WO2023030075A1 - 组合物、聚合物分散液晶、薄膜和电子设备 - Google Patents

组合物、聚合物分散液晶、薄膜和电子设备 Download PDF

Info

Publication number
WO2023030075A1
WO2023030075A1 PCT/CN2022/114000 CN2022114000W WO2023030075A1 WO 2023030075 A1 WO2023030075 A1 WO 2023030075A1 CN 2022114000 W CN2022114000 W CN 2022114000W WO 2023030075 A1 WO2023030075 A1 WO 2023030075A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
dispersed liquid
film
crystal film
Prior art date
Application number
PCT/CN2022/114000
Other languages
English (en)
French (fr)
Inventor
吴中正
王雷
李辉
侯体波
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023030075A1 publication Critical patent/WO2023030075A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals

Definitions

  • the present application relates to the field of electronic equipment, in particular, to a composition for preparing polymer-dispersed liquid crystals, polymer-dispersed liquid crystals, polymer-dispersed liquid crystal films and electronic equipment.
  • PDLC polymer dispersed liquid crystal
  • the inventors found that when the existing PDLC material is applied to the housing assembly, the effect it can bring is not good. 1.
  • the current polymer-dispersed liquid crystal film is difficult to be suitable for small devices such as electronic equipment, and the composition, polymer-dispersed liquid crystal, polymer-dispersed liquid crystal film and electronic equipment currently used to prepare polymer-dispersed liquid crystals still need to be improved.
  • the present application aims to alleviate or solve at least to some extent at least one of the above-mentioned problems.
  • the present application proposes a composition for preparing a polymer-dispersed liquid crystal, comprising: a polymer monomer and a liquid crystal, the liquid crystal includes a high birefringence compound, and the high birefringence in the liquid crystal
  • the birefringence of the rate compound is not less than 0.4.
  • the present application proposes a polymer-dispersed liquid crystal prepared from the above-mentioned composition.
  • the present application proposes a polymer-dispersed liquid crystal film, including: two conductive layers, a polymer-dispersed liquid crystal layer, and the polymer-dispersed liquid crystal layer is configured to pass through two conductive layers.
  • the electric field between the layers is controlled, and the diameter of the liquid crystal droplet in the polymer dispersed liquid crystal layer is 3.33-4.3 microns.
  • the present application proposes an electronic device, comprising: a casing assembly, the above-mentioned polymer dispersed liquid crystal film, a battery and a main board, the battery and the The main board is located inside the accommodation space defined by the casing assembly, and the main board is electrically connected to the battery.
  • Fig. 1 has shown the structural representation of the polymer dispersed liquid crystal thin film according to one embodiment of the present application
  • Figure 2 shows a schematic structural diagram of an electronic device according to an embodiment of the present application
  • Figure 3 shows a microscopic schematic diagram of a polymer dispersed liquid crystal according to an embodiment of the present application
  • Fig. 4 shows the microcosmic schematic view of the polymer dispersed liquid crystal in the related art
  • Fig. 5 shows a schematic structural diagram of an electronic device housing assembly according to an embodiment of the present application.
  • the same polymer-dispersed liquid crystal film in the off state has a haze of 95% when applied to automobile doors and windows, which can meet the use requirements, but the haze measured when it is applied to the housing assembly is only 65% .
  • the scene used by the polymer dispersed liquid crystal film in the related art needs a certain sense of space to achieve better contrast, so it has many applications in the use scene with a certain sense of space such as buildings and automobiles.
  • the polymer-dispersed liquid crystal film is closely attached to the object to be bonded together, since the liquid crystal molecules in the polymer-dispersed liquid crystal material in the related art are mainly low-refractive-index liquid crystals, the low-refractive-index liquid crystals will not matter whether they are in the electrified state or not.
  • This application aims to solve one of the technical problems in the related art to a certain extent.
  • the contrast ratio of the polymer-dispersed liquid crystal film is defined as the ratio of the haze of the polymer-dispersed liquid crystal film before electrification and lighting to the haze of the polymer-dispersed liquid crystal film after electrification and lighting.
  • the application proposes a composition for preparing polymer-dispersed liquid crystals, comprising: polymer monomers and liquid crystals, the liquid crystals include high birefringence compounds, and the birefringence of high birefringence compounds in liquid crystals rate is not less than 0.4. Since the liquid crystals in the combination include biphenyl compounds with high birefringence, polymer dispersed liquid crystals with relatively high contrast can be prepared through the composition.
  • the composition of the composition may further include a photoinitiator, and the type of the photoinitiator is not particularly limited.
  • the photoinitiator may include benzoin diethyl ether.
  • the liquid crystal molecules when no electric field is applied, the liquid crystal molecules are arranged freely in the liquid crystal microdroplets, and all the liquid crystal microdroplets are also arranged in a disordered manner. Since liquid crystal molecules are materials with strong optical anisotropy and dielectric anisotropy, in the off state, their refractive index does not match the refractive index of polymers, that is to say, light will pass between liquid crystal molecules and polymers. Scattering occurs and the liquid crystal cannot be dispersed through the polymer. When an external electric field is applied, the liquid crystal molecules are in a consistent parallel arrangement. At this time, if the refractive index of the polymer is consistent with that of the liquid crystal molecules, light will not be scattered between the polymer and the liquid crystal molecules.
  • the type of the polymer monomer is not particularly limited, as long as it can be well miscible with the liquid crystal, and the refractive index of the high polymer formed after the polymerization of the polymer monomer matches the refractive index of the liquid crystal after electrification and deflection.
  • the polymer monomer may include acrylate compounds, specifically, the polymer monomer may include bisphenol A polyoxyethylene ether methacrylate, polyethylene glycol diacrylate, lauryl methacrylate, and methacrylate.
  • At least one of hydroxypropyl acrylate, the polarity of the high polymer polymerized by the above-mentioned polymer monomer is better, the degree of crosslinking inside the high polymer is relatively high, the surface adhesion degree of the high polymer and The cohesion is good, and the refractive index of the high polymer formed after polymerization matches the refractive index of the liquid crystal after electrification and deflection.
  • the content of each component in the composition is not particularly limited, for example, the content of the polymer monomer can be 45-51 parts by weight, the content of the liquid crystal can be 48-52 parts by weight, and the content of the photoinitiated
  • the content of the agent can be 1-3 parts by weight.
  • the content of the polymer monomer is too small, the polymer cannot form an interconnected network, but precipitates out of the liquid crystal in a granular form.
  • the polymer network gradually formed, and with the increase of the polymer monomer content, the gaps of the polymer network structure became smaller.
  • an over-dense polymer network structure will increase the contact area between the polymer and the liquid crystal droplet, and a larger voltage needs to be applied to realize the change of the liquid crystal state, which requires a larger driving saturation voltage.
  • the content of polymer monomer, liquid crystal, photoinitiator is in the above-mentioned scope of the present application, can form the polymer network that interconnects, and the gap of network structure is suitable, the liquid crystal dispersed in polymer network structure has suitable
  • the size of the particle size, the polymer dispersed liquid crystal formed by the composition of the present application has better electro-optic performance and lower driving voltage.
  • the content of the biphenyl fluorine compound in the liquid crystal is not particularly limited, for example, the content of the biphenyl fluorine compound in the liquid crystal may be 6-14 parts by weight.
  • the content of biphenyl fluorine compound in the high birefringence compound is less than 6 mass parts, the haze of the formed polymer dispersed liquid crystal is too low when no electricity is applied, and the shielding effect cannot be realized in the off state; when the high birefringence compound
  • the content of the biphenyl fluorine compound is greater than 14 parts by mass, the liquid crystal molecules in the formed polymer-dispersed liquid crystal tend to crystallize, resulting in poor stability in use of the polymer-dispersed liquid crystal film.
  • the specific components of the liquid crystal in the liquid crystal component are not particularly limited, and those skilled in the art can choose according to the actual situation, as long as the aforementioned birefringence requirements can be met.
  • the inventors have found that by introducing a biphenyl compound with a fluorine group into the liquid crystal component of the composition, the liquid crystal can have high optical anisotropy, that is, the biphenyl compound with a high birefringence can improve the optical properties of the liquid crystal. anisotropy.
  • biphenyl fluorine compounds and compositions thereof can increase the optical anisotropy of liquid crystal components. More specifically, a liquid crystal component having multiple substituted saturated alkyl chains and terminal double bonds can be used. Substituting saturated alkyl chains and terminal double bonds will increase the linear arrangement of the molecules, thereby increasing the aspect ratio of the liquid crystal molecules, This results in an increase in the birefringence value ⁇ n.
  • the birefringence of the high birefringence compound in the liquid crystal is not particularly limited, for example, the birefringence of the high birefringence compound in the liquid crystal may not be less than 0.3.
  • the birefringence of the high-birefringence compound in the liquid crystal is greater than 0.3, the haze of the formed polymer-dispersed liquid crystal changes greatly before and after electrification, and the contrast is strong, which can effectively achieve the appearance effect of the polymer-dispersed liquid crystal and meet the needs of daily use.
  • the type of high birefringence compound is not particularly limited, for example, the high birefringence compound may include biphenyl fluorine compounds, specifically, biphenyl fluorine compounds include 4-[difluoro( 3,4,5-Trifluorophenoxy)methyl]-2',3,5-trifluoro-4"-propyl-1,1':4',1"-terphenyl.
  • the biphenyl fluorine compound is the above-mentioned biphenyl compound, because it has multiple substituted saturated alkyl chains and terminal double bonds, it will increase the linear arrangement of the molecules, and then increase the aspect ratio of the liquid crystal molecules, making the optics
  • the increase of the anisotropy ⁇ n value finally makes the haze change of the formed polymer dispersed liquid crystal larger before and after electrification, and the contrast ratio is larger.
  • the types of liquid crystals are not particularly limited.
  • other polymers with a lower refractive index can also be used to adjust parameters such as the overall refractive index of the liquid crystal.
  • the liquid crystal may further include: at least one of 4-pentyloxy-4'-cyanobiphenyl, 4-cyano-4'-pentylbiphenyl and 4"-n-pentyl-4-cyano terphenyl kind.
  • the present application proposes a polymer-dispersed liquid crystal, which is prepared from the aforementioned composition. Since the composition for forming the polymer-dispersed liquid crystal contains biphenyl compounds with high birefringence, the liquid crystal composition can be used to form a polymer-dispersed liquid crystal with relatively high contrast.
  • the polymer monomers are mixed with liquid crystals uniformly to form a homogeneous solution, and the photoinitiator is used to initiate polymerization by light irradiation, such as ultraviolet light irradiation , polymer monomers can be polymerized to form high polymers, and the molecular weight of the high polymers gradually increases with the progress of the polymerization reaction.
  • the high polymers reach the critical molecular size, the mutual solubility of the high polymers and liquid crystals gradually decreases until Phase separation occurs to form liquid crystal droplets.
  • the size of liquid crystal droplets grows gradually with the reaction, and finally the liquid crystal form is fixed by the cured polymer.
  • the size and shape of liquid crystal droplets depend on the time interval between the nucleation of liquid crystal droplets and the completion of polymer curing.
  • the size of the liquid crystal droplet in the polymer dispersed liquid crystal when the size of the liquid crystal droplet in the polymer dispersed liquid crystal is in the following range, it can have a better display effect.
  • the diameter of the liquid crystal droplet in the polymer dispersed liquid crystal can be 3.33-4.3 Microns.
  • the diameter of the liquid crystal droplet in the polymer dispersed liquid crystal is within the above range, after an external electric field is applied, the difference in refractive index between the liquid crystal droplet and the liquid crystal droplet is small, and the overall refractive index consistency of the liquid crystal droplet is high , the matching degree of refractive index with high polymer is better, the contrast ratio of polymer dispersed liquid crystal is higher, and the display effect is better.
  • the density of the liquid crystal droplets in the polymer-dispersed liquid crystal is limited, for example, the density of the liquid crystal droplets in the polymer-dispersed liquid crystal may be greater than 60/square micron.
  • the density of liquid crystal droplets in the polymer dispersed liquid crystal is greater than 60/square micron, the density of the liquid crystal droplets is relatively high, and the distribution in the polymer dispersed liquid crystal is relatively uniform, and the overall display effect of the polymer dispersed liquid crystal is relatively uniform, and the appearance Perform better.
  • the present application proposes a polymer dispersed liquid crystal film 300, including two conductive layers 200, a polymer dispersed liquid crystal layer 100, and the polymer dispersed liquid crystal layer 100 is configured to pass through
  • the electric field between the two conductive layers 200 is controlled, and the diameter of liquid crystal droplets in the polymer dispersed liquid crystal layer 100 is 3.33-4.3 microns.
  • the composition and position of the conductive layer are not particularly limited, for example, the conductive layer can be a conductive film; when the conductive layer is a conductive film, the polymer dispersed liquid crystal layer can be located between the two conductive films, And two conductive films can cover part of the surface of the polymer dispersed liquid crystal layer.
  • the thickness of the polymer-dispersed liquid crystal film is not particularly limited, for example, the thickness of the polymer-dispersed liquid crystal film may be 9-25 microns.
  • the thickness of housing components is generally thin, so the thickness of polymer-dispersed liquid crystal film It should also match the size of the housing assembly, and should not greatly change the size of the original housing assembly.
  • the thickness of the polymer-dispersed liquid crystal film is within the above-mentioned range, the thickness is relatively moderate, and the preparation difficulty is low, which is conducive to large-scale preparation, and the thickness value is negligible compared with the overall thickness of the electronic device. It is beneficial to improve the portability and practicability of the electronic equipment.
  • the liquid crystal molecules and the polymer form a microphase separation structure, and the liquid crystal molecules are dispersed in the polymer in the form of droplets.
  • the direction vector of the liquid crystal molecules is randomly distributed under the action of the boundary of the polymer, and the surface of the polymer-dispersed liquid crystal film presents a scattering state, that is, the off state.
  • the electric field is applied, the long axes of the liquid crystal molecules are aligned parallel to or perpendicular to the electric field, and the polymer dispersed liquid crystal film presents a transparent state, that is, an open state.
  • the haze range of the off state and brightness of the polymer dispersed liquid crystal film is not particularly limited, for example, the haze of the polymer dispersed liquid crystal film on state can be 2.3-2.5%, and the haze of the polymer dispersed liquid crystal film off state can be 86.5-88%.
  • the on-state haze of the polymer-dispersed liquid crystal film is greater than 2.5%, the transparency of the polymer-dispersed liquid crystal film is low after electrification, and cannot be shown as a transparent state; when the off-state haze of the polymer-dispersed liquid crystal film is less than 86.5%, the polymer-dispersed liquid crystal film When the liquid crystal film is not powered, the haze is too low to play a shielding role.
  • the contrast ratio of the polymer dispersed liquid crystal film (the haze before the polymer dispersed liquid crystal film is electrified and lit)/(the haze after the polymer dispersed liquid crystal film is electrified and lit), the greater the contrast
  • the contrast ratio of the polymer-dispersed liquid crystal film is not particularly limited, for example, the contrast ratio of the polymer-dispersed liquid crystal film may not be less than 34.
  • the contrast ratio of the polymer-dispersed liquid crystal film is less than 34, the contrast ratio is small, and it is difficult for the user to perceive the change of the haze before and after electrification.
  • the present application proposes an electronic device, referring to FIG. 2 , including: a housing assembly, the housing assembly has the aforementioned polymer dispersed liquid crystal film 300, a battery and a main board, and the battery and the main board are located in the housing. Inside the accommodation space defined by the body assembly, the motherboard and the battery are electrically connected. Thus, an electronic device with better appearance can be obtained.
  • the housing assembly may include a base 400 defining an accommodation space of the housing assembly, and the polymer dispersed liquid crystal film 300 is located on a side of the base 400 away from the accommodation space.
  • the polymer dispersed liquid crystal film 300 has two conductive layers 200, the polymer dispersed liquid crystal layer 100, and the polymer dispersed liquid crystal layer 100 is configured to be controllable by an electric field between the two conductive layers 200, wherein One conductive layer is located on the side of the polymer-dispersed liquid crystal layer close to the substrate, and the other conductive layer 200 is located on the side of the polymer-dispersed liquid crystal layer away from the substrate.
  • the type of the base of the housing assembly is not particularly limited, for example, the base of the housing assembly may be glass.
  • the structure of the housing assembly is not particularly limited.
  • the location of the polymer dispersed liquid crystal film on the housing assembly is not particularly limited, for example, the polymer dispersed liquid crystal film can be directly used as a sublayer in the diaphragm structure of the housing assembly, by Therefore, the polymer-dispersed liquid crystal film can be used to improve the appearance of the housing assembly without significantly increasing the overall thickness of the electronic device.
  • the method for controlling the polymer-dispersed liquid crystal film on the housing assembly is not particularly limited.
  • the method for controlling the polymer-dispersed liquid crystal film may include: the user inputs a control command to make the polymer-dispersed liquid crystal film appear When it is in the light-transmitting state, after receiving instructions through the processor, the light transmittance of the polymer-dispersed liquid crystal film preset by the processor is used to control the power supply of the conductive layer of the polymer-dispersed liquid crystal film.
  • the preset light transmittance value Determine the magnitude of the electric field between the two conductive layers in the polymer-dispersed liquid crystal film; when the voltage between the two conductive layers reaches a preset value, the control voltage remains stable, and when the user inputs the control command again, the polymer-dispersed liquid crystal is turned off. In the state, after the processor receives instructions, the power supply to the two conductive layers is turned off, and the polymer dispersed liquid crystal film is in an opaque state.
  • the term "electronic device housing” refers to the housing of an "electronic device”.
  • the present application is not particularly limited to the specific type of electronic equipment.
  • the electronic equipment can be a mobile phone, smart watch, palmtop computer, notebook computer, laptop computer, desktop computer, portable game device, video recorder, camera, pager or printer, etc. .
  • the electronic device can be a mobile phone or a smart phone (for example, based on iPhone TM , a phone based on Android TM ), a portable game device (for example Nintendo DS TM , PlayStation Portable TM , Gameboy Advance TM , iPhone TM ), PDA, portable Internet devices, music players and data storage devices, other handheld devices and such as watches, earphones, pendants, headsets, etc., electronic devices can also be other wearable devices (for example, such as electronic glasses, electronic clothes, e-bracelets, e-necklaces, e-tattoos or head-mounted devices (HMD) for smart watches).
  • HMD head-mounted devices
  • PET/ITO As the conductive layer. PET/ITO is subjected to alkali cleaning and activation treatment before use. The washing time is 10s, and the alkali washing treatment temperature is room temperature.
  • the comparative example 1 is consistent with the embodiment, the difference is that the composition of the liquid crystal in the comparative example 1 is as follows.
  • Comparative Example 2 is consistent with Example 1, except that the composition of the liquid crystal in Comparative Example 2 is as follows.
  • Comparative Example 3 is consistent with Example 1, except that the composition of the liquid crystal in Comparative Example 3 is as follows.
  • Comparative Example 4 is consistent with Example 1, except that the composition of the liquid crystal in Comparative Example 4 is as follows.
  • the polymer-dispersed liquid crystal film obtained in the above-mentioned embodiment 1, comparative example 1-comparative example 4 is carried out contrast test, the test method is as follows: provide the polymer-dispersed liquid crystal film, the polymer-dispersed liquid crystal film is arranged on the detection light source and the signal receiving Between the detectors, and the polymer-dispersed liquid crystal film should be located on the side of the signal receiver close to the detection light source, so that the haze change of the polymer-dispersed liquid crystal film in a narrow space can be simulated, and the accuracy of the test results can be improved.
  • the shielding requirements of the polymer-dispersed liquid crystal film, the birefringence of the liquid crystal in Comparative Example 2 is only 0.1091, the transmittance of the polymer-dispersed liquid crystal film is very high, the shielding effect cannot be achieved in the off state, and the haze before and after lighting is relatively Lower, the contrast effect is very poor;
  • the content of polyfluoroterphenyl in the component that forms liquid crystal in comparative example 3 is lower, and the haze under the off state of polymer dispersed liquid crystal film is only 80%, and the haze under the open state 2%, although the contrast is high, the haze in the off state is low, and it cannot play a shielding role;
  • the content of polyfluoroterphenyl in the components of the liquid crystal in Comparative Example 4 is relatively high, forming a polymer dispersed liquid crystal The crystallization phenomenon occurs in the film, which cannot meet the basic requirements of the polymer dispersed liquid crystal film.
  • the haze of the polymer-dispersed liquid crystal film in Example 1 before electrification is 88%, and it is in an off state, which can play a role in shielding
  • the effect is 2.3% after being powered on, and it is in an open state, which can play a light-transmitting effect, and the contrast ratio is 38.26, which meets the contrast requirement when it is arranged on the housing assembly of an electronic device.
  • the high-birefringence liquid crystal Due to the addition of liquid crystal molecules with high birefringence in the polymer-dispersed liquid crystal film in Example 1, the high-birefringence liquid crystal has the advantages of high-definition bright spots, high birefringence, good low-temperature compatibility, etc., effectively improving The difference in haze of the polymer-dispersed liquid crystal layer in the polymer-dispersed liquid crystal film before and after electrification is improved, so that the shielding effect of the off state and the light transmission effect of the on state are improved, and high contrast is achieved for consumers to perceive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本申请公开了组合物、聚合物分散液晶、薄膜和电子设备,组合物包括:聚合物单体和液晶,液晶包括高双折射率化合物,液晶中高双折射率化合物的双折射率不小于0.4。

Description

组合物、聚合物分散液晶、薄膜和电子设备 技术领域
本申请涉及电子设备领域,具体地,涉及用于制备聚合物分散液晶的组合物、聚合物分散液晶、聚合物分散液晶薄膜和电子设备。
背景技术
自从美国肯特州立大学的研究小组人员发现并提出聚合物分散液晶(PDLC)后,人们对PDLC的研究一直从未间断。目前,PDLC被广泛应用于大面积投影屏幕、建筑和汽车门窗、玻璃幕墙、房间内部隔断等方面。
申请内容
在本申请中,发明人发现,将现有的PDLC材料应用至壳体组件上时,能够带来的效果不佳。、目前的聚合物分散液晶薄膜难以适用于电子设备等小型设备中,目前用于制备聚合物分散液晶的组合物、聚合物分散液晶、聚合物分散液晶薄膜和电子设备仍有待改进。
本申请旨在至少一定程度上缓解或解决上述提及问题中至少一个。
在本申请的一个方面,本申请提出了用于制备聚合物分散液晶的组合物,包括:聚合物单体和液晶,所述液晶包括高双折射率化合物,所述液晶中所述高双折射率化合物的双折射率不小于0.4。
在本申请的又一方面,本申请提出了一种聚合物分散液晶,所述聚合物分散液晶是由前面所述的组合物制备得到的。
在本申请的又一方面,本申请提出了一种聚合物分散液晶薄膜,包括:两个导电层,聚合物分散液晶层,所述聚合物分散液晶层被配置为可通过两个所述导电层之间的电场进行控制,所述聚合物分散液晶层中的液晶微滴的直径为3.33-4.3微米。
在本申请的又一方面,本申请提出了一种电子设备,包括:壳体组件,所述壳体组件上具有前面所述的聚合物分散液晶薄膜,电池以及主板,所述电池以及所述主板位于所述壳体组件所限定出的容纳空间内部,所述主板以及所述电池电连接。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本申请一个实施例的聚合物分散液晶薄膜的结构示意图;
图2显示了根据本申请一个实施例的电子设备结构示意图;
图3显示了根据本申请的一个实施例的聚合物分散液晶的微观示意图;
图4显示了相关技术中的聚合物分散液晶的微观示意图;
图5显示了根据本申请一个实施例的电子设备壳体组件的结构示意图。
申请详细描述
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
本申请是基于发明人对以下问题的发现而做出的:
发明人发现,现有的PDLC材料在较小的狭窄空间内的性能表现较差,这是因为聚合物分散液晶薄膜的雾度数据是具有空间属性的,对于同一个聚合物分散液晶薄膜而言,当其应用于投影屏幕、建筑和汽车门窗等大型装置设备时所呈现出的效果,与将其应用在电子设备的壳体组件等小型设备上所呈现出的效果是不同的,例如,对于处于关态的同一聚合物分散液晶薄膜,将其应用在汽车门窗时测得的雾度为95%,可以满足使用要求,但将其应用在壳体组件上时测得的雾度只有65%。相关技术中的聚合物分散液晶薄膜所使用的场景需要有一定的空间感才能实现比较好的对比度,所以在建筑、汽车等具有一定空间感的使用场景下具有较多的应用。当聚合物分散液晶薄膜与所需要贴合的物品紧密贴合在一起时,由于相关技术中的聚合物分散液晶材料中的液晶分子主要为低折射率液晶,低折射率液晶无论是否处于通电状态,都呈现出较强的透过率,即雾度较低,使得通电前后的对比度极小,使用者较难感知到聚合物分散液晶透明度的变化,无法体现聚合物分散液晶的优势。因此,目前的用于制备聚合物分散液晶的组合物、聚合物分散液晶、聚合物分散液晶薄膜和电子设备仍有待改进。
本申请旨在一定程度上解决相关技术中的技术问题之一。
需要特别说明的是,在本申请中,聚合物分散液晶薄膜的对比度定义为聚合物分散液晶薄膜通电点亮前的雾度与聚合物分散液晶薄膜通电点亮后的雾度的比值。
在本申请的一个方面,本申请提出了一种用于制备聚合物分散液晶的组合物,包括:聚合物单体和液晶,液晶包括高双折射率化合物,液晶中高双折射率化合物的双折射率不小于0.4。由于该组合中的液晶包括高双折射率的联苯类化合物,由此可通过该组合物制备具有较高对比度的聚合物分散液晶。在本申请中,通过在液晶中引入具有高双折射率的化合物,如联苯氟类化合物,从而通过在液晶成分中选用高双折射率液晶取代低折射率液晶,有效利用高双折射率液晶所具有的高清亮点、高双折射率、良好的低温相溶性等优点,有效提高了聚合物分散液晶薄膜中的聚合物分散液晶层在通电前后的雾度差异,提高了聚合物分散液晶薄膜的对比度,令消费者具有更好的使用体验。
根据本申请的一些实施例,组合物的组成可进一步包括光引发剂,光引发剂的种类不受特别限制,例如,光引发剂可以包括安息香二乙醚。由此,可通过光引发剂控制聚合物单体的聚合速度,进而控制液晶的尺寸形貌。
根据本申请的一些实施例,在不加电场时,液晶分子在液晶微滴中自由排列,且所有液晶微滴也是无序的排列。由于液晶分子是强的光学各向异性和介电各向异性材料,在关态时,其折射率与高聚物折射率不匹配,也就是说光线会在液晶分子和高聚物之间互相发生散射,无法穿过聚合物分散液晶。当施加外部电场时,液晶分子呈现为一致的平行排列,此时若高聚物的折射率与液晶分子的折射率一致,则光线不会在高聚物和液晶分子之间发生散射,聚合物分散液晶即呈现为开态。故 聚合物单体的种类不受特别限制,只要其能与液晶较好的互溶,且聚合物单体聚合后形成的高聚物折射率与液晶通电发生偏转后的折射率相匹配即可。例如,聚合物单体可以包括丙烯酸酯类化合物,具体地,聚合物单体可以包括双酚A聚氧乙烯醚甲基丙烯酸酯、聚乙二醇二丙烯酸酯、甲基丙烯酸十二酯以及甲基丙烯酸羟丙酯中的至少一种,由上述聚合物单体聚合而成的高聚物的极性较好,高聚物内部的交联程度较高,高聚物的表面胶粘程度和内聚力均较佳,聚合后形成的高聚物折射率与液晶通电发生偏转后的折射率相匹配。
根据本申请的一些实施例,组合物中各组分的含量不受特别限制,例如,聚合物单体的含量可以为45-51重量份,液晶的含量可以为48-52重量份,光引发剂的含量可以为1-3重量份。当聚合物单体的含量过小时,聚合物并不能形成相互连接的网络,而是以粒状的形式从液晶中析出。随着聚合物单体含量的增加,聚合物网络逐渐形成,并随着聚合物单体含量的增加,聚合物网络结构的间隙变小。但是过密的聚合物网络结构会造成聚合物与液晶微滴的接触面积增大,进而需要施加更大的电压才能实现液晶状态的变化,需要较大的驱动饱和电压。当聚合物单体、液晶、光引发剂的含量在本申请的上述范围内时,可以形成相互连接的聚合物网络,且网络结构的间隙适宜,分散在聚合物网络结构中的液晶具有适宜的粒径大小,由本申请的组合物形成的聚合物分散液晶具有较好的电光性能、较低的驱动电压。
根据本申请的一些实施例,液晶中联苯氟类化合物的含量不受特别限制,例如,液晶中联苯氟类化合物的含量可以为6-14重量份。当高双折射率化合物中联苯氟类化合物的含量小于6质量份时,形成的聚合物分散液晶在不通电时雾度过低,关态下无法实现遮蔽作用;当高双折射率化合物中联苯氟类化合物的含量大于14质量份时,形成的聚合物分散液晶中的液晶分子会容易出现晶析现象,导致聚合物分散液晶薄膜的使用稳定性较差。
根据本申请的实施例,液晶组分中的液晶的具体组分不受特别限制,本领域技术人员可根据实际情况进行选择,只要能够满足前述的双折射率的要求即可。发明人发现,通过在组合物的液晶组分中引入如具有氟基的联苯类化合物,可令液晶具有高光学各向异性,即具有高双折射率的联苯类化合物可提高液晶的光学各向异性。具体地,联苯氟类化合物及其组合物可提高液晶组分的光学各向异性。更具体地,可以采用具有多取代饱和烷基链以及末端双键的液晶组分,取代饱和烷基链以及末端双键会增大分子的线性排列,进而会增大液晶分子的长宽比,使得双折射率值Δn值增加。
根据本申请的一些实施例,液晶中高双折射率化合物的双折射率不受特别限制,例如,液晶中高双折射率化合物的双折射率可不小于0.3。当液晶中高双折射率化合物的双折射率大于0.3时,形成的聚合物分散液晶在通电前后的雾度变化较大,对比度较强,可以有效聚合物分散液晶的外观效果,满足日常使用需求。
根据本申请的一些实施例,高双折射率化合物的种类不受特别限制,例如,高双折射率化合物可以包括联苯氟类化合物,具体地,联苯氟类化合物包括4-[二氟(3,4,5-三氟苯氧基)甲基]-2',3,5-三氟-4”-丙基-1,1':4',1”-三联苯。当联苯氟类化合物为上述的联苯类化合物时,因为具有多取代饱和烷基链以及末端双键,会增大分子的线性排列,进而会增大液晶分子的长宽比,使得光学各项异性Δn值增加,最终使得形成的聚合物分散液晶在通电前后的雾度变化较大,对比度较大。
根据本申请的一些实施例,液晶的种类不受特别限制,除了前述的高双折射率化合物之外,还可以具有其他折射率较低的聚合物,以调节该液晶整体的折射率等参数,用于与高聚物的折射率进行匹配,以形成聚合物分散液晶。例如,液晶可进一步包括:4-戊氧基-4'-氰基联苯、4-氰基-4'-戊基联苯和4”-正戊基-4-氰基三联苯中至少一种。
在本申请的又一方面,本申请提出了一种聚合物分散液晶,聚合物分散液晶是由前述的组合物制备得到的。由于形成该聚合物分散液晶的组合物中含有高双折射率的联苯类化合物,由此,可利用该液晶组合物形成具有较高对比度的聚合物分散液晶。为了便于理解,下面对于通过前述的组合物制备聚合物分散液晶的方法进行简单说明:将聚合物单体与液晶混合均匀形成均相溶液,通过光照使得光引发剂引发聚合反应,例如紫外光照射,可使聚合物单体聚合形成高聚物,高聚物的分子量随着聚合反应的进行逐渐增加,当高聚物达到临界分子尺寸时,高聚物与液晶的相互溶解性逐渐降低,直至发生相分离,形成液晶微滴,液晶微滴尺寸随着反应进行逐渐长大,最后液晶形态被固化的高聚物所固定。液晶微滴的尺寸和形貌取决于从液晶微滴成核到高聚物固化完成间所间隔的时间。
根据本申请的一些实施例,聚合物分散液晶中的液晶微滴的尺寸在以下区间内时可具有更好的显示效果,例如,聚合物分散液晶中的液晶微滴的直径可以为3.33-4.3微米。当聚合物分散液晶中的液晶微滴的直径位于上述范围内时,在施加外部电场后,液晶微滴与液晶微滴之间的折射率差异较小,液晶微滴整体折射率一致性较高,与高聚物的折射率匹配度较好,聚合物分散液晶的对比度更高,显示效果更好。
根据本申请的一些实施例,聚合物分散液晶中的液晶微滴的密度受一些限制,例如,聚合物分散液晶中的液晶微滴的密度可以大于60个/平方微米。当聚合物分散液晶中的液晶微滴的密度大于60个/平方微米时,液晶微滴密度较高,在聚合物分散液晶中的分布较为均匀,聚合物分散液晶的整体显示效果较为均一,外观表现更佳。
在本申请的又一方面,参考图1,本申请提出了一种聚合物分散液晶薄膜300,包括两个导电层200,聚合物分散液晶层100,聚合物分散液晶层100被配置为可通过两个导电层200之间的电场进行控制,聚合物分散液晶层100中的液晶微滴的直径为3.33-4.3微米。由此,可提高聚合物分散液晶通电前后的雾度差异,实现较高的对比度,获得具有较高对比度的聚合物分散液晶薄膜。
根据本申请的一些实施例,导电层的组成和位置不受特别限制,例如,导电层可以为导电膜;当导电层为导电膜时,聚合物分散液晶层可位于两个导电膜之间,且两个导电膜可覆盖聚合物分散液晶层的部分表面。
根据本申请的一些实施例,聚合物分散液晶薄膜的厚度不受特别限制,例如,聚合物分散液晶薄膜的厚度可以为9-25微米。当将聚合物分散液晶薄膜应用于电子设备上,如应用于壳体组件上时,由于电子设备通常具有便携、轻便的特点,壳体组件的厚度一般较薄,故聚合物分散液晶薄膜的厚度也应与壳体组件的尺寸相匹配,不应对原有壳体组件的尺寸有较大改变。当聚合物分散液晶薄膜的厚度位于上述范围内时,厚度较为适中,制备难度较低,有利于进行大批量的制备,且该厚度值相较于电子设备的整体厚度而言可以忽略不计,有利于提高电子设备的便携性和实用性。
根据本申请的一些实施例,在聚合物分散液晶层中,液晶分子与高聚物形成微相分离结构,液晶分子以液滴的形式分散在高聚物中。当聚合物分散液晶薄膜表面没有施加电场时,液晶分子的方向矢量在高聚物的边界作用下随机分布,聚合物分散液晶薄膜表面呈现为散射状态,即关态,当对聚合物分散液晶薄膜施加电场后,液晶分子长轴平行于或垂直于电场排列,聚合物分散液晶薄膜呈现透明状态,即开态。聚合物分散液晶薄膜的关态和亮度的雾度范围均不受特别限制,例如,聚合物分散液晶薄膜开态的雾度可以为2.3-2.5%,聚合物分散液晶薄膜关态的雾度可以为86.5-88%。当聚合物分散液晶薄膜开态雾度大于2.5%时,聚合物分散液晶薄膜通电后透明度较低,无法表现为透明状态;当聚合物分散液晶薄膜关态雾度小于86.5%时,聚合物分散液晶薄膜在不通电时雾度过低,无法起到遮蔽作用。
根据本申请的一些实施例,聚合物分散液晶薄膜的对比度=(聚合物分散液晶薄膜通电点亮前的雾度)/(聚合物分散液晶薄膜通电点亮后的雾度),对比度越大说明聚合物分散液晶薄膜的显示效果越好,聚合物分散液晶薄膜的对比度不受特别限制,例如,聚合物分散液晶薄膜的对比度可以不小于34。当聚合物分散液晶薄膜的对比度小于34时,对比度较小,使用者较难感知到通电前后的雾度变化。
在本申请的又一方面,本申请提出了一种电子设备,参考图2,包括:壳体组件,壳体组件上具有前述的聚合物分散液晶薄膜300,电池以及主板,电池以及主板位于壳体组件所限定出的容纳空间内部,主板以及电池电连接。由此,可获得一种具有较好外观效果的电子设备。
根据本申请的一些实施例,参考图5,壳体组件可包括基体400,基体400限定出壳体组件的容纳空间,聚合物分散液晶薄膜300位于基体400远离容纳空间的一侧。其中,参考图1,聚合物分散液晶薄膜300具有两个导电层200,聚合物分散液晶层100,聚合物分散液晶层100被配置为可通过两个导电层200之间的电场进行控制,其中一个导电层位于聚合物分散液晶层靠近基体的一侧,另一个导电层200位于聚合物分散液晶层远离基体的一侧。
根据本申请的一些实施例,壳体组件基体的种类不受特别限制,例如,壳体组件的基体可以为玻璃。
根据本申请的一些实施例,壳体组件的结构不受特别限制,例如,在基体远离聚合物分散液晶薄膜的一侧可以具有纹理层、油墨层等功能膜层,由此,当聚合物分散液晶薄膜处于开态时,可以显现出纹理层、油墨层等功能膜层,当聚合物分散液晶薄膜处于关态时,可以对纹理层、油墨层等功能膜层进行遮蔽,进而使得一个壳体组件呈现出多种外观效果。
根据本申请的一些实施例,壳体组件上的聚合物分散液晶薄膜的设置位置不受特别限制,例如,聚合物分散液晶薄膜可直接作为壳体组件的膜片结构中的一个亚层,由此,既可以利用聚合物分散液晶薄膜提升壳体组件的外观效果,又不会使得电子设备的整体厚度发生明显增大。
根据本申请的一些实施例,壳体组件上的聚合物分散液晶薄膜的控制方法不受特别限制,例如,控制聚合物分散液晶薄膜的方法可包括:用户输入控制指令令聚合物分散液晶薄膜呈现为透光态时,通过处理器接收指令后,通过处理器预设的聚合物分散液晶薄膜的透光率,控制聚合物分散液晶薄膜的导电层的电源开启,根据预设的透光率值确定聚合物分散液晶薄膜中两个导电层之间的电 场大小;当两个导电层之间的电压达到预设值时,控制电压保持稳定,当用户再次输入控制指令令聚合物分散液晶处于关态时,通过处理器接收指令后,关闭对两个导电层的供电,聚合物分散液晶薄膜呈现为不透光态。由此,实现了一种人性化的壳体组件控制方案,实现方案既简单又可靠。
需要说明的是,术语“电子设备壳体”是指“电子设备”的壳体。本申请对电子设备的具体类型不受特别限制,例如,电子设备可以为手机、智能手表、掌上电脑、笔记本电脑、膝上型计算机、台式计算机、便携式游戏设备、录像机、照相机、寻呼机或者打印机等。具体的,电子设备可以为移动电话或智能电话(例如,基于iPhone TM,基于Android TM的电话),便携式游戏设备(例如Nintendo DS TM,PlayStation Portable TM,Gameboy Advance TM,iPhone TM)、PDA、便携式互联网设备、音乐播放器以及数据存储设备,其他手持设备以及诸如手表、入耳式耳机、吊坠、头戴式耳机等,电子设备还可以为其他的可穿戴设备(例如,诸如电子眼镜、电子衣服、电子手镯、电子项链、电子纹身或智能手表的头戴式设备(HMD))。
下面通过具体的实施例对本申请的方案进行说明,需要说明的是,下面的实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:
Figure PCTCN2022114000-appb-000001
根据以上配方配置组合物,并将其混合均匀放置,采用PET/ITO作为导电层,PET/ITO使用 前经过碱洗活化处理,碱洗处理的洗液采用40g/L的氢氧化钠溶液,碱洗时间为10s,碱洗处理温度为室温。
将混合均匀的组合物涂布在活化好的PET/ITO上,再在涂布的组合物上覆盖一层经过活化处理的PET/ITO,对组合物进行紫外光照固化,最终获得聚合物分散液晶薄膜。
对比例1:
对比例1与实施例保持一致,所不同的是,对比例1中液晶的组成如下表。
Figure PCTCN2022114000-appb-000002
对比例2:
对比例2与实施例1保持一致,所不同的是,对比例2中液晶的组成如下表。
Figure PCTCN2022114000-appb-000003
对比例3:
对比例3与实施例1保持一致,所不同的是,对比例3中液晶的组成如下表。
Figure PCTCN2022114000-appb-000004
对比例4:
对比例4与实施例1保持一致,所不同的是,对比例4中液晶的组成如下表。
Figure PCTCN2022114000-appb-000005
对上述实施例1,对比例1-对比例4中所获得的聚合物分散液晶薄膜进行对比度测试,测试方法如下:提供聚合物分散液晶薄膜,将聚合物分散液晶薄膜设置在检测光源与信号接收器之间,且聚合物分散液晶薄膜应位于信号接收器靠近检测光源的一侧,由此可模拟在狭小空间内的聚合物分散液晶薄膜的雾度变化,提高测试结果的准确性。令检测光源持续发射恒定光强的检测光线,令聚合物分散液晶薄膜交替处于通电和未通电的状态(即开、关态切换),通过信号接收器接受检测光线信号,计算出聚合物分散液晶薄膜在开、关态下对应的雾度值,并根据对比度=(聚合物分散液晶薄膜通电点亮前的雾度)/(聚合物分散液晶薄膜通电点亮后的雾度)计算出相应的对比度值。测试结果如下:
编号 通电前雾度(%) 通电后雾度(%) 对比度
实施例 88 2.3 38.26
对比例1 65 2.3 28.26
对比例2 76 0.4 190
对比例3 80 2 40
对比例4 95 17 5.59
测试结果表明,对比例1中的聚合物分散液晶薄膜的液晶微滴的微观图参见图4,由于对比例1中缺少高双折射率液晶分子,点亮前的雾度只有65%,无法满足聚合物分散液晶薄膜的遮蔽要求,对比例2中的液晶的双折射率只有0.1091,聚合物分散液晶薄膜透过率很高,关态时无法起到遮蔽效果,且点亮前后雾度都相对较低,对比效果很差;对比例3中组成液晶的组分中的多氟三联苯的含量较低,聚合物分散液晶薄膜关态下的雾度仅为80%,开态下的雾度为2%,虽对比度较高,但关态下的雾度较低,无法起到遮蔽作用;对比例4中组成液晶的组分中的多氟三联苯的含量较高, 形成聚合物分散液晶薄膜出现晶析现象,无法满足聚合物分散液晶薄膜的基本使用要求。
实施例1中的聚合物分散液晶薄膜的液晶微滴的微观图参见图3,具体地,实施例1中的聚合物分散液晶薄膜通电前雾度为88%,呈关态,可以起到遮蔽效果,通电后为2.3%,呈开态,可以起到透光效果,对比度为38.26,满足将其设置在电子设备壳体组件上时所需要的对比度要求。实施例1中的聚合物分散液晶薄膜中由于加入了具有高双折射率的液晶分子,利用高双折射率液晶所具有的高清亮点、高双折射率、良好的低温相溶性等优点,有效提高了聚合物分散液晶薄膜中的聚合物分散液晶层在通电前后的雾度差异,使得关态遮蔽效果和开态的透光效果均得以提升,实现高对比度以让消费者有所感知。
在本申请的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种用于制备聚合物分散液晶的组合物,包括:
    聚合物单体和液晶,所述液晶包括高双折射率化合物,所述液晶中所述高双折射率化合物的双折射率不小于0.4。
  2. 根据权利要求1所述的组合物,所述组合物进一步包括:光引发剂,所述光引发剂包括安息香二乙醚。
  3. 根据权利要求2所述的组合物,所述聚合物单体包括丙烯酸酯类化合物,所述丙烯酸酯类化合物包括双酚A聚氧乙烯醚甲基丙烯酸酯、聚乙二醇二丙烯酸酯、甲基丙烯酸十二酯以及甲基丙烯酸羟丙酯中的至少一种。
  4. 根据权利要求2所述的组合物,所述聚合物单体的含量为45-51重量份,所述液晶的含量为48-52重量份,所述光引发剂的含量为1-3重量份。
  5. 根据权利要求4所述的组合物,所述液晶中所述高双折射率化合物的含量为6-14重量份。
  6. 根据权利要求5所述的组合物,所述高双折射率化合物包括联苯氟类化合物。
  7. 根据权利要求6所述的组合物,所述联苯氟类化合物包括4-[二氟(3,4,5-三氟苯氧基)甲基]-2',3,5-三氟-4”-丙基-1,1':4',1”-三联苯。
  8. 根据权利要求4所述的组合物,所述液晶进一步包括:4-戊氧基-4'-氰基联苯、4-氰基-4'-戊基联苯和4”-正戊基-4-氰基三联苯中至少一种。
  9. 一种聚合物分散液晶,所述聚合物分散液晶是由权利要求1-8任一项所述的组合物制备得到的。
  10. 根据权利要求9所述的聚合物分散液晶,所述聚合物分散液晶中的液晶微滴的直径为3.33-4.3微米。
  11. 根据权利要求9所述的聚合物分散液晶,所述聚合物分散液晶中的液晶微滴的密度大于60个/平方微米。
  12. 一种聚合物分散液晶薄膜,包括:
    两个导电层,
    聚合物分散液晶层,所述聚合物分散液晶层被配置为可通过两个所述导电层之间的电场进行控制,所述聚合物分散液晶层中的液晶微滴的直径为3.33-4.3微米。
  13. 根据权利要求12所述的聚合物分散液晶薄膜,所述聚合物分散液晶薄膜的厚度为9-25微米。
  14. 根据权利要求12所述的聚合物分散液晶薄膜,所述聚合物分散液晶薄膜具有开态和关态,所述聚合物分散液晶薄膜所述开态的雾度为2.3-2.5%,所述聚合物分散液晶薄膜的所述关态的雾度为86.5-88%。
  15. 根据权利要求12所述的聚合物分散液晶薄膜,所述聚合物分散液晶薄膜的对比度不小于34。
  16. 根据权利要求12所述的聚合物分散液晶薄膜,所述导电层包括导电膜,所述导电膜至少部分覆盖所述聚合物分散液晶层的表面。
  17. 一种电子设备,包括:
    壳体组件,所述壳体组件上具有权利要求12-16任一项所述的聚合物分散液晶薄膜,
    电池以及主板,所述电池以及所述主板位于所述壳体组件所限定出的容纳空间内部,所述主板以及所述电池电连接。
  18. 根据权利要求17所述的电子设备,所述壳体组件包括基体,所述基体限定出所述容纳空间,所述聚合物分散液晶薄膜位于所述基体远离所述容纳空间的一侧。
  19. 根据权利要求18所述的电子设备,所述壳体组件进一步包括功能膜层,所述功能膜层位于所述基体远离所述聚合物分散液晶薄膜的一侧。
  20. 根据权利要求19所述的电子设备,所述功能膜层包括纹理层和油墨层中的至少之一。
PCT/CN2022/114000 2021-08-30 2022-08-22 组合物、聚合物分散液晶、薄膜和电子设备 WO2023030075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111006847.7A CN113698944B (zh) 2021-08-30 2021-08-30 组合物、聚合物分散液晶、薄膜和电子设备
CN202111006847.7 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023030075A1 true WO2023030075A1 (zh) 2023-03-09

Family

ID=78657014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114000 WO2023030075A1 (zh) 2021-08-30 2022-08-22 组合物、聚合物分散液晶、薄膜和电子设备

Country Status (2)

Country Link
CN (1) CN113698944B (zh)
WO (1) WO2023030075A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698944B (zh) * 2021-08-30 2023-02-28 Oppo广东移动通信有限公司 组合物、聚合物分散液晶、薄膜和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177539A (zh) * 2014-07-22 2014-12-03 北京大学 一种聚合物分散液晶材料的制备方法
JP2019211719A (ja) * 2018-06-08 2019-12-12 Jnc株式会社 絶縁膜を含む液晶素子、調光窓および製造方法
CN111040778A (zh) * 2018-10-11 2020-04-21 江苏和成显示科技有限公司 一种宽温液晶组合物、宽温聚合物分散液晶组合物及宽温聚合物分散液晶薄膜
CN111240072A (zh) * 2020-01-21 2020-06-05 扬州晶彩智能玻璃科技有限公司 一种聚合物分散液晶膜及其制备方法
CN112074131A (zh) * 2020-09-30 2020-12-11 Oppo广东移动通信有限公司 电子设备及其壳体组件
CN112764312A (zh) * 2019-10-21 2021-05-07 捷恩智株式会社 调光元件用聚合性组合物、液晶调光元件、调光窗、智能窗户、液晶复合体及其用途
CN112789551A (zh) * 2018-11-06 2021-05-11 捷恩智株式会社 液晶调光元件
CN112912467A (zh) * 2019-02-01 2021-06-04 捷恩智株式会社 液晶复合体、液晶调光元件及调光窗
JP2021098847A (ja) * 2019-12-23 2021-07-01 Jnc株式会社 液晶調光素子用重合性組成物、液晶調光素子およびその用途
CN113698944A (zh) * 2021-08-30 2021-11-26 Oppo广东移动通信有限公司 组合物、聚合物分散液晶、薄膜和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009292730A (ja) * 2007-04-17 2009-12-17 Chisso Corp 5環液晶化合物、液晶組成物および液晶表示素子
JP2009292729A (ja) * 2007-02-28 2009-12-17 Chisso Corp Cf2o結合基を有する5環液晶化合物、液晶組成物および液晶表示素子
JP5609054B2 (ja) * 2009-10-01 2014-10-22 Dic株式会社 高分子分散型液晶素子用液晶組成物、及びそれを用いた液晶素子
CN106398715A (zh) * 2016-08-31 2017-02-15 中节能万润股份有限公司 一种高温液晶组合物、高温聚合物分散液晶组合物及高温聚合物分散液晶膜
CN106749867A (zh) * 2016-12-05 2017-05-31 北京大学 一种基于聚合物分散液晶体系的光学扩散膜的制备方法
US20200271973A1 (en) * 2019-02-22 2020-08-27 Digilens Inc. Holographic Polymer Dispersed Liquid Crystal Mixtures with High Diffraction Efficiency and Low Haze

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177539A (zh) * 2014-07-22 2014-12-03 北京大学 一种聚合物分散液晶材料的制备方法
JP2019211719A (ja) * 2018-06-08 2019-12-12 Jnc株式会社 絶縁膜を含む液晶素子、調光窓および製造方法
CN111040778A (zh) * 2018-10-11 2020-04-21 江苏和成显示科技有限公司 一种宽温液晶组合物、宽温聚合物分散液晶组合物及宽温聚合物分散液晶薄膜
CN112789551A (zh) * 2018-11-06 2021-05-11 捷恩智株式会社 液晶调光元件
CN112912467A (zh) * 2019-02-01 2021-06-04 捷恩智株式会社 液晶复合体、液晶调光元件及调光窗
CN112764312A (zh) * 2019-10-21 2021-05-07 捷恩智株式会社 调光元件用聚合性组合物、液晶调光元件、调光窗、智能窗户、液晶复合体及其用途
JP2021098847A (ja) * 2019-12-23 2021-07-01 Jnc株式会社 液晶調光素子用重合性組成物、液晶調光素子およびその用途
CN111240072A (zh) * 2020-01-21 2020-06-05 扬州晶彩智能玻璃科技有限公司 一种聚合物分散液晶膜及其制备方法
CN112074131A (zh) * 2020-09-30 2020-12-11 Oppo广东移动通信有限公司 电子设备及其壳体组件
CN113698944A (zh) * 2021-08-30 2021-11-26 Oppo广东移动通信有限公司 组合物、聚合物分散液晶、薄膜和电子设备

Also Published As

Publication number Publication date
CN113698944B (zh) 2023-02-28
CN113698944A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
JP3127303B2 (ja) 光散乱核を有する表示装置
US5680185A (en) Polymer dispersed liquid crystal (PDLC) display apparatus
CN102508378B (zh) 基于近晶-胆甾相转变改善胆甾相液晶平面取向的方法
CN103614146B (zh) 聚合物分散液晶材料、含有该材料的显示器件及其制备
CN104178180B (zh) 一种具有大双折射率的向列相液晶材料及其应用
US20140226093A1 (en) Electronically switchable privacy film and display device having same
WO2023030075A1 (zh) 组合物、聚合物分散液晶、薄膜和电子设备
KR20140085466A (ko) 전기적으로 전환 가능한 프라이버시 필름 및 그것을 갖는 표시 장치
CN103246096B (zh) 双稳态液晶手写装置
JPH01501255A (ja) 二重層ディスプレー
TWI782166B (zh) 一種微膠囊液晶顯示器件及其應用
CN103109213A (zh) 光扩散元件、带光扩散元件的偏振板、偏光元件、及使用其的液晶显示装置
CN102778718A (zh) 一种制备具有高性能的宽波反射液晶偏振片的方法
JP2010250297A (ja) 複合偏光板および液晶表示装置
WO2018072399A1 (zh) 视角可切换智能显示膜的制备方法及含该显示膜的复合膜
CN106632883B (zh) 一种视角可切换智能显示膜的制备方法
JPH09171709A (ja) 光拡散シート用樹脂微粒子および光拡散シート
CN105093620A (zh) 公共广告显示屏及其制作方法
CN108628080A (zh) 一种全息投影膜及其制备方法和应用
JPH04267220A (ja) 電気光学装置及びその製造方法
CN109897644A (zh) 一种高对比度、低电压驱动及快速响应电控液晶调光膜及其制备方法
JP2001311943A (ja) コロイダル液晶複合材料を用いる表示デバイスおよび電気−光学デバイス
CN102901047A (zh) 光扩散薄膜、具有光扩散薄膜的背光模块及液晶显示器
JP2000131676A (ja) 高分子マトリックスを改質させた電気光学的特性高分子分散液晶複合フィルム及び当該フィルムを使用したセル並びにその製造方法
CN113956423B (zh) 组合物、聚合物分散液晶、薄膜和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863214

Country of ref document: EP

Kind code of ref document: A1