WO2023030350A1 - 一种被用于无线通信中的方法和装置 - Google Patents

一种被用于无线通信中的方法和装置 Download PDF

Info

Publication number
WO2023030350A1
WO2023030350A1 PCT/CN2022/116020 CN2022116020W WO2023030350A1 WO 2023030350 A1 WO2023030350 A1 WO 2023030350A1 CN 2022116020 W CN2022116020 W CN 2022116020W WO 2023030350 A1 WO2023030350 A1 WO 2023030350A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
signal
resource
time
target
Prior art date
Application number
PCT/CN2022/116020
Other languages
English (en)
French (fr)
Inventor
张锦芳
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to CN202280006932.XA priority Critical patent/CN116368913A/zh
Publication of WO2023030350A1 publication Critical patent/WO2023030350A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to a method and device used in a wireless communication system, in particular to a method and device for maintaining uplink synchronization for multicast transmission in wireless communication.
  • the multicast/broadcast transmission feature is not supported in the earliest versions of 5G (Fifth Generation), that is, version 15 and version 16, it is used in many important application scenarios, such as public safety and emergency missions. (mission critical), V2X (Vehicle-to-Everything, Internet of Vehicles) applications, software delivery (software delivery) and group communications (group communications), etc., the one-to-many transmission characteristics of multicast/broadcast communication can significantly improve system performance and user experience.
  • Terrestrial broadcasting only includes the transmission mode of broadcasting transmission, only for the downlink, and achieves wide-area coverage through the erection of high-power transmission towers.
  • UE User Equipment, user equipment
  • HARQ-ACK Hybrid Automatic Repeat Request-ACKnowledgement, hybrid automatic repeat request-confirmation
  • multicast groups include more members
  • UE can be configured with only NACK (NACK-only, Negative ACKnowledgment, negative) feedback mode to save feedback resources.
  • NACK-only feedback mode the feedback resource is shared by all UEs in the multicast group.
  • the UE has no uplink feedback; even if the UE has NACK feedback, due to the shared feedback resources, the base station cannot identify the UE that feedbacks NACK, so the base station cannot use the PUCCH or PUSCH channel to perform uplink timing measurement, nor can it Send an uplink timing adjustment command to the UE, causing the UE to lose uplink synchronization.
  • This application discloses a solution for maintaining uplink synchronization (synchronization) when using multicast transmission and HARQ-ACK feedback for MBS services.
  • the base station can configure different transmission modes and/or HARQ retransmission modes for different UEs.
  • multicast transmission/multicast HARQ retransmission can be configured for cell center UEs to improve spectrum efficiency; multicast transmission/single Broadcast HARQ retransmission to better adapt UE channel; also can configure multicast transmission/unicast HARQ retransmission and multicast HARQ retransmission for cell edge UE to better use multiple retransmissions for combined decoding to improve decoding coding success rate.
  • the base station and the UE support both unicast HARQ retransmission and multicast HARQ retransmission as an example. It is assumed that the base station performs multicast HARQ retransmission first, and then performs unicast HARQ retransmission. Since the retransmission is for the same HARQ process (process), if the stop-and-wait mechanism of the HARQ process is followed, that is, the base station sends the unicast HARQ retransmission after sending the multicast HARQ retransmission and receiving the HARQ-ACK feedback.
  • the retransmission delay is large; if it is supported to send unicast HARQ retransmission before receiving the HARQ-ACK of multicast HARQ retransmission, how to perform HARQ-ACK feedback for two HARQ retransmissions needs to be studied. For example, multicast HARQ retransmission decoding fails, unicast HARQ retransmission decoding succeeds, only NACK feedback is configured for multicast transmission, and ACK/NACK feedback is configured for unicast transmission.
  • the base station cannot identify whether the NACK comes from the successfully decoded UE or other UEs, It may cause the base station to perform another retransmission, wasting resources; at the same time, the UE performs two HARQ-ACK feedbacks to waste UE power.
  • This application discloses a solution for MBS service supporting multicast transmission, multicast HARQ retransmission and unicast HARQ retransmission to determine HARQ-ACK feedback.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first time length is a continuous time length during which the first node does not perform target transmission, or is determined by a first timer; the first target resource is associated with the first signal.
  • the present application is applicable to the scenario of supporting multicast transmission and HARQ-ACK feedback for MBS services.
  • this application is applicable to downlink transmission.
  • the present application can be extended to secondary link transmissions.
  • this application is applicable to a UE in an RRC (Radio Resource Control, radio resource control) connected state.
  • RRC Radio Resource Control, radio resource control
  • this application is applicable to a UE in an RRC inactive state.
  • this application is applicable to UE in RRC idle state.
  • only NACK-only HARQ-ACK feedback can effectively save system feedback resources.
  • the problem to be solved in this application is: when the NACK-only feedback mode is used for HARQ-ACK feedback, the base station cannot identify the UE due to the UE feedback on the shared feedback resource, and the uplink timing measurement cannot be performed further. The uplink timing adjustment command cannot be sent to the UE, causing the UE to lose uplink synchronization.
  • the solution of this application includes: when the UE does not perform the target transmission within the preset time length or the running time of the timer for maintaining uplink synchronization exceeds the preset time length, the UE uses ACK/NACK feedback mode for HARQ-ACK feedback.
  • the beneficial effects of the present application include: determining whether the UE adopts the NACK-only feedback mode or the ACK/NACK feedback mode according to a preset time length, which can save feedback resources and maintain uplink synchronization at the same time Effects include: the feedback resources in the NACK-only feedback mode are shared by all UEs in the multicast group to save feedback resources; the feedback resources in the ACK/NACK feedback mode are dedicated to UEs, and the base station can identify UEs and perform uplink Timing measurement feedback effectively maintains UE uplink synchronization and avoids failure of HARQ-ACK feedback due to uplink out-of-sync.
  • the second signal and the first time duration are jointly used to determine whether to send the first message in the first target resource.
  • the second signal is used to configure a HARQ-ACK feedback mode of the first node.
  • the second signal indicates a first resource set, and only when the first target resource belongs to the first resource set, the first time length is used to determine whether to send the first target resource in the first target resource a message.
  • the first node maintains the first timer.
  • the first timer is judged by the MAC (Medium Access Control, Media Access Control) entity (entity) of the first node whether the first node and the serving cell in the first stage maintain Uplink synchronization.
  • MAC Medium Access Control, Media Access Control
  • the phrase abstaining from sending the first message on the first target resource includes: sending the first message on a second target resource; the second target resource being associated to the first signal.
  • the second target resource is reserved for the first node, and the serving cell of the first node may use the channel for sending the first message to perform uplink timing measurement to obtain uplink timing adjustment information.
  • the first signal is scrambled by a non-unicast RNTI.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first time length is a continuous time length during which the second node does not perform target reception, or is determined by a first timer; the first target resource is associated with the first signal.
  • the recipient of the target transmission is the second node.
  • the first time length determined by the first node is consistent with the first time length determined by the second node.
  • the second signal and the first time duration are jointly used to determine whether to monitor the first message in the first target resource.
  • the second signal indicates a first resource set, and only when the first target resource belongs to the first resource set, the first time length is used to determine whether to monitor the first target resource in the first target resource a message.
  • the first message only includes NACK.
  • the second node triggers the first node to start or restart the first timer by sending the second message; the second node configures an expiration value of the first timer; Therefore the second node can determine whether the first timer has expired.
  • the phrase abstaining from monitoring the first message on the first target resource includes: monitoring the first message on a second target resource; the second target resource being associated to the first signal.
  • the first signal is scrambled by a non-unicast RNTI.
  • the present application discloses a first node used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving a first signal
  • the first transmitter determines whether to send a first message in the first target resource according to at least a first time length, and the first message is used to indicate whether the first signal is successfully decoded; when determining whether the first signal is successfully decoded; When the first message is sent in a target resource, send the first message on the first target resource, and when it is determined not to send the first message in the first target resource, abandon the sending the first message on the first target resource;
  • the first time length is a continuous time length during which the first node does not perform target transmission, or is determined by a first timer; the first target resource is associated with the first signal.
  • the present application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter for sending the first signal
  • the second receiver determines whether to monitor a first message in the first target resource according to at least a first time length, and the first message is used to indicate whether the first signal is successfully decoded; when determining whether the first signal is successfully decoded; When monitoring the first message in a target resource, monitor the first message on the first target resource, and when it is determined not to monitor the first message in the first target resource, abandon the monitoring the first message on the first target resource;
  • the first time length is a continuous time length during which the second node does not perform target reception, or is determined by a first timer; the first target resource is associated with the first signal.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signal is received in the first time-frequency resource block and the second signal is received in the second time-frequency resource block, the first bit block is used to generate the first signal and the second signal, and the first the block of bits comprises at least one bit;
  • the first feedback being used to indicate whether the first block of bits was successfully decoded
  • the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource block or the second time-frequency resource block One of the two time-frequency resource blocks is used to determine the target feedback resource; the first feedback adopts the target feedback mode, and the target feedback mode is one of the ACK/NACK feedback mode or the NACK-only feedback mode , the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback; the control signaling associated with the first feedback, the first time-frequency resource At least one of the positional relationship between the block and the second time-frequency resource block is used to determine the target feedback mode; the control signaling associated with the first feedback is used to schedule the second one of the first signal or the second signal.
  • the present application is applicable to a scenario where multicast transmission/multicast HARQ retransmission and unicast transmission/unicast HARQ retransmission are simultaneously supported for MBS services.
  • different UEs may be configured with different transmission modes and HARQ retransmission modes.
  • this application is aimed at MBS services with high reliability requirements.
  • this application is applicable to one HARQ process of one HARQ entity.
  • this application applies to transmissions within one serving cell.
  • the present application is applicable to unicast and multicast transmissions with dynamic scheduling and semi-persistent scheduling.
  • this application is applicable to downlink transmission.
  • the present application can be extended to secondary link transmissions.
  • the problem to be solved in this application is: how to select HARQ feedback resource and HARQ feedback mode after receiving a second signal before performing HARQ-ACK feedback on a received signal in one HARQ process.
  • the solution of this application includes: when the UE receives two transmissions at the same time in one HARQ process, determine the feedback mode of HARQ-ACK according to the transmission mode of the two transmissions and/or the sequence relationship of the two transmissions and feedback resources.
  • the beneficial effects of the present application include: effectively performing HARQ-ACK feedback, avoiding unnecessary HARQ retransmission of the base station, improving spectrum efficiency, and simultaneously achieving the effect of UE power saving.
  • the control signaling used to schedule the first signal is identified by a non-unicast RNTI
  • the control signaling associated with the first feedback is used to schedule the second signal
  • the target feedback The mode is the feedback mode of ACK/NACK
  • the non-unicast RNTI is reserved for at least two nodes, and the at least two nodes include the first node; the target feedback resource is determined by the second time-frequency resource block.
  • control signaling used to schedule the first signal is identified by a non-unicast RNTI (Radio Network Temporary Identifier, wireless network temporary identifier), it is determined that the first feedback is associated with the The control signaling is always the control signaling for scheduling the second signal.
  • RNTI Radio Network Temporary Identifier, wireless network temporary identifier
  • HARQ-ACK can be sent on the dedicated feedback resource of the first node so that the base station can obtain accurate information , and at the same time, the number of times of UE feedback can be reduced, and the UE power saving effect can be improved.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the positional relationship between the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block is identified by for determining said target feedback mode
  • the unicast RNTI is reserved for the first node; the first feedback resource is determined by the first time-frequency resource block.
  • control signaling used to schedule the first signal is identified by a unicast RNTI, it is further based on whether the combined decoding of the second signal can be completed before the feedback resource corresponding to the first signal
  • the target feedback mode and target feedback resources are determined.
  • the control associated with the first feedback signaling is used to schedule the first signal, and the target feedback mode is an ACK/NACK feedback mode;
  • the target feedback resource is the first feedback resource.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the second signal can be combined and decoded and generated before the feedback resource corresponding to the first signal
  • the HARQ-ACK is sent on the dedicated feedback resource of the first node, so that the base station can obtain accurate information, and at the same time, the number of UE feedbacks can be reduced, and the UE power saving effect can be improved.
  • the first feedback associated control signaling is used to schedule the second signal, and the target feedback mode is a NACK-only feedback mode;
  • the target feedback resource is determined by the second time-frequency resource block; the first signal is not successfully decoded.
  • control signaling used to schedule the first signal is identified by a unicast RNTI, if the combined decoding of the second signal cannot be completed before the feedback resource corresponding to the first signal, then It is determined that the control signaling associated with the first feedback is always the control signaling for scheduling the second signal.
  • the first signal and the second signal belong to the same HARQ process of the same HARQ entity.
  • the target feedback mode is a NACK-only feedback mode
  • determine whether to send the first feedback according to whether the first bit block is successfully decoded when the target feedback mode is an ACK/NACK feedback mode, send the Describe the first feedback.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signal is sent in the first time-frequency resource block and the second signal is sent in the second time-frequency resource block, the first bit block is used to generate the first signal and the second signal, and the first the block of bits comprises at least one bit;
  • the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource block or the second time-frequency resource block One of the two time-frequency resource blocks is used to determine the target feedback resource; the first feedback adopts the target feedback mode, and the target feedback mode is one of the ACK/NACK feedback mode or the NACK-only feedback mode , the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback; the control signaling associated with the first feedback, the first time-frequency resource At least one of the positional relationship between the block and the second time-frequency resource block is used to determine the target feedback mode; the control signaling associated with the first feedback is used to schedule the second one of the first signal or the second signal.
  • the control signaling used to schedule the first signal is identified by a non-unicast RNTI
  • the control signaling associated with the first feedback is used to schedule the second signal
  • the target feedback The mode is the feedback mode of ACK/NACK
  • the non-unicast RNTI is reserved for at least two nodes, and the at least two nodes include receivers of the first signal; the target feedback resource is determined by the second time-frequency resource block.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the positional relationship between the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block is identified by for determining said target feedback mode
  • the unicast RNTI is reserved for the receiver of the first signal; the first feedback resource is determined by the first time-frequency resource block.
  • the control associated with the first feedback signaling is used to schedule the first signal, and the target feedback mode is an ACK/NACK feedback mode;
  • the target feedback resource is the first feedback resource.
  • the first feedback associated control signaling is used to schedule the second signal, and the target feedback mode is a NACK-only feedback mode;
  • the target feedback resource is determined by the second time-frequency resource block; the first signal is not successfully decoded.
  • the first signal and the second signal belong to the same HARQ process of the same HARQ entity.
  • the target feedback mode is a NACK-only feedback mode
  • whether the first bit block is successfully decoded is used to determine whether to send the first feedback; when the target feedback mode is an ACK/NACK feedback mode, The first feedback is sent.
  • the present application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first receiver receives the first signal in the first time-frequency resource block and receives the second signal in the second time-frequency resource block, and the first bit block is used to generate the first signal and the second signal , the first block of bits includes at least one bit;
  • a first transmitter determining whether to send a first feedback in a target feedback resource, the first feedback being used to indicate whether the first block of bits was successfully decoded;
  • the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource block or the second time-frequency resource block One of the two time-frequency resource blocks is used to determine the target feedback resource; the first feedback adopts the target feedback mode, and the target feedback mode is one of the ACK/NACK feedback mode or the NACK-only feedback mode , the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback; the control signaling associated with the first feedback, the first time-frequency resource At least one of the positional relationship between the block and the second time-frequency resource block is used to determine the target feedback mode; the control signaling associated with the first feedback is used to schedule the second one of the first signal or the second signal.
  • the present application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second transmitter transmits the first signal in the first time-frequency resource block and the second signal in the second time-frequency resource block, and the first bit block is used to generate the first signal and the second signal , the first block of bits includes at least one bit;
  • a second receiver monitoring a target feedback resource for first feedback, said first feedback being used to indicate whether said first block of bits was successfully decoded
  • the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource block or the second time-frequency resource block One of the two time-frequency resource blocks is used to determine the target feedback resource; the first feedback adopts the target feedback mode, and the target feedback mode is one of the ACK/NACK feedback mode or the NACK-only feedback mode , the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback; the control signaling associated with the first feedback, the first time-frequency resource At least one of the positional relationship between the block and the second time-frequency resource block is used to determine the target feedback mode; the control signaling associated with the first feedback is used to schedule the second one of the first signal or the second signal.
  • FIG. 1A illustrates a transmission flowchart of a first node according to an embodiment of the present application
  • FIG. 1B illustrates a transmission flowchart of a first node according to an embodiment of the present application
  • FIG. 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 illustrates a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 illustrates a schematic diagram of hardware modules of a communication device according to an embodiment of the present application
  • FIG. 5A illustrates a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 5B illustrates a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6A illustrates a flowchart of a first timer according to an embodiment of the present application
  • FIG. 6B illustrates a flowchart of determining a target feedback mode according to an embodiment of the present application
  • FIG. 7A illustrates a schematic diagram of a first resource set according to an embodiment of the present application
  • FIG. 7B illustrates a flow chart of a feedback mode for determining that the target feedback mode is ACK/NACK according to an embodiment of the present application
  • FIG. 8A illustrates a schematic diagram of determining whether to send a first message in a first target resource according to at least a first time length according to an embodiment of the present application
  • FIG. 8B illustrates a schematic diagram of a feedback mode in which the second determination target feedback mode is ACK/NACK according to an embodiment of the present application
  • FIG. 9A illustrates a schematic diagram of a first target resource and a second target resource according to an embodiment of the present application
  • FIG. 9B illustrates a schematic diagram of a third feedback mode in which the target feedback mode is determined to be ACK/NACK according to an embodiment of the present application
  • FIG. 10A illustrates a schematic diagram of receiving a first signal according to an embodiment of the present application
  • FIG. 10B illustrates a schematic diagram of determining that the target feedback mode is a NACK-only feedback mode according to an embodiment of the present application
  • FIG. 11A illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application
  • FIG. 11B illustrates a time relationship diagram of a first time-frequency resource block, a second time-frequency resource block, and corresponding feedback resources according to an embodiment of the present application
  • Fig. 12A illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application
  • FIG. 12B illustrates the control signaling for separately scheduling the first signal and the second signal according to an embodiment of the present application, and the time relationship diagram between the first signal and the second signal and the first feedback resource;
  • Fig. 13 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application
  • Fig. 14 illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application.
  • Embodiment 1A illustrates a transmission flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1A .
  • the first node 100A receives the first signal in step 101A; determines whether to send the first message in the first target resource according to at least the first time length in step 102A, and the first message is used for Indicating whether the first signal is successfully decoded; when it is determined to send the first message in the first target resource, send the first message on the first target resource, and when it is determined that the first target resource is not When sending the first message, giving up sending the first message on the first target resource; wherein, the first time length is a continuous time length during which the first node does not perform target sending, or, determined by the first A timer is determined; the first target resource is associated with the first signal.
  • the first signal is received through an air interface.
  • the air interface is Uu.
  • the first signal is PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • the first signal is a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first signal is a group-common PDSCH (common group physical downlink shared channel).
  • the first signal is a group-common PDCCH (common group physical downlink control channel).
  • group-common PDCCH common group physical downlink control channel
  • the first time length includes a time length of at least one time slot.
  • the first time length includes a time length of at least one subframe.
  • the first time length includes at least 1 millisecond (ms).
  • the first target resource is reserved for a PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the first target resource is reserved for a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • decoding is performed on the first signal, and whether the decoding is successful is judged according to CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) verification.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the first signal is not successfully decoded; if the CRC verification is passed, the first signal is successfully decoded.
  • the first message is HARQ-ACK.
  • the HARQ-ACK includes either ACK or NACK.
  • the first message when the first signal is successfully decoded, the first message is ACK; when the first signal is not successfully decoded, the first message is NACK.
  • sending the first message on the first target resource includes: when using the NACK-only feedback When sending the first message in the above mode, the first message is sent on the first target resource only when the first message is NACK.
  • sending the first message on the first target resource includes: when using the NACK-only feedback mode, when the first message is ACK, the first message is not sent.
  • the phrase when it is determined to send the first message in the first target resource, sending the first message on the first target resource includes: when using the ACK/ When the first message is sent in the NACK feedback mode, the first message is sent on the first target resource.
  • the first target resource is shared by at least two nodes; the at least two nodes include the first node.
  • the first target resource is reserved for the first node.
  • sending the first message on the first target resource is abandoned.
  • the phrase, when it is determined that the first message is not sent in the first target resource, give up sending the first message on the first target resource includes: the first target resource is not used for Send the first message.
  • the phrase, when it is determined that the first message is not sent in the first target resource, abandoning sending the first message on the first target resource includes: the first target resource is used to send Signals other than said first message.
  • the first time length is a continuous time length during which the first node does not perform target sending.
  • the first time length is a time length when the first node executes the last sending of the target to the time domain resource of the first target resource.
  • the first time length is the time length from the end time of the last execution of the target sending by the first node to the start time of the time domain resource of the first target resource.
  • the first time length is a time length when the second node executes the target last time and receives the time domain resource of the first target resource.
  • the first time length is the time length from the last time when the second node performs the target reception to the start time of the time domain resource of the first target resource.
  • the receiving sent by the target is received by the target.
  • the target sending is uplink sending.
  • the target transmission does not include sidelink transmission.
  • the air interface resource occupied by the target transmission is reserved for the first node.
  • the air interface resource occupied by the target transmission is dedicated to the first node.
  • the target transmission includes PUCCH transmission.
  • the target transmission includes PUSCH transmission.
  • the target transmission includes reference signal (Reference Signal, RS) transmission.
  • Reference Signal Reference Signal
  • the reference signal includes a demodulation reference signal (Demodulation RS).
  • Demodulation RS demodulation reference signal
  • the reference signal includes a phase-tracking reference signal (Phase-tracking RS).
  • Phase-tracking RS Phase-tracking reference signal
  • the reference signal includes a sounding reference signal (Sounding RS).
  • Sounding RS Sounding reference signal
  • the target sending includes sending to a serving cell of the first node.
  • the target sending includes sending to a serving cell included in a TAG (Timing Advance Group, timing advance group); wherein, the one TAG includes at least two serving cells, and the second node in this application serving as one of the at least two serving cells.
  • TAG Tuiming Advance Group, timing advance group
  • the MAC entity of the first node judges whether the first node and any serving cell included in the one TAG are uplink time aligned (uplink time aligned); wherein, when the first node's When the MAC entity considers that the uplink timing is aligned with a serving cell in the one TAG, the MAC entity of the first node considers that it is uplink with any serving cell in the TAG except the one serving cell Timing alignment.
  • the uplink timing alignment means uplink synchronization.
  • the uplink transmission does not include uplink transmission in an unsuccessful random access procedure.
  • the uplink sending in the random access procedure includes sending Msg1 (message 1).
  • the uplink sending in the random access procedure includes sending Msg3 (message 3).
  • the uplink transmission in the random access procedure includes the transmission of MsgA (message A).
  • the random access procedure is unsuccessful.
  • the random access procedure is unsuccessful.
  • the random access procedure is unsuccessful.
  • Msg4 messages 4
  • CCCH Common Control Channel
  • SDU Service Data Unit, service data unit
  • the random access procedure is unsuccessful.
  • the random access procedure is unsuccessful.
  • the first node maintains the second timer.
  • the second timer is maintained at the physical layer.
  • the first node execution target sending is used to start or restart the second timer.
  • the expiration value of the second timer is configured by the network.
  • the first node in response to the expiry of the second timer, the first node does not perform the target sending.
  • the first time length is the time length of the time domain resource of the first target resource from the latest start of the second timer.
  • the first time length is a time length from the latest start of the second timer to the start moment of the time domain resource of the first target resource.
  • the first time length is determined by a first timer.
  • the first timer is maintained at the first node.
  • the first timer is maintained at the MAC sublayer of the first node.
  • the first timer is used by the first node to determine whether uplink is synchronized.
  • the first node determines uplink synchronization.
  • the first timer is timeAlignmentTimer (time alignment timer).
  • the phrase that the first time length is determined by the first timer includes: the first time length is that the first timer runs from the latest to the first target resource The time length of the time domain resource.
  • the phrase that the first time length is determined by the first timer includes: the first time length is that the first timer runs from the latest to the first target resource The time length of the start moment of the time domain resource.
  • the first target resource is associated with the first signal.
  • the first target resource is reserved for the first message.
  • the first target resource is reserved for NACK feedback of the first signal, or reserved for HARQ-ACK feedback of the first signal.
  • the first node monitors DCI (Downlink Control Information, downlink control information) of the first signal.
  • DCI Downlink Control Information, downlink control information
  • the first node receives the DCI of the first signal through blind detection.
  • the DCI of the first signal indicates the time-domain resources and frequency-domain resources occupied by the first signal; and receiving the first signal on the frequency domain resource.
  • the time domain resource occupied by the DCI of the first signal is used to determine the time domain resource of the first target resource.
  • the DCI of the first signal indicates a time interval between the time domain resource of the first target resource and the time domain resource occupied by the DCI of the first signal.
  • the DCI of the first signal indicates the time domain resource occupied by the first signal; the DCI of the first signal indicates the time domain of the first target resource A time interval between a resource and the time domain resource occupied by the first signal.
  • the DCI of the first signal includes a first index
  • the feedback time value indicated by the first index in the first feedback time set is the value of the time interval
  • the first feedback time set includes at least one feedback time value
  • the time domain resource occupied by the first signal is used to determine the time domain resource of the first target resource.
  • a time interval between the time domain resource occupied by the first signal and the time domain resource of the first target resource is preconfigured (preconfigured).
  • the PUCCH configuration of the first node includes a second index
  • the feedback time value indicated by the second index in the second feedback time set is the value of the time interval; wherein, The second feedback time set includes at least one feedback time value.
  • the time interval is represented by a time slot (slot).
  • the time interval is represented by an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the time interval is expressed in milliseconds (ms).
  • the time interval is indicated by a PDSCH-to-HARQ_feedback timing indicator (PDSCH-to-HARQ feedback timing indicator).
  • the value of the time interval is 0.
  • the value of the time interval is a positive integer between 0 and 15.
  • the first node receives the first signal in a preconfigured time domain resource.
  • the frequency domain resource and the code domain resource of the first target resource are preconfigured.
  • the first target resource belongs to a PUCCH resource set (ResourceSet).
  • the one PUCCH resource group includes at least one PUCCH resource.
  • the one PUCCH resource group includes 128 PUCCH resources.
  • the first target resource is a PUCCH resource in the one PUCCH resource group; the one PUCCH resource is identified by a PUCCH resource index.
  • the DCI of the first signal includes a third index, and the third index is used to indicate an index of the one PUCCH resource occupied by the first message.
  • the PUCCH resource occupied by the first message is dedicated (dedicated) or common (common) by the first node.
  • the index of the one PUCCH resource occupied by the first message is
  • the n CCE,0 is the index of the first CCE (Control Channel Element, control channel unit) occupied by the DCI of the first signal
  • the N CCE is the received DCI of the first signal
  • the ⁇ PRI is the third index; the For rounding down operation.
  • the index of the PUCCH resource occupied by the first message may be determined according to the method described in the 38.213 protocol of the 3GPP standard.
  • the time domain resource of the first target resource includes at least one OFDM symbol (symbol).
  • the frequency domain resource of the first target resource includes at least one subcarrier (subcarrier).
  • the code domain resource of the first target resource includes at least one sequence (sequence).
  • the first node is in an RRC inactive (RRC_Inactive) state.
  • the first node is in an RRC idle (RRC_Idle) state.
  • the first node is in an RRC connected (RRC_Connected) state.
  • Embodiment 1B illustrates a transmission flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1B .
  • the first node 100B receives the first signal in the first time-frequency resource block and the second signal in the second time-frequency resource block in step 101B, and the first bit block is used to generate the The first signal and the second signal, the first bit block includes at least one bit; in step 102B, it is determined in the target feedback resource whether to send the first feedback, the first feedback is used to indicate the first Whether the bit block is successfully decoded; wherein, one of the first time-frequency resource block or the second time-frequency resource block is used to determine the target feedback resource; the first feedback adopts the target feedback mode, The target feedback mode is either an ACK/NACK feedback mode or a NACK-only feedback mode, and the target feedback mode is used together with whether the first bit block is successfully decoded to determine whether to send the First feedback: at least one of the control signaling associated with the first feedback and the positional relationship between the first time-frequency resource block and the second time-frequency resource block is used to determine the target Feedback mode: the control signaling associated with the first feedback is used
  • the first signal is received in the first time-frequency resource block; the second signal is received in the second time-frequency resource block.
  • the first signal and the second signal are received through an air interface.
  • the air interface is Uu.
  • the first signal and the second signal are wireless signals respectively.
  • the first signal and the second signal are respectively PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • the first signal is a PDSCH;
  • the second signal is a group-common PDSCH (common group physical downlink shared channel).
  • the first signal is a group-common PDSCH; the second signal is a PDSCH.
  • the first time-frequency resource block and the second time-frequency resource block respectively include time-domain resources and frequency-domain resources.
  • the frequency domain resources respectively included in the first time-frequency resource block and the second time-frequency resource block are the same.
  • the frequency domain resources respectively included in the first time-frequency resource block and the second time-frequency resource block are different.
  • the frequency domain resources of one time-frequency resource block include at least one resource block (resource block, RB).
  • the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block.
  • the phrase that the start moment of the time domain resource of the first time-frequency resource block is before the start moment of the time domain resource of the second time-frequency resource block includes: the first signal The receiving moment is earlier than the receiving moment of the second signal.
  • the time-domain resource of one time-frequency resource block includes at least one OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the time-domain resource of one time-frequency resource block includes a plurality of continuous OFDM symbols.
  • the start time of the time domain resource of one time-frequency resource block is the start time of the time slot where the time domain resource of the one time-frequency resource block is located.
  • a first bit block is used to generate the first signal and the second signal.
  • the first signal and the second signal are retransmissions of the first bit block respectively.
  • the first signal is a new transmission (new transmission) of the first bit block;
  • the second signal is a retransmission (retransmission) of the first bit block.
  • the first bit block includes at least one bit (bit).
  • the first bit block is a TB (transport block, transport block).
  • the first bit block is a MAC (Medium Access Control, Media Access Control) PDU (Protocol Data Unit, Protocol Data Unit).
  • MAC Medium Access Control, Media Access Control
  • PDU Protocol Data Unit, Protocol Data Unit
  • all or part of the bits in the first bit block are used to generate the first signal and the second signal.
  • all or part of the bits in the first bit block are used together with a reference signal to generate the first signal and the second signal.
  • all or some bits in the first bit block are sequentially subjected to CRC calculation (CRC Calculation), channel coding (Channel Coding), rate matching (Rate matching), scrambling (Scrambling), modulation (Modulation) ), layer mapping (Layer Mapping), antenna port mapping (Antenna Port Mapping), mapping to virtual resource blocks (Mapping to Virtual Resource Blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from Virtual to Physical Resource Blocks), OFDM baseband signal generation (OFDM Baseband Signal Generation), modulation and up conversion (Modulation and Up conversion) to obtain the first signal and the second signal.
  • the first signal and the second signal have different HARQ redundancy version numbers (redundancy version).
  • the target feedback resource is a PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel) resource.
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the target feedback resources include at least one of time domain resources, frequency domain resources and code domain resources.
  • the time domain resource of the target feedback resource includes at least one OFDM symbol.
  • the frequency domain resource of the target feedback resource includes at least one subcarrier.
  • the code domain resource of the target feedback resource includes at least one sequence (sequence).
  • one of the first time-frequency resource block or the second time-frequency resource block is used to determine a target feedback resource.
  • the second time-frequency resource block is not used to determine the target feedback resource; and vice versa.
  • the feedback resource corresponding to the first time-frequency resource block and the feedback resource corresponding to the second time-frequency resource block belong to different time slots.
  • the feedback resource corresponding to the first time-frequency resource block and the feedback resource corresponding to the second time-frequency resource block belong to different PUCCH resource sets (ResourceSet).
  • the feedback resource corresponding to the first time-frequency resource block and the feedback resource corresponding to the second time-frequency resource block belong to different PUCCH resources ( Resource).
  • the time slot where one time-frequency resource block is located passes through the first time interval is the time slot where one feedback resource is located; wherein, the one time-frequency resource block is used to transmit one PDSCH.
  • control signaling for scheduling the PDSCH indicates the time slot where the time-frequency resource block occupied by the PDSCH is located.
  • control signaling for scheduling the PDSCH indicates the time-domain time slot of the time-frequency resource block occupied by the PDSCH.
  • control signaling for scheduling the PDSCH indicates the value of the first time interval.
  • control signaling for scheduling the PDSCH includes a first index, and the value indicated by the first index in the first feedback time set is the value of the first time interval; wherein, the first feedback time Set includes at least one feedback time value.
  • the first feedback time set includes N feedback time values; the first index is 0 indicating the first feedback time value in the first feedback time set; The first index being 1 indicates the second feedback time value in the first feedback time set; and so on.
  • the N is a positive integer not greater than 8.
  • control signaling for scheduling the PDSCH is PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • control signaling for scheduling the PDSCH is DCI (Downlink Control Information, downlink control information).
  • control signaling for scheduling the PDSCH is RRC, where the PDSCH is configured with grant (configured grant, CG) scheduling.
  • control signaling for scheduling the PDSCH is RRC and PDCCH; wherein, the PDSCH is scheduled by semi-persistent (semi-persistent).
  • the RRC signaling indicates the period of the time-domain resource occupied by the PDSCH of the semi-persistent scheduling
  • the PDCCH signaling is used to activate the semi-persistent scheduling.
  • the PDCCH signaling indicates frequency domain resources occupied by the PDSCH, and the PDCCH signaling indicates the periodic time domain resources occupied by the semi-persistently scheduled PDSCH The starting time domain resource.
  • the semi-persistent scheduling signal is sent periodically without PDCCH scheduling, which can save downlink signaling overhead and reduce the power generated by the UE for decoding PDCCH. consumption.
  • the first time interval is represented by a time slot (slot).
  • the first time interval is represented by an OFDM symbol.
  • the first time interval is expressed in milliseconds (ms).
  • the value of the first time interval is 0.
  • the value of the first time interval is a positive integer greater than 0 and not greater than 15.
  • control signaling for scheduling the PDSCH indicates the index of the feedback resource corresponding to the PDSCH.
  • the index of the feedback resource is used to indicate a PUCCH resource in a PUCCH resource group; wherein the one PUCCH resource group is configured to be dedicated by the first node or public (common).
  • one PUCCH resource group includes no more than 128 PUCCH resources.
  • the index of the feedback resource is wherein, the n CCE,0 is the first CCE index occupied by the control signaling scheduling the PDSCH; the N CCE is the number of CCEs in the CORESET received by the control signaling scheduling the PDSCH;
  • the ⁇ PRI is explicitly indicated by the control signaling for scheduling the PDSCH; the For rounding down operation.
  • the index of the feedback resource may be determined according to the method described in the 38.213 protocol of the 3GPP standard.
  • the phrase that one of the first time-frequency resource block or the second time-frequency resource block is used to determine the target feedback resource includes: scheduling the control signaling of the first signal or One of the two control signalings scheduling the second signal is used to determine the target feedback resource.
  • the first feedback is used to indicate whether the first block of bits is decoded successfully.
  • decoding is performed on the first signal, and whether the decoding is correct is judged according to CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) verification.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • the CRC verification fails, the first signal is not successfully decoded; if the CRC verification is passed, the first signal is successfully decoded.
  • combined decoding is performed on the second signal, and whether the decoding is correct is judged according to CRC verification; wherein, the first signal is not successfully decoded.
  • the second signal is not successfully decoded; if the CRC verification is passed, the second signal is successfully decoded.
  • one of the first signal or the second signal is successfully decoded, and the first bit block is successfully decoded.
  • neither the first signal nor the second signal is successfully decoded, and the first block of bits is not successfully decoded.
  • the first feedback is HARQ-ACK; and the HARQ-ACK includes either ACK or NACK.
  • the first feedback when the first bit block is successfully decoded, the first feedback is ACK; when the first bit block is not successfully decoded, the first feedback is NACK.
  • the first feedback adopts a target feedback mode
  • the target feedback mode is one of an ACK/NACK feedback mode or a NACK-only feedback mode.
  • a NACK-only feedback mode is configured for the PDSCH scrambled by the non-unicast RNTI.
  • an ACK/NACK feedback mode is configured for the PDSCH scrambled by the unicast RNTI.
  • a NACK-only feedback mode is configured for the group-common PDSCH.
  • the feedback resources are shared by at least two nodes.
  • the feedback resource is reserved for one node.
  • the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback.
  • the target feedback mode is an ACK/NACK feedback mode
  • the first feedback is sent.
  • whether to send the first feedback is determined according to whether the first bit block is successfully decoded; when the first bit block is successfully decoded code, not sending the first feedback; when the first bit block is not successfully decoded, sending the first feedback.
  • control signaling associated with the first feedback is used to determine the target feedback mode.
  • At least the former of the control signaling associated with the first feedback and the positional relationship between the first time-frequency resource block and the second time-frequency resource block is used to determine the target Feedback mode.
  • control signaling associated with the first feedback is used to schedule one of the first signal or the second signal.
  • control signaling for scheduling the first signal and the second signal is DCI.
  • control signaling for scheduling the first signal and the second signal is a PDCCH.
  • the target feedback mode is explicitly configured to be determined only by the first time-frequency resource block.
  • the target feedback mode when the first signal on the first time-frequency resource block is scrambled by the unicast RNTI, the target feedback mode is an ACK/NACK feedback mode; when the first signal on the first time-frequency resource block is scrambled by the non-unicast RNTI, the target feedback mode is a NACK-only feedback mode.
  • the target feedback resource is determined by the first time-frequency resource block.
  • the target feedback mode is explicitly configured to be determined only by the second time-frequency resource block.
  • the target feedback mode when the second signal on the second time-frequency resource block is scrambled by the unicast RNTI, the target feedback mode is an ACK/NACK feedback mode; when When the second signal on the second time-frequency resource block is scrambled by the non-unicast RNTI, the target feedback mode is a NACK-only feedback mode.
  • the target feedback resource is determined by the second time-frequency resource block.
  • the target feedback mode is implicitly configured to be determined only by the latter of the first time-frequency resource block and the second time-frequency resource block in the time domain.
  • whether the control signaling associated with the first feedback is identified by the non-unicast RNTI or identified by the unicast RNTI is used to determine the target feedback mode; when the first feedback When the associated control signaling is identified by the non-unicast RNTI, the target feedback mode is a NACK-only feedback mode; when the control signaling associated with the first feedback is identified by the unicast RNTI When identified, the target feedback mode is the ACK/NACK feedback mode.
  • the target feedback mode is determined by the second time-frequency resource block; wherein, scheduling the second signal The control signaling of is identified by the non-unicast RNTI.
  • the target feedback mode is a NACK-only feedback mode.
  • the target feedback resource is determined by the control signaling that schedules the second signal.
  • the target feedback mode is determined by the second time-frequency resource block;
  • the control signaling is identified by the unicast RNTI.
  • the target feedback mode is an ACK/NACK feedback mode.
  • the target feedback resource is determined by the control signaling that schedules the second signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates the network architecture 200 of NR 5G, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) systems.
  • NR 5G, LTE or LTE-A network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System, Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, NG-RAN (next generation radio access network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS 200 can be interconnected with other access networks, but for simplicity These entities/interfaces are not shown. As shown, the 5GS/EPS 200 provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • the XnAP protocol of the Xn interface is used to transmit control plane messages of the wireless network, and the user plane protocol of the Xn interface is used to transmit user plane data.
  • gNB203 can also be called base station, base transceiver station, wireless base station, wireless transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (Extended Service Set, ESS), TRP (Transmission Reception Point, Transmitting and receiving node) or some other suitable terminology, in the NTN network, the gNB 203 may be a satellite, an aircraft, or a ground base station relayed through satellites.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, in-vehicle devices, vehicular communication units, wearable devices, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, MP3 players
  • cameras digital audio players
  • game consoles drones
  • NB-IoT devices machine type communication devices
  • land vehicles land vehicles
  • automobiles in-vehicle devices
  • vehicular communication units wearable devices, or any other similar functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and PS (Packet Switching, packet switching) streaming services.
  • IMS
  • the UE 201 corresponds to the first node in this application.
  • the NR Node B corresponds to the second node in this application.
  • the UE 201 supports multimedia services.
  • the UE 201 supports multicast transmission.
  • the gNB203 is a macro cell (Marco Cell) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (Pico Cell) base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device supporting a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • the gNB203 supports multimedia services.
  • the gNB203 supports multicast transmission.
  • the wireless link from the UE201 to the gNB203 is an uplink.
  • the wireless link from the gNB203 to the UE201 is a downlink.
  • the UE201 and the gNB203 are connected through a Uu interface.
  • the UE201 and the UE241 are connected through a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • Embodiment 3 illustrates a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows the radio protocol architecture of the control plane 300 for UE and gNB with three layers: layer 1, layer 2 and layer 3 .
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between UE and gNB through PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304 , these sublayers are terminated at the gNB on the network side.
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides handover support for the UE between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and implements retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channel identities.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) operation.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layer.
  • the wireless protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the wireless protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the The RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce wireless Send overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, service data adaptation protocol) sublayer 356, and the SDAP sublayer 356 is responsible for QoS (Quality of Service, quality of service) flow and data radio bearer (Data Radio) Bearer, DRB) to support business diversity.
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • the wireless protocol architecture of the UE in the user plane 350 may include part or all of the protocol sublayers of the SDAP sublayer 356 , the PDCP sublayer 354 , the RLC sublayer 353 and the MAC sublayer 352 at the L2 layer.
  • the UE may also have several upper layers above the L2 layer 355, including a network layer (e.g. IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (e.g. , the application layer at the remote UE, server, etc.).
  • a network layer e.g. IP layer
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first signal in this application is generated by the PHY301 or the PHY351.
  • the second signal in this application is generated by the RRC306.
  • the second signal in this application is generated by the PHY301 or the PHY351.
  • the first message in this application is generated by the PHY301 or the PHY351.
  • the second message in this application is generated by the MAC302 or the MAC352.
  • the first feedback in this application is generated by the PHY301 or the PHY351.
  • the L2 layer 305 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • Embodiment 4 illustrates a schematic diagram of hardware modules of a communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • the second communication device 410 includes a controller/processor 475, a memory 476, a data source 477, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 In the transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network or upper layer data packets from the data source 477 are provided to Controller/processor 475. Core network and data sources 477 represent all protocol layers above the L2 layer. Controller/processor 475 implements the functionality of the L2 layer. In transmission from the second communications device 410 to the first communications device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream.
  • IFFT inverse fast Fourier transform
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover the upper layer data packets from the second communication device 410 . The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • an upper layer data packet is provided to a controller/processor 459 using a data source 467 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • Controller/processor 459 implements header compression, encryption, packet Segmentation and reordering and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from the first communication device 450 . Upper layer packets from the controller/processor 475 may be provided to the core network or all protocol layers above the L2 layer, and various control signals may be provided to the core network or L3 for L3 processing.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the The at least one processor is used together, and the first communication device 450 means at least: receiving a first signal; determining whether to send a first message in a first target resource according to at least a first time length, and the first message is used for Indicating whether the first signal is successfully decoded; when it is determined to send the first message in the first target resource, send the first message on the first target resource, and when it is determined to send the first message in the first target resource When the first message is not sent in the first target resource, give up sending the first message on the first target resource; wherein, the first time length is the continuous time that the first node does not perform target sending or, determined by a first timer; the first target resource is associated with the first signal.
  • the first communication device 450 device includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving First signal; determine whether to send a first message in the first target resource according to at least a first time length, and the first message is used to indicate whether the first signal is successfully decoded; when it is determined in the first target resource When the first message is sent in the target resource, send the first message on the first target resource, and when it is determined not to send the first message in the first target resource, give up sending the first message on the first target resource The first message is sent on a target resource; wherein, the first time length is a continuous time length during which the first node does not perform target sending, or is determined by a first timer; the first target resource is associated to the first signal.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 means at least: receiving a first signal in a first time-frequency resource block and receiving a second signal in a second time-frequency resource block, the first bit block is used For generating the first signal and the second signal, the first bit block includes at least one bit; determining whether to send a first feedback in a target feedback resource, the first feedback being used to indicate the first whether the bit block has been successfully decoded; wherein, the start time of the time domain resources of the first time-frequency resource block is before the start time of the time domain resources of the second time-frequency resource block; the first time Either one of the frequency resource block or the second time-frequency resource block is used to determine a target feedback resource; the first feedback adopts a target feedback mode, and the target feedback mode is an ACK/NACK feedback mode or only NACK
  • the first communication device 450 device includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signal is received in the first time-frequency resource block and the second signal is received in the second time-frequency resource block, the first bit block is used to generate the first signal and the second signal, and the first bit The block includes at least one bit; determine whether to send the first feedback in the target feedback resource, and the first feedback is used to indicate whether the first bit block is successfully decoded; wherein, the first time-frequency resource block The start time of the time domain resource is before the start time of the time domain resource of the second time-frequency resource block; one of the first time-frequency resource block or the second time-frequency resource block is used is used to determine the target feedback resource; the first feedback adopts the target feedback mode, and the target feedback mode is one of ACK/NACK feedback mode or NACK-only feedback mode, and the target feedback mode and the first Whether the bit block is successfully decoded is
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the The at least one processor is used together, the second communication device 410 means at least: sending a first signal; determining whether to monitor a first message in a first target resource according to at least a first time length, and the first message is used for Indicating whether the first signal has been successfully decoded; when it is determined to monitor the first message in the first target resource, monitor the first message on the first target resource, and when it is determined to monitor the first message in the first target resource When the first message is not monitored in the first target resource, give up monitoring the first message on the first target resource; wherein, the first time length is the continuous time that the second node does not perform target reception or, determined by a first timer; the first target resource is associated with the first signal.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending first signal; determine whether to monitor a first message in a first target resource according to at least a first time length, and the first message is used to indicate whether the first signal is successfully decoded; when it is determined in the first target resource When monitoring the first message in the target resource, monitor the first message on the first target resource, and when it is determined not to monitor the first message in the first target resource, abandon the The first message is monitored on a target resource; wherein the first time length is a continuous time length during which the second node does not perform target reception, or is determined by a first timer; the first target resource is associated to the first signal.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the The at least one processor is used together, the second communication device 410 means at least: sending the first signal in the first time-frequency resource block and sending the second signal in the second time-frequency resource block, the first bit block is used For generating the first signal and the second signal, the first block of bits comprises at least one bit; monitoring a first feedback in a target feedback resource, the first feedback being used to indicate that the first block of bits Whether it has been successfully decoded; wherein, the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource One of the two time-frequency resource blocks or the second time-frequency resource block is used to determine the target feedback resource; the first feedback adopts the target feedback mode, and the target feedback mode is the feedback mode of ACK/NACK or the feedback
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first signal is sent in the first time-frequency resource block and the second signal is sent in the second time-frequency resource block, the first bit block is used to generate the first signal and the second signal, and the first bit The block includes at least one bit; the first feedback is monitored in the target feedback resource, and the first feedback is used to indicate whether the first bit block is successfully decoded; wherein, the time domain of the first time-frequency resource block The starting moment of the resource is before the starting moment of the time domain resource of the second time-frequency resource block; one of the first time-frequency resource block or the second time-frequency resource block is used to determine Target feedback resource; the first feedback adopts a target feedback mode, the target feedback mode is one of ACK/NACK feedback mode or only NACK feedback mode, and the target feedback mode and the first bit block Whether it is successfully decoded is used together to determine whether
  • the first communication device 450 corresponds to the first node in this application; the second communication device 410 corresponds to the second node in this application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this The first signal in the application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456 or the controller/processor 459 is used to receive this The first signal in the application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this The second signal in the application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456 or the controller/processor 459 is used to receive this The second signal in the application.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 is used to transmit this The first message in the application.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 is used to monitor the The first message in the application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this The second message in the application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456 or the controller/processor 459 is used to receive this The second message in the application.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 is used to transmit this First feedback on application.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 is used to monitor the First feedback on application.
  • Embodiment 5A illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5A .
  • the steps in the dashed box F0A are optional. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in this application.
  • For the first node U51A receive the second signal in step S511A; receive the first signal in step S512A; determine whether to send the first message in the first target resource in step S513A; The first message is sent on the resource.
  • step S521A For the second node N52A , send the second signal in step S521A; send the first signal in step S522A; monitor the first message on the first target resource in step S523A.
  • receiving a first signal determining whether to send a first message in a first target resource according to at least a first time length, where the first message is used to indicate whether the first signal is successfully decoded; When it is determined to send the first message in the first target resource, send the first message on the first target resource, and when it is determined not to send the first message in the first target resource, give up sending the first message on the first target resource
  • the first message is sent on the target resource; wherein, the first time length is a continuous time length during which the first node does not perform target sending, or is determined by a first timer; the first target resource is associated with the first signal; receiving a second signal; wherein the second signal and the first time length are jointly used to determine whether to send the first message in the first target resource; the The second signal indicates a first resource set, and only when the first target resource belongs to the first resource set, the first time length is used to determine whether to send the first message in the first target resource ; When the value of the first time length is less than the first
  • the second node is a serving cell of the first node.
  • the second signal is received through the air interface.
  • the second signal is scrambled by a unicast RNTI (Radio Network Temporary Identifier, wireless network temporary identifier).
  • RNTI Radio Network Temporary Identifier, wireless network temporary identifier
  • the unicast RNTI is a C-RNTI (Cell-RNTI, cell radio network temporary identifier).
  • the second signal is RRC signaling.
  • the second signal is PDCCH signaling.
  • the second signal is MAC CE (Control Element, control element).
  • the second signal is DCI.
  • the second signal and the first time duration are jointly used to determine whether to send the first message in the first target resource.
  • the second signal indicates the current feedback mode of the first node, the current feedback mode is an ACK/NACK feedback mode, and one of the non-ACK/NACK feedback modes; only when When the current feedback mode is the non-ACK/NACK feedback mode, the first time length is used to determine whether to send the first message in the first target resource.
  • the non-ACK/NACK feedback mode is the NACK-only feedback mode.
  • the non-ACK/NACK feedback mode includes the NACK-only feedback mode.
  • the non-ACK/NACK feedback mode includes hybrid (hybrid) ACK/NACK and NACK-only feedback modes.
  • whether to send the first message in the first target resource has nothing to do with the first time length.
  • the second signal is used to enable (enable) or disable (disable) the first time length and is used to determine whether to send the first information.
  • the second signal indicates a first resource set; only when the first target resource belongs to the first resource set, the first time length is used to determine Whether to send the first message.
  • the first resource set includes time domain resources.
  • the first resource set includes at least one subframe (subframe).
  • the first resource set includes at least one time slot (slot).
  • the phrase that the first target resource belongs to the first resource set includes: the time domain resource of the first target resource belongs to the first resource set; wherein, the first resource Collections include temporal resources.
  • whether to send the first message in the first target resource has nothing to do with the first time length.
  • the Q value is used to generate the first resource set.
  • the Q value is a positive integer greater than 1.
  • the Q value is predefined.
  • the second signal includes the Q value.
  • the Q value is an expiration value of the first timer.
  • the unit of the Q value is a time slot.
  • the unit of the Q value is a subframe.
  • the unit of the Q value is ms.
  • the second node configures the expiration value of the first timer.
  • the second signal includes a first set of reference values.
  • the time slot belongs to the first resource set.
  • the number of time slots indicated by the Q value is the product of the Q value and 2 ⁇ , where the values of ⁇ are 0, 1, 2, 3, 4, represent the subcarrier spacing of 2 ⁇ ⁇ 15kHz (kilohertz) respectively.
  • the time slot number of the one time slot is the system frame number in which the one time slot is currently located multiplied by the number of time slots included in each frame and the number of time slots in the current frame in which the one time slot is located The sum of the slot numbers.
  • the subframe belongs to the first resource set.
  • the number of subframes indicated by the Q value is the Q value.
  • the first reference value set includes at least one reference value.
  • the first reference value set includes a reference value list.
  • the second signal includes a bitmap (bitmap) generated by N bits.
  • the bitmap is used to determine the first resource set.
  • the N bits indicate N time units.
  • the bitmap periodically defines the N time units starting from the SFN (System Frame Number, system frame number) being Q.
  • the Q is 0.
  • the Q is configured by the network.
  • the first resource set includes the time unit indicated by a bit of 1 in the bitmap.
  • the first resource set includes the time unit indicated by a bit of 0 in the bitmap.
  • the first resource set includes at least one time unit.
  • the N is a positive integer greater than 1.
  • the N is predefined.
  • the product of the N and the time length of the time unit is the same as the time length indicated by the expiration value of the first timer.
  • the time unit is a time slot.
  • the time unit is a subframe.
  • the one subframe is 1 ms.
  • the one subframe includes 2 ⁇ time slots according to the subcarrier spacing; wherein, the subcarrier spacing is 2 ⁇ ⁇ 15 kHz.
  • the one subframe when the subcarrier spacing is 15kHz, the one subframe includes 1 time slot; when the subcarrier spacing is 30kHz, the one subframe includes 2 time slots; when the When the subcarrier spacing is 60kHz, the one subframe includes 4 time slots; when the subcarrier spacing is 120kHz, the one subframe includes 8 time slots; when the subcarrier spacing is 240kHz, the The above-mentioned one subframe includes 16 time slots.
  • the value of N is the The expiration value for the first timer.
  • the value of N is 2 times the expiration value of the first timer.
  • the relationship between the value of N and the expiration value of the first timer can be deduced by analogy, which will not be repeated here.
  • the value of the first time length is less than a first threshold, it is determined to use the NACK-only feedback mode to send the first message in the first target resource.
  • the value of the first time length is greater than the first threshold, it is determined not to use the NACK-only feedback mode to send the first message in the first target resource.
  • the NACK-only feedback mode when the value of the first time length is equal to the first threshold, it is determined to use the NACK-only feedback mode to send the first message in the first target resource.
  • the value of the first time length is equal to the first threshold, it is determined not to use the NACK-only feedback mode to send the first message in the first target resource.
  • the first threshold is preconfigured.
  • the first threshold is configured by the network.
  • the first threshold is related to the moving speed of the first node.
  • the second signal indicates the first threshold.
  • the first threshold is smaller than the expiration value of the first timer.
  • the first threshold is smaller than the expiration value of the second timer.
  • the value of the second time length is a difference between the expiration value of the first timer minus the first threshold.
  • the value of the second time length is a difference between the expiration value of the second timer minus the first threshold.
  • the second time length includes at least one time slot.
  • the second time length includes multiple time slots.
  • the value of the second time length is greater than a period of semi-persistent scheduling, and the semi-persistent scheduling is used to schedule the first signal.
  • a second message is received.
  • the second message is used to adjust uplink timing.
  • the second message includes the first MAC CE.
  • the first MAC CE is a timingadvancecommand (timing advance command) MAC CE.
  • the first MAC CE is an Absoluttimingadvancecommand (absolute timing advance command) MAC CE.
  • the second node obtains uplink timing adjustment information through the target transmission; the uplink timing adjustment information is used to generate the first MAC CE.
  • the second message is used to start or restart the first timer.
  • said first timer in response to receiving said second message, is started or restarted.
  • N TA is maintained by the TAG, start or restart the first timer.
  • the N TA is used for uplink timing alignment.
  • the first MAC CE is a response to MsgA and the MsgA includes a C-RNTI MAC CE, start the first timer.
  • the first MAC CE when the first MAC CE is carried in the random access response message for a serving cell of the TAG or in the MsgB for a SpCell (Special Cell, special cell), and the first node's The random access pilot selected by the MAC entity does not belong to the contention-based random access pilot, and the first timer is started or restarted.
  • the first MAC CE when the first MAC CE is carried in the random access response message for a serving cell of the TAG or in the MsgB for the SpCell, and the first timer is not running, start the First timer.
  • the first timer is stopped when the contention resolution is unsuccessful.
  • the first timer is started or restarted according to the method described in section 5.2 of the 38.321 protocol of the 3GPP standard.
  • the first timer when the first timer expires, it is determined not to send the first message in the first target resource.
  • the uplink is not synchronized.
  • clear configured downlink assignments Configured downlink assignments
  • configured uplink grants Configured uplink grants
  • the N TA of the TAG is maintained.
  • the phrase giving up sending the first message on the first target resource includes: sending the first message on a second target resource; the second target resource is associated with the first target resource a signal.
  • the first message is sent in the second target resource by using the ACK/NACK feedback mode.
  • the second target resource is associated with the first signal.
  • the second target resource is reserved for the first message.
  • the second target resource is reserved for the first node.
  • the first node monitors the DCI of the first signal.
  • the time domain resource occupied by the DCI of the first signal is used to determine the time domain resource of the second target resource.
  • the DCI of the first signal indicates a time interval between the time domain resource of the second target resource and the time domain resource occupied by the DCI of the first signal.
  • the DCI of the first signal indicates the time domain resource occupied by the first signal; the DCI of the first signal indicates the time domain of the second target resource A time interval between a resource and the time domain resource occupied by the first signal.
  • the time domain resource occupied by the first signal is used to determine the time domain resource of the second target resource.
  • a time interval between the time domain resource occupied by the first signal and the time domain resource of the second target resource is preconfigured (preconfigured).
  • the frequency domain resource and the code domain resource of the second target resource are preconfigured.
  • the second target resource belongs to a PUCCH resource set (ResourceSet).
  • the second target resource is a PUCCH resource in the one PUCCH resource group; the one PUCCH resource is identified by a PUCCH resource index.
  • the time domain resource of the second target resource includes at least one OFDM symbol (symbol).
  • the frequency domain resource of the second target resource includes at least one subcarrier.
  • the code domain resource of the second target resource includes at least one sequence (sequence).
  • the first signal is scrambled by a non-unicast RNTI.
  • the non-unicast RNTI is a G-RNTI (Group-RNTI, group radio network temporary identifier).
  • the non-unicast RNTI is G-CS-RNTI (Group Configured Scheduling-RNTI, group configured scheduling radio network temporary identifier).
  • target receivers of the signal scrambled by the non-unicast RNTI include at least two nodes, and the at least two nodes include the first node.
  • the non-unicast RNTI is used to uniquely identify a service in the serving cell of the first node.
  • the non-unicast RNTI is used to scramble data transmission on a multicast radio bearer (multicast radio bearer, MRB).
  • MRB multicast radio bearer
  • the one signal is scrambled by the non-unicast RNTI.
  • the target receivers of the DCI identified by the non-unicast RNTI include at least two nodes, and the at least two nodes include the first node.
  • the one DCI is identified by the one RNTI.
  • the one DCI is identified by the one RNTI.
  • the one DCI is identified by the one RNTI.
  • the one DCI is identified by the one RNTI.
  • an RNTI when an RNTI is used to generate an RS (Reference Signal, reference signal) sequence of a DMRS (DeModulation Reference Signal, demodulation reference signal) corresponding to the PDCCH of a DCI, the DCI is used by the RNTI logo.
  • RS Reference Signal
  • reference signal Reference Signal
  • DMRS DeModulation Reference Signal, demodulation reference signal
  • the PDCCH when a PDCCH is addressed to an RNTI, the PDCCH is identified by the RNTI.
  • the second node monitors the first message on the first target feedback resource.
  • the second node monitors the first message on the second target feedback resource.
  • the meaning of monitoring includes monitoring (monitor).
  • the phrase monitoring the first message includes: determining whether the first message exists through energy monitoring.
  • the phrase monitoring the first message includes: determining whether the first message exists through coherent detection.
  • the phrase monitoring the first message includes: determining whether the first message exists through broadband detection.
  • the phrase monitoring the first message includes: determining whether the first message exists through correlation detection.
  • the phrase monitoring the first message includes: determining whether the first message exists through synchronous detection.
  • the phrase monitoring the first message includes: determining whether the first message exists through waveform detection.
  • the phrase monitoring the first message includes: determining whether the first message exists through maximum likelihood detection.
  • the phrase monitoring the first message includes: determining whether the first message exists through blind decoding detection.
  • Embodiment 5B illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5B .
  • the steps in the dashed box F0B are optional.
  • For the first node U51 B receive the first signal in step S511B; receive the second signal in step S512B; determine whether to send the first feedback in step S513B; send the first feedback on the target feedback resource in step S514B.
  • the first signal is received in the first time-frequency resource block and the second signal is received in the second time-frequency resource block, and the first bit block is used to generate the first signal and the second Signal, the first bit block includes at least one bit; determine whether to send first feedback in the target feedback resource, the first feedback is used to indicate whether the first bit block is successfully decoded; wherein, the The start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource block or the second time-frequency resource block One of the two is used to determine a target feedback resource; the first feedback adopts a target feedback mode, and the target feedback mode is either an ACK/NACK feedback mode or a NACK-only feedback mode, and the target The feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback; the control signaling associated with the first feedback, the first time-frequency resource block, and the At least one of the positional relationships between the second time
  • the second node is a serving cell of the first node.
  • the one serving cell corresponds to one HARQ entity; the one HARQ entity includes at least one HARQ process; any HARQ process in the at least one HARQ process is associated with one HARQ process number.
  • a HARQ entity directs the HARQ information and the TB received from the DL-SCH (Downlink Shared CHannel, downlink shared channel) to the HARQ process.
  • DL-SCH Downlink Shared CHannel, downlink shared channel
  • the configuration in this application is performed by the second node, including: the second node sends configuration information to the first node.
  • control signaling for scheduling the first signal is identified by the non-unicast RNTI
  • control signaling for scheduling the second signal is identified by the unicast RNTI
  • the control signaling scheduling the first signal is identified by the non-unicast RNTI
  • the control signaling associated with the first feedback is used to schedule the second signal , determining that the target feedback mode is an ACK/NACK feedback mode; determining that the target feedback resource is determined by the second time-frequency resource block; wherein, the control signaling for scheduling the second signal is determined by the single Broadcast the RNTI identifier.
  • the non-unicast RNTI is reserved for at least two nodes, and the at least two nodes include the first node.
  • the one signal is scrambled by the non-unicast RNTI.
  • target recipients of the control signaling identified by the non-unicast RNTI include at least two nodes, and the at least two nodes include the first node.
  • target receivers of the signal scrambled by the non-unicast RNTI include at least two nodes, and the at least two nodes include the first node.
  • the non-unicast RNTI is used to uniquely identify a service in the serving cell of the first node.
  • the non-unicast RNTI is used to scramble data transmission on a multicast radio bearer (multicast radio bearer, MRB).
  • MRB multicast radio bearer
  • the non-unicast RNTI is a G-RNTI (Group-RNTI, group radio network temporary identifier).
  • the non-unicast RNTI is G-CS-RNTI (Group Configured Scheduling-RNTI, group configured scheduling radio network temporary identifier).
  • the non-unicast RTNI is used to identify dynamic scheduling signaling.
  • the non-unicast RNTI is used to identify signaling for scheduling new transmission or retransmission; wherein, the non-unicast RNTI is the G-RNTI.
  • the non-unicast RNTI is only used to identify signaling for scheduling retransmission; wherein, the non-unicast RNTI is G-CS-RNTI; the retransmission is for new transmissions scheduled by semi-persistent scheduling ; The newly transmitted signal is scrambled by the G-RNTI.
  • the unicast RNTI is reserved for the first node.
  • the control signaling for scheduling a signal is identified by a unicast RNTI
  • the one signal is scrambled by the unicast RNTI.
  • the target recipient of the control signaling identified by the unicast RNTI is the first node.
  • the target receiver of the signal scrambled by the unicast RNTI is the first node.
  • the unicast RNTI is used to uniquely identify the first node in the serving cell of the first node.
  • the unicast RNTI is a C-RNTI (cell-RNTI, cell radio network temporary identifier).
  • the unicast RNTI is a CS-RNTI (Configured Scheduling-RNTI, configured scheduling radio network temporary identifier).
  • CS-RNTI Configured Scheduling-RNTI, configured scheduling radio network temporary identifier
  • the unicast RNTI is used to identify dynamic scheduling signaling.
  • the unicast RNTI is used to identify signaling for scheduling new transmission or retransmission; wherein, the unicast RNTI is a C-RNTI.
  • the unicast RNTI is only used to identify the signaling for scheduling retransmission; wherein, the unicast RNTI is CS-RNTI; the retransmission is for a new transmission scheduled by semi-persistent scheduling; the new The transmitted signal is scrambled by the C-RNTI or scrambled by the G-RNTI.
  • the one DCI is identified by the one RNTI.
  • the one DCI is identified by the one RNTI.
  • the one DCI is identified by the one RNTI.
  • the one DCI is identified by the one RNTI.
  • an RNTI when an RNTI is used to generate an RS (Reference Signal, reference signal) sequence of a DMRS (DeModulation Reference Signal, demodulation reference signal) corresponding to the PDCCH of a DCI, the DCI is used by the RNTI logo.
  • RS Reference Signal
  • reference signal Reference Signal
  • DMRS DeModulation Reference Signal, demodulation reference signal
  • the PDCCH when a PDCCH is addressed to an RNTI, the PDCCH is identified by the RNTI.
  • control signaling for scheduling the first signal is identified by the unicast RNTI
  • control signaling for scheduling the second signal is identified by the non-unicast RNTI
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein the control signaling scheduling the second signal is identified by the non-unicast RNTI.
  • the first feedback resource is determined by the first time-frequency resource block.
  • the first feedback resource is determined by the control signaling that schedules the first signal.
  • the first feedback resource is a feedback resource corresponding to the first time-frequency resource block.
  • the first feedback resource is reserved for HARQ-ACK feedback of whether the first signal is successfully decoded.
  • the first feedback is used to schedule the first signal.
  • the first feedback The associated control signaling is used to schedule the first signal.
  • control signaling for scheduling the first signal is identified by the unicast RNTI and when the time domain resource of the second time-frequency resource block is far from the first feedback resource
  • the control signaling associated with the first feedback is used to schedule the first signal.
  • the target feedback mode is an ACK/NACK feedback mode.
  • the target feedback resource is determined to be the first feedback resource.
  • the time interval between the time-domain resource of the second time-frequency resource block and the time-domain resource of the first feedback resource in the phrase includes: the time interval of the time-domain resource of the second time-frequency resource block The time interval between the end time of the time slot where the time domain resource is located and the start time of the time slot where the time domain resource is located in the first feedback resource.
  • the time interval between the time-domain resource of the second time-frequency resource block and the time-domain resource of the first feedback resource in the phrase includes: the time interval of the time-domain resource of the second time-frequency resource block The time between the end moment of the last OFDM of the at least one OFDM symbol included in the time domain resource and the start moment of the first OFDM symbol of the at least one OFDM symbol included in the time domain resource of the first feedback resource interval.
  • the time interval is represented by a time slot.
  • the time interval is represented by OFDM symbols.
  • the time interval is expressed in milliseconds.
  • the first time length is represented by a time slot.
  • the first time length is represented by OFDM symbols.
  • the first time length is expressed in milliseconds.
  • the first time length is configurable.
  • the first time length is a combined decoding time length of the second signal.
  • the first time length is a maximum time length of combined decoding of the second signal.
  • the first time length is a positive integer greater than 0 and not greater than 15.
  • the first node reports the first time length to the second node through a UE capability (capability) IE (Information element, information element).
  • UE capability Capability
  • Information element Information element
  • the first feedback The associated control signaling is used to schedule the second signal.
  • control signaling for scheduling the first signal is identified by the unicast RNTI and when the time domain resource of the second time-frequency resource block is far from the first feedback resource When the time interval of the time domain resource is less than the first time length, the control signaling associated with the first feedback is used to schedule the second signal.
  • the first signal is not successfully decoded.
  • the target feedback mode is a NACK-only feedback mode.
  • determining the target feedback resource is determined by the second time-frequency resource block.
  • the control signaling for scheduling the first signal is identified by the unicast RNTI and when the time domain resource of the second time-frequency resource block is far from the first feedback resource When the time interval of the time domain resource is less than the first time length, the control signaling associated with the first feedback is used to schedule the first signal; wherein, the first signal is successfully decoded .
  • the target feedback mode is an ACK/NACK feedback mode.
  • determining the target feedback resource is determined by the first time-frequency resource block.
  • the first signal and the second signal belong to a same HARQ process of a same HARQ entity.
  • the HARQ process number indicated by the control signaling for scheduling the first signal is the same as the HARQ process number indicated by the control signaling for scheduling the second signal.
  • the time slot where the time-frequency resource block of the signal is located is used to determine the HARQ process number.
  • whether to send the first feedback is determined according to whether the first bit block is successfully decoded, specifically: when the first bit block is decoded If the decoding is successful, the first feedback is not sent; when the first bit block is not successfully decoded, the first feedback is sent; when the target feedback mode is the ACK/NACK feedback mode, the first feedback is sent a feedback.
  • the second node monitors the first feedback on the target feedback resource.
  • the meaning of monitoring includes monitoring (monitor).
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through energy monitoring.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through coherent detection.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through broadband detection.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through correlation detection.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through synchronous detection.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through waveform detection.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through maximum likelihood detection.
  • the phrase monitoring the first feedback includes: determining whether the first feedback exists through blind decoding detection.
  • Embodiment 6A illustrates a flow chart of the first timer according to an embodiment of the present application, as shown in FIG. 6A .
  • the steps of FIG. 6A are performed at the first node.
  • step S601A start the first timer; in step S602A, update the first timer in the next first time interval; in step S603A, judge whether the first timer expires, if yes, end, if not, Jump back to step S602A.
  • the first timer when the first timer is running, the first timer is updated every first time interval.
  • the first time interval is 1 millisecond.
  • the first time interval is a subframe (subframe).
  • the first time interval is a time slot (slot).
  • the expiration value of the first timer and the first time interval use the same measurement unit.
  • the phrase updating the first timer includes: adding 1 to the value of the first timer; when the When the value of the first timer is the expiration value of the first timer, the first timer expires.
  • the phrase updating the first timer includes: setting the The value of the first timer is decremented by 1; when the value of the first timer is 0, the first timer expires.
  • the first timer is in the running state after being started or restarted; and the first timer stops running after it expires.
  • the next first time interval is an upcoming millisecond.
  • the next first time interval is an upcoming subframe.
  • the next first time interval is an upcoming time slot.
  • the flow of the second timer is the same as that of the first timer, and will not be repeated here.
  • Embodiment 6B illustrates a flow chart of determining a target feedback mode according to an embodiment of the present application, as shown in FIG. 6B .
  • the first signal is received in step S601B; the second signal is received in step S602B; in step S603B, it is judged whether the control signaling for scheduling the first signal is identified by a non-unicast RNTI; if yes, step S607B is executed , if no, execute step S604B; in step S604B, determine whether the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is not less than the first time length; if yes, execute step S607B , if no, execute step S605B; in step S605B, judge whether the first signal is successfully decoded; if yes, execute step S607B, if no, execute step S606B; in step S606B, determine that the target feedback mode is only NACK Feedback mode: In step S607B, it is determined that the target feedback mode is the ACK/NACK feedback mode.
  • control signaling for scheduling the first signal is identified by the non-unicast RNTI; the control signaling for scheduling the second signal is identified by the unicast RNTI.
  • control signaling for scheduling the first signal is identified by the unicast RNTI; the control signaling for scheduling the second signal is identified by the non-unicast RNTI.
  • the control signaling scheduling the first signal is identified by the non-unicast RNTI and the control signaling scheduling the second signal is identified by the unicast RNTI, it is determined that the The above target feedback mode is the feedback mode of ACK/NACK.
  • the control signaling scheduling the first signal is identified by the unicast RNTI and the control signaling scheduling the second signal is identified by the non-unicast RNTI, if the The time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is not less than the first time length, and it is determined that the target feedback mode is ACK/NACK feedback model.
  • the time interval between the time-domain resource of the second time-frequency resource block and the time-domain resource of the first feedback resource is not less than the first time length indication
  • the second signal is decoded before the time-domain resource of the first feedback resource and the first feedback is generated.
  • the control signaling scheduling the first signal is identified by the unicast RNTI and the control signaling scheduling the second signal is identified by the non-unicast RNTI, if the The time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is less than the first time length, further determined according to whether the first signal is successfully decoded
  • the target feedback mode when the first signal is successfully decoded, determine that the target feedback mode is an ACK/NACK feedback mode; when the first signal is not successfully decoded, determine that the target feedback mode is Feedback mode for NACK only.
  • the time interval between the time-domain resource of the second time-frequency resource block and the time-domain resource of the first feedback resource is less than the first time length indicating the The second signal has not been decoded before the time domain resource of the first feedback resource, and the first feedback is not generated.
  • the target feedback resource is determined to be the first feedback resource; if the The first signal has not been successfully decoded, performing combined decoding on the second signal, and determining that the target feedback resource is the feedback resource corresponding to the second time-frequency resource block.
  • Embodiment 7A illustrates a schematic diagram of a first resource set according to an embodiment of the present application, as shown in FIG. 7A .
  • the first resource set includes time domain resources.
  • the time-domain resources are configured by the network.
  • the time-domain resources are periodic.
  • the time domain resources other than the first resource set in the time domain are the second resource set.
  • the second resource set when the first resource set includes the time unit indicated by the bit in the bitmap being 0; the second resource set includes the time unit indicated by the bit in the bitmap being 1 the time unit.
  • the second resource set when the first resource set includes the time unit indicated by the bit in the bitmap being 1; the second resource set includes the time unit indicated by the bit in the bitmap being 0 the time unit.
  • the second resource set includes at least one time unit.
  • the expiration value of the first timer is used to determine that the N can ensure that the first node performs the target transmission at least once before the first timer expires for the The second node obtains the uplink timing adjustment information.
  • Embodiment 7B illustrates a flow chart of a feedback mode for determining that the target feedback mode is ACK/NACK according to an embodiment of the present application, as shown in FIG. 7B .
  • the target feedback mode is the ACK/NACK feedback mode
  • the two conditions include: the control signaling that schedules the first signal is received by the non- A unicast RNTI identifier, the control signaling that schedules the second signaling is identified by the unicast RNTI.
  • Embodiment 8A illustrates a schematic diagram of determining whether to send a first message in a first target resource according to at least a first time length according to an embodiment of the present application, as shown in FIG. 8A .
  • the NACK-only feedback mode when the value of the first time length is not greater than the first threshold, it is determined to use the NACK-only feedback mode to send the first message in the first target resource.
  • the value of the first time length is greater than the first threshold, it is determined to use the ACK/NACK feedback mode in the second target resource to send the first message.
  • sending the first message by the first node in the ACK/NACK feedback mode is used to determine the first time length.
  • the first node Sending the first message in the NACK-only feedback mode can save feedback resources.
  • the first node when the value of the first time length is greater than the first threshold, because the first node has not sent the target for a long time, or the first node has not received the target for a long time
  • the uplink timing adjustment information issued by the second node the first node is only a short time away from uplink out of sync, and at this time, the first node uses the ACK/NACK feedback mode to send the first message so that The second node obtains the uplink timing adjustment information by measuring the channel through which the first message is sent.
  • the first message is sent in the first target resource in the NACK-only feedback mode.
  • the first target resource belongs to the first resource set, and the value of the first time length is not greater than the first threshold, it is determined to use
  • the first message is sent in the NACK-only feedback mode.
  • the first target resource belongs to the first resource set, and the value of the first time length is greater than the first threshold, it is determined to use the Send the first message in the ACK/NACK feedback mode.
  • sending the first message in the NACK-only feedback mode in the first target resource can save feedback resources.
  • the first target resource belongs to the first resource set, further determine whether the first target resource is in the first target resource according to whether the value of the first time length is greater than the first threshold
  • Sending the first message can save feedback resources while avoiding that the first node does not perform the target sending for a long time so that the second node cannot obtain uplink timing adjustment information.
  • the first message is sent in the first target resource using the NACK-only feedback mode; when the When the first target resource belongs to the first resource set and the value of the first time length is not greater than the first threshold, determine to use the NACK-only feedback mode to send in the first target resource The first message; when the first target resource belongs to the first resource set and the value of the first time length is greater than the first threshold, determine to use the second target resource in the second target resource Send the first message in the ACK/NACK feedback mode.
  • Embodiment 8B illustrates a schematic diagram of a second feedback mode in which the target feedback mode is determined to be ACK/NACK according to an embodiment of the present application, as shown in FIG. 8B .
  • the target feedback mode is the ACK/NACK feedback mode
  • the three conditions include: the control signaling that schedules the first signal is controlled by the A unicast RNTI identifier, the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is not less than the first time length, and the second signal is scheduled
  • the control signaling of is identified by the non-unicast RNTI.
  • Embodiment 9A illustrates a schematic diagram of a first target resource and a second target resource according to an embodiment of the present application, as shown in FIG. 9A .
  • the first target resource and the second target resource are respectively associated with the first signal.
  • the first target resource is different from the second target resource.
  • the first The target resource is different from the second target resource.
  • the first target resource and the second target resource belong to different PUCCH resource groups.
  • the first target resource and the second target resource belong to different PUCCH resources (Resource) in the same PUCCH resource set (ResourceSet).
  • the first target resource and the second target resource belong to the same PUCCH resource group and have different PUCCH resource indexes.
  • the second signal indicates to send the first message in the second target resource.
  • Embodiment 9B illustrates a schematic diagram of a third feedback mode in which the target feedback mode is determined to be ACK/NACK according to an embodiment of the present application, as shown in FIG. 9B .
  • the target feedback mode is the ACK/NACK feedback mode
  • the four conditions include: the control signaling that schedules the first signal is controlled by the A unicast RNTI identifier, the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is less than the first time length, and the first signal is successfully Decoding, the control signaling for scheduling the second signal is identified by the non-unicast RNTI.
  • Embodiment 10A illustrates a schematic diagram of receiving a first signal according to an embodiment of the present application, as shown in FIG. 10A .
  • the first signal is sent through multicast.
  • the receivers of the first signal include at least two nodes, and the at least two nodes include the first node.
  • the receivers of the first signal include M nodes, where M is a positive integer not less than 2.
  • Embodiment 10B illustrates a schematic diagram of determining that the target feedback mode is a NACK-only feedback mode according to an embodiment of the present application, as shown in FIG. 10B .
  • the target feedback mode is a NACK-only feedback mode
  • the four conditions include: the control signaling scheduling the first signal is received by the single Broadcast the RNTI identifier, the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is less than the first time length, and the first signal is unsuccessful Decoding, the control signaling for scheduling the second signal is identified by the non-unicast RNTI.
  • Embodiment 11A illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG. 11A .
  • a first node processing device 1100A includes a first receiver 1101A and a first transmitter 1102A.
  • the first receiver 1101A includes at least one of the transmitter/receiver 418 (including the antenna 420) in the accompanying drawing 4 of the present application, the receiving processor 470, the multi-antenna receiving processor 472 or the controller/processor 475;
  • a transmitter 1102A includes at least one of the transmitter/receiver 418 (including the antenna 420 ), the transmit processor 416 , the multi-antenna transmit processor 471 or the controller/processor 475 shown in FIG. 4 of the present application.
  • the first receiver 1101A receives the first signal; the first transmitter 1102A determines whether to send the first message in the first target resource according to at least a first time length, and the first message is used for Indicating whether the first signal is successfully decoded; when it is determined to send the first message in the first target resource, send the first message on the first target resource, and when it is determined to send the first message in the first target resource When the first message is not sent in the first target resource, give up sending the first message on the first target resource; wherein, the first time length is the continuous time that the first node does not perform target sending or, determined by a first timer; the first target resource is associated with the first signal.
  • the first receiver 1101A receives a second signal; wherein, the second signal and the first time length are jointly used to determine whether to send the second signal in the first target resource a message.
  • the first receiver 1101A receives a second signal; wherein, the second signal and the first time length are jointly used to determine whether to send the second signal in the first target resource A message; the second signal indicates a first resource set, and only when the first target resource belongs to the first resource set, the first time length is used to determine whether to send in the first target resource the first message.
  • the value of the first time length is less than a first threshold, it is determined to use a NACK-only feedback mode to send the first message in the first target resource.
  • the first receiver 1101A receives a second message, and the second message is used to start or restart the first timer; wherein, when the first timer expires, it is determined The first message is not sent in the first target resource.
  • the phrase giving up sending the first message on the first target resource includes: sending the first message on a second target resource; the second target resource is associated with the first target resource a signal.
  • the first signal is scrambled by a non-unicast RNTI.
  • Embodiment 11 B illustrates a time relationship diagram of the first time-frequency resource block, the second time-frequency resource block and the corresponding feedback resources according to an embodiment of the present application, as shown in FIG. 11B .
  • the time domain resource of the target feedback resource is not earlier than the time domain resource of the second time-frequency resource block.
  • the start time of the time domain resource of the target feedback resource is not earlier than the end time of the time domain resource of the second time-frequency resource block.
  • the start time of the time domain resource of the target feedback resource is the start of the first OFDM symbol in the at least one OFDM symbol included in the time domain resource of the target feedback resource time.
  • the end time of the time-domain resource of the second time-frequency resource block is the time of the last OFDM symbol in at least one OFDM symbol included in the time-domain resource of the second time-frequency resource block end moment.
  • the end time of the time domain resource of the second time-frequency resource block is the end time of the time slot where the time domain resource of the second time-frequency resource block is located.
  • the time-domain resource of the feedback resource corresponding to the first time-frequency resource block and the time-domain resource of the feedback resource corresponding to the second time-frequency resource block are in the After the time-domain resource of the second time-frequency resource block.
  • Embodiment 12A illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application, as shown in FIG. 12A .
  • the second node processing device 1200A includes a second receiver 1201A and a second transmitter 1202A.
  • the second receiver 1201A includes at least one of the transmitter/receiver 418 (including the antenna 420) in the accompanying drawing 4 of the present application, the receiving processor 470, the multi-antenna receiving processor 472 or the controller/processor 475;
  • the second transmitter 1202A includes at least one of the transmitter/receiver 418 (including the antenna 420 ), the transmit processor 416 , the multi-antenna transmit processor 471 or the controller/processor 475 in FIG. 4 of the present application.
  • the second transmitter 1202A transmits the first signal; the second receiver 1201A determines whether to monitor the first message in the first target resource according to at least a first time length, and the first message is used for Indicating whether the first signal has been successfully decoded; when it is determined to monitor the first message in the first target resource, monitor the first message on the first target resource, and when it is determined to monitor the first message in the first target resource When the first message is not monitored in the first target resource, give up monitoring the first message on the first target resource; wherein, the first time length is the continuous time that the second node does not perform target reception or, determined by a first timer; the first target resource is associated with the first signal.
  • the second transmitter 1202A transmits a second signal; wherein, the second signal and the first time length are jointly used to determine whether to monitor the first target resource in the first target resource a message.
  • the second transmitter 1202A transmits a second signal; wherein, the second signal and the first time length are jointly used to determine whether to monitor the first target resource in the first target resource A message; the second signal indicates a first resource set, and only when the first target resource belongs to the first resource set, the first time length is used to determine whether to monitor in the first target resource the first message.
  • the first message when the value of the first time length is less than a first threshold, it is determined to monitor the first message in the first target resource; the first message only includes NACK.
  • the second transmitter 1202A sends a second message, and the second message is used to start or restart the first timer; wherein, when the first timer expires, it is determined The first message is not monitored in the first target resource.
  • the phrase giving up monitoring the first message on the first target resource includes: monitoring the first message in a second target resource; the second target resource is associated with the first target resource a signal.
  • the first signal is scrambled by a non-unicast RNTI.
  • Embodiment 12B illustrates the control signaling for separately scheduling the first signal and the second signal according to an embodiment of the present application, and the time relationship diagram between the first signal and the second signal and the first feedback resource, as shown in FIG. 12B shown.
  • the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is the starting point of the time domain resource of the first feedback resource
  • the time difference of the end time of the time-domain resource of the second time-frequency resource block is subtracted from the start time.
  • the time domain resource of the first feedback resource is after the time domain resource occupied by the control signaling that schedules the second signal.
  • the time domain resource of the first feedback resource is behind the time domain resource of the second time-frequency resource block.
  • a time interval between the time-domain resource of the second time-frequency resource block and the time-domain resource of the first feedback resource is a non-negative number.
  • the time-domain resource of the first feedback resource is after the time-domain resource occupied by the control signaling for scheduling the second signal and before the time-domain resource of the second time-frequency resource block. Before the time domain resource.
  • the time interval between the time-domain resource of the second time-frequency resource block and the time-domain resource of the first feedback resource is a negative number.
  • the time domain resource of the first feedback resource is behind the time domain resource of the second time-frequency resource block.
  • the time-domain resource of the first feedback resource is after the time-domain resource occupied by the control signaling that schedules the second signal and in the second time-frequency resource block Before the time-domain resource of .
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG. 13 .
  • the first node processing device 1300 includes a first receiver 1301 and a first transmitter 1302 .
  • the first receiver 1301 includes at least one of the transmitter/receiver 454 (including the antenna 452) in the accompanying drawing 4 of the application, the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459;
  • a transmitter 1302 includes at least one of transmitter/receiver 454 (including antenna 452 ), transmit processor 468 , multi-antenna transmit processor 457 or controller/processor 459 in FIG. 4 of the present application.
  • the first receiver 1301 receives the first signal in the first time-frequency resource block and the second signal in the second time-frequency resource block, and the first bit block is used to generate the first signal and the second signal, the first bit block includes at least one bit; the first transmitter 1302 determines whether to send the first feedback in the target feedback resource, and the first feedback is used to indicate the first whether the bit block has been successfully decoded; wherein, the start time of the time domain resources of the first time-frequency resource block is before the start time of the time domain resources of the second time-frequency resource block; the first time Either one of the frequency resource block or the second time-frequency resource block is used to determine a target feedback resource; the first feedback adopts a target feedback mode, and the target feedback mode is an ACK/NACK feedback mode or only NACK One of the two feedback modes, the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback; the control signaling associated with the first feedback , at least one of the positional relationship between the
  • the target feedback mode is an ACK/NACK feedback mode; wherein, the non-unicast RNTI is reserved for at least two nodes, and the at least two nodes include the first node; the target feedback resource is determined by The second time-frequency resource block is determined.
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein, the unicast RNTI is reserved for the first node; and the first feedback resource is determined by the first time-frequency resource block.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein, the unicast RNTI is reserved for the first node; the first feedback resource is determined by the first time-frequency resource block; when the When the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is not less than a first time length, the control signaling associated with the first feedback Used to schedule the first signal, the target feedback mode is an ACK/NACK feedback mode; wherein the target feedback resource is the first feedback resource.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein, the unicast RNTI is reserved for the first node; the first feedback resource is determined by the first time-frequency resource block; when the When the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is less than the first time length, the control signal associated with the first feedback The command is used to schedule the second signal, and the target feedback mode is a NACK-only feedback mode; wherein, the target feedback resource is determined by the second time-frequency resource block; the first signal has not been successfully interpreted code.
  • the first signal and the second signal belong to a same HARQ process of a same HARQ entity.
  • the first transmitter 1302 when the target feedback mode is a NACK-only feedback mode, determines whether to send the first feedback according to whether the first bit block is successfully decoded; when the The target feedback mode is an ACK/NACK feedback mode, and the first feedback is sent.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application, as shown in FIG. 14 .
  • the second node processing device 1400 includes a second receiver 1401 and a second transmitter 1402 .
  • the second receiver 1401 includes at least one of the transmitter/receiver 418 (including the antenna 420) in the accompanying drawing 4 of the present application, the receiving processor 470, the multi-antenna receiving processor 472 or the controller/processor 475;
  • the second transmitter 1402 includes at least one of the transmitter/receiver 418 (including the antenna 420 ), the transmit processor 416 , the multi-antenna transmit processor 471 or the controller/processor 475 in FIG. 4 of the present application.
  • the second transmitter 1402 transmits the first signal in the first time-frequency resource block and the second signal in the second time-frequency resource block, and the first bit block is used to generate the first signal and the second signal, the first bit block includes at least one bit;
  • the second receiver 1401 monitors the first feedback in the target feedback resource, and the first feedback is used to indicate the first bit block Whether it has been successfully decoded; wherein, the start time of the time domain resource of the first time-frequency resource block is before the start time of the time domain resource of the second time-frequency resource block; the first time-frequency resource One of the two time-frequency resource blocks or the second time-frequency resource block is used to determine the target feedback resource;
  • the first feedback adopts the target feedback mode, and the target feedback mode is the feedback mode of ACK/NACK or the feedback of only NACK One of the two modes, the target feedback mode and whether the first bit block is successfully decoded are used together to determine whether to send the first feedback;
  • the control signaling used to schedule the first signal is identified by a non-unicast RNTI
  • the control signaling associated with the first feedback is used to schedule the second signal
  • the target feedback mode is an ACK/NACK feedback mode
  • the non-unicast RNTI is reserved for at least two nodes, and the at least two nodes include receivers of the first signal; the target feedback resource is determined by the second time-frequency resource block.
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein, the unicast RNTI is reserved for the receiver of the first signal; the first feedback resource consists of the first time-frequency resource block OK.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein, the unicast RNTI is reserved for the first node; the first feedback resource is determined by the first time-frequency resource block; when the When the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is not less than a first time length, the control signaling associated with the first feedback Used to schedule the first signal, the target feedback mode is an ACK/NACK feedback mode; wherein the target feedback resource is the first feedback resource.
  • the control signaling used to schedule the first signal is identified by a unicast RNTI
  • the time domain resource of the first feedback resource and the time domain resource of the second time-frequency resource block The positional relationship between is used to determine the target feedback mode; wherein, the unicast RNTI is reserved for the first node; the first feedback resource is determined by the first time-frequency resource block; when the When the time interval between the time domain resource of the second time-frequency resource block and the time domain resource of the first feedback resource is less than the first time length, the control signal associated with the first feedback The command is used to schedule the second signal, and the target feedback mode is a NACK-only feedback mode; wherein, the target feedback resource is determined by the second time-frequency resource block; the first signal has not been successfully interpreted code.
  • the first signal and the second signal belong to a same HARQ process of a same HARQ entity.
  • the target feedback mode is only NACK feedback mode
  • whether the first bit block is successfully decoded is used to determine whether to send the first feedback; when the target feedback mode is ACK/ NACK feedback mode, the first feedback is sent.
  • the first type of communication node or UE or terminal in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC (enhanced Machine Type Communication, enhanced machine type communication) devices, NB-IoT devices , vehicle communication equipment, wireless communication equipment such as aircraft, aircraft, drones, remote control aircraft, etc.
  • the second type of communication node or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP (Transmission and Reception Point, transmission and receiving point), relay satellites, satellite base stations, air base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信中的方法和装置。第一节点接收第一信号;根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。本申请可以有效进行HARQ-ACK反馈,同时达到节省反馈资源和维持上行同步的有益效果。

Description

一种被用于无线通信中的方法和装置 技术领域
本申请涉及一种被用于无线通信系统中的方法和装置,尤其涉及无线通信中针对多播传输维持上行同步的方法和装置。
背景技术
虽然多播/广播(multicast/broadcast)传输特性在5G(Fifth Generation)最早的版本,即版本15和版本16中不支持,但是在很多重要的应用场景,比如公共安全(public safety)和紧急任务(mission critical),V2X(Vehicle-to-Everything,车联网)应用,软件交付(software delivery)和小组通信(group communications)等,多播/广播通信的一对多传输特性可以显著提升系统性能和用户体验。
为了支持多播/广播通信,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#78次全会和RAN#80次全会之间讨论了5G广播演进,总结了两条技术特征,一是地面广播,二是混合模式多播。地面广播仅包括广播传输的传输模式,仅针对下行链路,通过大功率高架设发射塔实现大范围覆盖。5G广播业务的架构演进研究项目(SI,Study Item)在SA(Service and System Aspects)#85次会议上获得通过,其中目标A为在5GS(5G system,5G系统)中使能MBS(multicast/broadcast service,多播/广播业务)并使能识别的用例(use cases)。
发明内容
发明人通过研究发现,UE(User Equipment,用户设备)可以通过多播传输接收MBS业务。针对多播传输的可靠性需求,UE可以被配置HARQ-ACK(Hybrid Automatic Repeat Request-ACKnowledgement,混合自动重传请求-确定)反馈以提高传输可靠性;同时针对多播组包括较多组员的特点,UE可以被配置仅NACK(NACK-only,Negative ACKnowledgment,否定)的反馈模式以节省反馈资源。仅NACK的反馈模式中,反馈资源被多播组中的所有UE共享,当译码失败,UE反馈NACK,当译码成功,UE不反馈。如果UE在一段时间内一直译码成功,UE没有上行反馈;即使UE有NACK反馈,由于共享反馈资源,基站无法识别反馈NACK的UE,因此基站无法利用PUCCH或PUSCH信道进行上行定时测量,也无法向UE发送上行定时调整命令,引起UE上行失步。本申请公开了一种针对MBS业务采用多播传输和HARQ-ACK反馈时的维持上行同步(synchronization)的解决方案。
发明人通过研究发现,UE(User Equipment,用户设备)在RRC(Radio Resource Control,无线资源控制)连接(Connected)状态可以通过多播传输的传输模式或单播传输的传输模式接收MBS业务。基站可以为不同UE配置不同的传输模式和/或HARQ重传模式,比如可以为小区中心UE配置多播传输/多播HARQ重传以提高频谱效率;可以为小区边缘UE配置多播传输/单播HARQ重传以更好的适配UE信道;也可以为小区边缘UE配置多播传输/单播HARQ重传和多播HARQ重传以更好的利用多次重传进行合并译码提高译码成功率。以基站和UE同时支持单播HARQ重传和多播HARQ重传为例进行说明,假设基站先进行多播HARQ重传,然后进行单播HARQ重传。由于重传针对同一个HARQ进程(process),如果遵从HARQ进程的停等(stop-and-wait)机制,即基站在发送多播HARQ重传并接收到HARQ-ACK反馈后再发送单播HARQ重传,则重传延时大;如果支持在接收到多播HARQ重传的HARQ-ACK之前发送单播HARQ重传,则如何针对两次HARQ重传进行HARQ-ACK反馈需要研究。比如多播HARQ重传译码失败,单播HARQ重传译码成功,针对多播传输配置仅NACK反馈,针对单播传输配置ACK/NACK反馈。如果UE同时在多播HARQ重传对应的反馈资源上反馈NACK,又在单播HARQ重传对应的反馈资源上反馈ACK;基站由于无法识别NACK来自于这个已经成功译码的UE还是其它UE,可能导致基站进行又一次重传,浪费资源;同时UE进行两次HARQ-ACK反馈浪费UE电量。本申请公开了一种针对MBS业务支持多播传输,多播HARQ重传和单播HARQ重传时确定HARQ-ACK反馈的解决方案。
虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。此外,不同场景(包括但不限于下行通信场景,NR(New Radio,新空口)V2X场景等)采用统一解决方案还有助于降低硬件复杂度和成本。 在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到任一其它节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信号;
根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;
其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,本申请适用于针对MBS业务支持多播传输和HARQ-ACK反馈的场景。
作为一个实施例,本申请适用于下行传输。
作为一个实施例,本申请可以扩展到副链路传输。
作为一个实施例,本申请适用于UE处于RRC(Radio Resource Control,无线资源控制)连接状态。
作为一个实施例,本申请适用于UE处于RRC非活跃状态。
作为一个实施例,本申请适用于UE处于RRC空闲状态。
作为一个实施例,通过仅NACK的HARQ-ACK反馈可以有效节省系统的反馈资源。
作为一个实施例,本申请要解决的问题是:在采用仅NACK的反馈模式进行HARQ-ACK反馈时,由于UE在共享的反馈资源上反馈使得基站无法识别UE,进一步无法进行上行定时测量,也无法向UE发送上行定时调整命令,引起UE上行失步。
作为一个实施例,本申请的解决方案包括:当UE在预设的时间长度内没有执行目标发送或者维持上行同步的计时器运行时间超过所述预设的时间长度,UE采用ACK/NACK的反馈模式进行HARQ-ACK反馈。
作为一个实施例,本申请的有益效果包括:根据预设的时间长度确定UE采用所述仅NACK的反馈模式还是所述ACK/NACK的反馈模式,可以同时达到节省反馈资源和维持上行同步的有益效果,包括:所述仅NACK的反馈模式中反馈资源被多播组的所有UE共享可以节省反馈资源;所述ACK/NACK的反馈模式中反馈资源是UE专用的,基站可以识别UE并进行上行定时测量反馈,有效维持UE上行同步,避免由于上行失步而无法进行HARQ-ACK反馈。
根据本申请的一个方面,包括:
接收第二信号;
其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,所述第二信号被用于配置所述第一节点的HARQ-ACK反馈模式。
根据本申请的一个方面,包括:
所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息。
根据本申请的一个方面,包括:
当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中采用仅NACK的反馈模式发送所述第一消息。
根据本申请的一个方面,包括:
接收第二消息,所述第二消息被用于开始或重新开始所述第一计时器;
其中,当所述第一计时器过期时,确定在所述第一目标资源中不发送所述第一消息。
作为一个实施例,所述第一节点维持所述第一计时器。
作为一个实施例,所述第一计时器被所述第一节点的MAC(Medium Access Control,媒体接入控制)实体(entity)判断所述第一节点和所述第一阶段的服务小区是否维持上行同步。
根据本申请的一个方面,包括:
所述短语放弃在所述第一目标资源上发送所述第一消息包括:在第二目标资源中发送所述第一消息;所述第二目标资源被关联到所述第一信号。
作为一个实施例,所述第二目标资源预留给所述第一节点,所述第一节点的所述服务小区可以利用发送所述第一消息的信道进行上行定时测量获得上行定时调整信息。
根据本申请的一个方面,包括:
所述第一信号被非单播RNTI加扰。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信号;
根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;
其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述目标发送的接收者为所述第二节点。
作为一个实施例,所述第一节点确定的所述第一时间长度和所述第二节点确定的所述第一时间长度是一致的。
根据本申请的一个方面,包括:
发送第二信号;
其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否监测所述第一消息。
根据本申请的一个方面,包括:
所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否监测所述第一消息。
根据本申请的一个方面,包括:
当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中监测所述第一消息;所述第一消息仅包括NACK。
根据本申请的一个方面,包括:
发送第二消息,所述第二消息被用于开始或重新开始所述第一计时器;
其中,当所述第一计时器过期时,确定在所述第一目标资源中不监测所述第一消息。
作为一个实施例,所述第二节点通过发送所述第二消息触发所述第一节点开始或重新开始所述第一计时器;所述第二节点配置所述第一计时器的过期值;因此所述第二节点可以判断所述第一计时器是否过期。
根据本申请的一个方面,包括:
所述短语放弃在所述第一目标资源上监测所述第一消息包括:在第二目标资源中监测所述第一消息;所述第二目标资源被关联到所述第一信号。
根据本申请的一个方面,包括:
所述第一信号被非单播RNTI加扰。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信号;
第一发射机,根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;
其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信号;
第二接收机,根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;
其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;
在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;
其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,本申请适用于针对MBS业务同时支持多播传输/多播HARQ重传和单播传输/单播HARQ重传的场景。
作为一个实施例,不同UE可以配置不同的传输模式和HARQ重传模式。
作为一个实施例,本申请针对可靠性要求高的MBS业务。
作为一个实施例,本申请适用于一个HARQ实体的一个HARQ进程。
作为一个实施例,本申请适用于在一个服务小区内的传输。
作为一个实施例,本申请适用于动态调度和半持续调度的单播和多播传输。
作为一个实施例,本申请适用于下行传输。
作为一个实施例,本申请可以扩展到副链路传输。
作为一个实施例,在同时支持单播HARQ重传和多播HARQ重传时,通过多播HARQ重传提高频谱利用率,通过单播HARQ重传提高链路适配性。
作为一个实施例,本申请要解决的问题是:在一个HARQ进程上针对接收的信号进行HARQ-ACK反馈前,接收到第二个信号,如何选择HARQ反馈资源和HARQ反馈模式。
作为一个实施例,本申请的解决方案包括:当UE在一个HARQ进程上同时接收到两个传输时,根据两个传输的传输模式和/或两个传输的先后关系确定HARQ-ACK的反馈模式和反馈资源。
作为一个实施例,本申请的有益效果包括:有效进行HARQ-ACK反馈,避免基站不必要的HARQ重传,提高频谱效率,同时达到UE节电的效果。
根据本申请的一个方面,包括:
当用于调度所述第一信号的所述控制信令被非单播RNTI标识时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为ACK/NACK的反馈模式;
其中,所述非单播RNTI被预留给至少两个节点,所述至少两个节点包括所述第一节点;所述目标反馈资源由所述第二时频资源块确定。
作为一个实施例,当用于调度所述第一信号的所述控制信令被非单播RNTI(Radio Network Temporary Identifier,无线网络临时标识)标识时,确定所述第一反馈所关联的所述控制信令始终为调度所述第二信号的所述控制信令。
作为一个实施例,上述方法在调度所述第二信号的所述控制信令被单播RNTI标识时,既可以在所述第一节点的专用反馈资源上发送HARQ-ACK使基站可以获得准确的信息,同时可以减少UE反馈次数,提高UE节电效果。
根据本申请的一个方面,包括:
当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;
其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,进一步根据所述第二信号在所述第一信号对应的反馈资源之前是否能完成合并译码确定所述目标反馈模式和目标反馈资源。
根据本申请的一个方面,包括:
当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号,所述目标反馈模式为ACK/NACK的反馈模式;
其中,所述目标反馈资源为所述第一反馈资源。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,如果所述第二信号在所述第一信号对应的反馈资源之前能完成合并译码并生成所述第一反馈,则在所述第一节点的所述专用反馈资源上发送HARQ-ACK,可以使基站可以获得准确的信息,同时可以减少UE反馈次数,提高UE节电效果。
根据本申请的一个方面,包括:
当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为仅NACK的反馈模式;
其中,所述目标反馈资源由所述第二时频资源块确定;所述第一信号未被成功译码。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,如果所述第二信号在所述第一信号对应的反馈资源之前不能完成合并译码,则确定所述第一反馈所关联的所述控制信令始终为调度所述第二信号的所述控制信令。
根据本申请的一个方面,包括:
所述第一信号和所述第二信号属于同一个HARQ实体的同一个HARQ进程。
根据本申请的一个方面,包括:
当所述目标反馈模式为仅NACK的反馈模式,根据所述第一比特块是否被成功译码确定是否发送所述第一反馈;当所述目标反馈模式为ACK/NACK的反馈模式,发送所述第一反馈。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一时频资源块中发送第一信号和在第二时频资源块中发送第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;
在目标反馈资源中监测第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;
其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
根据本申请的一个方面,包括:
当用于调度所述第一信号的所述控制信令被非单播RNTI标识时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为ACK/NACK的反馈模式;
其中,所述非单播RNTI被预留给至少两个节点,所述至少两个节点包括所述第一信号的接收者;所述目标反馈资源由所述第二时频资源块确定。
根据本申请的一个方面,包括:
当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;
其中,所述单播RNTI被预留给所述第一信号的所述接收者;所述第一反馈资源由所述第一时频资源块确定。
根据本申请的一个方面,包括:
当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号,所述目标反馈模式为ACK/NACK的反馈模式;
其中,所述目标反馈资源为所述第一反馈资源。
根据本申请的一个方面,包括:
当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为仅NACK的反馈模式;
其中,所述目标反馈资源由所述第二时频资源块确定;所述第一信号未被成功译码。
根据本申请的一个方面,包括:
所述第一信号和所述第二信号属于同一个HARQ实体的同一个HARQ进程。
根据本申请的一个方面,包括:
当所述目标反馈模式为仅NACK的反馈模式,所述第一比特块是否被成功译码被用于确定是否发送所述第一反馈;当所述目标反馈模式为ACK/NACK的反馈模式,所述第一反馈被发送。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;
第一发射机,在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;
其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,在第一时频资源块中发送第一信号和在第二时频资源块中发送第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;
第二接收机,在目标反馈资源中监测第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;
其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1A示例了根据本申请的一个实施例的第一节点的传输流程图;
图1B示例了根据本申请的一个实施例的第一节点的传输流程图;
图2示例了根据本申请的一个实施例的网络架构的示意图;
图3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示例了根据本申请的一个实施例的通信设备的硬件模块示意图;
图5A示例了根据本申请的一个实施例的无线信号传输流程图;
图5B示例了根据本申请的一个实施例的无线信号传输流程图;
图6A示例了根据本申请的一个实施例的第一计时器的流程图;
图6B示例了根据本申请的一个实施例的确定目标反馈模式的流程图;
图7A示例了根据本申请的一个实施例的第一资源集合示意图;
图7B示例了根据本申请的一个实施例的确定目标反馈模式是ACK/NACK的反馈模式流程图;
图8A示例了根据本申请的一个实施例的根据至少第一时间长度确定在第一目标资源中是否发送第一消息的示意图;
图8B示例了根据本申请的一个实施例的第二个确定目标反馈模式是ACK/NACK的反馈模式的示意图;
图9A示例了根据本申请的一个实施例的第一目标资源和第二目标资源的示意图;
图9B示例了根据本申请的一个实施例的第三个确定目标反馈模式是ACK/NACK的反馈模式的示意图;
图10A示例了根据本申请的一个实施例的接收第一信号示意图;
图10B示例了根据本申请的一个实施例的确定目标反馈模式是仅NACK的反馈模式的示意图;
图11A示例根据本申请的一个实施例的第一节点中的处理装置的结构框图;
图11B示例了根据本申请的一个实施例的第一时频资源块,第二时频资源块和分别对应的反馈资源的时间关系图;
图12A示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图;
图12B示例根据本申请的一个实施例的分别调度第一信号和第二信号的控制信令,第一信号和第二信号与所述第一反馈资源的时间关系图;
图13示例根据本申请的一个实施例的第一节点中的处理装置的结构框图;
图14示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1A
实施例1A示例了根据本申请的一个实施例的第一节点的传输流程图,如附图1A所示。
在实施例1A中,第一节点100A在步骤101A中接收第一信号;在步骤102A中根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在第一目标资源中发送第一消息时,在所述第一目标资源上发送所述第一消息,当确定在第一目标资源中不发送第一消息时,放弃在所述第一目标资源上发送所述第一消息;其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,通过空中接口接收所述第一信号。
作为一个实施例,所述空中接口为Uu。
作为一个实施例,所述第一信号为PDSCH(Physical Downlink Shared Channel,物理下行链路共享信道)。
作为一个实施例,所述第一信号为PDCCH(Physical Downlink Control Channel,物理下行链路控制信道)。
作为一个实施例,所述第一信号为group-common PDSCH(公共组物理下行链路共享信道)。
作为一个实施例,所述第一信号为group-common PDCCH(公共组物理下行链路控制信道)。
作为一个实施例,根据至少第一时间长度确定在第一目标资源中是否发送第一消息。
作为一个实施例,所述第一时间长度包括至少一个时隙的时间长度。
作为一个实施例,所述第一时间长度包括至少一个子帧的时间长度。
作为一个实施例,所述第一时间长度包括至少1毫秒(ms)。
作为一个实施例,所述第一目标资源被预留给PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)。
作为一个实施例,所述第一目标资源被预留给PUSCH(Physical Uplink Shared Channel,物理上行链路共享信道)。
作为一个实施例,对所述第一信号执行译码,根据CRC(Cyclic Redundancy Check,循环冗余校验)验证判断译码是否成功。
作为一个实施例,如果未能通过CRC验证,所述第一信号未被成功译码;如果通过CRC验证,所述第一信号被成功译码。
作为一个实施例,所述第一消息是HARQ-ACK。
作为一个实施例,所述HARQ-ACK包括ACK或NACK二者之一。
作为一个实施例,当所述第一信号被成功译码,所述第一消息是ACK;当所述第一信号未被成功译码,所述第一消息是NACK。
作为一个实施例,当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息。
作为一个实施例,所述短语当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息包括:当采用所述仅NACK的反馈模式发送第一消息时,仅当所述第一消息为NACK时,在所述第一目标资源上发送所述第一消息。
作为一个实施例,所述短语当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息包括:当采用所述仅NACK的反馈模式发送第一消息时,当所述第一消息为ACK时,不发送所述第一消息。
作为一个实施例,所述短语当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息包括:当采用所述所述ACK/NACK的反馈模式发送第一消息时,在所述第一目标资源上发送所述第一消息。
作为一个实施例,当采用所述仅NACK的反馈模式时,所述第一目标资源被至少两个节点共享;所述至少两个节点包括所述第一节点。
作为一个实施例,当采用所述所述ACK/NACK的反馈模式时,所述第一目标资源被预留给所述第一节点。
作为一个实施例,当确定在第一目标资源中不发送第一消息时,放弃在所述第一目标资源上发送所述第一消息。
作为一个实施例,所述短语当确定在第一目标资源中不发送第一消息时,放弃在所述第一目标资源上发送所述第一消息包括:所述第一目标资源不被用于发送所述第一消息。
作为一个实施例,所述短语当确定在第一目标资源中不发送第一消息时,放弃在所述第一目标资源上发送所述第一消息包括:所述第一目标资源被用于发送除所述第一消息之外的信号。
作为一个实施例,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度。
作为一个实施例,所述第一时间长度为所述第一节点最近一次执行所述目标发送到所述第一目标资源的时域资源的时间长度。
作为一个实施例,所述第一时间长度为所述第一节点最近一次执行所述目标发送的结束时刻到所述第一目标资源的所述时域资源的起始时刻的时间长度。
作为一个实施例,所述第一时间长度为所述第二节点最近一次执行所述目标接收到所述第一目标资源的时域资源的时间长度。
作为一个实施例,所述第一时间长度为所述第二节点最近一次执行所述目标接收的结束时刻到所述第一目标资源的所述时域资源的起始时刻的时间长度。
作为一个实施例,针对所述目标发送的接收为所述目标接收。
作为一个实施例,所述目标发送为上行发送。
作为一个实施例,所述目标发射不包括副链路(Sidelink)发送。
作为一个实施例,所述目标发送所占用的空口资源被预留给所述第一节点。
作为一个实施例,所述目标发送所占用的空口资源是所述第一节点专用的。
作为一个实施例,所述目标发送包括PUCCH发送。
作为一个实施例,所述目标发送包括PUSCH发送。
作为一个实施例,所述目标发射包括参考信号(Reference Signal,RS)发送。
作为一个实施例,所述参考信号包括解调参考信号(Demodulation RS)。
作为一个实施例,所述参考信号包括相位跟踪参考信号(Phase-tracking RS)。
作为一个实施例,所述参考信号包括探测参考信号(Sounding RS)。
作为一个实施例,所述目标发送包括针对所述第一节点的服务小区的发送。
作为一个实施例,所述目标发送包括向一个TAG(Timing Advance Group,定时提前组)中包括的服务小区的发送;其中,所述一个TAG包括至少两个服务小区,本申请中的第二节点为所述至少两个服务小区中的一个服务小区。
作为一个实施例,所述第一节点的MAC实体判断所述第一节点和所述一个TAG中包括的任一服务小区是否上行定时对齐(uplink time aligned);其中,当所述第一节点的所述MAC实体认为和所述一个TAG中的一个服务小区上行定时对齐时,所述第一节点的所述MAC实体认为和所述TAG中除所述一个服务小区之外的任一服务小区上行定时对齐。
作为一个实施例,所述上行定时对齐的意思是上行同步。
作为一个实施例,所述上行发送不包括不成功的随机接入过程中的上行发送。
作为一个实施例,所述随机接入过程中的上行发送包括Msg1(消息1)的发送。
作为一个实施例,所述随机接入过程中的上行发送包括Msg3(消息3)的发送。
作为一个实施例,所述随机接入过程中的上行发送包括MsgA(消息A)的发送。
作为一个实施例,当竞争解决(Contention Resolution)不成功时,所述随机接入过程不成功。
作为一个实施例,当随机接入导频发送次数大于配置的最大导频发送次数(preambleTransMax)时,所述随机接入过程不成功。
作为一个实施例,当在随机接入响应窗口中未接收到所包括的随机接入导频标识(Random Access Preamble identifiers)和发送的随机接入导频索引(PREAMBLE_INDEX)相匹配的随机接入响应时,所述随机接入过程不成功。
作为一个实施例,当Msg4(消息4)中包括的UE竞争解决标识和Msg3中发送的CCCH(Common Control Channel,公共控制信道)SDU(Service Data Unit,业务数据单元)不匹配时,所述随机接入过程不成功。
作为一个实施例,当MsgB(消息B)中包括的UE竞争解决标识和MsgA中发送的CCCH SDU不匹配时,所述随机接入过程不成功。
作为一个实施例,当随机接入竞争解决计时器过期时,所述随机接入过程不成功。
作为一个实施例,所述第一节点维持第二计时器。
作为一个实施例,所述第二计时器在物理层维持。
作为一个实施例,所述第一节点执行目标发送被用于开始或重新开始所述第二计时器。
作为一个实施例,所述第二计时器的过期值由网络配置。
作为一个实施例,作为所述第二计时器过期的响应,所述第一节点不执行所述目标发送。
作为一个实施例,所述第一时间长度为所述第二计时器最近一次开始一直运行到所述第一目标资源的所述时域资源的时间长度。
作为一个实施例,所述第一时间长度为所述第二计时器从最近一次开始一直运行到所述第一目标资源的所述时域资源的所述起始时刻的时间长度。
作为一个实施例,所述第一时间长度由第一计时器确定。
作为一个实施例,所述第一计时器在所述第一节点维持。
作为一个实施例,所述第一计时器在所述第一节点的MAC子层维持。
作为一个实施例,所述第一计时器被所述第一节点用于确定上行是否同步。
作为一个实施例,当所述第一计时器在运行时,所述第一节点确定上行同步。
作为一个实施例,所述第一计时器为timeAlignmentTimer(时间对齐计时器)。
作为一个实施例,所述短语所述第一时间长度由所述第一计时器确定包括:所述第一时间长度为所述第一计时器从最近一次开始一直运行到所述第一目标资源的所述时域资源的时间长度。
作为一个实施例,所述短语所述第一时间长度由所述第一计时器确定包括:所述第一时间长度为所述第一计时器从最近一次开始一直运行到所述第一目标资源的所述时域资源的所述起始时刻的时间长度。
作为一个实施例,所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第一目标资源被预留给所述第一消息。
作为一个实施例,所述第一目标资源被预留给所述第一信号的NACK反馈,或者被预留给所述第一信号的HARQ-ACK反馈。
作为一个实施例,所述第一节点监测所述第一信号的DCI(Downlink Control Information,下行链路控制信息)。
作为一个实施例,所述第一节点通过盲检测接收所述第一信号的所述DCI。
作为一个实施例,所述第一信号的所述DCI指示所述第一信号所占用的时域资源和频域资源;所述第一节点在所述第一信号所占用的所述时域资源和所述频域资源上接收所述第一信号。
作为一个实施例,所述第一信号的所述DCI所占用的时域资源被用于确定所述第一目标资源的所述时域资源。
作为一个实施例,所述第一信号的所述DCI指示所述第一目标资源的所述时域资源距离所述第一信号的所述DCI所占用的时域资源的时间间隔。
作为一个实施例,所述第一信号的所述DCI指示所述第一信号所占用的所述时域资源;所述第一信号的所述DCI指示所述第一目标资源的所述时域资源距离所述第一信号所占用的所述时域资源的时间间隔。
作为上述两个实施例的一个子实施例,所述第一信号的所述DCI包括第一索引,第一反馈时间集中由所述第一索引指示的反馈时间值为所述时间间隔的值;其中,所述第一反馈时间集中包括至少一个反馈时间值。
作为一个实施例,所述第一信号所占用的时域资源被用于确定所述第一目标资源的所述时域资源。
作为一个实施例,所述第一信号所占用的所述时域资源距离所述第一目标资源的所述时域资源的时间间隔是预配置(preconfigured)的。
作为所述实施例的一个子实施例,所述第一节点的PUCCH配置包括第二索引,第二反馈时间集中由所述第二索引指示的反馈时间值为所述时间间隔的值;其中,所述第二反馈时间集中包括至少一个反馈时间值。
作为一个实施例,所述时间间隔以时隙(slot)表示。
作为一个实施例,所述时间间隔以OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)表示。
作为一个实施例,所述时间间隔以毫秒(ms)表示。
作为一个实施例,所述时间间隔由PDSCH-to-HARQ_feedback timing indicator(PDSCH到HARQ反馈时间指标)指示。
作为一个实施例,所述时间间隔的值为0。
作为一个实施例,所述时间间隔的值为0和15之间的正整数。
作为一个实施例,所述第一节点在预配置的时域资源接收所述第一信号。
作为一个实施例,所述第一目标资源的频域资源和码域资源是预配置的。
作为一个实施例,所述第一目标资源属于一个PUCCH资源组(ResourceSet)。
作为一个实施例,所述一个PUCCH资源组包括至少一个PUCCH资源。
作为一个实施例,所述一个PUCCH资源组包括128个PUCCH资源。
作为一个实施例,所述第一目标资源为所述一个PUCCH资源组中的一个PUCCH资源;所述一个PUCCH资源由一个PUCCH资源索引所标识。
作为一个实施例,所述第一信号的所述DCI包括第三索引,所述第三索引被用于指示所述第一消息所占用的所述一个PUCCH资源的索引。
作为一个实施例,所述第一消息所占用的所述PUCCH资源被所述第一节点专用(dedicated)或为公共(common)的。
作为一个实施例,所述第一消息所占用的所述一个PUCCH资源的所述索引为
Figure PCTCN2022116020-appb-000001
其中,所述n CCE,0为所述第一信号的所述DCI占用的第一个CCE(Control Channel Element,控制信道单元)索引;所述N CCE为所述第一信号的所述DCI接收的CORESET(Control Resource Set,控制资源集)中的CCE数;所述Δ PRI为所述第三索引;所述
Figure PCTCN2022116020-appb-000002
为向下取整运算。
作为一个实施例,所述第一消息所占用的所述PUCCH资源的所述索引可以根据3GPP标准的38.213协议中描述的方法确定。
作为一个实施例,所述第一目标资源的时域资源包括至少一个OFDM符号(symbol)。
作为一个实施例,所述第一目标资源的所述频域资源包括至少一个子载波(subcarrier)。
作为一个实施例,所述第一目标资源的所述码域资源包括至少一个序列(sequence)。
作为一个实施例,所述第一节点处于RRC非活跃(RRC_Inactive)状态。
作为一个实施例,所述第一节点处于RRC空闲(RRC_Idle)状态。
作为一个实施例,所述第一节点处于RRC连接(RRC_Connected)状态。
实施例1B
实施例1B示例了根据本申请的一个实施例的第一节点的传输流程图,如附图1B所示。
在实施例1B中,第一节点100B在步骤101B中在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;在步骤102B中在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,在第一时频资源块中接收第一信号;在第二时频资源块中接收第二信号。
作为一个实施例,通过空中接口接收所述第一信号和所述第二信号。
作为一个实施例,所述空中接口为Uu。
作为一个实施例,所述第一信号和所述第二信号分别为无线信号。
作为一个实施例,所述第一信号和所述第二信号分别为PDSCH(Physical Downlink Shared Channel,物理下行链路共享信道)。
作为上述实施例的一个子实施例,所述第一信号为PDSCH;所述第二信号为group-common PDSCH(公共组物理下行链路共享信道)。
作为上述实施例的一个子实施例,所述第一信号为group-common PDSCH;所述第二信号为PDSCH。
作为一个实施例,所述第一时频资源块和所述第二时频资源块分别包括时域资源和频域资源。
作为一个实施例,所述第一时频资源块和所述第二时频资源块分别包括的所述频域资源相同。
作为一个实施例,所述第一时频资源块和所述第二时频资源块分别包括的所述频域资源不同。
作为一个实施例,一个时频资源块的频域资源包括至少一个子载波(subcarrier)。
作为一个实施例,一个时频资源块的频域资源包括至少一个资源块(resource block,RB)。
作为一个实施例,所述一个资源块包括12个子载波。
作为一个实施例,所述第一时频资源块的所述时域资源的起始时刻在所述第二时频资源块的所述时域资源的起始时刻之前。
作为一个实施例,所述短语所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前包括:所述第一信号的接收时刻早于所述第二信号的接收时刻。
作为一个实施例,一个时频资源块的时域资源包括至少一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(symbol)。
作为一个实施例,一个时频资源块的时域资源包括连续多个OFDM符号。
作为一个实施例,一个时频资源块的时域资源的起始时刻为所述一个时频资源块的所述时域资源包括的至少一个OFDM符号中的第一个OFDM符号的起始时刻。
作为一个实施例,一个时频资源块的时域资源的起始时刻为所述一个时频资源块的所述时域资源所在的时隙的起始时刻。
作为一个实施例,第一比特块被用于生成所述第一信号和所述第二信号。
作为一个实施例,所述第一信号和所述第二信号分别为所述第一比特块的重传。
作为一个实施例,所述第一信号为所述第一比特块的新传输(new transmission);所述第二信号为所述第一比特块的重传(retransmission)。
作为一个实施例,所述第一比特块包括至少一个比特(bit)。
作为一个实施例,所述第一比特块包括至少一个字节(Byte)。
作为一个实施例,所述第一比特块为一个TB(transport block,传输块)。
作为一个实施例,所述第一比特块为一个MAC(Medium Access Control,媒体接入控制)PDU(Protocol Data Unit,协议数据单元)。
作为一个实施例,所述第一比特块中的全部或部分比特被用于生成所述第一信号和所述第二信号。
作为一个实施例,所述第一比特块中的全部或部分比特和参考信号一起被用于生成所述第一信号和所述第二信号。
作为一个实施例,所述第一比特块中的全部比特或部分比特依次经过CRC计算(CRC Calculation),信道编码(Channel Coding),速率匹配(Rate matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Up conversion)得到所述第一信号和所述第二信号。
作为一个实施例,所述第一信号和所述第二信号具有不同的HARQ冗余版本号(redundancy version)。
作为一个实施例,在目标反馈资源中确定是否发送第一反馈。
作为一个实施例,所述目标反馈资源为PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)资源。
作为一个实施例,所述目标反馈资源包括时域资源,频域资源和码域资源中的至少之一。
作为一个实施例,所述目标反馈资源的所述时域资源包括至少一个OFDM符号。
作为一个实施例,所述目标反馈资源的所述频域资源包括至少一个子载波。
作为一个实施例,所述目标反馈资源的所述码域资源包括至少一个序列(sequence)。
作为一个实施例,所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源。
作为一个实施例,当所述第一时频资源块被用于确定所述目标反馈资源时;所述第二时频资源块不被用于确定所述目标反馈资源;反之亦然。
作为一个实施例,所述第一时频资源块对应的反馈资源和所述第二时频资源块对应的反馈资源属于不同的时隙。
作为一个实施例,所述第一时频资源块对应的所述反馈资源和所述第二时频资源块对应的所述反馈资源属于不同的PUCCH资源组(ResourceSet)。
作为一个实施例,所述第一时频资源块对应的所述反馈资源和所述第二时频资源块对应的所述反馈资源属于同一个PUCCH资源组(ResourceSet)中的不同的PUCCH资源(Resource)。
作为一个实施例,一个时频资源块所在的时隙经过第一时间间隔为一个反馈资源所在的时隙;其中,所述一个时频资源块被用于传输一个PDSCH。
作为一个实施例,调度所述PDSCH的控制信令指示所述PDSCH占用的所述时频资源块所在的时隙。
作为一个实施例,调度所述PDSCH的控制信令指示所述PDSCH占用的所述时频资源块的时域时隙。
作为一个实施例,调度所述PDSCH的控制信令指示所述第一时间间隔的值。
作为一个实施例,调度所述PDSCH的控制信令包括第一索引,第一反馈时间集中由所述第一索引指示的值为所述第一时间间隔的值;其中,所述第一反馈时间集中包括至少一个反馈时间值。
作为一个实施例,所述第一节点的PUCCH配置包括第一索引,第一反馈时间集中由所述第一索引指示的值为所述第一时间间隔的值;其中,所述第一反馈时间集中包括至少一个反馈时间值。
作为上述两个实施例的一个子实施例,所述第一反馈时间集中包括N个反馈时间值;所述第一索引为0指示所述第一反馈时间集中的第一个反馈时间值;所述第一索引为1指示所述第一反馈时间集中的第二个反馈时间值;以此类推。
作为一个实施例,所述N为不大于8的正整数。
作为一个实施例,调度所述PDSCH的控制信令为PDCCH(Physical Downlink Control Channel,物理下行链路控制信道)。
作为一个实施例,调度所述PDSCH的控制信令为DCI(Downlink Control Information,下行链路控制信息)。
作为一个实施例,调度所述PDSCH的控制信令为RRC,其中,所述PDSCH被配置授予(configured grant,CG)调度。
作为一个实施例,调度所述PDSCH的控制信令为RRC和PDCCH;其中,所述PDSCH被半持续(semi-persistent)调度。
作为上述实施例的一个子实施例,所述RRC信令指示所述半持续调度的PDSCH所占用的时域资源的周期,所述PDCCH信令被用于激活(activate)所述半持续调度。
作为上述实施例的一个子实施例,所述PDCCH信令指示所述PDSCH所占用的频域资源,所述PDCCH信令指示所述半持续调度的PDSCH所占用的所述周期性时域资源的起始时域资源。
作为一个实施例,当一个半持续调度被激活后,被所述半持续调度的信号周期性发送而不需要PDCCH调度,可以节约下行信令开销,同时降低UE用于译码PDCCH而产生的功耗。
作为一个实施例,所述第一时间间隔以时隙(slot)表示。
作为一个实施例,所述第一时间间隔以OFDM符号表示。
作为一个实施例,所述第一时间间隔以毫秒(ms)表示。
作为一个实施例,所述第一时间间隔由PDSCH-to-HARQ_feedback timing indicator(PDSCH到HARQ反馈时间指标)指示。
作为一个实施例,所述第一时间间隔的值为0。
作为一个实施例,所述第一时间间隔的值为大于0且不大于15的正整数。
作为一个实施例,调度所述PDSCH的控制信令指示所述PDSCH对应的反馈资源的索引。
作为一个实施例,所述反馈资源的所述索引被用于指示一个PUCCH资源组中的一个PUCCH资源;其中所述一个PUCCH资源组被配置为由所述第一节点专用(dedicated)或为公共(common)的。
作为一个实施例,一个PUCCH资源组包括不大于128个PUCCH资源。
作为一个实施例,所述反馈资源的所述索引为
Figure PCTCN2022116020-appb-000003
其中,所述n CCE,0为调度所述PDSCH的所述控制信令占用的第一个CCE索引;所述N CCE为调度所述PDSCH的所述控制信令接收的CORESET中的CCE数;所述Δ PRI由调度所述PDSCH的所述控制信令显式指示;所述
Figure PCTCN2022116020-appb-000004
为向下取整运算。
作为一个实施例,所述反馈资源的所述索引可以根据3GPP标准的38.213协议中描述的方法确定。
作为一个实施例,所述短语所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源包括:调度所述第一信号的控制信令或者调度所述第二信号的控制信令二者中之一被用于确定目标反馈资源。
作为一个实施例,所述第一反馈被用于指示所述第一比特块是否被成功译码。
作为一个实施例,对所述第一信号执行译码,根据CRC(Cyclic Redundancy Check,循环冗余校验)验证判断译码是否正确。
作为上述实施例的一个子实施例,如果未能通过CRC验证,所述第一信号未被成功译码;如果通过CRC 验证,所述第一信号被成功译码。
作为一个实施例,对所述第二信号执行合并译码,根据CRC验证判断译码是否正确;其中,所述第一信号未被成功译码。
作为上述实施例的一个子实施例,如果未能通过CRC验证,所述第二信号未被成功译码;如果通过CRC验证,所述第二信号被成功译码。
作为一个实施例,所述第一信号或所述第二信号二者中之一被成功译码,所述第一比特块被成功译码。
作为一个实施例,所述第一信号和所述第二信号二者都未被成功译码,所述第一比特块未被成功译码。
作为一个实施例,所述第一反馈是HARQ-ACK;所述HARQ-ACK包括ACK或NACK二者之一。
作为一个实施例,当所述第一比特块被成功译码,所述第一反馈是ACK;当所述第一比特块未被成功译码,所述第一反馈是NACK。
作为一个实施例,所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一。
作为一个实施例,针对被所述非单播RNTI加扰的PDSCH配置仅NACK的反馈模式。
作为一个实施例,针对被所述单播RNTI加扰的PDSCH配置ACK/NACK的反馈模式。
作为一个实施例,针对group-common PDSCH配置仅NACK的反馈模式。
作为一个实施例,在被配置为仅NACK的反馈模式中,反馈资源被至少两个节点共享。
作为一个实施例,在被配置为ACK/NACK的反馈模式中,反馈资源被预留给一个节点。
作为一个实施例,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈。
作为一个实施例,当所述目标反馈模式是ACK/NACK的反馈模式时,发送所述第一反馈。
作为一个实施例,当所述目标反馈模式是仅NACK的反馈模式时,根据所述第一比特块是否被成功译码确定是否发送所述第一反馈;当所述第一比特块被成功译码,不发送所述第一反馈;当所述第一比特块未被成功译码,发送所述第一反馈。
作为一个实施例,所述第一反馈所关联的控制信令被用于确定所述目标反馈模式。
作为一个实施例,所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少前者被用于确定所述目标反馈模式。
作为一个实施例,所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,调度所述第一信号和所述第二信号的所述控制信令为DCI。
作为一个实施例,调度所述第一信号和所述第二信号的所述控制信令为PDCCH。
作为一个实施例,所述目标反馈模式被显式配置为仅由所述第一时频资源块确定。
作为上述实施例的一个子实施例,当所述第一时频资源块上的所述第一信号被所述单播RNTI加扰时,所述目标反馈模式为ACK/NACK的反馈模式;当所述第一时频资源块上的所述第一信号被所述非单播RNTI加扰时,所述目标反馈模式为仅NACK的反馈模式。
作为上述实施例的一个子实施例,所述目标反馈资源由所述第一时频资源块确定。
作为一个实施例,所述目标反馈模式被显式配置为仅由所述第二时频资源块确定。
作为上述实施例的一个子实施例,当所述第二时频资源块上的所述第二信号被所述单播RNTI加扰时,所述目标反馈模式为ACK/NACK的反馈模式;当所述第二时频资源块上的所述第二信号被所述非单播RNTI加扰时,所述目标反馈模式为仅NACK的反馈模式。
作为上述实施例的一个子实施例,所述目标反馈资源由所述第二时频资源块确定。
作为一个实施例,所述目标反馈模式被隐式配置为仅由所述第一时频资源块和所述第二时频资源块在时域上的后者确定。
作为一个实施例,所述第一反馈所关联的所述控制信令被所述非单播RNTI标识还是被所述单播RNTI标识被用于确定所述目标反馈模式;当所述第一反馈所关联的所述控制信令被所述非单播RNTI标识时,所述目标反馈模式为仅NACK的反馈模式;当所述第一反馈所关联的所述控制信令被所述单播RNTI标识时,所述目标反馈模式为ACK/NACK的反馈模式。
作为一个实施例,当调度所述第一信号的所述控制信令被非单播RNTI标识时,所述目标反馈模式由所述第二时频资源块确定;其中,调度所述第二信号的所述控制信令被所述非单播RNTI标识。
作为上述实施例的一个子实施例,所述目标反馈模式为仅NACK的反馈模式。
作为上述实施例的一个子实施例,所述目标反馈资源由调度所述第二信号的所述控制信令确定。
作为一个实施例,当调度所述第一信号的所述控制信令被单播RNTI标识时,所述目标反馈模式由所述第二时频资源块确定;其中,调度所述第二信号的所述控制信令被所述单播RNTI标识。
作为上述实施例的一个子实施例,所述目标反馈模式为ACK/NACK的反馈模式。
作为上述实施例的一个子实施例,所述目标反馈资源由调度所述第二信号的所述控制信令确定。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。图2说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。NR 5G,LTE或LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS 200可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS 200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。Xn接口的XnAP协议用于传输无线网络的控制面消息,Xn接口的用户面协议用于传输用户面数据。gNB203也可称为基站、基站收发台、无线基站、无线收发器、收发器功能、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmission Reception Point,发送接收节点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、车载设备、车载通信单元、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的第一节点。
作为一个实施例,所述NR节点B对应本申请中的第二节点。
作为一个实施例,所述UE201支持多媒体业务。
作为一个实施例,所述UE201支持多播传输。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cell)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203支持多媒体业务。
作为一个实施例,所述gNB203支持多播传输。
作为一个实施例,从所述UE201到所述gNB203的无线链路是上行链路。
作为一个实施例,从所述gNB203到所述UE201的无线链路是下行链路。
作为一个实施例,所述UE201和所述gNB203之间通过Uu接口连接。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线协议架构的实施例的示意图,图3用三个层展示UE和gNB的控制平面300的无线协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在UE和gNB之间的链路。L2层305包括MAC(MediumAccess Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧的gNB处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供gNB之间的对UE的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道身份的复用。MAC子层302还负责在UE之间分配一个小区中的各种无线资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线资源(即,无线承载)且使用gNB与UE之间的RRC信令来配置下部层。用户平面350的无线协议架构包括层1(L1层)和层2(L2层),在用户平面350中的无线协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS(Quality of Service,业务质量)流和数据无线承载(Data Radio Bearer,DRB)之间的映射,以支持业务的多样性。UE在用户平面350中的无线协议架构在L2层可包括SDAP子层356,PDCP子层354,RLC子层353和MAC子层352的部分协议子层或者全部协议子层。虽然未图示,但UE还可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一消息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一反馈生成于所述PHY301或者PHY351。
作为一个实施例,所述L2层305属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
实施例4
实施例4示例了根据本申请的一个实施例的通信设备的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,数据源477,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网的上层数据包或者来自数据源477的上层数据包被提供到控制器/处理器475。核心网和数据源477表示L2层之上的所有协议层。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备410的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似 于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第一通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网或者L2层之上的所有协议层,也可将各种控制信号提供到核心网或者L3以用于L3处理。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信号;根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信号;根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至 少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第二通信设备410装置至少:发送第一信号;根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信号;根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第二通信设备410装置至少:在第一时频资源块中发送第一信号和在第二时频资源块中发送第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;在目标反馈资源中监测第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时频资源块中发送第一信号和在第二时频资源块中发送第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;在目标反馈资源中监测第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点;所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一信号。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第二信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第二信号。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送本申请中的第一消息。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于监测本申请中的第一消息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第二消息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第二消息。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送本申请中的第一反馈。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少之一被用于监测本申请中的第一反馈。
实施例5A
实施例5A示例了根据本申请的一个实施例的无线信号传输流程图,如附图5A所示。附图5A中,虚线框F0A中的步骤是可选的。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U51A,在步骤S511A中接收第二信号;在步骤S512A中接收第一信号;在步骤S513A中确定在第一目标资源中是否发送第一消息;在步骤S514A中在第一目标资源上发送第一消息。
对于 第二节点N52A,在步骤S521A中发送第二信号;在步骤S522A中发送第一信号;在步骤S523A中在第一目标资源上监测第一消息。
在实施例5A中,接收第一信号;根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在第一目标资源中发送第一消息时,在所述第一目标资源上发送所述第一消息,当确定在第一目标资源中不发送第一消息时,放弃在所述第一目标资源上发送所述第一消息;其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号;接收第二信号;其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息;所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息;当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中采用仅NACK的反馈模式发送所述第一消息;接收第二消息,所述第二消息被用于开始或重新开始所述第一计时器;其中,当所述第一计时器过期时,确定在所述第一目标资源中不发送所述第一消息;所述短语放弃在所述第一目标资源上发送所述第一消息包括:在第二目标资源中发送所述第一消息;所述第二目标资源被关联到所述第一信号;所述第一信号被非单播RNTI加扰。
作为一个实施例,所述第二节点为所述第一节点的一个服务小区。
作为一个实施例,通过所述空中接口接收所述第二信号。
作为一个实施例,所述第二信号被单播RNTI(Radio Network Temporary Identifier,无线网络临时标识)加扰。
作为一个实施例,所述单播RNTI为C-RNTI(Cell-RNTI,小区无线网络临时标识)。
作为一个实施例,所述第二信号为RRC信令。
作为一个实施例,所述第二信号为PDCCH信令。
作为一个实施例,所述第二信号为MAC CE(Control Element,控制元素)。
作为一个实施例,所述第二信号为DCI。
作为一个实施例,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,所述第二信号指示所述第一节点当前的反馈模式,所述当前的反馈模式是ACK/NACK的反馈模式,非ACK/NACK的反馈模式二者中之一;仅当所述当前的反馈模式是所述非ACK/NACK的反馈模 式时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,所述非ACK/NACK的反馈模式为所述仅NACK的反馈模式。
作为一个实施例,所述非ACK/NACK的反馈模式包括所述仅NACK的反馈模式。
作为一个实施例,所述非ACK/NACK的反馈模式包括混合(hybrid)ACK/NACK和仅NACK的反馈模式。
作为一个实施例,当所述当前的反馈模式是所述ACK/NACK的反馈模式时,在所述第一目标资源中是否发送所述第一消息与所述第一时间长度无关。
作为一个实施例,所述第二信号被用于使能(enable)或者去使能(disable)所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,所述第二信号指示第一资源集合;只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,所述第一资源集合包括时域资源。
作为一个实施例,所述第一资源集合包括至少一个子帧(subframe)。
作为一个实施例,所述第一资源集合包括至少一个时隙(slot)。
作为一个实施例,所述短语所述第一目标资源属于所述第一资源集合包括:所述第一目标资源的所述时域资源属于所述第一资源集合;其中,所述第一资源集合包括时域资源。
作为一个实施例,如果所述第一目标资源不属于所述第一资源集合时,在第一目标资源中是否发送第一消息与所述第一时间长度无关。
作为一个实施例,Q值被用于生成所述第一资源集合。
作为一个实施例,所述Q值为大于1的正整数。
作为一个实施例,所述Q值是预定义的。
作为一个实施例,所述第二信号包括所述Q值。
作为一个实施例,所述Q值是所述第一计时器的过期值。
作为一个实施例,所述Q值的单位是时隙。
作为一个实施例,所述Q值的单位是子帧。
作为一个实施例,所述Q值的单位是ms。
作为一个实施例,所述第二节点配置所述第一计时器的所述过期值。
作为一个实施例,所述第二信号包括第一参考值集合。
作为一个实施例,当一个时隙的时隙号除以所述Q值指示的时隙数的余数属于所述第一参考值集合时,所述一个时隙属于所述第一资源集合。
作为一个实施例,当所述Q值以毫秒表示,所述Q值指示的所述时隙数为所述Q值与2 μ的乘积,其中所述μ的取值为0,1,2,3,4,分别表示2 μ·15kHz(千赫兹)的子载波间隔。
作为一个实施例,所述一个时隙的所述时隙号为所述一个时隙当前所在的系统帧号乘以每个帧包括的时隙数与所述一个时隙在当前所在的帧中的时隙号的和。
作为一个实施例,所述一个时隙的所述时隙号=(numberOfSlotsPerFrame×SFN+slot number in the frame;其中,所述numberOfSlotsPerFrame为一个帧中包括的时隙数;所述SFN为所述一个时隙当前所在的系统帧号;所述slot number in the frame为所述一个时隙在当前所在帧中的时隙号。
作为一个实施例,当一个子帧的子帧号除以所述Q值指示的子帧数的余数属于所述第一参考值集合时,所述一个子帧属于所述第一资源集合。
作为一个实施例,当所述Q值以毫秒表示,所述Q值指示的所述子帧数为所述Q值。
作为一个实施例,所述第一参考值集合包括至少一个参考值。
作为一个实施例,所述第一参考值集合包括一个参考值列表。
作为一个实施例,所述第二信号包括一个由N个比特位生成的比特地图(bitmap)。
作为一个实施例,所述比特地图被用于确定所述第一资源集合。
作为一个实施例,所述N个比特位指示N个时间单元。
作为一个实施例,所述比特地图从SFN(System Frame Number,系统帧号)为Q开始周期性定义所述N个时间单元。
作为一个实施例,所述Q为0。
作为一个实施例,所述Q由网络配置。
作为一个实施例,所述第一资源集合包括所述比特地图中比特位为1所指示的所述时间单元。
作为一个实施例,所述第一资源集合包括所述比特地图中比特位为0所指示的所述时间单元。
作为一个实施例,所述第一资源集合包括至少一个所述时间单元。
作为一个实施例,所述N为大于1的正整数。
作为一个实施例,所述N为预定义。
作为一个实施例,所述N与所述时间单元的时间长度的乘积与所述第一计时器的所述过期值指示的所述时间长度相同。
作为一个实施例,所述时间单元为一个时隙。
作为一个实施例,所述时间单元为一个子帧。
作为一个实施例,所述一个子帧为1ms。
作为一个实施例,所述一个子帧根据子载波间隔包括2 μ个时隙;其中,所述子载波间隔为2 μ·15kHz。
作为一个实施例,当所述子载波间隔为15kHz时,所述一个子帧包括1个时隙;当所述子载波间隔为30kHz时,所述一个子帧包括2个时隙;当所述子载波间隔为60kHz时,所述一个子帧包括4个时隙;当所述子载波间隔为120kHz时,所述一个子帧包括8个时隙;当所述子载波间隔为240kHz时,所述一个子帧包括16个时隙。
作为一个实施例,当所述第一计时器的所述过期值以毫秒表示,且所述子载波间隔为30kHz时,且所述时间单元为一个子帧时,所述N的值为所述第一计时器的所述过期值。
作为一个实施例,当所述第一计时器的所述过期值以毫秒表示,所述子载波间隔为30kHz时,且所述时间单元为一个时隙时,所述N的所述值为所述第一计时器的所述过期值的2倍。
作为一个实施例,所述N的所述值与所述第一计时器的所述过期值的关系以此类推,不再赘述。
作为一个实施例,当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,当所述第一时间长度的所述值大于所述第一阈值时,确定不在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,当所述第一时间长度的所述值等于所述第一阈值时,确定在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,当所述第一时间长度的所述值等于所述第一阈值时,确定不在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,所述第一阈值为预配置的。
作为一个实施例,所述第一阈值为网络配置的。
作为一个实施例,所述第一阈值与所述第一节点的移动速度有关。
作为一个实施例,所述第二信号指示所述第一阈值。
作为一个实施例,当所述第一时间长度由所述第一计时器确定时,所述第一阈值小于所述第一计时器的所述过期值。
作为一个实施例,当所述第一时间长度是所述第一节点未执行所述目标发送的连续的时间长度时,所述第一阈值小于所述第二计时器的所述过期值。
作为一个实施例,第二时间长度的值为所述第一计时器的所述过期值减去所述第一阈值的差。
作为一个实施例,第二时间长度的值为所述第二计时器的所述过期值减去所述第一阈值的差。
作为一个实施例,所述第二时间长度包括至少一个时隙。
作为一个实施例,所述第二时间长度包括多个时隙。
作为一个实施例,所述第二时间长度的所述值大于半持续调度的周期,所述半持续调度被用于调度所述第一信号。
作为一个实施例,接收第二消息。
作为一个实施例,所述第二消息被用于调整上行定时。
作为一个实施例,所述第二消息包括第一MAC CE。
作为一个实施例,所述第一MAC CE为timingadvancecommand(定时提前命令)MAC CE。
作为一个实施例,所述第一MAC CE为Absoluttimingadvancecommand(绝对定时提前命令)MAC CE。
作为一个实施例,所述第二节点通过所述目标发送获得上行定时调整信息;所述上行定时调整信息被用于生成所述第一MAC CE。
作为一个实施例,所述第二消息被用于开始或重新开始所述第一计时器。
作为一个实施例,作为接收所述第二消息的响应,开始或重新开始所述第一计时器。
作为一个实施例,当接收所述第二消息时,如果N TA被所述TAG维持,开始或重新开始所述第一计时器。
作为一个实施例,所述N TA被用于上行定时对齐。
作为一个实施例,当所述第一MAC CE为针对MsgA的响应且所述MsgA包括C-RNTI MAC CE时,开始所述第一计时器。
作为一个实施例,当所述第一MAC CE携带在针对所述TAG的一个服务小区的随机接入响应消息中或针对SpCell(Special Cell,特殊小区)的MsgB中,且所述第一节点的MAC实体选择的随机接入导频不属于基于竞争的随机接入导频,开始或重新开始所述第一计时器。
作为一个实施例,当所述第一MAC CE携带在针对所述TAG的一个服务小区的随机接入响应消息中或针对SpCell的MsgB中,且所述第一计时器不在运行时,开始所述第一计时器。
作为上述实施例的一个子实施例,当竞争解决不成功时停止所述第一计时器。
作为上述实施例的一个子实施例,当针对SI(System Information,系统信息)请求的竞争解决成功时,在发送针对接收竞争解决标识的HARQ反馈后,停止所述第一计时器。
作为一个实施例,根据3GPP标准的38.321协议中第5.2章节描述的方法开始或重新开始所述第一计时器。
作为一个实施例,当所述第一计时器过期时,确定在所述第一目标资源中不发送所述第一消息。
作为一个实施例,当所述第一计时器过期时,确定不执行所述目标发送。
作为一个实施例,当所述第一计时器过期时,确定上行不同步。
作为一个实施例,当所述第一计时器过期时,清空所有HARQ缓存(buffer)。
作为一个实施例,当所述第一计时器过期时,清除配置下行分配(Configured downlink assignments)和配置上行授予(Configured uplink grants)。
作为一个实施例,当所述第一计时器过期时,维持所述TAG的所述N TA
作为一个实施例,所述短语放弃在所述第一目标资源上发送所述第一消息包括:在第二目标资源中发送所述第一消息;所述第二目标资源被关联到所述第一信号。
作为一个实施例,在所述第二目标资源中采用所述ACK/NACK的反馈模式发送所述第一消息。
作为一个实施例,所述第二目标资源被关联到所述第一信号。
作为一个实施例,所述第二目标资源被预留给所述第一消息。
作为一个实施例,所述第二目标资源被预留给所述第一节点。
作为一个实施例,所述第一节点监测所述第一信号的DCI。
作为一个实施例,所述第一信号的所述DCI所占用的时域资源被用于确定所述第二目标资源的时域资源。
作为一个实施例,所述第一信号的所述DCI指示所述第二目标资源的所述时域资源距离所述第一信号的所述DCI所占用的时域资源的时间间隔。
作为一个实施例,所述第一信号的所述DCI指示所述第一信号所占用的所述时域资源;所述第一信号的所述DCI指示所述第二目标资源的所述时域资源距离所述第一信号所占用的所述时域资源的时间间隔。
作为一个实施例,所述第一信号所占用的时域资源被用于确定所述第二目标资源的所述时域资源。
作为一个实施例,所述第一信号所占用的所述时域资源距离所述第二目标资源的所述时域资源的时间间隔是预配置(preconfigured)的。
作为一个实施例,所述第二目标资源的频域资源和码域资源是预配置的。
作为一个实施例,所述第二目标资源属于一个PUCCH资源组(ResourceSet)。
作为一个实施例,所述第二目标资源为所述一个PUCCH资源组中的一个PUCCH资源;所述一个PUCCH资源由一个PUCCH资源索引所标识。
作为一个实施例,所述第二目标资源的时域资源包括至少一个OFDM符号(symbol)。
作为一个实施例,所述第二目标资源的所述频域资源包括至少一个子载波。
作为一个实施例,所述第二目标资源的所述码域资源包括至少一个序列(sequence)。
作为一个实施例,所述第一信号被非单播RNTI加扰。
作为一个实施例,所述非单播RNTI为G-RNTI(Group-RNTI,分组无线网络临时标识)。
作为一个实施例,所述非单播RNTI为G-CS-RNTI(Group Configured Scheduling-RNTI,分组配置调度无线网络临时标识)。
作为一个实施例,被所述非单播RNTI加扰的信号的目标接收者包括至少两个节点,所述至少两个节点包括所述第一节点。
作为一个实施例,所述非单播RNTI被用于在所述第一节点的所述服务小区内唯一标识一个业务。
作为一个实施例,所述非单播RNTI被用于对一个多播无线承载(multicast radio bearer,MRB)上的数据发送进行加扰。
作为一个实施例,当调度一个信号的DCI被所述非单播RNTI标识时,所述一个信号被所述非单播RNTI加扰。
作为一个实施例,被所述非单播RNTI标识的DCI的目标接收者包括至少两个节点,所述至少两个节点包括所述第一节点。
作为一个实施例,当一个RNTI被用于确定一个DCI所占用的PDCCH候选时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于对一个DCI的CRC进行加扰时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于生成一个序列且所述一个序列被用于对一个DCI所调度的PDSCH进行加扰时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于生成一个序列且所述一个序列被用于对一个DCI的PDCCH进行加扰时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于生成一个DCI的PDCCH对应的DMRS(DeModulation Reference Signal,解调参考信号)的RS(Reference Signal,参考信号)序列时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个PDCCH被寻址到(addressed to)一个RNTI时,所述一个PDCCH被所述一个RNTI标识。
作为一个实施例,所述第二节点在所述第一目标反馈资源上监测所述第一消息。
作为一个实施例,所述第二节点在所述第二目标反馈资源上监测所述第一消息。
作为一个实施例,所述监测的意思包括监听(monitor)。
作为一个实施例,所述短语监测所述第一消息包括:通过能量监测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过相干检测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过宽带检测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过相关检测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过同步检测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过波形检测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过最大似然检测确定是否存在所述第一消息。
作为一个实施例,所述短语监测所述第一消息包括:通过盲译码检测确定是否存在所述第一消息。
实施例5B
实施例5B示例了根据本申请的一个实施例的无线信号传输流程图,如附图5B所示。附图5B中,虚 线框F0B中的步骤是可选的。
对于 第一节点U51B,在步骤S511B中接收第一信号;在步骤S512B中接收第二信号;在步骤S513B中确定是否发送第一反馈;在步骤S514B中在目标反馈资源上发送第一反馈。
对于 第二节点N52B,在步骤S521B中发送第一信号;在步骤S522B中发送第二信号;在步骤S523B中在目标反馈资源上监测第一反馈。
在实施例5B中,在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一;当用于调度所述第一信号的所述控制信令被非单播RNTI标识时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为ACK/NACK的反馈模式;其中,所述非单播RNTI被预留给至少两个节点,所述至少两个节点包括所述第一节点;所述目标反馈资源由所述第二时频资源块确定;当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定;当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号,所述目标反馈模式为ACK/NACK的反馈模式;其中,所述目标反馈资源为所述第一反馈资源;当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为仅NACK的反馈模式;其中,所述目标反馈资源由所述第二时频资源块确定;所述第一信号未被成功译码;所述第一信号和所述第二信号属于同一个HARQ实体的同一个HARQ进程;当所述目标反馈模式为仅NACK的反馈模式,根据所述第一比特块是否被成功译码确定是否发送所述第一反馈;当所述目标反馈模式为ACK/NACK的反馈模式,发送所述第一反馈。
作为一个实施例,所述第二节点为所述第一节点的一个服务小区。
作为一个实施例,所述一个服务小区对应一个HARQ实体;所述一个HARQ实体包括至少一个HARQ进程;所述至少一个HARQ进程中的任一HARQ进程和一个HARQ进程号关联。
作为一个实施例,一个HARQ实体将HARQ信息和从DL-SCH(Downlink Shared CHannel,下行链路共享信道)接收到的TB定向(direct)到HARQ进程。
作为一个实施例,本申请中的配置由所述第二节点执行,包括:所述第二节点向所述第一节点发送配置信息。
作为一个实施例,当调度所述第一信号的所述控制信令被所述非单播RNTI标识时,调度所述第二信号的所述控制信令被所述单播RNTI标识。
作为一个实施例,当调度所述第一信号的所述控制信令被所述非单播RNTI标识时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,确定所述目标反馈模式为ACK/NACK的反馈模式;确定所述目标反馈资源由所述第二时频资源块确定;其中,调度所述第二信号的所述控制信令被所述单播RNTI标识。
作为一个实施例,所述非单播RNTI被预留给至少两个节点,所述至少两个节点包括所述第一节点。
作为一个实施例,当调度一个信号的控制信令被非单播RNTI标识时,所述一个信号被所述非单播RNTI加扰。
作为一个实施例,被所述非单播RNTI标识的控制信令的目标接收者包括至少两个节点,所述至少两个节点包括所述第一节点。
作为一个实施例,被所述非单播RNTI加扰的信号的目标接收者包括至少两个节点,所述至少两个节点包括所述第一节点。
作为一个实施例,所述非单播RNTI被用于在所述第一节点的所述服务小区内唯一标识一个业务。
作为一个实施例,所述非单播RNTI被用于对一个多播无线承载(multicast radio bearer,MRB)上的数据发送进行加扰。
作为一个实施例,所述非单播RNTI为G-RNTI(Group-RNTI,分组无线网络临时标识)。
作为一个实施例,所述非单播RNTI为G-CS-RNTI(Group Configured Scheduling-RNTI,分组配置调度无线网络临时标识)。
作为一个实施例,所述非单播RTNI被用于标识动态调度的信令。
作为一个实施例,所述非单播RNTI被用于标识调度新传输或重传的信令;其中,所述非单播RNTI为所述G-RNTI。
作为一个实施例,所述非单播RNTI仅被用于标识调度重传的信令;其中,所述非单播RNTI为G-CS-RNTI;所述重传针对由半持续调度的新传输;所述新传输的信号被所述G-RNTI加扰。
作为一个实施例,所述单播RNTI被预留给所述第一节点。
作为一个实施例,当调度一个信号的控制信令被单播RNTI标识时,所述一个信号被所述单播RNTI加扰。
作为一个实施例,被所述单播RNTI标识的控制信令的目标接收者为所述第一节点。
作为一个实施例,被所述单播RNTI加扰的信号的目标接收者为所述第一节点。
作为一个实施例,所述单播RNTI被用于在所述第一节点的所述服务小区内唯一标识所述第一节点。
作为一个实施例,所述单播RNTI为C-RNTI(cell-RNTI,小区无线网络临时标识)。
作为一个实施例,所述单播RNTI为CS-RNTI(Configured Scheduling-RNTI,配置调度无线网络临时标识)。
作为一个实施例,所述单播RNTI被用于标识动态调度的信令。
作为一个实施例,所述单播RNTI被用于标识调度新传输或重传的信令;其中,所述单播RNTI为C-RNTI。
作为一个实施例,所述单播RNTI仅被用于标识调度重传的信令;其中,所述单播RNTI为CS-RNTI;所述重传针对由半持续调度的新传输;所述新传输的信号被所述C-RNTI加扰或被所述G-RNTI加扰。
作为一个实施例,当一个RNTI被用于确定一个DCI所占用的PDCCH候选时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于对一个DCI的CRC进行加扰时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于生成一个序列且所述一个序列被用于对一个DCI所调度的PDSCH进行加扰时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于生成一个序列且所述一个序列被用于对一个DCI的PDCCH进行加扰时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个RNTI被用于生成一个DCI的PDCCH对应的DMRS(DeModulation Reference Signal,解调参考信号)的RS(Reference Signal,参考信号)序列时,所述一个DCI被所述一个RNTI标识。
作为一个实施例,当一个PDCCH被寻址到(addressed to)一个RNTI时,所述一个PDCCH被所述一个RNTI标识。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识时,调度所述第二信号的所述控制信令被所述非单播RNTI标识。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,调度所述第二信号的所述控制信令被所述非单播RNTI标识。
作为一个实施例,所述第一反馈资源由所述第一时频资源块确定。
作为一个实施例,所述第一反馈资源由调度所述第一信号的所述控制信令确定。
作为一个实施例,所述第一反馈资源为所述第一时频资源块对应的反馈资源。
作为一个实施例,所述第一反馈资源被预留给所述第一信号是否被成功译码的HARQ-ACK反馈。
作为一个实施例,当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号。
作为一个实施例,当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔大于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识且当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号。
作为上述实施例的一个子实施例,确定所述目标反馈模式为ACK/NACK的反馈模式。
作为上述实施例的一个子实施例,确定所述目标反馈资源为所述第一反馈资源。
作为一个实施例,所述短语所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔包括:所述第二时频资源块的所述时域资源所在的时隙的结束时刻距离所述第一反馈资源的所述时域资源所在的时隙的起始时刻的时间间隔。
作为一个实施例,所述短语所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔包括:所述第二时频资源块的所述时域资源包括的所述至少一个OFDM符号的最后一个OFDM的结束时刻距离所述第一反馈资源的所述时域资源包括的至少一个OFDM符号的第一个OFDM符号的起始时刻的时间间隔。
作为一个实施例,所述时间间隔以时隙表示。
作为一个实施例,所述时间间隔以OFDM符号表示。
作为一个实施例,所述时间间隔以毫秒表示。
作为一个实施例,所述第一时间长度以时隙表示。
作为一个实施例,所述第一时间长度以OFDM符号表示。
作为一个实施例,所述第一时间长度以毫秒表示。
作为一个实施例,所述第一时间长度是配置的。
作为一个实施例,所述第一时间长度是所述第二信号的合并译码的时长。
作为一个实施例,所述第一时间长度是所述第二信号的合并译码的最大时长。
作为一个实施例,所述第一时间长度是大于0且不大于15的正整数。
作为一个实施例,所述第一节点通过UE capability(能力)IE(Information element,信息元素)向所述第二节点报告所述第一时间长度。
作为一个实施例,当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识且当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号。
作为上述实施例的一个子实施例,所述第一信号未被成功译码。
作为上述实施例的一个子实施例,确定所述目标反馈模式为仅NACK的反馈模式。
作为上述实施例的一个子实施例,确定所述目标反馈资源由所述第二时频资源块确定。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识且当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号;其中,所述第一信号被成功译码。
作为上述实施例的一个子实施例,确定所述目标反馈模式为ACK/NACK的反馈模式。
作为上述实施例的一个子实施例,确定所述目标反馈资源由所述第一时频资源块确定。
作为一个实施例,所述第一信号和所述第二信号属于同一个HARQ实体的同一个HARQ进程。
作为一个实施例,调度所述第一信号的所述控制信令指示的HARQ进程号和调度所述第二信号的所述控制信令指示的HARQ进程号相同。
作为一个实施例,当一个信号被半持续调度时,所述一个信号的所述时频资源块所在的时隙被用于确定HARQ进程号。
作为一个实施例,当所述目标反馈模式为仅NACK的反馈模式,根据所述第一比特块是否被成功译码确定是否发送所述第一反馈,具体的:当所述第一比特块被成功译码,不发送所述第一反馈;当所述第一比特块未被成功译码,发送所述第一反馈;当所述目标反馈模式为ACK/NACK的反馈模式,发送所述第一反馈。
作为一个实施例,所述第二节点在所述目标反馈资源上监测所述第一反馈。
作为一个实施例,所述监测的意思包括监听(monitor)。
作为一个实施例,所述短语监测所述第一反馈包括:通过能量监测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过相干检测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过宽带检测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过相关检测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过同步检测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过波形检测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过最大似然检测确定是否存在所述第一反馈。
作为一个实施例,所述短语监测所述第一反馈包括:通过盲译码检测确定是否存在所述第一反馈。
实施例6A
实施例6A示例了根据本申请的一个实施例的第一计时器的流程图,如附图6A所示。附图6A的步骤在第一节点被执行。
在步骤S601A开始第一计时器;在步骤S602A中,在接下来的一个第一时间间隔中更新第一计时器;在步骤S603A,判断第一计时器是否过期,如果是,结束,如果否,跳回到步骤S602A。
作为一个实施例,当所述第一计时器运行时,在每一个所述第一时间间隔更新所述第一计时器。
作为一个实施例,当所述第一计时器不处于运行状态时,停止在每一个所述第一时间间隔更新所述第一计时器。
作为一个实施例,所述第一时间间隔为1毫秒。
作为一个实施例,所述第一时间间隔为一个子帧(subframe)。
作为一个实施例,所述第一时间间隔为一个时隙(slot)。
作为一个实施例,所述第一计时器的所述过期值和所述第一时间间隔使用相同的度量单位。
作为一个实施例,开始所述第一计时器时将所述第一计时器的值设为0,所述短语更新第一计时器包括:将所述第一计时器的值加1;当所述第一计时器的值为所述第一计时器的所述过期值时,所述第一计时器过期。
作为一个实施例,开始所述第一计时器时将所述第一计时器的值设为所述第一计时器的所述过期值,所述短语更新所述第一计时器包括:将所述第一计时器的值减1;当所述第一计时器的值为0时,所述第一计时器过期。
作为一个实施例,所述第一计时器开始或重新开始后处于运行状态;所述第一计时器过期后停止运行。
作为一个实施例,当所述第一时间间隔是1毫秒时,所述接下来的一个第一时间间隔是即将到来的一个毫秒。
作为一个实施例,当所述第一时间间隔是子帧时,所述接下来的一个第一时间间隔是即将到来的一个子帧。
作为一个实施例,当所述第一时间间隔是时隙时,所述接下来的一个第一时间间隔是即将到来的一个时隙。
作为一个实施例,所述第二计时器的流程与所述第一计时器相同,在此不再赘述。
实施例6B
实施例6B示例了根据本申请的一个实施例的确定目标反馈模式的流程图,如附图6B所示。
实施例6B中,在步骤S601B中接收第一信号;在步骤S602B中接收第二信号;在步骤S603B中判断调度第一信号的控制信令是否被非单播RNTI标识;如果是,执行步骤S607B,如果否,执行步骤S604B;在步骤S604B中,判断第二时频资源块的时域资源距离第一反馈资源的时域资源的时间间隔是否不小于第一时间长度;如果是,执行步骤S607B,如果否,执行步骤S605B;在步骤S605B中,判断第一信号是否被成功译码;如果是,执行步骤S607B,如果否,执行步骤S606B;在步骤S606B中,确定目标反馈模式是仅NACK的反馈模式;在步骤S607B中,确定目标反馈模式是ACK/NACK的反馈模式。
作为一个实施例,调度所述第一信号的所述控制信令被所述非单播RNTI标识;调度所述第二信号的所述控制信令被所述单播RNTI标识。
作为一个实施例,调度所述第一信号的所述控制信令被所述单播RNTI标识;调度所述第二信号的所述控制信令被所述非单播RNTI标识。
作为一个实施例,当调度所述第一信号的所述控制信令被所述非单播RNTI标识并且调度所述第二信号的所述控制信令被所述单播RNTI标识时,确定所述目标反馈模式是ACK/NACK的反馈模式。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识并且调度所述第二信号的所述控制信令被所述非单播RNTI标识时,如果所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于所述第一时间长度,确定所述目标反馈模式是ACK/NACK的反馈模式。
作为上述实施例的一个子实施例,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于所述第一时间长度指示所述第二信号在所述第一反馈资源的所述时域资源之前译码完成且生成所述第一反馈。
作为一个实施例,当调度所述第一信号的所述控制信令被所述单播RNTI标识并且调度所述第二信号的所述控制信令被所述非单播RNTI标识时,如果所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度,进一步根据所述第一信号是否被成功译码确定所述目标反馈模式:当所述第一信号被成功译码,确定所述目标反馈模式是ACK/NACK的反馈模式;当所述第一信号未被成功译码,确定所述目标反馈模式是仅NACK的反馈模式。
作为上述实施例的一个子实施例,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度指示所述第二信号在所述第一反馈资源的所述时域资源之前未完成译码,所述第一反馈未生成。
作为上述实施例的一个子实施例,如果所述第一信号被成功译码,针对所述第二信号不执行合并译码,确定所述目标反馈资源为所述第一反馈资源;如果所述第一信号未被成功译码,针对所述第二信号执行合并译码,确定所述目标反馈资源为所述第二时频资源块对应的反馈资源。
实施例7A
实施例7A示例了根据本申请的一个实施例的第一资源集合示意图,如附图7A所示。
作为一个实施例,所述第一资源集合包括时域资源。
作为上述实施例的一个子实施例,所述时域资源是网络配置的。
作为上述实施例的一个子实施例,所述时域资源是周期性的。
作为一个实施例,时域上除所述第一资源集合之外的时域资源为第二资源集合。
作为一个实施例,当所述第一资源集合包括所述比特地图中比特位为0所指示的所述时间单元;所述第二资源集合包括所述比特地图中比特位为1所指示的所述时间单元。
作为一个实施例,当所述第一资源集合包括所述比特地图中比特位为1所指示的所述时间单元;所述第二资源集合包括所述比特地图中比特位为0所指示的所述时间单元。
作为一个实施例,所述第二资源集合包括至少一个所述时间单元。
作为一个实施例,所述第一计时器的所述过期值被用于确定所述N可以保证在所述第一计时器过期前所述第一节点执行至少一次所述目标发送以用于所述第二节点获得所述上行定时调整信息。
实施例7B
实施例7B示例了根据本申请的一个实施例的确定目标反馈模式是ACK/NACK的反馈模式流程图,如附图7B所示。
附图7B中,当以下两个条件满足时,确定所述目标反馈模式是ACK/NACK的反馈模式;所述两个条件包括:调度所述第一信号的所述控制信令被所述非单播RNTI标识,调度所述第二信令的所述控制信令被所述单播RNTI标识。
实施例8A
实施例8A示例了根据本申请的一个实施例的根据至少第一时间长度确定在第一目标资源中是否发送第一消息的示意图,如附图8A所示。
作为一个实施例,根据所述第一时间长度确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,当所述第一时间长度的所述值不大于所述第一阈值时,确定在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,当所述第一时间长度的所述值大于所述第一阈值时,确定在所述第二目标资源中采用所述ACK/NACK的反馈模式发送所述第一消息。
作为一个实施例,所述第一节点采用所述ACK/NACK的反馈模式发送所述第一消息被用于确定所述第一时间长度。
作为一个实施例,当所述第一时间长度的所述值不大于所述第一阈值时,表示所述第一节点最近有执行所述目标发送以用于所述第二节点获得上行定时调整信息,或者所述第一节点刚接收到所述第二节点下发的所述第二消息用于上行定时调整,所述第一节点离上行失步还有较长时间,所述第一节点采用所述仅NACK的反馈模式发送所述第一消息可以节省反馈资源。
作为一个实施例,当所述第一时间长度的所述值大于所述第一阈值时,由于所述第一节点长时间没有所述目标发送,或者所述第一节点长时间没有接收到所述第二节点下发的上行定时调整信息,所述第一节点距离上行失步只有较短时间,此时所述第一节点采用所述ACK/NACK的反馈模式发送所述第一消息可以让所述第二节点通过测量发送所述第一消息的信道获得上行定时调整信息。
作为一个实施例,当所述第一目标资源不属于所述第一资源集合时,在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,根据所述第一资源集合和所述第一时间长度确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,当所述第一目标资源属于所述第一资源集合,且所述第一时间长度的所述值不大于所述第一阈值时,确定在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息。
作为一个实施例,当所述第一目标资源属于所述第一资源集合,且所述第一时间长度的所述值大于所述第一阈值时,确定在所述第二目标资源中采用所述ACK/NACK的反馈模式发送所述第一消息。
作为一个实施例,当所述第一目标资源属于所述第二资源集合时,在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息可以节省反馈资源。
作为一个实施例,当所述第一目标资源属于所述第一资源集合时,进一步根据所述第一时间长度的所述值是否大于所述第一阈值确定是否在所述第一目标资源中发送所述第一消息可以在获得节省反馈资源的同时,也避免所述第一节点长时间没有执行所述目标发送使得所述第二节点无法获得上行定时调整信息。
实施例8A的情况A中,根据所述第一时间长度确定在所述第一目标资源中是否发送所述第一消息;当当所述第一时间长度的所述值不大于所述第一阈值时,确定在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息;当所述第一时间长度的所述值大于所述第一阈值时,确定在所述第二目标资源中采用所述ACK/NACK的反馈模式发送所述第一消息。
实施例8A的情况B中,当所述第一目标资源不属于所述第一资源集合时,在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息;当所述第一目标资源属于所述第一资源集合且所述第一时间长度的所述值不大于所述第一阈值时,确定在所述第一目标资源中采用所述仅NACK的反馈模式发送所述第一消息;当所述第一目标资源属于所述第一资源集合且所述第一时间长度的所述值大于所述第一阈值时,确定在所述第二目标资源中采用所述ACK/NACK的反馈模式发送所述第一消息。
实施例8B
实施例8B示例了根据本申请的一个实施例的第二个确定目标反馈模式是ACK/NACK的反馈模式的示意图,如附图8B所示。
附图8B中,当以下三个条件都满足时,确定所述目标反馈模式是ACK/NACK的反馈模式;所述三个条件包括:调度所述第一信号的所述控制信令被所述单播RNTI标识,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于所述第一时间长度,调度所述第二信号的所述控制信令被所述非单播RNTI标识。
实施例9A
实施例9A示例了根据本申请的一个实施例的第一目标资源和第二目标资源的示意图,如附图9A所示。
作为一个实施例,所述第一目标资源和所述第二目标资源分别和所述第一信号关联。
作为一个实施例,所述第一目标资源和所述第二目标资源不同。
作为一个实施例,当所述第一目标资源和所述第二目标资源的所述时域资源,所述频域资源,或所述码域资源中的任一资源不同时,所述第一目标资源和所述第二目标资源不同。
作为一个实施例,所述第一目标资源和所述第二目标资源属于不同的PUCCH资源组。
作为一个实施例,所述第一目标资源和所述第二目标资源属于同一个PUCCH资源组(ResourceSet)中的不同的PUCCH资源(Resource)。
作为一个实施例,所述第一目标资源和所述第二目标资源属于同一个PUCCH资源组,且具有不同的PUCCH资源索引。
作为一个实施例,所述第二信号指示在所述第二目标资源中发送所述第一消息。
实施例9B
实施例9B示例了根据本申请的一个实施例的第三个确定目标反馈模式是ACK/NACK的反馈模式的示意图,如附图9B所示。
附图9B中,当以下四个条件都满足时,确定所述目标反馈模式是ACK/NACK的反馈模式;所述四个条件包括:调度所述第一信号的所述控制信令被所述单播RNTI标识,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度,所述第一信号被成功译码,调度所述第二信号的所述控制信令被所述非单播RNTI标识。
实施例10A
实施例10A示例了根据本申请的一个实施例的接收第一信号示意图,如附图10A所示。
作为一个实施例,所述第一信号通过多播发送。
作为一个实施例,所述第一信号的接收者包括至少两个节点,所述至少两个节点包括所述第一节点。
作为一个实施例,所述第一信号的接收者包括M个节点,所述M为不小于2的正整数。
实施例10B
实施例10B示例了根据本申请的一个实施例的确定目标反馈模式是仅NACK的反馈模式的示意图,如附图10B所示。
附图10B中,当以下四个条件都满足时,确定所述目标反馈模式是仅NACK的反馈模式;所述四个条件包括:调度所述第一信号的所述控制信令被所述单播RNTI标识,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度,所述第一信号未被成功译码,调度所述第二信号的所述控制信令被所述非单播RNTI标识。
实施例11A
实施例11A示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图,如附图11A所示。在附图11A中,第一节点处理装置1100A包括第一接收机1101A和第一发射机1102A。第一接收机1101A 包括本申请附图4中的发射器/接收器418(包括天线420),接收处理器470,多天线接收处理器472或控制器/处理器475中的至少之一;第一发射机1102A包括本申请附图4中的发射器/接收器418(包括天线420),发射处理器416,多天线发射处理器471或控制器/处理器475中的至少之一。
在实施例11A中,第一接收机1101A,接收第一信号;第一发射机1102A,根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第一接收机1101A,接收第二信号;其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,所述第一接收机1101A,接收第二信号;其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息;所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息。
作为一个实施例,当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中采用仅NACK的反馈模式发送所述第一消息。
作为一个实施例,所述第一接收机1101A,接收第二消息,所述第二消息被用于开始或重新开始所述第一计时器;其中,当所述第一计时器过期时,确定在所述第一目标资源中不发送所述第一消息。
作为一个实施例,所述短语放弃在所述第一目标资源上发送所述第一消息包括:在第二目标资源中发送所述第一消息;所述第二目标资源被关联到所述第一信号。
作为一个实施例,所述第一信号被非单播RNTI加扰。
实施例11B
实施例11 B示例了根据本申请的一个实施例的第一时频资源块,第二时频资源块和分别对应的反馈资源的时间关系图,如附图11 B所述。
作为一个实施例,所述目标反馈资源的所述时域资源不早于所述第二时频资源块的所述时域资源。
作为一个实施例,所述目标反馈资源的所述时域资源的起始时刻不早于所述第二时频资源块的所述时域资源的结束时刻。
作为一个实施例,所述目标反馈资源的所述时域资源的起始时刻为所述目标反馈资源的所述时域资源包括的所述至少一个OFDM符号中的第一个OFDM符号的起始时刻。
作为一个实施例,所述第二时频资源块的所述时域资源的结束时刻为所述第二时频资源块的所述时域资源包括的至少一个OFDM符号中的最后一个OFDM符号的结束时刻。
作为一个实施例,所述第二时频资源块的所述时域资源的结束时刻为所述第二时频资源块的所述时域资源所在的时隙的结束时刻。
在附图11 B中,所述第一时频资源块对应的所述反馈资源的所述时域资源和所述第二时频资源块对应的所述反馈资源的所述时域资源在所述第二时频资源块的所述时域资源之后。
实施例12A
实施例12A示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图,如附图12A所示。在附图12A中,第二节点处理装置1200A包括第二接收机1201A和第二发射机1202A。第二接收机1201A包括本申请附图4中的发射器/接收器418(包括天线420),接收处理器470,多天线接收处理器472或控制器/处理器475中的至少之一;第二发射机1202A包括本申请附图4中的发射器/接收器418(包括天线420),发射处理器416,多天线发射处理器471或控制器/处理器475中的至少之一。
在实施例12A中,第二发射机1202A,发送第一信号;第二接收机1201A,根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定 在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
作为一个实施例,所述第二发射机1202A,发送第二信号;其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否监测所述第一消息。
作为一个实施例,所述第二发射机1202A,发送第二信号;其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否监测所述第一消息;所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否监测所述第一消息。
作为一个实施例,当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中监测所述第一消息;所述第一消息仅包括NACK。
作为一个实施例,所述第二发射机1202A,发送第二消息,所述第二消息被用于开始或重新开始所述第一计时器;其中,当所述第一计时器过期时,确定在所述第一目标资源中不监测所述第一消息。
作为一个实施例,所述短语放弃在所述第一目标资源上监测所述第一消息包括:在第二目标资源中监测所述第一消息;所述第二目标资源被关联到所述第一信号。
作为一个实施例,所述第一信号被非单播RNTI加扰。
实施例12B
实施例12B示例了根据本申请的一个实施例的分别调度第一信号和第二信号的控制信令,第一信号和第二信号与所述第一反馈资源的时间关系图,如附图12B所示。
作为一个实施例,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔为所述第一反馈资源的所述时域资源的起始时刻减去所述第二时频资源块的所述时域资源的结束时刻的时间差。
作为一个实施例,所述第一反馈资源的所述时域资源在调度所述第二信号的所述控制信令所占用的时域资源之后。
作为一个实施例,所述第一反馈资源的所述时域资源在所述第二时频资源块的所述时域资源之后。
作为上述实施例的一个子实施例,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔为非负数。
作为一个实施例,所述第一反馈资源的所述时域资源在调度所述第二信号的所述控制信令所占用的时域资源之后且在所述第二时频资源块的所述时域资源之前。
作为上述实施例的一个子实施例,所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔为负数。
附图12B的情况A中,所述第一反馈资源的所述时域资源在所述第二时频资源块的所述时域资源之后。
附图12B的情况B中,所述第一反馈资源的所述时域资源在调度所述第二信号的所述控制信令所占用的时域资源之后且在所述第二时频资源块的所述时域资源之前。
实施例13
实施例13示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图,如附图13所示。在附图13中,第一节点处理装置1300包括第一接收机1301和第一发射机1302。第一接收机1301包括本申请附图4中的发射器/接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一;第一发射机1302包括本申请附图4中的发射器/接收器454(包括天线452),发射处理器468,多天线发射处理器457或控制器/处理器459中的至少之一。
在实施例13中,第一接收机1301,在第一时频资源块中接收第一信号和在第二时频资源块中接收第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;第一发射机1302,在目标反馈资源中确定是否发送第一反馈,所述第一反馈被用于指示所述第一比特块是否被 成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,当用于调度所述第一信号的所述控制信令被非单播RNTI标识时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为ACK/NACK的反馈模式;其中,所述非单播RNTI被预留给至少两个节点,所述至少两个节点包括所述第一节点;所述目标反馈资源由所述第二时频资源块确定。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定;当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号,所述目标反馈模式为ACK/NACK的反馈模式;其中,所述目标反馈资源为所述第一反馈资源。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定;当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为仅NACK的反馈模式;其中,所述目标反馈资源由所述第二时频资源块确定;所述第一信号未被成功译码。
作为一个实施例,所述第一信号和所述第二信号属于同一个HARQ实体的同一个HARQ进程。
作为一个实施例,所述第一发射机1302,当所述目标反馈模式为仅NACK的反馈模式,根据所述第一比特块是否被成功译码确定是否发送所述第一反馈;当所述目标反馈模式为ACK/NACK的反馈模式,发送所述第一反馈。
实施例14
实施例14示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图,如附图14所示。在附图14中,第二节点处理装置1400包括第二接收机1401和第二发射机1402。第二接收机1401包括本申请附图4中的发射器/接收器418(包括天线420),接收处理器470,多天线接收处理器472或控制器/处理器475中的至少之一;第二发射机1402包括本申请附图4中的发射器/接收器418(包括天线420),发射处理器416,多天线发射处理器471或控制器/处理器475中的至少之一。
在实施例14中,第二发射机1402,在第一时频资源块中发送第一信号和在第二时频资源块中发送第二信号,第一比特块被用于生成所述第一信号和所述第二信号,所述第一比特块包括至少一个比特;第二接收机1401,在目标反馈资源中监测第一反馈,所述第一反馈被用于指示所述第一比特块是否被成功译码;其中,所述第一时频资源块的时域资源的起始时刻在所述第二时频资源块的时域资源的起始时刻之前;所述第一时频资源块或者所述第二时频资源块二者中之一被用于确定目标反馈资源;所述第一反馈采用目标反馈模式,所述目标反馈模式是ACK/NACK的反馈模式或者仅NACK的反馈模式二者中之一,所述目标反馈模式和所述第一比特块是否被成功译码一起被用于确定是否发送所述第一反馈;所述第一反馈所关联的控制信令、所述第一时频资源块和所述第二时频资源块之间的位置关系中的至少之一被用于确定所述目标反馈模式;所述第一反馈所关联的所述控制信令被用于调度所述第一信号或者所述第二信号二者中之一。
作为一个实施例,当用于调度所述第一信号的所述控制信令被非单播RNTI标识时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为ACK/NACK的反馈模式;
其中,所述非单播RNTI被预留给至少两个节点,所述至少两个节点包括所述第一信号的接收者;所述目标反馈资源由所述第二时频资源块确定。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一信号的所述接收者;所述第一反馈资源由所述第一时频资源块确定。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定;当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔不小于第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第一信号,所述目标反馈模式为ACK/NACK的反馈模式;其中,所述目标反馈资源为所述第一反馈资源。
作为一个实施例,当用于调度所述第一信号的所述控制信令被单播RNTI标识时,第一反馈资源的时域资源和所述第二时频资源块的所述时域资源之间的位置关系被用于确定所述目标反馈模式;其中,所述单播RNTI被预留给所述第一节点;所述第一反馈资源由所述第一时频资源块确定;当所述第二时频资源块的所述时域资源距离所述第一反馈资源的所述时域资源的时间间隔小于所述第一时间长度时,所述第一反馈所关联的所述控制信令被用于调度所述第二信号,所述目标反馈模式为仅NACK的反馈模式;其中,所述目标反馈资源由所述第二时频资源块确定;所述第一信号未被成功译码。
作为一个实施例,所述第一信号和所述第二信号属于同一个HARQ实体的同一个HARQ进程。
作为一个实施例,当所述目标反馈模式为仅NACK的反馈模式,所述第一比特块是否被成功译码被用于确定是否发送所述第一反馈;当所述目标反馈模式为ACK/NACK的反馈模式,所述第一反馈被发送。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC(enhanced Machine Type Communication,增强机器类通信)设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP(Transmission and Reception Point,发射和接收点),中继卫星,卫星基站,空中基站等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (28)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信号;
    第一发射机,根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;
    其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二信号;
    其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中采用仅NACK的反馈模式发送所述第一消息。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二消息,所述第二消息被用于开始或重新开始所述第一计时器;
    其中,当所述第一计时器过期时,确定在所述第一目标资源中不发送所述第一消息。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述短语放弃在所述第一目标资源上发送所述第一消息包括:在第二目标资源中发送所述第一消息;所述第二目标资源被关联到所述第一信号。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一信号被非单播RNTI加扰。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信号;
    第二接收机,根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;
    其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
  9. 根据权利要求8所述的第二节点,其特征在于,包括:
    第二发射机,发送第二信号;
    其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否监测所述第一消息。
  10. 根据权利要求9所述的第二节点,其特征在于,所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否监测所述第一消息。
  11. 根据权利要求8至10中任一权利要求所述的第二节点,其特征在于,当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中监测所述第一消息;所述第一消息仅包括NACK。
  12. 根据权利要求8至11中任一权利要求所述的第二节点,其特征在于,包括:
    所述第二发射机,发送第二消息,所述第二消息被用于开始或重新开始所述第一计时器;
    其中,当所述第一计时器过期时,确定在所述第一目标资源中不监测所述第一消息。
  13. 根据权利要求8至12中任一权利要求所述的第二节点,其特征在于,所述短语放弃在所述第 一目标资源上监测所述第一消息包括:在第二目标资源中监测所述第一消息;所述第二目标资源被关联到所述第一信号。
  14. 根据权利要求8至13中任一权利要求所述的第二节点,其特征在于,所述第一信号被非单播RNTI加扰。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信号;
    根据至少第一时间长度确定在第一目标资源中是否发送第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中发送所述第一消息时,在所述第一目标资源上发送所述第一消息,当确定在所述第一目标资源中不发送所述第一消息时,放弃在所述第一目标资源上发送所述第一消息;
    其中,所述第一时间长度是所述第一节点未执行目标发送的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
  16. 根据权利要求15所述的第一节点中的方法,其特征在于,包括:
    接收第二信号;
    其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否发送所述第一消息。
  17. 根据权利要求16所述的第一节点中的方法,其特征在于,所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否发送所述第一消息。
  18. 根据权利要求15至17中任一权利要求所述的第一节点中的方法,其特征在于,当所述第一时间长度的值小于第一阈值时,确定在所述第一目标资源中采用仅NACK的反馈模式发送所述第一消息。
  19. 根据权利要求15至18中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第二消息,所述第二消息被用于开始或重新开始所述第一计时器;
    其中,当所述第一计时器过期时,确定在所述第一目标资源中不发送所述第一消息。
  20. 根据权利要求15至19中任一权利要求所述的第一节点中的方法,其特征在于,所述短语放弃在所述第一目标资源上发送所述第一消息包括:在第二目标资源中发送所述第一消息;所述第二目标资源被关联到所述第一信号。
  21. 根据权利要求15至20中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信号被非单播RNTI加扰。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信号;
    根据至少第一时间长度确定在第一目标资源中是否监测第一消息,所述第一消息被用于指示所述第一信号是否被成功译码;当确定在所述第一目标资源中监测所述第一消息时,在所述第一目标资源上监测所述第一消息,当确定在所述第一目标资源中不监测所述第一消息时,放弃在所述第一目标资源上监测所述第一消息;
    其中,所述第一时间长度是所述第二节点未执行目标接收的连续的时间长度,或者,由第一计时器确定;所述第一目标资源被关联到所述第一信号。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,包括:
    发送第二信号;
    其中,所述第二信号和所述第一时间长度联合被用于确定在所述第一目标资源中是否监测所述第一消息。
  24. 根据权利要求23所述的第二节点中的方法,其特征在于,所述第二信号指示第一资源集合,只有所述第一目标资源属于所述第一资源集合时,所述第一时间长度被用于确定在所述第一目标资源中是否监测所述第一消息。
  25. 根据权利要求22至24中任一权利要求所述的第二节点中的方法,其特征在于,当所述第一 时间长度的值小于第一阈值时,确定在所述第一目标资源中监测所述第一消息;所述第一消息仅包括NACK。
  26. 根据权利要求22至25中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第二消息,所述第二消息被用于开始或重新开始所述第一计时器;
    其中,当所述第一计时器过期时,确定在所述第一目标资源中不监测所述第一消息。
  27. 根据权利要求22至26中任一权利要求所述的第二节点中的方法,其特征在于,所述短语放弃在所述第一目标资源上监测所述第一消息包括:在第二目标资源中监测所述第一消息;所述第二目标资源被关联到所述第一信号。
  28. 根据权利要求22至27中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信号被非单播RNTI加扰。
PCT/CN2022/116020 2021-09-02 2022-08-31 一种被用于无线通信中的方法和装置 WO2023030350A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280006932.XA CN116368913A (zh) 2021-09-02 2022-08-31 一种被用于无线通信中的方法和装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111026082 2021-09-02
CN202111026082.3 2021-09-02
CN202111112604 2021-09-23
CN202111112604.1 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023030350A1 true WO2023030350A1 (zh) 2023-03-09

Family

ID=85410859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116020 WO2023030350A1 (zh) 2021-09-02 2022-08-31 一种被用于无线通信中的方法和装置

Country Status (2)

Country Link
CN (1) CN116368913A (zh)
WO (1) WO2023030350A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180115430A1 (en) * 2015-04-15 2018-04-26 Lg Electronics Inc. Method for performing feedback by terminal in wireless communication system and apparatus therefor
CN112436925A (zh) * 2020-08-03 2021-03-02 上海移远通信技术股份有限公司 一种副链路无线通信的方法和装置
CN112543087A (zh) * 2019-09-23 2021-03-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112637810A (zh) * 2019-10-08 2021-04-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112821997A (zh) * 2019-11-15 2021-05-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180115430A1 (en) * 2015-04-15 2018-04-26 Lg Electronics Inc. Method for performing feedback by terminal in wireless communication system and apparatus therefor
CN112543087A (zh) * 2019-09-23 2021-03-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112637810A (zh) * 2019-10-08 2021-04-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112821997A (zh) * 2019-11-15 2021-05-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112436925A (zh) * 2020-08-03 2021-03-02 上海移远通信技术股份有限公司 一种副链路无线通信的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion on reliability mechanisms for NR MBS", 3GPP DRAFT; R1-2108171, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038852 *
NOKIA, NOKIA SHANGHAI BELL: "Reliability Improvements for RRC_CONNECTED UEs", 3GPP DRAFT; R1-2102656, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993178 *

Also Published As

Publication number Publication date
CN116368913A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2020125402A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020233406A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN110784923A (zh) 一种被用于无线通信的节点中的方法和装置
US20210227506A1 (en) Method and device used for wireless communication with discontinuous reception
WO2022184080A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121922A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113365223B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021175256A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20210329600A1 (en) Method and device for discontinuous reception
CN113141598B (zh) 一种用于不连续接收的无线通信的方法和装置
WO2021103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113259898B (zh) 一种用于不连续接收的无线通信的方法和装置
WO2023030350A1 (zh) 一种被用于无线通信中的方法和装置
CN113411888B (zh) 一种被用于无线通信的节点中的方法和装置
US20240015839A1 (en) Method and device used for discontinuous reception in wireless communication
US20230292307A1 (en) Method and device used for wireless communication
US20230217443A1 (en) Method and device for wireless communication
WO2024083054A1 (zh) 一种被用于无线通信中的方法和装置
US20220385408A1 (en) Method and device for sidelink wireless communication
WO2022213962A1 (zh) 一种被用于无线通信的方法和装置
WO2023207708A1 (zh) 一种被用于无线通信的方法和装置
US20230269665A1 (en) Method and device used for wireless communication
CN115967994A (zh) 一种被用于无线通信中的方法和装置
WO2022188747A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN115551119A (zh) 一种副链路无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE