen production device without desalination of seawater is not only suitable for regular shapes, but also can be replaced with special shapes, so as to adapt to different regional environments.
  • the self-driven electrolyte acts as an ion exchange layer, which not only spontaneously induces the phase transition of the aqueous solution, but also conducts ions.
  • the system can run stably for more than 50 hours at a current density of 100mA/cm 2 at a voltage of about 2.65v at room temperature, and has good stability at a high current density, as shown in Figure 6.
  • an in-situ direct electrolysis hydrogen production system without desalination of seawater includes the in-situ direct electrolysis hydrogen production device without desalination of seawater described in Embodiment 1 above.
  • the hydrogen production system also includes:
  • each of the oxygen collection unit and the hydrogen collection unit communicates with the A anode electrolysis chamber 7 and the A cathode electrolysis chamber 8 respectively, so as to dry and collect the produced oxygen and hydrogen respectively.
  • the oxygen collection unit includes: A oxygen scrubber 11 communicated with A anode electrolysis chamber 7, A oxygen scrubber 11 is connected with A oxygen drier 12, A A oxygen drier 12 is connected with A A oxygen collection bottle 13, at A anode
  • the oxygen generated by the oxygen evolution reaction in the electrolysis chamber 7 is washed and dried through pipelines through the A oxygen scrubber 11 and the A oxygen dryer 12, and is collected into the A oxygen collection bottle 13 for storage and further utilization.
  • the hydrogen collection unit includes: A hydrogen scrubber 14 communicated with A cathode electrolysis chamber 8, A hydrogen scrubber 14 is connected with A hydrogen drier 15, A hydrogen drier 15 is connected with A hydrogen collection bottle 16, in A cathode electrolysis chamber 8.
  • the hydrogen produced by the reduction hydrogen evolution reaction is washed and dried by the A hydrogen scrubber 14 and the A hydrogen dryer 15, and the entrained hydrogen is removed, and collected through the pipeline into the A hydrogen collection bottle 16 for storage and next-step utilization.
  • the hydrogen production system can also include the in-situ direct electrolysis hydrogen production device without desalination of seawater described in the above embodiment 2, and the hydrogen production system also includes:
  • each of the oxygen collection unit and the hydrogen collection unit communicates with the B anode electrolysis chamber 21 and the B cathode electrolysis chamber 26 to dry and collect the produced oxygen and hydrogen respectively.
  • the oxygen collection unit includes: the B oxygen scrubber 29 communicated with the B anode electrolysis chamber 21, the B oxygen scrubber 29 is connected with the B oxygen drier 30, the B oxygen drier 30 is connected with the B oxygen collection bottle 31, and at the B anode
  • the oxygen produced by the oxygen evolution reaction in the electrolysis chamber 21 is washed and dried through the B oxygen scrubber 29 and the B oxygen dryer 30 through the pipeline, and is collected into the B oxygen collection bottle 31 for storage and next use.
  • the hydrogen collection unit includes: the B hydrogen scrubber 32 communicated with the B cathode electrolysis chamber 26, the B hydrogen scrubber 32 is connected with the B hydrogen drier 33, the B hydrogen drier 33 is connected with the B hydrogen collection bottle 34, and in the B cathode electrolysis chamber 26.
  • the hydrogen produced by the reduction and hydrogen evolution reaction is washed and dried by the B hydrogen scrubber 32 and the B hydrogen dryer 33, and the entrained hydrogen is removed, and collected into the B hydrogen collection bottle 34 through pipelines for storage and next-step utilization.
  • the hydrogen production system can also include the in-situ direct electrolysis hydrogen production device without desalination of seawater described in the above-mentioned embodiment 3, and the hydrogen production system also includes:
  • each of the oxygen collection unit and the hydrogen collection unit is connected with the C anode electrolysis chamber and the C cathode electrolysis chamber respectively, so as to dry and collect the produced oxygen and hydrogen respectively.
  • the oxygen collection unit comprises: the C oxygen scrubber 44 that is communicated with the C anode electrolysis chamber, the C oxygen scrubber 44 is connected with the C oxygen drier 45, and the C oxygen drier 45 is connected with the C oxygen collection bottle 46, electrolyzes at C anode
  • the oxygen produced by the oxygen analysis reaction in the room is washed and dried through the C oxygen scrubber 44 and the C oxygen dryer 45 through the pipeline, and is collected into the C oxygen collection bottle 46 for storage and next use.
  • the hydrogen collection unit includes: a C hydrogen scrubber 47 communicated with the C cathode electrolysis chamber, the C hydrogen scrubber 47 is connected with a C hydrogen drier 48, and the C hydrogen drier 48 is connected with a C hydrogen collection bottle 49.
  • the hydrogen produced by the reduction hydrogen evolution reaction is washed and dried by the C hydrogen scrubber 47 and the C hydrogen drier 48, and the entrained hydrogen is removed, and collected into the C hydrogen collection bottle 49 through pipelines for storage and next-step utilization.
  • the entire system can be designed as a portable or large-scale integrated system according to the demand for hydrogen production. It can be used in any non-pure water system environment including sludge, swamps, rivers, lakes, and industrial wastewater, and is not affected by time, Continuous in-situ hydrogen production work due to space constraints.
  • a method for in-situ direct electrolytic hydrogen production without desalination of seawater uses the in-situ direct electrolytic hydrogen production device without desalination of seawater described in the above-mentioned embodiment 1 or 2 or 3. , the hydrogen production method comprises:
  • the start-up energy supply module supplies power to the catalytic electrolysis module in the in-situ direct electrolysis hydrogen production device without desalination of seawater.
  • the oxygen and hydrogen generated by the decomposition are collected after post-processing such as purification and drying for further use.
  • the self-capturing hydrogen production device is directly immersed in water or the atmosphere, and under the action of the interface pressure difference, it enters the seawater (impure aqueous solution) through the solution mass transfer layer without desalination.
  • seawater impure aqueous solution
  • In situ direct electrolytic hydrogen production is induced by the self-driven electrolyte to form an electrolyte.
  • Self-driven electrolyte while the hydrophobic effect of the solution mass transfer layer blocks the impurities dissolved in impure water from the system, under the catalytic system, the self-driven electrolyte-induced phase change of self-driven electrolyte pure water is electrolyzed to produce hydrogen, and make Self-driven electrolyte regeneration, maintaining the interface pressure difference, and realizing the self-circulation excitation drive of the extra energy consumption of the system, the total energy consumption is equivalent to that of hydrogen production by electrolysis of fresh water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了海水无淡化原位直接电解制氢方法、装置及系统,通过将海水无淡化原位直接电解制氢装置直接浸入海水中,在海水与自驱动电解质的界面压力差推动下,海水通过溶液传质层源源不断进入海水无淡化原位直接电解制氢装置,被装置内的自驱动电解质诱导进入电解液,同时溶液传质层的疏水作用将溶液中的非水杂质有效阻隔,电解时,自驱动电解质中的水将被消耗用于制取氢气与氧气,并诱导电解质再生,维持界面压力差,实现无额外能耗的自循环激发驱动。当自驱动电解质诱导进入的水溶液与电解产氢消耗的水量相等时,形成动态稳定的、无额外能耗的海水无淡化原位直接电解制氢方法及系统。

Description

海水无淡化原位直接电解制氢方法、装置及系统 技术领域
本发明属于电化学的技术领域,具体而言,涉及海水无淡化原位直接电解制氢方法、装置及系统。
背景技术
氢能具有来源广、可储存、用途多、零碳零污染及能量密度大等优势,是未来能源领域的关键组成部分。目前电解水获取氢能有两种,其一是直接利用自然界的海水、河水或湖水等非纯水溶液。以海水电解制氢为例,其存在以下问题:①海水成分复杂,且组分会随季节、气候、温度、地域和人为活动等因素而变化,因此,不同区域的海水直接制氢电解装置不能直接兼容;②海水中Cl -含量最高,在电解反应中,Cl -可以在析氧反应中被氧化,产生有毒、对环境有害、有腐蚀的ClO -和Cl 2;③海水直接制氢时H +和OH -离子浓度微小,或缓冲分子无法运输分别在阴极和阳极的OH -和H +,导致电解效率低,因此需要额外使用添加剂或使用离子交换膜,从而成本大幅增加,同时交换膜对杂质敏感程度高,可能存在失活或维护成本;④由于电解时的局部pH差异可能导致与钙镁离子等产生沉淀,需要使用酸进行沉淀处理,产生额外成本。其二是将各种非纯水溶液进行纯化处理,制取纯水并用于电解槽。仍然以海水为例,需要通过海水淡化过程,该方法需要在海岸建立海水淡化厂,从建设、运营、人力、维护等方面大幅提升成本;且难以大规模利用海上风电耦合形成原位一体化海洋绿氢生产体系,难以实现可再生能源的稳定储存、多能互补能源体系和海上能源生态漂浮岛的建设。
发明内容
鉴于此,为了解决现有技术难以直接利用自然界中成分较为复杂且分布广泛的海水、河水、湖水等非纯水资源电解制氢,而不经过二次净化处理的技术难题,本发明旨在提供基于海水无淡化原位直接电解制氢方法、装置及系统,以达到从根本上解决自然界海水中离子成分复杂致使离子交换膜失效、催化剂失活、转化效率低、产生碱性沉淀和有毒气体等电解制氢的问题;同时,有助于未来氢能源转化不受时空限制,实现包括海水、河水、湖水等自然水资源,乃至生活废水、工业废水、淤泥等一系列非纯净水的原位直接电解制氢。
本发明所采用的技术方案为:海水无淡化原位直接电解制氢方法,该制氢方法包括:
通过溶液传质层将海水(非纯水溶液)和杂质离子阻挡在外,实现水汽的选择性通过, 自驱动电解质经界面压力差作用或渗透压差诱导水溶液相变获取无杂质离子水分;
由制氢电解中的阴极侧对自驱动电解质内的水分作析氢反应制备氢气和OH -,将OH -由离子传递至制氢电解中的阳极侧并通过阳极侧作析氧反应制备氧气;
其中,在制氢电解过程中,随着自驱动电解质内的水分被不断电解消耗,诱导自驱动电解质再生,维持界面压力差,形成无额外能耗的自循环激发驱动制氢。
在本发明中还提供了海水无淡化原位直接电解制氢装置,该制氢装置包括:
一自捕获容器,通过该自捕获容器自发获取无杂质水分;自捕获容器在海水(非纯水溶液)和自驱动电解质界面压力差或渗透压差作用下,诱导驱动外界溶液中的水分通过溶液传质层,并被自驱动电解质诱导相变;
设于该自捕获容器内的催化电解模块,通过该催化电解模块将自捕获容器分隔成阳极电解室和阴极电解室,并至少在阳极电解室或阴极电解室内形成自驱动电解质,自驱动电解质首先在阴极电解室电解制备氢气和OH -,且OH -经过催化电解模块进入阳极室并电解制备氧气。
其中,催化电解模块通过催化电解的化学原理制备氧气和氢气,将多种技术耦合,形成完备的海水无淡化原位直接电解制氢工艺体系,其中,可用的自驱动电解质包括但不限于:K 2CO 3、KOH、NaOH、Ca(OH) 2、Na 2CO 3等。
进一步地,所述自捕获容器包括:
一多孔绝缘网槽,所述多孔绝缘网槽内设有一容腔,该容腔内置有所述催化电解模块;
包覆于多孔绝缘网槽外部的溶液传质层,通过该溶液传质层阻挡海水(非纯水溶液)中的杂质;
催化电解模块嵌入至多孔绝缘网槽的容腔内并将容腔分隔成阳极电解室和阴极电解室,在通过溶液传质层的疏水作用将杂质溶液阻挡在体系外,通过自驱动电解质诱导捕获了海水(非纯水溶液)中的无杂质水分,以在阳极电解室和阴极电解室内形成电解液。
进一步地,所述催化电解模块包括:
离子传递层,所述离子传递层用于在阳极电解室与阴极电解室之间传递OH -离子,并阻隔阳极侧产生的O 2与阴极侧产生的H 2混合;其中,离子传递层包括但不限于涤纶隔膜、尼龙隔膜、陶瓷多孔隔膜、阴离子交换膜或PVA等聚合物薄膜;
对称布置于离子传递层两侧的阳极催化电极和阴极催化电极,所述阳极催化电极和阴极催化电极的表面上分别附有阳极极板和阴极极板,且阳极极板和阴极极板分别与自捕获容器形成所述阳极电解室和阴极电解室;
其中,所述离子传递层、阳极催化电极、阴极催化电极、阳极极板和阴极极板均嵌入至自捕获容器的内腔;
在阴极电解室、阳极电解室内均存放自驱动电解质,将装置浸没在海水(非纯水溶液)体系后,在界面压力差作用下,海水(非纯水溶液)蒸汽自发传质通过溶液传质层,被自驱动电解质诱导相变形成液态水,从而使催化电解模块浸没在多孔绝缘网槽中的自驱动电解质环境;开始电解后,首先阴极催化电极发生还原反应产生氢气,生成的OH -在离子传递层作用下,传递至阳极并在阳极催化电极上发生析氧反应;其中,阳极催化电极包括但不限于:镍钼、铱钽、钌铱、NiFe-LDH、NiFeCu合金催化剂负载的钛网、泡沫镍等;可用的阴极催化电极包括但不限于:铂金网、镍镀铂网、Fe xCo yNi z型催化剂负载的泡沫镍和钛毡等。
进一步地,所述自捕获容器包括:
一溶液传质层,所述溶液传质层内设有一容腔,该容腔内置有所述催化电解模块;
分别紧贴于催化电解模块两侧的阳极极板和阴极极板,所述阳极极板与容腔之间紧贴有阳极多孔绝缘网槽,阴极极板与容腔之间紧贴有阴极多孔绝缘网槽;
其中,所述阳极极板和阴极极板上分别开设有所述阳极电解室和阴极电解室。
进一步地,所述催化电解模块包括:
离子传递层,所述离子传递层用于在阳极电解室与阴极电解室之间传递OH -离子;其中,离子传递层包括但不限于涤纶隔膜、尼龙隔膜、陶瓷多孔隔膜、阴离子交换膜或PVA等聚合物薄膜。
对称布置于离子传递层两侧的阳极催化电极和阴极催化电极,所述阳极催化电极上紧贴有阳极极板,阴极催化电极上紧贴有阴极极板。
在本发明中还公开了海水无淡化原位直接电解制氢装置,制氢装置包括:
一容腔和设于容腔内的自驱动电解质层,通过自驱动电解质层将容腔分隔成阳极电解室和阴极电解室,且阳极电解室和阴极电解室分别设有用于诱导驱动无杂质水分传质的溶液传质层;
设于容腔内的催化电解模块,在阴极电解室内通过催化电解模块电解自驱动电解质层 内的水分制备氢气和OH -,且OH -经自驱动电解质层进入至阳极电解室内并通过电解制备氧气。
进一步地,所述催化电解模块包括:
紧贴于自驱动电解质层两侧的阳极催化电极和阴极催化电极,所述阳极催化电极和阴极催化电极的侧面分别紧贴有阳极极板和阴极极板;
其中,所述阳极极板和阴极极板上分别开设有排气槽,且阳极极板和阴极极板的侧面分别贴有所述溶液传质层。
进一步地,所述溶液传质层采用孔径为0.1~100um的TPU膜、PTFE膜、PDMS膜中的任意一种;通过溶液传质层的疏水作用将杂质溶液阻挡在体系外,同时驱动水溶液传质,配合自驱动电解质诱导水溶液相变形成无杂质液态水。
或者所述溶液传质层为石墨烯、PVDF颗粒、PTFE颗粒通过喷涂、丝网印刷、静电吸附制备而成的多孔溶液传质层;
通过溶液传质层的疏水作用将杂质溶液阻挡在体系外,同时驱动水溶液传质进入电解质。海水无淡化原位直接电解制氢系统进一步地,还包括一供能模块,所述供能模块分别与阳极极板和阴极极板电连接,并分别为阳极极板和阴极极板供电;
供能模块也可直接利用火电、水电等,更进一步,还可以是耦合风电、光伏、核能等可再生能源,实现绿氢生产,以此实现非稳定可再生能源的能源转化,形成的氢能有利于稳定储存。
在本发明中还提供了海水无淡化原位直接电解制氢系统,该制氢系统包括至少一上述所述的海水无淡化原位直接电解制氢装置,该制氢系统还包括:
至少一氧气收集单元和至少一氢气收集单元,各所述氧气收集单元和氢气收集单元分别与阳极电解室和阴极电解室连通;
该系统在应用时,可根据产氢量的需求进行适应性设计。
进一步地,所述氧气收集单元包括:与阳极电解室连通的氧气洗涤器,氧气洗涤器连接有氧气干燥器,氧气干燥器连接有氧气收集瓶,通过氧气收集瓶存储氧气并作下一步利用;
所述氢气收集单元包括:与阴极电解室连通的氢气洗涤器,氢气洗涤器连接有氢气干燥器,氢气干燥器连接有氢气收集瓶,通过氢气收集瓶存储氢气并作下一步利用。
本发明的有益效果为:
1.采用本发明所提供的海水无淡化原位直接电解制氢方法、装置及系统,通过溶液与自驱动电解质之间的界面压力差作用,自驱动电解质自发诱导水溶液相变形成无杂质水分,并通过原位催化电解制氢,消耗系统中自驱动电解质的水分,并诱导电解质循环再生,维持界面压力差,实现系统无额外能耗的自循环激发驱动,实现无需淡化的连续稳定制氢过程,同时系统总能耗与淡水电解制氢相当。
2.采用本发明所提供的海水无淡化原位直接电解制氢方法、装置及系统,其利用碱性物质作为自驱动电解质,在海水(非纯水溶液)中自发诱导海水(非纯水溶液)相变后形成碱性电解液并对电解液进行电解产生氢气和氧气,大幅提升了溶液的电导率,避免了海水(非纯水溶液)制氢中H +和OH -浓度小在阴阳极传输效率低的问题。
3.采用本发明所提供的海水无淡化原位直接电解制氢方法、装置及系统,其在应用时,自驱动电解质诱导相变的均为无杂质水分,因此突破了海水(非纯水溶液)直接制氢受到成分随时间、气候、人类活动等因素制约的瓶颈,突破了传统海水(非纯水溶液)淡化电解制氢的瓶颈,无需大规模修建淡化厂,极大的缩小了建设、运营、人力、维护等方面成本,同时还可以用于污泥、沼泽、河流等任何非纯水溶液环境中或直接在大气中的电解制氢,极大的拓宽了氢能的来源范围,同时不受时空限制。
4.采用本发明所提供的海水无淡化原位直接电解制氢方法、装置及系统,其在应用时自发捕获的均为无杂质水分,突破了海水(非纯水溶液)直接制氢中氯离子被氧化产生Cl 2或ClO -等腐蚀和有毒物质的瓶颈,本技术是绿色、无毒、环保的工艺体系,同时,在溶液体系中不含有钙离子、镁离子等杂质离子,长时间运行不会存在钙镁沉淀,减少了后期维护成本。
附图说明
图1是本发明所提供的海水无淡化原位直接电解制氢装置在实施例1中的整体原理图;
图2是本发明所提供的海水无淡化原位直接电解制氢装置在实施例2中的整体原理图;
图3是本发明所提供的海水无淡化原位直接电解制氢装置在实施例3中的整体原理图;
图4是本发明所提供的海水无淡化原位直接电解制氢装置在实施例1中的lsv曲线图;
图5是本发明所提供的海水无淡化原位直接电解制氢装置在实施例1中的稳定运行效果图;
图6是本发明所提供的海水无淡化原位直接电解制氢装置在实施例3中的稳定运行效果图;
附图中标注如下:
1-A供能模块,2-A阳极极板,3-A阳极催化电极,4-A离子传递层,5-A阴极催化电极,6-A阴极极板,7-A阳极电解室,8-A阴极电解室,9-多孔绝缘网槽,10-A溶液传质层,11-A氧气洗涤器,12-A氧气干燥器,13-A氧气收集瓶,14-A氢气洗涤器,15-A氢气干燥器,16-A氢气收集瓶,17-A催化电解模块;
18-B供能模块,19-阳极多孔绝缘网槽,20-B阳极极板,21-B阳极电解室,22-B阳极催化电极,23-B离子传递层,24-B阴极催化电极,25-B阴极极板,26-B阴极电解室,27-阴极多孔绝缘网槽,28-B溶液传质层,29-B氧气洗涤器,30-B氧气干燥器,31-B氧气收集瓶,32-B氢气洗涤器,33-B氢气干燥器,34-B氢气收集瓶,35-B催化电解模块,36-C供能模块,37-阳极溶液传质层,38-C阳极极板,39-C阳极催化电极,40-C离子传递层,41-C阴极催化电极,42-C阴极极板,43-阴极溶液传质层,44-C氧气洗涤器,45-C氧气干燥器,46-C氧气收集瓶,47-C氢气洗涤器,48-C氢气干燥器,49-C氢气收集瓶,50-C催化电解模块。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是 为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明实施例的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接连接,也可以通过中间媒介间接连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义;实施例中的附图用以对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
实施例1
在本实施例中具体提供了海水无淡化原位直接电解制氢装置,该制氢装置在应用时,可浸入至海水、污泥、沼泽等各种非纯净水溶液中,通过非纯净水系统与自驱动电解质界面压力差的推动作用,促进自驱动电解质自发诱导海水(非纯水溶液)相变,并在电解反应下生产氢气。
如图1所示,该制氢装置包括:一自捕获容器和设于该自捕获容器内的A催化电解模块17,通过该自捕获容器自发获取无杂质水分,再通过该A催化电解模块17将自捕获容器分隔成A阳极电解室7和A阴极电解室8,A阳极电解室7和A阴极电解室8内均置有自驱动电解质分别制备氧气和氢气,其中,可用的自驱动电解质包括但不限于:K 2CO 3、NaOH、KOH、Ca(OH) 2、Na 2CO 3等固体或其溶液,也可将自驱动电解质替换成其他吸湿介质,如丙三醇、聚乙二醇、丙烯酸钠、硫酸等。
①自捕获容器
该自捕获容器包括:一多孔绝缘网槽9和包覆于多孔绝缘网槽9外部的A溶液传质层10,所述多孔绝缘网槽9内设有一容腔,该容腔内置有所述A催化电解模块17,通过该A溶液传质层10对海水(非纯水溶液)中的杂质阻挡。在实际应用时,A溶液传质层10采用孔径为0.1~100um的TPU膜、PDMS膜、PTFE膜中的任意一种;当然除了上述方式,A溶液传质层10还可由石墨烯、PVDF颗粒、PTFE颗粒通过喷涂、丝网印刷、静电吸附制备而成的多孔溶液传质层。
A溶液传质层10包覆于整个多孔绝缘网槽9的外部,当整个体系进入海水(非纯水溶 液)中,A溶液传质层10隔离海水(非纯水溶液),并驱动水溶液传质,促使自驱动电解质诱导海水(非纯水溶液)相变形成无杂质液态水。
②催化电解模块
该A催化电解模块17包括:A离子传递层4、对称布置于A离子传递层4两侧的A阳极催化电极3和A阴极催化电极5,所述A离子传递层4包括但不限于涤纶隔膜、尼龙隔膜、陶瓷多孔隔膜、阴离子交换膜或PVA等聚合物薄膜。
A阳极催化电极3和A阴极催化电极5的表面上分别附有A阳极极板2和A阴极极板6,且A阳极极板2和A阴极极板6分别位于A阳极电解室7和A阴极电解室8内;其中,所述A离子传递层4、A阳极催化电极3、A阴极催化电极5、A阳极极板2和A阴极极板6均嵌入至自捕获容器的内腔底部中,进而将多孔绝缘网槽9隔离出A阳极电解室7和A阴极电解室8,用于存放自驱动电解质。
海水(非纯水溶液)进入A阳极电解室7和A阴极电解室8并通过A阳极电解室7和A阴极电解室8内存放的自驱动电解质诱导相变,并在A阴极催化电极5表面发生还原析氢反应产生氢气,反应式如下:
2H 2O+2e -→H 2+2OH -
产生的OH -通过A离子传递层4(涤纶隔膜、尼龙隔膜、陶瓷多孔隔膜、阴离子交换膜或PVA等聚合物薄膜)传递至A阳极催化电极3,发生氧化反应产生氧气,反应式如下:
Figure PCTCN2022128225-appb-000001
上述中,可用的A阳极催化电极3包括但不限于:泡沫镍钼、铱钽、钌铱、NiFe-LDH、NiFeCu合金、Ni xFe yO z催化剂负载的钛网;可用的A阴极催化电极5包括但不限于:铂金网、镍镀铂网、FexCoyNiz型催化剂等。
③供能模块
通过A供能模块1分别与A阳极极板2和A阴极极板6连接,并为A阳极极板2和A阴极极板6供电,例如:A供能模块1的能量来源可以为太阳能、风能等可再生能源能源转化为的电能,太阳能、风能等可再生能源产生的电力或火电储存在A供能模块1中,且A 供能模块1分别与A阳极极板2和A阴极极板6连接,用于为制氢反应提供电能。通过A供能模块1为A催化电解模块17供电,直接在海水(非纯水溶液)中自发获取无杂质水分,由A催化电解模块17电解催化制氢实现整体的海水(非纯水溶液)无淡化原位直接电解制氢。除此之外,A供能模块1也可直接利用火电、水电等,更进一步,还可以是耦合风电、光伏、核能等可再生能源,实现绿氢生产,以此实现非稳定可再生能源的能源转化,形成的氢能有利于稳定储存。
基于上述所提供的海水无淡化原位直接电解制氢装置,其工作原理如下:
首先,A供能模块1为A催化电解模块17提供电力;
其次,将海水无淡化原位直接电解制氢系统直接浸没水中,在海水(非纯水溶液)和自驱动电解质界面压力差或渗透压正向推动作用下,海水(非纯水溶液)通过A溶液传质层10进入自捕获容器被低蒸汽压自驱动电解质诱导相变并形成电解液,同时A溶液传质层10的疏水作用将溶解在海水(非纯水溶液)中的杂质阻挡在体系外;
最终,由催化制氢模块在催化体系下对自驱动电解质诱导相变的纯净水进行电解制氢,自驱动电解质中的水不断被电解消耗,并诱导自驱动电解质再生,维持界面压力差,实现系统无额外能耗的自循环激发驱动制氢,总能耗与淡水电解制氢相当。
该海水无淡化原位直接电解制氢装置通过A供能模块1提供电能,通过自驱动电解质诱导相变获取的纯净液态水,然后利用催化电解原理制取氢气。一方面,能实现在任何海水(非纯水溶液)环境中无时空差别的自发捕获制氢的动态连续过程;另一方面,可以对非稳定的可再生能源实现能源转化和稳定储存,为未来能源体系构建提供技术手段。
该海水无淡化原位直接电解制氢装置在实际应用时,其组装方式不仅适用于规则形状,也可以替换成异形,以此来适应于不同地区环境。
其实施效果:阴阳极电解室放置自驱动电解质,通过诱导水溶液相变形成电解液。体系在2v电压下电流密度达200mA/cm 2,如图4所示,具有高效电流密度。该系统可以在室温环境,2v、200mA/cm 2高电流密度下的稳定运行60h以上,具有高电流密度下的良好稳定性,如图5所示。
实施例2
如图2所示,在本实施例中提供了海水无淡化原位直接电解制氢装置,由太阳能、风能等可再生能源产生的电力或火电储存在B供能模块18中,将B供能模块18与该原位自 捕获制氢装置中的B阳极极板20和B阴极极板25连接,用于为制氢反应提供电能。
如图2所示,B催化电解模块35由B阳极催化电极22、B离子传递层23、B阴极催化电极24组成,B催化电解模块35两侧分别紧贴B阳极极板20和阳极多孔绝缘网槽19、B阴极极板25和阴极多孔绝缘网槽27,并在B阳极极板20和B阴极极板25分别开设有B阳极电解室21和B阴极电解室26均用于储存自驱动电解质。整个体系浸入海水(非纯水溶液)中,通过B溶液传质层28自发传质,杂质组分被隔离在外,自驱动电解质诱导相变在B阳极电解室21和B阴极电解室26形成液态水,并在B阴极催化电极24表面发生还原析氢反应,反应式如下:
2H 2O+2e -→H 2+2OH -
产生的OH -通过B离子传递层23(阴离子交换膜)传递至B阳极催化电极22,发生氧化反应产生氧气,反应式如下:
Figure PCTCN2022128225-appb-000002
上述所提供的海水无淡化原位直接电解制氢装置,其工作原理如下:
首先,只在系统中的B阳极电解室21放置自驱动电解质K 2CO 3固体或K 2CO 3浓溶液(实际上,在阳极侧或者阴极侧放自驱动电解质,形成电解液以后,都会渗到另一侧),B阴极电解室26空置,且通过B供能模块18为B催化电解模块35提供电力,B供能模块18的具体阐述参照实施例1,此处不再赘述;
其次,将海水无淡化原位直接电解制氢装置直接浸没海水(非纯水溶液)中,在海水(非纯水溶液)界面与自驱动电解质界面压力差作用下,通过B溶液传质层28进入B阳极电解室21被低蒸汽压K 2CO 3自驱动电解质诱导相变形成液态水,同时B溶液传质层28的疏水作用将溶解在非纯水中的杂质阻挡在体系外;B阳极电解室21内的K 2CO 3溶液中的水分浸润至B阴极催化电极24表面,水在阴极侧被还原成氢气和OH -,OH -通过阴离子交换膜被传递至阳极侧氧化产生氧气。
最终,由催化制氢模块在催化体系下对K 2CO 3潮解物捕获的纯净水进行电解制氢,K 2CO 3自驱动电解质中的水不断被电解消耗,诱导电解质再生,维持界面压力差,从而形成连续稳定的电解制氢过程。
该海水无淡化原位直接电解制氢装置通过B供能模块18提供电能,通过自驱动电解质诱导相变形成纯净液态水,然后利用催化电解原理制取氢气。一方面,能实现在任何非纯水环境中无时空差别的自发捕获制氢的动态连续过程;另一方面,可以对非稳定的可再生能源实现能源转化和稳定储存,为未来能源体系构建提供技术手段。
该海水无淡化原位直接电解制氢装置在实际应用时,其组装方式不仅适用于规则形状,也可以替换成异形,以此来适应于不同地区环境。
实施例3
在本实施例中提供了海水无淡化原位直接电解制氢装置,由太阳能、风能等可再生能源产生的电力或火电储存在C供能模块36中,将C供能模块36与该原位自捕获制氢装置中的C阳极电极38和C阴极电极42连接,用于为制氢反应提供电能。
如图3所示,由C阳极极板38和C阴极极板42共同形成容器的外框,在C阳极极板38和C阴极极板42之间设有C阳极催化电极39、C离子交换层40、C阴极催化电极41,在C阳极极板38和C阴极极板42的外侧面紧贴阳极溶液传质层37和阴极溶液传质层43,以将无杂质水自动捕获至容器内。其中,C阳极催化电极39和C阴极催化电极41分别附着于对应的C阳极极板38和C阴极极板42的表面上。
C催化电解模块50由C阳极极板38、C阳极催化电极39、C离子交换层40、C阴极催化电极41和C阴极极板42组成,在C催化电解模块50两侧分别紧贴阳极溶液传质层37和阴极溶液传质层43。在C阳极极板38和C阴极极板42上分别开设由排气槽,以能够分别将电解产生的氧气和氢气排出。
将整个体系浸入海水(非纯水溶液)中,阳极溶液传质层37和阴极溶液传质层43隔离液态水,驱动自发传质,自驱动电解质诱导相变。所述C离子交换层40采用自驱动电解质层,自驱动电解质层具备诱导相变作用、离子导通能力,在C阴极催化电极41的表面发生还原析氢反应,反应式如下:
2H 2O+2e -→H 2+2OH -
产出的氢气通过C氢气洗涤器47和C氢气干燥器48,脱出氢气中夹带的,经过管道收集进入C氢气收集瓶49,进行储存和下一步利用。产生的OH -通过C离子交换层40(C离子交换层40是由KOH复合在PVA凝胶上形成的自驱动电解质层)传递至C阳极催化电极39,发生氧化反应产生氧气,反应式如下:
Figure PCTCN2022128225-appb-000003
析氧反应产生的氧气通过管道经过C氧气洗涤器44和C氧气干燥器45,收集至C氧气收集瓶46中。
基于上述所提供的海水无淡化原位直接电解制氢装置,其工作原理如下:
首先,C供能模块36为C催化电解模块50提供电力;
其次,将海水无淡化原位直接电解制氢系统直接浸没海水(非纯水溶液)中,在海水(非纯水溶液)和自驱动电解质界面压力差推动作用下,通过阳极溶液传质层37和阴极无能耗溶液传质层43进入自捕获容器被自驱动电解质层(碱性聚合物材料,如PAA-KOH复合膜,PVA-KOH复合膜,PVA-K 2CO 3复合膜)诱导相变自驱动电解质,同时,阳极溶液传质层37和阴极溶液传质层43的疏水作用将溶解在海水(非纯水溶液)中的杂质阻挡在体系外;自驱动电解质内部的水分被氧化还原成氧气和氢气,同时过程中产生的OH -由自驱动电解质传递。
最终,由催化制氢模块在催化体系下对自驱动电解质诱导相变的纯净水进行电解制氢,自驱动电解质中的水不断被电解消耗,诱导自驱动电解质再生,维持界面压力差稳定,从而形成连续稳定的海水(非纯水溶液)无淡化原位直接电解制氢过程。
该海水无淡化原位直接电解制氢装置通过C供能模块36提供电能,通过自驱动电解质诱导水溶液相变,然后利用催化电解原理制取氢气。一方面,能实现在任何非纯水环境中无时空差别的自发捕获制氢的动态连续过程;另一方面,可以对非稳定的可再生能源实现能源转化和稳定储存,为未来能源体系构建提供技术手段。
该海水无淡化原位直接电解制氢装置在实际应用时,其组装方式不仅适用于规则形状,也可以替换成异形,以此来适应于不同地区环境。
其实施效果:自驱动电解质作为离子交换层,既自发诱导水溶液相变,又传导离子。该系统可以在室温下,100mA/cm 2电流密度下电压2.65v左右稳定运行50h以上,具有高电流密度下的良好稳定性,如图6所示。
实施例4
在本实施例中还提供了海水无淡化原位直接电解制氢系统,该制氢系统包括上述实施例1中所述的海水无淡化原位直接电解制氢装置,该制氢系统还包括:
一氧气收集单元和一氢气收集单元,各所述氧气收集单元和氢气收集单元分别与A阳极电解室7和A阴极电解室8连通,以分别对制取的氧气和氢气进行干燥、收集处理。
其中,氧气收集单元包括:与A阳极电解室7连通的A氧气洗涤器11,A氧气洗涤器11连接有A氧气干燥器12,A氧气干燥器12连接有A氧气收集瓶13,在A阳极电解室7内经析氧反应产生的氧气通过管道经过A氧气洗涤器11和A氧气干燥器12进行洗涤、干燥,并收集至A氧气收集瓶13进行储存和下一步利用。氢气收集单元包括:与A阴极电解室8连通的A氢气洗涤器14,A氢气洗涤器14连接有A氢气干燥器15,A氢气干燥器15连接有A氢气收集瓶16,在A阴极电解室8经还原析氢反应产出的氢气通过A氢气洗涤器14和A氢气干燥器15进行洗涤、干燥,脱出氢气中夹带的,经过管道收集进入A氢气收集瓶16,进行储存和下一步利用。
同理,该制氢系统也可为包括上述实施例2中所述的海水无淡化原位直接电解制氢装置,该制氢系统还包括:
一氧气收集单元和一氢气收集单元,各所述氧气收集单元和氢气收集单元分别与B阳极电解室21和B阴极电解室26连通,以分别对制取的氧气和氢气进行干燥、收集处理。
其中,氧气收集单元包括:与B阳极电解室21连通的B氧气洗涤器29,B氧气洗涤器29连接有B氧气干燥器30,B氧气干燥器30连接有B氧气收集瓶31,在B阳极电解室21内经析氧反应产生的氧气通过管道经过B氧气洗涤器29和B氧气干燥器30进行洗涤、干燥,并收集至B氧气收集瓶31进行储存和下一步利用。氢气收集单元包括:与B阴极电解室26连通的B氢气洗涤器32,B氢气洗涤器32连接有B氢气干燥器33,B氢气干燥器33连接有B氢气收集瓶34,在B阴极电解室26经还原析氢反应产出的氢气通过B氢气洗涤器32和B氢气干燥器33进行洗涤、干燥,脱出氢气中夹带的,经过管道收集进入B氢气收集瓶34,进行储存和下一步利用。
同理,该制氢系统还可为包括上述实施例3中所述的海水无淡化原位直接电解制氢装置,该制氢系统还包括:
一氧气收集单元和一氢气收集单元,各所述氧气收集单元和氢气收集单元分别与C阳极电解室和C阴极电解室连通,以分别对制取的氧气和氢气进行干燥、收集处理。
其中,氧气收集单元包括:与C阳极电解室连通的C氧气洗涤器44,C氧气洗涤器44连接有C氧气干燥器45,C氧气干燥器45连接有C氧气收集瓶46,在C阳极电解室内经析氧反应产生的氧气通过管道经过C氧气洗涤器44和C氧气干燥器45进行洗涤、干燥,并收 集至C氧气收集瓶46进行储存和下一步利用。氢气收集单元包括:与C阴极电解室连通的C氢气洗涤器47,C氢气洗涤器47连接有C氢气干燥器48,C氢气干燥器48连接有C氢气收集瓶49,在C阴极电解室经还原析氢反应产出的氢气通过C氢气洗涤器47和C氢气干燥器48进行洗涤、干燥,脱出氢气中夹带的,经过管道收集进入C氢气收集瓶49,进行储存和下一步利用。
整个系统可根据产氢量的需求设计成便捷携带或大规模制备的集成系统,可以在包括污泥、沼泽、河流、湖泊、工业废水任何非纯水的体系环境中使用,且不受时间、空间的限制进行连续的原位产氢工作。
实施例5
在本实施例中还提供了海水无淡化原位直接电解制氢方法,该制氢方法应用上述实施例1或实施例2或实施例3中所述的海水无淡化原位直接电解制氢装置,该制氢方法包括:
将海水无淡化原位直接电解制氢装置浸入至非纯水中,以实现非纯水中的浸入式电解制氢;或者直接将海水无淡化原位直接电解制氢装置置于大气中,以捕集大气中的水分进行制氢;
启动供能模块为海水无淡化原位直接电解制氢装置中的催化电解模块供电工作,经分解产生的氧气和氢气,分别对作净化、干燥等后期处理后收集,以进一步利用。
通过自捕获制氢装置直接浸没水中或大气,在界面压力差推动作用下,通过溶液传质层进入海水(非纯水溶液)无淡化原位直接电解制氢被自驱动电解质诱导相变形成电解液自驱动电解质,同时溶液传质层的疏水作用将溶解在非纯水中的杂质阻挡在体系外,在催化体系下对自驱动电解质诱导相变的自驱动电解质纯净水进行电解制氢,并使自驱动电解质再生,维持界面压力差,实现系统五额外能耗的自循环激发驱动,总能耗与淡水电解制氢相当。
本发明不局限于上述可选实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是落入本发明权利要求界定范围内的技术方案,均落在本发明的保护范围之内。

Claims (12)

  1. 海水无淡化原位直接电解制氢方法,其特征在于,该制氢方法包括:
    通过溶液传质层将海水和杂质离子阻挡在外,实现水汽的选择性通过,自驱动电解质在界面蒸气压作用或渗透压差下诱导水汽相变液化获取无杂质离子水分;
    由制氢电解中的阴极侧对自驱动电解质内的水分作析氢反应制备氢气和OH -,将OH -由离子传递至制氢电解中的阳极侧并通过阳极侧作析氧反应制备氧气;
    其中,在制氢电解过程中,随着自驱动电解质内的水分被不断电解消耗,诱导自驱动电解质再生,形成无额外能耗的自循环激发驱动制氢。
  2. 海水无淡化原位直接电解制氢装置,其特征在于,该制氢装置应用如权利要求1所述的海水无淡化原位直接电解制氢方法,该制氢装置包括:
    一自捕获容器,通过该自捕获容器自发获取无杂质水分;
    设于该自捕获容器内的催化电解模块,通过该催化电解模块将自捕获容器分隔成阳极电解室和阴极电解室,并至少在阳极电解室或阴极电解室内形成自驱动电解质,自驱动电解质首先在阴极电解室电解制备氢气和OH -,且OH -经过催化电解模块进入阳极室并电解制备氧气。
  3. 根据权利要求2所述的海水无淡化原位直接电解制氢装置,其特征在于,所述自捕获容器包括:
    一多孔绝缘网槽,所述多孔绝缘网槽内设有一容腔,该容腔内置有所述催化电解模块;
    包覆于多孔绝缘网槽外部的溶液传质层,通过该溶液传质层对海水中的杂质阻挡。
  4. 根据权利要求3所述的海水无淡化原位直接电解制氢装置,其特征在于,所述催化电解模块包括:
    离子传递层,所述离子传递层用于在阳极电解室与阴极电解室之间传递OH -离子,并阻隔阳极侧产生的O 2与阴极侧产生的H 2混合;
    对称布置于离子传递层两侧的阳极催化电极和阴极催化电极,所述阳极催化电极和阴极催化电极的侧面上分别附有阳极极板和阴极极板,且阳极极板和阴极极板分别与自捕获容器形成所述阳极电解室和阴极电解室;
    其中,所述离子传递层、阳极催化电极、阴极催化电极、阳极极板和阴极极板均嵌入至自捕获容器的内腔。
  5. 根据权利要求2所述的海水无淡化原位直接电解制氢装置,其特征在于,所述自捕获容器包括:
    一溶液传质层,所述溶液传质层内设有一容腔,该容腔内置有所述催化电解模块;
    分别紧贴于催化电解模块两侧的阳极极板和阴极极板,所述阳极极板与容腔之间紧贴有阳极多孔绝缘网槽,阴极极板与容腔之间紧贴有阴极多孔绝缘网槽;
    其中,所述阳极极板和阴极极板上分别开设有所述阳极电解室和阴极电解室。
  6. 根据权利要求5所述的海水无淡化原位直接电解制氢装置,其特征在于,所述催化电解模块包括:
    离子传递层,所述离子传递层用于在阳极电解室与阴极电解室之间传递OH -离子;
    对称布置于离子传递层两侧的阳极催化电极和阴极催化电极,所述阳极催化电极上紧贴有阳极极板,阴极催化电极上紧贴有阴极极板。
  7. 海水无淡化原位直接电解制氢装置,其特征在于,该制氢装置应用如权利要求1所述的海水无淡化原位直接电解制氢方法,该制氢装置包括:
    一容腔和设于容腔内的自驱动电解质层,通过自驱动电解质层将容腔分隔成阳极电解室和阴极电解室,且阳极电解室和阴极电解室分别设有用于促进海水传质的溶液传质层;
    设于容腔内的催化电解模块,在阴极电解室内通过催化电解模块电解自驱动电解质层内的水分制备氢气和OH -,且OH -经自驱动电解质层进入至阳极电解室内并通过电解制备氧气。
  8. 根据权利要求7所述的海水无淡化原位直接电解制氢装置,其特征在于,所述催化电解模块包括:
    紧贴于自驱动电解质层两侧的阳极催化电极和阴极催化电极,所述阳极催化电极和阴极催化电极的侧面分别紧贴有阳极极板和阴极极板;
    其中,所述阳极极板和阴极极板上分别开设有排气槽,且阳极极板和阴极极板的侧面分别贴有所述溶液传质层。
  9. 根据权利要求3、5或7所述的海水无淡化原位直接电解制氢装置,其特征在于,所述溶液传质层采用孔径为0.1~100um孔径的TPU膜、PDMS膜、PTFE膜中的任意一种;
    或者所述溶液传质层为石墨烯、PVDF颗粒、PTFE颗粒通过喷涂、丝网印刷、静电吸附制备而成。
  10. 根据权利要求2所述的海水无淡化原位直接电解制氢装置,其特征在于,还包括一供能模块,所述供能模块分别与阳极极板和阴极极板电连接,并分别为阳极极板和阴极极板供电。
  11. 海水无淡化原位直接电解制氢系统,其特征在于,该制氢系统包括至少一如权利要求2-10任意一项所述的海水无淡化原位直接电解制氢装置,该制氢系统还包括:
    至少一氧气收集单元和至少一氢气收集单元,各所述氧气收集单元和氢气收集单元分别与阳极电解室和阴极电解室连通。
  12. 根据权利要求11所述的海水无淡化原位直接电解制氢系统,其特征在于,所述氧气收集单元包括:与阳极电解室连通的氧气洗涤器,氧气洗涤器连接有氧气干燥器,氧气干燥器连接有氧气收集瓶;
    所述氢气收集单元包括:与阴极电解室连通的氢气洗涤器,氢气洗涤器连接有氢气干燥器,氢气干燥器连接有氢气收集瓶。
PCT/CN2022/128225 2021-09-01 2022-10-28 海水无淡化原位直接电解制氢方法、装置及系统 WO2023030551A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111019705.4 2021-09-01
CN202111019705.4A CN115725981A (zh) 2021-09-01 2021-09-01 海水无淡化原位直接电解制氢方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023030551A1 true WO2023030551A1 (zh) 2023-03-09

Family

ID=85292010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128225 WO2023030551A1 (zh) 2021-09-01 2022-10-28 海水无淡化原位直接电解制氢方法、装置及系统

Country Status (2)

Country Link
CN (1) CN115725981A (zh)
WO (1) WO2023030551A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1247198A (en) * 1968-12-13 1971-09-22 Seiichi Inoue Improvements in and relating to the electrolysis of saline solutions
JP2000064080A (ja) * 1998-08-21 2000-02-29 Toshiba Corp 水素発生装置
CN105645522A (zh) * 2014-12-02 2016-06-08 北京纳米能源与系统研究所 一种自驱动海水淡化和海水电解的装置及方法
US20160186334A1 (en) * 2013-09-06 2016-06-30 M Hikari & Energy Laboratory Co., Ltd. Electrochemical reactor comprising liquid-repellent porous membrane
CN106757130A (zh) * 2017-01-03 2017-05-31 东南大学 一种胶体电解质膜以及电解水装置
CN110820007A (zh) * 2019-11-14 2020-02-21 深圳大学 一种pbi质子交换膜电解模组及海水电解制氢装置
CN211872099U (zh) * 2020-03-30 2020-11-06 中国华能集团清洁能源技术研究院有限公司 一种基于电吸附脱盐技术的海上风电制氢系统
CN113088986A (zh) * 2021-02-25 2021-07-09 四川大学 基于聚电解质凝胶海水原位自捕集制氢装置、系统及方法
CN113088995A (zh) * 2021-02-25 2021-07-09 四川大学 基于液相吸湿的直接海水捕集制氢装置、系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1247198A (en) * 1968-12-13 1971-09-22 Seiichi Inoue Improvements in and relating to the electrolysis of saline solutions
JP2000064080A (ja) * 1998-08-21 2000-02-29 Toshiba Corp 水素発生装置
US20160186334A1 (en) * 2013-09-06 2016-06-30 M Hikari & Energy Laboratory Co., Ltd. Electrochemical reactor comprising liquid-repellent porous membrane
CN105645522A (zh) * 2014-12-02 2016-06-08 北京纳米能源与系统研究所 一种自驱动海水淡化和海水电解的装置及方法
CN106757130A (zh) * 2017-01-03 2017-05-31 东南大学 一种胶体电解质膜以及电解水装置
CN110820007A (zh) * 2019-11-14 2020-02-21 深圳大学 一种pbi质子交换膜电解模组及海水电解制氢装置
CN211872099U (zh) * 2020-03-30 2020-11-06 中国华能集团清洁能源技术研究院有限公司 一种基于电吸附脱盐技术的海上风电制氢系统
CN113088986A (zh) * 2021-02-25 2021-07-09 四川大学 基于聚电解质凝胶海水原位自捕集制氢装置、系统及方法
CN113088995A (zh) * 2021-02-25 2021-07-09 四川大学 基于液相吸湿的直接海水捕集制氢装置、系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE HEPING, ZHAO ZHIYU, LIU TAO, WU YIFAN, LAN CHENG, JIANG WENCHUAN, ZHU LIANGYU, WANG YUNPENG, YANG DONGSHENG, SHAO ZONGPING: "A membrane-based seawater electrolyser for hydrogen generation", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 612, no. 7941, 22 December 2022 (2022-12-22), London, pages 673 - 678, XP093041528, ISSN: 0028-0836, DOI: 10.1038/s41586-022-05379-5 *

Also Published As

Publication number Publication date
CN115725981A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
Ding et al. Electrochemical neutralization energy: from concept to devices
US20080245660A1 (en) Renewable energy system for hydrogen production and carbon dioxide capture
CN107285544B (zh) 一种基于风光互补发电和氢能供电的海水淡化系统
WO2024046399A1 (zh) 一种无需纯水的电解制氢系统
CN114481164B (zh) 基于液相吸湿的非纯水溶液电解制氢装置、系统及方法
CN108793346A (zh) 一种电吸附耦合扩展活性炭处理微污染苦咸水的装置与方法
WO2024046397A1 (zh) 一种非纯水溶液无淡化原位直接电解制氢装置及使用方法
KR102015064B1 (ko) 직렬 연결된 이종 red를 포함하는 발전 시스템
CN114481158A (zh) 一种高温碱性电解水制氢系统及其方法
WO2023030551A1 (zh) 海水无淡化原位直接电解制氢方法、装置及系统
CN109841931B (zh) 一种氯镁燃料电池
CN103159297B (zh) 一种光电解池分解水产氢并在线分离装置
CN208791261U (zh) 一种电吸附耦合扩展活性炭处理微污染苦咸水的装置
CN2891308Y (zh) 既可电解水又可发电的再生式燃料电池堆
CN218539384U (zh) 一种电渗析海水脱盐协同电催化降解有机污水并产h2o2装置
CN116497380A (zh) 一种空气制氢方法及系统
US20040217014A1 (en) Solar powered electrolysis of brackish water
CN116145165A (zh) 一种电解高盐水制氢系统、电厂储能系统及方法
JP4660853B2 (ja) 水素ガス生成装置及び水素ガスの生成方法
CN209929451U (zh) 一种氯镁燃料电池
CN114032563A (zh) 一种基于波浪能供电的海上固体氧化物电解池共电解系统
JPH04115470A (ja) 電力貯蔵発電装置
CN114014416A (zh) 一种海水多级浓缩电解提锂装置及方法
CN106898805A (zh) 一种浓差电池
CN217104083U (zh) 一种基于可再生能源发电耦合海水淡化制氢系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863685

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863685

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863685

Country of ref document: EP

Effective date: 20240328