WO2024046399A1 - 一种无需纯水的电解制氢系统 - Google Patents

一种无需纯水的电解制氢系统 Download PDF

Info

Publication number
WO2024046399A1
WO2024046399A1 PCT/CN2023/115958 CN2023115958W WO2024046399A1 WO 2024046399 A1 WO2024046399 A1 WO 2024046399A1 CN 2023115958 W CN2023115958 W CN 2023115958W WO 2024046399 A1 WO2024046399 A1 WO 2024046399A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
electrolyte
oxygen
aqueous solution
separator
Prior art date
Application number
PCT/CN2023/115958
Other languages
English (en)
French (fr)
Inventor
谢和平
刘涛
赵治宇
吴一凡
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Publication of WO2024046399A1 publication Critical patent/WO2024046399A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections

Definitions

  • the invention belongs to the technical field of electrolytic hydrogen production, and is specifically an electrolytic hydrogen production system that does not require pure water.
  • Hydrogen energy has the advantages of wide source, storability, multiple uses, zero carbon and zero pollution, and high energy density. It is a key component of the future energy field.
  • composition is complex, and the composition changes with factors such as season, climate, temperature, region, and human activities. Therefore, non-pure water direct hydrogen production electrolysis devices in different regions are not directly compatible;
  • the second is to desalinize/purify the non-pure water solution and prepare pure water for electrolysis to produce hydrogen.
  • a seawater desalination process is required.
  • This method requires the establishment of a seawater desalination plant on the coast, which greatly increases the cost in terms of construction, operation, manpower, maintenance, etc.; and it is difficult to use offshore wind power coupling on a large scale to form an in-situ integrated green plant. Hydrogen production system to achieve stable storage of renewable energy.
  • the purpose of the present invention is to provide an electrolytic hydrogen production system that does not require pure water to address the bottleneck of the existing technology.
  • This system can directly obtain pure water for hydrogen production from various impure water such as seawater, river water, lake water, industrial wastewater, and domestic sewage through electrolyte.
  • This invention can fundamentally solve the problems of complex ion components causing the failure of ion exchange membranes, deactivation of catalysts, and the generation of precipitation and toxic gases; it can save investment in desalination/purification plant equipment and desalination/purification costs; and at the same time, it can help convert hydrogen energy in the future. Not limited by time and space, it provides strong technical support for direct hydrogen production from non-pure aqueous solutions.
  • An electrolytic hydrogen production system that does not require pure water, the system includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module, wherein: the energy supply module is connected to the electrolysis hydrogen production module and is used to provide electrical energy for the hydrogen production reaction;
  • Electrolytic hydrogen production module which includes an electrolytic cell. After the electrolyte is passed into the electrolytic cell, an oxidation-reduction reaction occurs, water is consumed, and hydrogen and oxygen are produced;
  • the electrolyte circulation regeneration module is used to directly use non-pure aqueous solution to replenish pure water into the electrolyte, and is connected to the electrolytic hydrogen production module.
  • the energy source of the energy supply module in the system is electricity converted from traditional coal power or renewable energy.
  • the electrolytic cell is any one of an alkaline (AWE) electrolytic cell, a proton exchange membrane (PEM) electrolytic cell, an anion exchange membrane (AEM) electrolytic cell, or any electrolytic cell connected in series or parallel The combination formed.
  • AWE alkaline
  • PEM proton exchange membrane
  • AEM anion exchange membrane
  • the electrolyte filled in the electrolytic cell is a liquid electrolyte or a solid gel electrolyte; the liquid electrolyte is a liquid with low saturation and the function of absorbing water vapor; the solid electrolyte is a substance that can induce phase change and liquefaction of water vapor.
  • the electrolyte recycling and regeneration module in this system is a module that realizes the "liquid-gas-liquid" phase change migration process. It uses non-pure aqueous solution to directly replenish pure water into a relatively high-concentration electrolyte solution, including a non-energy-consuming mass transfer device.
  • the energy-free mass transfer device is a device in which a waterproof and breathable layer divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber. When the electrolyte and non-pure aqueous solution flow close to the waterproof and breathable layer, the interface between the two is saturated with water vapor. The pressure difference causes the non-pure aqueous solution to undergo a phase change and vaporize.
  • the generated water vapor enters the electrolyte mass transfer chamber through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, realizing "liquid-gas” -The process of phase change migration of "liquid”; in addition, the waterproof and breathable layer blocks impurities in the non-pure aqueous solution and prevents mutual penetration and pollution of the electrolyte and the non-pure aqueous solution.
  • the non-pure aqueous solution mass transfer chamber of the electrolyte recycling regeneration module is filled with impure aqueous solution, and the impure aqueous solution is selected from seawater, river water, lake water, waste water or domestic sewage.
  • the electrolyte filled in the electrolyte mass transfer chamber is the same as the electrolyte filled in the electrolytic cell.
  • the waterproof and breathable layer is a commercially mature waterproof and breathable layer, or any one selected from porous TPU membranes, PDMS, and PTFE membranes, or graphene, PVDF particles, and PTFE particles through spraying, screen printing, or electrostatic adsorption processes.
  • the prepared porous waterproof breathable mass transfer layer is not limited to, but not limited to, stainless steel, stainless steel, stainless steel, stainless steel, stainless steel, stainless steel, stainless steel, stainless steel, stainless steel, or any one selected from porous TPU membranes, PDMS, and PTFE membranes, or graphene, PVDF particles, and PTFE particles through spraying, screen printing, or electrostatic adsorption processes.
  • the prepared porous waterproof breathable mass transfer layer is a commercially mature waterproof and breathable layer, or any one selected from porous TPU membranes, PDMS, and PTFE membranes, or graphene, PVDF particles, and PTFE particles through spraying, screen printing, or electrostatic adsorption processes.
  • the electrolytic hydrogen production module includes an electrolytic tank and an electrolyte temperature controller; the electrolytic tank and the electrolyte temperature controller are connected.
  • the electrolyte circulation regeneration module includes an energy-free mass transferer, a heat exchanger, a filter, an electrolyte circulation pump, and an electrolyte check valve; both the cathode and the anode of the electrolytic cell are connected to the heat exchanger, and the heat exchanger is connected to the filter. Finally, it is connected to the non-energy consuming mass transferer; the non-energy consuming mass transferr is connected to the electrolyte temperature controller of the electrolytic hydrogen production module through the electrolyte circulation pump and the electrolyte check valve.
  • the system also includes a hydrogen collection module and an oxygen collection module;
  • the hydrogen collection module includes a hydrogen separator, a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank;
  • the oxygen collection module includes an oxygen separator, an oxygen scrubber, an oxygen cooling and oxygen storage tank;
  • the hydrogen separator and the oxygen separator are connected to the electrolyzer respectively.
  • a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank are connected in sequence; after the oxygen separator, an oxygen scrubber is connected in sequence. coolers, oxygen coolers and oxygen storage tanks. It is used to separate the electrolyte/moisture entrained in hydrogen and oxygen, and at the same time wash, dry and store the collected gas.
  • a hydrogen regulating valve and a check valve are provided between the hydrogen scrubber and the hydrogen cooler; and an oxygen regulating valve and a check valve are provided between the oxygen scrubber and the oxygen cooler.
  • the system also includes a cooling module, which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection, used to provide cooling water and cool some devices of the system.
  • a cooling module which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump.
  • oxygen scrubber, oxygen cooler and heat exchanger connection used to provide cooling water and cool some devices of the system.
  • the electrolyte pumped out of the electrolytic tank and the electrolyte collected in the hydrogen separator, oxygen separator, hydrogen scrubber and oxygen scrubber enter the energy-free mass transferer after passing through the temperature controller and filter.
  • the energy-free mass transferer is the most important part of the entire system, and it is also a key component that is different from the traditional electrolytic hydrogen production system process.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber. When the electrolyte and non-pure aqueous solution flow close to the waterproof and breathable layer, the interface vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of directly using non-pure aqueous solution to replenish pure water into a relatively high-concentration electrolyte; in addition, the waterproof and breathable layer effectively blocks impurities in the non-pure aqueous solution and prevents mutual penetration and contamination of the electrolyte and the non-pure aqueous solution. .
  • the energy-free mass transfer device in the module can be a device with a similar structure to a commercially available mature flat membrane distillation reaction mass transfer device, a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or one separated by a waterproof and breathable layer.
  • a mass transfer device with two-phase or multi-phase independent mass transfer spaces or any homemade device with two-phase or multi-phase independent mass transfer spaces separated by a waterproof and breathable layer, which only replaces the filling material with non-pure aqueous solution and electrolyte. Can.
  • the waterproof and breathable layer in the homemade energy-free mass transfer device is preferably any one of porous TPU membranes, PDMS, and PTFE membranes, or graphene, PVDF particles, and PTFE particles are prepared by spraying, screen printing, or electrostatic adsorption processes.
  • Porous waterproof breathable mass transfer layer is preferably any one of porous TPU membranes, PDMS, and PTFE membranes, or graphene, PVDF particles, and PTFE particles are prepared by spraying, screen printing, or electrostatic adsorption processes.
  • the electrolyte filled in the electrolytic cell and the electrolyte mass transfer cavity of the energy-free mass transfer device is a liquid electrolyte or a solid gel electrolyte; wherein the liquid electrolyte is a liquid with a lower saturated water vapor pressure or a water vapor absorption function, including alkaline Liquid electrolyte, acidic liquid electrolyte and ionic liquid; alkaline liquid electrolyte is selected from KOH solution, K 2 CO 3 solution, KHCO 3 solution, NaOH solution, Na 2 CO 3 solution, NaHCO 3 solution, K 3 PO 4 solution, CH 3 COOK solution, Ca(OH) 2 and other alkaline substances, or their combination.
  • Acidic liquid electrolyte such as: H 2 SO 4 solution, H 3 PO 4 solution and other acidic substances, or a combination thereof.
  • Ionic liquids such as: 1-ethyl-3methylimidazole acetate, etc.
  • solid electrolytes are substances that can induce phase change and liquefaction of water vapor.
  • Solid gel electrolytes such as: polyacrylamide hydrogel, polysulfonate acrylamide hydrogel, polymethacrylamide hydrogel, polybenzylpropylene Amide hydrogel, polyphenylacrylamide hydrogel, polyethylacrylamide hydrogel, polytert-butylacrylamide hydrogel, etc., all have hydroxyl, sulfonic acid group, carboxyl group, amine group, ether group, etc.
  • a non-pure aqueous solution temperature controller is installed between the non-pure aqueous solution circulation pump and the energy-free mass transfer device, and the vapor pressure of the non-pure aqueous solution can be adjusted by controlling the temperature of the non-pure aqueous solution.
  • each component in the system device is connected to a controlled system for automated control of system processes.
  • the energy source of the energy supply module can be traditional coal power, or electric energy converted from renewable energy sources such as solar energy and wind energy.
  • An electrolytic hydrogen production system without pure water characterized in that the system includes an energy supply module, an electrolyzer, a hydrogen separator, a hydrogen scrubber, a hydrogen regulating valve, a hydrogen check valve, a hydrogen cooler, a hydrogen storage tank, and oxygen Separator, oxygen scrubber, oxygen regulating valve, oxygen check valve, oxygen cooler, oxygen storage tank, radiator, cooling water tank, cooling water pump, heat exchanger, filter, energy-free mass transfer device, electrolyte circulation pump, Electrolyte check valve, electrolyte temperature controller, non-pure aqueous solution check valve and non-pure aqueous solution circulation pump; among them, the energy-free mass transfer device is divided into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber by a waterproof and breathable layer ;
  • the energy supply module is connected to the cathode and anode of the electrolytic cell to provide electric energy; a hydrogen separator is set up on the cathode side of the electrolytic cell, and a hydrogen
  • the heat exchanger After the heat exchanger is connected to the filter, it is connected to the non-energy consuming mass transferer.
  • the non-energy consuming mass transferr is connected to the electrolyte temperature controller through the electrolyte circulation pump and the electrolyte check valve.
  • the electrolyte temperature The controller is connected to the electrolyzer; the non-pure aqueous solution device enters the energy-free mass transferer through the non-pure aqueous solution circulation pump and the non-pure aqueous solution check valve;
  • the cooling water tank is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, Oxygen separator, oxygen scrubber, oxygen cooler and heat exchanger connections.
  • Utilizing the aforementioned electrolytic hydrogen production system without pure water to perform an electrolytic hydrogen production process without pure water includes the following steps:
  • the electrolyte is passed into the cathode or anode of the electrolytic cell, or the anode and cathode are simultaneously fed into the electrolyte, and an oxidation-reduction reaction occurs to generate hydrogen and oxygen;
  • the electrolytic cell is an alkaline electrolytic cell or an AEM electrolytic cell
  • the electrolyte first undergoes a reduction and hydrogen evolution reaction at the cathode, and the generated OH - enters the anode through the separator or anion exchange membrane, and an oxidation reaction occurs to generate oxygen
  • the electrolytic cell is a PEM electrolytic cell, then the electrolyte first undergoes an oxidation and oxygen evolution reaction at the anode, producing H + that passes through the proton exchange membrane and enters the cathode, where a reduction reaction occurs to produce hydrogen;
  • the generated hydrogen and oxygen enter the hydrogen separator and oxygen separator respectively.
  • This process separates the generated hydrogen and oxygen from the mixed electrolyte or moisture.
  • the separated hydrogen and oxygen enter the hydrogen scrubber and oxygen scrubber respectively.
  • This process further fully cleans the unseparated electrolyte and moisture in the gas;
  • the cleaned hydrogen enters the hydrogen cooler under the control and regulation of the hydrogen regulating valve and check valve to dry and cool the hydrogen, and then stores it in a hydrogen storage tank ;
  • the cleaned oxygen enters the oxygen cooler to dry and cool the oxygen under the control and regulation of the oxygen regulating valve and check valve, and is then stored in a hydrogen storage tank;
  • the non-pure aqueous solution chamber is continuously introduced into the non-pure aqueous solution chamber.
  • the two chambers are separated by a waterproof and breathable layer, allowing only water vapor to pass.
  • Liquid water is not allowed to penetrate and contaminate each other; at this time, when the electrolyte and the non-pure aqueous solution pass through the energy-free mass transfer device at the same time, under the action of the vapor pressure difference at the interface between the two, the non-pure aqueous solution vaporizes on the surface of the waterproof and breathable layer to produce water. Steam and water vapor enter the electrolyte side through the waterproof and breathable layer, and under the action of the interface vapor pressure difference, the water vapor is induced to phase change and liquefy into the electrolyte to replenish moisture; the electrolyte with replenished moisture recirculates into the electrolytic cell for electrolysis.
  • the vapor pressure difference between the electrolyte and the non-pure aqueous solution at the interface between the two is calculated based on seawater 0.5M NaCl.
  • the vapor pressure at room temperature is 3.131kpa; the KOH solution steams at concentrations of 10wt%, 20wt%, 30wt%, 40wt% and 50wt%.
  • the pressures are 2.92kpa, 2.47kpa, 1.89kpa, 1.32kpa and 0.86kpa respectively.
  • the vapor pressure difference between the two reaches 0.2kpa, 0.66kpa, 1.25kpa, 1.81kpa and 2.27kpa. These can be realized at the interface between the two.
  • the impure aqueous solution vaporizes on the surface of the waterproof and breathable layer to produce water vapor.
  • the water vapor enters the electrolyte side through the waterproof and breathable layer, and under the action of the interface vapor pressure difference, it induces a phase change of water vapor to liquefy and replenish moisture for the electrolyte.
  • the vapor pressure difference is greater than 0, water molecules will enter the electrolyte from the impure aqueous solution in the form of "liquid-gas-liquid" phase change migration.
  • any of the above electrolytic hydrogen production systems that do not require pure water is used for electrolytic hydrogen production from non-pure aqueous solutions.
  • the energy consumption of electrolysis is equivalent to that of industrial electrolysis of pure water for hydrogen production, and there is no need for additional energy consumption of desalination/purification of impure water solutions.
  • This system can realize the direct electrolysis hydrogen production process of non-pure aqueous solutions, and the electrolysis energy consumption is equivalent to the energy consumption of industrial electrolysis of pure water, without the need for additional desalination/purification energy consumption.
  • the waterproof and breathable layer isolates the electrolyte from the impure aqueous solution to prevent the two from penetrating and contaminating each other;
  • the interfacial vapor pressure difference between the electrolyte and the non-pure aqueous solution induces the vaporization phase change of the non-pure aqueous solution.
  • the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor phase change and liquefaction under the action of the interfacial vapor pressure difference, supplementing
  • the water in the electrolyte is used for electrolysis; at the same time, electrolysis simultaneously consumes water to maintain the interface vapor pressure difference between the electrolyte and the impure aqueous solution, thereby continuing to induce moisture from the impure aqueous solution into the electrolyte.
  • the realization of this process allows the system to continuously use non-pure aqueous solutions for hydrogen production.
  • All devices, devices, and units in the present invention can use existing commercially mature items, which greatly ensures the stability and feasibility of the system, and because the system is mature, it is easy to quickly implement large-scale preparation.
  • the present invention can directly use commercial electrolyzers and electrolytes, greatly improving the conductivity and electrochemical performance of the electrolysis system, and avoiding the problem of low conductivity and low cathode and anode transmission efficiency in direct hydrogen production from non-pure aqueous solutions.
  • This system collects hydrogen and oxygen independently and can collect high-purity hydrogen and oxygen at the same time.
  • the present invention breaks through the technical bottleneck of traditional electrolysis of non-pure aqueous solution to produce hydrogen. It does not require the desalination/purification process of non-pure aqueous solution. Therefore, there is no need to build a large-scale desalination/purification plant, which greatly reduces the construction, operation, manpower and maintenance costs. etc. costs.
  • the system can realize a dynamic and continuous process of hydrogen production using any aqueous solution without time and space differences; in addition, it can realize energy conversion and stable storage of non-stable renewable energy, providing technical means for the construction of future energy systems.
  • Figure 1 is a schematic structural diagram of an electrolytic hydrogen production system without pure water according to the present invention
  • Figure 2 is a test chart of the stability of hydrogen production by electrolysis of non-pure aqueous solution in Example 1 of the present invention
  • Figure 3 is a test chart of the stability of hydrogen production by electrolysis of non-pure aqueous solution in Example 2 of the present invention
  • Figure 4 is a test chart of the stability of hydrogen production by electrolysis of non-pure aqueous solution in Example 3 of the present invention
  • Figure 5 is a test chart of the stability of hydrogen production by electrolysis of non-pure aqueous solution in Example 4 of the present invention.
  • Figure 6 is a test chart of the stability of hydrogen production by electrolysis of non-pure aqueous solution in Example 5 of the present invention.
  • Figure 7 is a test chart of the stability of hydrogen production by electrolysis of non-pure aqueous solution in Example 6 of the present invention.
  • Figure 8 is a schematic diagram of the self-made electrolytic cell in Embodiment 1 of the present invention.
  • Figure 9 is a schematic diagram of a flat membrane distillation reactor used as a non-energy consumption mass transfer device in Examples 2 and 4 of the present invention.
  • Figure 10 is a schematic diagram of a vacuum fiber membrane distillation reactor used as a mass transferr without energy consumption in Embodiment 2 of the present invention.
  • An electrolytic hydrogen production system that does not require pure water, the system includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module, wherein: the energy supply module is connected to the electrolysis hydrogen production module and is used to provide electrical energy for the hydrogen production reaction;
  • the energy supply module in this embodiment is a commercial power supply;
  • the electrolytic hydrogen production module is connected to the electrolyte recycling and regeneration module.
  • This module includes a self-made alkaline electrolyzer (as shown in Figure 7); after the electrolyte is passed into the electrolyzer, an oxidation-reduction reaction occurs, consuming water, and producing hydrogen and oxygen; the electrolyte recycling and regeneration module is connected to the electrolytic hydrogen production module.
  • the module includes a non-energy consuming mass transfer device; the electrolyte in the electrolytic cell passes into the non-energy consuming mass transfer device.
  • the electrolyte circulation regeneration module is used to directly use impure water solution to replenish pure water into the electrolyte.
  • the electrolyte circulation regeneration module is a module that realizes the "liquid-gas-liquid” phase change migration process. It uses impure water solution to directly add pure water to the relatively high concentration electrolyte solution. Replenish pure moisture.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber.
  • the interface vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of directly using non-pure aqueous solution to replenish pure water into a relatively high-concentration electrolyte; in addition, the waterproof and breathable layer effectively blocks impurities in the non-pure aqueous solution and prevents mutual penetration and contamination of the electrolyte and the non-pure aqueous solution. .
  • This process continuously replenishes pure water to the electrolyte for use in electrolysis; electrolysis also consumes water to maintain the interface vapor pressure difference between the electrolyte and the non-pure aqueous solution in the energy-free mass transfer device, thereby inducing continuous replenishment of water into the electrolyte.
  • the energy-free mass transfer device can be a commercially available mature flat plate membrane distillation reaction mass transfer device or a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or other devices with two-phase or multi-phase independent mass transfer spaces separated by a waterproof and breathable layer.
  • PTFE porous waterproof and breathable membrane is used as the waterproof and breathable layer in the energy-free mass transfer device
  • 30wt% potassium hydroxide solution is used as the electrolyte solution
  • nickel molybdenum foam is used as the anode catalyst
  • nickel platinum-plated mesh is used as the cathode catalyst
  • polysulfone membrane As a separator, the non-pure aqueous solution (Jiang'an River water) and the electrolyte solution are both at room temperature, and Figure 2 is tested under the condition of 250mA/ cm2 .
  • the vapor pressure of seawater is calculated based on 0.5M NaCl. Its vapor pressure at room temperature is 3.131kPa.
  • the vapor pressure of KOH solution at a concentration of 30wt% is 1.89kPa.
  • the vapor pressure difference between the two is 1.25kPa.
  • the device ran stably for 72 hours in Jiang'an River water, and the actual voltage of the stack was about 2.08V.
  • an electrolytic hydrogen production system that does not require pure water includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module.
  • the energy supply module is connected to the electrolytic hydrogen production module and is used for The hydrogen production reaction provides electrical energy;
  • the energy supply module in this embodiment is a commercial power supply;
  • the electrolysis hydrogen production module includes a self-made alkaline electrolyzer (as shown in Figure 7), which is composed of 11 electrolysis units connected in parallel, and one electrolysis unit consists of two components separated by a diaphragm.
  • the electrolyte circulation regeneration module is a module that realizes the "liquid-gas-liquid" phase change migration process. It uses non-pure aqueous solution to directly replenish pure water into a relatively high-concentration electrolyte solution, including an energy-free mass transfer device.
  • the system also includes a hydrogen collection module and an oxygen collection module;
  • the hydrogen collection module includes a hydrogen separator, a hydrogen scrubber, a hydrogen cooler, and a hydrogen storage tank;
  • the oxygen collection module includes an oxygen separator, an oxygen scrubber, an oxygen cooler, and an oxygen storage tank. Storage tank; the hydrogen separator and the oxygen separator are connected to the electrolyzer respectively.
  • a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank are connected in sequence; after the oxygen separator, an oxygen scrubber, oxygen gas separator and oxygen separator are connected in sequence. Cooler and oxygen storage tank. It is used to separate the electrolyte/moisture entrained in hydrogen and oxygen, and at the same time wash, dry and store the collected gas.
  • a hydrogen regulating valve and a check valve are provided between the hydrogen scrubber and the hydrogen cooler; an oxygen regulating valve and a check valve are provided between the oxygen scrubber and the oxygen cooler.
  • the system also includes a cooling module, which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • a cooling module which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • the electrolyte circulation regeneration module includes an energy-free mass transfer device composed of an electrolyte chamber and an impure aqueous solution chamber, an electrolyte circulation pump, an impure aqueous solution circulation pump, a heat exchanger and a filter; in the absence of energy consumption A waterproof and breathable layer is set between the electrolyte chamber and the non-pure aqueous solution chamber of the mass transfer device; after the electrolytic cell is connected to the heat exchanger, it passes through the filter and enters the electrolyte chamber and non-pure aqueous solution chamber in the energy-free mass transfer device. It is connected to the non-pure water solution through a check valve and a non-pure water solution circulation pump, and the electrolyte chamber is connected to the electrolytic hydrogen production module through an electrolyte circulation pump and a check valve.
  • the electrolyte pumped out of the electrolytic tank and the electrolyte collected in the hydrogen separator, oxygen separator, hydrogen scrubber and oxygen scrubber enter the energy-free mass transferer after passing through the heat exchanger and filter.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber.
  • the interface vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of directly using non-pure aqueous solution to replenish pure water into a relatively high-concentration electrolyte; in addition, the waterproof and breathable layer effectively blocks impurities in the non-pure aqueous solution and prevents mutual penetration and contamination of the electrolyte and the non-pure aqueous solution. .
  • This process continuously replenishes pure water to the electrolyte for use in electrolysis; electrolysis also consumes water to maintain the interface vapor pressure difference between the electrolyte and the non-pure aqueous solution in the energy-free mass transfer device, thereby inducing continuous replenishment of water into the electrolyte.
  • the energy-free mass transfer device in the module can be a commercially available mature flat plate membrane distillation reaction mass transfer device, a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or other two-phase or multi-phase independent transfer devices separated by a waterproof and breathable layer.
  • the generated electrolyte is adjusted to a suitable temperature under the action of the temperature controller, and then enters the electrolytic cell again for electrolysis to produce hydrogen.
  • the electrolyte solution is 30wt% KOH solution, and the impure aqueous solution is Shenzhen Bay seawater.
  • the effective mass transfer area of the energy-free mass transfer device is 1m 2 .
  • the electrolyte is passed into the cathode of the electrolytic cell (or the anode or cathode and anode are passed in at the same time), and an oxidation-reduction reaction occurs to generate hydrogen and oxygen.
  • the electrolytic cell is an alkaline electrolytic cell
  • the electrolyte first undergoes a reduction and hydrogen evolution reaction at the cathode, and the generated OH - enters the anode through the separator, and undergoes an oxidation reaction to generate oxygen.
  • the generated hydrogen and oxygen enter the hydrogen separator 3 and the oxygen separator respectively. This process separates the generated hydrogen and oxygen from the mixed electrolyte or moisture.
  • the separated hydrogen and oxygen enter the hydrogen scrubber 4 and the oxygen scrubber respectively. This process further fully cleans the unseparated electrolyte and moisture in the gas.
  • the cleaned hydrogen enters the hydrogen cooler to dry and cool the hydrogen, and is then stored in a hydrogen storage tank.
  • the cleaned oxygen enters the oxygen cooler to dry and cool the oxygen, and is then stored in a hydrogen storage tank.
  • the impurity-free electrolyte enters the electrolyte chamber A in the energy-free mass transfer device.
  • the non-pure aqueous solution chamber B is continuously fed into the non-pure aqueous solution.
  • the two chambers are separated by a waterproof and breathable layer, allowing only water. Vapor passes through and liquid water is not allowed to penetrate and contaminate each other.
  • the impure aqueous solution vaporizes on the surface of the waterproof and breathable layer to generate water vapor, and the water vapor enters through the waterproof and breathable layer.
  • the water vapor phase change is induced to liquefy under the action of interfacial vapor pressure difference to replenish moisture for the electrolyte.
  • the electrolyte that has been replenished with water enters the electrolyte temperature controller through the electrolyte circulation pump and check valve III. It is adjusted to the optimal temperature for electrolysis and then circulates into the electrolyzer again to allow the electrolysis hydrogen production reaction to occur.
  • PTFE porous waterproof and breathable membrane is used as the waterproof and breathable layer in the energy-free mass transfer device
  • 30wt% potassium hydroxide solution is used as the electrolyte solution
  • nickel molybdenum foam is used as the anode catalyst
  • nickel platinum-plated mesh is used as the cathode catalyst
  • polysulfone membrane As a separator, the non-pure aqueous solution (Shenzhen Bay seawater) and the electrolyte solution were both at room temperature and tested at 250mA/ cm2 .
  • the experimental results are shown in Figure 3.
  • the vapor pressure of sea water is calculated based on 0.5M NaCl. Its vapor pressure at room temperature is 3.131kPa.
  • the vapor pressure of KOH solution at a concentration of 30wt% is 1.89kPa.
  • the vapor pressure difference between the two is 1.25kPa.
  • the device has been operating stably in Shenzhen Bay seawater for 2500 hours.
  • the actual voltage of the stack is about 2.1V
  • the electrolysis energy consumption is about 5kWh/Nm 3 H 2
  • about 386L/h of H 2 is produced. It shows that this system can stably produce hydrogen without consuming additional energy, and the energy consumption is similar to that of electrolysis of pure water.
  • the method steps are the same as those in Example 2, and the differences are shown in Table 2: (Seawater is calculated using 0.5M NaCl, and its vapor pressure at room temperature is 3.131kpa; KOH solution at concentrations of 10wt%, 20wt%, and 30wt% , 40wt% and 50wt%, the vapor pressures are 2.92kpa, 2.47kpa, 1.89kpa, 1.32kpa and 0.86kpa respectively, and the vapor pressure differences between the two reach 0.2kpa, 0.66kpa, 1.25kpa, 1.81kpa and 2.27kpa respectively. )
  • an electrolytic hydrogen production system that does not require pure water includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module, in which:
  • the energy supply module is connected to the electrolysis hydrogen production module and is used to provide electrical energy for the hydrogen production reaction; the energy supply module in this embodiment is a commercial power supply;
  • the electrolytic hydrogen production module is a commercially mature alkaline electrolyzer; after the electrolyte is passed into the electrolyzer, an oxidation-reduction reaction occurs, consuming water, and producing hydrogen and oxygen;
  • the electrolyte recycling and regeneration module is used to directly use non-pure aqueous solution to replenish pure water into the electrolyte, and is connected to the electrolytic hydrogen production module.
  • the system also includes a hydrogen collection module and an oxygen collection module;
  • the hydrogen collection module includes a hydrogen separator, a hydrogen scrubber, a hydrogen cooler, and a hydrogen storage tank;
  • the oxygen collection module includes an oxygen separator, an oxygen scrubber, an oxygen cooler, and an oxygen storage tank. Storage tank; the hydrogen separator and the oxygen separator are connected to the electrolyzer respectively.
  • a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank are connected in sequence; after the oxygen separator, an oxygen scrubber, oxygen gas separator and oxygen separator are connected in sequence. Cooler and oxygen storage tank. It is used to separate the electrolyte/moisture entrained in hydrogen and oxygen, and at the same time wash, dry and store the collected gas.
  • a hydrogen regulating valve and a check valve are provided between the hydrogen scrubber and the hydrogen cooler; an oxygen regulating valve and a check valve are provided between the oxygen scrubber and the oxygen cooler.
  • the system also includes a cooling module, which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • a cooling module which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • the electrolyte circulation regeneration module includes an energy-free mass transfer device composed of an electrolyte chamber and an impure aqueous solution chamber, an electrolyte circulation pump, an impure aqueous solution circulation pump, a heat exchanger and a filter; in the absence of energy consumption A waterproof and breathable layer is set between the electrolyte chamber and the non-pure aqueous solution chamber of the mass transfer device; after the electrolytic cell is connected to the heat exchanger, it passes through the filter and enters the electrolyte chamber and non-pure aqueous solution chamber in the energy-free mass transfer device. It is connected to the non-pure water solution through a check valve and a non-pure water solution circulation pump, and the electrolyte chamber is connected to the electrolytic hydrogen production module through an electrolyte circulation pump and a check valve.
  • the electrolyte pumped out of the electrolytic tank and the electrolyte collected in the hydrogen separator, oxygen separator, hydrogen scrubber and oxygen scrubber enter the energy-free mass transferer after passing through the heat exchanger and filter.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber.
  • the interface vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of directly using non-pure aqueous solution to replenish pure water into a relatively high-concentration electrolyte; in addition, the waterproof and breathable layer effectively blocks impurities in the non-pure aqueous solution and prevents mutual penetration and contamination of the electrolyte and the non-pure aqueous solution. .
  • This process continuously replenishes pure water to the electrolyte for use in electrolysis; electrolysis also consumes water to maintain the interface vapor pressure difference between the electrolyte and the non-pure aqueous solution in the energy-free mass transfer device, thereby inducing continuous replenishment of water into the electrolyte.
  • the energy-free mass transfer device in the module can be a commercially available mature flat plate membrane distillation reaction mass transfer device, a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or other two-phase or multi-phase independent transfer devices separated by a waterproof and breathable layer.
  • the generated electrolyte is adjusted to a suitable temperature under the action of the temperature controller, and then enters the electrolytic cell again for electrolysis to produce hydrogen.
  • the electrolyte solution is 30wt% KOH solution, and the impure aqueous solution is Shenzhen Bay seawater.
  • the effective mass transfer area of the energy-free mass transfer device is 1m 2 .
  • the electrolyte is passed into the cathode of the electrolytic cell (or the cathode and anode are passed in at the same time), and an oxidation-reduction reaction occurs to generate hydrogen and oxygen.
  • the electrolytic cell is an alkaline electrolytic cell
  • the electrolyte first undergoes a reduction and hydrogen evolution reaction at the cathode, and the generated OH - enters the anode through the separator, and undergoes an oxidation reaction to generate oxygen.
  • the generated hydrogen and oxygen enter the hydrogen separator 3 and oxygen separator 9 respectively. This process separates the generated hydrogen and oxygen from the mixed electrolyte or moisture.
  • the separated hydrogen and oxygen enter the hydrogen scrubber and oxygen scrubber respectively. This process further fully cleans the unseparated electrolyte and moisture in the gas.
  • the cleaned hydrogen enters the hydrogen cooler to dry and cool the hydrogen, and is then stored in a hydrogen storage tank.
  • the cleaned oxygen enters the oxygen cooler to dry and cool the oxygen, and is then stored in a hydrogen storage tank.
  • the impurity-free electrolyte enters the electrolyte chamber A in the energy-free mass transfer device.
  • the non-pure aqueous solution chamber B is continuously fed into the non-pure aqueous solution.
  • the two chambers are separated by a waterproof and breathable layer, allowing only water. Vapor passes through and liquid water is not allowed to penetrate and contaminate each other.
  • the impure aqueous solution vaporizes on the surface of the waterproof and breathable layer to generate water vapor, and the water vapor enters through the waterproof and breathable layer.
  • the water vapor phase change is induced to liquefy under the action of interfacial vapor pressure difference to replenish moisture for the electrolyte.
  • the electrolyte that has been replenished with water enters the electrolyte temperature controller through the electrolyte circulation pump and check valve III. It is adjusted to the optimal temperature for electrolysis and then circulates into the electrolyzer again to allow the electrolysis hydrogen production reaction to occur.
  • PTFE porous waterproof and breathable membrane is used as the waterproof and breathable layer in the energy-free mass transfer device
  • 30wt% potassium hydroxide solution is used as Electrolyte solution
  • a commercial alkaline electrolyzer is used as the electrolysis hydrogen production reactor
  • the non-pure aqueous solution and the electrolyte solution are both at room temperature
  • the test is conducted under the condition of 250mA/ cm2 .
  • the experimental results are shown in Figure 4.
  • the vapor pressure of sea water is calculated based on 0.5M NaCl. Its vapor pressure at room temperature is 3.131kPa.
  • the vapor pressure of KOH solution at a concentration of 30wt% is 1.89kPa.
  • the vapor pressure difference between the two is 1.25kPa.
  • the device has been operating stably in Shenzhen Bay seawater for 2000 hours, and the actual voltage of the stack is about 2V. It shows that this system can stably produce hydrogen without consuming additional energy, and the energy consumption is similar to that of electrolysis of pure water.
  • the method steps are the same as those in Example 3, and the differences are shown in Table 3: (Seawater is calculated using 0.5M NaCl, and its vapor pressure at room temperature is 3.131kpa; KOH solution at concentrations of 10wt%, 20wt%, and 30wt% , 40wt% and 50wt%, the vapor pressures are 2.92kpa, 2.47kpa, 1.89kpa, 1.32kpa and 0.86kpa respectively, and the vapor pressure difference between the two reaches 0.2kpa, 0.66kpa, 1.25kpa, 1.81kpa and 2.27kpa)
  • Example 4 the method steps are the same as those in Example 3, and the differences are shown in Table 4: (Seawater is calculated using 0.5M NaCl, and its room temperature The vapor pressure is 3.131kpa; the vapor pressure of KOH solution at concentrations of 10wt%, 20wt%, 30wt%, 40wt% and 50wt% is 2.92kpa, 2.47kpa, 1.89kpa, 1.32kpa and 0.86kpa respectively. Vapor pressure difference reaches 0.2kpa, 0.66kpa, 1.25kpa, 1.81kpa and 2.27kpa)
  • an electrolytic hydrogen production system that does not require pure water includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module.
  • the energy supply module is connected to the electrolytic hydrogen production module and is used for The hydrogen production reaction provides electrical energy;
  • the energy supply module in this embodiment is a commercial power supply;
  • the electrolysis hydrogen production module is a commercially mature PEM electrolyzer; after the electrolyte is passed into the electrolyzer, an oxidation-reduction reaction occurs, consuming water, and producing hydrogen and oxygen ;
  • the electrolyte recycling and regeneration module is used to directly use non-pure aqueous solution to replenish pure water into the electrolyte, and is connected to the electrolytic hydrogen production module.
  • the system also includes a hydrogen collection module and an oxygen collection module;
  • the hydrogen collection module includes a hydrogen separator, a hydrogen scrubber, a hydrogen cooler, and a hydrogen storage tank;
  • the oxygen collection module includes an oxygen separator, an oxygen scrubber, an oxygen cooler, and an oxygen storage tank. Storage tank; the hydrogen separator and the oxygen separator are connected to the electrolyzer respectively.
  • a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank are connected in sequence; after the oxygen separator, an oxygen scrubber, oxygen gas separator and oxygen separator are connected in sequence. Cooler and oxygen storage tank. It is used to separate the electrolyte/moisture entrained in hydrogen and oxygen, and at the same time wash, dry and store the collected gas.
  • a hydrogen regulating valve and a check valve are provided between the hydrogen scrubber and the hydrogen cooler; an oxygen regulating valve and a check valve are provided between the oxygen scrubber and the oxygen cooler.
  • the system also includes a cooling module, which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • a cooling module which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • the electrolyte circulation regeneration module includes an energy-free mass transfer device composed of an electrolyte chamber and an impure aqueous solution chamber, an electrolyte circulation pump, an impure aqueous solution circulation pump, a heat exchanger and a filter; in the absence of energy consumption A waterproof and breathable layer is set between the electrolyte chamber and the non-pure aqueous solution chamber of the mass transfer device; after the electrolytic cell is connected to the heat exchanger, it passes through the filter and enters the electrolyte chamber and non-pure aqueous solution chamber in the energy-free mass transfer device. It is connected to the non-pure water solution through a check valve and a non-pure water solution circulation pump, and the electrolyte chamber is connected to the electrolytic hydrogen production module through an electrolyte circulation pump and a check valve.
  • the electrolyte pumped out of the electrolytic tank and the electrolyte collected in the hydrogen separator, oxygen separator, hydrogen scrubber and oxygen scrubber enter the energy-free mass transferer after passing through the heat exchanger and filter.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber.
  • the interface vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of directly using non-pure aqueous solution to replenish pure water into a relatively high-concentration electrolyte; in addition, the waterproof and breathable layer effectively blocks impurities in the non-pure aqueous solution and prevents mutual penetration and contamination of the electrolyte and the non-pure aqueous solution. .
  • This process continuously replenishes pure water to the electrolyte for use in electrolysis; electrolysis also consumes water to maintain the interface vapor pressure difference between the electrolyte and the non-pure aqueous solution in the energy-free mass transfer device, thereby inducing continuous replenishment of water into the electrolyte.
  • the energy-free mass transfer device in the module can be a commercially available mature flat plate membrane distillation reaction mass transfer device, a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or other two-phase or multi-phase independent transfer devices separated by a waterproof and breathable layer.
  • the generated electrolyte is adjusted to a suitable temperature under the action of the temperature controller, and then enters the electrolytic cell again for electrolysis to produce hydrogen.
  • the electrolyte solution is 15wt% H 2 SO 4 solution, and the non-pure aqueous solution is Shenzhen Bay seawater.
  • the effective mass transfer area of the energy-free mass transfer device is 1m 2 .
  • the electrolyte is passed into the anode of the electrolytic cell (or the cathode or the anode and cathode are passed in at the same time), and an oxidation-reduction reaction occurs to generate hydrogen and oxygen.
  • the electrolytic cell is a commercial PEM electrolytic cell
  • the electrolyte first undergoes an oxidation and oxygen evolution reaction at the anode, and the generated H + enters the cathode through the cation exchange membrane, where a reduction reaction occurs to generate hydrogen.
  • the generated hydrogen and oxygen enter the hydrogen separator and oxygen separator respectively. This process separates the generated hydrogen and oxygen from the mixed electrolyte or moisture.
  • the separated hydrogen and oxygen enter the hydrogen scrubber 4 and the oxygen scrubber respectively. This process further fully cleans the unseparated electrolyte and moisture in the gas.
  • the cleaned hydrogen enters the hydrogen cooler to dry and cool the hydrogen, and is then stored in a hydrogen storage tank.
  • the cleaned oxygen enters the oxygen cooler to dry and cool the oxygen, and is then stored in a hydrogen storage tank.
  • the impurity-free electrolyte enters the electrolyte chamber A in the energy-free mass transfer device.
  • the non-pure aqueous solution chamber B is continuously fed into the non-pure aqueous solution.
  • the two chambers are separated by a waterproof and breathable layer, allowing only water. Vapor passes through and liquid water is not allowed to penetrate and contaminate each other.
  • the impure aqueous solution vaporizes on the surface of the waterproof and breathable layer to generate water vapor, and the water vapor enters through the waterproof and breathable layer.
  • the water vapor phase change is induced to liquefy under the action of interfacial vapor pressure difference to replenish moisture for the electrolyte.
  • the electrolyte that has been replenished with water enters the electrolyte temperature controller through the electrolyte circulation pump and check valve III. It is adjusted to the optimal temperature for electrolysis and then circulates into the electrolyzer again to allow the electrolysis hydrogen production reaction to occur.
  • PTFE porous waterproof and breathable membrane is used as the waterproof and breathable layer in the energy-free mass transfer device
  • 15wt% sulfuric acid solution is used as the electrolyte solution
  • a commercial PEM electrolyzer is used as the electrolytic hydrogen production reactor.
  • the non-pure aqueous solution and electrolyte solution are both at room temperature. temperature, tested under the condition of 250mA/ cm2 , and the experimental results are shown in Figure 5.
  • the device has been operating stably in Shenzhen Bay seawater for 500 hours, and the actual voltage of the electrolyzer is about 1.9V. It shows that this system can stably produce hydrogen without consuming additional energy, and the energy consumption is similar to that of electrolysis of pure water.
  • an electrolytic hydrogen production system that does not require pure water includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module.
  • the energy supply module is connected to the electrolytic hydrogen production module and is used for The hydrogen production reaction provides electrical energy;
  • the energy supply module in this embodiment is a commercial power supply;
  • the electrolysis hydrogen production module is a commercially mature alkaline electrolyzer; after the electrolyte is passed into the electrolyzer, an oxidation-reduction reaction occurs, consuming water, and producing hydrogen and Oxygen; electrolyte recycling and regeneration module, used to directly use non-pure aqueous solution to replenish pure water into the electrolyte, connected to the electrolytic hydrogen production module.
  • the system also includes a hydrogen collection module and an oxygen collection module;
  • the hydrogen collection module includes a hydrogen separator, a hydrogen scrubber, a hydrogen cooler, and a hydrogen storage tank;
  • the oxygen collection module includes an oxygen separator, an oxygen scrubber, an oxygen cooler, and an oxygen storage tank. Storage tank; the hydrogen separator and the oxygen separator are connected to the electrolyzer respectively.
  • a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank are connected in sequence; after the oxygen separator, an oxygen scrubber, oxygen gas separator and oxygen separator are connected in sequence. Cooler and oxygen storage tank. It is used to separate the electrolyte/moisture entrained in hydrogen and oxygen, and at the same time wash, dry and store the collected gas.
  • a hydrogen regulating valve and a check valve are provided between the hydrogen scrubber and the hydrogen cooler; an oxygen regulating valve and a check valve are provided between the oxygen scrubber and the oxygen cooler.
  • the system also includes a cooling module, which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • a cooling module which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • the electrolyte circulation regeneration module includes an energy-free mass transferer composed of an electrolyte chamber and an impure aqueous solution chamber, an electrolyte circulation pump, an impure aqueous solution circulation pump, a heat exchanger and a filter; in the absence of energy consumption A waterproof and breathable layer is set between the electrolyte chamber and the non-pure aqueous solution chamber of the mass transfer device; after the electrolytic cell is connected to the heat exchanger, it passes through the filter and enters the electrolyte chamber and non-pure aqueous solution chamber in the energy-free mass transfer device. It is connected to the non-pure water solution through a check valve and a non-pure water solution circulation pump, and the electrolyte chamber is connected to the electrolytic hydrogen production module through an electrolyte circulation pump and a check valve.
  • an energy-free mass transferer composed of an electrolyte chamber and an impure aqueous solution chamber, an electrolyte circulation pump, an impure aqueous solution circulation pump
  • the electrolyte pumped out of the electrolytic tank and the electrolyte collected in the hydrogen separator, oxygen separator, hydrogen scrubber and oxygen scrubber enter the energy-free mass transferer after passing through the heat exchanger and filter.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber.
  • the water vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of using impure aqueous solution to directly replenish pure water into a relatively high-concentration electrolyte solution; in addition, the waterproof and breathable layer effectively blocks impurities in the impure aqueous solution and prevents the interaction between the electrolyte and the impure aqueous solution. Penetration contamination.
  • This process continuously replenishes pure water to the electrolyte for use in electrolysis; electrolysis also consumes water to maintain the interface vapor pressure difference between the electrolyte and the non-pure aqueous solution in the energy-free mass transfer device, thereby inducing continuous replenishment of water into the electrolyte.
  • the energy-free mass transfer device in the module can be a commercially available mature flat plate membrane distillation reaction mass transfer device, a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or other two-phase or multi-phase independent transfer devices separated by a waterproof and breathable layer.
  • the generated electrolyte is adjusted to a suitable temperature under the action of the temperature controller, and then enters the electrolytic cell again for electrolysis to produce hydrogen.
  • the electrolyte solution is 30wt% KOH solution, and the impure aqueous solution is Shenzhen Bay seawater.
  • the energy-free mass transfer device is a commercial flat-plate membrane distillation reactor ( Figure 9, the structure is the same, but the filling materials are impure aqueous solution and electrolyte).
  • the electrolyte is passed into the cathode of the electrolytic cell (or the cathode and anode are passed in at the same time), and an oxidation-reduction reaction occurs to generate hydrogen and oxygen.
  • the electrolytic cell is an alkaline electrolytic cell
  • the electrolyte first undergoes a reduction and hydrogen evolution reaction at the cathode, and the generated OH - enters the anode through the separator, and undergoes an oxidation reaction to generate oxygen.
  • the generated hydrogen and oxygen enter the hydrogen separator and oxygen separator respectively. This process separates the generated hydrogen and oxygen from the mixed electrolyte or moisture.
  • the separated hydrogen and oxygen enter the hydrogen scrubber and oxygen scrubber respectively. This process further fully cleans the unseparated electrolyte and moisture in the gas.
  • the cleaned hydrogen enters the hydrogen cooler to dry and cool the hydrogen, and is then stored in a hydrogen storage tank.
  • the cleaned oxygen enters the oxygen cooler to dry and cool the oxygen, and is then stored in a hydrogen storage tank.
  • the impurity-free electrolyte enters the electrolyte chamber A in the energy-free mass transfer device.
  • the non-pure aqueous solution chamber B is continuously fed into the non-pure aqueous solution.
  • the two chambers are separated by a waterproof and breathable layer, allowing only water. Vapor passes through and liquid water is not allowed to penetrate and contaminate each other.
  • the impure aqueous solution vaporizes on the surface of the waterproof and breathable layer to generate water vapor, and the water vapor enters through the waterproof and breathable layer.
  • the water vapor phase change is induced to liquefy under the action of interfacial vapor pressure difference to replenish moisture for the electrolyte.
  • the electrolyte that has been replenished with water enters the electrolyte temperature controller through the electrolyte circulation pump and check valve III. It is adjusted to the optimal temperature for electrolysis and then circulates into the electrolyzer again to allow the electrolysis hydrogen production reaction to occur.
  • the device ran stably for 500 hours in seawater in Shenzhen Bay, and the actual voltage of the stack was about 2V. It shows that this system can stably produce hydrogen without consuming additional energy, and the energy consumption is similar to that of electrolysis of pure water.
  • the method steps are the same as those in Example 5, and the differences are shown in Table 6: (Seawater is calculated using 0.5M NaCl, and its vapor pressure at room temperature is 3.131kpa; KOH solution at concentrations of 10wt%, 20wt%, and 30wt% , 40wt% and 50wt%, the vapor pressures are 2.92kpa, 2.47kpa, 1.89kpa, 1.32kpa and 0.86kpa respectively, and the vapor pressure difference between the two reaches 0.2kpa, 0.66kpa, 1.25kpa, 1.81kpa and 2.27kpa)
  • an electrolytic hydrogen production system that does not require pure water includes an energy supply module, an electrolytic hydrogen production module and an electrolyte circulation regeneration module.
  • the energy supply module is connected to the electrolytic hydrogen production module and is used for The hydrogen production reaction provides electrical energy;
  • the energy supply module in this embodiment is a commercial power supply;
  • the electrolytic hydrogen production module is an alkaline electrolyzer; after the electrolyte is passed into the electrolyzer, an oxidation-reduction reaction occurs, consuming water, and producing hydrogen and oxygen; electrolyte
  • the circulation regeneration module is used to directly use non-pure aqueous solution to replenish pure water into the electrolyte, and is connected to the electrolysis hydrogen production module.
  • the system also includes a hydrogen collection module and an oxygen collection module;
  • the hydrogen collection module includes a hydrogen separator, a hydrogen scrubber, a hydrogen cooler, and a hydrogen storage tank;
  • the oxygen collection module includes an oxygen separator, an oxygen scrubber, an oxygen cooler, and an oxygen storage tank. storage tank; hydrogen separation The hydrogen separator and the oxygen separator are connected to the electrolyzer respectively.
  • a hydrogen scrubber, a hydrogen cooler and a hydrogen storage tank are connected in sequence; after the oxygen separator, an oxygen scrubber, an oxygen cooler and an oxygen storage tank are connected in sequence.
  • Can It is used to separate the electrolyte/moisture entrained in hydrogen and oxygen, and at the same time wash, dry and store the collected gas.
  • a hydrogen regulating valve and a check valve are provided between the hydrogen scrubber and the hydrogen cooler; an oxygen regulating valve and a check valve are provided between the oxygen scrubber and the oxygen cooler.
  • the system also includes a cooling module, which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • a cooling module which includes a radiator, a cooling water tank, and a cooling water pump; the cooling water tank is connected to the radiator, and is connected to the hydrogen separator, hydrogen scrubber, hydrogen cooler, and oxygen separator through the cooling water pump. , oxygen scrubber, oxygen cooler and heat exchanger connection to provide cooling water to keep it in a cooling environment.
  • the electrolyte circulation regeneration module includes an energy-free mass transfer device composed of an electrolyte chamber and an impure aqueous solution chamber, an electrolyte circulation pump, an impure aqueous solution circulation pump, a heat exchanger and a filter; in the absence of energy consumption A waterproof and breathable layer is set between the electrolyte chamber and the non-pure aqueous solution chamber of the mass transfer device; after the electrolytic cell is connected to the heat exchanger, it passes through the filter and enters the electrolyte chamber and non-pure aqueous solution chamber in the energy-free mass transfer device. It is connected to the non-pure water solution through a check valve and a non-pure water solution circulation pump, and the electrolyte chamber is connected to the electrolytic hydrogen production module through an electrolyte circulation pump and a check valve.
  • the electrolyte pumped out of the electrolytic tank and the electrolyte collected in the hydrogen separator, oxygen separator, hydrogen scrubber and oxygen scrubber enter the energy-free mass transferer after passing through the heat exchanger and filter.
  • the waterproof and breathable layer in the energy-free mass transfer device divides the space into an electrolyte mass transfer chamber and a non-pure aqueous solution mass transfer chamber.
  • the water vapor pressure difference between the two causes the non-pure aqueous solution to flow.
  • the pure aqueous solution undergoes phase change and vaporizes, and the generated water vapor enters the electrolyte side through the waterproof and breathable layer, and induces the water vapor to liquefy and undergo a secondary phase change under the action of the interface vapor pressure difference, which is a "liquid-vapor-liquid" phase change.
  • the migration process is a continuous process of using impure aqueous solution to directly replenish pure water into a relatively high-concentration electrolyte solution; in addition, the waterproof and breathable layer effectively blocks impurities in the impure aqueous solution and prevents the interaction between the electrolyte and the impure aqueous solution. Penetration contamination.
  • This process continuously replenishes pure water to the electrolyte for use in electrolysis; electrolysis also consumes water to maintain the interface vapor pressure difference between the electrolyte and the non-pure aqueous solution in the energy-free mass transfer device, thereby inducing continuous replenishment of water into the electrolyte.
  • the energy-free mass transfer device in the module can be a commercially available mature flat plate membrane distillation reaction mass transfer device, a hollow fiber membrane distillation reaction mass transfer device, a falling film absorption tower, or other two-phase or multi-phase independent transfer devices separated by a waterproof and breathable layer.
  • the generated electrolyte is adjusted to a suitable temperature under the action of the temperature controller, and then enters the electrolytic cell again for electrolysis to produce hydrogen.
  • the electrolyte solution is a 50wt% KOH solution, and the impure aqueous solution is Shenzhen Bay seawater.
  • the energy-free mass transfer device is a commercial flat-plate membrane distillation reactor ( Figure 9, the structure is the same, but the filling materials are impure aqueous solution and electrolyte).
  • the electrolyte is passed into the cathode of the electrolytic cell (or the cathode and anode are passed in at the same time), and an oxidation-reduction reaction occurs to generate hydrogen and oxygen.
  • the electrolytic cell is an alkaline electrolytic cell
  • the electrolyte first undergoes a reduction and hydrogen evolution reaction at the cathode, and the generated OH - enters the anode through the separator, and undergoes an oxidation reaction to generate oxygen.
  • the generated hydrogen and oxygen enter the hydrogen separator and oxygen separator respectively. This process separates the generated hydrogen and oxygen from the mixed electrolyte or moisture.
  • the separated hydrogen and oxygen enter the hydrogen scrubber and oxygen scrubber respectively. This process further fully cleans the unseparated electrolyte and moisture in the gas.
  • the cleaned hydrogen enters the hydrogen cooler to dry and cool the hydrogen, and is then stored in a hydrogen storage tank.
  • the cleaned oxygen enters the oxygen cooler to dry and cool the oxygen, and is then stored in a hydrogen storage tank.
  • the impurity-free electrolyte enters the electrolyte chamber A in the energy-free mass transfer device.
  • the non-pure aqueous solution chamber B continuously flows into the non-pure aqueous solution that has been adjusted by the thermostat.
  • the two chambers are separated by a waterproof
  • the breathable layer is separated, allowing only water vapor to pass through, and does not allow liquid water to penetrate and contaminate each other.
  • the impure aqueous solution vaporizes on the surface of the waterproof and breathable layer to generate water vapor, and the water vapor enters through the waterproof and breathable layer.
  • the water vapor phase change is induced to liquefy under the action of interfacial vapor pressure difference to replenish moisture for the electrolyte.
  • the electrolyte that has been replenished with water enters the electrolyte temperature controller through the electrolyte circulation pump and check valve III. It is adjusted to the optimal temperature for electrolysis and then circulates into the electrolyzer again to allow the electrolysis hydrogen production reaction to occur.
  • the electrolyte solution 50wt% potassium hydroxide solution is used as the electrolyte solution
  • the alkaline electrolyzer is used as the electrolytic hydrogen production reactor
  • the commercial flat plate membrane distillation reactor (same structure, but the filling material is non-pure aqueous solution and electrolyte) is used as the energy-free mass transfer device .
  • the electrolyte temperature is 70°C
  • the non-pure aqueous solution (Shenzhen Bay seawater) temperature is 45°C.
  • the vapor pressure of seawater is 10.47kPa when calculated based on 0.5M NaCl at room temperature
  • the vapor pressure of KOH solution is 10.07kPa when the concentration is 50wt%.
  • the vapor pressure difference between the two is about 0.4kPa.
  • the invention constructs an electrolytic hydrogen production system that does not require pure water, and can directly obtain pure water for hydrogen production from various non-pure water such as seawater, river water, lake water, silt, swamps, etc. through the electrolyte.
  • This invention fundamentally solves the problems of complex ion components causing the failure of ion exchange membranes, deactivation of catalysts, production of alkaline precipitation and toxic gases; it avoids the problem of large space occupied by large-scale purification systems; at the same time, it is helpful for the future Hydrogen energy conversion is not limited by time and space, providing strong technical support for direct hydrogen production from non-pure aqueous solutions.

Abstract

一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中供能模块与电解制氢模块连接,电解质循环再生模块与电解制氢模块连接。电解质循环再生模块中包括无能耗传质器,在无能耗传质器中向电解质中补充的均为无杂质水分。本发明可以实现电解质的内部自循环,无需额外向其中补充电解质和纯水。

Description

一种无需纯水的电解制氢系统 技术领域
本发明属于电解制氢技术领域,具体为一种无需纯水的电解制氢系统。
背景技术
氢能具有来源广、可储存、用途多、零碳零污染及能量密度大等优势,是未来能源领域的关键组成部分。目前电解水获取氢能有两种。其一是利用自然界的海水、河水或湖水等直接进行电解制氢,其存在以下问题:
(1)成分复杂,且组分会随季节、气候、温度、地域和人为活动等因素而变化,因此,不同区域的非纯水直接制氢电解装置不能直接兼容;
(2)溶液中富含Cl-,在电解反应中,Cl-可以在析氧反应中被氧化,产生有毒、对环境有害、有腐蚀的ClO-和Cl2
(3)非纯水溶液直接制氢时H+和OH-离子浓度微小,或缓冲分子无法运输分别在阴极和阳极的OH-和H+,导致电解效率低,因此需要额外使用添加剂或使用离子交换膜,从而成本大幅增加;
(4)非纯水溶液中的杂质离子、微生物、有机质等复杂成分,容易堵塞污染离子交换膜、甚至导致膜失活,从而大幅增加后期维护成本;
(4)由于电解时的局部pH差异可能导致与钙镁离子等产生沉淀,需要使用酸进行沉淀处理,产生额外成本。
其二是将非纯水溶液进行淡化/净化处理,制取纯水后用于电解制氢。仍然以海水为例,需通过海水淡化过程,该方法需要在海岸建立海水淡化厂,从建设、运营、人力、维护等方面大幅提升成本;且难以大规模利用海上风电耦合形成原位一体化绿氢生产体系,实现可再生能源的稳定储存。
发明内容
本发明的目的是针对现有技术瓶颈,提供一种无需纯水的电解制氢系统。该系统可以通过电解质直接从海水、河水、湖水、工业废水、生活污水等各种非纯净水中获取纯净水用于制氢。该发明能从根本上解决离子成分复杂使离子交换膜失效、催化剂失活、产生沉淀和有毒气体等问题;节省淡化/净化厂设备投资与淡化/净化成本;同时,有助于未来氢能源转化不受时空限制,为非纯水溶液的直接制氢提供强有力技术支撑。
为了实现以上发明目的,本发明的具体技术方案为:
一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:供能模块,与电解制氢模块连接,用于为制氢反应提供电能;
电解制氢模块,该模块包括电解槽,电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;
电解质循环再生模块,用于直接利用非纯水溶液向电解质中补充纯净水分,与电解制氢模块连接。
进一步的,该系统中的供能模块的能量来源为传统煤电或可再生能源转化的电能。
作为优选,所述的电解槽为碱性(AWE)电解槽、质子交换膜(PEM)电解槽、阴离子交换膜(AEM)电解槽中的任意一种,或任意一种电解槽经串联或并联而形成的组合体。电解槽中装填的电解质为液态电解质或固态凝胶电解质;其中液态电解质为具有较低饱和具有吸收水汽功能的液体;其中固态电解质为具有诱导水汽发生相变液化的物质。
进一步的,该系统中的电解质循环再生模块为实现“液-气-液”相变迁移过程的模块,利用非纯水溶液直接向相对高浓度电解质溶液中补充纯净水分,包括无能耗传质器。无能耗传质器为一防水透气层将空间分成电解质传质腔和非纯水溶液传质腔的装置,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面饱和水蒸气压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质传质腔,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,实现“液-气-液”相变迁移的过程;此外防水透气层将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。
电解质循环再生模块非纯水溶液传质腔中填装非纯水溶液,非纯水溶液选自海水、河水、湖水、废水或生活污水。电解质传质腔中装填的电解质同电解槽装填的电解质。
作为优选,防水透气层为商用成熟的防水透气层,或选自多孔TPU膜、PDMS、PTFE膜中的任一种,或石墨烯、PVDF颗粒、PTFE颗粒通过喷涂、丝网印刷或静电吸附工艺制备的多孔防水透气传质层。
更进一步优选,电解制氢模块包括电解槽和电解质温控器;电解槽和电解质温控器连通。
更进一步优选,电解质循环再生模块包括无能耗传质器、换热器、过滤器、电解质循环泵、电解质止回阀;电解槽的阴阳极均与换热器连接,换热器与过滤器连接后与无能耗传质器连通;无能耗传质器通过电解质循环泵和电解质止回阀与电解制氢模块的电解质温控器连接。
作为优选,该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。用于将氢气和氧气中夹带的电解质/水分分离,同时将收集到的气体进行洗涤、干燥、储存。
更进一步优选,在氢气洗涤器与氢气冷却器之间设置了氢气调节阀和止回阀;在氧气洗涤器与氧气冷却器之间设置了氧气调节阀和止回阀。
作为优选,该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水,并冷却系统部分装置。
进一步的,电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过温控器和过滤器后进入无能耗传质器。
在本申请中,无能耗传质器是整个系统中最为重要的部分,也是区别于传统电解制氢系统工艺的关键组成部分。无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变迁移的过程,是直接利用非纯水溶液向相对高浓度电解质中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸气压差,从而诱导水分持续的补充到电解质中。模块中的无能耗传质器,可以采用与商用成熟的平板膜蒸馏反应传质器、中空纤维膜蒸馏反应传质器、降膜吸收塔等具有类似结构的器件,或由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置,仅将装填物质更换为非纯水溶液和电解质即可。
作为优选,自制的无能耗传质器中的防水透气层优选多孔TPU膜、PDMS、PTFE膜中的任意一种,或石墨烯、PVDF颗粒、PTFE颗粒通过喷涂、丝网印刷或静电吸附工艺制备的多孔防水透气传质层。
作为优选,电解槽和无能耗传质器电解质传质腔中装填的电解质为液态电解质或固态凝胶电解质;其中液态电解质为具有较低饱和水蒸汽压或具有吸收水汽功能的液体,包括碱性液态电解质、酸性液态电解质和离子液体;碱性液态电解质选自KOH溶液、K2CO3溶液、KHCO3溶液、NaOH溶液、Na2CO3溶液、NaHCO3溶液、K3PO4溶液、CH3COOK溶液、Ca(OH)2等碱性物质的一种,或他们的组合物。酸性液态电解质如:H2SO4溶液、H3PO4溶液等酸性物质的一种,或它们的组合物。离子液体如:1-乙基-3甲基咪唑乙酸酯等。有机吸湿液体:PEG等。其中固态电解质为具有诱导水汽发生相变液化的物质,固态凝胶电解质如:聚丙烯酰胺水凝胶、聚磺酸基丙烯酰胺水凝胶、聚甲基丙烯酰胺水凝胶、聚苄基丙烯酰胺水凝胶、聚苯基丙烯酰胺水凝胶、聚乙基丙烯酰胺水凝胶、聚叔丁基丙烯酰胺水凝胶等,一切具有羟基、磺酸基、羧基、胺基、醚基等亲水基团的吸湿性凝胶中的一种,或它们的组合物。
在非纯水溶液循环泵与无能耗传质器之间设置非纯水溶液温控器,可以通过对非纯水溶液的温度控制,来调节非纯水溶液的蒸气压。
作为优选,该系统装置中各部件均与控制化系统连接,用于自动化控制系统流程。
作为优选,供能模块的能量来源可以是传统煤电,也可以是太阳能、风能等可再生能源转化的电能。
一种无需纯水的电解制氢系统,其特征在于该系统包括供能模块、电解槽、氢气分离器、氢气洗涤器、氢气调节阀、氢气止回阀、氢气冷却器、氢气储存罐、氧气分离器、氧气洗涤器、氧气调节阀、氧气止回阀、氧气冷却器、氧气储存罐、散热器、冷却水箱、冷却水泵、换热器、过滤器、无能耗传质器、电解质循环泵、电解质止回阀、电解质控温器、非纯水溶液止回阀和非纯水溶液循环泵;其中,无能耗传质器由防水透气层其分隔成电解质传质腔室和非纯水溶液传质腔室;供能模块与电解槽的阴阳极连接,提供电能;在电解槽阴极侧设置氢气分离器,并在氢气分离器后依次设置氢气洗涤器、氢气调节阀、氢气止回阀、氢气冷却器和氢气储存罐;在电解槽阳极侧设置氧气分离器,并在氧气分离器后依次设置氧气洗涤器、氧气调节阀、氧气止回阀、氧气冷却器和氧气储存罐;电解槽、氢气分离器和氧气分离器的均与换热器连接,换热器与过滤器连接后与无能耗传质器连通;无能耗传质器通过电解质循环泵和电解质止回阀与电解质温控器连接,电解质温控器与电解槽连接;非纯水溶液装置通过非纯水溶液循环泵和非纯水溶液止回阀进入无能耗传质器;冷却水箱通过冷却水泵分别与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接。
利用如前述所述的无需纯水的电解制氢系统进行无需纯水的电解制氢工艺,包括以下步骤:
首先,电解质通入电解槽的阴极或阳极或阴阳极同时通入解质,发生氧化还原反应,用于生成氢气和氧气;
若电解槽为碱性电解槽或AEM电解槽,则电解质先在阴极发生还原析氢反应,产生的OH-通过隔膜或阴离子交换膜进入阳极,并发生氧化反应产生氧气;若电解槽为PEM电解槽,则电解质先在阳极发生氧化析氧反应,产生H+通过质子交换膜进入阴极,并发生还原反应产生氢气;
产生的氢气和氧气分别进入氢气分离器和氧气分离器,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离;分离后的氢气和氧气,分别进入氢气洗涤器和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗;清洗后的氢气在氢气调节阀和止回阀的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中;清洗后的氧气在氧气调节阀和止回阀的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中;
电解槽中反应后的电解质,以及从氢气分离器、氢气洗涤器、氧气分离器和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中除去可能带有的杂质;除杂后的电解质进入无能耗传质器中的电解质腔室,同时非纯水溶液腔室中持续不断的通入了非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染;此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分;补充了水分的电解质再次循环进入电解槽进行电解。
电解质与非纯水溶液在两者界面蒸汽压差,以海水0.5M NaCl来计算,其室温下蒸汽压是3.131kpa;KOH溶液在浓度10wt%、20wt%、30wt%、40wt%和50wt%下蒸汽压分别是2.92kpa、2.47kpa、1.89kpa、1.32kpa和0.86kpa,两者之间的蒸气压差达到0.2kpa、0.66kpa、1.25kpa、1.81kpa和2.27kpa,这些都可以实现在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分。实际上,只要是蒸气压差大于0,水分子就会以“液-气-液”的相变迁移形式从非纯水溶液中进入电解质中。
以上任一所述的无需纯水的电解制氢系统用于非纯水溶液电解制氢。同时电解能耗与工业电解纯净水制氢能耗相当,无需额外淡化/净化非纯水溶液的能耗。
与现有技术相加比,本发明的积极效果体现在:
(一)本该系统能实现非纯水溶液的直接电解制氢过程,且电解能耗与工业电解纯净水能耗相当,无需额外的淡化/净化能耗。
(二)在电解质循环再生模块中,防水透气层将电解质与非纯水溶液隔离,防止两者相互渗透污染; 此外,电解质与非纯水溶液间的界面蒸汽压差诱导非纯水溶液发生气化相变,产生的水蒸气通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化,补充电解质中的水分,以供电解使用;同时电解同步消耗水分,以持续电解质与非纯水溶液之间的界面蒸汽压差,从而继续诱导水分从非纯水溶液中进入电解质中。该过程的实现,使得系统可以持续使用非纯水溶液进行制氢。
(三)本发明中所有装置、器件、单元均可使用现有商用成熟物件,极大确保了系统稳定性和可行性,且由于体系成熟,易于快速实现大规模制备。
(四)本发明可以直接利用商用电解槽和电解质,大幅提升了电解体系的电导率和电化学性能,避免了非纯水溶液直接制氢中电导率低在阴阳极传输效率低的问题。
(五)该系统将氢气和氧气独立收集,同时可以收集得到高纯度的氢气和氧气。
(六)本发明突破了传统非纯水溶液电解制氢的技术瓶颈,无需进行非纯水溶液淡化/净化过程,因此无需大规模修建淡化/净化厂,极大的缩小了建设、运营、人力、维护等方面成本。该系统能实现使用任何水溶液无时空差别的制氢动态连续过程;此外,可以对非稳定的可再生能源实现能源转化和稳定储存,为未来能源体系构建提供技术手段。
附图说明
图1为本发明所述的一种无需纯水的电解制氢系统的结构示意图;
图2为本发明所述的实施例1中非纯水溶液电解制氢稳定性的测试图;
图3为本发明所述的实施例2中非纯水溶液电解制氢稳定性的测试图;
图4为本发明所述的实施例3中非纯水溶液电解制氢稳定性的测试图;
图5为本发明所述的实施例4中非纯水溶液电解制氢稳定性的测试图;
图6为本发明所述的实施例5中非纯水溶液电解制氢稳定性的测试图;
图7为本发明所述的实施例6中非纯水溶液电解制氢稳定性的测试图;
图8为本发明所述的实施例1中的自制电解槽示意图;
图9为本发明所述的实施例2和4中用作无能耗传质器的平板膜蒸馏反应器示意图;
图10为本发明所述的实施例2中用作无能耗传质器的真空纤维膜蒸馏反应器示意图。
图1中标记及相应的零部件名称:1—供能模块;2—电解槽;3—氢气分离器;4—氢气洗涤器;5—氢气调节阀;6—止回阀Ⅰ;7—氢气冷却器;8—氢气储存罐;9—氧气分离器;10—氧气洗涤器;11—氧气调节阀;12—止回阀Ⅱ;13—氧气冷却器;14—氧气储存罐;15—散热器;16—冷却水箱;17—冷却水泵;18—换热器;19—过滤器;20—无能耗传质器;21—电解质循环泵;22—止回阀Ⅲ;23—电解质控温器;24—止回阀Ⅳ;25—非纯水溶液循环泵;A—电解质腔室;B—非纯水溶液腔室。
具体实施方式
为了使本发明的发明目的、技术方案及优点更加清楚明白,下面结合具体实施方式对本发明作进一步的详细描述,但不应将此理解为本发明上述主题的范围仅限于下述实施例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的范围内。
实施例1:
一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:供能模块,与电解制氢模块连接,用于为制氢反应提供电能;本实施例的供能模块为商用电源;电解制氢模块,与电解质循环再生模块连接。该模块包括自制碱性电解槽(如图7);电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;电解质循环再生模块,与电解制氢模块连接。该模块包括无能耗传质器;电解槽中的电解质通入无能耗传质器。
电解质循环再生模块用于直接利用非纯水溶液向电解质中补充纯净水分,电解质循环再生模块是实现“液-气-液”相变迁移过程的模块,利用非纯水溶液直接向相对高浓度电解质溶液中补充纯净水分。
无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸气压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变 迁移的过程,是直接利用非纯水溶液向相对高浓度电解质中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸汽压差,从而诱导水分持续的补充到电解质中。无能耗传质器可采用如商用成熟的平板膜蒸馏反应传质器或中空纤维膜蒸馏反应传质器、降膜吸收塔等具有由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置,仅将里面装填的物质更换为电解质和非纯水溶液即可。生成的电解质再次进入电解槽进行电解制氢反应。
具体操作:采用了PTFE多孔防水透气膜作为无能耗传质器中的防水透气层,30wt%氢氧化钾溶液作为电解质溶液,泡沫镍钼作为阳极催化剂,镍镀铂网作为阴极催化剂,聚砜膜作为隔膜,非纯水溶液(江安河水)和电解质溶液均为室温温度,图2在250mA/cm2条件下进行测试。其中海水海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kPa,KOH溶液在浓度30wt%时蒸汽压为1.89kPa,两者之间蒸气压差为1.25kPa。该装置在江安河水中稳定运行72h,电堆实际电压约2.08V。
利用该系统的其他实施例,方法步骤均同实施例1,区别见表1
实施例2:
如图1所示,一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:供能模块,与电解制氢模块连接,用于为制氢反应提供电能;本实施例的供能模块为商用电源;电解制氢模块,包括自制碱性电解槽(如图7,由11个电解单元并联组成,1个电解单元包括由隔膜分隔开的阴极与阳极,阳极为泡沫镍钼,阴极为镍镀铂,隔膜为聚砜多孔膜);电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;电解质循环再生模块,用于直接利用非纯水溶液向电解质中补充纯净水分,与电解制氢模块连接。电解质循环再生模块是实现“液-气-液”相变迁移过程的模块,利用非纯水溶液直接向相对高浓度电解质溶液中补充纯净水分,包括无能耗传质器。
该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。用于将氢气和氧气中夹带的电解质/水分分离,同时将收集到的气体进行洗涤、干燥、储存。
在氢气洗涤器与氢气冷却器之间设置了氢气调节阀和止回阀;在氧气洗涤器与氧气冷却器之间设置了氧气调节阀和止回阀。
进一步的,该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水,使其处于冷却环境。
更进一步的,所述的电解质循环再生模块包括由电解质腔室和非纯水溶液腔室组成的无能耗传质器、电解质循环泵、非纯水溶液循环泵、换热器和过滤器;在无能耗传质器的电解质腔室和非纯水溶液腔室之间设置防水透气层;电解槽与换热器连接后再通过过滤器后进入无能耗传质器中的电解质腔室,非纯水溶液腔室通过止回阀和非纯水溶液循环泵与非纯水溶液连通,电解质腔室通过电解质循环泵、止回阀与电解制氢模块连接。
进一步的,电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过换热器和过滤器后进入无能耗传质器。
无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸气压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变迁移的过程,是直接利用非纯水溶液向相对高浓度电解质中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸汽压差,从而诱导水分持续的补充到电解质中。模块中的无能耗传质器,可以是商用成熟的平板膜蒸馏反应传质器、中空纤维膜蒸馏反应传质器、降膜吸收塔等具有由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置。生成的电解质在控温器作用下,调节至合适温度,再次进入电解槽进行电解制氢反应。
电解质溶液为30wt%KOH溶液,非纯水溶液为深圳湾海水。无能耗传质器的有效传质面积为1m2
首先,电解质通入电解槽阴极(或阳极或阴阳极同时通入),发生氧化还原反应,用于生成氢气和氧气。电解槽为碱性电解槽,则电解质先在阴极发生还原析氢反应,产生的OH-通过隔膜进入阳极,并发生氧化反应产生氧气。
产生的氢气和氧气分别进入氢气分离器3和氧气分离器,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离。
分离后的氢气和氧气,分别进入氢气洗涤器4和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗。
清洗后的氢气在氢气调节阀和止回阀Ⅰ的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中。清洗后的氧气在氧气调节阀和止回阀Ⅱ的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中。
电解槽中反应后的电解质,以及从氢气分离器、氢气洗涤器、氧气分离器和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中中除去可能带有的杂质。除杂后的电解质进入无能耗传质器中的电解质腔室A,同时非纯水溶液腔室B中持续不断的通入了非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染。此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分。
补充了水分后的电解质通过电解质循环泵和止回阀Ⅲ进入电解质控温器,调节至电解最佳温度后再次循环进入电解槽中,以发生电解制氢反应。
具体操作:采用了PTFE多孔防水透气膜作为无能耗传质器中的防水透气层,30wt%氢氧化钾溶液作为电解质溶液,泡沫镍钼作为阳极催化剂,镍镀铂网作为阴极催化剂,聚砜膜作为隔膜,非纯水溶液(深圳湾海水)和电解质溶液均为室温温度,在250mA/cm2条件下进行测试,实验结果如图3。其中海水海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kPa,KOH溶液在浓度30wt%时蒸汽压为1.89kPa,两者之间蒸气压差为1.25kPa。如图3该装置在深圳湾海水中稳定运行2500h,电堆实际电压约2.1V,电解能耗约5kWh/Nm3H2,约产生386L/h的H2。表明该系统能够在不额外耗能的条件下稳定制氢,能耗与电解纯净水相似。
利用该系统的其他实施例,方法步骤同实施例2,区别见表2:(海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kpa;KOH溶液在浓度10wt%、20wt%、30wt%、40wt%和50wt%下蒸汽压分别是2.92kpa、2.47kpa、1.89kpa、1.32kpa和0.86kpa,两者之间的蒸气压差分别达到0.2kpa、0.66kpa、1.25kpa、1.81kpa和2.27kpa)


实施例3:
如图1所示,一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:
供能模块,与电解制氢模块连接,用于为制氢反应提供电能;本实施例的供能模块为商用电源;
电解制氢模块,为商用成熟的碱性电解槽;电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;
电解质循环再生模块,用于直接利用非纯水溶液向电解质中补充纯净水分,与电解制氢模块连接。
该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。用于将氢气和氧气中夹带的电解质/水分分离,同时将收集到的气体进行洗涤、干燥、储存。
在氢气洗涤器与氢气冷却器之间设置了氢气调节阀和止回阀;在氧气洗涤器与氧气冷却器之间设置了氧气调节阀和止回阀。
进一步的,该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水,使其处于冷却环境。
更进一步的,所述的电解质循环再生模块包括由电解质腔室和非纯水溶液腔室组成的无能耗传质器、电解质循环泵、非纯水溶液循环泵、换热器和过滤器;在无能耗传质器的电解质腔室和非纯水溶液腔室之间设置防水透气层;电解槽与换热器连接后再通过过滤器后进入无能耗传质器中的电解质腔室,非纯水溶液腔室通过止回阀和非纯水溶液循环泵与非纯水溶液连通,电解质腔室通过电解质循环泵、止回阀与电解制氢模块连接。
进一步的,电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过换热器和过滤器后进入无能耗传质器。
无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变迁移的过程,是直接利用非纯水溶液向相对高浓度电解质中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸汽压差,从而诱导水分持续的补充到电解质中。模块中的无能耗传质器,可以是商用成熟的平板膜蒸馏反应传质器、中空纤维膜蒸馏反应传质器、降膜吸收塔等具有由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置。生成的电解质在控温器作用下,调节至合适温度,再次进入电解槽进行电解制氢反应。
电解质溶液为30wt%KOH溶液,非纯水溶液为深圳湾海水。无能耗传质器的有效传质面积为1m2
首先,电解质通入电解槽阴极(或阴阳极同时通入),发生氧化还原反应,用于生成氢气和氧气。电解槽为碱性电解槽,则电解质先在阴极发生还原析氢反应,产生的OH-通过隔膜进入阳极,并发生氧化反应产生氧气。
产生的氢气和氧气分别进入氢气分离器3和氧气分离器9,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离。
分离后的氢气和氧气,分别进入氢气洗涤器和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗。
清洗后的氢气在氢气调节阀和止回阀Ⅰ的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中。清洗后的氧气在氧气调节阀和止回阀Ⅱ的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中。
电解槽中反应后的电解质,以及从氢气分离器3、氢气洗涤器、氧气分离器9和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中中除去可能带有的杂质。除杂后的电解质进入无能耗传质器中的电解质腔室A,同时非纯水溶液腔室B中持续不断的通入了非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染。此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分。
补充了水分后的电解质通过电解质循环泵和止回阀Ⅲ进入电解质控温器,调节至电解最佳温度后再次循环进入电解槽中,以发生电解制氢反应。
具体操作:采用了PTFE多孔防水透气膜作为无能耗传质器中的防水透气层,30wt%氢氧化钾溶液作为 电解质溶液,商用碱性电解槽作为电解制氢反应器,非纯水溶液和电解质溶液均为室温温度,在250mA/cm2条件下进行测试,实验结果如图4。其中海水海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kPa,KOH溶液在浓度30wt%时蒸汽压为1.89kPa,两者之间蒸气压差为1.25kPa。如图4该装置在深圳湾海水中稳定运行2000h,电堆实际电压约2V。表明该系统能够在不额外耗能的条件下稳定制氢,能耗与电解纯净水相似。
利用该系统的其他实施例,方法步骤同实施例3,区别见表3:(海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kpa;KOH溶液在浓度10wt%、20wt%、30wt%、40wt%和50wt%下蒸汽压分别是2.92kpa、2.47kpa、1.89kpa、1.32kpa和0.86kpa,两者之间的蒸气压差达到0.2kpa、0.66kpa、1.25kpa、1.81kpa和2.27kpa)

利用该系统的其他实施例,方法步骤同实施例3,区别见表4:(海水以0.5M NaCl来计算,其室温 下蒸汽压是3.131kpa;KOH溶液在浓度10wt%、20wt%、30wt%、40wt%和50wt%下蒸汽压分别是2.92kpa、2.47kpa、1.89kpa、1.32kpa和0.86kpa,两者之间的蒸气压差达到0.2kpa、0.66kpa、1.25kpa、1.81kpa和2.27kpa)

实施例4:
如图1所示,一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:供能模块,与电解制氢模块连接,用于为制氢反应提供电能;本实施例的供能模块为商用电源;电解制氢模块,为商用成熟的PEM电解槽;电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;
电解质循环再生模块,用于直接利用非纯水溶液向电解质中补充纯净水分,与电解制氢模块连接。
该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。用于将氢气和氧气中夹带的电解质/水分分离,同时将收集到的气体进行洗涤、干燥、储存。
在氢气洗涤器与氢气冷却器之间设置了氢气调节阀和止回阀;在氧气洗涤器与氧气冷却器之间设置了氧气调节阀和止回阀。
进一步的,该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水,使其处于冷却环境。
更进一步的,所述的电解质循环再生模块包括由电解质腔室和非纯水溶液腔室组成的无能耗传质器、电解质循环泵、非纯水溶液循环泵、换热器和过滤器;在无能耗传质器的电解质腔室和非纯水溶液腔室之间设置防水透气层;电解槽与换热器连接后再通过过滤器后进入无能耗传质器中的电解质腔室,非纯水溶液腔室通过止回阀和非纯水溶液循环泵与非纯水溶液连通,电解质腔室通过电解质循环泵、止回阀与电解制氢模块连接。
进一步的,电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过换热器和过滤器后进入无能耗传质器。
无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变迁移的过程,是直接利用非纯水溶液向相对高浓度电解质中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸汽压差,从而诱导水分持续的补充到电解质中。模块中的无能耗传质器,可以是商用成熟的平板膜蒸馏反应传质器、中空纤维膜蒸馏反应传质器、降膜吸收塔等具有由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置。生成的电解质在控温器作用下,调节至合适温度,再次进入电解槽进行电解制氢反应。
电解质溶液为15wt%H2SO4溶液,非纯水溶液为深圳湾海水。无能耗传质器的有效传质面积为1m2
首先,电解质通入电解槽阳极(或阴极或阴阳极同时通入),发生氧化还原反应,用于生成氢气和氧气。电解槽为商用PEM电解槽,则电解质先在阳极发生氧化析氧反应,产生的H+通过阳离子交换膜进入阴极,并发生还原反应产生氢气。
产生的氢气和氧气分别进入氢气分离器和氧气分离器,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离。
分离后的氢气和氧气,分别进入氢气洗涤器4和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗。
清洗后的氢气在氢气调节阀和止回阀Ⅰ的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中。清洗后的氧气在氧气调节阀和止回阀Ⅱ的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中。
电解槽中反应后的电解质,以及从氢气分离器、氢气洗涤器、氧气分离器和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中1中除去可能带有的杂质。除杂后的电解质进入无能耗传质器中的电解质腔室A,同时非纯水溶液腔室B中持续不断的通入了非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染。此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分。
补充了水分后的电解质通过电解质循环泵和止回阀Ⅲ进入电解质控温器,调节至电解最佳温度后再次循环进入电解槽中,以发生电解制氢反应。
具体操作:采用了PTFE多孔防水透气膜作为无能耗传质器中的防水透气层,15wt%硫酸溶液作为电解质溶液,商用PEM电解槽作为电解制氢反应器,非纯水溶液和电解质溶液均为室温温度,在250mA/cm2条件下进行测试,实验结果如图5。如图5该装置在深圳湾海水中稳定运行500h,电解槽实际电压约1.9V。表明该系统能够在不额外耗能的条件下稳定制氢,能耗与电解纯净水相似。
利用该系统的其他实施例,方法步骤同实施例4,区别见表5:
实施例5:
如图1所示,一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:供能模块,与电解制氢模块连接,用于为制氢反应提供电能;本实施例的供能模块为商用电源;电解制氢模块,为商用成熟的碱性电解槽;电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;电解质循环再生模块,用于直接利用非纯水溶液向电解质中补充纯净水分,与电解制氢模块连接。
该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。用于将氢气和氧气中夹带的电解质/水分分离,同时将收集到的气体进行洗涤、干燥、储存。
在氢气洗涤器与氢气冷却器之间设置了氢气调节阀和止回阀;在氧气洗涤器与氧气冷却器之间设置了氧气调节阀和止回阀。
进一步的,该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水,使其处于冷却环境。
更进一步的,所述的电解质循环再生模块包括由电解质腔室和非纯水溶液腔室组成的无能耗传质器、电解质循环泵、非纯水溶液循环泵、换热器和过滤器;在无能耗传质器的电解质腔室和非纯水溶液腔室之间设置防水透气层;电解槽与换热器连接后再通过过滤器后进入无能耗传质器中的电解质腔室,非纯水溶液腔室通过止回阀和非纯水溶液循环泵与非纯水溶液连通,电解质腔室通过电解质循环泵、止回阀与电解制氢模块连接。
进一步的,电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过换热器和过滤器后进入无能耗传质器。
无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的水蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变迁移的过程,是一个利用非纯水溶液直接向相对高浓度电解质溶液中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸汽压差,从而诱导水分持续的补充到电解质中。模块中的无能耗传质器,可以是商用成熟的平板膜蒸馏反应传质器、中空纤维膜蒸馏反应传质器、降膜吸收塔等具有由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置。生成的电解质在控温器作用下,调节至合适温度,再次进入电解槽进行电解制氢反应。
电解质溶液为30wt%KOH溶液,非纯水溶液为深圳湾海水。无能耗传质器为商用平板膜蒸馏反应器(图9,结构一致,但是装填物质为非纯水溶液和电解质)。
首先,电解质通入电解槽阴极(或阴阳极同时通入),发生氧化还原反应,用于生成氢气和氧气。电解槽为碱性电解槽,则电解质先在阴极发生还原析氢反应,产生的OH-通过隔膜进入阳极,并发生氧化反应产生氧气。
产生的氢气和氧气分别进入氢气分离器和氧气分离器,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离。
分离后的氢气和氧气,分别进入氢气洗涤器和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗。
清洗后的氢气在氢气调节阀和止回阀Ⅰ的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中。清洗后的氧气在氧气调节阀和止回阀Ⅱ的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中。
电解槽中反应后的电解质,以及从氢气分离器、氢气洗涤器、氧气分离器和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中中除去可能带有的杂质。除杂后的电解质进入无能耗传质器中的电解质腔室A,同时非纯水溶液腔室B中持续不断的通入了非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染。此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分。
补充了水分后的电解质通过电解质循环泵和止回阀Ⅲ进入电解质控温器,调节至电解最佳温度后再次循环进入电解槽中,以发生电解制氢反应。
具体操作:30wt%氢氧化钾溶液作为电解质溶液,商用碱性电解槽作为电解制氢反应器,商用平板膜蒸馏反应器作为无能耗传质器。非纯水溶液和电解质溶液均为室温温度,在250mA/cm2条件下进行测试,实验结果如图6。其中海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kPa,KOH溶液在浓度30wt%时蒸汽压为1.89kPa,两者之间蒸气压差为1.25kPa。如图6该装置在深圳湾海水中稳定运行500h,电堆实际电压约2V。表明该系统能够在不额外耗能的条件下稳定制氢,能耗与电解纯净水相似。
利用该系统的其他实施例,方法步骤同实施例5,区别见表6:(海水以0.5M NaCl来计算,其室温下蒸汽压是3.131kpa;KOH溶液在浓度10wt%、20wt%、30wt%、40wt%和50wt%下蒸汽压分别是2.92kpa、2.47kpa、1.89kpa、1.32kpa和0.86kpa,两者之间的蒸气压差达到0.2kpa、0.66kpa、1.25kpa、1.81kpa和2.27kpa)

实施例6:
如图1所示,一种无需纯水的电解制氢系统,该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:供能模块,与电解制氢模块连接,用于为制氢反应提供电能;本实施例的供能模块为商用电源;电解制氢模块,为碱性电解槽;电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;电解质循环再生模块,用于直接利用非纯水溶液向电解质中补充纯净水分,与电解制氢模块连接。
该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离 器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。用于将氢气和氧气中夹带的电解质/水分分离,同时将收集到的气体进行洗涤、干燥、储存。
在氢气洗涤器与氢气冷却器之间设置了氢气调节阀和止回阀;在氧气洗涤器与氧气冷却器之间设置了氧气调节阀和止回阀。
进一步的,该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水,使其处于冷却环境。
更进一步的,所述的电解质循环再生模块包括由电解质腔室和非纯水溶液腔室组成的无能耗传质器、电解质循环泵、非纯水溶液循环泵、换热器和过滤器;在无能耗传质器的电解质腔室和非纯水溶液腔室之间设置防水透气层;电解槽与换热器连接后再通过过滤器后进入无能耗传质器中的电解质腔室,非纯水溶液腔室通过止回阀和非纯水溶液循环泵与非纯水溶液连通,电解质腔室通过电解质循环泵、止回阀与电解制氢模块连接。
进一步的,电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过换热器和过滤器后进入无能耗传质器。
无能耗传质器中由防水透气层将空间分成电解质传质腔和非纯水溶液传质腔,当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的水蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质侧,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,是一个“液-气-液”相变迁移的过程,是一个利用非纯水溶液直接向相对高浓度电解质溶液中补充纯净水分的连续过程;此外防水透气层有效的将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。该过程为电解质不断补充纯净水分,以供电解使用;电解同时消耗水分,以维持无能耗传质器中电解质与非纯水溶液之间的界面蒸汽压差,从而诱导水分持续的补充到电解质中。模块中的无能耗传质器,可以是商用成熟的平板膜蒸馏反应传质器、中空纤维膜蒸馏反应传质器、降膜吸收塔等具有由防水透气层隔离的两相或多相独立传质空间的传质装置;或是自制的具有由防水透气层隔离的两相或多相独立传质空间的任何装置。生成的电解质在控温器作用下,调节至合适温度,再次进入电解槽进行电解制氢反应。
电解质溶液为50wt%KOH溶液,非纯水溶液为深圳湾海水。无能耗传质器为商用平板膜蒸馏反应器(图9,结构一致,但是装填物质为非纯水溶液和电解质)。
首先,电解质通入电解槽阴极(或阴阳极同时通入),发生氧化还原反应,用于生成氢气和氧气。电解槽为碱性电解槽,则电解质先在阴极发生还原析氢反应,产生的OH-通过隔膜进入阳极,并发生氧化反应产生氧气。
产生的氢气和氧气分别进入氢气分离器和氧气分离器,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离。
分离后的氢气和氧气,分别进入氢气洗涤器和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗。
清洗后的氢气在氢气调节阀和止回阀Ⅰ的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中。清洗后的氧气在氧气调节阀和止回阀Ⅱ的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中。
电解槽中反应后的电解质,以及从氢气分离器、氢气洗涤器、氧气分离器和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中中除去可能带有的杂质。除杂后的电解质进入无能耗传质器中的电解质腔室A,同时非纯水溶液腔室B中持续不断的通入了经过温控器调温的非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染。此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分。
补充了水分后的电解质通过电解质循环泵和止回阀Ⅲ进入电解质控温器,调节至电解最佳温度后再次循环进入电解槽中,以发生电解制氢反应。
具体操作:50wt%氢氧化钾溶液作为电解质溶液,碱性电解槽作为电解制氢反应器,商用平板膜蒸馏反应器(结构一致,但是装填物质为非纯水溶液和电解质)作为无能耗传质器。电解质温度为70℃,非纯水溶液(深圳湾海水)温度为45℃。其中海水以0.5M NaCl来计算,其室温下蒸汽压是10.47kPa,KOH溶液在浓度50wt%时蒸汽压为10.07kPa,两者之间蒸气压差约为0.4kPa。在250mA/cm2条件下进行测试,实验结果如图7。如图7该装置在深圳湾海水中稳定运行100h,电堆实际电压约1.8V。表明该系统可以在不同溶液温度下实现高效制氢。
利用该系统的其他实施例,方法步骤同实施例6,区别见表7:
本发明构建了无需纯水的电解制氢系统,可以通过电解质直接从海水、河水、湖水、淤泥、沼泽等各种非纯净水中获取纯净水用于制氢。该发明从根本上解决了离子成分复杂使离子交换膜失效、催化剂失活、产生碱性沉淀和有毒气体等问题;避免了大尺寸净化系统的占地空间大的问题;同时,有助于未来氢能源转化不受时空限制,为非纯水溶液的直接制氢提供强有力技术支撑。
本说明书中所有实施例公开的所有特征,或隐含公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合和/或扩展、替换。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (15)

  1. 一种无需纯水的电解制氢系统,其特征在于该系统包括供能模块、电解制氢模块和电解质循环再生模块,其中:
    供能模块,与电解制氢模块连接;用于为制氢反应提供电能;
    电解制氢模块,该模块包括电解槽,电解质通入电解槽后,发生氧化还原反应,消耗水分,并产生氢气和氧气;
    电解质循环再生模块,与电解制氢模块连接;用于直接利用非纯水溶液向电解质中补充纯净水分。
  2. 如权利要求1所述的无需纯水的电解制氢系统,其特征在于:所述供能模块的能量来源为传统煤电或可再生能源转化的电能。
  3. 如权利要求1所述的无需纯水的电解制氢系统,其特征在于:所述的电解槽为碱性电解槽、PEM电解槽、AEM电解槽中的任意一种,或任意一种电解槽经串联或并联而形成的组合体。
  4. 如权利要求1所述的无需纯水的电解制氢系统,其特征在于:电解质循环再生模块包括无能耗传质器;为实现“液-气-液”相变迁移过程的模块,利用非纯水溶液直接向相对高浓度电解质溶液中补充纯净水分。
  5. 如权利要求4所述的无需纯水的电解制氢系统,其特征在于:无能耗传质器为一防水透气层将空间分成电解质传质腔和非纯水溶液传质腔的装置;当电解质和非纯水溶液紧贴防水透气层流动时,两者之间的界面蒸汽压差使非纯水溶液发生相变气化,产生的水蒸气通过防水透气层进入到电解质传质腔,并在界面蒸汽压差作用下诱导水蒸气液化发生二次相变,实现“液-气-液”相变迁移的过程;此外防水透气层将非纯水溶液中的杂质阻挡在外,并防止电解质和非纯水溶液的相互渗透污染。
  6. 如权利要求5所述的无需纯水的电解制氢系统,其特征在于:非纯水溶液传质腔中装填的非纯水溶液选自海水、河水、湖水、废水或生活污水。
  7. 如权利要求5所述的无需纯水的电解制氢系统,其特征在于:防水透气层为商用成熟的防水透气层,或选自多孔TPU膜、PDMS、PTFE膜中的任一种,或石墨烯、PVDF颗粒、PTFE颗粒通过喷涂、丝网印刷或静电吸附工艺制备的多孔防水透气传质层。
  8. 如权利要求3所述的无需纯水的电解制氢系统,其特征在于:电解槽中装填的电解质为液态电解质或固态凝胶电解质;其中液态电解质为具有较低饱和水蒸汽压或具有吸收水汽功能的液体;其中固态电解质为具有诱导水汽发生相变液化的物质。
  9. 如权利要求1-8中任一所述的无需纯水的电解制氢系统,其特征在于:该系统还包括氢气收集模块和氧气收集模块;其中氢气收集模块包括氢气分离器、氢气洗涤器、氢气冷却器和氢气储存罐;氧气收集模块包括氧气分离器、氧气洗涤器、氧气冷却器和氧气储存罐;氢气分离器和氧气分离器均分别与电解槽连接,在氢气分离器后依次连接有氢气洗涤器、氢气冷却器和氢气储存罐;在氧气分离器后依次连接有氧气洗涤器、氧气冷却器和氧气储存罐。
  10. 如权利要求9所述的无需纯水的电解制氢系统,其特征在于:该系统还包括冷却模块,该冷却模块包括散热器、冷却水箱和冷却水泵;冷却水箱与散热器连接,并通过冷却水泵与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接,用于提供冷却水。
  11. 如权利要求10所述的无需纯水的电解制氢系统,其特征在于:电解槽中泵出的电解质、以及氢气分离器、氧气分离器、氢气洗涤器和氧气洗涤器中收集到的电解质,通过换热器和过滤器后进入无能耗传质器。
  12. 如权利要求10或11所述的无需纯水的电解制氢系统,其特征在于:在非纯水溶液循环泵与无能耗传质器之间设置非纯水溶液温控器,通过对非纯水溶液的温度控制,来调节非纯水溶液的蒸气压。
  13. 如权利要求12所述的无需纯水的电解制氢系统,其特征在于:该系统中各模块均与控制化系统连接,用于自动化控制流程。
  14. 一种无需纯水的电解制氢系统,其特征在于该系统包括供能模块、电解槽、氢气分离器、氢气洗涤器、氢气调节阀、氢气止回阀、氢气冷却器、氢气储存罐、氧气分离器、氧气洗涤器、氧气调节阀、氧气止回阀、氧气冷却器、氧气储存罐、散热器、冷却水箱、冷却水泵、换热器、过滤器、无能耗传质器、电解质循环泵、电解质止回阀、电解质控温器、非纯水溶液止回阀和非纯水溶液循环泵;其中,无能耗传质器由 防水透气层其分隔成电解质传质腔室和非纯水溶液传质腔室;供能模块与电解槽的阴阳极连接,提供电能;在电解槽阴极侧设置氢气分离器,并在氢气分离器后依次设置氢气洗涤器、氢气调节阀、氢气止回阀、氢气冷却器和氢气储存罐;在电解槽阳极侧设置氧气分离器,并在氧气分离器后依次设置氧气洗涤器、氧气调节阀、氧气止回阀、氧气冷却器和氧气储存罐;电解槽、氢气分离器和氧气分离器均与换热器连接,换热器与过滤器连接后与无能耗传质器连通;无能耗传质器通过电解质循环泵和电解质止回阀与电解质温控器连接,电解质温控器与电解槽连接;非纯水溶液通过非纯水溶液循环泵和止回阀进入无能耗传质器;冷却水箱通过冷却水泵分别与氢气分离器、氢气洗涤器、氢气冷却器、氧气分离器、氧气洗涤器、氧气冷却器以及换热器连接。
  15. 利用如权利要求14所述的无需纯水的电解制氢系统进行无需纯水的电解制氢工艺,其特征在于包括以下步骤:
    首先,电解质通入电解槽的阴极、或阳极、或阴阳极同时通入解质,发生氧化还原反应,用于生成氢气和氧气;
    若电解槽为碱性电解槽或AEM电解槽,则电解质先在阴极发生还原析氢反应,产生的OH-通过隔膜或阴离子交换膜进入阳极,并发生氧化反应产生氧气;若电解槽为PEM电解槽,则电解质先在阳极发生氧化析氧反应,产生H+通过质子交换膜进入阴极,并发生还原反应产生氢气;
    产生的氢气和氧气分别进入氢气分离器和氧气分离器,此过程将产生的氢气和氧气与夹杂的电解质或水分进行分离;分离后的氢气和氧气,分别进入氢气洗涤器和氧气洗涤器,此过程进一步将气体中未分离干净的电解质和水分进行充分清洗;清洗后的氢气在氢气调节阀和止回阀的控制调节下,进入氢气冷却器以干燥冷却氢气,并随后储存至氢气储存罐中;清洗后的氧气在氧气调节阀和止回阀的控制调节下,进入氧气冷却器以干燥冷却氧气,并随后储存至氢气储存罐中;
    电解槽中反应后的电解质,以及从氢气分离器、氢气洗涤器、氧气分离器和氧气洗涤器中分离回收的电解质,均经过换热器,并在过滤器中除去可能带有的杂质;除杂后的电解质进入无能耗传质器中的电解质腔室,同时非纯水溶液腔室中持续不断的通入了非纯水溶液,两腔室之间由防水透气层分离,只允许水蒸气通过,不允许液态水相互渗透污染;此时,当电解质与非纯水溶液同时通过无能耗传质器时,在两者界面蒸汽压差作用下,非纯水溶液在防水透气层表面发生气化作用产生水蒸气,水汽通过防水透气层进入电解质侧,并在界面蒸汽压差作用下诱导水汽相变液化为电解质补充水分;补充了水分的电解质再次循环进入电解槽进行电解。
PCT/CN2023/115958 2022-09-02 2023-08-30 一种无需纯水的电解制氢系统 WO2024046399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211070443.9A CN115466968A (zh) 2022-09-02 2022-09-02 一种无需纯水的电解制氢系统
CN202211070443.9 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024046399A1 true WO2024046399A1 (zh) 2024-03-07

Family

ID=84369085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115958 WO2024046399A1 (zh) 2022-09-02 2023-08-30 一种无需纯水的电解制氢系统

Country Status (2)

Country Link
CN (1) CN115466968A (zh)
WO (1) WO2024046399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466968A (zh) * 2022-09-02 2022-12-13 四川大学 一种无需纯水的电解制氢系统
CN117904675A (zh) * 2024-03-19 2024-04-19 浙江大学 基于渗透环境调控的海水直接制氢控制装置及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391619A (zh) * 1999-11-22 2003-01-15 神钢泛技术股份有限公司 水电解装置
CN101654786A (zh) * 2009-09-11 2010-02-24 上海高企新能源科技有限公司 分离冷却洗涤一体化氢氧机
CA2666850A1 (en) * 2009-04-22 2010-10-22 Hte Water Corporation System and process for converting non-fresh water to fresh water
CN111364052A (zh) * 2020-04-03 2020-07-03 中国华能集团清洁能源技术研究院有限公司 一种宽功率电解水制氢系统及方法
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN113088995A (zh) * 2021-02-25 2021-07-09 四川大学 基于液相吸湿的直接海水捕集制氢装置、系统及方法
CN115466968A (zh) * 2022-09-02 2022-12-13 四川大学 一种无需纯水的电解制氢系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020002642A1 (de) * 2020-05-02 2021-11-04 Math Lemouré Verfahren zur Entsalzung von Meerwasser
PL434074A1 (pl) * 2020-05-26 2021-11-29 New Energy Transfer Spółka Z Ograniczoną Odpowiedzialnością Urządzenie do produkcji wodoru i sposób produkcji wodoru z wykorzystaniem tego urządzenia
CN114481158A (zh) * 2021-11-01 2022-05-13 北京化工大学 一种高温碱性电解水制氢系统及其方法
CN113969409B (zh) * 2021-12-01 2023-06-09 清华大学 氢气和氧气制备系统
CN114959738A (zh) * 2022-05-24 2022-08-30 东方电气集团东方锅炉股份有限公司 一种水电解制氢系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391619A (zh) * 1999-11-22 2003-01-15 神钢泛技术股份有限公司 水电解装置
CA2666850A1 (en) * 2009-04-22 2010-10-22 Hte Water Corporation System and process for converting non-fresh water to fresh water
CN101654786A (zh) * 2009-09-11 2010-02-24 上海高企新能源科技有限公司 分离冷却洗涤一体化氢氧机
CN111364052A (zh) * 2020-04-03 2020-07-03 中国华能集团清洁能源技术研究院有限公司 一种宽功率电解水制氢系统及方法
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN113088995A (zh) * 2021-02-25 2021-07-09 四川大学 基于液相吸湿的直接海水捕集制氢装置、系统及方法
CN114481164A (zh) * 2021-02-25 2022-05-13 四川大学 基于液相吸湿的非纯水溶液电解制氢装置、系统及方法
CN115466968A (zh) * 2022-09-02 2022-12-13 四川大学 一种无需纯水的电解制氢系统

Also Published As

Publication number Publication date
CN115466968A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2024046399A1 (zh) 一种无需纯水的电解制氢系统
Tian et al. Unique applications and improvements of reverse electrodialysis: A review and outlook
US20080245660A1 (en) Renewable energy system for hydrogen production and carbon dioxide capture
WO2016004802A1 (zh) 一种矿化co2制取碳酸氢钠或碳酸钠对外输出电能的方法及设备
CN110904464A (zh) 一种基于海上风电的海水电解制氢系统
CN107285544B (zh) 一种基于风光互补发电和氢能供电的海水淡化系统
CN211848150U (zh) 一种基于海上风电的海水电解制氢系统
CN114481164B (zh) 基于液相吸湿的非纯水溶液电解制氢装置、系统及方法
Zhao et al. An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater
CN112993362A (zh) 一种氢氧燃料电池能源再生循环装置
WO2024046397A1 (zh) 一种非纯水溶液无淡化原位直接电解制氢装置及使用方法
CN109913886A (zh) 一种低品位热能驱动的双路联合制氢方法
CN103626246B (zh) 一种太阳能海水资源化处理方法
Lin et al. Hydrogen production from seawater splitting enabled by on-line flow-electrode capacitive deionization
CN116497380A (zh) 一种空气制氢方法及系统
WO2024046505A1 (zh) 一种空气直接电解制氢系统
CN214226971U (zh) 一种氢氧燃料电池能源再生循环装置
CN117626293A (zh) 一种相变传质增强的非纯水溶液直接电解制氢系统及方法
Legrand et al. Electrical energy from CO2 emissions by direct gas feeding in capacitive cells
KR101489642B1 (ko) 연료전지장치를 이용한 복합담수시스템
WO2023030551A1 (zh) 海水无淡化原位直接电解制氢方法、装置及系统
CN117626292A (zh) 一种高效废水制氢系统及方法
CN117535681A (zh) 一种非纯水溶液制氢联产固体盐系统及方法
CN117512624A (zh) 一种盐水分流换热电解制氢系统及方法
CN216959698U (zh) 一种余热利用盐差能反电渗析发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859428

Country of ref document: EP

Kind code of ref document: A1