WO2023030544A1 - 二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器 - Google Patents

二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器 Download PDF

Info

Publication number
WO2023030544A1
WO2023030544A1 PCT/CN2022/117403 CN2022117403W WO2023030544A1 WO 2023030544 A1 WO2023030544 A1 WO 2023030544A1 CN 2022117403 W CN2022117403 W CN 2022117403W WO 2023030544 A1 WO2023030544 A1 WO 2023030544A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
carbon dioxide
pressure
heat exchanger
temperature
Prior art date
Application number
PCT/CN2022/117403
Other languages
English (en)
French (fr)
Inventor
杨凡
郁伟荣
Original Assignee
上海复璐帝流体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111038264.2A external-priority patent/CN113970192A/zh
Priority claimed from CN202111038302.4A external-priority patent/CN113983713A/zh
Application filed by 上海复璐帝流体技术有限公司 filed Critical 上海复璐帝流体技术有限公司
Publication of WO2023030544A1 publication Critical patent/WO2023030544A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the invention relates to the technical field of air-conditioning and refrigeration, in particular to a carbon dioxide refrigerant gas pressurized circulation system, a circulation method, and a cold-heat air conditioner.
  • each cooling or heating method has its own characteristics. Choose a reasonable refrigeration method to meet the requirements of refrigeration or heating, realize energy saving in refrigeration and heating, and achieve good economic benefits. At the same time, the refrigeration or heating system should meet environmental protection requirements.
  • the air energy phase change heating absorbs the heat of the environment when the refrigerant liquid-gas phase changes, and then realizes heating by releasing heat to the brine.
  • Air energy refrigeration first uses the air to absorb the heat of the refrigerant to cool the refrigerant, complete the first enthalpy change of the refrigerant in the constant pressure state, and obtain a low-temperature gaseous refrigerant through the JT effect, and then the low-temperature gaseous state absorbs the heat of the refrigerant during the reheating process to raise the temperature of the gaseous refrigerant , the brine releases heat to cool down, thereby completing the refrigeration of the brine.
  • Carbon dioxide is an emerging natural working medium.
  • the evaporation point of liquid carbon dioxide is -56.6°C and the pressure is 520kPa.
  • Carbon dioxide has many unique advantages as a refrigerant: In terms of its impact on the environment, carbon dioxide is the most environmentally friendly refrigerant except for water and air. In addition, carbon dioxide also has good safety and chemical stability. Carbon dioxide is safe and non-toxic, and does not produce harmful gases even at high temperatures. It has thermophysical properties compatible with refrigeration cycles and equipment, and has a high cooling capacity per unit volume. Low kinematic viscosity.
  • the refrigerant can better absorb the heat or cold released by the cooling of the external refrigerant in the heat exchanger, so as to make better use of it. It has become a technical problem to be solved urgently by those skilled in the art to satisfy the natural heat source to meet the temperature and temperature rise of the brine.
  • the present invention proposes a carbon dioxide refrigerant gas pressurized circulation system and its circulation method, and a cooling and heating air conditioner.
  • the present invention adopts the following technical solutions:
  • the first aspect of the present invention is to provide a carbon dioxide refrigerant gas booster cycle system and cooling and heating air conditioner, including:
  • a carbon dioxide refrigerant supercharger which is used to supercharge the gaseous carbon dioxide refrigerant in the system to convert it into a high-temperature and high-pressure carbon dioxide refrigerant;
  • the outdoor air-energy heat exchanger the inlet of the outdoor air-energy heat exchanger is connected to the outlet of the indoor heat exchanger during heating, and is used to convert the high-pressure normal-temperature liquid refrigerant absorbing air heat into medium-pressure low-temperature Gaseous refrigerant; when cooling, it is connected to the outlet of the carbon dioxide refrigerant supercharger, which is used to convert the high-temperature and high-pressure refrigerant at the outlet of the supercharger to release heat to the air into high-pressure normal-temperature refrigerant;
  • Refrigerant circulation storage tank one end of the refrigerant circulation storage tank is connected to the outdoor air heat exchanger, and the other end is connected to the outlet of the carbon dioxide refrigerant supercharger, which is used to supplement the system with carbon dioxide refrigerant or receive excess carbon dioxide refrigerant from the system ;
  • one end of the indoor heat exchanger is connected to the outdoor air energy heat exchanger, and the other end is connected to the carbon dioxide refrigerant supercharger, which is used to absorb the brine through the medium-pressure low-temperature gaseous carbon dioxide refrigerant during cooling The heat is used to realize refrigeration; when heating, the high-temperature and high-pressure carbon dioxide refrigerant releases heat to the refrigerant to realize the heating of the refrigerant;
  • the floor heating system is connected to the outlet of the indoor heat exchanger during heating, and the high-pressure normal temperature carbon dioxide refrigerant is used to heat the ground after the indoor heat exchanger completes heating;
  • the ground cooling system is connected to the outlet of the indoor heat exchanger during cooling, and the medium-pressure normal-temperature refrigerant that completes refrigeration in the indoor heat exchanger is used to cool the ground; and when the ground cooling system is running Control the temperature of the ground not lower than the temperature of the refrigerant to prevent the generation of indoor condensate.
  • the high-pressure normal-temperature liquid refrigerant after heat release absorbs air heat in the air-energy heat exchanger and converts it into a medium-pressure low-temperature gaseous refrigerant, which is then converted into a high-pressure high-temperature refrigerant after being pressurized by a carbon dioxide refrigerant supercharger.
  • Refrigerant the high-pressure and high-temperature refrigerant releases heat to the carrier refrigerant and converts it into a liquid high-pressure normal-temperature refrigerant.
  • the carrier refrigerant absorbs heat to complete heating, and then the liquid high-pressure normal-temperature refrigerant enters the air energy heat exchanger to vaporize to complete cycle heating;
  • the high-pressure and high-temperature refrigerant at the outlet of the carbon dioxide refrigerant supercharger releases heat to the air in the air-energy heat exchanger and converts it into a high-pressure normal-temperature refrigerant, and then through the expansion throttle valve, the high-pressure carbon dioxide refrigerant is decompressed and expanded to become a medium Low-pressure gaseous refrigerant, medium-pressure low-temperature gaseous refrigerant absorbs the heat of the refrigerant in the indoor heat exchanger during the reheating process and converts it into a medium-pressure normal-temperature gaseous refrigerant, and the refrigerant releases heat to complete refrigeration, and then the medium-pressure normal-temperature gaseous refrigerant flows into it again
  • the carbon dioxide refrigerant supercharger inlet realizes recycling.
  • the outdoor air-energy heat exchanger adopts a dual-unit configuration.
  • the high-pressure normal-temperature liquid refrigerant that returns is used to first defrost one group of air-energy main units, and then flow into the other group for refrigerant gasification and circulation. conduct.
  • the refrigerant circulation storage tank includes at least two groups of refrigerant storage tanks, each group of refrigerant storage tanks are connected to each other; one end of one of the refrigerant storage tanks is connected to the outdoor air-energy heat exchanger, and the other end is connected to The outlet of the carbon dioxide refrigerant supercharger;
  • gaseous refrigerant is added to the inlet of the carbon dioxide refrigerant supercharger through the refrigerant storage tank to maintain the pressure at the inlet of the carbon dioxide refrigerant supercharger.
  • the pressure is not lower than the set value.
  • the carbon dioxide refrigerant supercharger adopts a single-stage supercharger plus an air energy host or multiple sets of single-stage superchargers plus an air energy host in parallel to pressurize the gaseous refrigerant, and the inlet pressure of the carbon dioxide refrigerant supercharger 1.5kg/cm 2 -40kg/cm 2 , outlet pressure 40kg/cm 2 -98kg/cm 2 .
  • the indoor heat exchangers are arranged in one group or multiple groups in parallel, each group can be controlled independently or multiple groups in a single zone can be controlled in parallel, and the floor heating system and the floor cooling system are respectively connected through electronic expansion valves .
  • the brine is a gaseous brine or a liquid brine
  • the gaseous brine is air, nitrogen or argon
  • the liquid brine is water, brine, ethylene glycol or propylene glycol solution .
  • the carbon dioxide refrigerant gas booster cycle system also includes:
  • Hot water system using high-pressure and high-temperature carbon dioxide refrigerant to realize instant hot water
  • the inlet of the hot water system is connected to the outlet of the carbon dioxide refrigerant supercharger through a pipeline, and the outlet is connected to the inlet of the outdoor air energy heat exchanger through a pipeline.
  • the carbon dioxide refrigerant gas booster cycle system also includes:
  • An electronic expansion valve, a one-way valve and a solenoid valve, the electronic expansion valve, one-way valve and a solenoid valve are used to control the pressure, flow velocity, flow direction and mass flow of carbon dioxide refrigerant in each stage.
  • the second aspect of the present invention is to provide a carbon dioxide refrigerant gas pressurized cycle system method, using the carbon dioxide refrigerant gas pressurized cycle system described in any one of the above, including a heating program and a refrigeration program, specifically as follows:
  • the high-temperature and high-pressure carbon dioxide refrigerant passed into the indoor heat exchanger releases heat to the refrigerant and then converted into a high-pressure normal-temperature liquid refrigerant, and passes into the outdoor air energy heat exchanger and/or floor heating system to realize the pressurized cycle of carbon dioxide refrigerant gas
  • the heating program of the system, and the refrigerant absorbs heat to achieve the purpose of heating;
  • the high-pressure room-temperature liquid refrigerant fed into the outdoor air energy heat exchanger absorbs air heat and converts it into a medium-pressure low-temperature gaseous refrigerant, and then flows into the inlet of the carbon dioxide refrigerant supercharger, and is converted into a gaseous high-temperature and high-pressure carbon dioxide refrigerant after being pressurized again.
  • repeat steps S11 to S14 to realize the recycling of refrigerant;
  • the medium-pressure low-temperature gaseous refrigerant passed into the indoor heat exchanger absorbs the heat of the brine refrigerant to become a medium-pressure normal-temperature refrigerant, and then passes into the carbon dioxide refrigerant supercharger and/or into the ground cooling system, and repeats steps S21 to S24 to realize the carbon dioxide refrigerant
  • the refrigeration program of the gas pressurized cycle system; and the heat released by the cooling load achieves the purpose of refrigeration.
  • the third aspect of the present invention is to provide a cooling and heating air conditioner, which adopts the carbon dioxide refrigerant gas pressurization cycle system described in any one of the above.
  • the present invention adopts above-mentioned technical scheme, compared with prior art, has following technical effect:
  • the pressurized circulation system of carbon dioxide refrigerant gas is a cold and hot air-conditioning system.
  • a heating cycle path or a refrigeration cycle path can be formed respectively. It is used for heating in floor heating systems and cooling in floor cooling systems; the primary enthalpy change of refrigerants is achieved by using the heat absorbed or released by the air to the refrigerants, and at the same time, the high-pressure circulation method is used to increase the mass flow rate of the refrigerant circulation to achieve extremely high cooling and heating.
  • Energy efficiency ratio while using natural working fluid carbon dioxide as an environmentally friendly refrigerant, safe and environmentally friendly;
  • the high-pressure normal-temperature liquid carbon dioxide refrigerant absorbs the heat of the outdoor air and converts it into a medium-pressure low-temperature gaseous refrigerant by using outdoor air, and then the carbon dioxide refrigerant is supercharged into a high-pressure high-temperature refrigerant by a carbon dioxide refrigerant supercharger. After the heat exchanger releases heat to the refrigerant, it is converted into a high-pressure and normal-temperature refrigerant for recycling;
  • the high-pressure and high-temperature refrigerant at the outlet of the carbon dioxide refrigerant supercharger first enters the outdoor air energy host, and after releasing heat to the outdoor air, it is converted into a high-pressure and normal-temperature refrigerant, and then realizes high-pressure carbon dioxide through the throttling expansion throttle valve.
  • the refrigerant reduces pressure and expands, absorbs the heat of the refrigerant and converts it into a medium-pressure normal-temperature gaseous refrigerant, and then flows into the gaseous carbon dioxide refrigerant booster inlet to realize recycling, and at the same time realizes the purpose of cooling the refrigerant;
  • Two outdoor air-energy heat exchangers arranged in parallel are used to realize cyclic defrosting during heating.
  • the corresponding valves are opened to alternately receive the high-pressure and normal-temperature liquid refrigerant flowing out of the indoor heat exchanger to realize the connection with the outdoor air.
  • the air is used for heat exchange, while ensuring the continuous heating of the system, the surface of the outdoor air heat exchanger is alternately defrosted, ensuring the stable operation of the air conditioning system;
  • Fig. 1 is the overall framework schematic diagram of a kind of carbon dioxide refrigerant gas pressurized circulation system of the present invention
  • Fig. 2 is the process flow diagram of the heating procedure in a kind of carbon dioxide refrigerant gas pressurized circulation system method of the present invention
  • Fig. 3 is a process flow chart of the refrigeration program in the carbon dioxide refrigerant gas pressurized circulation system method of the present invention.
  • a carbon dioxide refrigerant gas pressurization circulation system mainly includes a carbon dioxide refrigerant supercharger, an outdoor air energy heat exchanger, a refrigerant circulation storage tank, an indoor heat exchanger, a floor heating system and a floor heating system. cold system.
  • the main technical solution of the carbon dioxide refrigerant gas pressurized cycle system is to control the opening and closing of the corresponding electronic expansion valve, check valve and solenoid valve in the system, which can respectively form a heating cycle path or a refrigeration cycle path, and use air energy to transfer heat.
  • the high-pressure circulation of refrigerant and refrigerant can achieve extremely high energy efficiency ratio during cooling and heating, and the use of natural working medium carbon dioxide as refrigerant has low operating costs, energy saving and environmental protection.
  • the carbon dioxide refrigerant supercharger is used for supercharging the gaseous carbon dioxide refrigerant in the system so as to convert it into high-temperature and high-pressure carbon dioxide refrigerant.
  • one end of the carbon dioxide refrigerant supercharger is connected to the corresponding indoor heat exchanger through the main pipeline through check valve 1, solenoid valve 2 and corresponding electronic expansion valve, and the other end is connected to the corresponding indoor heat exchanger through the main pipeline through check valve 2.
  • the corresponding one-way valve and solenoid valve are connected to the corresponding outdoor air energy heat exchanger.
  • one end of the carbon dioxide refrigerant supercharger is connected to the indoor heat exchanger 1 through the electronic expansion valve 10, connected to the indoor heat exchanger 2 through the electronic expansion valve 12, and connected to the indoor heat exchanger through the electronic expansion valve 14 three. And one end of the carbon dioxide refrigerant supercharger is also connected to the refrigerant circulation storage tank through the branch pipe through the electronic expansion valve 2.
  • the other end of the carbon dioxide refrigerant supercharger is first connected to the outdoor air energy heat exchanger 1 through the check valve 2, and then through the check valve 4 and the solenoid valve 3, and connected to the outdoor air energy heat exchanger 1 through the check valve 5 and the solenoid valve 4.
  • the main pipeline at the other end of the carbon dioxide refrigerant supercharger is also provided with a branch pipeline, and a solenoid valve nine is installed on the branch pipeline, and the solenoid valve nine is used as an overpressure relief valve for system startup.
  • the outdoor air heat exchanger is used as the core equipment of the refrigerant circulation system for heat transfer between the refrigerant and the air.
  • the inlet of the outdoor air energy heat exchanger is connected to the outlet of the indoor heat exchanger during heating, and is used to convert the high-pressure normal-temperature liquid refrigerant absorbing air heat into a medium-pressure low-temperature gas refrigerant after heat release (heating).
  • the inlet of the outdoor air heat exchanger is connected to the outlet of the carbon dioxide refrigerant supercharger, which is used to convert the high-temperature and high-pressure refrigerant at the outlet of the supercharger to release heat to the air into a high-pressure normal-temperature refrigerant.
  • an independent heating cycle path and a refrigeration cycle path are formed.
  • Two parallel pipelines are arranged between the outdoor air energy heat exchanger and the indoor heat exchanger respectively, the first pipeline is provided with a check valve, and the second pipeline is provided with a solenoid valve and an electronic expansion valve.
  • one-way valve six and one-way valve seven are installed on the first pipeline between outdoor air energy heat exchanger one, outdoor air energy heat exchanger two and the indoor heat exchanger, and electromagnetic valves are respectively installed on the second pipeline.
  • the refrigerant circulation storage tank is used as a buffering and stabilizing storage tank for carbon dioxide refrigerant, one end of the buffering and stabilizing storage tank is connected to the outdoor air heat exchanger, and the other end of the buffering and stabilizing storage tank is connected to the carbon dioxide refrigerant supercharger, Used to supplement carbon dioxide refrigerant to the system or receive excess carbon dioxide refrigerant from the system. Specifically, it is used to store carbon dioxide refrigerant, and to supplement the quality of refrigerant when the demand for cooling increases in the circulation system, or to store the quality of refrigerant in the circulation system when the demand for cooling decreases.
  • the refrigerant circulation storage tank is connected in parallel with several indoor heat exchangers, which are respectively connected to the inlet and outlet of the indoor heat exchangers through pipes.
  • the indoor heat exchanger is connected to the outdoor air energy heat exchanger through the pipeline and the corresponding electronic expansion valve installed on the pipeline, and the other end is connected to the carbon dioxide refrigerant supercharger through the pipeline and the corresponding electronic expansion valve installed on the pipeline.
  • the function of the indoor heat exchanger is to absorb the heat of the carrier refrigerant through the medium-pressure low-temperature gaseous carbon dioxide refrigerant to realize refrigeration during refrigeration, and to release heat from the high-temperature and high-pressure carbon dioxide refrigerant to the carrier refrigerant to realize carrier cooling during heating. Agent heating.
  • the indoor heat exchangers are three groups arranged in parallel, electronic expansion valve 9 and electronic expansion valve 10 are respectively installed on the pipes at both ends of the indoor heat exchanger 1, and the Electronic expansion valve 11 and electronic expansion valve 12 are respectively installed on the pipelines at both ends, and electronic expansion valve 13 and electronic expansion valve 14 are respectively installed on the pipelines at both ends of the indoor heat exchanger 3.
  • each indoor heat exchanger is provided with refrigerant inlet pipes respectively, and electronic expansion valves are respectively arranged on the refrigerant inlet pipes.
  • one end of each indoor heat exchanger is connected to the refrigerant inlet of the floor heating system through the pipeline and the corresponding electronic expansion valve fifteen, electronic expansion valve seventeen, and electronic expansion valve nineteen on the pipeline.
  • the other end of each indoor heat exchanger is connected to the refrigerant inlet of the ground cooling system through the pipeline and the corresponding electronic expansion valve 16, electronic expansion valve 18, and electronic expansion valve 20 on the pipeline.
  • a floor heating system is also included, and the floor heating system adopts current conventional house floor heating facilities. Specifically, when the heating program is running, the floor heating system is connected to the outlet of the indoor heat exchanger, and the high-pressure and normal-temperature carbon dioxide refrigerant after heating in the indoor heat exchanger is used to realize the heating control of the ground, realizing Radiation heat transfer in the ground.
  • the temperature of the high-pressure and high-temperature refrigerant converted after being supercharged by the carbon dioxide refrigerant supercharger is about 58-62°C
  • the high-pressure and high-temperature refrigerant is converted into Liquid high-pressure normal-temperature refrigerant
  • the temperature of the liquid high-pressure normal-temperature refrigerant flowing out of the indoor heat exchanger is set at 27°C.
  • this part of the liquid high-pressure normal-temperature refrigerant flows into the floor heating system after the corresponding electronic expansion valve 15, electronic expansion valve 17 or electronic expansion valve 19 isobaric throttling, and is used to heat the ground. After heating the ground, the carbon dioxide refrigerant passes through the pipeline and then enters the air energy heat exchanger for gasification to complete the cycle heating.
  • the air-conditioning cycle system also includes a ground cooling system, which adopts the current conventional house floor heating and cooling facilities.
  • a ground cooling system which adopts the current conventional house floor heating and cooling facilities.
  • When running the refrigeration program connect the ground cooling system to the outlet of the indoor heat exchanger, and use the medium-pressure normal-temperature refrigerant that completes refrigeration in the indoor heat exchanger to realize the cooling control of the ground, and control the program when the ground cooling is running Control the temperature of the ground not lower than the temperature of the air refrigerant to prevent the generation of indoor condensate.
  • the high-pressure normal-temperature refrigerant after heat exchange by the outdoor air energy heat exchanger is 5°C higher than the temperature of the outdoor ambient air
  • the high-pressure normal-temperature refrigerant will become a low-temperature gaseous refrigerant after the JT effect, and then it will be replaced indoors.
  • the heat absorbed by the air refrigerant in the heater is converted into medium-pressure normal-temperature gaseous refrigerant and flows out of the indoor heat exchanger, and the medium-pressure normal-temperature gaseous refrigerant flowing out of the indoor heat exchanger is controlled at a temperature of 8°C by the system.
  • this part of the medium-pressure normal-temperature gaseous refrigerant flows into the ground cooling system through the corresponding electronic expansion valve 16, electronic expansion valve 18 or electronic expansion valve 20 to cool the ground.
  • the carbon dioxide refrigerant flows into the inlet of the carbon dioxide refrigerant supercharger through the pipeline to realize recycling.
  • the circulation system When the circulation system is used to cool the floor of the ground cooling system, it is required to control the temperature of the ground not lower than the temperature of the brine during operation of the ground cooling system, so as to prevent the generation of indoor condensed water.
  • the main working principle of the air conditioning circulation system is:
  • the high-pressure normal-temperature liquid refrigerant after heat release absorbs air heat in the air-energy heat exchanger and converts it into a medium-pressure low-temperature gaseous refrigerant, which is then converted into a high-pressure high-temperature refrigerant after being supercharged by a carbon dioxide refrigerant supercharger.
  • the high-temperature refrigerant releases heat to the refrigerant and converts it into a liquid high-pressure normal-temperature refrigerant, and then the liquid high-pressure normal-temperature refrigerant enters the air energy heat exchanger to be vaporized to complete cycle heating.
  • the secondary refrigerant absorbs heat to complete heating. If the secondary refrigerant is air, it is the heating of the air conditioning system.
  • the high-pressure and high-temperature refrigerant at the outlet of the carbon dioxide refrigerant supercharger releases heat to the air in the air-energy heat exchanger and converts it into a high-pressure normal-temperature refrigerant, and then through the expansion throttle valve, the high-pressure carbon dioxide refrigerant is decompressed and expanded to become a medium Low-pressure low-temperature gaseous refrigerant, medium-pressure low-temperature gaseous refrigerant absorbs the heat of the carrier refrigerant during the reheating process in the indoor heat exchanger and converts it into medium-pressure normal-temperature gaseous refrigerant, and then the medium-pressure normal-temperature gaseous refrigerant flows into the inlet of the carbon dioxide refrigerant supercharger to realize circulation use.
  • the secondary refrigerant releases heat to complete the refrigeration. If the secondary refrigerant is air, it is the refrigeration of the air conditioning system.
  • the outdoor air heat exchanger adopts a dual unit configuration, including outdoor air heat exchanger 1 and outdoor air heat exchanger 2, outdoor air heat exchanger 1 and outdoor air heat exchanger The two run alternately.
  • outdoor air heat exchanger 1 and outdoor air heat exchanger 2 use the returning high-pressure room temperature liquid refrigerant to first defrost a group of outdoor air-energy heat exchangers, and then pass it into another group of outdoor air-energy heat exchangers for refrigerant gasification, and cycle.
  • the liquid carbon dioxide discharged from the indoor evaporator and regulated by the expansion throttle valve absorbs the heat of the outdoor environment in the inner cavity of the outdoor air energy heat exchanger 1 and evaporates into a medium Low-temperature gaseous carbon dioxide; at this time, the fan of the outdoor air heat exchanger 2 stops running, and part of the liquid carbon dioxide discharged from the indoor evaporator and regulated by the expansion throttle valve is passed into the interior of the outdoor air heat exchanger 2 cavity, using the liquid temperature of the liquid carbon dioxide in the inner cavity of the second outdoor air heat exchanger to defrost and deice the outer surface of the second outdoor air heat exchanger.
  • the inner cavity of the other group of outdoor air-energy heat exchangers flows
  • the liquid refrigerant with high pressure and temperature higher than freezing point uses the liquid temperature of the refrigerant to defrost and deice the outer surface of the evaporator, so as to prevent the outdoor air heat exchanger from frosting and freezing after long-term use.
  • the refrigerant circulation storage tank includes at least two groups of refrigerant storage tanks, each group of refrigerant storage tanks are connected to each other; one end of one of the refrigerant storage tanks is connected to the outdoor air energy heat exchanger, The other end is connected to the outlet of the carbon dioxide refrigerant supercharger.
  • the refrigerant circulation storage tank includes a first refrigerant storage tank and a second refrigerant storage tank, the first refrigerant storage tank is connected to the second refrigerant storage tank; one end of the second refrigerant storage tank It is connected to the outdoor air heat exchanger, and the other end is connected to the outlet of the carbon dioxide refrigerant supercharger for supplementing the system with carbon dioxide refrigerant or receiving excess carbon dioxide refrigerant from the system.
  • the refrigerant storage tank is connected in parallel with several indoor heat exchangers, which are respectively connected to the inlet and outlet of the indoor heat exchangers through pipelines, and can be used as a surge tank for the refrigerant in the air-conditioning cycle system, improving the efficiency of the system.
  • the volumetric cooling capacity of the internal carbon dioxide refrigerant effectively reduces the operating cost of the air conditioner.
  • the carbon dioxide refrigerant supercharger adopts a single-stage supercharger plus an air energy host or multiple sets of single-stage superchargers plus an air energy host in parallel to supercharge the gaseous refrigerant, And the inlet pressure of the carbon dioxide refrigerant supercharger is set between 1.5kg/cm 2 -40kg/cm 2 , and the outlet pressure is set between 40kg/cm 2 -180kg/cm 2 .
  • the inlet pressure of the carbon dioxide refrigerant supercharger is set between 6kg/cm 2 -40kg/cm 2 during heating, and the outlet pressure is set between 50kg/cm 2 -180kg/cm 2 ;
  • the inlet pressure of the carbon dioxide refrigerant supercharger is set between 1.5kg/cm 2 -40kg/cm 2 , and the outlet pressure is set between 50kg/cm 2 -90kg/cm 2 .
  • the standards of the carbon dioxide refrigerant supercharger used in this embodiment are as follows: model YXWCD-13/13-70; medium carbon dioxide; intake pressure 1.3mpa; exhaust pressure 7.0mpa; exhaust volume 13Nm 3 /h; Motor power 1.1kW; cylinder ⁇ 36+ ⁇ 20; two-stage compression; speed 470r/min; air inlet and outlet size Rc1/2, no oil lubrication, air cooling.
  • the indoor heat exchangers are arranged in one group or multiple groups connected in parallel, each group can be independently temperature-controlled or multiple groups in a single zone can be controlled in parallel, and the floor heating system and the Ground cooling system.
  • the indoor heat exchangers are three groups arranged in parallel, and the three groups of indoor heat exchangers are controlled independently or in parallel, and are connected to the floor heating through corresponding electronic expansion valves. system and the ground cooling system.
  • multiple groups of indoor heat exchangers are used to independently receive carbon dioxide refrigerant, and the inlet pressure of each group of heat exchangers is stable at the set value, and each group of heat exchangers can independently control the cooling/ Heating capacity.
  • the gaseous carbon dioxide refrigerant supercharger is used as the power unit of the heating system, using a single-stage supercharger or a two-stage supercharger Turbocharger or multiple sets of single-stage superchargers connected in series.
  • the inlet pressure of the gaseous carbon dioxide refrigerant supercharger is required to be set between 6kg/cm 2 -40kg/cm 2 ;
  • the discharge pressure is 50kg/cm 2 -180kg/cm 2
  • the outlet temperature is greater than 40°C.
  • the outlet of the indoor heat exchanger arranged in parallel is gaseous medium-pressure carbon dioxide refrigerant at room temperature, and its pressure is set between 1.5kg/cm 2 -40kg/cm 2 , the outlet pressure of the gaseous carbon dioxide refrigerant supercharger Set between 50kg/cm 2 -90kg/cm 2 , so that the gaseous medium-pressure and normal-temperature carbon dioxide refrigerant discharged from the indoor heat exchanger is boosted and converted into high-pressure and high-temperature carbon dioxide refrigerant by the gaseous carbon dioxide refrigerant booster.
  • the brine is a gaseous brine or a liquid brine
  • the gaseous brine is air, nitrogen or argon
  • the liquid brine is water, brine, ethylene glycol or propylene glycol solution.
  • the brine can directly use outdoor air, and after dust removal and sterilization, it can be directly passed into the room after a heat exchange.
  • the brine can also be combined with two brines according to the needs, such as the combination of gaseous brine and liquid brine.
  • the first refrigerant of the system exchanges heat with the carbon dioxide refrigerant to achieve cooling and cooling, and then uses air as the second refrigerant to exchange heat with the first refrigerant to achieve cooling and cooling.
  • the second refrigerant (outdoor air ) can be directly used indoors.
  • the carbon dioxide refrigerant gas pressurized circulation system further includes: a hot water system, which uses high-pressure and high-temperature carbon dioxide refrigerant to realize instant hot water.
  • a hot water system which uses high-pressure and high-temperature carbon dioxide refrigerant to realize instant hot water.
  • the inlet of the hot water system is connected to the outlet of the carbon dioxide refrigerant supercharger through a pipeline, and the outlet is connected to the inlet of the outdoor air energy heat exchanger through a pipeline.
  • the carbon dioxide refrigerant gas pressurized circulation system also includes an electronic expansion valve, a one-way valve and a solenoid valve installed on the pipeline, the electronic expansion valve, one-way valve Valves and solenoid valves are used to control the pressure, flow rate, flow direction and mass flow of carbon dioxide refrigerant in each stage.
  • the electronic expansion valve, one-way valve and electromagnetic valve are equipped with energy storage batteries, and the energy storage batteries are used to supply power to each valve and controller when the equipment is powered off, so as to realize the reset of the control position of the electronic expansion throttle valve. ;Record the operating status of all control points and upload to the cloud when the power is off; when the power is off, continue to monitor the indoor air quality through the energy storage battery, and send a warning message through the cloud controller when the indoor air quality exceeds the health standard.
  • this embodiment provides a carbon dioxide refrigerant gas pressurized air conditioning cycle heating method, and the heating procedure specifically includes the following steps:
  • the high-temperature and high-pressure carbon dioxide refrigerant passed into the indoor heat exchanger releases heat to the refrigerant and then converted into a high-pressure normal-temperature liquid refrigerant, and passes into the outdoor air energy heat exchanger and/or floor heating system to realize the pressurized cycle of carbon dioxide refrigerant gas
  • the heating procedure of the system the refrigerant absorbs heat to achieve the purpose of heating;
  • the high-pressure normal-temperature liquid refrigerant fed into the outdoor air energy heat exchanger absorbs air heat and converts it into a medium-pressure low-temperature gaseous refrigerant, and then flows into the inlet of the carbon dioxide refrigerant supercharger to be converted into high-temperature and high-pressure carbon dioxide refrigerant after being pressurized again, repeat
  • the above steps S11 to S14 realize the recycling of the refrigerant.
  • step S13 part of the liquid high-pressure normal-temperature refrigerant enters the air energy heat exchanger to be vaporized to complete cycle heating; the other part of the liquid high-pressure normal-temperature refrigerant passes through the corresponding electronic expansion valve fifteen, electronic expansion valve seventeen or electronic expansion valve Nineteen controls the flow and flows into the floor heating system to heat the ground. After heating the ground, the carbon dioxide refrigerant passes through the pipeline and then enters the air energy heat exchanger for gasification to complete the cycle heating.
  • this embodiment provides a carbon dioxide refrigerant gas pressurized air conditioning cycle refrigeration method, and the refrigeration procedure specifically includes the following steps:
  • the medium-pressure low-temperature gaseous refrigerant passed into the indoor heat exchanger absorbs the heat of the brine refrigerant to become a medium-pressure normal-temperature refrigerant, and then passes into the carbon dioxide refrigerant supercharger and/or into the ground cooling system, and repeats steps S21 to S24 to realize the carbon dioxide refrigerant
  • the refrigeration program of the gas pressurized cycle system; and the heat released by the cooling load achieves the purpose of refrigeration.
  • connection should be understood in a broad sense, which can be mechanical connection Or electrical connection, it can also be the internal communication of two components, it can be directly connected, "up”, “down”, “left”, “right”, etc. are only used to indicate the relative positional relationship, when the absolute position of the object being described Change, the relative positional relationship may change;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本发明公开了一种二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器,该系统包括:二氧化碳冷媒增压机,用于为气态二氧化碳冷媒增压;室外空气能换热器,用于液态冷媒吸收空气热量转换为中压低温气态冷媒或向空气释放热量转换为高压常温冷媒;冷媒循环储罐,用于向系统补充二氧化碳冷媒或接收系统多余的二氧化碳冷媒;室内换热器,用于实现载冷剂制冷,或实现载冷剂的制热;地暖系统,用于实现对地面的加热;地冷系统,用于实现对地面的降温。本发明利用空气对冷媒的吸热或放热实现冷媒的一次焓变,同时采用高压循环方式提高冷媒循环时的质量流量可实现制冷及制热时极高的能效比,同时采用自然工质的二氧化碳为冷媒,安全环保。

Description

二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器 技术领域
本发明涉及空调制冷技术领域,尤其涉及一种二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器。
背景技术
人工制冷或制热方式主要有四种,相变制冷制热、气体膨胀制冷制热、涡流管制冷制热和热电制冷制热,每种制冷或制热方法各有其特点。选择合理的制冷方法,满足制冷或制热的要求,实现制冷制热中的节能,达到良好的经济效益,同时制冷或制热系统应符合环保要求。空气能相变制热通过冷媒液气相变时吸收环境热量,然后再通过向载冷剂释放热量实现制热。空气能制冷首先利用空气吸收冷媒热量使冷媒降温,完成冷媒在等压状态下的一次焓变,通过JT效应得到低温气态冷媒,然后低温气态在复热过程中吸收载冷剂热量使气态冷媒升温,载冷剂释放热量降温,从而完成载冷剂的制冷。
二氧化碳是一种新兴的自然工质,液态二氧化碳蒸发点是温度为-56.6℃,压力为520kPa。二氧化碳作为制冷工质有许多独特的优势:从对环境的影响来看,除水和空气以外,二氧化碳是与环境最为友善的制冷工质。此外,二氧化碳还具备有良好的安全性和化学稳定性,二氧化碳安全无毒,即便在高温下也不产生有害气体,具有与制冷循环和设备相适应的热物理性质,单位容积制冷量相当高,运动黏度低。
因此,如何将二氧化碳通过调整循环的排气压力,通过压力变化后不同的焓值使冷媒在换热器中较好地吸收外部载冷剂降温所释放的热量或冷量,以较好地利用了自然界的热源达到载冷剂温度和温升需要,已成为本领域技术人员亟待解决的技术难题。
发明内容
本发明为解决现有技术中的上述问题,提出一种二氧化碳冷媒气体增压循环系统及其循环方法和冷热型空调器。
为实现上述目的,本发明采用以下技术方案:
本发明的第一个方面是提供一种二氧化碳冷媒气体增压循环系统和冷热型空调器,包括:
二氧化碳冷媒增压机,所述二氧化碳冷媒增压机用于为系统内的气态二氧化碳冷媒增压,以将其转换为高温高压二氧化碳冷媒;
室外空气能换热器,所述室外空气能换热器的入口,在制热时连接室内换热器的出口,用于将完成放热后的高压常温液态冷媒吸收空气热量转换为中压低温气态冷媒;在制冷时连接二氧化碳冷媒增压机的出口,用于将增压机出口处的高温高压冷媒向空气释放热量转换为高压常温冷媒;
冷媒循环储罐,所述冷媒循环储罐的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机的出口,用于向系统补充二氧化碳冷媒或接收系统多余的二氧化碳冷媒;
室内换热器,所述室内换热器的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机,在制冷时用于通过中压低温气态二氧化碳冷媒吸收载冷剂的热量实现制冷;在制热时通过高温高压二氧化碳冷媒向载冷剂释放热量实现载冷剂的制热;
地暖系统,所述地暖系统连接制热时所述室内换热器的出口,利用在所述室内换热器完成制热后的高压常温二氧化碳冷媒实现对地面的加热;
地冷系统,所述地冷系统连接制冷时所述室内换热器的出口,利用在所述室内换热器完成制冷的中压常温冷媒实现对地面的降温;且所述地冷系统运行时控制地面的温度不低于载冷剂温度,以防止室内冷凝水的产生。
具体地,在制热时,完成放热后的高压常温液态冷媒在空气能换热器中吸收空气热量转换为中压低温气态冷媒,然后再经二氧化碳冷媒增压机增压后转换为高压高温冷媒,高压高温冷媒向载冷剂释放热量后转换为液态高压常温冷媒,载冷剂吸收热量完成制热,然后液态高压常温冷媒再进入空气能换热器气化完成循环制热;
以及在制冷时,二氧化碳冷媒增压机出口处的高压高温冷媒在空气能换热器中向空气释放热量转换为高压常温冷媒,然后通过膨胀节流阀实现高压二氧化碳冷媒降压节流膨胀成为中压低温气态冷媒,中压低温气态冷媒在室内换热器内的 复热过程中吸收载冷剂热量转换为中压常温气态冷媒,载冷剂释放热量完成制冷,然后中压常温气态冷媒再流入二氧化碳冷媒增压机入口实现循环使用。
优选地,所述室外空气能换热器采用双机组配置,在制热时利用回流的高压常温液态冷媒首先对一组空气能主机除霜,然后再流入另一组进行冷媒气化,并循环进行。
优选地,所述冷媒循环储罐包括至少两组冷媒储罐,各组所述冷媒储罐均相互连接;其中一所述冷媒储罐的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机的出口;
其中,当所述二氧化碳冷媒增压机出口处的压力大于设定值时,向所述冷媒储罐流入冷媒以使增压机出口压力保持在设定值;
当所述二氧化碳冷媒增压机入口处的压力低于设定值时,通过冷媒储罐向所述二氧化碳冷媒增压机的入口处补充气态冷媒,以保持所述二氧化碳冷媒增压机入口处的压力不低于设定值。
优选地,所述二氧化碳冷媒增压机采用单级增压机加空气能主机或多组单级增压机加空气能主机并联形式增压气态冷媒,且所述二氧化碳冷媒增压机的入口压力为1.5kg/cm 2-40kg/cm 2,出口压力为40kg/cm 2-98kg/cm 2
优选地,所述室内换热器为一组或并联的多组布置,可每组独立控温或单区多组并联控制,并分别通过电子膨胀阀连接所述地暖系统和所述地冷系统。
优选地,所述载冷剂为气态载冷剂或液体载冷剂,所述气态载冷剂为空气、氮气或氩气,所述液体载冷剂为水、盐水、乙二醇或丙二醇溶液。
优选地,所述的二氧化碳冷媒气体增压循环系统,还包括:
热水系统,利用高压高温二氧化碳冷媒实现即热式热水;
其中,所述热水系统的入口通过管道连接所述二氧化碳冷媒增压机的出口,其出口通过管道连接所述述室外空气能换热器的入口。
优选地,所述的二氧化碳冷媒气体增压循环系统,还包括:
电子膨胀阀、单向阀及电磁阀,所述电子膨胀阀、单向阀及电磁阀用于控制各阶段二氧化碳冷媒的压力、流速、流动方向和质量流量。
本发明的第二个方面是提供一种二氧化碳冷媒气体增压循环系统方法,采用上述任一项所述的二氧化碳冷媒气体增压循环系统,包括制热程序和制冷程序, 具体如下:
(一)制热程序
S11,将室外空气能换热器的入口配置为连接室内换热器的出口,其出口配置为连接二氧化碳冷媒增压机的入口,以及将所述二氧化碳冷媒增压机的出口配置为连接所述室内换热器的入口,形成制热循环通路;
S12,启动二氧化碳冷媒增压机,将室外空气能换热器内吸收空气热量后的中压低温气态冷媒增压转换为气态的高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室内换热器内;
S13,通入室内换热器的高温高压二氧化碳冷媒向载冷剂释放热量后转换为高压常温液态冷媒,并通入室外空气能换热器和/或地暖系统内,实现二氧化碳冷媒气体增压循环系统的制热程序,且载冷剂吸热实现制热目的;
S14,通入室外空气能换热器内的高压常温液态冷媒吸收空气热量后转换为中压低温气态冷媒,然后流入二氧化碳冷媒增压机的入口经再次增压后转换为气态的高温高压二氧化碳冷媒,重复步骤S11至S14实现冷媒的循环利用;
(二)制冷程序
S21,将室外空气能换热器的入口配置为连接二氧化碳冷媒增压机的出口,其出口配置为连接室内换热器的入口,以及将所述室内换热器的出口配置为连接所述二氧化碳冷媒增压机的入口,形成制冷循环通路;
S22,启动二氧化碳冷媒增压机,将室内换热器内吸收载冷剂热量后的中压常温气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室外空气能换热器内;
S23,通入室外空气能换热器内的高温高压二氧化碳冷媒向空气释放热量后,转换为高压常温冷媒,再通过节流膨胀阀成为中压低温冷媒,然后通入对应的室内换热器;
S24,通入室内换热器的中压低温气态冷媒吸收载冷剂热量成为中压常温冷媒,然后通入二氧化碳冷媒增压机和/或通入地冷系统,重复步骤S21至S24实现二氧化碳冷媒气体增压循环系统的制冷程序;且载冷释放热量实现制冷目的。
本发明的第三个方面是提供一种冷热型空调器,采用上述任一项所述的二氧化碳冷媒气体增压循环系统。
本发明采用上述技术方案,与现有技术相比,具有如下技术效果:
(1)该二氧化碳冷媒气体增压循环系统为冷热型空调系统,通控制系统内相应电子膨胀阀、单向阀及电磁阀的启闭,可分别形成制热循环通路或制冷循环通路,用于地暖系统制热及地冷系统制冷;利用空气对冷媒的吸热或放热实现冷媒的一次焓变,同时采用高压循环方式提高冷媒循环时的质量流量可实现制冷及制热时极高的能效比,同时采用自然工质的二氧化碳为环保型冷媒,安全环保;
(2)在制热程序中,利用室外空气能将高压常温液态二氧化碳冷媒吸收室外空气热量转换为中压低温气态冷媒,然后通过二氧化碳冷媒增压机将二氧化碳冷媒增压为高压高温冷媒,在室内换热器向载冷剂释放热量后转换为高压常温冷媒后进行循环使用;
(3)在制冷程序中,二氧化碳冷媒增压机的出口的高压高温冷媒先进入室外空气能主机,通过向室外空气释放热量后转换为高压常温冷媒,然后通过节流膨胀节流阀实现高压二氧化碳冷媒降压节流膨胀,吸收载冷剂热量转换为中压常温气态冷媒,再流入气态二氧化碳冷媒增压机入口实现循环使用,同时实现载冷剂的降温制冷目的;
(4)采用两个并联布置的室外空气能换热器实现制热时的循环除霜,在制热程序中通过打开相应的阀门交替接收室内换热器流出的高压常温液态冷媒,实现与室外空气进行换热,在保证系统能够持续制热的同时,实现室外空气能换热器表面交替除霜,保证了空调系统的稳定运行;
(5)采用多个并联布置的室内换热器并可根据使用要求启动一组或多组,通过稳定增压机出口压力以及调节系统冷媒循环时的质量流量,可以确保每台室内机均可有稳定的冷媒焓差值供给,同时增压机可根据系统循环的冷媒流量调节转速,在提高增压机的能效比的同时大幅提高使用寿命,通过稳定增压机出口压力增加系统的稳定性。
附图说明
图1为本发明一种二氧化碳冷媒气体增压循环系统的整体框架原理图;
图2为本发明一种二氧化碳冷媒气体增压循环系统方法中制热程序的工艺流程图;
图3为本发明一种二氧化碳冷媒气体增压循环系统方法中制冷程序的工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,提供一种二氧化碳冷媒气体增压循环系统,该空调循环系统主要包括二氧化碳冷媒增压机、室外空气能换热器、冷媒循环储罐、室内换热器、地暖系统及地冷系统。该二氧化碳冷媒气体增压循环系统的主要技术方案是通控制系统内相应电子膨胀阀、单向阀及电磁阀的启闭,可分别形成制热循环通路或制冷循环通路,并利用空气能传热和冷媒的高压循环使用可实现制冷及制热时极高的能效比,且采用自然工质二氧化碳为冷媒,其运行费用低,节能环保。
所述二氧化碳冷媒增压机用于为系统内的气态二氧化碳冷媒增压,以将其转换为高温高压二氧化碳冷媒。在该系统中,所述二氧化碳冷媒增压机的一端通过主管道经单向阀一、电磁阀二和相应的电子膨胀阀连接对应的室内换热器,另一端通过主管道经单向阀二及相应的单向阀和电磁阀连接对应的室外空气能换热器。
具体地,如所述二氧化碳冷媒增压机的一端经电子膨胀阀十连接室内换热器一,经电子膨胀阀十二连接室内换热器二,以及经电子膨胀阀十四连接室内换热器三。以及该二氧化碳冷媒增压机的一端还通过支管道经电子膨胀阀二连接冷媒循环储罐。
此外,如所述二氧化碳冷媒增压机的另一端先经单向阀二再分别经单向阀四、电磁阀三连接室外空气能换热器一,以及经单向阀五、电磁阀四连接室外空气能换热器二。且在述二氧化碳冷媒增压机另一端的主管道上还设置有支管道,该支管道上安装有电磁阀九,该电磁阀九作系统启动用超压泄压阀。
所述室外空气能换热器作为该冷媒循环系统的核心设备,用于冷媒与空气传热。所述室外空气能换热器的入口,在制热时连接室内换热器的出口,用于将完成放热(制热)后的高压常温液态冷媒吸收空气热量转换为中压低温气态冷媒。 以及在制冷时,室外空气能换热器的入口连接二氧化碳冷媒增压机的出口,用于将增压机出口处的高温高压冷媒向空气释放热量转换为高压常温冷媒。
具体地,为满足该空调循环系统中制热程序与制冷程序的灵活切换,以形成独立的制热循环通路及制冷循环通路。在室外空气能换热器与室内换热器之间分别设置两路并联的管路,第一管路上设置有单向阀,第二管路上设置有电磁阀和电子膨胀阀。如在室外空气能换热器一、室外空气能换热器二与室内换热器之间的第一管路上安装有单向阀六和单向阀七,在第二管路上分别设置有电磁阀七和电子膨胀阀五、电磁阀八和电子膨胀阀六。
所述冷媒循环储罐作为二氧化碳冷媒的缓冲稳压储存罐,缓冲稳压储存罐的一端连接所述室外空气能换热器,缓冲稳压储存罐的另一端连接所述二氧化碳冷媒增压机,用于向系统补充二氧化碳冷媒或接收系统多余的二氧化碳冷媒。具体地,用于贮存二氧化碳冷媒,及用于循环系统由于冷量需求增加时冷媒质量的补充,或循环系统由于冷量需求减少时冷媒质量的贮存。且整体来看,所述冷媒循环储罐相对若干室内换热器呈并联连接,其分别通过管道连接所述室内换热器的进出口。
所述室内换热器的一端通过管道及管道上相应安装的电子膨胀阀连接所述室外空气能换热器,另一端通过管道及管道上相应安装的电子膨胀阀连接所述二氧化碳冷媒增压机。所述室内换热器的作用是,在制冷时用于通过中压低温气态二氧化碳冷媒吸收载冷剂的热量实现制冷,以及在制热时通过高温高压二氧化碳冷媒向载冷剂释放热量实现载冷剂的制热。
具体地,如图1所示,所述室内换热器为三组,并联布置,室内换热器一的两端管道上分别安装电子膨胀阀九和电子膨胀阀十,室内换热器二的两端管道上分别安装电子膨胀阀十一和电子膨胀阀十二,以及室内换热器三的两端管道上分别安装电子膨胀阀十三和电子膨胀阀十四。
此外,各室内换热器上还分别开设有冷媒入口管道,并在该冷媒入口管道上分别设置有电子膨胀阀。如各室内换热器的一端通过管道及管道上相应的电子膨胀阀十五、电子膨胀阀十七、电子膨胀阀十九连接地暖系统的冷媒入口。又如各室内换热器的另一端通过管道及管道上相应的电子膨胀阀十六、电子膨胀阀十八、电子膨胀阀二十连接地冷系统的冷媒入口。
如图1所示,作为该空调循环系统的优选方案,还包括地暖系统,地暖系统采用目前常规的房屋地暖设施。具体地,在运行制热程序时,将所述地暖系统连接所述室内换热器的出口,利用在所述室内换热器完成制热后的高压常温二氧化碳冷媒实现对地面的加热控制,实现地面的幅射传热。
作为其中的一个实施方案,如经二氧化碳冷媒增压机增压后转换为的高压高温冷媒温度约为58-62℃,该高压高温冷媒在室内换热器向空气载冷剂释放热量后转化为液态高压常温冷媒,该流出室内换热器液态高压常温冷媒的温度设定为27℃。根据需要,这部分的液态高压常温冷媒经相应的电子膨胀阀十五、电子膨胀阀十七或电子膨胀阀十九等压节流后流入地暖系统中,用于对地面进行加热。对地面进行加热后的二氧化碳冷媒通过管道再进入空气能换热器气化完成循环制热。
如图1所示,作为该空调循环系统的优选方案,还包括地冷系统,地冷系统采用目前常规的房屋地暖设施和地冷设施。在运行制冷程序时,将所述地冷系统连接所述室内换热器的出口,利用在所述室内换热器完成制冷的中压常温冷媒实现对地面的降温控制,地冷运行时控制程序控制地面的温度不低于空气载冷剂温度以防止室内冷凝水的产生。
作为其中的一个实施方案,如经室外空气能换热器换热后的高压常温冷媒温度为高于室外环境空气温度5℃,该高压常温冷媒经JT效应后成为低温气态冷媒,然后在室内换热器内吸收空气载冷剂的热量转化为中压常温气态冷媒流出室内换热器,流出室内换热器的中压常温气态冷媒由系统控制在温度8℃。根据需要,这部分的中压常温气态冷媒经相应的电子膨胀阀十六、电子膨胀阀十八或电子膨胀阀二十控制流量流入地冷系统中,用于对地面进行降温。对地面进行降温后的二氧化碳冷媒通过管道再流入二氧化碳冷媒增压机入口实现循环使用。
在使用该循环系统对地冷系统的地面进行制冷时,要求所述地冷系统运行时控制地面的温度不低于载冷剂温度,以防止室内冷凝水的产生。
该空调循环系统的主要工作原理为:
在制热时,完成放热后的高压常温液态冷媒在空气能换热器中吸收空气热量转换为中压低温气态冷媒,然后再经二氧化碳冷媒增压机增压后转换为高压高温冷媒,高压高温冷媒向载冷剂释放热量后转换为液态高压常温冷媒,然后液态高 压常温冷媒再进入空气能换热器气化完成循环制热。载冷剂吸收热量完成制热,如载冷剂采用空气,则为空调系统的制热。
以及在制冷时,二氧化碳冷媒增压机出口处的高压高温冷媒在空气能换热器中向空气释放热量转换为高压常温冷媒,然后通过膨胀节流阀实现高压二氧化碳冷媒降压节流膨胀成为中压低温气态冷媒,中压低温气态冷媒在室内换热器内的复热过程中吸收载冷剂热量转换为中压常温气态冷媒,然后中压常温气态冷媒再流入二氧化碳冷媒增压机入口实现循环使用。载冷剂释放热量完成制冷,如载冷剂采用空气,则为空调系统的制冷。
作为一个优选实施方案,所述室外空气能换热器采用双机组配置,包括室外空气能换热器一和室外空气能换热器二,室外空气能换热器一和室外空气能换热器二交替运行。在制热时利用回流的高压常温液态冷媒首先对一组室外空气能换热器除霜,然后再通入另一组室外空气能换热器进行冷媒气化,并循环进行。
具体地,如图1所示,在制热时,从室内蒸发器排出的且经膨胀节流阀调压中的液态二氧化碳在室外空气能换热器一的内腔吸收室外环境热量蒸发为中压低温的气态二氧化碳;此时室外空气能换热器二的风机停止运行,部分从室内蒸发器排出的且经膨胀节流阀调压中的液态二氧化碳通入室外空气能换热器二的内腔,利用室外空气能换热器二内腔的液态二氧化碳的液温将室外空气能换热器二的外表面进行除霜、除冰。
也就是说,当一组室外空气能换热器内流经的液态高压常温二氧化碳冷媒与室外环境进行换热转换为气态中压低温二氧化碳时,另一组室外空气能换热器的内腔流转高压、温度高于冰点的液态冷媒,利用冷媒的液温对蒸发器外表面进行除霜、除冰,防止室外空气能换热器在长时间使用后结霜、结冰。
作为一个优选实施方案,所述冷媒循环储罐包括至少两组冷媒储罐,各组所述冷媒储罐均相互连接;其中一所述冷媒储罐的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机的出口。如图1所示,所述冷媒循环储罐包括第一冷媒储罐和第二冷媒储罐,所述第一冷媒储罐连接所述第二冷媒储罐;所述第二冷媒储罐的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机的出口,用于向系统补充二氧化碳冷媒或接收系统多余的二氧化碳冷媒。
且整体来看,冷媒储罐相对若干室内换热器呈并联连接,其分别通过管道连接所述室内换热器的进出口,可作为该空调循环系统中冷媒的稳压罐使用,提高了系统内二氧化碳冷媒的容积制冷量,有效降低了空调的运行成本。
具体地,当所述二氧化碳冷媒增压机出口处的压力大于设定值时,向所述冷媒储罐流入冷媒以保持增压机出口压力保持在设定值。当所述二氧化碳冷媒增压机入口处的压力低于设定值时,通过冷媒储罐向所述二氧化碳冷媒增压机的入口处补充气态冷媒,以保持所述二氧化碳冷媒增压机入口处的压力不低于设定值。实现一台主机或多台并联主机供应多组室内机冷媒并且各室内机可独立控制载冷剂温度,达成一拖多中央空调的变流量分区独立控制的目的。
作为一个优选实施方案,根据需要的气体冷媒压力要求,所述二氧化碳冷媒增压机采用单级增压机加空气能主机或多组单级增压机加空气能主机并联形式增压气态冷媒,且所述二氧化碳冷媒增压机的入口压力设定在1.5kg/cm 2-40kg/cm 2间,出口压力设定在40kg/cm 2-180kg/cm 2间。优选地,所述二氧化碳冷媒增压机的入口压力制热时设定在为6kg/cm 2-40kg/cm 2间,出口压力设定在50kg/cm 2-180kg/cm 2间;制冷时所述二氧化碳冷媒增压机的入口压力设定在为1.5kg/cm 2-40kg/cm 2间,出口压力设定在50kg/cm 2-90kg/cm 2间。
具体地,本实施例所采用的二氧化碳冷媒增压机的标准如下:型号YXWCD-13/13-70;介质二氧化碳;进气压力1.3mpa;排气压力7.0mpa;排气量13Nm 3/h;电机功率1.1kW;气缸Φ36+Φ20;二级压缩;转速470r/min;进出气口尺寸Rc1/2,全无油润滑,风冷却。
作为一个优选实施方案,所述室内换热器为一组或并联的多组布置,可每组独立控温或单区多组并联控制,并分别通过电子膨胀阀连接所述地暖系统和所述地冷系统。优选地,如图1所示,所述室内换热器为三组且呈并联布置,三组室内换热器均采用独立控温或并联控制,并分别通过相应的电子膨胀阀连接所述地暖系统和所述地冷系统。
此外,值得注意的是,多组室内换热器用于独立接收二氧化碳冷媒,且每组换热器入口压力稳定在设定值,每组换热器均可通过调节出口冷媒流量来独立控制制冷/制热量。
在制热程序中,根据环境温度的不同,为保证二氧化碳有较高液化温度点, 所述气态二氧化碳冷媒增压机作为该制热系统的动力单元,采用单级增压机或双级增压机或多组单级增压机串联形式增压。且为实现二氧化碳冷媒的循环利用,要求所述气态二氧化碳冷媒增压机入口压力设定在6kg/cm 2-40kg/cm 2间;而经所述气态二氧化碳冷媒增压机增压后,其出口排出的压力为50kg/cm 2-180kg/cm 2,出口温度大于40℃。
在制冷程序中,该并联布置的室内换热器的出口处为气态中压常温二氧化碳冷媒,其压力设定在1.5kg/cm 2-40kg/cm 2间,气态二氧化碳冷媒增压机的出口压力设定在50kg/cm 2-90kg/cm 2间,从而将室内换热器排出的气态中压常温二氧化碳冷媒经气态二氧化碳冷媒增压机增压转换为高压高温二氧化碳冷媒。
作为一个优选实施方案,所述载冷剂为气态载冷剂或液体载冷剂,所述气态载冷剂为空气、氮气或氩气,所述液体载冷剂为水、盐水、乙二醇或丙二醇溶液。优选地,载冷剂可直接采用室外空气,经除尘和除菌后一次换热直接通入室内。
此外,根据需要载冷剂还可以采用双载冷剂结合的方式,如气态载冷剂和液态载冷剂的结合,先以液态载冷剂如水、盐水、乙二醇或丙二醇溶液作为该制冷系统的第一载冷剂与二氧化碳冷媒换热实现降温制冷,然后再以空气作为第二载冷剂与第一载冷剂进行热交换实现降温制冷,降温后的第二载冷剂(室外空气)则可直接通入室内使用。
作为一个优选实施方案,如图1所示,所述的二氧化碳冷媒气体增压循环系统,还包括:热水系统,利用高压高温二氧化碳冷媒实现即热式热水。其中,所述热水系统的入口通过管道连接所述二氧化碳冷媒增压机的出口,其出口通过管道连接所述述室外空气能换热器的入口。
作为一个优选实施方案,如图1所示,所述的二氧化碳冷媒气体增压循环系统,还包括给管道上相应安装的电子膨胀阀、单向阀及电磁阀,所述电子膨胀阀、单向阀及电磁阀用于控制各阶段二氧化碳冷媒的压力、流速、流动方向和质量流量。
此外,所述电子膨胀阀、单向阀及电磁阀内配置有储能电池,所述储能电池用于设备断电时为各阀和控制器供电,以实现电子膨胀节流阀控制位置复位;记录断电时所有控制点的运行状态并上传云端;在断电时,通过储能电池继续监控室内空气质量,当室内空气质量超出健康标准时通过云端控制器发出警告信息。
实施例二
如图2所示,基于上述实施例一的二氧化碳冷媒气体增压循环系统,本实施例提供一种二氧化碳冷媒气体增压空调循环制热方法,制热程序具体包括如下步骤:
S11,控制循环系统中的相应安装的电子膨胀阀、单向阀及电磁阀,将室外空气能换热器的入口配置为连接室内换热器的出口,其出口配置为连接二氧化碳冷媒增压机的入口,以及将所述二氧化碳冷媒增压机的出口配置为连接所述室内换热器的入口,形成制热循环通路;
S12,启动二氧化碳冷媒增压机,将室外空气能换热器内吸收空气热量气化后的中压低温气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室内换热器内;
S13,通入室内换热器的高温高压二氧化碳冷媒向载冷剂释放热量后转换为高压常温液态冷媒,并通入室外空气能换热器和/或地暖系统内,实现二氧化碳冷媒气体增压循环系统的制热程序,载冷剂吸收热量实现制热目的;
S14,通入室外空气能换热器内的高压常温液态冷媒吸收空气热量后转换为中压低温气态冷媒,然后流入二氧化碳冷媒增压机的入口经再次增压后转换为高温高压二氧化碳冷媒,重复上述步骤S11至S14实现冷媒的循环利用。
上述步骤S13中,一部分的液态高压常温冷媒再进入空气能换热器气化完成循环制热;另一部分的液态高压常温冷媒经相应的电子膨胀阀十五、电子膨胀阀十七或电子膨胀阀十九控制流量后流入地暖系统中,用于对地面进行加热。对地面进行加热后的二氧化碳冷媒通过管道再进入空气能换热器气化完成循环制热。
实施例三
如图3所示,基于上述实施例一的二氧化碳冷媒气体增压循环系统,本实施例提供一种二氧化碳冷媒气体增压空调循环制冷方法,制冷程序具体包括如下步骤:
S21,控制循环系统中的相应安装的电子膨胀阀、单向阀及电磁阀,将室外空气能换热器的入口配置为连接二氧化碳冷媒增压机的出口,其出口配置为连接室内换热器的入口,以及将所述室内换热器的出口配置为连接所述二氧化碳冷媒增压机的入口,形成制冷循环通路;
S22,启动二氧化碳冷媒增压机,将在室内换热器内吸收载冷剂热量和/或地冷系统的中压常温气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室外空气能换热器内;
S23,通入室外空气能换热器内的高温高压二氧化碳冷媒向空气释放热量后,转换为高压常温冷媒,再通过节流膨胀阀成为中压低温冷媒,然后通入对应的室内换热器;
S24,通入室内换热器的中压低温气态冷媒吸收载冷剂热量成为中压常温冷媒,然后通入二氧化碳冷媒增压机和/或通入地冷系统,重复步骤S21至S24实现二氧化碳冷媒气体增压循环系统的制冷程序;且载冷释放热量实现制冷目的。
最后应说明的几点是:首先,在本申请的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变,则相对位置关系可能发生改变;
其次:本发明实施例附图中,只涉及到与本发明公开实施例涉及到的结构,其他结构可参考通常设计,在不冲突情况下,本发明同一实施例及不同实施例可以相互组合;
最后:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (11)

  1. 二氧化碳冷媒气体增压循环系统,其特征在于,包括:
    二氧化碳冷媒增压机,所述二氧化碳冷媒增压机用于为系统内的气态二氧化碳冷媒增压,以将其转换为高温高压二氧化碳冷媒;
    室外空气能换热器,所述室外空气能换热器的入口,在制热时连接室内换热器的出口,用于将完成放热后的高压常温液态冷媒吸收空气热量转换为中压低温气态冷媒;在制冷时连接二氧化碳冷媒增压机的出口,用于将增压机出口处的高温高压冷媒向空气释放热量转换为高压常温冷媒;
    冷媒循环储罐,所述冷媒循环储罐的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机的出口,用于向系统补充二氧化碳冷媒或接收系统多余的二氧化碳冷媒;
    室内换热器,所述室内换热器的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机,在制冷时用于通过中压低温气态二氧化碳冷媒吸收载冷剂的热量实现制冷;在制热时通过高温高压二氧化碳冷媒向载冷剂释放热量实现载冷剂的制热;
    地暖系统,所述地暖系统连接制热时所述室内换热器的出口,利用在所述室内换热器完成制热后的高压常温二氧化碳冷媒实现对地面的加热;
    地冷系统,所述地冷系统连接制冷时所述室内换热器的出口,利用在所述室内换热器完成制冷的中压常温冷媒实现对地面的降温。
  2. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,在制热时,完成放热后的高压常温液态冷媒在空气能换热器中吸收空气热量转换为中压低温气态冷媒,然后再经二氧化碳冷媒增压机增压后转换为高压高温冷媒,高压高温冷媒向载冷剂释放热量后转换为液态高压常温冷媒,载冷剂吸收热量完成制热,然后液态高压常温冷媒再进入空气能换热器气化完成循环制热;
    在制冷时,二氧化碳冷媒增压机出口处的高压高温冷媒在空气能换热器中向空气释放热量转换为高压常温冷媒,然后通过膨胀节流阀实现高压二氧化碳冷媒降压节流膨胀成为中压低温气态冷媒,中压低温气态冷媒在室内换热器内的复热过程中吸收载冷剂热量转换为中压常温气态冷媒,载冷剂释放热量完成制冷,然后中压常温气态冷媒再流入二氧化碳冷媒增压机入口实现循环使用。
  3. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于, 所述室外空气能换热器采用双机组配置,在制热时利用回流的高压常温液态冷媒先对一组空气能主机除霜,然后再通入另一组进行气化,并循环进行。
  4. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,所述冷媒循环储罐包括第一冷媒储罐和第二冷媒储罐或多组冷媒储罐,所述各组冷媒储罐均相互连接;所述第二冷媒储罐的一端连接所述室外空气能换热器,另一端连接所述二氧化碳冷媒增压机的出口;
    当所述二氧化碳冷媒增压机出口处的压力大于设定值时,向所述冷媒储罐流入冷媒以保持增压机出口压力保持在设定值;
    当所述二氧化碳冷媒增压机入口处的压力低于设定值时,通过冷媒储罐向所述二氧化碳冷媒增压机的入口处补充气态冷媒,以保持所述二氧化碳冷媒增压机入口处的压力不低于设定值。
  5. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,所述二氧化碳冷媒增压机采用单级增压机加空气能主机或多组单级增压机加空气能主机并联形式增压气态冷媒,且所述二氧化碳冷媒增压机的入口压力为1.5kg/cm 2-40kg/cm 2,出口压力为40kg/cm 2-98kg/cm 2
  6. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,所述室内换热器为一组或并联的多组布置,可每组独立控温或单区多组并联控制,并分别通过电子膨胀阀连接所述地暖系统和所述地冷系统。
  7. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,所述载冷剂为气态载冷剂或液体载冷剂,所述气态载冷剂为空气、氮气或氩气,所述液体载冷剂为水、盐水、乙二醇或丙二醇溶液。
  8. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,还包括:
    热水系统,利用高压高温二氧化碳冷媒实现即热式热水;
    其中,所述热水系统的入口通过管道连接所述二氧化碳冷媒增压机的出口,其出口通过管道连接所述室外空气能换热器的入口。
  9. 根据权利要求1所述的二氧化碳冷媒气体增压循环系统,其特征在于,还包括:
    电子膨胀阀、单向阀及电磁阀,所述电子膨胀阀、单向阀及电磁阀用于控制 各阶段二氧化碳冷媒的压力、流速、流动方向和质量流量。
  10. 一种二氧化碳冷媒气体增压循环方法,其特征在于,采用如权利要求1至9任一项所述的二氧化碳冷媒气体增压循环系统,包括制热程序和制冷程序,具体如下:
    (一)制热程序
    S11,将室外空气能换热器的入口配置为连接室内换热器的出口,其出口配置为连接二氧化碳冷媒增压机的入口,以及将所述二氧化碳冷媒增压机的出口配置为连接所述室内换热器的入口,形成制热循环通路;
    S12,启动二氧化碳冷媒增压机,将室外空气能换热器内吸收空气热量气化后的中压低温冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室内换热器内;
    S13,通入室内换热器的高温高压二氧化碳冷媒向载冷剂释放热量后转换为高压常温液态冷媒,并通入室外空气能换热器和/或地暖系统内,实现二氧化碳冷媒气体增压循环系统的制热程序,载冷剂吸收热量实现制热目的;
    S14,通入室外空气能换热器内的高压常温液态冷媒吸收空气热量后转换为中压低温气态冷媒,然后流入二氧化碳冷媒增压机的入口经再次增压后转换为高温高压二氧化碳冷媒,重复步骤S11至S14实现冷媒的循环利用;
    (二)制冷程序
    S21,将室外空气能换热器的入口配置为连接二氧化碳冷媒增压机的出口,其出口配置为连接室内换热器的入口,以及将所述室内换热器的出口配置为连接所述二氧化碳冷媒增压机的入口,形成制冷循环通路;
    S22,启动二氧化碳冷媒增压机,将在室内换热器内吸收载冷剂热量和/或地冷系统的中压常温气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室外空气能换热器内;
    S23,通入室外空气能换热器内的高温高压二氧化碳冷媒向空气释放热量后,转换为高压常温冷媒,再通过节流膨胀阀成为中压低温冷媒,然后通入对应的室内换热器;
    S24,通入室内换热器的中压低温气态冷媒吸收载冷剂热量成为中压常温冷媒,然后通入二氧化碳冷媒增压机和/或通入地冷系统,重复步骤S21至S24实 现二氧化碳冷媒气体增压循环系统的制冷程序;且载冷释放热量实现制冷目的。
  11. 冷热型空调器,其特征在于,采用如权利要求1至9任一项所述的二氧化碳冷媒气体增压循环系统统。
PCT/CN2022/117403 2021-09-06 2022-09-06 二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器 WO2023030544A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111038264.2 2021-09-06
CN202111038264.2A CN113970192A (zh) 2021-09-06 2021-09-06 二氧化碳冷媒增压循环制热系统及其方法和空调制热器
CN202122135777 2021-09-06
CN202111038302.4A CN113983713A (zh) 2021-09-06 2021-09-06 二氧化碳冷媒增压循环制冷系统及其方法和空调制冷器
CN202122134546.4 2021-09-06
CN202122134546 2021-09-06
CN202111038302.4 2021-09-06
CN202122135777.7 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023030544A1 true WO2023030544A1 (zh) 2023-03-09

Family

ID=85410722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117403 WO2023030544A1 (zh) 2021-09-06 2022-09-06 二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器

Country Status (1)

Country Link
WO (1) WO2023030544A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275790A (zh) * 2008-04-16 2008-10-01 张信荣 利用二氧化碳作为循环工质的低温制冷方法及其热泵系统
CN105783327A (zh) * 2016-05-09 2016-07-20 南京佳力图机房环境技术股份有限公司 一种冷暖一体化二氧化碳热泵装置
CN212619437U (zh) * 2020-01-30 2021-02-26 上海复璐帝流体技术有限公司 一种二氧化碳相变循环制冷系统
CN212720080U (zh) * 2020-07-17 2021-03-16 上海复璐帝流体技术有限公司 一种空调循环相变制冷系统及空调器
CN114396667A (zh) * 2021-12-01 2022-04-26 杨景峰 二氧化碳冷媒空气能循环空调系统及其制冷和制热方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275790A (zh) * 2008-04-16 2008-10-01 张信荣 利用二氧化碳作为循环工质的低温制冷方法及其热泵系统
CN105783327A (zh) * 2016-05-09 2016-07-20 南京佳力图机房环境技术股份有限公司 一种冷暖一体化二氧化碳热泵装置
CN212619437U (zh) * 2020-01-30 2021-02-26 上海复璐帝流体技术有限公司 一种二氧化碳相变循环制冷系统
CN212720080U (zh) * 2020-07-17 2021-03-16 上海复璐帝流体技术有限公司 一种空调循环相变制冷系统及空调器
CN114396667A (zh) * 2021-12-01 2022-04-26 杨景峰 二氧化碳冷媒空气能循环空调系统及其制冷和制热方法

Similar Documents

Publication Publication Date Title
CN100567834C (zh) 一种间接蒸发冷却式冷风/冷水复合型空调机组
CN101713599B (zh) 空调热泵装置
CN109579176B (zh) 一种跨季节蓄冷全年冷却系统及其运行方法
WO2022037712A1 (zh) 一种基于储能型二氧化碳循环冷热供应、消防伺服的综合系统及其运行方法
CN101514855A (zh) 热回收热泵空调冷水机组
CN108775659A (zh) 一种热管多联机房空调系统
CN207162825U (zh) 数据中心空调系统
CN201945082U (zh) 一体式工业冷水机组
CN206637881U (zh) 制冷循环系统
WO2023051800A1 (zh) 气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法
WO2023030544A1 (zh) 二氧化碳冷媒气体增压循环系统、循环方法及冷热型空调器
CN206488501U (zh) 一种适用于寒冷地区的补气增焓co2部分复叠热泵
CN215529686U (zh) 一种冷水型冷站系统
CN205939504U (zh) 一种动力热管一体机空调系统
CN110805979B (zh) 一种梯级蒸发与温湿度独立控制相耦合的建筑供能系统
CN201028865Y (zh) 适合高或低室外环境温度的空调器
CN210399316U (zh) 补气增焓空气源热泵
CN101078574A (zh) 适合宽温度环境高效制热和制冷的空气源热泵空调
CN201028867Y (zh) 适合低气温环境的空气源热泵空调器
CN106524592A (zh) 节能制冷设备及其系统和工艺
CN113007915A (zh) 一种利用蒸汽压改变状态的热力学方法和装置
CN101586892B (zh) 冷热源互补的同步制冷制热机组
CN201173540Y (zh) 冷风/冷水复合型空调机组
CN113983713A (zh) 二氧化碳冷媒增压循环制冷系统及其方法和空调制冷器
CN221005551U (zh) 一种超流体二氧化碳制冷和制热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE