WO2023030486A1 - 一种混凝土蜗壳泵壁面磨损的在线监测方法 - Google Patents
一种混凝土蜗壳泵壁面磨损的在线监测方法 Download PDFInfo
- Publication number
- WO2023030486A1 WO2023030486A1 PCT/CN2022/116738 CN2022116738W WO2023030486A1 WO 2023030486 A1 WO2023030486 A1 WO 2023030486A1 CN 2022116738 W CN2022116738 W CN 2022116738W WO 2023030486 A1 WO2023030486 A1 WO 2023030486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- concrete
- roughness
- volute
- head
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012544 monitoring process Methods 0.000 title claims abstract description 22
- 238000005299 abrasion Methods 0.000 title abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000005259 measurement Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 235000019592 roughness Nutrition 0.000 description 54
- 238000013480 data collection Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Definitions
- the invention specifically relates to an on-line monitoring method for wall wear of a concrete volute pump.
- the concrete volute is an important part of the circulating water system in the pump room and the third circuit of the nuclear power plant.
- the inner wall of the volute will be eroded and the roughness will become higher, which will lead to the operation of the unit.
- the deviation of the working conditions will adversely affect the stable operation of the unit.
- the technical problem to be solved by the present invention is to provide an online monitoring method for the wear of the concrete volute pump wall, which can quickly, conveniently and accurately monitor the wear of the concrete volute pump during the operation of the concrete volute pump. wear on the shell wall.
- the invention provides an online monitoring method for wall wear of a concrete volute pump, comprising:
- s is the roughness of the concrete volute wall, m
- s 0 is the initial roughness of the concrete volute wall when it is not worn
- K H is head coefficient, its value range is -0.008 ⁇ 0.02;
- K q is flow coefficient, its value range is 0.0001 ⁇ 0.008;
- K s is the wear coefficient, and its value range is -0.004 ⁇ 0.004;
- Q 11 is the ratio of flow Q to rated flow Q 0 ;
- H is the head of the concrete volute pump with the volute wall worn under the condition of flow Q, m;
- H0 is the initial head of the concrete volute pump with no wear on the volute wall under the condition of flow Q, m;
- h is the unit head, the value is 1, m;
- H is the head of the concrete volute pump with the volute wall worn under the condition of flow Q, m;
- Q 11 is the ratio of flow Q to rated flow Q 0 ;
- ⁇ s is the roughness coefficient corresponding to the roughness s.
- the flow Q is obtained through actual measurement or calculation through formula (4):
- Q 0 is the rated flow rate of the concrete volute pump
- N is the concrete volute pump shaft power, W;
- P is the unit shaft power, the value is 1, W;
- ⁇ 1 is the wear coefficient, and its value ranges from 1.2 to 1.4;
- ⁇ 2 is the power coefficient, and its value range is 1.05e -6 ⁇ 1.85e -6 ;
- ⁇ 3 is the specific speed coefficient, and its value ranges from 6.5 to 7.5.
- the actual head H' is obtained through actual measurement or calculation through formula (5):
- P out, 2 is the outlet pressure of the concrete volute pump with the volute wall worn under the condition of flow Q, Pa;
- v 2 is the actual outlet velocity of the concrete volute pump under the condition of flow Q, m/s;
- h c is the center position of the volute outlet, and its value is 0m;
- h 2 is the height difference between the actual water level of the inlet tank and the center of the outlet of the volute, m.
- the initial head H0 in formula (1) is obtained by actual measurement or calculated by formula (6):
- P out, 1 is the initial outlet pressure of the concrete volute pump with unworn volute wall under the condition of flow Q, Pa;
- P 0 is atmospheric pressure, Pa
- v 1 is the initial outlet velocity of the concrete volute pump under the condition of flow Q, m/s;
- h c is the center position of the volute outlet, and its value is 0m;
- h 1 is the height difference between the water level of the initial inlet tank and the center of the volute outlet, m.
- the ratio Q 11 of the flow Q to the rated flow Q 0 is ⁇ 1.4.
- the specific speed of the concrete volute pump is 300-900, and the shaft power N is 700,000-1,050,000.
- the head coefficient K H is 0.00255.
- the flow coefficient K q is 0.00239.
- the wear coefficient K s is -0.000423.
- the relationship between flow-lift-roughness has been summed up through experience, so that by selecting a specific flow or shaft power and preset warning roughness, the relationship between flow-lift-roughness can be , to obtain the warning head value, when the measured head at a specific flow or shaft power point is lower than the warning value, an alarm can be issued for the wear of the concrete volute, so that certain maintenance measures can be taken.
- Practice has shown that when the specific speed of the concrete volute pump is in the range of 300 to 900, the error of the predicted value of the roughness of the concrete volute wall surface of the present invention can be kept within ⁇ 2%. Quickly, conveniently and accurately monitor the wear of the concrete volute wall.
- Figure 1 is a schematic structural view of a concrete volute pump
- Fig. 2 is the schematic diagram of roughness
- Fig. 3 is the shaft power curve diagram of the concrete volute pump under different roughness
- Fig. 4 is the method flowchart of on-line monitoring concrete volute wall wear of the present invention.
- Fig. 5 is a graph of the flow-head curve predicted by the embodiment of the present invention under a certain roughness.
- This embodiment provides an online monitoring method for wall wear of a concrete volute pump, including:
- s is the roughness of the concrete volute wall, m
- s 0 is the initial roughness of the concrete volute wall when it is not worn
- K H is head coefficient, its value range is -0.008 ⁇ 0.02;
- K q is flow coefficient, its value range is 0.0001 ⁇ 0.008;
- K s is the wear coefficient, and its value range is -0.004 ⁇ 0.004;
- Q 11 is the ratio of flow Q to rated flow Q 0 ;
- H is the head of the concrete volute pump with the volute wall worn under the condition of flow Q, m;
- H0 is the initial head of the concrete volute pump with no wear on the volute wall under the condition of flow Q, m;
- h is the unit head, the value is 1, m.
- the flow Q can be calculated by formula (4):
- Q 0 is the rated flow rate of the concrete volute pump
- N is the concrete volute pump shaft power, W;
- P is the unit shaft power, the value is 1, W;
- ⁇ 1 is the wear coefficient, and its value ranges from 1.2 to 1.4;
- ⁇ 2 is the power coefficient, and its value range is 1.05e -6 ⁇ 1.85e -6 ;
- ⁇ 3 is the specific speed coefficient, and its value ranges from 6.5 to 7.5.
- the actual head H′ of the concrete volute pump with the volute wall worn under the condition of flow Q can be calculated according to the actual water level h 2 of the inlet tank and the actual outlet pressure P out,2 .
- the actual head H' is specifically calculated by formula (5):
- P out, 2 is the outlet pressure of the concrete volute pump with the volute wall worn under the condition of flow Q, Pa;
- v 2 is the actual outlet velocity of the concrete volute pump under the condition of flow Q, m/s;
- h c is the center position of the volute outlet, and its value is 0m;
- h 2 is the height difference between the actual water level of the inlet tank and the center of the outlet of the volute, m.
- the initial head of the concrete volute pump under the condition of flow Q can be calculated according to the initial water level h 1 of the inlet tank and the initial outlet pressure P out,1 .
- the initial head H in formula (1) is specifically calculated by formula (6):
- P out, 1 is the initial outlet pressure of the concrete volute pump with unworn volute wall under the condition of flow Q, Pa;
- P 0 is atmospheric pressure, Pa
- v 1 is the initial outlet velocity of the concrete volute pump under the condition of flow Q, m/s;
- h c is the center position of the volute outlet, and its value is 0m;
- h1 is the height difference between the water level of the initial inlet pool and the center of the outlet of the volute, m.
- the specific rotational speed of the concrete volute pump is limited to 300-900, and the shaft power N is limited to 700,000-1,050,000.
- the recommended value of head coefficient K H is 0.00255
- the recommended value of flow coefficient K q is 0.00239
- the recommended value of wear coefficient K s is -0.000423.
- the relationship between the flow-lift curve of the concrete volute pump and the roughness of the concrete volute wall under different wear degrees can be obtained.
- the The degree s conversion corresponds to the flow-lift relationship of the concrete volute pump under the roughness, so that the online monitoring method for the wall wear of the concrete volute pump in this embodiment can be simplified, including:
- H is the head of the concrete volute pump with the volute wall worn under the condition of flow Q, m;
- Q 11 is the ratio of flow Q to rated flow Q 0 ;
- ⁇ s is the roughness coefficient corresponding to the roughness s.
- the concrete volute pump includes the concrete volute 1 and the impeller 2 installed in the concrete volute 1, and the impeller 2 will enter the water tank 3 during the rotation process. The water pumped out, after using for a period of time, the concrete volute 1 will be worn.
- the present invention represents the wall surface abrasion amount of concrete volute 1 by roughness, and the technical idea of the present invention is as follows:
- the roughness s of the concrete volute wall is predicted according to the flow Q and the head difference ⁇ H.
- this embodiment selects a concrete volute pump with a specific speed of 690, a rated flow rate of 14.4m 3 /s, and an initial concrete volute wall roughness s0 of 0.001m for the test :
- P out, 1 is the initial outlet pressure of the concrete volute pump with unworn volute wall under the condition of flow Q, Pa;
- P 0 is atmospheric pressure, Pa
- v 1 is the initial outlet velocity of the concrete volute pump under the condition of flow Q, m/s;
- h c is the center position of the volute outlet, and its value is 0m;
- h 1 is the height difference between the water level of the initial inlet tank and the center of the volute outlet, m.
- P out, 2 is the outlet pressure of the concrete volute pump with the volute wall worn under the condition of flow Q, Pa;
- v 2 is the actual outlet velocity of the concrete volute pump under the condition of flow Q, m/s;
- h c is the center position of the volute outlet, and its value is 0m;
- h 2 is the height difference between the actual water level of the inlet tank and the center of the outlet of the volute, m.
- ⁇ H is head difference, m
- ⁇ H' is the dimensionless head difference
- h is the unit head, 1m;
- the dimensionless head difference ⁇ H' is calculated to be 0.197.
- Q 0 is the rated flow rate of the concrete volute pump
- N is the concrete volute pump shaft power, W;
- P is the unit shaft power, the value is 1W;
- ⁇ 1 is the wear coefficient, and its value ranges from 1.2 to 1.4;
- ⁇ 2 is the power coefficient, and its value range is 1.05e -6 ⁇ 1.85e -6 ;
- ⁇ 3 is the specific speed coefficient, and its value ranges from 6.5 to 7.5.
- the recommended value for the wear coefficient ⁇ 1 is 1.3
- the recommended value for the power coefficient ⁇ 2 is 1.5e -6
- the recommended value for the specific speed coefficient ⁇ 3 is 6.95.
- s is the roughness of the concrete volute wall, m
- s 0 is the initial roughness of the concrete volute wall when it is not worn
- K H is head coefficient, its value range is -0.008 ⁇ 0.02;
- K q is flow coefficient, its value range is 0.0001 ⁇ 0.008;
- K s is the wear coefficient, and its value range is -0.004 ⁇ 0.004;
- Q 11 is the ratio of flow Q to rated flow Q 0 .
- the recommended value for head coefficient K H is 0.0036; the recommended value for flow coefficient K q is 0.0033; the recommended value for wear coefficient K s is -0.0006.
- the concrete volute can be converted according to the concrete volute wall roughness s under the corresponding roughness Shell pump flow-head relationship:
- H is the head of the concrete volute pump with the volute wall worn under the condition of flow Q, m;
- Q 11 is the ratio of flow Q to rated flow Q 0 ;
- ⁇ s is the roughness coefficient corresponding to the roughness s.
- Adopt formula (2) to calculate H when Q11 is 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 respectively, and obtain Table 2:
- a specific flow or shaft power point is selected, the warning roughness sj is preset, and the flow-head or shaft power-head relationship under the warning roughness sj is deduced according to the prediction process.
- the actual head at a specific flow or shaft power point is lower than predicted, an alarm is given for concrete volute wear.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种混凝土蜗壳泵壁面磨损的在线监测方法,包括:获取混凝土蜗壳泵在流量Q工况下的实际扬程H',预设警戒粗糙度,根据流量-扬程-粗糙度的关系式计算所述流量Q处的警戒扬程,或,将预设的警戒粗糙度换算为粗糙度系数,根据流量-扬程-粗糙度系数的关系式计算所述流量Q处的警戒扬程,当实际扬程H'低于警戒扬程时,对混凝土蜗壳磨损情况发出警报。
Description
本公开要求申请日为2021年09月03日、申请号为CN202111031249.5、名称为“一种混凝土蜗壳泵壁面磨损的在线监测方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
本发明具体涉及一种混凝土蜗壳泵壁面磨损的在线监测方法。
随着现代泵业的不断发展,水泵基础理论的研究、水泵性能的改进和水泵方案的设计都不断的完善,相应地,泵运行过程中的智能运行维护技术逐渐被重视,以满足现代泵业的发展需求。
混凝土蜗壳是泵房内循环水系统及核电站第三回路的重要组成部分,蜗壳在工作过程随着水流的持续冲击,蜗壳内壁面会发生冲蚀导致粗糙度变高,进而导致机组运行工况出现偏移,对机组的稳定运行造成不利影响。
目前较为广泛应用的是传统半自动化泵站监控系统,该系统存在着测量精度低、实时性差和可靠性差的缺点,使得难以对混凝土蜗壳的故障工况进行准确判断,尤其是针对混凝土蜗壳壁面磨损量的在线监测。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种混凝土蜗壳泵壁面磨损的在线监测方法,能够在混凝土蜗壳泵运行过程中快速、便捷且准确地监测混凝土蜗壳壁面的磨损情况。
解决本发明技术问题所采用的技术方案是:
本发明提供一种混凝土蜗壳泵壁面磨损的在线监测方法,包括:
获取混凝土蜗壳泵在流量Q工况下的实际扬程H′,预设警戒粗糙度,根据流量-扬程-粗糙度的关系式计算所述流量Q处的警戒扬程,或,将预设的警戒粗糙度换算为粗糙度系数,根据流量-扬程-粗糙度系数的关系式计算所述流量Q处的警戒扬程,
当实际扬程H
′低于警戒扬程时,对混凝土蜗壳磨损情况发出警报;
所述流量-扬程-粗糙度的关系式如式(1)所示:
式中:
s为混凝土蜗壳壁面粗糙度,m;
s
0为混凝土蜗壳壁面未磨损时的初始粗糙度;
K
H为扬程系数,其取值范围为-0.008~0.02;
K
q为流量系数,其取值范围为0.0001~0.008;
K
s为磨损系数,其取值范围为-0.004~0.004;
Q
11为流量Q与额定流量Q
0的比值;
H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;
H
0为蜗壳壁面未磨损的混凝土蜗壳泵在流量Q工况下的初始扬程,m;
h为单位扬程,取值为1,m;
所述流量-扬程-粗糙度系数的关系式如式(2)所示:
H=ζ
ssin(1.623Q
11+7.1) (2)
式中:
H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;
Q
11为流量Q与额定流量Q
0的比值;
ζ
s为与粗糙度s对应的粗糙度系数。
可选地,粗糙度s和粗糙度系数ζ
s之间的换算式如式(3)所示:
ζ
s=0.1597e
-464s+10.05 (3)
可选地,流量Q通过实测获得或通过式(4)计算获得:
式中:
Q
0为混凝土蜗壳泵的额定流量;
N为混凝土蜗壳泵轴功率,W;
P为单位轴功率,取值为1,W;
α
1为磨损系数,其取值范围为1.2~1.4;
α
2为功率系数,其取值范围为1.05e
-6~1.85e
-6;
α
3为比转速系数,其取值范围为6.5~7.5。
可选地,实际扬程H′通过实测获得或通过式(5)计算获得:
式中:
P
out,2为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的出口压力,Pa;
v
2为混凝土蜗壳泵在流量Q工况下的实际出口速度,m/s;
h
c为蜗壳出口中心位置,其值为0m;
h
2为实际进水池水位相对蜗壳出口中心位置的高度差,m。
可选地,式(1)中初始扬程H
0通过实测获得或通过式(6)计算获得:
式中:
P
out,1为蜗壳壁面未磨损的混凝土蜗壳泵在流量Q工况下的初始出口压力,Pa;
P
0为大气压力,Pa;
v
1为混凝土蜗壳泵在流量Q工况下的初始出口速度,m/s;
h
c为蜗壳出口中心位置,其值为0m;
h
1为初始进水池水位相对蜗壳出口中心位置的高度差,m。
可选地,流量Q与额定流量Q
0的比值Q
11≤1.4。
可选地,所述混凝土蜗壳泵的比转速为300~900,所述轴功率N为700000~1050000。
可选地,所述扬程系数K
H为0.00255。
可选地,所述流量系数K
q为0.00239。
可选地,所述磨损系数K
s为-0.000423。
本发明中,通过经验总结出了流量-扬程-粗糙度三者之间的关系式,从而通过选择特定流量或轴功率,预设警戒粗糙度,即可根据流量-扬程-粗糙度的关系式,得出警戒扬程值,当特定流量或轴功率点处实测的扬程低于警戒值时,即可对混凝土蜗壳磨损情况发出警报,以便采取 一定维修措施。实践表明,混凝土蜗壳泵的比转速在300~900范围时,本发明对混凝土蜗壳壁面粗糙度的预测值误差可以保持在±2%以内,可见,本发明能够在混凝土蜗壳泵运行过程中快速、便捷且准确地监测混凝土蜗壳壁面的磨损情况。
图1为混凝土蜗壳泵的结构示意图;
图2为粗糙度的示意图;
图3为混凝土蜗壳泵在不同粗糙度下的轴功率曲线图;
图4为本发明的在线监测混凝土蜗壳壁面磨损的方法流程图;
图5为本发明实施例预测的某特定粗糙度下的流量-扬程曲线图。
图中:
1-混凝土蜗壳;2-叶轮;3-进水池;h
1-初始进水池水位相对蜗壳出口中心位置的高度差;h
2-实际进水池水位相对蜗壳出口中心位置的高度差,m;s-混凝土蜗壳壁面粗糙度,m。
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和实施例对本发明作进一步详细描述。
实施例1
本实施例提供一种混凝土蜗壳泵壁面磨损的在线监测方法,包括:
获取混凝土蜗壳泵在流量Q工况下的实际扬程H′,预设警戒粗糙 度,根据流量-扬程-粗糙度的关系式计算所述流量Q处的警戒扬程,当实际扬程H′低于警戒扬程时,对混凝土蜗壳磨损情况发出警报;
所述流量-扬程-粗糙度的关系式如式(1)所示:
式中:
s为混凝土蜗壳壁面粗糙度,m;
s
0为混凝土蜗壳壁面未磨损时的初始粗糙度;
K
H为扬程系数,其取值范围为-0.008~0.02;
K
q为流量系数,其取值范围为0.0001~0.008;
K
s为磨损系数,其取值范围为-0.004~0.004;
Q
11为流量Q与额定流量Q
0的比值;
H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;
H
0为蜗壳壁面未磨损的混凝土蜗壳泵在流量Q工况下的初始扬程,m;
h为单位扬程,取值为1,m。
如图3所示,经验证,混凝土蜗壳泵的轴功率在不同粗糙度下基本一致,由此,当流量Q不便于测量时,可根据轴功率N换算对应流量。
本实施例中,流量Q可通过式(4)计算获得:
式中:
Q
0为混凝土蜗壳泵的额定流量;
N为混凝土蜗壳泵轴功率,W;
P为单位轴功率,取值为1,W;
α
1为磨损系数,其取值范围为1.2~1.4;
α
2为功率系数,其取值范围为1.05e
-6~1.85e
-6;
α
3为比转速系数,其取值范围为6.5~7.5。
在流量Q工况下蜗壳壁面磨损的混凝土蜗壳泵的实际扬程H′可根据实际进水池水位h
2与实际出口压力P
out,2计算得到。
本实施例中,实际扬程H′具体通过式(5)计算获得:
式中:
P
out,2为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的出口压力,Pa;
v
2为混凝土蜗壳泵在流量Q工况下的实际出口速度,m/s;
h
c为蜗壳出口中心位置,其值为0m;
h
2为实际进水池水位相对蜗壳出口中心位置的高度差,m。
在流量Q工况下混凝土蜗壳泵的初始扬程可根据初始进水池水位h
1与初始出口压力P
out,1计算得到。
本实施例中,式(1)中初始扬程H
0具体通过式(6)计算获得:
式中:
P
out,1为蜗壳壁面未磨损的混凝土蜗壳泵在流量Q工况下的初始出口压力,Pa;
P
0为大气压力,Pa;
v
1为混凝土蜗壳泵在流量Q工况下的初始出口速度,m/s;
h
c为蜗壳出口中心位置,其值为0m;
h1为初始进水池水位相对蜗壳出口中心位置的高度差,m。
经计算,当Q
11小于等于1.4时,通过实施例计算出的粗糙度值与试验所使用的混凝土蜗壳泵壁面的粗糙度值十分接近,从而本发明可以准确预测出混凝土蜗壳泵的壁面磨损值,当Q
11大于1.4时,预测值的偏差逐渐增加。
经验证,混凝土蜗壳泵的比转速在300~900范围,轴功率N在700000~1050000时,通过本实施例计算出的粗糙度值与实测值十分接近,误差可以保持在±2%以内,说明本发明可以准确预测出混凝土蜗壳壁面粗糙度s。
因此,本实施例中,混凝土蜗壳泵的比转速限定在300~900,轴功率N限定在700000~1050000,在该范围内,式(1)中,扬程系数K
H的推荐值为0.00255,流量系数K
q的推荐值为0.00239,磨损系数K
s的推荐值为-0.000423。
实施例2
根据实施例1的方法,可得出不同磨损程度下的混凝土蜗壳泵流量-扬程曲线与混凝土蜗壳壁面粗糙度关系,计算得到混凝土蜗壳壁面粗糙度s后,可根据混凝土蜗壳壁面粗糙度s换算对应粗糙度下混凝土蜗壳泵的流量-扬程关系,从而可简化得到本实施例的混凝土蜗壳泵壁面 磨损的在线监测方法,包括:
获取混凝土蜗壳泵在流量Q工况下的实际扬程H′,预设警戒粗糙度,将预设的警戒粗糙度换算为粗糙度系数,根据流量-扬程-粗糙度系数的关系式计算所述流量Q处的警戒扬程,
所述流量-扬程-粗糙度系数的关系式如式(2)所示:
H=ζ
ssin(1.623Q
11+7.1) (2)
式中:
H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;
Q
11为流量Q与额定流量Q
0的比值;
ζ
s为与粗糙度s对应的粗糙度系数。
本实施例中,粗糙度s和粗糙度系数ζ
s之间的换算式如式(3)所示:
ξ
s=0.1597e
-464s+10.05 (3)
如图4所示,实施例1和实施例2的验证过程如下:
如图1与图2分别为混凝土蜗壳泵结构示意图与粗糙度示意图,混凝土蜗壳泵包括混凝土蜗壳1和安装在混凝土蜗壳1内的叶轮2,叶轮2旋转过程中将进水池3中的水泵出,在使用一段时间后,混凝土蜗壳1会发生磨损。本发明通过粗糙度来表示混凝土蜗壳1的壁面磨损量,本发明的技术构思如下:
对未磨损的混凝土蜗壳泵进行数据采集:在不同流量Q的工况下,采集混凝土蜗壳泵的初始进水池水位h
1与初始出口压力P
out,1,根据初 始进水池水位h
1与初始出口压力P
out,1计算在流量Q工况下混凝土蜗壳泵的初始扬程H
0;
对蜗壳壁面磨损后的混凝土蜗壳泵数据采集:在流量Q的工况下,采集混凝土蜗壳泵的实际进水池水位h
2与实际出口压力P
out,2,根据实际进水池水位h
2与实际出口压力P
out,2计算在流量Q工况下壁面磨损后混凝土蜗壳泵的实际扬程H;
根据初始扬程H
0与实际扬程H计算扬程差ΔH;
根据流量Q和扬程差ΔH预测混凝土蜗壳壁面粗糙度s。
下面具体举例说明:如图1所示,本实施例选择一台比转速为690,额定流量为14.4m
3/s,初始混凝土蜗壳壁面粗糙度s
0为0.001m的混凝土蜗壳泵进行试验:
1)对未磨损的混凝土蜗壳泵进行数据采集:在不同流量Q的工况下,采集混凝土蜗壳泵的初始进水池水位h
1与初始出口压力P
out,1,根据初始进水池水位h
1与初始出口压力P
out,1计算在流量Q工况下混凝土蜗壳泵的初始扬程H
0:
式中:
P
out,1为蜗壳壁面未磨损的混凝土蜗壳泵在流量Q工况下的初始出口压力,Pa;
P
0为大气压力,Pa;
v
1为混凝土蜗壳泵在流量Q工况下的初始出口速度,m/s;
h
c为蜗壳出口中心位置,其值为0m;
h
1为初始进水池水位相对蜗壳出口中心位置的高度差,m。
在流量Q为17.28m
3/s时,计算得到初始扬程H
0为3.925m。
2)对蜗壳壁面粗糙度为0.0085m的混凝土蜗壳泵进行数据采集:在流量Q的工况下,采集混凝土蜗壳泵的实际进水池水位h
2与实际出口压力P
out,2,根据实际进水池水位h
2与实际出口压力P
out,2计算在流量Q工况下壁面磨损后混凝土蜗壳泵的实际扬程H:
式中:
P
out,2为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的出口压力,Pa;
v
2为混凝土蜗壳泵在流量Q工况下的实际出口速度,m/s;
h
c为蜗壳出口中心位置,其值为0m;
h
2为实际进水池水位相对蜗壳出口中心位置的高度差,m。
在流量Q为17.28m
3/s时,计算得到实际扬程H为3.728m。
3)根据初始扬程H
0与实际扬程H计算扬程差ΔH并进行无量纲化:
ΔH=H-H
0=0.197m,
ΔH′=(H-H
0)/h=0.197m/1m=0.197。
式中:
ΔH为扬程差,m;
ΔH′为无量纲扬程差;
h为单位扬程,1m;
从而计算得到无量纲扬程差ΔH′为0.197。
参见图3,由于混凝土蜗壳泵的轴功率在不同粗糙度下基本一致,当流量不易监测时可根据轴功率N换算对应流量:
式中:
Q
0为混凝土蜗壳泵的额定流量;
N为混凝土蜗壳泵轴功率,W;
P为单位轴功率,取值为1W;
α
1为磨损系数,其取值范围为1.2~1.4;
α
2为功率系数,其取值范围为1.05e
-6~1.85e
-6;
α
3为比转速系数,其取值范围为6.5~7.5。
磨损系数α
1选择推荐值为1.3,功率系数α
2选择推荐值为1.5e
-6,所述比转速系数α
3选择推荐值为6.95。
当N=860000W时,流量比例
3)根据流量Q和无量纲扬程差ΔH′预测混凝土蜗壳壁面粗糙度s:
式中:
s为混凝土蜗壳壁面粗糙度,m;
s
0为混凝土蜗壳壁面未磨损时的初始粗糙度;
K
H为扬程系数,其取值范围为-0.008~0.02;
K
q为流量系数,其取值范围为0.0001~0.008;
K
s为磨损系数,其取值范围为-0.004~0.004;
Q
11为流量Q与额定流量Q
0的比值。
扬程系数K
H选择推荐值为0.0036;流量系数K
q选择推荐值为0.0033;磨损系数K
s选择推荐值为-0.0006。
当Q
11=Q/Q
0=17.28÷14.4=1.2时,混凝土蜗壳壁面粗糙度
用同样的方法,对Q
11=1.1进行计算,得出表1:
表1
Q 11 | 1.1 | 1.2 |
H 0 | 5.257 | 3.924 |
H | 5.123 | 3.727 |
s | 0.00837 | 0.00858 |
与实测值误差 | -1.53% | 0.94% |
经验证,当Q
11小于等于1.4时,通过实施例计算出的粗糙度值与试验所使用的混凝土蜗壳泵壁面的粗糙度值十分接近,从而本发明可以准确预测出混凝土蜗壳泵的壁面磨损值,当Q
11大于1.4时,预测值的偏差逐渐增加。
根据不同磨损程度下的混凝土蜗壳泵流量-扬程曲线与混凝土蜗壳壁面粗糙度关系,计算得到混凝土蜗壳壁面粗糙度s后,可根据混凝土蜗壳壁面粗糙度s换算对应粗糙度下混凝土蜗壳泵的流量-扬程关系:
以Q
11=1.2为例,s=0.00858m,粗糙度系数
ζ
s=0.1597e
-464s+10.05=0.1597e
-464×0.00858+10.05=10.05298。
H=ζ
ssin(1.623Q
11+7.1) (2)
式中:
H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;
Q
11为流量Q与额定流量Q
0的比值;
ζ
s为与粗糙度s对应的粗糙度系数。
采用式(2)分别对Q
11为0.7、0.8、0.9、1.0、1.1、1.2、1.3时的H进行计算,得到表2:
表2
Q11 | 0.7 | 0.8 | 0.9 | 1 | 1.1 | 1.2 | 1.3 |
H | 9.328 | 8.599 | 7.645 | 6.490 | 5.164 | 3.702 | 2.143 |
得到当s=0.00858m时的流量-扬程曲线如图5所示。
为实现对混凝土蜗壳壁面磨损的实时监测报警,选择特定流量或轴功率点,预设警戒粗糙度sj,根据预测流程反推出警戒粗糙度sj下的流量-扬程或轴功率-扬程关系,当特定流量或轴功率点处实际扬程低于预测值时,即对混凝土蜗壳磨损情况发出警报。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
Claims (10)
- 一种混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,包括:获取混凝土蜗壳泵在流量Q工况下的实际扬程H′,预设警戒粗糙度,根据流量-扬程-粗糙度的关系式计算所述流量Q处的警戒扬程,或,将预设的警戒粗糙度换算为粗糙度系数,根据流量-扬程-粗糙度系数的关系式计算所述流量Q处的警戒扬程,当实际扬程H′低于警戒扬程时,对混凝土蜗壳磨损情况发出警报;所述流量-扬程-粗糙度的关系式如式(1)所示:式中:s为混凝土蜗壳壁面粗糙度,m;s 0为混凝土蜗壳壁面未磨损时的初始粗糙度;K H为扬程系数,其取值范围为-0.008~0.02;K q为流量系数,其取值范围为0.0001~0.008;K s为磨损系数,其取值范围为-0.004~0.004;Q 11为流量Q与额定流量Q 0的比值;H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;H 0为蜗壳壁面未磨损的混凝土蜗壳泵在流量Q工况下的初始扬程,m;h为单位扬程,取值为1,m;所述流量-扬程-粗糙度系数的关系式如式(2)所示:H=ζ ssin(1.623Q 11+7.1) (2)式中:H为蜗壳壁面磨损的混凝土蜗壳泵在流量Q工况下的扬程,m;Q 11为流量Q与额定流量Q 0的比值;ζ s为与粗糙度s对应的粗糙度系数。
- 根据权利要求1所述的混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,粗糙度s和粗糙度系数ζ s之间的换算式如式(3)所示:ζ s=0.1597e -464s+10.05 (3)
- 根据权利要求1-5任一项所述的混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,流量Q与额定流量Q 0的比值Q 11≤1.4。
- 根据权利要求3-5任一项所述的混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,所述混凝土蜗壳泵的比转速为300~900,所述轴功率N为700000~1050000。
- 根据权利要求7所述的混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,所述扬程系数K H为0.00255。
- 根据权利要求7所述的混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,所述流量系数K q为0.00239。
- 根据权利要求7所述的混凝土蜗壳泵壁面磨损的在线监测方法,其特征在于,所述磨损系数K s为-0.000423。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111031249.5 | 2021-09-03 | ||
CN202111031249.5A CN113868837B (zh) | 2021-09-03 | 2021-09-03 | 一种混凝土蜗壳泵壁面磨损的在线监测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023030486A1 true WO2023030486A1 (zh) | 2023-03-09 |
Family
ID=78989399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/116738 WO2023030486A1 (zh) | 2021-09-03 | 2022-09-02 | 一种混凝土蜗壳泵壁面磨损的在线监测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113868837B (zh) |
WO (1) | WO2023030486A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113868837B (zh) * | 2021-09-03 | 2024-05-17 | 中国核电工程有限公司 | 一种混凝土蜗壳泵壁面磨损的在线监测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105114334A (zh) * | 2015-07-27 | 2015-12-02 | 北京化工大学 | 基于计算流体动力学理论的多级离心泵叶轮口环磨损量监测方法 |
JP2018119790A (ja) * | 2017-01-23 | 2018-08-02 | 日立Geニュークリア・エナジー株式会社 | メカニカルシールの状態監視システム、およびメカニカルシールの状態監視方法 |
CN110439825A (zh) * | 2019-07-11 | 2019-11-12 | 江苏大学 | 一种在线监测密封环间隙的方法 |
JP2021067225A (ja) * | 2019-10-24 | 2021-04-30 | 株式会社荏原製作所 | スリーブ摩耗監視システムおよびスリーブの摩耗状態を監視する方法 |
CN113868837A (zh) * | 2021-09-03 | 2021-12-31 | 中国核电工程有限公司 | 一种混凝土蜗壳泵壁面磨损的在线监测方法 |
CN114491960A (zh) * | 2021-12-29 | 2022-05-13 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵磨损监测方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009288231A (ja) * | 2008-05-30 | 2009-12-10 | Satoru Kitazawa | ポンプ流量計測装置 |
CN105415500B (zh) * | 2015-11-26 | 2019-01-01 | 湖南五新隧道智能装备股份有限公司 | 一种混凝土喷浆车的速凝剂调速方法及速凝剂系统 |
CA3023612A1 (en) * | 2016-05-16 | 2017-11-23 | Weir Minerals Australia Ltd | Pump monitoring |
CN113255220B (zh) * | 2021-05-31 | 2022-12-06 | 西安交通大学 | 一种基于数字孪生的齿轮泵维护方法 |
-
2021
- 2021-09-03 CN CN202111031249.5A patent/CN113868837B/zh active Active
-
2022
- 2022-09-02 WO PCT/CN2022/116738 patent/WO2023030486A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105114334A (zh) * | 2015-07-27 | 2015-12-02 | 北京化工大学 | 基于计算流体动力学理论的多级离心泵叶轮口环磨损量监测方法 |
JP2018119790A (ja) * | 2017-01-23 | 2018-08-02 | 日立Geニュークリア・エナジー株式会社 | メカニカルシールの状態監視システム、およびメカニカルシールの状態監視方法 |
CN110439825A (zh) * | 2019-07-11 | 2019-11-12 | 江苏大学 | 一种在线监测密封环间隙的方法 |
CN111637068A (zh) * | 2019-07-11 | 2020-09-08 | 江苏大学 | 一种在线监测密封环间隙的方法 |
JP2021067225A (ja) * | 2019-10-24 | 2021-04-30 | 株式会社荏原製作所 | スリーブ摩耗監視システムおよびスリーブの摩耗状態を監視する方法 |
CN113868837A (zh) * | 2021-09-03 | 2021-12-31 | 中国核电工程有限公司 | 一种混凝土蜗壳泵壁面磨损的在线监测方法 |
CN114491960A (zh) * | 2021-12-29 | 2022-05-13 | 徐州圣邦机械有限公司 | 一种高压内啮合齿轮泵磨损监测方法 |
Non-Patent Citations (1)
Title |
---|
TAN, MING-GAO; LIU, HOU-LIN; WU, XIAN-FANG; WANG, YONG; WANG, KAI; FU, MENG: "The Effect of Roughness on Numerical Prediction of Centrifugal Pump Performance", CHINA RURAL WATER AND HYDROPOWER, no. 2, 15 February 2011 (2011-02-15), pages 131 - 134, XP009544226, ISSN: 1007-2284 * |
Also Published As
Publication number | Publication date |
---|---|
CN113868837A (zh) | 2021-12-31 |
CN113868837B (zh) | 2024-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023030486A1 (zh) | 一种混凝土蜗壳泵壁面磨损的在线监测方法 | |
CN106931603B (zh) | 基于物联网技术的中央空调冷却水系统能效监测系统 | |
CN103914088B (zh) | 液态铅铋合金中氧含量控制装置及方法 | |
CN103742425B (zh) | 水循环系统节能修正方法 | |
CN103912955A (zh) | 中央空调水系统在线监测预判控制加药系统及其应用 | |
US11415124B2 (en) | Apparatus and method for detecting occurrence of cavitation | |
CN111637068A (zh) | 一种在线监测密封环间隙的方法 | |
CN112628515A (zh) | 一种使用流量计制作节流孔板的方法 | |
CN106404091B (zh) | 一种基于体积法的泵站流量测法 | |
CN207097468U (zh) | 一种通过自然循环改善核电厂死管段现象的装置 | |
CN112198086A (zh) | 一种脱硫吸收塔液位及浆液泡沫测量装置和方法 | |
CN206057130U (zh) | 一种浆液综合测量罐 | |
CN219031914U (zh) | 一种阻垢剂自动加药控制装置 | |
CN207848924U (zh) | 一种齿轮油循环系统及含有其的隧道掘进机 | |
CN116050050A (zh) | 一种含固空化三相流致磨损预测方法 | |
CN110657106B (zh) | 一种离心泵扬程预测方法 | |
Wu et al. | Effect of discharge elbow on performance of the axial flow pump in saddle zone | |
CN210474356U (zh) | 一种可避免喷涂时堵塞的管道内壁水泥砂浆喷涂结构 | |
CN104677133B (zh) | 一种排气系统及间接空冷系统 | |
CN209438398U (zh) | 一种强酸稀释系统 | |
CN206235379U (zh) | 一种雷达液位计在高压釜上的安装结构 | |
CN108019344B (zh) | 一种电动给水泵组效率测试方法 | |
CN213275251U (zh) | 一种脱硫吸收塔液位及浆液泡沫测量装置 | |
CN206980496U (zh) | 一种稀硫酸生产设备 | |
CN106194778B (zh) | 一种测量自吸泵自吸性能的新型实验装置和试验方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22863620 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22863620 Country of ref document: EP Kind code of ref document: A1 |