WO2023030438A1 - 导频的发送、接收方法和设备 - Google Patents

导频的发送、接收方法和设备 Download PDF

Info

Publication number
WO2023030438A1
WO2023030438A1 PCT/CN2022/116477 CN2022116477W WO2023030438A1 WO 2023030438 A1 WO2023030438 A1 WO 2023030438A1 CN 2022116477 W CN2022116477 W CN 2022116477W WO 2023030438 A1 WO2023030438 A1 WO 2023030438A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
sending
parameter
parameters
power
Prior art date
Application number
PCT/CN2022/116477
Other languages
English (en)
French (fr)
Inventor
袁璞
姜大洁
刘劲
史斯豪
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22863573.6A priority Critical patent/EP4401348A1/en
Publication of WO2023030438A1 publication Critical patent/WO2023030438A1/zh
Priority to US18/595,941 priority patent/US20240214145A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a pilot sending and receiving method and device.
  • Orthogonal Time Frequency Space (OTFS) modulation can logically map information in a data packet with a size of M ⁇ N, such as Quadrature Amplitude Modulation (QAM) symbols, to a two-dimensional In one M ⁇ N grid point on the delayed Doppler plane, that is, the pulse in each grid point modulates one QAM symbol in the data packet.
  • M ⁇ N such as Quadrature Amplitude Modulation (QAM) symbols
  • the transmitter maps the pilot frequency to the delayed Doppler domain
  • the receiver can estimate the channel response in the delayed Doppler domain by analyzing the delayed Doppler image of the pilot frequency, and then obtain the time-frequency
  • the channel response expression of the domain is convenient for signal analysis and processing.
  • the transmitted signal consists of the following three parts: a single-point pilot located at the center of the M ⁇ N grid point; a guard interval (with a size of 5 ⁇ 5-1) surrounding the pilot; a guard interval Four weeks of data.
  • a single-point pilot located at the center of the M ⁇ N grid point
  • a guard interval with a size of 5 ⁇ 5-1) surrounding the pilot
  • a guard interval Four weeks of data.
  • the receiving end there are two offset peaks in the guard interval of the delayed Doppler domain grid points (the grid points filled with oblique lines in Figure 1), which means that there are two peaks in the channel besides the main path.
  • Secondary paths with different delay Dopplers By measuring the amplitude, time delay and Doppler of all the secondary paths, the channel delay Doppler domain expression can be obtained.
  • Figure 1 corresponds to a single-port scenario, that is, only one set of reference signals needs to be sent. When multiple antenna ports exist, there are usually multiple pilots mapped in the delay-Doppler plane
  • the transmitting end Before sending the pilot, the transmitting end usually needs to determine the transmission parameters of the pilot, for example, determine the guard interval of the pilot, etc.
  • the transmission parameters of the pilot are only determined according to the channel delay and Doppler, Pilot detection performance cannot be guaranteed.
  • the embodiments of the present application provide a pilot sending and receiving method and device, which can solve the problem in the related art that the pilot sending parameters are only determined according to the channel delay and Doppler, but the detection performance of the pilot cannot be guaranteed.
  • a pilot transmission method including: the transmitting end determines the transmission parameters of the pilot; wherein, the transmission parameters include at least one of the following: transmission power, guard interval, and the transmission parameters are based on the first determined by a parameter, the first parameter includes delay, Doppler and channel quality; the sending end sends the pilot according to the sending parameter.
  • a pilot receiving method including: the receiving end receives the pilot, the pilot is sent by the sending end according to the sending parameters, and the sending parameters include at least one of the following: sending power, guard interval , the sending parameter is determined according to a first parameter, where the first parameter includes delay, Doppler, and channel quality.
  • a device for sending a pilot including: a determining module, configured to determine a sending parameter of a pilot; wherein, the sending parameter includes at least one of the following: sending power, a guard interval, and the sending parameter It is determined according to the first parameter, and the first parameter includes time delay, Doppler and channel quality; a sending module is configured to send the pilot according to the sending parameter.
  • a device for receiving a pilot including: a receiving module, configured to receive a pilot, the pilot is sent by a sending end according to a sending parameter, and the sending parameter includes at least one of the following: sending power , a guard interval, the sending parameter is determined according to a first parameter, and the first parameter includes delay, Doppler, and channel quality.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor Realize the method as described in the first aspect or the second aspect.
  • a terminal including a processor and a communication interface, wherein the processor is used to determine a transmission parameter of a pilot; wherein the transmission parameter includes at least one of the following: transmission power, guard interval, the The sending parameter is determined according to the first parameter, and the first parameter includes delay, Doppler and channel quality; the communication interface is used to send the pilot according to the sending parameter; or, the communication interface For receiving pilots, the pilots are sent by the sending end according to sending parameters, and the sending parameters include at least one of the following: sending power, guard interval, the sending parameters are determined according to the first parameter, and the second One parameter includes delay, Doppler and channel quality.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the The processor realizes the method described in the first aspect or the second aspect when executing.
  • a network side device including a processor and a communication interface, wherein the processor is used to determine the transmission parameters of the pilot; wherein the transmission parameters include at least one of the following: transmission power, guard interval , the sending parameter is determined according to a first parameter, and the first parameter includes delay, Doppler, and channel quality; the communication interface is used to send the pilot according to the sending parameter; or, the The communication interface is used to receive the pilot, the pilot is sent by the sending end according to the sending parameters, the sending parameters include at least one of the following: sending power, guard interval, the sending parameters are determined according to the first parameter, the The first parameter includes time delay, Doppler and channel quality.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the method as described in the first aspect or the second aspect is implemented.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect or the second aspect the method described.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the program/program product is executed by at least one processor to implement the first aspect or the second method described in the aspect.
  • the transmitting end determines the transmission parameters of the pilot, the transmission parameters include transmission power and/or guard interval, and the transmission parameters are jointly determined according to delay, Doppler and channel quality
  • the embodiment of the present application Considering the small-scale parameters (delay, Doppler) and large-scale parameters (channel quality) of the channel comprehensively to determine the pilot transmission parameters will help ensure the detection performance of the pilot under various channel conditions and improve the communication quality.
  • FIG. 1 is a schematic diagram of a pilot mapping manner in the prior art
  • FIG. 2 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a pilot sending method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a pilot receiving method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a pilot sending device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a pilot receiving device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects before and after are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions. These technologies can also be applied to applications other than NR system applications, such as the 6th Generation (6 th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • Fig. 2 shows a schematic diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture etc.) and other terminal-side devices, wearable devices include: smart watches, smart bracelets, smart
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Next Generation Node B (gNB), Home Node B, Home Evolved Node B, WLAN Access point, WiFi node, Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that, In the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the embodiment of the present application may follow the general principle of pilot power enhancement, that is, use the remaining power on blank resource elements (ie guard interval) as pilot power enhancement. Therefore, when the transmitter needs to enhance the power of the pilot, it can increase the number of blank resource elements (that is, increase the guard interval of the pilot) to obtain more remaining power for the pilot; or, by borrowing from the data area power to boost the power of the pilot.
  • pilot power enhancement uses the remaining power on blank resource elements (ie guard interval) as pilot power enhancement. Therefore, when the transmitter needs to enhance the power of the pilot, it can increase the number of blank resource elements (that is, increase the guard interval of the pilot) to obtain more remaining power for the pilot; or, by borrowing from the data area power to boost the power of the pilot.
  • the determination of the guard interval is only related to two small-scale parameters of the channel, ie delay and Doppler.
  • the channel quality of the received signal (such as the average signal-to-noise ratio (SNR) within a certain period of time, such as within several wireless frames) will also be affected by large-scale parameters. Therefore, determining the guard interval only according to time delay and Doppler cannot guarantee the best performance of pilot frequency detection.
  • SNR signal-to-noise ratio
  • the embodiment of the present application comprehensively considers the small-scale parameters and large-scale parameters of the channel to determine the transmission parameters of the pilot, such as transmission power and guard interval, so as to ensure the detection performance of the pilot under various channel conditions.
  • the embodiment of the present application further designs a hierarchical/layer pilot protection interval adjustment method, and adjusts the corresponding signaling cycle according to the change rule of the parameter, thereby reducing the feedback overhead as much as possible.
  • pilot/time slot in the embodiment of the present application may be the same concept, which means the minimum time-frequency resource unit of a transmission block (Transmit Block, TB) carrying a complete coded signal.
  • the embodiment of the present application provides a pilot transmission method 300, which can be executed by the sending end, in other words, the method can be executed by software or hardware installed on the sending end, and the sending end can be a terminal Or a network side device, the method includes the following steps.
  • the sending end determines the sending parameters of the pilot; wherein, the sending parameters include at least one of the following: sending power, guard interval, and the sending parameters are determined according to a first parameter, and the first parameter includes a delay ( delay, or called delay), Doppler and channel quality.
  • the sending parameters include at least one of the following: sending power, guard interval, and the sending parameters are determined according to a first parameter, and the first parameter includes a delay ( delay, or called delay), Doppler and channel quality.
  • the parameters mentioned in various embodiments of the present application may include specific parameter values.
  • the channel quality can be Signal Noise Ratio (SNR), Signal to Interference plus Noise Ratio (SINR), Channel Quality Indicator (CQI), etc., or the channel quality can be obtained by error
  • SNR Signal Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • CQI Channel Quality Indicator
  • the code rate, etc. are obtained, and the subsequent embodiments use the signal-to-noise ratio as an example to illustrate the channel quality, and other parameters can also be implemented in a similar manner.
  • the sending end may be a network-side device, and the receiving end may be a terminal; or, the sending end may be a terminal, and the receiving end may be a network-side device or other terminals.
  • the sending end can determine the sending parameter of the pilot according to the indication information from the receiving end, and the indication information can be used to directly indicate the sending parameter of the pilot, or, the indication information indicates that it is related to the sending parameter of the pilot parameters, and the sending end determines the sending parameters of the pilot according to the related parameters.
  • the sending end determines the transmission parameters of the pilot, for example, includes: the sending end determines the guard interval of the pilot; or, the sending end determines the transmission power of the pilot, and determines the guard interval of the pilot according to the determined transmission power; or , the sender determines the transmit power of the pilot.
  • S304 The sending end sends the pilot according to the sending parameter.
  • the sending end can map the pilot on the delay-Doppler domain and send it to the receiving end.
  • the sending end can also indicate the sending parameters of the pilot to the receiving end, so that the receiving end can demodulate the data.
  • the sending end is a network-side device and the receiving end is a terminal
  • the network-side device can use Downlink Control Information (DCI) or Radio Resource Control (RRC) signaling to determine the The sending parameters are indicated to the terminal so that the terminal can demodulate the data.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the transmission end determines the transmission parameters of the pilot, the transmission parameters include transmission power and/or guard interval, and the transmission parameters are jointly determined according to delay, Doppler and channel quality , the embodiment of the present application comprehensively considers the small-scale (time delay, Doppler) and large-scale parameters (channel quality) of the channel to determine the pilot transmission parameters, which is conducive to ensuring the detection performance of the pilot under various channel conditions and improving communication quality.
  • the first parameter includes the channel quality
  • the sending end determining the sending parameter of the pilot includes: the sending end performs at least one of the following according to the indication information: increasing the sending power of the pilot, Increase the guard interval of the pilot; wherein, the indication information is sent by the receiving end when the measured channel quality is greater than the first threshold; or the indication information is that the second parameter measured by the receiving end is greater than or It is sent when the second parameter is equal to the second threshold, and the second parameter is related to the channel quality.
  • the second parameter may be a bit error rate
  • the second threshold may be a threshold related to the bit error rate.
  • the indication information may include the power magnification of the pilot, so that the sending end can determine the transmission parameters of the pilot according to the power magnification, for example, the sending end increases the pilot according to the power magnification For example, the transmitting end increases the guard interval of the pilot according to the power amplification factor.
  • the transmitting end can increase the transmission power of the pilot by increasing the guard interval of the pilot, or increase the transmission power of the pilot by reducing the transmission power of the data.
  • This process can be referred to as borrowing power from the pilot to the data, wherein the increase in the transmit power of the pilot is equal to the decrease in the transmit power of the data, and the data and the pilot are mapped in on the same delayed Doppler domain.
  • the first threshold is determined according to the following formula:
  • ⁇ l is the first threshold
  • K is a constant related to the pilot detection threshold, usually used at the receiving end;
  • E() represents the mathematical expectation, which can be approximately determined by the average value
  • L is the number of delay paths
  • l is the index of the delay path
  • h l is the channel gain of the lth delay path
  • c is the transmit power multiple of the pilot.
  • the foregoing first threshold may be determined by the receiving end according to the foregoing formula.
  • the sending end determining the sending parameters of the pilot may include: the sending end determining the sending parameters of the pilot according to the first sending cycle, the length of the first sending cycle is longer than the length of the second sending cycle.
  • the length of the period, the second transmission period is the period for determining the transmission parameters of the pilot, for example, the second transmission period is that the transmitting end determines the pilot according to the delay and the Doppler.
  • the above-mentioned embodiments mainly introduce how to determine the transmission parameters of the pilot according to the channel quality (such as signal-to-noise ratio).
  • the following will introduce how to determine the transmission parameters of the pilot according to the delay and Doppler in several embodiments.
  • the first parameter includes the time delay and the Doppler, and before the sending end determines the sending parameters of the pilot, the method further includes the following steps:
  • the sending end sends the first pilot, and this process may be an initialization process
  • the sending end receives the maximum delay and the maximum Doppler, and the maximum delay and the maximum Doppler are determined by the receiving end according to the first pilot frequency;
  • the sending end determines the sending parameters of the second pilot according to the maximum delay and the maximum Doppler;
  • the sending end sends the second pilot according to the sending parameters of the second pilot
  • the sending end receives the time delay and the Doppler, and the time delay and the Doppler are determined by the receiving end according to the second pilot; or, the sending end receives A guard interval of the pilot, the guard interval is determined by the receiving end according to the second pilot.
  • the sending end can determine the transmission parameters of the pilot according to the time delay and the Doppler in S202; or, in the above 5) In the case where the sending end receives the guard interval of the pilot, in S202 the sending end can directly use the received guard interval as the guard interval of the sent pilot.
  • the sending end determining the sending parameters of the pilot includes: the sending end determining the sending parameters of the pilot according to the second sending cycle, the length of the second sending cycle is greater than a time length T, and the time length T It may be the length of one slot/subframe, so as to minimize the overhead of feedback signaling.
  • the sending end determines the sending parameters of the pilot according to the second sending cycle.
  • the sending end receives the third parameter within the second sending cycle
  • the third parameter determines the sending parameter of the pilot; wherein, the third parameter is sent by the receiving end when the second parameter is greater than or equal to the second threshold, and the third parameter may be a guard interval.
  • the second parameter is related to the channel quality.
  • the second parameter may be a bit error rate
  • the second threshold may be a threshold related to the bit error rate.
  • This embodiment can break the original second sending cycle. For example, in a feedback cycle (second sending cycle), if the bit error rate ⁇ _threshold of a certain subframe k or g consecutive subframes starting from k, then The receiving end will immediately feed back the new guard interval and indicate it to the sending end, so that the sending end can adjust the pilot guard interval immediately.
  • the starting position of the periodic feedback starts from the adjusted subframe, that is, from k+1 or k+g Recalculate at +1 subframe.
  • the sending end determining the sending parameter of the pilot includes: the sending end increasing the sending power of the pilot; or the sending end reducing the sending power of the pilot .
  • the increase value of the transmit power of the pilot is equal to the decrease value of the transmit power of the data
  • the data and the pilot The frequencies are mapped on the same delay-Doppler domain, that is, the pilots borrow power from the data.
  • This example may further include the following step: the sending end indicates the sending power of the data to the receiving end, so that the receiving end demodulates the data.
  • the sending end determining the sending parameters of the pilot includes: the sending end determining the sending power of the pilot according to a power scaling factor; wherein, the power scaling factor is the receiving end scaling from a plurality of default powers coefficients chosen to reduce feedback overhead.
  • the transmitting end determines the transmit power of the pilot according to the power scaling factor includes: when the power scaling factor is greater than 1, the transmitting end increases the pilot power according to one of the following Send power:
  • the determining, by the sending end, of the pilot transmission power according to the power scaling factor includes: if the power scaling factor is less than 1, the sending end reduces the pilot transmission power.
  • This example may also include the following steps: the transmitting end increases the transmission power of the data, the decrease value of the transmission power of the pilot is equal to the increase value of the transmission power of the data, and the data and the pilot mapped on the same delay-Doppler domain.
  • pilot sending method has been described in detail above with reference to FIG. 3 .
  • a pilot receiving method according to another embodiment of the present application will be described in detail below with reference to FIG. 4 . It can be understood that the interaction between the receiving end and the sending end described from the receiving end is the same as the description on the sending end side in the method shown in FIG. 3 , and related descriptions are appropriately omitted to avoid repetition.
  • Fig. 4 is a schematic diagram of the implementation flow of the pilot receiving method according to the embodiment of the present application, which can be applied at the receiving end. As shown in FIG. 4 , the method 400 includes the following steps.
  • the receiving end receives the pilot, the pilot is sent by the sending end according to the sending parameters, the sending parameters include at least one of the following: sending power, guard interval, the sending parameters are determined according to the first parameter, the The first parameter includes time delay, Doppler and channel quality.
  • the receiving end receives the pilot, which is sent by the sending end according to the transmission parameters, the transmission parameters include transmission power and/or guard interval, and the transmission parameters are based on delay, Doppler and channel If the quality is jointly determined, the embodiment of the present application comprehensively considers the small-scale parameters of the channel (time delay, Doppler) and the large-scale parameters (channel quality) to determine the pilot transmission parameters, which is beneficial to ensure that the pilot can be transmitted under various channel conditions. detection performance and improve communication quality.
  • the first parameter includes the channel quality
  • the method further includes: when the measured channel quality at the receiving end is greater than a first threshold or, the receiving end sends the indication information when the measured second parameter is greater than or equal to a second threshold, and the second parameter is related to the channel quality; wherein the indication information is used for The sending end performs at least one of the following: increasing the sending power of the pilot, and increasing the guard interval of the pilot.
  • the indication information includes a power amplification factor of the pilot.
  • the method further includes: the receiving end determines the first threshold according to the following formula:
  • ⁇ l is the first threshold
  • K is a constant related to the pilot detection threshold
  • L is the number of delay paths
  • l is the index of the delay path
  • h l is the channel gain of the lth delay path
  • c is the transmit power multiple of the pilot.
  • the sending end is configured to determine the sending parameters of the pilot according to the first sending cycle, the length of the first sending cycle is greater than the length of the second sending cycle, and the second sending The cycle is a cycle for the sending end to determine the sending parameters of the pilot according to the time delay and the Doppler.
  • the first parameter includes the delay and the Doppler
  • the method further includes: the receiving end receiving the first pilot ;
  • the receiving end sends the maximum delay and the maximum Doppler, the maximum delay and the maximum Doppler are determined by the receiving end according to the first pilot frequency, and the maximum delay and the maximum Doppler are determined by the maximum delay and the maximum Doppler determining the sending parameters of the second pilot at the sending end; receiving the second pilot at the receiving end, the second pilot is sent by the sending end according to the sending parameters of the second pilot;
  • the receiving end sends the time delay and the Doppler, and the time delay and the Doppler are determined by the receiving end according to the second pilot; or, the receiving end sends the A pilot guard interval, where the guard interval is determined by the receiving end according to the second pilot.
  • the sending end is configured to determine the sending parameter of the pilot according to a second sending cycle, where the length of the second sending cycle is greater than the duration T.
  • the method further includes: the receiving end sends a third parameter when the second parameter is greater than or equal to a second threshold, and the second parameter is related to the channel quality; wherein , if the sending end receives a third parameter within the second sending period, the sending end is further configured to determine a sending parameter of the pilot according to the third parameter.
  • the sending end is configured to increase the sending power of the pilot, or decrease the sending power of the pilot.
  • the increase value of the transmit power of the pilot is equal to the decrease value of the transmit power of the data, and the data and the pilot are mapped on the same delay-Doppler domain.
  • the method further includes: the receiving end receives the transmission power of the data; and the receiving end demodulates the data according to the data transmission power.
  • the method further includes: the receiving end selects a power scaling coefficient from a plurality of default power scaling coefficients; wherein the power scaling coefficient is used by the transmitting end to determine the derived Frequency transmit power.
  • Embodiment 1 provides a process in which the transmitting end dynamically adjusts the second-level pilot transmission mode based on the feedback from the receiving end.
  • This embodiment can be divided into two levels, namely the first level (Tier 1) and the second level (Tier 1) Tier 2) to perform.
  • the transmitting end can obtain prior information of channel state information (Channel State Information, CSI).
  • CSI Channel State Information
  • the transmitter can send an initial pilot subframe (corresponding to the first pilot in the previous embodiment), assuming that the number is 0, and the number of samples in the initial pilot frame is small (that is, the MN is small , the MN can be the size of a delay-Doppler domain grid point) to save overhead, and does not contain data, so as to ensure sufficient guard intervals for roughly estimating the maximum delay ⁇ max and maximum Doppler ⁇ max of the channel.
  • the sending end sends the pilot in the next subframe, that is, the subframe numbered 1 (corresponding to the second pilot in the previous embodiment), and the guard interval of the pilot can be determined by Sure. After the receiver receives subframe 1, it measures the delay and Doppler will measure the feedback to the sender.
  • the area S( ⁇ , ⁇ ) of the guard interval is determined according to the following formula:
  • the pilot guard interval width of subframe 1 quantized according to the delayed Doppler resource grid resolution is The receiving end uses the pilot measurement results of subframe 1 to calculate the updated pilot guard interval width and direct feedback or instead of Since the former is an integer and the latter is a floating point number, a part of feedback overhead can be saved.
  • the sending end does not need to perform subframe-level feedback and (l ⁇ ,k ⁇ ) update, but can follow the first cycle T 1 (corresponding to the second sending in the previous embodiment cycle) for feedback.
  • the bit error rate ⁇ can be introduced as the basis for judging whether it is necessary to break the cycle and provide immediate feedback.
  • the receiving end will immediately give feedback to let the sending end
  • the pilot guard interval is adjusted immediately, and the starting position of periodic feedback is recalculated from the adjusted subframe, that is, from (k+1) or (k+g+1) subframes.
  • the SNR-based pilot transmission mode adjustment can also be performed with T 2 as the second period.
  • the receiving end estimates the average SNR of the received signal by using the received signal samples of the current second period, which is denoted as ⁇ . in,
  • the receiving end can directly quantify the new value c new from the above relationship and indicate it to the sending end:
  • the sending end can adjust a set of pilot guard interval values (l ⁇ , k ⁇ ) correspondingly so that its range is larger than c new .
  • each pilot guard interval (l ⁇ , k ⁇ ) after each pilot guard interval (l ⁇ , k ⁇ ) is determined, it needs to be indicated by the transmitting end to the receiving end in DCI or RRC signaling.
  • the structure of the second embodiment is similar to that of the first embodiment.
  • the similarity is that a two-level structure is still adopted.
  • the pilot transmission power and the pilot guard interval are decoupled, that is, the pilot transmission power multiple c ⁇ (2l ⁇ +1)(4k ⁇ +1), (2l ⁇ +1)(4k ⁇ +1) is the size of the pilot guard interval. Therefore, in this embodiment, the pilot guard interval is determined by Tier 1 small-scale parameter estimation; and the pilot transmission power is determined by Tier 2 large-scale parameter estimation.
  • This embodiment can be implemented in two stages, ie, the first stage (Tier 1) and the second stage (Tier 2).
  • Tier 1 For Tier 1, refer to Example 1, which is omitted here to avoid repetition.
  • the transmitting end may indicate to the receiving end in DCI or RRC signaling.
  • the receiving end uses the received signal samples of the current period to estimate the average SNR of the received signal using the existing technology, denoted as ⁇ , where,
  • K is a known constant
  • L and the corresponding h l are given by the pilot channel estimation result, and then the specific value can be calculated by using the c indicated by the sending end.
  • the necessary and sufficient condition for the average SNR of the current received signal to meet the requirements is that, for the currently detected L diameters, All satisfy ⁇ l ⁇ ⁇ .
  • the sending end can adjust the pilot transmission power accordingly to c'p 0 , c' ⁇ c new .
  • the structure of the third embodiment is similar to that of the second embodiment. The difference is that in the pilot transmission mode in the second embodiment, the receiver can indicate the guard interval (l ⁇ , k ⁇ ) of the pilot and the transmission power multiple c of the pilot. In the third implementation, the receiving end may only indicate the guard interval (l ⁇ , k ⁇ ) of the pilot without indicating the transmit power multiple c of the pilot.
  • This embodiment can be divided into two levels, namely the first level (Tier 1) and the second level (Tier 2) to implement.
  • Tier 1 For Tier 1, refer to Example 1, which is omitted here to avoid repetition.
  • T 2 the second period (corresponding to the first transmission period of the previous embodiment) to perform SNR-based pilot transmission power adjustment.
  • the sending end When the sending end receives the pilot power adjustment instruction, it adjusts c according to the step size preset in the protocol.
  • Embodiment 4 simplifies the process of dynamic adjustment of the pilot transmission mode. Compared with Embodiment 1, the process is changed from two stages to one stage.
  • the transmitting end can obtain prior information of the CSI.
  • the transmitter can send an initial pilot subframe (corresponding to the first pilot in the previous embodiment), assuming that the number is 0, and the number of samples in the initial pilot frame is small (that is, the MN is small ) is used to save overhead and does not contain data, so as to ensure sufficient guard intervals for roughly estimating the maximum delay ⁇ max and the maximum Doppler ⁇ max of the channel.
  • the sending end sends the pilot in the next subframe, that is, the subframe numbered 1 (corresponding to the second pilot in the previous embodiment), and the guard interval of the pilot can be determined by Sure. After the receiver receives subframe 1, it is obtained by measurement will measure the feedback to the sender.
  • the area S( ⁇ , ⁇ ) of the guard interval is determined according to the following formula:
  • the pilot guard interval width of subframe 1 quantized according to the delayed Doppler resource grid resolution is The receiving end uses the pilot measurement results of subframe 1 to calculate the updated pilot guard interval width and direct feedback or instead of Since the former is an integer and the latter is a floating point number, a part of feedback overhead can be saved.
  • the sending end does not need to perform subframe-level feedback and (l ⁇ ,k ⁇ ) update, but can follow the first cycle T 1 (corresponding to the second sending in the previous embodiment cycle) for feedback.
  • This embodiment can be a supplementary solution, and can be combined with any one of the above four embodiments.
  • the process at this time can be: the network side device estimates the channel characteristics obtained by the terminal ( ⁇ max and ⁇ max ), determine the guard interval; keep the guard interval unchanged, if the power borrowed by the guard interval still does not meet the pilot power requirement, borrow power from the data area.
  • the size (absolute value or relative value) of the power in the data area needs to be notified to the receiving end to assist in demodulating the data.
  • the receiving end also feeds back a power scaling factor:
  • the value of f can be ⁇ 0.8, 1, 1.2, 1.4 ⁇ or ⁇ 1, 1.5, 2, 4 ⁇ .
  • the network side device can choose to keep the guard interval reported by the receiving end unchanged, and borrow power from the data (f>1); or increase the guard interval and not borrow power from the data (f>1); Alternatively, relatively increase the power of the data (f ⁇ 1). Either way, the receiving end can be notified of the new guard interval or the size of the data lending power.
  • the pilot sending and receiving method provided in the embodiment of the present application may be executed by a pilot sending and receiving device, or the pilot sending and receiving device is used to perform the pilot sending , The control module of the receiving method.
  • the method for sending and receiving the pilot performed by the device for sending and receiving the pilot is taken as an example to describe the device for sending and receiving the pilot provided in the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an apparatus for sending pilots according to an embodiment of the present application, and the apparatus may correspond to the sending end in other embodiments.
  • the device 500 includes the following modules.
  • the determination module 502 may be configured to determine transmission parameters of the pilot; wherein the transmission parameters include at least one of the following: transmission power, guard interval, the transmission parameters are determined according to a first parameter, and the first parameter includes Latency, Doppler, and channel quality.
  • the sending module 504 may be configured to send the pilot according to the sending parameter.
  • the device 500 determines the transmission parameters of the pilot, the transmission parameters include transmission power and/or guard interval, and the transmission parameters are jointly determined according to delay, Doppler and channel quality.
  • the transmission parameters include transmission power and/or guard interval
  • the transmission parameters are jointly determined according to delay, Doppler and channel quality.
  • the first parameter includes the channel quality
  • the determining module 502 may be configured to perform at least one of the following according to the indication information: increase the transmit power of the pilot, increase the Pilot guard interval; wherein, the indication information is sent by the receiving end when the measured channel quality is greater than the first threshold; or, the indication information is that the second parameter measured by the receiving end is greater than or equal to the second The second parameter is related to the channel quality.
  • the indication information includes a power amplification factor of the pilot.
  • the first threshold is determined according to the following formula:
  • ⁇ l is the first threshold
  • K is a constant related to the pilot detection threshold
  • L is the number of delay paths
  • l is the index of the delay path
  • h l is the channel gain of the lth delay path
  • c is the transmit power multiple of the pilot.
  • the determination module 502 may be configured to determine the transmission parameters of the pilot according to the first transmission cycle, the length of the first transmission cycle is greater than the length of the second transmission cycle, and the second The transmission cycle is a cycle for determining the transmission parameters of the pilot.
  • the first parameter includes the time delay and the Doppler
  • the sending module 504 can be used to send the first pilot
  • the device also includes a receiving module that can be used to Receiving the maximum delay and the maximum Doppler, the maximum delay and the maximum Doppler are determined by the receiving end according to the first pilot
  • the determination module 502 can be used to Determine the sending parameters of the second pilot
  • the sending module 504 can be used to send the second pilot according to the sending parameters of the second pilot
  • the receiving module can be used to receive the time delay and the Doppler Le, the delay and the Doppler are determined by the receiving end according to the second pilot
  • the receiving module can be used to receive the guard interval of the pilot, the guard interval is the determined by the receiving end according to the second pilot.
  • the determining module 502 may be configured to determine the sending parameter of the pilot according to the second sending cycle, where the length of the second sending cycle is greater than the duration T.
  • the determining module 502 may be configured to: if the device receives a third parameter in the second sending period, determine the sending parameter of the pilot according to the third parameter ; Wherein, the third parameter is sent by the receiving end when the second parameter is greater than or equal to a second threshold, and the second parameter is related to the channel quality.
  • the determining module 502 may be configured to increase the transmission power of the pilot; or decrease the transmission power of the pilot.
  • the increase value of the transmit power of the pilot is equal to the decrease value of the transmit power of the data, and the data and the pilot frequency mapping on the same delay-Doppler domain.
  • the sending module 504 may be configured to indicate the sending power of the data to the receiving end, so that the receiving end demodulates the data.
  • the determination module 502 may be configured to: determine the transmit power of the pilot according to the power scaling factor; wherein, the power scaling factor is selected by the receiving end from multiple default power scaling factors of.
  • the determining module 502 may be configured to: when the power scaling factor is greater than 1, increase the transmit power of the pilot according to one of the following: 1) increase the pilot 2) reduce the transmission power of data, and the data and the pilot are mapped on the same delay Doppler domain.
  • the determining module 502 may be configured to: reduce the transmission power of the pilot when the power scaling factor is less than 1.
  • the determining module 502 may be configured to: increase the transmission power of data, the decrease value of the transmission power of the pilot is equal to the increase value of the transmission power of the data, the data and the pilot are mapped on the same delay-Doppler domain.
  • the sending module 504 may be configured to: indicate the sending parameters of the pilot to the receiving end.
  • the device 500 according to the embodiment of the present application can refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module in the device 500 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 200, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • the pilot sending and receiving device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the pilot sending and receiving device provided by the embodiment of the present application can implement the various processes realized by the method embodiments in Fig. 2 to Fig. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • Fig. 6 is a schematic structural diagram of a pilot receiving device according to an embodiment of the present application, and the device may correspond to a receiving end in other embodiments. As shown in FIG. 6 , the device 600 includes the following modules.
  • the receiving module 602 may be configured to receive a pilot, the pilot is sent by the sending end according to the sending parameters, the sending parameters include at least one of the following: sending power, guard interval, the sending parameters are determined according to the first parameter Yes, the first parameter includes delay, Doppler and channel quality.
  • the device 600 receives the pilot, which is sent by the sending end according to the transmission parameters, the transmission parameters include transmission power and/or guard interval, and the transmission parameters are based on delay, Doppler and channel If the quality is jointly determined, the embodiment of the present application comprehensively considers the small-scale (time delay, Doppler) and large-scale parameters (channel quality) of the channel to determine the pilot transmission parameters, which is beneficial to ensure the transmission of the pilot under various channel conditions. Detection performance, improve communication quality.
  • the first parameter includes the channel quality
  • the device further includes a receiving module, configured to send indication information when the measured channel quality is greater than a first threshold; or, when measuring When the second parameter is greater than or equal to the second threshold, the second parameter is related to the channel quality; wherein the indication information is used for the sending end to perform at least one of the following: increase the increasing the transmit power of the pilot and increasing the guard interval of the pilot.
  • the indication information includes a power amplification factor of the pilot.
  • the device further includes a determination module, configured to determine the first threshold according to the following formula:
  • ⁇ l is the first threshold
  • K is a constant related to the pilot detection threshold
  • L is the number of delay paths
  • l is the index of the delay path
  • h l is the channel gain of the lth delay path
  • c is the transmit power multiple of the pilot.
  • the sending end is configured to determine the sending parameters of the pilot according to the first sending cycle, the length of the first sending cycle is greater than the length of the second sending cycle, and the second sending The cycle is a cycle for the sending end to determine the sending parameters of the pilot according to the time delay and the Doppler.
  • the first parameter includes the time delay and the Doppler
  • the receiving module 602 may be configured to receive a first pilot
  • the device further includes a sending module, configured to send a maximum delay and a maximum Doppler, the maximum delay and the maximum Doppler are determined by the device according to the first pilot, the maximum delay and the maximum Doppler is used by the sending end to determine the sending parameters of the second pilot;
  • the receiving module 602 can be used to receive the second pilot, the second pilot is the sending end according to the second pilot sent by sending parameters of frequency;
  • the sending module is configured to send the time delay and the Doppler, the time delay and the Doppler are determined by the device according to the second pilot;
  • the sending module is configured to send a guard interval of the pilot, where the guard interval is determined by the device according to the second pilot.
  • the sending end is configured to determine the sending parameter of the pilot according to a second sending cycle, where the length of the second sending cycle is greater than the duration T.
  • the apparatus further includes a sending module, configured to send a third parameter when the second parameter is greater than or equal to a second threshold, where the second parameter is related to the channel quality; wherein , if the sending end receives the third parameter within the second sending period, the sending end is further configured to determine a sending parameter of the pilot according to the third parameter.
  • a sending module configured to send a third parameter when the second parameter is greater than or equal to a second threshold, where the second parameter is related to the channel quality; wherein , if the sending end receives the third parameter within the second sending period, the sending end is further configured to determine a sending parameter of the pilot according to the third parameter.
  • the sending end is configured to increase the sending power of the pilot, or decrease the sending power of the pilot.
  • the increase value of the transmit power of the pilot is equal to the decrease value of the transmit power of the data, and the data and the pilot are mapped on the same delay-Doppler domain.
  • the receiving module 602 may be configured to receive the sending power of the data; and demodulate the data according to the sending power of the data.
  • the device further includes a selection module, which can be used to select a power scaling coefficient from a plurality of default power scaling coefficients; wherein, the power scaling coefficient is used by the transmitting end to determine the The transmit power of the pilot.
  • a selection module which can be used to select a power scaling coefficient from a plurality of default power scaling coefficients; wherein, the power scaling coefficient is used by the transmitting end to determine the The transmit power of the pilot.
  • the device 600 according to the embodiment of the present application can refer to the process of the method 300 corresponding to the embodiment of the present application, and each unit/module in the device 600 and the above-mentioned other operations and/or functions are respectively in order to realize the corresponding process in the method 300, And can achieve the same or equivalent technical effect, for the sake of brevity, no more details are given here.
  • the embodiment of the present application further provides a communication device 700, including a processor 701, a memory 702, and programs or instructions stored in the memory 702 and operable on the processor 701,
  • a communication device 700 including a processor 701, a memory 702, and programs or instructions stored in the memory 702 and operable on the processor 701
  • the communication device 700 is a terminal
  • the program or instruction is executed by the processor 701
  • each process of the above-mentioned pilot sending and receiving method embodiments can be realized, and the same technical effect can be achieved.
  • the communication device 700 is a network-side device
  • the program or instruction is executed by the processor 701
  • the various processes of the above-mentioned pilot sending and receiving method embodiments can be achieved, and the same technical effect can be achieved. To avoid repetition, it is not repeated here repeat.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to determine the transmission parameters of the pilot; wherein the transmission parameters include at least one of the following: transmission power, guard interval, the transmission The parameter is determined according to the first parameter, and the first parameter includes delay, Doppler, and channel quality; the communication interface is used to send the pilot according to the sending parameter; or, the communication interface is used to Receive the pilot, the pilot is sent by the transmitting end according to the transmission parameters, the transmission parameters include at least one of the following: transmission power, guard interval, the transmission parameters are determined according to the first parameter, the first parameter Including delay, Doppler and channel quality.
  • the transmission parameters include at least one of the following: transmission power, guard interval, the transmission parameters are determined according to the first parameter, the first parameter Including delay, Doppler and channel quality.
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, and a processor 810, etc. at least some of the components.
  • the terminal 800 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 810 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042, and the graphics processor 8041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 801 receives the downlink data from the network side device, and processes it to the processor 810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 809 can be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a non-transitory memory, wherein the non-transitory memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 810 .
  • the processor 810 can be used to determine the transmission parameters of the pilot; wherein the transmission parameters include at least one of the following: transmission power, guard interval, the transmission parameters are determined according to the first parameter, the first The parameters include time delay, Doppler and channel quality; the radio frequency unit 801 can be configured to send the pilot according to the sending parameters.
  • the radio frequency unit 801 may be configured to receive pilots, the pilots are sent by the sending end according to sending parameters, and the sending parameters include at least one of the following: sending power, guard interval, and the sending parameters are based on the first The parameters are determined, and the first parameter includes delay, Doppler, and channel quality.
  • the transmission parameters of the pilot include transmission power and/or guard interval, and the transmission parameters are jointly determined according to delay, Doppler and channel quality, and the embodiment of the present application comprehensively considers the small scale of the channel ( Delay, Doppler) and large-scale parameters (channel quality) to determine pilot transmission parameters, which is conducive to ensuring the detection performance of pilots under various channel conditions and improving communication quality.
  • the terminal 800 provided in the embodiment of the present application can also implement the various processes of the above-mentioned pilot sending and receiving method embodiments, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to determine the transmission parameters of the pilot; wherein the transmission parameters include at least one of the following: transmission power, guard interval, the The sending parameter is determined according to the first parameter, and the first parameter includes delay, Doppler and channel quality; the communication interface is used to send the pilot according to the sending parameter; or, the communication interface For receiving pilots, the pilots are sent by the sending end according to sending parameters, and the sending parameters include at least one of the following: sending power, guard interval, the sending parameters are determined according to the first parameter, and the second One parameter includes delay, Doppler and channel quality.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 900 includes: an antenna 91 , a radio frequency device 92 , and a baseband device 93 .
  • the antenna 91 is connected to a radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
  • the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
  • the foregoing frequency band processing device may be located in the baseband device 93 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 93 , and the baseband device 93 includes a processor 94 and a memory 95 .
  • Baseband device 93 for example can comprise at least one baseband board, and this baseband board is provided with a plurality of chips, as shown in Figure 9, wherein one chip is for example processor 94, is connected with memory 95, to call the program in memory 95, execute The operation of the network side device shown in the above method embodiments.
  • the baseband device 93 may also include a network interface 96 for exchanging information with the radio frequency device 92, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present application further includes: instructions or programs stored in the memory 95 and executable on the processor 94, and the processor 94 invokes the instructions or programs in the memory 95 to perform the operations described in FIGS. 5 and 6 .
  • the methods executed by each module are shown to achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above-mentioned pilot sending and receiving method embodiment is realized, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor may be the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the above-mentioned transmission and reception of the pilot
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to realize the above-mentioned transmission and reception of the pilot
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a non-volatile memory, and the computer program product is executed by at least one processor to implement the above embodiment of the method for sending and receiving the pilot Each process, and can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the embodiment of the present application further provides a communication device, which is configured to execute the processes of the foregoing pilot sending and receiving method embodiments, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to enable a terminal (which may be a mobile phone, computer, server, air conditioner, or network-side device, etc.) to execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种导频的发送、接收方法和设备,导频的发送方法包括:发送端确定导频的发送参数;其中,发送参数包括如下至少之一:发送功率、保护间隔,发送参数是根据第一参数确定的,第一参数包括时延、多普勒以及信道质量;发送端根据发送参数发送导频。

Description

导频的发送、接收方法和设备
交叉引用
本发明要求在2021年09月06日提交中国专利局、申请号为202111039470.5、发明名称为“导频的发送、接收方法和设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种导频的发送、接收方法和设备。
背景技术
正交时频空域(Orthogonal Time Frequency Space,OTFS)调制可以把一个大小为M×N的数据包中的信息,例如正交振幅调制(Quadrature Amplitude Modulation,QAM)符号,在逻辑上映射到二维延迟多普勒平面上的一个M×N格点中,即每个格点内的脉冲调制了数据包中的一个QAM符号。
OTFS系统中,发射机将导频映射在延迟多普勒域上,接收机利用对导频的延迟多普勒图像分析,即可估计出延迟多普勒域的信道响应,进而可以得到时频域的信道响应表达式,方便进行信号分析和处理。
参见图1左半部分,发送信号由如下三部分组成:位于M×N格点的中心位置的单点导频;环绕在导频周围的(大小为5×5-1)保护间隔;保护间隔四周的数据。参见图1右半部分,在接收端,延迟多普勒域格点的保护间隔中出现了两个偏移峰(图1中斜线填充的格点),意味着信道除了主径外存在两个具有不同延迟多普勒的次要路径。通过对所有的次要路径的幅度,时延,多普勒进行测量,即可得到信道的延迟多普勒域表达式。需要说明的是,图1对应于单端口的场景,即只有一组参考信号需要发送,当多个天线端口存在时,通常有多个导频映射在延迟多普勒平面中。
发送端在发送导频之前,通常需要确定导频的发送参数,例如,确定导频的保护间隔等,然而,相关技术中仅按照信道的时延和多普勒来确定导频的发送参数,不能保证导频的检测性能。
发明内容
本申请实施例提供一种导频的发送、接收方法和设备,能够解决相关技术中仅按照信道的时延和多普勒来确定导频的发送参数,不能保证导频的检测性能的问题。
第一方面,提供了一种导频的发送方法,包括:发送端确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;所述发送端根据所述发送参数发送所述导频。
第二方面,提供了一种导频的接收方法,包括:接收端接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
第三方面,提供了一种导频的发送装置,包括:确定模块,用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;发送模块,用于根据所述发送参数发送所述导频。
第四方面,提供了一种导频的接收装置,包括:接收模块,用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;所述通信接口用于根据所述发送参数发送所述导频;或者,所述通信接口用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;所述通信接口用于根据所述发送参数发送所述导频;或者,所述通信接口用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的方法。
在本申请实施例中,发送端确定导频的发送参数,该发送参数包括发送功率和/或保护间隔,该发送参数是根据时延、多普勒以及信道质量共同确定的,本申请实施例综合考虑信道的小尺度参数(时延、多普勒)和大尺度参数(信道质量)来确定导频发送参数,有利于保证导频在各种信道条件下的检测性能,提高通信质量。
附图说明
图1是现有技术中导频的映射方式示意图;
图2是根据本申请实施例的无线通信系统的示意图;
图3是根据本申请实施例的导频的发送方法的示意性流程图;
图4是根据本申请实施例的导频的接收方法的示意性流程图;
图5是根据本申请实施例的导频的发送装置的结构示意图;
图6是根据本申请实施例的导频的接收装置的结构示意图;
图7是根据本申请实施例的通信设备的结构示意图;
图8是根据本申请实施例的终端的结构示意图;
图9是根据本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说 明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图2示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基 站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、下一代节点B(gNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的导频的发送、接收方法和设备进行详细地说明。
本申请实施例可以遵循导频功率增强的一般原则,即利用空白资源元素(即保护间隔)上的剩余功率用作导频的功率增强。因此,当发送端需要增强导频的功率时,可以增加空白资源元素的数量(即增大导频的保护间隔)来获取更多的剩余功率用在导频上;或者,通过从数据区借功率来增强导频的功率。
相关技术中,保护间隔的确定仅与信道的两个小尺度参数即时延和多普勒有关。而接收信号的信道质量(如一定内时间长度内,例如几个无线帧之内的平均信噪比SNR)还会受到大尺度参数的影响。因此,仅按照时延和多普勒来确定保护间隔并不能保证导频检测的性能最佳。
本申请实施例综合考虑信道的小尺度参数和大尺度参数来确定导频的发送参数,该发送参数例如包括发送功率和保护间隔,从而保证导频在各种信道条件下的检测性能。
同时,考虑到信道的大尺度参数和小尺度参数变化的快慢不同,例如,通常假设时延和多普勒在以每个子帧/时隙的尺度变化,而平均SNR可能是以数十个子帧/时隙的尺度变化,本申请实施例进一步设计了一种分级/层的导频保护间隔调整方式,按照参数的变化规律,调整相应信令的周期,从而尽量减少反馈开销。
需要说明的是,本申请实施例中的导频/时隙可以为同一概念,表示承载完整的编码后信号的传输块(Transmit Block,TB)的最小时频资源单位。
如图3所示,本申请实施例提供一种导频的发送方法300,该方法可以由发送端执行,换言之,该方法可以由安装在发送端的软件或硬件来执行,该发送端可以是终端或网络侧设备,该方法包括如下步骤。
S302:发送端确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延(delay,或称作是延迟)、多普勒以及信道质量。
本申请各个实施例中提到的参数,例如,发送参数,第一参数等,可以包括具体的参数值。
该信道质量可以为信噪比(Signal Noise Ratio,SNR),信干噪比(Signal to Interference plus Noise Ratio,SINR),信道质量指示(Channel Quality Indicator,CQI)等,或该信道质量可以通过误码率等得到,后续实施例以信噪比为例来说明该信道质量,其他参数亦可参照相似方式实现。
该实施例中,发送端可以是网络侧设备,接收端可以是终端;或者,发送端可以是终端,接收端可以是网络侧设备或其它终端。
该实施例中,发送端可以根据来自于接收端的指示信息来确定导频的发送参数,该指示信息可以用于直接指示导频的发送参数,或者,该指示信息指示和导频的发送参数相关的参数,发送端根据该相关的参数确定导频的发送参数。
该实施例中,发送端确定导频的发送参数例如包括:发送端确定导频的保护间隔;或者,发送端确定导频的发送功率,根据确定出的发送功率确定导频的保护间隔;或者,发送端确定导频的发送功率。
S304:所述发送端根据所述发送参数发送所述导频。
该实施例中,发送端确定导频的发送参数之后,即可将导频映射在延迟多普勒域上发送给接收端。
该实施例中,发送端确定导频的发送参数之后,发送端还可以向接收端 指示所述导频的发送参数,以便接收端解调数据。例如,在发送端是网络侧设备,接收端是终端的情况下,网络侧设备可以通过下行控制信息(Downlink Control Information,DCI)或无线资源控制(Radio Resource Control,RRC)信令,将确定出的发送参数指示给终端,以便终端解调数据。
本申请实施例提供的导频的发送方法,发送端确定导频的发送参数,该发送参数包括发送功率和/或保护间隔,该发送参数是根据时延、多普勒以及信道质量共同确定的,本申请实施例综合考虑信道的小尺度(时延、多普勒)和大尺度参数(信道质量)来确定导频发送参数,有利于保证导频在各种信道条件下的检测性能,提高通信质量。
可选地,所述第一参数包括所述信道质量,所述发送端确定导频的发送参数包括:所述发送端根据指示信息执行如下至少之一:增大所述导频的发送功率,增大所述导频的保护间隔;其中,所述指示信息是接收端在测量的信道质量大于第一阈值的情况下发送的;或所述指示信息是接收端在测量的第二参数大于或等于第二阈值的情况下发送的,所述第二参数与所述信道质量相关。该第二参数可以是误码率,该第二阈值可以是与误码率相关的阈值。
该实施例中,所述指示信息可以包括所述导频的功率放大倍数,这样,发送端即可根据该功率放大倍数确定导频的发送参数,例如,发送端根据该功率放大倍数增大导频的发送功率,又例如,发送端根据该功率放大倍数增大导频的保护间隔。
在导频的发送功率和导频的保护间隔耦合的情况下,发送端可以通过增大导频的保护间隔来增大导频的发送功率,或者,通过减小数据的发送功率来增大导频的发送功率,该过程可以称作是导频从数据借功率,其中,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上。
可选地,所述第一阈值是根据如下公式确定的:
Figure PCTCN2022116477-appb-000001
其中,ζ l是所述第一阈值;
K是与导频检测阈值相关的常数,通常在接收端使用;
E()表示数学期望,可以用平均值来近似确定;
L是延迟径的数量;
l是延迟径的索引;
h l是第l延迟径的信道增益;
c是导频的发送功率倍数。
在一个例子中,上述第一阈值可以是接收端根据上述公式确定的。
在上述各实施例中,所述发送端确定导频的发送参数可以包括:所述发送端按照第一发送周期确定所述导频的发送参数,所述第一发送周期的长度大于第二发送周期的长度,所述第二发送周期是确定所述导频的发送参数的周期,例如,所述第二发送周期是所述发送端按照所述时延和所述多普勒确定所述导频的发送参数的周期,该实施例可以尽量减少反馈信令的开销。
上述各个实施例主要介绍了如何根据信道质量(如信噪比)确定导频的发送参数,以下将分几个实施例介绍如何根据时延以及多普勒确定导频的发送参数,以下介绍的几个实施例可以与前面的实施例自由组合。
可选地,所述第一参数包括所述时延和所述多普勒,所述发送端确定导频的发送参数之前,所述方法还包括如下步骤:
1)所述发送端发送第一导频,该过程可以是初始化过程;
2)所述发送端接收最大延迟和最大多普勒,所述最大延迟和最大多普勒是接收端根据所述第一导频确定的;
3)所述发送端根据所述最大延迟和所述最大多普勒确定第二导频的发送参数;
4)所述发送端根据所述第二导频的发送参数发送所述第二导频;
5)所述发送端接收所述时延和所述多普勒,所述时延和所述多普勒是所述接收端根据所述第二导频确定的;或,所述发送端接收所述导频的保护间隔,所述保护间隔是所述接收端根据所述第二导频确定的。
在上述5)中发送端接收所述时延和所述多普勒的情况下,S202中发送端即可根据所述时延和所述多普勒确定导频的发送参数;或者,在上述5)中发送端接收导频的保护间隔的情况下,S202中发送端即可直接将接收到的保护间隔作为发送的导频的保护间隔。
该实施例中,所述发送端确定导频的发送参数包括:所述发送端按照第二发送周期确定所述导频的发送参数,所述第二发送周期的长度大于时长T,该时长T可以是一个时隙/子帧的长度,从而尽量减少反馈信令的开销。
该实施例中,发送端按照第二发送周期确定所述导频的发送参数,当然,如果所述发送端在所述第二发送周期内接收到第三参数,则所述发送端根据所述第三参数确定所述导频的发送参数;其中,所述第三参数是所述接收端在第二参数大于或等于第二阈值的情况下发送的,该第三参数可以是保护间隔。所述第二参数与所述信道质量相关。该第二参数可以是误码率,该第二阈值可以是与误码率相关的阈值。
该实施例可以打破原有的第二发送周期,例如,在一个反馈周期(第二发送周期)内,如果某一子帧k或从k起连续g个子帧的误码率ε≥ε_threshold,则接收端会立即反馈新的保护间隔并指示给发送端,让发送端对导频保护间隔进行即时调整,周期性反馈的起始位置从调整后的子帧,即从k+1或k+g+1个子帧处重新计算。
可选地,前文各个实施例中,所述发送端确定导频的发送参数包括:所述发送端增大所述导频的发送功率;或所述发送端减小所述导频的发送功率。
在一个例子中,在所述发送端增大所述导频的发送功率的情况下,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上,也即,导频从数据借功率。
该例子还可以包括如下步骤:所述发送端向接收端指示所述数据的发送功率,以便所述接收端解调所述数据。
可选地,所述发送端确定导频的发送参数包括:所述发送端根据功率缩放系数确定所述导频的发送功率;其中,所述功率缩放系数是接收端从多个 默认的功率缩放系数中选择的,以减少反馈开销。
在一个例子中,所述发送端根据功率缩放系数确定所述导频的发送功率包括:在所述功率缩放系数大于1的情况下,所述发送端根据如下之一增大所述导频的发送功率:
1)增大所述导频的保护间隔,所述导频的发送功率和所述导频的保护间隔耦合。
2)减小数据的发送功率,所述数据和所述导频映射在同一个延迟多普勒域上。
在另一个例子中,所述发送端根据功率缩放系数确定所述导频的发送功率包括:在所述功率缩放系数小于1的情况下,所述发送端减小所述导频的发送功率。
该例子还可以包括如下步骤:所述发送端增大数据的发送功率,所述导频的发送功率的减小值等于所述数据的发送功率的增大值,所述数据和所述导频映射在同一个延迟多普勒域上。
以上结合图3详细描述了根据本申请实施例的导频的发送方法。下面将结合图4详细描述根据本申请另一实施例的导频的接收方法。可以理解的是,从接收端描述的接收端与发送端的交互与图3所示的方法中的发送端侧的描述相同,为避免重复,适当省略相关描述。
图4是本申请实施例的导频的接收方法实现流程示意图,可以应用在接收端。如图4所示,该方法400包括如下步骤。
S402:接收端接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
在本申请实施例中,接收端接收导频,该导频是发送端按照发送参数发送的,该发送参数包括发送功率和/或保护间隔,该发送参数是根据时延、多普勒以及信道质量共同确定的,本申请实施例综合考虑信道的小尺度参数(时延、多普勒)和大尺度参数(信道质量)来确定导频发送参数,有利于保证 导频在各种信道条件下的检测性能,提高通信质量。
可选地,作为一个实施例,所述第一参数包括所述信道质量,所述接收端接收导频之前,所述方法还包括:所述接收端在测量的信道质量大于第一阈值的情况下发送指示信息;或,所述接收端在测量的第二参数大于或等于第二阈值的情况下发送指示信息,所述第二参数与所述信道质量相关;其中,所述指示信息用于所述发送端执行如下至少之一:增大所述导频的发送功率,增大所述导频的保护间隔。
可选地,作为一个实施例,所述指示信息包括所述导频的功率放大倍数。
可选地,作为一个实施例,所述方法还包括:所述接收端根据如下公式确定所述第一阈值:
Figure PCTCN2022116477-appb-000002
其中,ζ l是所述第一阈值;
K是与导频检测阈值相关的常数;
E()表示数学期望;
L是延迟径的数量;
l是延迟径的索引;
h l是第l延迟径的信道增益;
c是导频的发送功率倍数。
可选地,作为一个实施例,所述发送端用于按照第一发送周期确定所述导频的发送参数,所述第一发送周期的长度大于第二发送周期的长度,所述第二发送周期是所述发送端按照所述时延和所述多普勒确定所述导频的发送参数的周期。
可选地,作为一个实施例,所述第一参数包括所述时延和所述多普勒,所述接收端接收导频之前,所述方法还包括:所述接收端接收第一导频;所述接收端发送最大延迟和最大多普勒,所述最大延迟和最大多普勒是所述接收端根据所述第一导频确定的,所述最大延迟和所述最大多普勒用于所述发 送端确定第二导频的发送参数;所述接收端接收所述第二导频,所述第二导频是所述发送端根据所述第二导频的发送参数发送的;所述接收端发送所述时延和所述多普勒,所述时延和所述多普勒是所述接收端根据所述第二导频确定的;或,所述接收端发送所述导频的保护间隔,所述保护间隔是所述接收端根据所述第二导频确定的。
可选地,作为一个实施例,所述发送端用于按照第二发送周期确定所述导频的发送参数,所述第二发送周期的长度大于时长T。
可选地,作为一个实施例,所述方法还包括:所述接收端在第二参数大于或等于第二阈值的情况下发送第三参数,所述第二参数与所述信道质量相关;其中,如果所述发送端在所述第二发送周期内接收到第三参数,则所述发送端还用于根据所述第三参数确定所述导频的发送参数。
可选地,作为一个实施例,所述发送端用于增大所述导频的发送功率,或,减小所述导频的发送功率。
可选地,作为一个实施例,在所述发送端增大所述导频的发送功率的情况下,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上。
可选地,作为一个实施例,所述方法还包括:所述接收端接收所述数据的发送功率;所述接收端根据所述数据的发送功率解调所述数据。
可选地,作为一个实施例,所述方法还包括:所述接收端从多个默认的功率缩放系数中选择功率缩放系数;其中,所述功率缩放系数用于所述发送端确定所述导频的发送功率。
为详细说明本申请实施例提供的导频的发送、接收方法,以下将结合几个具体的实施例进行说明。
实施例一
实施例一给出了一种由发送端基于接收端反馈来进行二级导频发送模式动态调整的过程,该实施例可以分为两级,即第一级(Tier 1)和第二级(Tier 2)来执行。
Tier1:
在确定导频保护间隔时,发送端可以获取信道状态信息(Channel State Information,CSI)的先验信息。
为了确保初始CSI估计的准确性,发送端可以发送一个初始导频子帧(对应于前文实施例第一导频),假设编号为0,初始导频帧的样点数较少(即MN较小,该MN可以是延迟多普勒域格点的尺寸)用以节省开销,且不含数据部分,从而确保足够的保护间隔用以粗估计信道的最大延迟τ max和最大多普勒ν max
接收端利用初始导频帧估计的一组最大延迟和多普勒,记作
Figure PCTCN2022116477-appb-000003
反馈给发送端,发送端按照这一组
Figure PCTCN2022116477-appb-000004
确定下一帧导频的保护间隔。
发送端在下一子帧,即编号为1的子帧发送导频(对应于前文实施例第二导频),导频的保护间隔可以由
Figure PCTCN2022116477-appb-000005
确定。接收端接收到子帧1后,经测量得到延迟和多普勒
Figure PCTCN2022116477-appb-000006
将测量后的
Figure PCTCN2022116477-appb-000007
反馈给发送端。
在一个具体的例子中,假设保护间隔的面积S(τ,ν)按照如下公式确定:
S(τ,ν)=(2l τ+1)(4k ν+1)-1,
其中
Figure PCTCN2022116477-appb-000008
Figure PCTCN2022116477-appb-000009
表示对a向上取整。则子帧1按照延迟多普勒资源格分辨率量化后的导频保护间隔宽度为
Figure PCTCN2022116477-appb-000010
接收端利用子帧1的导频测量结果计算更新的导频保护间隔宽度
Figure PCTCN2022116477-appb-000011
并直接反馈
Figure PCTCN2022116477-appb-000012
Figure PCTCN2022116477-appb-000013
而非
Figure PCTCN2022116477-appb-000014
由于前者为整数而后者为浮点数,可以节省一部分反馈开销。
此外,为了进一步节省反馈开销,发送端并不需要进行子帧级别的反馈和(l τ,k ν)的更新,而是可以按照第一周期T 1(对应于前文实施例中的第二发送周期)进行反馈。
进一步的,当进行周期反馈时,由于两次反馈间的信道可能发生剧烈变化(例如收发端之间闯入了其他反射体),导致既有的导频保护间隔无法保证准确的信道估计,还可以引入误码率ε作为判断是否需要打破周期,即时进行反馈的依据。
例如,在一个反馈周期内,如果某一子帧k或从k起连续g个子帧的误码率ε≥ε threshold,ε threshold表示误码率阈值,则接收端会立即进行反馈,让发送端对导频保护间隔进行即时调整,周期性反馈的起始位置从调整后的子帧,即从(k+1)或(k+g+1)个子帧处重新计算。
Tier2:
以上描述了本申请实施例中基于小尺度参数进行导频发送模式调整的行为。在此基础上,由于信道的大尺度参数变化会导致平均SNR的变化,为了兼顾SNR对信道估计准确性的影响,还可以以T 2为第二周期进行基于SNR的导频发送模式调整。
具体的,接收端使用当前的第二周期的接收信号样点,估计出接收信号的平均SNR,记作ρ。其中,
Figure PCTCN2022116477-appb-000015
对于某条延迟径l,其接收导频信号和噪声的和功率与检测阈值Kσ 2大致满足如下关系:
E(|h l| 2cp 0)+σ 2≥Kσ 2
由此可以推导出:
Figure PCTCN2022116477-appb-000016
对于不等式右边来说,c和K为已知常数,L及对应的h l由导频信道估计结果给出。对不同的l,令
Figure PCTCN2022116477-appb-000017
当前接收信号的平均SNR满足要求的充要条件是,对当前已经检测出的L条径来说,
Figure PCTCN2022116477-appb-000018
均满足ζ l≤ρ。
以此作为判断依据,在每个第二周期(对应于前文实施例的第一发送周期)的最后一个子帧,当ζ l≤ρ时,不需要调整当前导频发送模式;而当ζ l>ρ时,需要调整导频发送模式从而减小ζ l
具体的,可以通过增大导频的发送功率倍数c,例如,通过增加导频的 保护间隔来达成。事实上,接收端可以上述关系直接量化的计算出新值c new并指示给发送端:
Figure PCTCN2022116477-appb-000019
发送端收到c new后,即可以相应的调整一组导频保护间隔值(l τ,k ν)使之满足其范围大于c new
特别的,本实施例中,每次导频保护间隔(l τ,k ν)的确定后,需要由发送端在DCI或RRC信令中指示给接收端。
实施例二
实施例二与实施例一的架构类似。相似点在于,仍然采取两级架构。区别在于,实施例二中的导频发送模式中,导频发送功率和导频保护间隔解耦合,即导频的发送功率倍数c≠(2l τ+1)(4k ν+1),(2l τ+1)(4k ν+1)为导频的保护间隔的尺寸。因此,在本实施例中,导频的保护间隔由Tier 1的小尺度参数估计确定;而导频的发送功率由Tier 2的大尺度参数估计确定。该实施例可以分为两级,即第一级(Tier 1)和第二级(Tier 2)来执行。
Tier 1:
Tier 1可以参见实施例一,为避免重复,该处省略。
Tier 2:
每次导频保护间隔(l τ,k ν)和导频发送功率倍数c的确定后,可以由发送端在DCI或RRC信令中指示给接收端。
由于信道的大尺度参数变化会导致平均SNR的变化,为了兼顾SNR对信道估计准确性的影响,我们还需要以T 2为第二周期进行基于SNR的导频发送功率调整。具体的,接收端使用当前周期的接收信号样点的,利用现有技术估计出接收信号的平均SNR,记作ρ,其中,
Figure PCTCN2022116477-appb-000020
对于某条延迟径l,其接收导频信号和噪声的和功率与检测阈值Kσ 2大致 满足如下关系:
E(|h l| 2cp 0)+σ 2≥Kσ 2
由此可以推导出:
Figure PCTCN2022116477-appb-000021
对于不等式右边来说,K为已知常数,L及对应的h l由导频信道估计结果给出,再利用发送端指示的c,即可计算出具体数值。对不同的l,令
Figure PCTCN2022116477-appb-000022
当前接收信号的平均SNR满足要求的充要条件是,对当前已经检测出的L条径来说,
Figure PCTCN2022116477-appb-000023
均满足ζ l≤ρ。
以此作为判断依据,在每个第二周期(对应于前文实施例的第一发送周期)的最后一个子帧,当ζ l≤ρ时,不需要调整当前导频发送模式;而当ζ l>ρ时,需要调整导频发送模式从而减小ζ l。具体的,即通过增大导频的发送功率倍数c,导频的发送功率倍数增加导频的保护间隔来达成。事实上,接收端可以上述关系直接量化的计算出新值c new并指示给发送端:
Figure PCTCN2022116477-appb-000024
发送端收到c new后,即可以相应的调整导频发送功率为c'p 0,c'≥c new
实施例三
实施例三与实施例二的架构类似。区别在于,实施例二中的导频发送模式中,接收端可以指示导频的保护间隔(l τ,k ν)以及导频的发送功率倍数c。实施三中,接收端可以只指示导频的保护间隔(l τ,k ν),无需指示导频的发送功率倍数c。
该实施例可以分为两级,即第一级(Tier 1)和第二级(Tier 2)来执行。
Tier 1:
Tier 1可以参见实施例一,为避免重复,该处省略。
Tier 2:
由于信道的大尺度参数变化会导致平均SNR的变化,为了兼顾SNR对信道估计准确性的影响,我们还需要以T 2为第二周期(对应于前文实施例的第一发送周期)进行基于SNR的导频发送功率调整。类似之前实施例的分析:
Figure PCTCN2022116477-appb-000025
由于c未知,我们无法判断不等式成立的条件是否满足。因此只能通过其他参数,如误码率ε定性判断。即当ε≥ε threshold时,触发接收端发送导频功率调整指示。
当发送端收到导频功率调整指示时,按照协议预设的步长对c进行调整。
实施例四
实施例四简化了导频发送模式动态调整的过程,与实施例一相比,由两级变为一级。
在确定导频保护间隔时,发送端可以获取CSI的先验信息。
为了确保初始CSI估计的准确性,发送端可以发送一个初始导频子帧(对应于前文实施例第一导频),假设编号为0,初始导频帧的样点数较少(即MN较小)用以节省开销,且不含数据部分,从而确保足够的保护间隔用以粗估计信道的最大延迟τ max和最大多普勒ν max
接收端利用初始导频帧估计的一组最大延迟和多普勒,记作
Figure PCTCN2022116477-appb-000026
反馈给发送端,发送端按照这一组
Figure PCTCN2022116477-appb-000027
确定下一帧导频的保护间隔。
发送端在下一子帧,即编号为1的子帧发送导频(对应于前文实施例第二导频),导频的保护间隔可以由
Figure PCTCN2022116477-appb-000028
确定。接收端接收到子帧1后,经测量得到
Figure PCTCN2022116477-appb-000029
将测量后的
Figure PCTCN2022116477-appb-000030
反馈给发送端。
在一个具体的例子中,假设保护间隔的面积S(τ,ν)按照如下公式确定:
S(τ,ν)=(2l τ+1)(4k ν+1)-1,
其中
Figure PCTCN2022116477-appb-000031
Figure PCTCN2022116477-appb-000032
表示对a向上取整。则子帧1按照延迟多普勒资源格分辨率量化后的导频保护间隔宽度为
Figure PCTCN2022116477-appb-000033
接收端利用子帧1的导频测量结果计算更新的导频保护间隔宽度
Figure PCTCN2022116477-appb-000034
并直接反馈
Figure PCTCN2022116477-appb-000035
Figure PCTCN2022116477-appb-000036
而非
Figure PCTCN2022116477-appb-000037
由于前者为整数而后者为浮点数,可以节省一部分反馈开销。
此外,为了进一步节省反馈开销,发送端并不需要进行子帧级别的反馈和(l τ,k ν)的更新,而是可以按照第一周期T 1(对应于前文实施例中的第二发送周期)进行反馈。
在第一周期内,根据上述实施例Tier2中的方法,根据由小尺度参数确定的
Figure PCTCN2022116477-appb-000038
Figure PCTCN2022116477-appb-000039
判断是否满足:
Figure PCTCN2022116477-appb-000040
其中
Figure PCTCN2022116477-appb-000041
如果满足条件,则反馈
Figure PCTCN2022116477-appb-000042
如果不满足,则计算c new并指示给发送端,其中,
Figure PCTCN2022116477-appb-000043
实施例五
该实施例可以是补充方案,可以与前文四个实施例中的任意一个实施例进行合并。
首先,增加导频功率除了可以向保护间隔借功率外,还可以向映射在同一个延迟多普勒域上的数据借功率;此时的流程可以是:网络侧设备根据终端估计得到的信道特性(τ max和ν max),确定保护间隔;保持保护间隔不变,如果保护间隔借得的功率仍然不满足导频功率要求,则从数据区域借功率。此时,数据区域功率的大小(绝对值或者相对值)需要通知给接收端协助解调数据。
其次,接收端除了反馈根据信道特性得到的目标保护间隔大小外,还反馈一个功率缩放系数:
Figure PCTCN2022116477-appb-000044
为了减少反馈开销,f的取值可以是{0.8,1,1.2,1.4}或者{1,1.5,2,4}。收到接收端反馈后,网络侧设备可以选择维持接收端上报的保护间隔不变,从数 据借功率(f>1);或者,增大保护间隔,不向数据借功率(f>1);或者,相对增加数据的功率(f<1)。无论哪种方式,新的保护间隔或数据借功率的大小都可以通知接收端。
需要说明的是,本申请实施例提供的导频的发送、接收方法,执行主体可以为导频的发送、接收装置,或者,该导频的发送、接收装置中的用于执行导频的发送、接收方法的控制模块。本申请实施例中以导频的发送、接收装置执行导频的发送、接收方法为例,说明本申请实施例提供的导频的发送、接收装置。
图5是根据本申请实施例的导频的发送装置的结构示意图,该装置可以对应于其他实施例中的发送端。如图5所示,装置500包括如下模块。
确定模块502,可以用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
发送模块504,可以用于根据所述发送参数发送所述导频。
在本申请实施例中,装置500确定导频的发送参数,该发送参数包括发送功率和/或保护间隔,该发送参数是根据时延、多普勒以及信道质量共同确定的,本申请实施例综合考虑信道的小尺度参数(时延、多普勒)和大尺度参数(信道质量)来确定导频发送参数,有利于保证导频在各种信道条件下的检测性能,提高通信质量。
可选地,作为一个实施例,所述第一参数包括所述信道质量,确定模块502,可以用于根据指示信息执行如下至少之一:增大所述导频的发送功率,增大所述导频的保护间隔;其中,所述指示信息是接收端在测量的信道质量大于第一阈值的情况下发送的;或,所述指示信息是接收端在测量的第二参数大于或等于第二阈值的情况下发送的,所述第二参数与所述信道质量相关。
可选地,作为一个实施例,所述指示信息包括所述导频的功率放大倍数。
可选地,作为一个实施例,所述第一阈值是根据如下公式确定的:
Figure PCTCN2022116477-appb-000045
其中,ζ l是所述第一阈值;
K是与导频检测阈值相关的常数;
E()表示数学期望;
L是延迟径的数量;
l是延迟径的索引;
h l是第l延迟径的信道增益;
c是导频的发送功率倍数。
可选地,作为一个实施例,确定模块502,可以用于按照第一发送周期确定所述导频的发送参数,所述第一发送周期的长度大于第二发送周期的长度,所述第二发送周期是确定所述导频的发送参数的周期。
可选地,作为一个实施例,所述第一参数包括所述时延和所述多普勒,发送模块504,可以用于发送第一导频;所述装置还包括接收模块,可以用于接收最大延迟和最大多普勒,所述最大延迟和最大多普勒是接收端根据所述第一导频确定的;确定模块502,可以用于根据所述最大延迟和所述最大多普勒确定第二导频的发送参数;发送模块504,可以用于根据所述第二导频的发送参数发送所述第二导频;接收模块,可以用于接收所述时延和所述多普勒,所述时延和所述多普勒是所述接收端根据所述第二导频确定的;或,接收模块,可以用于接收所述导频的保护间隔,所述保护间隔是所述接收端根据所述第二导频确定的。
可选地,作为一个实施例,确定模块502,可以用于按照第二发送周期确定所述导频的发送参数,所述第二发送周期的长度大于时长T。
可选地,作为一个实施例,确定模块502,可以用于:如果所述装置在所述第二发送周期内接收到第三参数,则根据所述第三参数确定所述导频的发送参数;其中,所述第三参数是所述接收端在第二参数大于或等于第二阈值的情况下发送的,所述第二参数与所述信道质量相关。
可选地,作为一个实施例,确定模块502,可以用于增大所述导频的发送功率;或,减小所述导频的发送功率。
可选地,作为一个实施例,在增大所述导频的发送功率的情况下,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上。
可选地,作为一个实施例,发送模块504,可以用于向接收端指示所述数据的发送功率,以便所述接收端解调所述数据。
可选地,作为一个实施例,确定模块502,可以用于:根据功率缩放系数确定所述导频的发送功率;其中,所述功率缩放系数是接收端从多个默认的功率缩放系数中选择的。
可选地,作为一个实施例,确定模块502,可以用于:在所述功率缩放系数大于1的情况下,根据如下之一增大所述导频的发送功率:1)增大所述导频的保护间隔,所述导频的发送功率和所述导频的保护间隔耦合;2)减小数据的发送功率,所述数据和所述导频映射在同一个延迟多普勒域上。
可选地,作为一个实施例,确定模块502,可以用于:在所述功率缩放系数小于1的情况下,减小所述导频的发送功率。
可选地,作为一个实施例,确定模块502,可以用于:增大数据的发送功率,所述导频的发送功率的减小值等于所述数据的发送功率的增大值,所述数据和所述导频映射在同一个延迟多普勒域上。
可选地,作为一个实施例,发送模块504,可以用于:向接收端指示所述导频的发送参数。
根据本申请实施例的装置500可以参照对应本申请实施例的方法200的流程,并且,该装置500中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的导频的发送、接收装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电 子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的导频的发送、接收装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图6是根据本申请实施例的导频的接收装置的结构示意图,该装置可以对应于其他实施例中的接收端。如图6所示,装置600包括如下模块。
接收模块602,可以用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
在本申请实施例中,装置600接收导频,该导频是发送端按照发送参数发送的,该发送参数包括发送功率和/或保护间隔,该发送参数是根据时延、多普勒以及信道质量共同确定的,本申请实施例综合考虑信道的小尺度(时延、多普勒)和大尺度参数(信道质量)来确定导频发送参数,有利于保证导频在各种信道条件下的检测性能,提高通信质量。
可选地,作为一个实施例,所述第一参数包括所述信道质量,所述装置还包括接收模块,用于在测量的信道质量大于第一阈值的情况下发送指示信息;或,在测量的第二参数大于或等于第二阈值的情况下发送指示信息,所述第二参数与所述信道质量相关;其中,所述指示信息用于所述发送端执行如下至少之一:增大所述导频的发送功率,增大所述导频的保护间隔。
可选地,作为一个实施例,所述指示信息包括所述导频的功率放大倍数。
可选地,作为一个实施例,所述装置还包括确定模块,用于根据如下公式确定所述第一阈值:
Figure PCTCN2022116477-appb-000046
其中,ζ l是所述第一阈值;
K是与导频检测阈值相关的常数;
E()表示数学期望;
L是延迟径的数量;
l是延迟径的索引;
h l是第l延迟径的信道增益;
c是导频的发送功率倍数。
可选地,作为一个实施例,所述发送端用于按照第一发送周期确定所述导频的发送参数,所述第一发送周期的长度大于第二发送周期的长度,所述第二发送周期是所述发送端按照所述时延和所述多普勒确定所述导频的发送参数的周期。
可选地,作为一个实施例,所述第一参数包括所述时延和所述多普勒,接收模块602,可以用于接收第一导频;
所述装置还包括发送模块,用于发送最大延迟和最大多普勒,所述最大延迟和最大多普勒是所述装置根据所述第一导频确定的,所述最大延迟和所述最大多普勒用于所述发送端确定第二导频的发送参数;接收模块602,可以用于接收所述第二导频,所述第二导频是所述发送端根据所述第二导频的发送参数发送的;所述发送模块,用于发送所述时延和所述多普勒,所述时延和所述多普勒是所述装置根据所述第二导频确定的;或,所述发送模块,用于发送所述导频的保护间隔,所述保护间隔是所述装置根据所述第二导频确定的。
可选地,作为一个实施例,所述发送端用于按照第二发送周期确定所述导频的发送参数,所述第二发送周期的长度大于时长T。
可选地,作为一个实施例,所述装置还包括发送模块,用于在第二参数大于或等于第二阈值的情况下发送第三参数,所述第二参数与所述信道质量 相关;其中,如果所述发送端在所述第二发送周期内接收到所述第三参数,则所述发送端还用于根据所述第三参数确定所述导频的发送参数。
可选地,作为一个实施例,所述发送端用于增大所述导频的发送功率,或,减小所述导频的发送功率。
可选地,作为一个实施例,在所述发送端增大所述导频的发送功率的情况下,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上。
可选地,作为一个实施例,接收模块602,可以用于接收所述数据的发送功率;根据所述数据的发送功率解调所述数据。
可选地,作为一个实施例,所述装置还包括选择模块,可以用于从多个默认的功率缩放系数中选择功率缩放系数;其中,所述功率缩放系数用于所述发送端确定所述导频的发送功率。
根据本申请实施例的装置600可以参照对应本申请实施例的方法300的流程,并且,该装置600中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701,存储器702,存储在存储器702上并可在所述处理器701上运行的程序或指令,例如,该通信设备700为终端时,该程序或指令被处理器701执行时实现上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述处理器用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;所述通信接口用于根据所述发送参数发送所述导频; 或者,所述通信接口用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络侧设备的下行数据接收后,给处理器810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非瞬态性存储器,其中,非瞬态性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非瞬态性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,处理器810,可以用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;射频单元801,可以用于根据所述发送参数发送所述导频。
或者,射频单元801,可以用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
在本申请实施例中,导频的发送参数包括发送功率和/或保护间隔,该发送参数是根据时延、多普勒以及信道质量共同确定的,本申请实施例综合考虑信道的小尺度(时延、多普勒)和大尺度参数(信道质量)来确定导频发送参数,有利于保证导频在各种信道条件下的检测性能,提高通信质量。
本申请实施例提供的终端800还可以实现上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述处理器用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;所述通信接口用于根据所述发送参数发送所述导频;或者,所述通信接口用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线91、射频装置92、基带装置93。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
上述频带处理装置可以位于基带装置93中,以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括处理器94和存储器95。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器94,与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置93还可以包括网络接口96,用于与射频装置92交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图5和图6所示各模块执行的方法,并达到相同的技术效果,为避免重复, 故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储于非易失性的存储器,所述计算机程序产品被至少一个处理器执行以实现上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种通信设备,被配置成用于执行上述导频的发送、接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申 请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (33)

  1. 一种导频的发送方法,包括:
    发送端确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;
    所述发送端根据所述发送参数发送所述导频。
  2. 根据权利要求1所述的方法,其中,所述第一参数包括所述信道质量,所述发送端确定导频的发送参数包括:
    所述发送端根据指示信息执行如下至少之一:增大所述导频的发送功率,增大所述导频的保护间隔;
    其中,所述指示信息是接收端在测量的信道质量大于第一阈值的情况下发送的;或
    所述指示信息是接收端在测量的第二参数大于或等于第二阈值的情况下发送的,所述第二参数与所述信道质量相关。
  3. 根据权利要求2所述的方法,其中,所述指示信息包括所述导频的功率放大倍数。
  4. 根据权利要求2所述的方法,其中,所述第一阈值是根据如下公式确定的:
    Figure PCTCN2022116477-appb-100001
    其中,ζ l是所述第一阈值;
    K是与导频检测阈值相关的常数;
    E()表示数学期望;
    L是延迟径的数量;
    l是延迟径的索引;
    h l是第l延迟径的信道增益;
    c是导频的发送功率倍数。
  5. 根据权利要求2所述的方法,其中,所述发送端确定导频的发送参数包括:
    所述发送端按照第一发送周期确定所述导频的发送参数,所述第一发送周期的长度大于第二发送周期的长度,所述第二发送周期是确定所述导频的发送参数的周期。
  6. 根据权利要求1至5任一项所述的方法,其中,所述第一参数包括所述时延和所述多普勒,所述发送端确定导频的发送参数之前,所述方法还包括:
    所述发送端发送第一导频;
    所述发送端接收最大延迟和最大多普勒,所述最大延迟和最大多普勒是接收端根据所述第一导频确定的;
    所述发送端根据所述最大延迟和所述最大多普勒确定第二导频的发送参数;
    所述发送端根据所述第二导频的发送参数发送所述第二导频;
    所述发送端接收所述时延和所述多普勒,所述时延和所述多普勒是所述接收端根据所述第二导频确定的;或,所述发送端接收所述导频的保护间隔,所述保护间隔是所述接收端根据所述第二导频确定的。
  7. 根据权利要求6所述的方法,其中,所述发送端确定导频的发送参数包括:
    所述发送端按照第二发送周期确定所述导频的发送参数,所述第二发送周期的长度大于时长T。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    如果所述发送端在所述第二发送周期内接收到第三参数,则所述发送端根据所述第三参数确定所述导频的发送参数;
    其中,所述第三参数是所述接收端在第二参数大于或等于第二阈值的情况下发送的,所述第二参数与所述信道质量相关。
  9. 根据权利要求1至8任一项所述的方法,其中,所述发送端确定导频 的发送参数包括:
    所述发送端增大所述导频的发送功率;或
    所述发送端减小所述导频的发送功率。
  10. 根据权利要求9所述的方法,其中,在所述发送端增大所述导频的发送功率的情况下,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述发送端向接收端指示所述数据的发送功率,以便所述接收端解调所述数据。
  12. 根据权利要求9所述的方法,其中,所述发送端确定导频的发送参数包括:
    所述发送端根据功率缩放系数确定所述导频的发送功率;
    其中,所述功率缩放系数是接收端从多个默认的功率缩放系数中选择的。
  13. 根据权利要求12所述的方法,其中,所述发送端根据功率缩放系数确定所述导频的发送功率包括:
    在所述功率缩放系数大于1的情况下,所述发送端根据如下之一增大所述导频的发送功率:
    增大所述导频的保护间隔,所述导频的发送功率和所述导频的保护间隔耦合;
    减小数据的发送功率,所述数据和所述导频映射在同一个延迟多普勒域上。
  14. 根据权利要求12所述的方法,其中,所述发送端根据功率缩放系数确定所述导频的发送功率包括:
    在所述功率缩放系数小于1的情况下,所述发送端减小所述导频的发送功率。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述发送端增大数据的发送功率,所述导频的发送功率的减小值等于所 述数据的发送功率的增大值,所述数据和所述导频映射在同一个延迟多普勒域上。
  16. 根据权利要求1所述的方法,其中,所述发送端确定导频的发送参数之后,所述方法还包括:
    所述发送端向接收端指示所述导频的发送参数。
  17. 一种导频的接收方法,包括:
    接收端接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
  18. 根据权利要求17所述的方法,其中,所述第一参数包括所述信道质量,所述接收端接收导频之前,所述方法还包括:
    所述接收端在测量的信道质量大于第一阈值的情况下发送指示信息;或
    所述接收端在测量的第二参数大于或等于第二阈值的情况下发送指示信息,所述第二参数与所述信道质量相关;
    其中,所述指示信息用于所述发送端执行如下至少之一:增大所述导频的发送功率,增大所述导频的保护间隔。
  19. 根据权利要求18所述的方法,其中,所述指示信息包括所述导频的功率放大倍数。
  20. 根据权利要求18所述的方法,其中,所述方法还包括:所述接收端根据如下公式确定所述第一阈值:
    Figure PCTCN2022116477-appb-100002
    其中,ζ l是所述第一阈值;
    K是与导频检测阈值相关的常数;
    E()表示数学期望;
    L是延迟径的数量;
    l是延迟径的索引;
    h l是第l延迟径的信道增益;
    c是导频的发送功率倍数。
  21. 根据权利要求18所述的方法,其中,所述发送端用于按照第一发送周期确定所述导频的发送参数,所述第一发送周期的长度大于第二发送周期的长度,所述第二发送周期是所述发送端按照所述时延和所述多普勒确定所述导频的发送参数的周期。
  22. 根据权利要求17至21任一项所述的方法,其中,所述第一参数包括所述时延和所述多普勒,所述接收端接收导频之前,所述方法还包括:
    所述接收端接收第一导频;
    所述接收端发送最大延迟和最大多普勒,所述最大延迟和最大多普勒是所述接收端根据所述第一导频确定的,所述最大延迟和所述最大多普勒用于所述发送端确定第二导频的发送参数;
    所述接收端接收所述第二导频,所述第二导频是所述发送端根据所述第二导频的发送参数发送的;
    所述接收端发送所述时延和所述多普勒,所述时延和所述多普勒是所述接收端根据所述第二导频确定的;或,所述接收端发送所述导频的保护间隔,所述保护间隔是所述接收端根据所述第二导频确定的。
  23. 根据权利要求22所述的方法,其中,所述发送端用于按照第二发送周期确定所述导频的发送参数,所述第二发送周期的长度大于时长T。
  24. 根据权利要求23所述的方法,其中,所述方法还包括:
    所述接收端在第二参数大于或等于第二阈值的情况下发送第三参数,所述第二参数与所述信道质量相关;
    其中,如果所述发送端在所述第二发送周期内接收到所述第三参数,则所述发送端还用于根据所述第三参数确定所述导频的发送参数。
  25. 根据权利要求17至24任一项所述的方法,其中,所述发送端用于增大所述导频的发送功率,或,减小所述导频的发送功率。
  26. 根据权利要求25所述的方法,其中,在所述发送端增大所述导频的 发送功率的情况下,所述导频的发送功率的增加值等于数据的发送功率的减小值,所述数据和所述导频映射在同一个延迟多普勒域上。
  27. 根据权利要求26所述的方法,其中,所述方法还包括:
    所述接收端接收所述数据的发送功率;
    所述接收端根据所述数据的发送功率解调所述数据。
  28. 根据权利要求25所述的方法,其中,所述方法还包括:所述接收端从多个默认的功率缩放系数中选择功率缩放系数;
    其中,所述功率缩放系数用于所述发送端确定所述导频的发送功率。
  29. 一种导频的发送装置,包括:
    确定模块,用于确定导频的发送参数;其中,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量;
    发送模块,用于根据所述发送参数发送所述导频。
  30. 一种导频的接收装置,包括:
    接收模块,用于接收导频,所述导频是发送端按照发送参数发送的,所述发送参数包括如下至少之一:发送功率,保护间隔,所述发送参数是根据第一参数确定的,所述第一参数包括时延、多普勒以及信道质量。
  31. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的导频的发送方法,或者实现如权利要求17至28任一项所述的导频的接收方法。
  32. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的导频的发送方法,或者实现如权利要求17至28任一项所述的导频的接收方法。
  33. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的导频的发送方 法,或者实现如权利要求17至28任一项所述的导频的接收方法。
PCT/CN2022/116477 2021-09-06 2022-09-01 导频的发送、接收方法和设备 WO2023030438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22863573.6A EP4401348A1 (en) 2021-09-06 2022-09-01 Pilot frequency sending and receiving method and device
US18/595,941 US20240214145A1 (en) 2021-09-06 2024-03-05 Methods for Transmitting and Receiving Pilot and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111039470.5A CN115776359A (zh) 2021-09-06 2021-09-06 导频的发送、接收方法和设备
CN202111039470.5 2021-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/595,941 Continuation US20240214145A1 (en) 2021-09-06 2024-03-05 Methods for Transmitting and Receiving Pilot and Device

Publications (1)

Publication Number Publication Date
WO2023030438A1 true WO2023030438A1 (zh) 2023-03-09

Family

ID=85387420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116477 WO2023030438A1 (zh) 2021-09-06 2022-09-01 导频的发送、接收方法和设备

Country Status (4)

Country Link
US (1) US20240214145A1 (zh)
EP (1) EP4401348A1 (zh)
CN (1) CN115776359A (zh)
WO (1) WO2023030438A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077657B (zh) * 2009-05-21 2013-04-24 华为技术有限公司 一种功率控制方法、装置和基站
CN108702271A (zh) * 2016-02-26 2018-10-23 杜塞尔多夫华为技术有限公司 发送和接收设备处理合成导频信号
CN111786763A (zh) * 2020-06-23 2020-10-16 Oppo广东移动通信有限公司 信号传输方法及装置、发射端、接收端、存储介质
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077657B (zh) * 2009-05-21 2013-04-24 华为技术有限公司 一种功率控制方法、装置和基站
CN108702271A (zh) * 2016-02-26 2018-10-23 杜塞尔多夫华为技术有限公司 发送和接收设备处理合成导频信号
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
CN111786763A (zh) * 2020-06-23 2020-10-16 Oppo广东移动通信有限公司 信号传输方法及装置、发射端、接收端、存储介质

Also Published As

Publication number Publication date
CN115776359A (zh) 2023-03-10
US20240214145A1 (en) 2024-06-27
EP4401348A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
WO2022037664A1 (zh) 非连续接收drx配置方法、装置和设备
WO2022152271A1 (zh) Pusch传输方法、装置、设备及存储介质
WO2018219011A1 (zh) 一种数据传输方法及通信设备
WO2021129844A1 (zh) 频偏补偿方法、装置、设备和存储介质
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2022233323A1 (zh) 智能表面设备的波束控制方法、装置及电子设备
WO2022148366A1 (zh) 雷达通信一体化信号发送方法、接收方法及设备
WO2022105913A1 (zh) 通信方法、装置及通信设备
US20240088970A1 (en) Method and apparatus for feeding back channel information of delay-doppler domain, and electronic device
CN114142977A (zh) 导频处理方法及相关设备
WO2023030438A1 (zh) 导频的发送、接收方法和设备
WO2022127854A1 (zh) 传输频率的确定方法、装置和通信设备
WO2022179499A1 (zh) 信道信息获取方法、装置及通信设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备
CN111294101A (zh) Csi测量方法及装置
WO2023280212A9 (zh) 信道状态信息csi上报处理方法、接收方法及相关设备
WO2022253312A1 (zh) 上行数据传输方法、装置、终端及介质
WO2022206997A1 (zh) 功率控制参数指示方法、终端及网络侧设备
WO2024083195A1 (zh) 资源大小的确定方法、终端及网络侧设备
US20240089049A1 (en) Signal Transmission Method and Apparatus and Terminal
WO2023051506A1 (zh) 波束指示方法、装置及终端
WO2022228454A1 (zh) 传输块大小计算方法、装置及通信设备
WO2024083196A1 (zh) 资源大小的确定方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863573

Country of ref document: EP

Effective date: 20240408