WO2023030345A1 - 电流峰值检测装置、高压发生器及血管钙化治疗设备 - Google Patents

电流峰值检测装置、高压发生器及血管钙化治疗设备 Download PDF

Info

Publication number
WO2023030345A1
WO2023030345A1 PCT/CN2022/115995 CN2022115995W WO2023030345A1 WO 2023030345 A1 WO2023030345 A1 WO 2023030345A1 CN 2022115995 W CN2022115995 W CN 2022115995W WO 2023030345 A1 WO2023030345 A1 WO 2023030345A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
voltage
current peak
signal
Prior art date
Application number
PCT/CN2022/115995
Other languages
English (en)
French (fr)
Inventor
李闯
唐智皇
Original Assignee
江苏朴芃医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏朴芃医疗科技有限公司 filed Critical 江苏朴芃医疗科技有限公司
Publication of WO2023030345A1 publication Critical patent/WO2023030345A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22025Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement applying a shock wave

Definitions

  • the present application relates to the technical field of current detection, and in particular to a current peak detection device, a high-voltage generator and vascular calcification treatment equipment.
  • Vascular calcification refers to the pathological process in which hydroxyapatite minerals are deposited in the vascular system. It is more common in atherosclerotic plaques, diabetes, aging and chronic renal failure, blood vessels and heart valves in uremia. Clinical and epidemiological data show that vascular calcification is a common clinicopathological manifestation in patients suffering from atherosclerosis, hypertension, diabetic vascular disease, vascular injury and chronic kidney disease, and is an important risk factor for cardiovascular events , present in 80% of vascular injuries and 90% of coronary artery disease. Vascular calcification in infancy, uremic arteriolar calcification, and calcified valvular disease can be life-threatening.
  • vascular calcification was considered to be a passive process of calcium salt deposition in tissues caused by the imbalance of calcium and phosphorus metabolism in the body.
  • Vascular calcification increases the stiffness of the vessel wall and reduces its compliance, which in turn leads to myocardial ischemia, left ventricular hypertrophy and heart failure, triggers thrombosis and plaque rupture, and is one of the important factors for the high morbidity and mortality of cardiovascular and cerebrovascular diseases First, it is also an important marker molecule for the occurrence of cardiovascular and cerebrovascular diseases.
  • the treatment methods for vascular calcification mainly include medical treatment and surgical treatment.
  • Medical treatment is to use lipid-lowering drugs to stabilize intravascular plaques and slow down the progress of atherosclerosis, or to adjust the overall calcium and phosphorus metabolism through calcium and phosphorus balance regulators such as phosphate binders and bisphosphonates, and reduce calcium salt deposition and calcium crystallization. nucleation; however, the effect of these agents on vascular calcification is unclear and less effective in patients with advanced vascular calcification.
  • Surgical treatment methods include interventional therapy and arterial bypass grafting. Intervention devices include traditional balloons, special balloons, and percutaneous atherectomy. These devices and techniques still have many limitations and can easily lead to serious complications.
  • the equipment used to treat vascular calcification mainly consists of consumable electrodes, connectors, and ultrasonic generators.
  • the instantaneous current of electrode discharge is large, which can reach hundreds of amperes, and the discharge voltage is relatively high, and the instantaneous voltage can reach ten thousand volts.
  • the current vascular calcification treatment equipment does not have an electrode current sampling device, which cannot capture the peak current during treatment in real time, and cannot confirm the operation of the equipment and the treatment of the patient, so as to further analyze the treatment results.
  • the treatment effect cannot be monitored in real time, and cannot be monitored in real time.
  • the patient's treatment status is monitored and the treatment strategy is adjusted in time, which makes it difficult to guarantee the patient's treatment effect and safety.
  • the existing scheme of adding a sampling resistor in the high-voltage circuit has an impact on the original discharge circuit and has potential safety hazards.
  • the existing scheme of using external electrode current sampling equipment can be easily deployed in laboratory testing and verification, but it is difficult to be applied in actual use due to the generally high price of professional equipment and the large size of the equipment. And it is inconvenient to carry, it is difficult to implement, and it is difficult to use on-site.
  • the existing current transformer scheme due to the presence of magnetic components in the transformer, there will inevitably be magnetic saturation, and the current measured during magnetic saturation has no reference significance. At the same time, there will be a certain hysteresis effect in the ferromagnetic components. phase difference.
  • the purpose of the present invention is to provide a current peak detection device, a high-voltage generator and vascular calcification treatment equipment, which can realize real-time monitoring of pulse current, accurately detect the current peak value of pulse current, and will not affect the original discharge circuit. It has the advantages of high safety, fast response, large saturation current, simple structure, stable process, high consistency and low cost.
  • the first aspect of the embodiment of the present invention provides a current peak detection device.
  • the current peak detection device includes: a PCB Rogowski coil, a sampling resistor, a signal amplification circuit, an integration and voltage holding circuit, and Microcontroller; where,
  • the PCB Rogowski coil is used to induce the current signal in the circuit to be tested, and obtain the corresponding induced electromotive force
  • the sampling resistor is connected to the PCB Rogowski coil for obtaining a sampling voltage corresponding to the induced electromotive force
  • the signal amplifying circuit is connected to the sampling resistor for amplifying and outputting the sampling voltage
  • the integration and voltage holding circuit is connected with the signal amplification circuit, and is used to integrate the amplified sampling voltage to obtain a voltage signal proportional to the current signal in the circuit to be tested, and to hold the voltage signal maximum value;
  • the microcontroller is connected to the integration and voltage holding circuit, and is used to perform ADC sampling on the maximum value of the voltage signal, and obtain the current signal in the line to be tested according to the ADC sampling data and preset current calibration data current peak value.
  • the PCB Rogowski coil includes a first coil part and a second coil part, the first coil part and the second coil part form a ring-shaped coil as a whole, the first coil part and the second coil part The second coil part is detachably connected;
  • the first coil part and the second coil part are respectively arranged with wires on the top layer and the bottom layer, and the corresponding wires are connected through via holes to form turns, and return wires are provided.
  • the integration and voltage holding circuit includes: an RC integration circuit and a first diode, and the RC integration circuit includes a first resistor and a first capacitor; wherein,
  • the first diode and the first resistor are connected in series between the output terminal of the signal amplifying circuit and the input terminal of the microcontroller, and the first capacitor is connected to the input terminal of the microcontroller between end and ground.
  • the microcontroller is also used to digitally filter the ADC sampling data, to filter abnormal data in a plurality of ADC sampling data, and to sample the filtered ADC sampling data.
  • the average value of the data is used to obtain the current peak value of the current signal in the line under test according to the current calibration data; wherein, the abnormal data includes a minimum value and/or a maximum value among a plurality of ADC sampling data .
  • a filter circuit is further included, and the filter circuit is arranged between the PCB Rogowski coil and the signal amplification circuit.
  • the filter circuit includes a common-mode inductor, and the common-mode inductor is arranged between the output end of the PCB Rogowski coil and the sampling resistor.
  • the filter circuit includes a first magnetic bead and a second magnetic bead, and the first magnetic bead and the second magnetic bead are connected in parallel between the sampling resistor and the signal amplification circuit .
  • the filter circuit includes a common-mode filter capacitor and a differential-mode filter capacitor, and the common-mode filter capacitor and the differential-mode filter capacitor are arranged between the sampling resistor and the signal amplification circuit.
  • the high-voltage generator includes a power module, a boost circuit, and the current peak detection device described in any of the above-mentioned implementations; in,
  • the power supply module is connected with the boost circuit and the microcontroller in the current peak detection device;
  • the microcontroller in the current peak detection device is connected to the boost circuit;
  • the PCB coil in the current peak detecting device is arranged at the output end of the booster circuit, and is used for sensing the current signal in the line under test at the output end.
  • the vascular calcification treatment device includes the high voltage generator, connector and consumable electrode of the above embodiment; wherein,
  • the output end of the high voltage generator is connected to the electrode of the consumable through the connector to form a high voltage discharge circuit.
  • the current peak detection device, high-voltage generator and vascular calcification treatment equipment of the present invention include a PCB Rogowski coil, a sampling resistor, a signal amplification circuit, an integral and voltage holding circuit, and a microcontroller; wherein, the PCB Rogowski coil is used for sensing the circuit to be tested The current signal in the circuit, and get the corresponding induced electromotive force; the sampling resistor is connected to the PCB Rogowski coil to obtain the sampling voltage corresponding to the induced electromotive force; the signal amplifier circuit is connected to the sampling resistor to amplify and output the sampling voltage; the integration and The voltage holding circuit is connected with the signal amplifying circuit, which is used to integrate the amplified sampled voltage to obtain a voltage signal proportional to the current signal in the line to be tested, and is used to maintain the maximum value of the voltage signal; the microcontroller and the integral and voltage Keeping the circuit connected is used for performing ADC sampling on the maximum value of the voltage signal, and obtaining the current peak value of the current signal
  • the present invention conducts current sampling through PCB Rogowski coil, adopts non-contact detection, will not affect the original discharge circuit, and has high safety, fast response speed, saturation current up to several thousand amperes, and simple structure of PCB coil , stable process, high consistency and low cost.
  • the present invention can stably and accurately measure the peak current each time through the signal amplification circuit and the integration and voltage holding circuit, and can monitor the treatment effect in real time when the vascular calcification treatment equipment is used for treatment.
  • FIG. 1 shows a structural block diagram of a current peak detection device provided by an embodiment of the present invention
  • Fig. 2 shows a schematic diagram of the overall structure of a PCB Rogowski coil provided by an embodiment of the present invention
  • Fig. 3 shows a schematic diagram of the turn structure of the PCB Rogowski coil in area B in Fig. 2;
  • Fig. 4 shows a specific circuit schematic diagram of a current peak detection device provided by an embodiment of the present invention
  • Figure 5 shows a schematic structural view of a high voltage generator provided by an embodiment of the present invention
  • Fig. 6 shows a schematic structural diagram of a device for treating vascular calcification provided by an embodiment of the present invention.
  • the current peak detection device 100 includes a PCB Rogowski coil 10, a sampling resistor 11, a signal amplification circuit 12, an integral and voltage holding circuit 13, and a microcontroller 14; wherein, the PCB Rogowski coil 10 is used for sensing the circuit to be tested In the current signal, and get the corresponding induced electromotive force.
  • the sampling resistor 11 is connected to the PCB Rogowski coil 10 for obtaining the sampling voltage corresponding to the induced electromotive force.
  • the signal amplifying circuit 12 is connected to the sampling resistor 11 for amplifying and outputting the sampling voltage.
  • the integration and voltage holding circuit 13 is connected with the signal amplifying circuit 12, and is used for integrating the amplified sampling voltage to obtain a voltage signal proportional to the current signal in the circuit to be tested, and is used for holding the maximum value of the voltage signal.
  • the microcontroller 14 is connected with the integration and voltage holding circuit 13, and is used for performing ADC sampling on the maximum value of the voltage signal, and obtaining the current peak value of the current signal in the line to be tested according to the ADC sampling data and preset current calibration data.
  • the magnetic field strength at a distance r from the current-carrying wire is:
  • the magnetic induction here is:
  • vacuum magnetic permeability ⁇ 0 4 ⁇ x 10 -7 H/m
  • is the circumference ratio
  • N is the number of turns
  • M is the mutual inductance of the coil
  • d ⁇ is the change of magnetic flux
  • dt is the change of time
  • dI(t) is the change of current.
  • the induced electromotive force of the PCB Rogowski coil 10 is proportional to the differential of the measured current with respect to time, so an integrating circuit must be connected to restore the measured current waveform.
  • the induced electromotive force is related to the number of turns and the area of the turns, so correspondingly increasing the number of turns and increasing the induced magnetic flux of the coil can increase the induced electromotive force.
  • the width of the coil by appropriately increasing the width of the coil, the area of the coil can be increased to a certain extent, thereby expanding the magnetic flux passing through the hollow coil and increasing the induced electromotive force.
  • the present invention induces the current signal in the circuit to be measured by the PCB Rogowski coil 10, and obtains the corresponding induced electromotive force;
  • the sampling resistor 11 is connected with the PCB Rogowski coil 10, and obtains a sampling voltage corresponding to the induced electromotive force;
  • the signal amplifying circuit 12 and the sampling The resistor 11 is connected to amplify and output the sampling voltage;
  • the integration and voltage holding circuit 13 is connected to the signal amplifying circuit 12, and the amplified sampling voltage is integrated to obtain a voltage signal proportional to the current signal in the circuit to be measured, and maintain the voltage
  • the microcontroller 14 is connected with the integration and voltage holding circuit 13, and the maximum value of the voltage signal is sampled by ADC, and the current peak value of the current signal in the circuit to be measured is obtained according to the ADC sampling data and the preset current calibration data .
  • the microcontroller 14 can set the sampling port as the ADC input, and enable ADC sampling, and can also configure a timer for periodic sampling of the ADC signal, and the timing can be adjusted as required, counting down, and when the count value reaches the set value
  • a timer interrupt will be generated, and the interrupt interval time is the set time.
  • the ADC sampling data is processed in the interrupt service function. After the interrupt occurs, the interrupt flag bit needs to be cleared to enter the interrupt next time. At the same time, the count value will be reloaded as the set count value and counted again. After the ADC data is received, a sampling value can be obtained. Under the condition that the sampling time interval is short, the current change curve can be accurately restored. Of course, it is also possible to sample only the value of the corresponding stage by setting, such as the peak current.
  • the microcontroller 14 can sample the corresponding data in this state. Therefore, the corresponding linear relationship can be obtained respectively in multiple stages. After the linear relationship is obtained, the data sampled by the microcontroller 14 will be in one-to-one correspondence with the actual current of the line to be tested, and the actual current value at this time can be calculated according to the corresponding data.
  • the current peak detection device 100 of the present invention can not only detect the peak current, but also restore the complete current change curve on the line to be tested by setting the sampling frequency of the microcontroller 14 .
  • FIG. 2 shows a schematic diagram of the overall structure of a PCB Rogowski coil provided by an embodiment of the present invention.
  • the PCB Rogowski coil 10 includes a first coil part 101 and a second coil part 102 (the two parts divided by the dotted line a in Figure 2), the first coil part 101 and the second coil part 102 form a ring-shaped coil as a whole, the first coil Part 101 and the second coil part 102 are detachably connected; wherein, the first coil part 101 and the second coil part 102 are correspondingly arranged with wires on the top layer and the bottom layer, and the corresponding wires are connected through via holes to form turns, and are provided with return wires .
  • FIG. 3 shows a schematic diagram of the turn structure of the PCB Rogowski coil in area B in FIG. 2 .
  • the wiring is radially and equally spaced along the circumference. Connect the top and bottom wires to form a turn and set the return wire.
  • the PCB Rogowski coil 10 is made into two annular parts, namely the first coil part 101 and the second coil part 102.
  • the first coil part 101 and the second coil part 102 in FIG. 2 are two semicircular structures of the same size, which can be connected to form a complete PCB Rogowski coil 10 .
  • the first coil part 101 and the second coil part 102 are connected to form a PCB Rogowski coil 10, and it is enough to pass the circuit to be tested through the coil during measurement, and it can be easily removed after the measurement is finished if necessary.
  • the specific structure of the turns only shows the area B in FIG. 2 , and other areas can be extended according to the rules in FIG. 3 .
  • the first coil part 101 and the second coil part 102 may also be set to be of different sizes, and it is only necessary that the two coil parts be connected to form a complete PCB Rogowski coil.
  • the current peak detection device 100 further includes a filter circuit, and the filter circuit is arranged between the PCB Rogowski coil 10 and the signal amplifying circuit 12 .
  • FIG. 4 shows a specific circuit diagram of a current peak detection device 100 according to an embodiment of the present invention.
  • the signal amplifying circuit 12 includes a differential amplifier U1.
  • the first input terminal (+ in the figure) and the second input terminal (- in the figure) of the differential amplifier U1 differentially amplify the sampling voltage across the sampling resistor 11 and output the amplified voltage at the output terminal.
  • the power terminal of the differential amplifier U1 is also connected to the power supply VCC, the bias port of the differential amplifier is connected to the bias voltage VBIAS, and both the power terminal and the bias port are connected to corresponding filter units.
  • the integration and voltage holding circuit 13 includes: an RC integration circuit and a first diode D1, and the RC integration circuit includes a first resistor R1 and a first capacitor C1; wherein, the first two The transistor D1 and the first resistor R1 are connected in series between the output terminal Vout of the signal amplifying circuit 12 and the input terminal of the microcontroller 14 , and the first capacitor C1 is connected between the input terminal of the microcontroller 14 and ground.
  • the RC integration circuit is used to integrate the output signal of the signal amplification circuit 12.
  • the electromotive force induced by the PCB Rogowski coil is proportional to the differential of the measured current with respect to time, so the integration circuit must be connected to restore the measured current waveform. Since the diode has a unidirectional conduction characteristic, setting the first diode D1 can maintain the maximum voltage value of the first capacitor C1, even if the current decreases, the maximum voltage value can be maintained, thereby ensuring that the peak current or current peak value of the measured current is minimized Controller 14 samples accurately.
  • the current peak detection device 100 further includes a second resistor R2, one end of the second resistor R2 is connected to the input end of the microcontroller 14, and the other end of the second resistor is connected to the microcontroller 14
  • the control terminal is used for releasing the voltage of the first capacitor C1 after the sampling of the input terminal of the microcontroller 14 is completed.
  • the voltage of the first capacitor C1 is released by controlling the port level state of the control terminal of the microcontroller 14, and sampling can be performed again after release.
  • the current peak detection device 100 further includes a second diode D2, and the second diode D2 is connected between the input terminal of the microcontroller 14 and the ground.
  • the second diode D2 is arranged between the input terminal of the microcontroller 14 and the ground to prevent the front-end voltage from being too high and ensure that the voltage at the input terminal (sampling port) of the microcontroller 14 is within a stable range.
  • the filter circuit includes a common-mode inductor L1 , and the common-mode inductor L1 is arranged between the output terminal of the PCB Rogowski coil 10 and the sampling resistor 11 .
  • the common mode inductor L1 (Common mode Choke), also known as common-mode choke coil, is used to suppress the electromagnetic waves generated by high-speed signal lines from radiating outward.
  • Common-mode inductors are essentially a two-way filter. On the one hand, it is also necessary to restrain itself from emitting electromagnetic interference to avoid affecting the normal operation of other electronic devices in the same electromagnetic environment. That is, while filtering the common-mode electromagnetic interference on the signal line, it suppresses itself and does not emit electromagnetic interference to the outside.
  • the filter circuit includes a first magnetic bead L2 and a second magnetic bead L3, and the first magnetic bead L2 and the second magnetic bead L3 are connected in parallel between the sampling resistor 11 and the signal amplifying circuit 12 between.
  • the first magnetic bead L2 and the second magnetic bead L3 are equivalent to a series connection of a resistor and an inductor, but both the resistance value and the inductance value vary with frequency. In this embodiment, it is used to eliminate differential mode interference, suppress high-frequency noise and spike interference, and absorb static pulses.
  • the first magnetic bead L2 is connected between the first end of the sampling resistor 11 and the first input end of the differential amplifier U1
  • the second magnetic bead L3 is connected between the second end of the sampling resistor 11 and the differential amplifier U1 between the second input terminals.
  • the filter circuit includes a common-mode filter capacitor and a differential-mode filter capacitor, and the common-mode filter capacitor and the differential-mode filter capacitor are arranged between the sampling resistor 11 and the signal amplifying circuit 12 .
  • the common mode filter capacitor includes a second capacitor C2 and a third capacitor C3, the second capacitor C2 is connected between the first input terminal of the differential amplifier U1 and the ground, and the third capacitor C3 is connected to the differential Between the second input terminal of amplifier U1 and ground.
  • the differential mode filter capacitor includes a fourth capacitor C4, and the fourth capacitor C4 is connected between the first input terminal and the second input terminal of the differential amplifier U1.
  • Common-mode filter capacitors and differential-mode filter capacitors are used to filter out clutter, and a more accurate voltage difference can be obtained after filtering.
  • the current peak detection device 100 further includes a third resistor R3 and a fourth resistor R4, and the third resistor R3 is connected between the first magnetic bead L2 and the first input terminal of the differential amplifier U1 Between, the fourth resistor R4 is connected between the second magnetic bead L3 and the second input terminal of the differential amplifier U1.
  • the current peak detection device 100 further includes a voltage dividing resistor, the voltage dividing resistor includes a fifth resistor R5 and a sixth resistor R6, and the fifth resistor R5 and the sixth resistor R6 are connected to the PCB Rogowski Between the output end of the coil 10 and the sampling resistor 11.
  • the microcontroller 14 is also used to digitally filter the ADC sampling data, to filter abnormal data in multiple ADC sampling data, and average the filtered multiple ADC sampling data for use in The current peak value of the current signal in the line to be tested is obtained according to the current calibration data; wherein, the abnormal data includes a minimum value and/or a maximum value among multiple ADC sampling data.
  • abnormal data is filtered by means of digital filtering. That is, when the data is sampled, data processing is performed after multiple samplings. For example, the number of samplings is 32 times, and the microcontroller 14 counts and performs data processing after 32 samplings, and sorts the 32 times of data in order from small to large, and the sorting is completed.
  • the current peak value of the current signal in the line to be tested is obtained.
  • the current peak detection device 100 further includes a storage module 15 connected to the microcontroller 14 for storing the current peak value.
  • the storage module 15 can be a Flash memory
  • the Flash memory is a serial SPI chip, which will be addressed according to the address when the data is stored, and the count value will be automatically increased by one when the data is added, and the first address that needs to be addressed is the data Number of bars * data length, the count value will also be stored, and the data is stored at the end of the address of the Flash memory.
  • data information such as device ID can also be stored in the Flash memory.
  • the data storage format reference is as follows:
  • 01 02 03 04 05 is the ID number of consumables
  • 00 01 is the number of data records
  • the data storage address is shown in Table 1, offset on the Flash base address:
  • the present invention performs current sampling through the PCB Rogowski coil 10, and adopts non-contact detection, which will not affect the original discharge circuit, and has high safety, fast response speed, and a saturation current of several thousand amperes.
  • the PCB coil structure is simple, the process is stable, the consistency is high, and the cost is low.
  • the peak current can be stably and accurately measured each time, and the treatment effect can be monitored in real time when the vascular calcification treatment equipment is used for treatment.
  • FIG. 5 shows a schematic structural diagram of the high-voltage generator provided by an embodiment of the present invention.
  • the high voltage generator 200 includes a power supply module 110, a boost circuit 120, and a current peak detection device 100 as described in any of the above-mentioned embodiments; wherein, the power supply module 110 and the boost circuit 120 and the current peak detection device
  • the microcontroller 14 in 100 is connected; the microcontroller 14 in the current peak detection device 100 is connected with the booster circuit 120; the PCB coil in the current peak detection device 100 is arranged at the output end of the booster circuit 120, and is used for inductive output.
  • the signal processing module 20 in FIG. 5 includes other modules, circuits and components in the foregoing embodiments except the PCB Rogowski coil 10 , the microcontroller 14 and the storage module 15 .
  • the power module 110 supplies power to the booster circuit 120 and the microcontroller 14.
  • the booster circuit 120 is used to generate the high voltage required for treatment, and the power supply voltage can be raised to a high voltage that meets the requirements through the booster circuit 120 .
  • FIG. 6 shows a schematic structural diagram of a device for treating vascular calcification provided by an embodiment of the present invention.
  • the vascular calcification treatment equipment includes the high-voltage generator, the connector 300, and the consumable electrode 400 of the above-mentioned embodiment; wherein, the output end of the high-voltage generator is connected to the consumable electrode 400 through the connector 300 to form a high-voltage discharge circuit.
  • the specific process is: the inner tube with several consumable electrodes 400 distributed at the distal end and the balloon coated on the outside of the inner tube are delivered together through the guide wire Go to the calcified tissue in the blood vessel that needs to be treated, and fill the balloon with fluid (conductive liquid, such as normal saline).
  • the high-voltage generator is energized, and the high-voltage generator generates a high-voltage discharge circuit, so that the consumable electrode 400 generates a shock wave, and the calcification focus attached to the blood vessel wall is crushed by the shock wave.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一种电流峰值检测装置(100)、高压发生器(200)及血管钙化治疗设备,电流峰值检测装置(100)包括:PCB罗氏线圈(10)、采样电阻(11)、信号放大电路(12)、积分及电压保持电路(13)以及微控制器(14)。PCB罗氏线圈(10)用于感应待测线路中的电流信号,并得到对应的感应电动势;采样电阻(11)与PCB罗氏线圈(10)连接,信号放大电路(12)与采样电阻(11)连接,积分及电压保持电路(13)与信号放大电路(12)连接,微控制器(14)与积分及电压保持电路(13)连接,用于对电压信号的最大值进行ADC采样,并根据ADC采样数据和预设的电流标定数据得到待测线路中电流信号的电流峰值。本装置(100)可以实现对脉冲电流的实时监测,准确检测脉冲电流的电流峰值,对原有高压放电回路不会产生影响,具有安全性高、响应速度快、工艺稳定、一致性较高以及成本较低的优点。

Description

电流峰值检测装置、高压发生器及血管钙化治疗设备
本申请要求于2021年08月30日提交的中国专利申请号为 CN202111005958.6、名称为“电流峰值检测装置、高压发生器及血管钙化治疗设备”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电流检测技术领域,尤其涉及一种电流峰值检测装置、高压发生器及血管钙化治疗设备。
背景技术
血管钙化是指羟磷灰石矿物质沉积于血管系统的病理过程,临床多见于动脉粥样硬化的斑块、糖尿病、衰老及慢性肾功能衰竭、尿毒症的血管及心脏瓣膜。临床和流行病学资料显示血管钙化是患动脉粥样硬化、高血压、糖尿病血管病变、血管损伤和慢性肾病等疾病的病人中普遍存在的共同临床病理表现,是导致心血管事件的重要危险因子,出现在80%血管损伤和90%冠脉疾病中。婴儿期血管钙化、尿毒症性小动脉钙化和钙化的瓣膜病可以危及生命。青年血管钙化患者的发病以糖尿病患者多见,而老年患者以血脂异常居多。近年血管生物学和心血管影像学的研究发现血管钙化的部位和钙化程度可作为脑卒中、缺血性心脏病的预警指标以及预测Ⅱ型胰岛素非依赖性糖尿病患者心血管死亡率的指标。既往认为血管钙化是机体钙磷代谢失衡所致的钙盐沉积于组织间的被动过程。血管钙化使血管壁僵硬度增加,顺应性降低,进而导致心肌缺血、左心室肥大和心力衰竭,引发血栓形成、斑块破裂,是心脑血管疾病高发病率和高死亡率的重要因素之一,亦是心脑血管病发生的重要标志分子。
当前,血管钙化的治疗手段主要有内科治疗和手术治疗。内科治疗是通过使用调脂药物稳定血管内斑块,减缓动脉粥样硬化进展,或通过磷酸盐结合剂、双磷酸盐等钙磷平衡调节剂调节整体钙磷代谢,减轻钙盐沉积与钙结晶成核;但这些药物对血管钙化的作用尚不明确,并且血管钙化晚期的患者效果较差。手术治疗方法有介入治疗和动脉旁路移植术。介入装置有传统球囊、特殊球囊和经皮腔内斑块旋切术,这些设备和技术尚存在诸多局限,易导致严重并发症。传统球囊仅对软性病变扩张效果尚可,但在治疗钙化病变血管方面,则需更高的压力再次恢复管腔,然而持续的高压容易造成血管继发机械损伤,甚至造成血管破裂。特殊球囊,如嵌入式、棘突球囊都有特殊的使用条件,需术者进行过较长时间的培训。经皮腔内斑块旋切术设备昂贵、操作复杂、手术时间长,并且难以解决远端栓塞与较高的血管损伤风险的问题。为解决上述钙化血管治疗中的问题,结合超声碎石与球囊血管成形技术,通过利用声波治疗钙化动脉疾病,能够较好地克服传统设备和技术在治疗过程中的不足,有望成为新一代钙化性血管治疗技术。
技术问题
用于治疗血管钙化的设备,主要由耗材电极、连接器、以及超声发生器组成。血管钙化治疗设备在治疗时,电极放电瞬时电流大,可达上百安培,且放电电压较高,瞬时电压可达十千伏。目前的血管钙化治疗设备中暂无电极电流采样装置,无法实时捕获治疗时的峰值电流,无法确认设备的运行情况以及患者的治疗情况,从而进一步分析治疗结果,治疗效果无法得到实时监控,无法在治疗过程中监测患者的治疗状态并及时调整治疗策略,患者治疗效果和安全难以得到保障。
现有的在高压回路中增加采样电阻的方案,对原有放电回路产生影响,存在安全隐患。现有的采用外置的电极电流采样设备的方案,在实验室测试验证时可以比较方便的展开,但在实际使用时由于专业设备价格普遍较高同时设备体积较大等原因难以得到应用,安装以及携带不便,实施难度大,难以在现场使用。现有的电流互感器的方案,由于互感器存在磁性元件,不可避免的会存在磁饱和的情况,磁饱和时测量的电流不具备参考意义,同时,铁磁性元件存在磁滞效应,会存在一定的相位差。
技术解决方案
有鉴于此,本发明的目的在于提供一种电流峰值检测装置、高压发生器及血管钙化治疗设备,可以实现对脉冲电流的实时监测,准确检测脉冲电流的电流峰值,对原有放电回路不会产生影响,具有安全性高、响应速度快、饱和电流大的优点,并且构造简单、工艺稳定、一致性较高、成本较低。
为实现上述目的,本发明实施例第一方面提供一种电流峰值检测装置,作为其中一种实施方式,电流峰值检测装置包括:PCB罗氏线圈、采样电阻、信号放大电路、积分及电压保持电路以及微控制器;其中,
所述PCB罗氏线圈用于感应待测线路中的电流信号,并得到对应的感应电动势;
所述采样电阻与所述PCB罗氏线圈连接,用于获取与所述感应电动势对应的采样电压;
所述信号放大电路与所述采样电阻连接,用于对所述采样电压进行放大输出;
所述积分及电压保持电路与所述信号放大电路连接,用于对放大后的采样电压进行积分处理,得到正比于所述待测线路中电流信号的电压信号,并用于保持所述电压信号的最大值;
所述微控制器与所述积分及电压保持电路连接,用于对所述电压信号的最大值进行ADC采样,并根据ADC采样数据和预设的电流标定数据得到所述待测线路中电流信号的电流峰值。
作为其中一种实施方式,所述PCB罗氏线圈包括第一线圈部和第二线圈部,所述第一线圈部和所述第二线圈部组成环形的线圈整体,所述第一线圈部和第二线圈部可拆卸连接;其中,
所述第一线圈部和所述第二线圈部均在顶层和底层对应布置导线,对应的导线通过过孔连接形成线匝,且设置有回线。
作为其中一种实施方式,所述积分及电压保持电路包括:RC积分电路和第一二极管,所述RC积分电路包括第一电阻和第一电容;其中,
所述第一二极管和所述第一电阻串联连接于所述信号放大电路的输出端和所述微控制器的输入端之间,所述第一电容连接于所述微控制器的输入端和地之间。
作为其中一种实施方式,所述微控制器还用于对所述ADC采样数据进行数字滤波,以过滤多个所述ADC采样数据中的异常数据,并对过滤后的多个所述ADC采样数据取平均值,以用于根据所述电流标定数据得到所述待测线路中电流信号的电流峰值;其中,所述异常数据包括多个所述ADC采样数据中的最小值和/或最大值。
作为其中一种实施方式,还包括滤波电路,所述滤波电路设置于所述PCB罗氏线圈和所述信号放大电路之间。
作为其中一种实施方式,所述滤波电路包括共模电感,所述共模电感设置于所述PCB罗氏线圈的输出端和所述采样电阻之间。
作为其中一种实施方式,所述滤波电路包括第一磁珠和第二磁珠,所述第一磁珠和所述第二磁珠并联连接于所述采样电阻和所述信号放大电路之间。
作为其中一种实施方式,所述滤波电路包括共模滤波电容和差模滤波电容,所述共模滤波电容和所述差模滤波电容设置于所述采样电阻和所述信号放大电路之间。
为实现上述目的,本发明实施例另一方面提供一种高压发生器,作为其中一种实施方式,高压发生器包括电源模块、升压电路以及上述任一实施方式所述的电流峰值检测装置;其中,
所述电源模块与所述升压电路和所述电流峰值检测装置中的所述微控制器连接;
电流峰值检测装置中所述微控制器与所述升压电路连接;
电流峰值检测装置中的所述PCB线圈设置于所述升压电路的输出端,用于感应所述输出端的待测线路中电流信号。
为实现上述目的,本发明实施例另一方面提供一种血管钙化治疗设备,作为其中一种实施方式,血管钙化治疗设备包括上述实施方式的高压发生器以及连接器和耗材电极;其中,
所述高压发生器的输出端通过所述连接器与所述耗材电极进行连接,以形成高压放电回路。
有益效果
本发明的电流峰值检测装置、高压发生器及血管钙化治疗设备,包括PCB罗氏线圈、采样电阻、信号放大电路、积分及电压保持电路以及微控制器;其中,PCB罗氏线圈用于感应待测线路中的电流信号,并得到对应的感应电动势;采样电阻与PCB罗氏线圈连接,用于获取与感应电动势对应的采样电压;信号放大电路与采样电阻连接,用于对采样电压进行放大输出;积分及电压保持电路与信号放大电路连接,用于对放大后的采样电压进行积分处理,得到正比于待测线路中电流信号的电压信号,并用于保持电压信号的最大值;微控制器与积分及电压保持电路连接,用于对电压信号的最大值进行ADC采样,并根据ADC采样数据和预设的电流标定数据得到待测线路中电流信号的电流峰值。本发明一方面通过PCB罗氏线圈进行电流采样,采用非接触式检测,不会对原有放电回路产生影响,并且高安全性、响应速度快、饱和电流可达几千安培,并且PCB线圈构造简单,工艺稳定,一致性较高,成本较低。本发明另一方面通过信号放大电路以及积分及电压保持电路能够稳定精确测量每次的峰值电流,可以在用血管钙化治疗设备进行治疗时对治疗效果进行实时监控。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图 1示出本发明一实施例提供的电流峰值检测装置的结构框图;
图2示出本发明一实施例提供的PCB罗氏线圈的整体结构示意图;
图3示出图2中B区域的PCB罗氏线圈的线匝结构示意图;
图4示出本发明一实施例提供的电流峰值检测装置的具体电路示意图;
图5示出本发明一实施例提供的高压发生器的结构示意图;
图6示出本发明一实施例提供的血管钙化治疗设备的结构示意图。
本发明的最佳实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。本领域普通技术人员基于本发明的实施例,在没有创造性劳动前提下获得的所有其它实施例,都应当属于本发明的保护范围。
需要说明的是,本发明的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,但不必用于描述特定的顺序或先后次序。应当理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参考图1,图1示出本发明一实施例提供的电流峰值检测装置的结构框图。如图1所示,电流峰值检测装置100包括PCB罗氏线圈10、采样电阻11、信号放大电路12、积分及电压保持电路13以及微控制器14;其中,PCB罗氏线圈10用于感应待测线路中的电流信号,并得到对应的感应电动势。采样电阻11与PCB罗氏线圈10连接,用于获取与感应电动势对应的采样电压。信号放大电路12与采样电阻11连接,用于对采样电压进行放大输出。积分及电压保持电路13与信号放大电路12连接,用于对放大后的采样电压进行积分处理,得到正比于待测线路中电流信号的电压信号,并用于保持电压信号的最大值。微控制器14与积分及电压保持电路13连接,用于对电压信号的最大值进行ADC采样,并根据ADC采样数据和预设的电流标定数据得到待测线路中电流信号的电流峰值。
具体地,由PCB罗氏线圈10感应原理,即当PCB罗氏线圈10中的导线流过的电流为I(t)时,载流导体周围会产生磁场,距离载流导体越近磁场强度越强,距离载流导线r处的磁场强度为:
H=(I(t))/2πr
此处的磁感应强度为:
B=(μ 0 I(t))/2πr
其中真空磁导率μ 0=4πx 10 -7H/m,π为圆周率。
PCB罗氏线圈10线匝中存在磁通量,每匝线匝的磁通量为
φ=∫BdS
其中S为单匝线匝的面积,d为微分(differential)符号,dS为对面积的微分。由上式可知,磁通量与磁感应强度以及线匝的面积相关。
由法拉第电磁感应定律可知,当被测电流发生变化时,线圈会产生感应电动势:
e(t)=-N dφ/dt=-M (dI(t))/dt
式中N为线匝数量,M为线圈互感,dφ为磁通量的变化量,dt为时间变化量,dI(t)为电流变化量。
由感应电动势公式可得,PCB罗氏线圈10感应电动势与被测电流对时间的微分成正比,因此须接积分电路才能还原被测电流波形。
感应电动势与线匝数量以及线匝面积相关,因此相应的增加线匝数量,提高线圈的感应磁通量可使感应电动势加大。另一方面,通过适当增加线匝的宽度,可在一定程度上增加线匝的面积,从而扩大穿过空心线匝的磁通量,加大感应电动势。
因此,本发明通过PCB罗氏线圈10感应待测线路中的电流信号,并得到对应的感应电动势;采样电阻11与PCB罗氏线圈10连接,获取与感应电动势对应的采样电压;信号放大电路12与采样电阻11连接,对采样电压进行放大输出;积分及电压保持电路13与信号放大电路12连接,对放大后的采样电压进行积分处理,得到正比于待测线路中电流信号的电压信号,并保持电压信号的最大值;微控制器14与积分及电压保持电路13连接,对电压信号的最大值进行ADC采样,并根据ADC采样数据和预设的电流标定数据得到待测线路中电流信号的电流峰值。
其中,微控制器14可将采样端口设置为ADC输入,并开启ADC采样,还可配置定时器用于周期采样ADC信号,定时时间可按照需要进行调整,向下计数,在计数值到达设定值0时,将产生定时器中断,中断间隔时间为设定时间,在中断服务函数中处理ADC采样数据,中断发生后需要清除中断标志位,以便下次进入中断。同时计数值将重新装载为设定计数值,再次进行计数。ADC数据接收后,可得到一次采样值。在采样时间间隔较短的条件下可以准确地还原出电流变化曲线。当然也可以通过设置只采样相应阶段的数值,例如峰值电流。
其中,为了由ADC采样数据得到待测线路中的实际电流,需要进行电流标定,即利用基准电流源,分别选取一定间隔的电流值为基准值,并分别得到在该电流下电流峰值检测装置100对应的数据,也就是说在待测线路中流过设定的电流时,微控制器14可采样得到该状态下对应的数据。因此,可以分多个阶段分别得到对应的线性关系。得到线性关系后,微控制器14采样的数据将与待测线路的实际电流一一对应,可依据对应的数据计算出此时的实际电流值。
需要说明的是,本发明的电流峰值检测装置100不仅仅可以检测峰值电流,通过设置微控制器14的采样频率,可以还原待测线路上完整的电流变化曲线。
本发明的实施方式
在一实施方式中,请参考图2,图2示出本发明一实施例提供的PCB罗氏线圈的整体结构示意图。PCB罗氏线圈10包括第一线圈部101和第二线圈部102(图2中虚线a所划分的两个部分),第一线圈部101和第二线圈部102组成环形的线圈整体,第一线圈部101和第二线圈部102可拆卸连接;其中,第一线圈部101和第二线圈102部均在顶层和底层对应布置导线,对应的导线通过过孔连接形成线匝,且设置有回线。
具体地,请参考图3,图3示出图2中B区域的PCB罗氏线圈的线匝结构示意图。如图3所示,在PCB的顶层和底层,沿圆周呈放射状等间距布线,顶层和底层对应的导线通过过孔连接形成线匝,即在PCB的顶层和底层分别等间距布线,然后通过导线将顶层和底层的导线连接形成线匝,并设置回线。在PCB上均匀分布有多匝线匝,单匝感应出的电压非常微弱,多匝线匝依次串联,感应的电压有所提高。为便于安装及拆除,不影响原有线路连接,本实施方式将PCB罗氏线圈10制成两个环状部,即第一线圈部101和第二线圈部102,优选的,图2中第一线圈部101和第二线圈部102为两个相同大小的半圆结构,可连接组成完整的PCB罗氏线圈10。在实际使用时,第一线圈部101和第二线圈部102连接后构成一个PCB罗氏线圈10,在测量时将待测线路穿过线圈即可,测量结束后如有需要也可方便取下。
需要说明的是,为了简明,线匝具体结构仅仅示出了图2中的B区域,其他区域可按图3中的规律延伸。同时,其它实施例中第一线圈部101和第二线圈部102也可以设置为不一样大,只需要两个线圈部连接后能形成一个完整的PCB罗氏线圈即可。
在一实施方式中,电流峰值检测装置100还包括滤波电路,所述滤波电路设置于PCB罗氏线圈10和信号放大电路12之间。
在一实施方式中,请参考图4,图4示出本发明一实施例提供的电流峰值检测装置100的具体电路示意图。如图4所示,信号放大电路12包括差分放大器U1。
具体地,差分放大器U1的第一输入端(图中的+)和第二输入端(图中的-)差分放大采样电阻11两端的采样电压,并于输出端输出放大后的电压。其中差分放大器U1的电源端还连接于供电电源VCC,差分放大器的偏置端口连接于偏置电压VBIAS,并且其电源端和偏置端口均连接有相应的滤波单元。
在一实施方式中,如图4所示,积分及电压保持电路13包括:RC积分电路和第一二极管D1,RC积分电路包括第一电阻R1和第一电容C1;其中,第一二极管D1和第一电阻R1串联连接于信号放大电路12的输出端Vout和微控制器14的输入端之间,第一电容C1连接于微控制器14的输入端和地之间。
具体地,RC积分电路用于对信号放大电路12的输出信号进行积分处理,PCB罗氏线圈感应电动势与被测电流对时间的微分成正比,因此须接积分电路才能还原被测电流波形。由于二极管具有单向导通特性,因此设置第一二极管D1可以保持第一电容C1的最大电压值,即使电流降低也可以保持最大电压值,从而确保被测电流的峰值电流或电流峰值被微控制器14准确采样。
在一实施方式中,如图4所示,电流峰值检测装置100还包括第二电阻R2,第二电阻R2一端连接于微控制器14的输入端,第二电阻的另一端连接微控制器14的控制端,用于在微控制器14的输入端采样完成后释放第一电容C1的电压。
具体地,在微控制器14的输入端,即ADC采样端口,的信号被采样后通过控制微控制器14的控制端的端口电平状态释放第一电容C1的电压,释放后可再次进行采样。
在一实施方式中,电流峰值检测装置100还包括第二二极管D2,第二二极管D2连接于微控制器14输入端和地之间。
具体地,第二二极管D2设置于微控制器14输入端和地之间,用于防止前端电压过高,保证微控制器14输入端(采样端口)的电压在一个稳定的范围内。
在一实施方式中,滤波电路包括共模电感L1,共模电感L1设置于PCB罗氏线圈10的输出端和采样电阻11之间。
具体地,共模电感L1(Common mode Choke),也叫共模扼流圈,用于抑制高速信号线产生的电磁波向外辐射发射,共模电感实质上是一个双向滤波器,一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。即在滤除信号线上的共模电磁干扰的同时抑制本身不向外发出电磁干扰。
在一实施方式中,如图4所示,滤波电路包括第一磁珠L2和第二磁珠L3,第一磁珠L2和第二磁珠L3并联连接于采样电阻11和信号放大电路12之间。
具体地,第一磁珠L2和第二磁珠L3等效于电阻和电感串联,但电阻值和电感值都随频率变化。本实施方式中用于消除差模干扰,抑制高频噪声和尖峰干扰,吸收静电脉冲。如图4所示,第一磁珠L2连接于采样电阻11的第一端和差分放大器U1的第一输入端之间,第二磁珠L3连接于采样电阻11的第二端和差分放大器U1的第二输入端之间。
在一实施方式中,滤波电路包括共模滤波电容和差模滤波电容,共模滤波电容和差模滤波电容设置于采样电阻11和信号放大电路12之间。
具体地,如图4所示,共模滤波电容包括第二电容C2和第三电容C3,第二电容C2连接于差分放大器U1的第一输入端和地之间,第三电容C3连接于差分放大器U1的第二输入端和地之间。差模滤波电容包括第四电容C4,第四电容C4连接于差分放大器U1的第一输入端和第二输入端之间。共模滤波电容和差模滤波电容用于滤除杂波,滤波后可得到更准确的电压差。
在一实施方式中,如图4所示,电流峰值检测装置100还包括第三电阻R3和第四电阻R4,第三电阻R3连接于第一磁珠L2和差分放大器U1的第一输入端之间,第四电阻R4连接于第二磁珠L3和差分放大器U1的第二输入端之间。
在一实施方式中,如图4所示,电流峰值检测装置100还包括分压电阻,分压电阻包括第五电阻R5和第六电阻R6,第五电阻R5和第六电阻R6连接于PCB罗氏线圈10的输出端和采样电阻11之间。
在一实施方式中,微控制器14还用于对ADC采样数据进行数字滤波,以过滤多个ADC采样数据中的异常数据,并对过滤后的多个ADC采样数据取平均值,以用于根据电流标定数据得到待测线路中电流信号的电流峰值;其中,异常数据包括多个ADC采样数据中的最小值和/或最大值。
具体地,若以微控制器14在预设时段(脉冲电流在峰值处存在一段稳定时刻)单次采样的数值得到对应的电流峰值,可能存在一定的偏差,为了避免采样数据的偏差带来的影响,本实施方式中通过数字滤波的方式过滤异常数据。即在数据采样时,多次采样后再进行数据的处理,例如采样次数为32次,微控制器14统计进行32次采样后进行数据处理,将32次数据从小到大依次进行排序,排序完成后去除最小的1组数据以及最大的1组数据,当然根据时间情况也可以是最小的多组数据以及最大的多组数据,然后再将剩余的数据取平均值,得到一次过滤后的有效数据,根据该有效数据和电流标定数据得到待测线路中电流信号的电流峰值。
在一实施方式中,如图4所示,电流峰值检测装置100还包括存储模块15,存储模块15与微控制器14连接,用于存储电流峰值。
具体地,存储模块15可以是Flash存储器,Flash存储器为串行SPI芯片,在数据存储时将按照地址进行寻址,数据每增加一条,计数值将自动加一,需要寻址的首地址为数据条数*数据长度,该计数值也将进行存储,该数据存储在Flash存储器的地址尾部。在电流峰值检测装置100用于血管钙化治疗设备时,Flash存储器中还可以存储设备ID等数据信息。例如,数据存储格式参考如下:
01 02 03 04 05 00 01 0F 0A;
其中01 02 03 04 05为耗材ID号;
00 01 为数据记录次数;
0F 0A 为电流数值;
数据存储地址如表1,在Flash基地址上偏移:
存储地址(十六进制) 数据内容 数据说明
0x00000000 01 02 03 04 05 00 01 0F 0A 存储的第一帧数据
0x00000009 01 02 03 04 05 00 02 0D 0F 存储的第二帧数据
0x00000012 01 02 03 04 05 00 03 0E 02 存储的第三帧数据
表1
综上,本发明一方面通过PCB罗氏线圈10进行电流采样,采用非接触式检测,不会对原有放电回路产生影响,并且高安全性、响应速度快、饱和电流可达几千安培,并且PCB线圈构造简单,工艺稳定,一致性较高,成本较低。另一方面通过信号放大电路12以及积分及电压保持电路13能够稳定精确测量每次的峰值电流,可以在用血管钙化治疗设备进行治疗时对治疗效果进行实时监控。
本发明实施例还提供一种高压发生器,请参考图5,图5示出本发明一实施例提供的高压发生器的结构示意图。如图5所示,高压发生器200包括电源模块110、升压电路120以及如上述任一实施方式所述的电流峰值检测装置100;其中,电源模块110与升压电路120和电流峰值检测装置100中的微控制器14连接;电流峰值检测装置100中微控制器14与升压电路120连接;电流峰值检测装置100中的PCB线圈设置于升压电路120的输出端,用于感应输出端的待测线路中电流信号。其中,为了简明,图5中的信号处理模块20包括前述实施方式中除PCB罗氏线圈10、微控制器14以及存储模块15以外的其他模块、电路以及元件。
具体地,电源模块110为升压电路120和微控制器14供电,升压电路120用于产生治疗时所需的高压,通过升压电路120可将电源电压升高到符合需求的高压。
本发明实施例还提供一种血管钙化治疗设备,请参考图6,图6示出本发明一实施例提供的血管钙化治疗设备的结构示意图。如图6所示,血管钙化治疗设备包括上述实施方式的高压发生器以及连接器300和耗材电极400;其中,高压发生器的输出端通过连接器300与耗材电极400进行连接,以形成高压放电回路。
工业实用性
在使用血管钙化治疗设备对血管中的钙化组织进行治疗时,具体的过程为:通过导引导丝将远端分布有若干个耗材电极400的内管以及包覆于内管外部的球囊一同输送到血管内的需要治疗的钙化组织处,对球囊进行充液(导电液体,如生理盐水)。充液完成后,对高压发生器进行通电,高压发生器产生高压放电回路,使得耗材电极400产生冲击波,通过冲击波粉碎血管壁上附着的钙化灶。
序列表自由内容
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定发明,任何熟悉本专业的技术人员,在不脱离发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离发明技术方案内容,依据发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种电流峰值检测装置,其特征在于,包括:PCB罗氏线圈、采样电阻、信号放大电路、积分及电压保持电路以及微控制器;其中,
    所述PCB罗氏线圈用于感应待测线路中的电流信号,并得到对应的感应电动势;
    所述采样电阻与所述PCB罗氏线圈连接,用于获取与所述感应电动势对应的采样电压;
    所述信号放大电路与所述采样电阻连接,用于对所述采样电压进行放大输出;
    所述积分及电压保持电路与所述信号放大电路连接,用于对放大后的采样电压进行积分处理,得到正比于所述待测线路中电流信号的电压信号,并用于保持所述电压信号的最大值;
    所述微控制器与所述积分及电压保持电路连接,用于对所述电压信号的最大值进行ADC采样,并根据ADC采样数据和预设的电流标定数据得到所述待测线路中电流信号的电流峰值。
  2. 根据权利要求1所述的电流峰值检测装置,其特征在于,所述PCB罗氏线圈包括第一线圈部和第二线圈部,所述第一线圈部和所述第二线圈部组成环形的线圈整体,所述第一线圈部和第二线圈部可拆卸连接;其中,
    所述第一线圈部和所述第二线圈部均在顶层和底层对应布置导线,对应的导线通过过孔连接形成线匝,且设置有回线。
  3. 根据权利要求1所述的电流峰值检测装置,其特征在于,所述积分及电压保持电路包括:RC积分电路和第一二极管,所述RC积分电路包括第一电阻和第一电容;其中,
    所述第一二极管和所述第一电阻串联连接于所述信号放大电路的输出端和所述微控制器的输入端之间,所述第一电容连接于所述微控制器的输入端和地之间。
  4. 根据权利要求1所述的电流峰值检测装置,其特征在于,所述微控制器还用于对所述ADC采样数据进行数字滤波,以过滤多个所述ADC采样数据中的异常数据,并对过滤后的多个所述ADC采样数据取平均值,以用于根据所述电流标定数据得到所述待测线路中电流信号的电流峰值;其中,所述异常数据包括多个所述ADC采样数据中的最小值和/或最大值。
  5. 根据权利要求1所述的电流峰值检测装置,其特征在于,还包括滤波电路,所述滤波电路设置于所述PCB罗氏线圈和所述信号放大电路之间。
  6. 根据权利要求5所述的电流峰值检测装置,其特征在于,所述滤波电路包括共模电感,所述共模电感设置于所述PCB罗氏线圈的输出端和所述采样电阻之间。
  7. 根据权利要求5所述的电流峰值检测装置,其特征在于,所述滤波电路包括第一磁珠和第二磁珠,所述第一磁珠和所述第二磁珠并联连接于所述采样电阻和所述信号放大电路之间。
  8. 根据权利要求5所述的电流峰值检测装置,其特征在于,所述滤波电路包括共模滤波电容和差模滤波电容,所述共模滤波电容和所述差模滤波电容设置于所述采样电阻和所述信号放大电路之间。
  9. 一种高压发生器,其特征在于,包括电源模块、升压电路以及如权利要求1至8任一项所述的电流峰值检测装置;其中,
    所述电源模块与所述升压电路和所述电流峰值检测装置中的所述微控制器连接;
    电流峰值检测装置中所述微控制器与所述升压电路连接;
    电流峰值检测装置中的所述PCB线圈设置于所述升压电路的输出端,用于感应所述输出端的待测线路中电流信号。
  10. 一种血管钙化治疗设备,其特征在于,包括如权利要求9所述的高压发生器以及连接器和耗材电极;其中,所述高压发生器的输出端通过所述连接器与所述耗材电极进行连接,以形成高压放电回路。
PCT/CN2022/115995 2021-08-30 2022-08-30 电流峰值检测装置、高压发生器及血管钙化治疗设备 WO2023030345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111005958.6A CN113520521B (zh) 2021-08-30 2021-08-30 电流峰值检测装置、高压发生器及血管钙化治疗设备
CN202111005958.6 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023030345A1 true WO2023030345A1 (zh) 2023-03-09

Family

ID=78092277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115995 WO2023030345A1 (zh) 2021-08-30 2022-08-30 电流峰值检测装置、高压发生器及血管钙化治疗设备

Country Status (2)

Country Link
CN (1) CN113520521B (zh)
WO (1) WO2023030345A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113520521B (zh) * 2021-08-30 2023-11-03 江苏朴芃医疗科技有限公司 电流峰值检测装置、高压发生器及血管钙化治疗设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551416A (zh) * 2008-04-01 2009-10-07 通用电气公司 监控导体中的电流的系统和方法
US20100013460A1 (en) * 2006-12-21 2010-01-21 Siemens Aktiengesellschaft Rogowski Sensor and Method for Measuring a Current
CN102445588A (zh) * 2011-11-23 2012-05-09 中国人民解放军海军工程大学 基于pcb型罗氏线圈的短时缓变大电流测量装置
CN103876825A (zh) * 2012-12-17 2014-06-25 柯惠有限合伙公司 用于电压和电流感测的系统和方法
CN104155499A (zh) * 2014-08-20 2014-11-19 国家电网公司 基于组合式pcb型罗氏线圈的电流测量装置及方法
US20180074098A1 (en) * 2016-09-14 2018-03-15 Delta Electronics, Inc. Current detecting apparatus
CN111157936A (zh) * 2019-11-01 2020-05-15 西安航通测控技术有限责任公司 用于脉冲大电流源测量的罗氏线圈高精度校准方法及设备
CN112147476A (zh) * 2020-08-24 2020-12-29 杭州柯林电气股份有限公司 脉冲峰值保持电路、局放监测电路
CN112674838A (zh) * 2021-01-06 2021-04-20 苏州中荟医疗科技有限公司 一种用于心血管狭窄病变的高压冲击波发生系统
CN113520521A (zh) * 2021-08-30 2021-10-22 江苏朴芃医疗科技有限公司 电流峰值检测装置、高压发生器及血管钙化治疗设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK142071C (da) * 1974-11-19 1981-01-26 Siemens Ag Apparat til optagelse og synliggoerelse af maalesignaler
US5370645A (en) * 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
US5650715A (en) * 1996-04-19 1997-07-22 Intel Corporation Method and apparatus for sensing current in power supplies
US6429696B1 (en) * 2000-02-08 2002-08-06 Cheng-Yung Kao Peak hold and calibration circuit
KR100813462B1 (ko) * 2006-09-11 2008-03-13 (주)에프씨아이 피크 디텍터
CN101625377A (zh) * 2009-08-14 2010-01-13 河南电力试验研究院 一种高精度开口式罗氏线圈
CN201589808U (zh) * 2009-12-11 2010-09-22 杭州雷盾电子设备有限公司 冲击电流记录仪
US9116179B2 (en) * 2012-12-17 2015-08-25 Covidien Lp System and method for voltage and current sensing
CN104349594B (zh) * 2013-07-26 2017-12-05 北京映翰通网络技术股份有限公司 一种抗磁场干扰多块pcb开口罗氏线圈设计方法与实现
CN204302361U (zh) * 2014-12-17 2015-04-29 国网湖北省电力公司十堰供电公司 一种输电线路雷电流峰值保持器
CN204789706U (zh) * 2015-05-13 2015-11-18 中国人民解放军理工大学 开口式罗氏线圈
CN206038762U (zh) * 2016-08-31 2017-03-22 天津浩源慧能科技有限公司 一种电子互感器
CN209690399U (zh) * 2018-12-28 2019-11-26 上海电科臻和智能科技有限公司 一种雷电流峰值检测器
CN209821346U (zh) * 2019-01-07 2019-12-20 国网四川省电力公司内江供电公司 远程雷击检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100013460A1 (en) * 2006-12-21 2010-01-21 Siemens Aktiengesellschaft Rogowski Sensor and Method for Measuring a Current
CN101551416A (zh) * 2008-04-01 2009-10-07 通用电气公司 监控导体中的电流的系统和方法
CN102445588A (zh) * 2011-11-23 2012-05-09 中国人民解放军海军工程大学 基于pcb型罗氏线圈的短时缓变大电流测量装置
CN103876825A (zh) * 2012-12-17 2014-06-25 柯惠有限合伙公司 用于电压和电流感测的系统和方法
CN104155499A (zh) * 2014-08-20 2014-11-19 国家电网公司 基于组合式pcb型罗氏线圈的电流测量装置及方法
US20180074098A1 (en) * 2016-09-14 2018-03-15 Delta Electronics, Inc. Current detecting apparatus
CN111157936A (zh) * 2019-11-01 2020-05-15 西安航通测控技术有限责任公司 用于脉冲大电流源测量的罗氏线圈高精度校准方法及设备
CN112147476A (zh) * 2020-08-24 2020-12-29 杭州柯林电气股份有限公司 脉冲峰值保持电路、局放监测电路
CN112674838A (zh) * 2021-01-06 2021-04-20 苏州中荟医疗科技有限公司 一种用于心血管狭窄病变的高压冲击波发生系统
CN113520521A (zh) * 2021-08-30 2021-10-22 江苏朴芃医疗科技有限公司 电流峰值检测装置、高压发生器及血管钙化治疗设备

Also Published As

Publication number Publication date
CN113520521A (zh) 2021-10-22
CN113520521B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US9242090B2 (en) MRI compatible medical leads
US7844319B2 (en) Systems and methods for magnetic-resonance-guided interventional procedures
JP2777244B2 (ja) カテーテルの位置決め方法およびその装置
WO2023030345A1 (zh) 电流峰值检测装置、高压发生器及血管钙化治疗设备
AU2014389444B2 (en) Method, apparatus and article for detection of transponder tagged objects, for example during surgery
JP2018187510A (ja) 磁気刺激療法に関するパルシング磁場を監視するためのシステム
US9037257B2 (en) Resonance tuning module for implantable devices and leads
AU2015243101B2 (en) Simultaneous ablation by multiple electrodes
WO2002083016A1 (en) Systems and methods for magnetic-resonance-guided interventional procedures
JP2019533521A (ja) 低電圧インピーダンスチェックパルス発生器
JP2010501241A (ja) Rfフィールドで用いるrf融除のための介入装置
US20080204245A1 (en) Method, apparatus and article for detection of transponder tagged objects, for example during surgery
CN112118798A (zh) 用于过滤由脉冲电场消融诱导的高压噪声的系统、设备和方法
EP2097762A1 (en) Transmission line for use in magnetic resonance system
JP2010522021A (ja) Mri/rf適合リード線、および関連のリード線を操作、作製する方法
AU2011244898A1 (en) Simultaneous ablation by multiple electrodes
JP2012090986A (ja) ペーシング信号のルーティング法
JPWO2019217317A5 (zh)
ES2947587T3 (es) Dispositivo de filtrado para registrar señales electrofisiológicas
US10213615B2 (en) System and method for micromagnetic stimulation of the central nervous system
John et al. A stent graft occlusion detection: Pressure sensing implant device with inductive power and data telemetry
JP7227243B2 (ja) 複数の遠隔センサのための検知デバイス及び方法
JP7039198B2 (ja) 追跡システム用の磁界発生回路
CN210812403U (zh) 一种新型压力波仪器
DOSS et al. Noise-free electrocardiographic data during electrosurgical procedures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863480

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863480

Country of ref document: EP

Effective date: 20240402