WO2023029796A1 - 聚合物和增粘剂及其制备方法以及钻井液 - Google Patents

聚合物和增粘剂及其制备方法以及钻井液 Download PDF

Info

Publication number
WO2023029796A1
WO2023029796A1 PCT/CN2022/106839 CN2022106839W WO2023029796A1 WO 2023029796 A1 WO2023029796 A1 WO 2023029796A1 CN 2022106839 W CN2022106839 W CN 2022106839W WO 2023029796 A1 WO2023029796 A1 WO 2023029796A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polymer
hydrogen
branched chain
structural unit
Prior art date
Application number
PCT/CN2022/106839
Other languages
English (en)
French (fr)
Inventor
李大奇
宣扬
金军斌
王琳
杨小华
李胜
张栋
胡子乔
李舟军
Original Assignee
中国石油化工股份有限公司
中石化石油工程技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化石油工程技术研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to CN202280059130.5A priority Critical patent/CN117980358A/zh
Priority to GBGB2404320.0A priority patent/GB202404320D0/en
Publication of WO2023029796A1 publication Critical patent/WO2023029796A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/14Esters of polycarboxylic acids
    • C08F218/16Esters of polycarboxylic acids with alcohols containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers

Definitions

  • the invention relates to the technical field of oil field drilling fluid, in particular to a polymer, a viscosifier, a preparation method thereof and a drilling fluid.
  • the solid-free drilling fluid system generally refers to the drilling fluid system that does not contain clay and insoluble solid weighting materials. Its density can be adjusted by soluble salts, and other properties of the system can be realized by adding matching treatment agents. According to the different soluble salts used, the solid-free drilling fluid system can be roughly divided into two categories: inorganic salt solid-free drilling fluid and organic salt solid-free drilling fluid.
  • Inorganic salts mainly include NaCl, CaCl 2 , KCl, NaBr, BaBr 2 and phosphate, etc.
  • organic salts are mainly formate, such as NaCOOH, KCOOH and CsCOOH.
  • Other compatible treatment agents are mainly viscosifiers, cutting agents, fluid loss reducers, lubricants, corrosion inhibitors and buffers.
  • the polymer viscosifier is one of the commonly used additives for solid-free drilling fluids, and it is also a key factor to ensure the performance of the entire system to suspend and carry cuttings.
  • the interaction between polymer molecules in the drilling fluid system The intertwining forms a space grid structure, thereby carrying and suspending cuttings, and finally transporting cuttings out of the well.
  • polymer viscosifiers used in solid-free drilling fluid systems.
  • One type is a natural modified polymer represented by modified starch and modified cellulose.
  • CN102127401A discloses a Anti-high temperature thickener for solid-free drilling fluid, which is mainly composed of starch, guar gum, alkaline hydroxide, epoxide and alcohol solvent, can resist temperature 150°C in fresh water, and can withstand temperature in salt water Temperature resistance of 120°C; the second type is a water-soluble copolymer with acrylamide and 2-acrylamide-2-methylpropanesulfonic acid as monomers.
  • High-performance solid-free drilling fluid viscosity enhancer which is polymerized from acrylamide, 2-methyl-2-acrylamidopropanesulfonic acid, N-vinylcaprolactam, and divinylbenzene.
  • the third type is a water-soluble hydrophobic association polymer
  • CN107235863A discloses a kind of polymer obtained by polymerizing a hydrophobic monomer containing a benzene ring and N-vinylpyrrolidone. Hydrophobic association polymers have good suspension stability after aging at 150°C for 16 hours.
  • CN107235862A a kind of non-solid-phase drilling fluid polymer thickener, has introduced the hydrophobic group that contains benzene ring and long fluorocarbon chain simultaneously in its molecule, significantly increases the solution viscosity by the mutual association of hydrophobic molecule, Temperature resistance up to 150°C.
  • the reservoirs are buried deep, the depth is generally greater than 6500m, the bottom hole temperature is as high as 150-180°C, and the formation water type is calcium-type formation water, and the calcium ion concentration can be as high as 15000mg/L. Therefore, there is an urgent need to develop a polymer with good temperature resistance and excellent calcium resistance as a thickener for solid-free drilling fluids to ensure suspension performance in high temperature and high calcium environments.
  • the purpose of the present invention is to provide a kind of polymer, a kind of viscosifier and its preparation method and a kind of drilling fluid in order to overcome the problem that the solid-free drilling fluid in the prior art can not take into account the temperature resistance and anti-calcium performance.
  • the compound can maintain excellent viscosifying performance under high temperature and high calcium environment, and is very suitable as a viscosifying agent for solid-free drilling fluid.
  • the inventors of the present invention have found through extensive research that by introducing structural units containing sulfonic acid groups and -C(A 1 COOH)(A 2 COOH)(A 3 COOH) into polymers with acrylamide as the backbone structure
  • the structural unit can make the polymer maintain excellent viscosity-increasing performance under high-temperature and high-calcium environments, and is particularly suitable for use as a viscosity-increasing agent for solid-free drilling fluids, thereby completing the present invention.
  • the first aspect of the present invention provides a kind of polymer, and this polymer contains the structural unit shown in formula (1), the structural unit shown in formula (2) and the structural unit shown in formula (3),
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently hydrogen or C1-C10 straight or branched chain alkyl;
  • X is a C1-C10 linear or branched alkylene group
  • Y is Or C1-C10 straight or branched chain alkylene
  • M is hydrogen or an alkali metal
  • a 1 , A 2 and A 3 are each independently a bond or a C1-C3 linear or branched alkylene group.
  • the second aspect of the present invention provides a tackifier, the tackifier contains an acrylamide skeleton structure, the tackifier also contains a sulfonic acid group and -C(A 1 COOH)(A 2 COOH)(A 3 COOH) , wherein A 1 , A 2 and A 3 are each independently a bond or a C1-C3 linear or branched alkylene group, the tackifier is added in an amount of 0.7% by weight and the Ca 2+ concentration is 15000 mg/L
  • the apparent viscosity after aging at 180° C. for 16 hours is above 28 mPa ⁇ s, preferably above 36 mPa ⁇ s.
  • the third aspect of the present invention provides a method for preparing a tackifier, the method comprising: under polymerization conditions, in the presence of an initiator, make the monomer represented by formula (A) and the monomer represented by formula (B) Polymerization reaction occurs in a solvent with the monomer represented by formula (C),
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently hydrogen or C1-C10 straight or branched chain alkyl;
  • X is a C1-C10 linear or branched alkylene group
  • Y is Or C1-C10 straight or branched chain alkylene
  • M is hydrogen or an alkali metal
  • a 1 , A 2 and A 3 are each independently a bond or a C1-C3 linear or branched alkylene group.
  • the fourth aspect of the present invention provides a drilling fluid, which contains the polymer described in the first aspect or the viscosifier described in the second aspect.
  • the polymer provided by the present invention contains three structural units represented by formula (1), formula (2) and formula (3), so that each structural unit can fully exert its respective performance characteristics and produce good synergistic effect , so as to ensure that when the polymer is used as a viscosifier in a solid-free drilling fluid, it still has excellent viscosification performance under the conditions of high temperature (180°C aging for 16h) and high calcium ion concentration (15000mg/L) ( The apparent viscosity is above 28mPa ⁇ s), which is very suitable as a viscosifier for solid-free drilling fluid.
  • Fig. 1 is the infrared spectrogram of polymer A1 prepared in Example 1.
  • described solid-free drilling fluid refers to the drilling fluid that does not contain clay and weighting agent, and described clay is one or more in montmorillonite, illite, kaolinite and sepiolite etc.;
  • the weighting agent is an insoluble solid weighting agent, including one or more of barite, iron ore powder, galena powder and micromanganese.
  • the first aspect of the present invention provides a kind of polymer, and this polymer contains the structural unit shown in formula (1), the structural unit shown in formula (2) and the structural unit shown in formula (3),
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently hydrogen or C1-C10 straight or branched chain alkyl;
  • X is a C1-C10 linear or branched alkylene group
  • Y is Or C1-C10 straight or branched chain alkylene
  • M is hydrogen or an alkali metal
  • a 1 , A 2 and A 3 are each independently a bond or a C1-C3 linear or branched alkylene group.
  • examples of the C1-C10 straight chain or branched chain alkyl group can be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl Base, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, 2-methylhexyl, 2-ethylhexyl, 1-methylheptyl , 2-methylheptyl, n-octyl, isooctyl, n-nonyl, isononyl, and 3,5,5-trimethylhexyl.
  • examples of the C1-C10 linear or branched alkylene group may be, for example, methylene, 1,2-ethylene, n-propylene, isopropylene, n-butylene, Isobutylene, n-pentylene, isopentylene, n-hexylene, isohexylene, n-heptylene, isoheptylene, 2-methylhexylene, 2-ethylhexylene, 1- Any one of methylheptylene, 2-methylheptylene, n-octylene, isooctylene and n-nonylene.
  • an example of the alkali metal may be any one of Li, Na and K, for example.
  • an example of the C1-C3 linear or branched alkylene group may be, for example, any one of methylene, 1,2-ethylene, n-propylene and isopropylene.
  • R 1 and R 2 are each independently hydrogen or C1-C6 linear or branched chain alkyl; more preferably hydrogen or C1-C4 linear or branched chain Alkyl; more preferably hydrogen, methyl or ethyl.
  • R 1 and R 2 in formula (1) are both hydrogen, at this time, the structural unit represented by formula (1) may be a structural unit derived from acrylamide.
  • R 3 , R 4 , R 5 and R 6 are each independently hydrogen or C1-C6 linear or branched chain alkyl; more preferably hydrogen or C1-C4 straight-chain or branched-chain alkyl; more preferably hydrogen, methyl or ethyl.
  • X is a C1-6 straight chain or branched chain alkylene, more preferably a C1-3 straight chain or branched chain alkylene, further preferably methylene or 1 ,2-Ethylene.
  • M is hydrogen or sodium.
  • R 3 and R 4 in formula (2) are both hydrogen, R 5 and R 6 are both methyl, X is methylene, and M is hydrogen.
  • the structural unit represented by formula (2) may be a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid.
  • R 7 and R 8 are each independently hydrogen or C1-C6 straight chain or branched chain alkyl, more preferably hydrogen or C1-C4 straight chain or branched chain Alkyl; more preferably hydrogen, methyl or ethyl.
  • Y is Or C1-6 straight chain or branched chain alkylene, more preferably Or C1-3 linear or branched chain alkylene, more preferably methylene or 1,2-ethylene.
  • a 1 , A 2 and A 3 are each independently a bond, methylene or 1,2-ethylene, more preferably a bond or methylene.
  • R and R in formula (3) are both hydrogen, and Y is Both A1 and A2 are methylene groups, and A3 is a bond.
  • the structural unit shown in formula (3) can be a structural unit derived from 2-acryloyloxy-1,2,3-tricarboxypropane .
  • the molar ratio of the structural unit shown in formula (1), the structural unit shown in formula (2) and the structural unit shown in formula (3) can vary within a wide range, for example, it can be 10-80:10-60:1, preferably 30-50:20-40:1.
  • the temperature and calcium resistance of the polymer as a viscosifier can be further improved when it is applied to a solid-free drilling fluid, thereby ensuring that the polymer is solid-free.
  • the molar ratio of each structural unit is calculated by the amount of feed.
  • the polymer has an intrinsic viscosity of 1200-2600 mL/g, preferably 1500-1900 mL/g.
  • the viscosity average molecular weight of the polymer is 6 million-15 million, preferably 7.5 million-10 million.
  • the polymer is added in an amount of 0.7% by weight to a solid-free drilling fluid base slurry with a Ca2 + concentration of 15000 mg/L, and the apparent viscosity after aging at 180° C. for 16 hours is 28 mPa ⁇ s or more, preferably 36 mPa ⁇ s or more.
  • the formula of the solid-free drilling fluid base slurry is: add 130.9g of potassium formate, 1.75g of anhydrous sodium carbonate and 3.5g of sodium bicarbonate to 350mL of water, and then add anhydrous calcium chloride until the Ca 2+ The concentration is 15000mg/L.
  • the infrared spectrogram of the polymer is measured by a Nicolet iS20 infrared spectrometer of Thermo Fisher Corporation of the United States.
  • the polymer in addition to the structural unit represented by the above formula (1), the structural unit represented by the formula (2) and the structural unit represented by the formula (3), the polymer also contains the following formula: (4) The structural unit shown.
  • R 9 and R 10 are each independently hydrogen or C1-C10 straight chain or branched chain alkyl, preferably hydrogen or C1-C6 straight chain or branched chain alkyl, more preferably hydrogen or C1-C4 Straight chain or branched chain alkyl; more preferably hydrogen, methyl or ethyl;
  • R 11 and R 12 are each independently C1-C6 straight chain or branched chain alkyl, more preferably C1-C4 straight chain or branched alkyl; more preferably methyl or ethyl.
  • R 9 and R 10 are both hydrogen, and R 11 and R 12 are both methyl.
  • the structural unit represented by formula (4) may be a structural unit derived from N,N-dimethylacrylamide.
  • the inventors of the present invention have found that by introducing the structural unit represented by formula (4) into the above-mentioned polymer, the hydrophobic association performance of the polymer can be further improved, which is different from the structural unit represented by formula (1) and the structure unit represented by formula (2).
  • the structural unit shown and the structural unit shown in formula (3) interact synergistically, which can further improve the temperature and calcium resistance properties of the polymer.
  • the content of the structural unit represented by formula (4) can be determined according to the content of the structural unit represented by formula (1), and can vary within a wide range.
  • the molar ratio of the structural unit represented by formula (1) to the structural unit represented by formula (4) may be 10-100:1, preferably 40-80:1.
  • the temperature and calcium resistance properties of the polymer can be further improved.
  • the polymer in addition to the structural unit represented by the above formula (1), the structural unit represented by the formula (2) and the structural unit represented by the formula (3), the polymer optionally contains In addition to the structural unit represented by the formula (4), it also contains the structural unit represented by the following formula (5).
  • R 13 and R 14 are each independently hydrogen or C1-C10 straight chain or branched chain alkyl, preferably hydrogen or C1-C6 straight chain or branched chain alkyl, more preferably hydrogen or C1-C4 Straight chain or branched chain alkyl; more preferably hydrogen, methyl or ethyl;
  • R 15 and R 16 are each independently hydrogen or C1-C6 straight chain or branched chain alkyl, more preferably hydrogen or C1-C4 straight chain or branched chain alkyl, more preferably hydrogen, methyl or ethyl;
  • Z is C1-C10 straight chain or branched chain alkylene, preferably C1-C6 straight chain or branched chain alkylene, More preferably, it is a C1-C4 linear or branched alkylene group, and even more preferably it is a methylene group or 1,2-ethylene group.
  • R 13 is hydrogen
  • R 14 , R 15 and R 16 are all methyl groups
  • Z is 1,2-ethylene.
  • the structural unit represented by formula (5) may be a structural unit derived from dimethylaminoethyl methacrylate.
  • the inventors of the present invention have found that by introducing the structural unit shown in the formula (5) into the above-mentioned polymer, it can be combined with the structural unit shown in the formula (1), the structural unit shown in the formula (2) and the structural unit shown in the formula (3).
  • the structural unit and the optionally contained structural unit represented by the formula (4) interact synergistically to further increase the molecular weight of the polymer, thereby further increasing the viscosity of the polymer.
  • the polymer can further improve the temperature and calcium resistance when it is used as a thickener for solid-phase drilling fluid.
  • the content of the structural unit represented by formula (5) can be determined according to the content of the structural unit represented by formula (1), and can vary within a wide range.
  • the molar ratio of the structural unit represented by formula (1) to the structural unit represented by formula (5) may be 10-100:1, preferably 30-80:1.
  • the temperature and calcium resistance properties of the polymer can be further improved.
  • the polymer contains the structural unit described in formula (1), the structural unit described in formula (2), the structural unit described in formula (3), and the structural unit described in formula (4).
  • the polymer containing the above structural units is added in an amount of 0.7% by weight to the solid-free drilling fluid base slurry with a Ca2 + concentration of 15000mg/L, and the apparent viscosity after aging at 180°C for 16h can be as high as 28mPa ⁇ s or more , preferably above 36mPa ⁇ s, very suitable for use as a viscosifier for solid-free drilling fluids.
  • the structural unit represented by the formula (1) can form an acrylamide skeleton structure, by combining the structural unit represented by the formula (2) having a sulfonic acid group and containing -C(A 1 COOH)(A 2 COOH)( A 3 COOH), the structural unit represented by the formula (3), the synergistic effect of the three can significantly improve the temperature and calcium resistance of the obtained polymer.
  • the temperature and salt resistance performance of the polymer can be further improved by further introducing the structural unit represented by formula (4) with weak hydrophobic effect, and the chain extension effect can be achieved by introducing the structural unit represented by formula (5), thereby maximizing The molecular weight of the polymer can be greatly increased, thereby increasing the viscosity of the obtained polymer.
  • the temperature and calcium resistance performance of the polymer can be improved to the greatest extent.
  • the preparation method of the polymer described in the first aspect of the present invention is not particularly limited, for example, it can be prepared by polymerizing the monomer corresponding to the above structural unit in a solvent under the conditions of the polymerization reaction and in the presence of an initiator.
  • the specific preparation method of the polymer can be referred to the preparation method of the tackifier in the third aspect below, and will not be described in detail here.
  • the second aspect of the present invention provides a tackifier, the tackifier contains an acrylamide skeleton structure, and the tackifier also contains a sulfonic acid group and -C(A 1 COOH)(A 2 COOH)(A 3 COOH), wherein A 1 , A 2 and A 3 are each independently a bond or a C1-C3 linear or branched alkylene group, preferably a bond, methylene or 1,2-ethylene, more preferably bond or methylene.
  • the tackifier contains sulfonic acid groups and -C(CH 2 COOH) 2 (COOH).
  • the viscosity enhancer can be added in an amount of 0.7% by weight to a solid-free drilling fluid base slurry with a Ca 2+ concentration of 15,000 mg/L, and the apparent viscosity after aging at 180°C for 16 hours is as high as 28 mPa ⁇ s or more , preferably 36 mPa ⁇ s or more.
  • the molar ratio of sulfonic acid groups and -COOH in the tackifier can be 3-20:1, preferably 6-14:1, thus, it can further ensure that the Anti-temperature and anti-calcium properties of tackifier.
  • the content of -COOH in the tackifier is not less than 2 mol%, more preferably not less than 3.2 mol%, further preferably not less than 4 mol%.
  • the temperature and calcium resistance properties of the tackifier can be further ensured.
  • the molar ratio of the sulfonic acid group to -COOH and the content of -COOH are calculated according to the feed ratio.
  • the third aspect of the present invention provides a method for preparing a tackifier, the method comprising: under polymerization conditions, in the presence of an initiator, make the monomer represented by formula (A) and the monomer represented by formula (B) Polymerization reaction occurs in a solvent with the monomer represented by formula (C),
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently hydrogen or C1-C10 straight or branched chain alkyl;
  • X is a C1-C10 linear or branched alkylene group
  • Y is Or C1-C10 straight or branched chain alkylene
  • M is hydrogen or an alkali metal
  • a 1 , A 2 and A 3 are each independently a bond or a C1-C3 linear or branched alkylene group.
  • Examples of the chain alkylene group can be the same as those described in the first aspect of the present invention, and will not be repeated here.
  • R 1 and R 2 in the formula (A) are both hydrogen, that is, the monomer shown in the formula (A) is acrylamide.
  • R 3 , R 4 , R 5 , R 6 , X and M are the same as the corresponding R 3 , R 4 , R 5 in formula (2) of the first aspect of the present invention , R 6 , X and M are the same, and in a particularly preferred embodiment of the present invention, R 3 and R 4 in formula (B) are both hydrogen, R 5 and R 6 are both methyl, and X is methylene base, M is hydrogen. That is, the monomer represented by the formula (B) is 2-acrylamido-2-methylpropanesulfonic acid.
  • R 7 , R 8 , Y and A 1 , A 2 and A 3 are the same as the corresponding R 7 , R 8 , Y in formula (3) of the first aspect of the present invention and A 1 , A 2 and A 3 are the same, and in a particularly preferred embodiment of the present invention, in formula (C), R 7 and R 8 are both hydrogen, and Y is Both A 1 and A 2 are methylene groups, and A 3 is a bond, that is, the monomer represented by formula (C) is 2-acryloyloxy-1,2,3-tricarboxypropane.
  • the molar ratio of monomers shown in formula (A), monomers shown in formula (B) and monomers shown in formula (C) can vary within a wide range, for example, it can be 10-80:10- 60:1; preferably 30-50:20-40:1.
  • the temperature resistance and calcium resistance of the prepared polymer can be further improved when used as a thickener in solid-free drilling fluid.
  • the preparation method of the tackifier further includes: making the monomer represented by the formula (D) and/or the monomer represented by the formula (E) and the monomer represented by the formula (A), the monomer represented by the formula (B ) and the monomer shown in formula (C) are polymerized together in a solvent.
  • R 9 , R 10 , R 11 and R 12 are the same as the corresponding R 9 , R 10 , R 11 and R 12 in formula (4) of the first aspect of the present invention , and in a particularly preferred embodiment of the present invention, R 9 and R 10 in formula (D) are both hydrogen, R 11 and R 12 are both methyl groups, that is, the monomer shown in formula (D) is N,N-Dimethacrylamide.
  • the inventors of the present invention have found that by introducing monomers shown in formula (D) on the basis of monomers shown in formula (A), monomers shown in formula (B) and monomers shown in formula (C), further Improving the hydrophobic association performance of the polymer can cooperate with the monomers shown in the formula (A), the monomers shown in the formula (B) and the monomers shown in the formula (C), and can further improve the thus prepared polymer.
  • the temperature and calcium resistance of the adhesive are examples of the adhesive.
  • the amount of the monomer represented by the formula (D) can be selected according to the amount of the monomer represented by the formula (A), and can vary within a wide range.
  • the molar ratio of the monomer represented by formula (A) to the monomer represented by formula (D) may be 10-100:1, preferably 40-80:1.
  • R 13 in formula (E) the preferred substituents of R 13 , R 14 , R 15 , R 16 and Z are the same as the corresponding R 13 , R 14 , R 15 , R in formula (5) of the first aspect of the present invention 16 and Z are the same, and in a particularly preferred embodiment of the present invention, R 13 in formula (E) is hydrogen, R 14 , R 15 and R 16 are all methyl, Z is 1,2-ethylene , that is, the monomer represented by formula (E) is dimethylaminoethyl methacrylate.
  • the inventors of the present invention found that, on the basis of monomers shown in formula (A), monomers shown in formula (B), monomers shown in formula (C) and optional monomers shown in formula (D)
  • monomers represented by formula (E) can interact with monomers represented by formula (A), monomers represented by formula (B) and monomers represented by formula (C), thereby further increasing the molecular weight of the tackifier , so that the viscosity of the tackifier can be further increased.
  • the thus prepared viscosifier can further improve the anti-temperature and anti-calcium performance when it is applied to solid-phase drilling fluid.
  • the amount of the monomer represented by the formula (E) can be selected according to the amount of the monomer represented by the formula (A), and can vary within a wide range.
  • the molar ratio of the monomer represented by formula (A) to the monomer represented by formula (E) may be 10-100:1, preferably 30-80:1.
  • the temperature and calcium resistance properties of the prepared polymer can be further improved.
  • the monomer shown in the formula (D) or the monomer shown in the formula (E) and the monomer shown in the formula (A) By making the monomer shown in the formula (D) or the monomer shown in the formula (E) and the monomer shown in the formula (A), the monomer shown in the formula (B) and the monomer shown in the formula (C) together in a solvent Polymerization occurs, especially by making the monomers shown in the formula (D) and the monomers shown in the formula (E) and the monomers shown in the formula (A), the monomers shown in the formula (B) and the monomers shown in the formula (C)
  • the polymerization reaction of the monomers together in the solvent can further improve the temperature and calcium resistance of the prepared tackifier, so that the obtained tackifier can still maintain excellent viscosity in a high-temperature and high-calcium environment.
  • the initiator can be various initiators that are common in the art and can initiate the polymerization reaction of the monomer.
  • the initiator can be selected from azo initiators and redox initiators. at least one of the agents.
  • the initiator is a mixture of an azo initiator and a redox initiator.
  • the azo initiator is not particularly limited, for example, it may be azobisisobutyronitrile, azobisimidazolinylpropane dihydrochloride, 2,2'-azo(2-amidino Propane) dihydrochloride, at least one of 4,4'-azobis(4-cyanovaleric acid) and 2,2'-azobisisobutylamidine hydrochloride, preferably 2,2 At least one of '-azobisisobutylamidine hydrochloride, 2,2'-azobis(2-amidinopropane) dihydrochloride and azobisimidazolinylpropane dihydrochloride.
  • the redox initiator is not particularly limited, and includes oxidizing agents and reducing agents.
  • the oxidizing agent may be, for example, at least one of ammonium persulfate, potassium persulfate, sodium persulfate and hydrogen peroxide, preferably ammonium persulfate and/or potassium persulfate.
  • the reducing agent may be selected from at least one of inorganic reducing agents and organic reducing agents.
  • the inorganic reducing agent may be, for example, at least one of sodium bisulfite, sodium sulfite, ferrous sulfate, sodium thiosulfate and urea, preferably sodium bisulfite and/or sodium sulfite.
  • the organic reducing agent can be, for example, N,N-dimethylethanolamine, N,N-dimethylpropanolamine, N,N-dimethylpiperazine, N,N'-dimethylpiperazine , Tetramethylurea, N,N-Dimethylurea, N,N,N',N'-Tetramethylethylenediamine, N,N'-Dimethylethylenediamine, N,N' - At least one of dimethyl-1,3-propylenediamine, 3-methylaminopropylamine and N,N-dimethylethylenediamine, preferably N,N'-dimethyl-1,3- Propylenediamine or N,N,N',N'-tetramethylethylenediamine, more preferably N,N,N',N'-tetramethylethylenediamine.
  • the inventors of the present invention have found in their research that when the reducing agent is a mixture of an inorganic reducing agent and an organic reducing agent, not only can the monomer be completely converted under the premise of ensuring the high molecular weight of the polymer to the greatest extent, but also further Improve the temperature and calcium resistance of the polymerized tackifier. Therefore, in the present invention, preferably, the reducing agent is a mixture of an inorganic reducing agent and an organic reducing agent.
  • the amount of the initiator used is not particularly limited, as long as it can initiate the polymerization reaction, it can be determined according to the amount of monomers participating in the polymerization reaction. For example, based on the total weight of polymerized monomers (monomers represented by formula (A), monomers represented by formula (B), monomers represented by formula (C) and optional monomers represented by formula (D) and optionally
  • the total amount of the monomer represented by the formula (E)) is 100 parts by weight, and the total amount of the initiator can be 0.1-1 part by weight, preferably 0.3-0.6 part by weight.
  • the amount of the redox initiator can be 30-90% by weight of the total amount of the initiator, preferably 60% by weight. -80% by weight, the balance is the azo initiator.
  • the amount of the reducing agent in the redox initiator, can be 40-80% by weight, preferably 50-70% by weight, of the total amount of the oxidizing agent and reducing agent, and the balance is the oxidizing agent.
  • the amount of the organic reducing agent can be 30-90% by weight of the total reducing agent, preferably 60-80% by weight. % by weight, and the balance is an inorganic reducing agent. In this way, not only can the smooth progress of the polymerization reaction be further promoted, but also the temperature and calcium resistance properties of the prepared tackifier can be further improved.
  • the solvent may be a conventional solvent for polymerization in the art, without any special limitation.
  • it may be water, preferably deionized water.
  • the amount of the solvent used is not particularly limited, and can be based on the total weight of the polymerized monomers (monomers represented by formula (A), monomers represented by formula (B), monomers represented by formula (C) and Optional formula (D) to decide, for example, the consumption of described solvent can be 2-6 times of polymerized monomer total weight, preferably 3-5 times.By controlling the consumption of described solvent in above-mentioned scope, not only It can ensure that the polymerization reaction proceeds more smoothly, and can ensure that the prepared tackifier has good temperature and calcium resistance properties.
  • the monomer, initiator and solvent can be added to the reaction device at the same time and stirred and mixed uniformly; it is also possible to mix the monomer with the solvent first, and then add the initiator to initiate the reaction ; It is also possible to first mix the initiator with the solvent, and then add the monomer thereto.
  • the monomer is mixed with the solvent, and then the initiator is added to initiate the reaction.
  • the conditions of the polymerization reaction are not particularly limited, as long as the monomers can be polymerized.
  • the conditions of the polymerization reaction include: temperature is -10°C to 15°C, preferably -10°C to 0°C, more preferably -10°C to -5°C; time is 1-20 hours, preferably 5 - 10 hours, more preferably 8-10 hours. This can further ensure that the polymerization reaction proceeds rapidly and completely.
  • the polymerization reaction can be carried out at a pH of 4-12, preferably at a pH of 5-10, more preferably at a pH of 6-9.
  • the polymerization reaction is preferably carried out in the presence of an inert gas, such as nitrogen, argon, helium, etc., without any particular limitation.
  • an inert gas such as nitrogen, argon, helium, etc.
  • the preparation method of the tackifier further comprises: after the polymerization reaction is completed, granulating the product obtained from the polymerization reaction, followed by kneading with an inorganic base, and then performing hydrolysis to obtain a hydrolyzed product, and then granulating the obtained hydrolyzed product , dried and crushed.
  • the inorganic base is not particularly limited, for example, it may be one or more of sodium hydroxide, potassium hydroxide and sodium carbonate, preferably sodium hydroxide and/or potassium hydroxide.
  • the amount of the inorganic base used is not particularly limited, for example, based on the total weight of polymerized monomers (monomers represented by formula (A), monomers represented by formula (B), monomers represented by formula (C)
  • the total amount of monomers and optional monomers represented by formula (D) and optional monomers represented by formula (E)) is 100 parts by weight, and the amount of the inorganic base can be 5-30 parts by weight, Preferably it is 20-30 parts by weight.
  • the conditions such as the temperature and time of the hydrolysis are not particularly limited, for example, it may be 40-100°C, preferably 60-90°C, more preferably 80-85°C; the hydrolysis time is, for example, It can be 0.5-6h, preferably 1-4h, more preferably 2-3h.
  • the preparation method further includes sieving the pulverized product.
  • the methods of granulation, drying, pulverization and sieving are not particularly limited, and can be carried out by conventional or known methods in the art, and will not be repeated here.
  • the tackifier prepared in the third aspect of the present invention has the properties of the polymer described in the first aspect of the present invention and the tackifier described in the second aspect of the present invention, which will not be repeated here.
  • the fourth aspect of the present invention provides a drilling fluid, which contains the polymer described in the first aspect of the present invention or the viscosifier described in the second aspect of the present invention. And preferably, the drilling fluid is a solid-free drilling fluid, that is, the drilling fluid does not contain the clay and the weighting agent.
  • the content of the polymer or the viscosifier can be 0.1-3% by weight, preferably 0.5-1.5% by weight, thus, the drilling fluid can be further improved. Suspension and debris-carrying performance of fluid.
  • the density of the drilling fluid in the present invention may be 1.01-2.30 g/cm 3 , preferably 1.10-1.80 g/cm 3 .
  • the apparent viscosity is measured according to the method specified in GB/T 16783.1.
  • the 2-acryloyloxy-1,2,3-tricarboxypropane used in the following examples was prepared according to the following method:
  • step 2) Pump the mixed monomer solution obtained in step 1) into the polymerization kettle, and after deoxygenating with high-purity nitrogen for 0.5 h, add 14.12 kg of N,N,N',N'-tetramethylethylenediamine, 6.04 kg of sodium bisulfite, 13.44 kg of ammonium persulfate and 14.4 kg of 2,2'-azo(2-amidinopropane) dihydrochloride were left to stand for polymerization at -7°C for 10 hours to obtain a polymer gel ;
  • step 3 Open the ball valve at the bottom of the reactor, press out the polymer gel obtained in step 2) with 0.3MPa compressed air, and granulate it into 4-6mm colloidal particles through a granulator, then take 1500kg of colloidal granules and 400kg of hydrogen to oxidize Sodium granules were kneaded and contacted, hydrolyzed at 85°C for 2 hours, after secondary granulation, dried under hot air at 75°C for 2 hours, crushed and sieved to 20-80 mesh to obtain polymer A1.
  • the intrinsic viscosity and viscosity average molecular weight of polymer A1 are shown in Table 1.
  • step 2) Pump the mixed monomer solution obtained in step 1) into the polymerization kettle, and after deoxygenating with high-purity nitrogen for 0.5 h, add 12.2 kg of N,N,N',N'-tetramethylethylenediamine, 8.2 kg of sodium bisulfite, 8.7 kg of ammonium persulfate and 19.4 kg of 2,2'-azo(2-amidinopropane) dihydrochloride were left to stand for polymerization at -5°C for 9 hours to obtain a polymer gel ;
  • step 3 Open the ball valve at the bottom of the reactor, press out the polymer gel obtained in step 2) with 0.3MPa compressed air, and granulate it into 4-6mm colloidal particles through a granulator, then take 1500kg of colloidal granules and 400kg of hydrogen to oxidize
  • the sodium particles were kneaded and contacted, hydrolyzed at 85°C for 2 hours, after secondary granulation, dried under hot air at 75°C for 2 hours, crushed and sieved to 20-80 mesh to obtain polymer A2.
  • the intrinsic viscosity and viscosity average molecular weight of polymer A2 are shown in Table 1.
  • the infrared spectrum of polymer A2 is similar to that of polymer A1.
  • step 2) Pump the mixed monomer solution obtained in step 1) into the polymerization kettle, and after deoxygenating with high-purity nitrogen gas for 0.5h, add 10.4kg of N,N,N',N'-tetramethylethylenediamine, 2.6 kg of sodium bisulfite, 13 kg of ammonium persulfate and 6.5 kg of 2,2'-azo(2-amidinopropane) dihydrochloride were left to stand for polymerization at -10°C for 8 hours to obtain a polymer gel;
  • step 3 Open the ball valve at the bottom of the reactor, press out the polymer gel obtained in step 2) with 0.3MPa compressed air, and granulate it into 4-6mm colloidal particles through a granulator, then take 1500kg of colloidal granules and 400kg of hydrogen to oxidize Sodium granules were kneaded and contacted with alkali, hydrolyzed at 85°C for 2 hours, after secondary granulation, dried under hot air at 75°C for 2 hours, crushed and sieved to 20-80 mesh to obtain polymer A3.
  • the intrinsic viscosity number and viscosity average molecular weight of polymer A3 are shown in Table 1.
  • the infrared spectrum of polymer A3 is similar to that of polymer A1.
  • step 1) add 5680kg (80kmol) acrylamide, 2070kg (10kmol) 2-acrylamide-2-methylpropanesulfonic acid, 246kg (1kmol) 2-acryloyloxy-1,2, 3-tricarboxypropane, 79.2kg (0.8kmol) N,N-dimethylacrylamide, 125.6kg (0.8kmol) dimethylaminoethyl methacrylate and deionized water whose weight is 4 times the total weight of the above monomers ;
  • step 2) 12kg of N,N,N',N'-tetramethylethylenediamine, 5.2kg of sodium bisulfite, 11.5kg of ammonium persulfate and 12.3kg of 2,2'-azo ( 2-Amidinopropane) dihydrochloride.
  • the intrinsic viscosity and viscosity average molecular weight of polymer A4 are shown in Table 1.
  • the infrared spectrum of polymer A4 is similar to that of polymer A1.
  • step 1) the difference is that in step 1),
  • the intrinsic viscosity number and viscosity average molecular weight of polymer A5 are shown in Table 1.
  • step 1) the difference is that in step 1),
  • the intrinsic viscosity number and viscosity average molecular weight of polymer A6 are shown in Table 1.
  • step 1) the difference is that in step 1),
  • Polymer A7 was obtained without adding N,N-dimethylacrylamide and dimethylaminoethyl methacrylate.
  • the intrinsic viscosity number and viscosity average molecular weight of polymer A7 are shown in Table 1.
  • step 2) the difference is that in step 2),
  • the intrinsic viscosity and viscosity average molecular weight of polymer A8 are shown in Table 1.
  • the infrared spectrum of polymer A8 is similar to that of A1.
  • step 2) the difference is that in step 2),
  • the intrinsic viscosity number and viscosity average molecular weight of polymer A9 are shown in Table 1.
  • the infrared spectrum of polymer A9 is similar to that of A1.
  • step 1) the difference is that in step 1),
  • Polymer D1 was obtained without adding 2-acryloyloxy-1,2,3-tricarboxypropane.
  • the intrinsic viscosity and viscosity average molecular weight of polymer D1 are shown in Table 1.
  • step 1) the difference is that in step 1),
  • the intrinsic viscosity and viscosity-average molecular weight of polymer D2 are shown in Table 1.
  • the intrinsic viscosity and viscosity average molecular weight of polymer D3 are shown in Table 1.
  • step 1) the difference is that in step 1),
  • the five monomers were replaced with 2-acryloyloxy-1,2,3-tricarboxypropane having the same total weight as the above five monomers to obtain polymer D4.
  • the intrinsic viscosity and viscosity-average molecular weight of polymer D4 are shown in Table 1.
  • Polymer D4 was mixed with polymer D1 in a weight ratio of 1:1 to obtain polymer D5.
  • step 2) Add 1.75g of anhydrous sodium carbonate and 3.5g of sodium bicarbonate to the potassium formate aqueous solution obtained in step 1), stir evenly, and seal and maintain at a temperature of 25°C ⁇ 3°C for 24h, and then add anhydrous calcium chloride to it And stirring and dissolving, so that the Ca concentration is 15000mg/L, and the solid-free drilling fluid base slurry is obtained;
  • step 3 Take 350g of the solid-free drilling fluid base slurry obtained in step 2), slowly add 2.45g of polymer sample to it while stirring, and then stir and dissolve with an electric stirrer for 30min, and measure the density of the obtained drilling fluid to be 1.15g/cm 3. Roll in a high-temperature roller furnace at a constant temperature of 180°C for 16 hours, then stir for 5 minutes after cooling, and measure the corresponding apparent viscosity AV. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种聚合物,一种增粘剂及其制备方法以及一种钻井液。所述聚合物含有式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元,其中,R1、R2、R3、R4、R5、R6、R7和R8各自独立地为氢或C1-C10的直链或支链烷基;X为C1-C10的直链或支链亚烷基;Y为式(4) 或C1-C10的直链或支链亚烷基;M为氢或碱金属,A1、A2和A3各自独立地为键或C1-C3的直链或支链亚烷基。该聚合物能够在高温、高钙环境下仍保持优异的增粘性能。

Description

聚合物和增粘剂及其制备方法以及钻井液 技术领域
本发明涉及油田钻井液技术领域,具体涉及一种聚合物、一种增粘剂及其制备方法以及一种钻井液。
背景技术
钻井液中的粘土及重晶石等大量固相是导致油气层损害、造成产能降低的重要因素之一,而无固相钻井液体系可有效解决钻井液中固相对储层的伤害。无固相钻井液体系一般是指不含粘土和不溶固体加重材料的钻井液体系,其密度可以通过可溶性盐调整,体系其它性能则可以通过加入配套的处理剂来实现。根据使用的可溶性盐不同,无固相钻井液体系大体可分为无机盐类无固相钻井液和有机盐类无固相钻井液两大类。无机盐主要有NaCl、CaCl 2、KCl、NaBr、BaBr 2和磷酸盐等,有机盐主要为甲酸盐,例如NaCOOH、KCOOH和CsCOOH等。其它配伍处理剂主要为增粘剂、提切剂、降滤失剂、润滑剂、缓蚀剂以及缓冲剂等。
其中,在增粘剂中,聚合物类增粘剂是无固相钻井液的常用助剂之一,也是保证整个体系悬浮和携带岩屑性能的关键因素,钻井液体系中聚合物分子间相互缠绕形成空间网架结构,从而携带和悬浮岩屑,并最终将岩屑运移出井。现有技术中应用于无固相钻井液体系的聚合物增粘剂主要有三类,一类是以改性淀粉、改性纤维素为代表的天然改性聚合物,例如CN102127401A中公开了一种无固相钻井液用抗高温增粘剂,其以淀粉、瓜尔胶、碱性氢氧化物、环氧化物和醇类溶剂为主要成分,在淡水中可抗温150℃,在盐水中可抗温120℃;第二类是以丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸为单体的水溶性共聚物,例如CN104650827A中公开了一种具有抗温增粘和抗盐性能的无固相钻井液用增粘剂,其由丙烯酰胺、2-甲基-2-丙烯酰胺基丙磺酸、N-乙烯基己内酰胺、二乙烯基苯为单体聚合而成,在水中经165℃老化16h前后均具有较好的增粘效果;第三类是水溶性疏水缔合聚合物,例如CN107235863A中公开了一种由含苯环疏水单体和N-乙烯基吡咯烷酮聚合而得的疏水缔合聚合物,在150℃老化16小时后仍具有较好的悬浮稳定性。再如CN107235862A中公开了一种无固相钻井液聚合物增粘剂,其分子中引入了同时含苯环和长氟碳链的疏水基团,通过疏水分子相互缔合而显著增加溶液粘度,抗温高达150℃。
如上所述的现有聚合物类增粘剂虽然具有较好的抗温性能(抗温可达150-165℃),然而无法兼顾抗钙性能。
目前我国大部分油田处于中后期开发,未动用地质储量多集中在高温地层,这便对具有良好储层保护性能的无固相钻井液提出了更高的要求。尤其是塔里木盆地的超深井, 其储层埋藏较深,深度一般大于6500m,井底温度高达150-180℃,且其地层水型为钙型地层水,钙离子浓度可高达15000mg/L。因此,迫切需要研发一种具有较好抗温能力,同时抗钙性能优异的高分子聚合物作为无固相钻井液的增粘剂,以保证高温和高钙环境下的悬浮性能。
发明内容
本发明的目的是为了克服现有技术存在的无固相钻井液无法兼顾抗温和抗钙性能等问题,提供一种聚合物、一种增粘剂及其制备方法和一种钻井液,该聚合物能够在高温、高钙环境下仍保持优异的增粘性能,非常适合用作无固相钻井液的增粘剂。
本发明的发明人经过大量研究发现,通过在以丙烯酰胺作为骨架结构的聚合物中引入含有磺酸基团的结构单元和含有-C(A 1COOH)(A 2COOH)(A 3COOH)的结构单元,能够使得该聚合物在高温、高钙环境下仍保持优异的增粘性能,特别适合用作无固相钻井液的增粘剂,由此完成了本发明。
为此,本发明第一方面提供一种聚合物,该聚合物含有式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元,
Figure PCTCN2022106839-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C10的直链或支链烷基;
X为C1-C10的直链或支链亚烷基;
Y为
Figure PCTCN2022106839-appb-000002
或C1-C10的直链或支链亚烷基;
M为氢或碱金属;
A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基。
本发明第二方面提供一种增粘剂,该增粘剂含有丙烯酰胺骨架结构,该增粘剂还含有磺酸基团和-C(A 1COOH)(A 2COOH)(A 3COOH),其中A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基,将该增粘剂以0.7重量%的添加量加入Ca 2+浓度为15000mg/L的无固相钻井液基浆中,并在180℃老化16h后的表观粘度为28mPa·s以上,优选为36mPa·s以上。
本发明第三方面提供一种增粘剂的制备方法,所述方法包括:在聚合反应条件下,在引发剂存在下,使式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中发生聚合反应,
Figure PCTCN2022106839-appb-000003
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C10的直链或支链烷基;
X为C1-C10的直链或支链亚烷基;
Y为
Figure PCTCN2022106839-appb-000004
或C1-C10的直链或支链亚烷基;
M为氢或碱金属;
A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基。
本发明第四方面提供一种钻井液,所述钻井液含有上述第一方面所述聚合物或第二方面所述增粘剂。
本发明提供的聚合物通过含有式(1)、式(2)和式(3)所示的三种结构单元,可以使得各结构单元既充分发挥各自的性能特点,又能够产生良好的协同作用,从而保证所述聚合物作为增粘剂应用于无固相钻井液时,在高温(180℃下老化16h)和高钙离子浓度(15000mg/L)的条件下仍具备优异的增粘性能(表观粘度为28mPa·s以上),非常适合作为无固相钻井液的增粘剂。
附图说明
图1是实施例1制备得到的聚合物A1的红外谱图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,所述无固相钻井液是指不含粘土和加重剂的钻井液,所述粘土为蒙脱石、 伊利石、高岭石和海泡石等中的一种或多种;所述加重剂为不溶固体加重剂,包括重晶石、铁矿粉、方铅矿粉和微锰等中的一种或多种。
本发明第一方面提供一种聚合物,该聚合物含有式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元,
Figure PCTCN2022106839-appb-000005
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C10的直链或支链烷基;
X为C1-C10的直链或支链亚烷基;
Y为
Figure PCTCN2022106839-appb-000006
或C1-C10的直链或支链亚烷基;
M为氢或碱金属;
A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基。
本发明中,所述C1-C10的直链或支链烷基的实例例如可以为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、新戊基、正己基、异己基、正庚基、异庚基、2-甲基己基、2-乙基己基、1-甲基庚基、2-甲基庚基、正辛基、异辛基、正壬基、异壬基和3,5,5-三甲基己基中的任意一种。
本发明中,所述C1-C10的直链或支链亚烷基的实例例如可以为亚甲基、1,2-亚乙基、亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚正戊基、亚异戊基、亚正己基、亚异己基、亚正庚基、亚异庚基、亚2-甲基己基、亚2-乙基己基、亚1-甲基庚基、亚2-甲基庚基、亚正辛基、亚异辛基和亚正壬基中的任意一种。
本发明中,所述碱金属的实例例如可以为Li、Na和K中的任意一种。
本发明中,所述C1-C3的直链或支链亚烷基的实例例如可以为亚甲基、1,2-亚乙基、亚正丙基和亚异丙基中的任意一种。
根据本发明,式(1)中,优选地,R 1和R 2各自独立地为氢或C1-C6的直链或支链烷基;更优选为氢或C1-C4的直链或支链烷基;进一步优选为氢、甲基或乙基。
在本发明一个特别优选的实施方式中,式(1)中的R 1和R 2均为氢,此时,式(1)所示的结构单元可以为来自丙烯酰胺的结构单元。
根据本发明,式(2)中,优选地,R 3、R 4、R 5和R 6各自独立地为氢或C1-C6的直链或支链烷基;更优选为氢或C1-C4的直链或支链烷基;进一步优选为氢、甲基或乙 基。
另外,式(2)中,优选地,X为C1-6的直链或支链亚烷基,更优选为C1-3的直链或支链亚烷基,进一步优选为亚甲基或1,2-亚乙基。
另外,式(2)中,优选地,M为氢或钠。
在本发明一个特别优选的实施方式中,式(2)中的R 3和R 4均为氢,R 5和R 6均为甲基,X为亚甲基,M为氢。此时,式(2)所示的结构单元可以为来自2-丙烯酰胺基-2-甲基丙磺酸的结构单元。
根据本发明,式(3)中,优选地,R 7和R 8各自独立地为氢或C1-C6的直链或支链烷基,更优选为氢或C1-C4的直链或支链烷基;进一步优选为氢、甲基或乙基。
另外,式(3)中,优选地,Y为
Figure PCTCN2022106839-appb-000007
或C1-6的直链或支链亚烷基,更优选为
Figure PCTCN2022106839-appb-000008
或C1-3的直链或支链亚烷基,进一步优选为
Figure PCTCN2022106839-appb-000009
亚甲基或1,2-亚乙基。
另外,式(3)中,优选地,A 1、A 2和A 3各自独立地为键、亚甲基或1,2-亚乙基,更优选为键或亚甲基。
在本发明一个特别优选的实施方式中,式(3)中的R 7和R 8均为氢,Y为
Figure PCTCN2022106839-appb-000010
A 1和A 2均为亚甲基,A 3为键,此时,式(3)所示的结构单元可以为来自2-丙烯酰氧基-1,2,3-三羧基丙烷的结构单元。
根据本发明,所述聚合物中,式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元的摩尔比可以在较大范围内变动,例如可以为10-80:10-60:1,优选为30-50:20-40:1。通过将上述三种结构单元的摩尔比限定在上述范围,能够进一步提高所述聚合物作为增粘剂应用于无固相钻井液时的抗温和抗钙性能,从而保证所述聚合物在无固相钻井液中在高温(180℃下老化16h)和高钙离子浓度(15000mg/L)的条件下仍具备优异的增粘性能(表观粘度为28mPa·s以上)。
本发明中,如无特别说明,各结构单元的摩尔比通过投料量计算得到。
根据本发明,所述聚合物的特性粘数为1200-2600mL/g,优选为1500-1900mL/g。
根据本发明,所述聚合物的粘均分子量为600万-1500万,优选为750万-1000万。根据本发明,将所述聚合物以0.7重量%的添加量加入Ca 2+浓度为15000mg/L的无固相钻井液基浆中,并在180℃老化16h后的表观粘度为28mPa·s以上,优选为36mPa·s以上。
本发明中,所述无固相钻井液基浆的配方为:在350mL水中加入130.9g甲酸钾、1.75g无水碳酸钠和3.5g碳酸氢钠,之后加入无水氯化钙至Ca 2+浓度为15000mg/L。
本发明中,所述特性粘数按照GB12005.1-89中所述的方法进行测定;所述粘均分子量按照GB12005.10-92中所述的方法,采用公式M=802[η] 1.25来进行计算,其中,M 为粘均分子量,[η]为特性粘数;所述表观粘度按照GB/T 16783.1中所述的方法进行测定。
根据本发明,所述聚合物的红外谱图在1403cm -1和1573cm -1附近存在COO-共轭体系伸缩振动峰,且在614cm -1和1051cm -1附近存在S=O特征振动峰,从而可以说明所述聚合物中含有式(2)所示结构单元和式(3)所示结构单元。
本发明中,所述聚合物的红外谱图采用美国赛默飞公司的Nicolet iS20红外光谱仪测得。
根据本发明一个优选的实施方式,所述聚合物中除含有上述式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元之外,还含有以下式(4)所示结构单元。
Figure PCTCN2022106839-appb-000011
其中,R 9和R 10各自独立地为氢或C1-C10的直链或支链烷基,优选为氢或C1-C6的直链或支链烷基,更优选为氢或C1-C4的直链或支链烷基;进一步优选为氢、甲基或乙基;R 11和R 12各自独立地为C1-C6的直链或支链烷基,更优选为C1-C4的直链或支链烷基;进一步优选为甲基或乙基。
在本发明一个特别优选的实施方式中,式(4)所示结构单元中,R 9和R 10均为氢,R 11和R 12均为甲基。此时,式(4)所示的结构单元可以为来自N,N-二甲基丙烯酰胺的结构单元。
本发明的发明人发现,通过在上述聚合物中引入式(4)所示的结构单元,能够进一步提高聚合物的疏水缔合性能,与式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元相互协同作用,可以进一步提高聚合物的抗温抗钙性能。
此外,式(4)所示结构单元的含量可以根据式(1)所示结构单元的含量来确定,并且可以在较大范围内变动。例如,式(1)所示结构单元和式(4)所示结构单元摩尔比可以为10-100:1,优选为40-80:1。通过将式(4)所示结构单元的含量限定在上述范围,可以进一步提高所述聚合物的抗温抗钙性能。
此外,根据本发明又一个优选的实施方式,所述聚合物中除含有上述式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元以及选择性含有的式(4)所示结构单元之外,还含有以下式(5)所示结构单元。
Figure PCTCN2022106839-appb-000012
其中,R 13和R 14各自独立地为氢或C1-C10的直链或支链烷基,优选为氢或C1-C6的直链或支链烷基,更优选为氢或C1-C4的直链或支链烷基;进一步优选为氢、甲基或乙基;R 15和R 16各自独立地为氢或C1-C6的直链或支链烷基,更优选为氢或C1-C4的直链或支链烷基,进一步优选为氢、甲基或乙基;Z为C1-C10的直链或支链亚烷基,优选为C1-C6的直链或支链亚烷基,更优选为C1-C4的直链或支链亚烷基,进一步优选为亚甲基或1,2-亚乙基。
在本发明一个特别优选的实施方式中,式(5)所示结构单元中,R 13为氢,R 14、R 15和R 16均为甲基,Z为1,2-亚乙基。此时,式(5)所示的结构单元可以为来自甲基丙烯酸二甲氨基乙酯的结构单元。
本发明的发明人发现,通过在上述聚合物中引入式(5)所示的结构单元,能够与式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元以及选择性含有的式(4)所示结构单元相互协同作用,从而进一步提高聚合物的分子量,由此能够进一步提高所述聚合物的粘度。并且通过各结构单元之间的相互协同作用,能够使得所述聚合物用于无固相钻井液的增粘剂时能够进一步提高抗温和抗钙性能。
此外,式(5)所示结构单元的含量可以根据式(1)所示结构单元的含量来确定,并且可以在较大范围内变动。例如,式(1)所示结构单元和式(5)所示结构单元的摩尔比可以为10-100:1,优选为30-80:1。通过将式(5)所示结构单元的含量限定在上述范围,可以进一步提高所述聚合物的抗温抗钙性能。
另外,在本发明一个特别优选的实施方式中,所述聚合物含有式(1)所述结构单元、式(2)所述结构单元、式(3)所述结构单元、式(4)所述结构单元和式(5)所示结构单元。包含上述结构单元的聚合物以0.7重量%的添加量加入Ca 2+浓度为15000mg/L的无固相钻井液基浆中,并在180℃老化16h后的表观粘度可高达28mPa·s以上,优选为36mPa·s以上,非常适合用作无固相钻井液的增粘剂使用。
本发明中,式(1)所示结构单元能够形成丙烯酰胺骨架结构,通过配合具有磺酸基团的式(2)所示结构单元和含有-C(A 1COOH)(A 2COOH)(A 3COOH)的式(3)所示结构单元,三者协同作用,能够显著提高所得聚合物的抗温和抗钙性能。
另外,通过进一步引入具有弱疏水作用的式(4)所示结构单元能够进一步提高聚合物的抗温抗盐性能,通过引入式(5)所示结构单元能起到扩链作用,从而最大限度地 提高聚合物的分子量,由此来提高所得聚合物的粘度。并且通过上述五种结构单元的相互协同作用,不仅能够发挥各结构单元各自的特性,而且可以最大限度地提高所述聚合物的抗温抗钙性能。
此外,本发明第一方面所述聚合物的制备方法没有特别的限定,例如可以在聚合反应条件下,在引发剂存在下,使上述结构单元对应的单体在溶剂中发生聚合反应从而制备得到所述聚合物,具体的制备方法可参见下述第三方面的增粘剂的制备方法进行,此处不再详述。
本发明第二方面提供一种增粘剂,所述增粘剂含有丙烯酰胺骨架结构,所述增粘剂还含有磺酸基团和-C(A 1COOH)(A 2COOH)(A 3COOH),其中A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基,优选为键、亚甲基或1,2-亚乙基,更优选为键或亚甲基。
在本发明一个特别优选的实施方式中,所述增粘剂含有磺酸基团和-C(CH 2COOH) 2(COOH)。
通过在丙烯酰胺骨架结构中引入磺酸基团和-C(A 1COOH)(A 2COOH)(A 3COOH),尤其是引入磺酸基团和-C(CH 2COOH) 2(COOH),能够使得将该增粘剂以0.7重量%的添加量加入Ca 2+浓度为15000mg/L的无固相钻井液基浆中,并在180℃老化16h后的表观粘度高达28mPa·s以上,优选为36mPa·s以上。
此外,根据本发明的第二方面,所述增粘剂中磺酸基团和-COOH的摩尔比可以为3-20:1,优选为6-14:1,由此,可以进一步保证所述增粘剂的抗温和抗钙性能。
另外,根据本发明的第二方面,优选地,所述增粘剂中-COOH的含量不低于2mol%,更优选为不低于3.2mol%,进一步优选为不低于4mol%。由此,可以进一步保证所述增粘剂的抗温和抗钙性能。
本发明中,所述磺酸基团和-COOH的摩尔比以及所述-COOH的含量按照投料比计算得到。
本发明第三方面提供一种增粘剂的制备方法,所述方法包括:在聚合反应条件下,在引发剂存在下,使式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中发生聚合反应,
Figure PCTCN2022106839-appb-000013
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C10的直链或支 链烷基;
X为C1-C10的直链或支链亚烷基;
Y为
Figure PCTCN2022106839-appb-000014
或C1-C10的直链或支链亚烷基;
M为氢或碱金属;
A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基。
本发明第三方面所述的C1-C10的直链或支链烷基的实例、C1-C10的直链或支链亚烷基的实例、碱金属的实例以及C1-C3的直链或支链亚烷基的实例等可以与本发明第一方面所述的相同,此处不再赘述。
根据本发明,式(A)中,R 1和R 2的优选取代基与本发明第一方面式(1)中对应的R 1和R 2相同,并且在本发明一个特别优选的实施方式中,式(A)中的R 1和R 2均为氢,也即,式(A)所示单体为丙烯酰胺。
根据本发明,式(B)中,R 3、R 4、R 5、R 6、X和M的优选取代基与本发明第一方面式(2)中对应的R 3、R 4、R 5、R 6、X和M相同,并且在本发明一个特别优选的实施方式中,式(B)中的R 3和R 4均为氢,R 5和R 6均为甲基,X为亚甲基,M为氢。也即,式(B)所示单体为2-丙烯酰胺基-2-甲基丙磺酸。
根据本发明,式(C)中,R 7、R 8、Y以及A 1、A 2和A 3的优选取代基与本发明第一方面式(3)中对应的R 7、R 8、Y以及A 1、A 2和A 3相同,并且在本发明一个特别优选的实施方式中,式(C)中的,R 7和R 8均为氢,Y为
Figure PCTCN2022106839-appb-000015
A 1和A 2均为亚甲基,A 3为键,也即,式(C)所示单体为2-丙烯酰氧基-1,2,3-三羧基丙烷。
本发明中,式(A)所示单体、式(B)所示单体和式(C)所示单体的摩尔比可以在较大范围内变动,例如可以为10-80:10-60:1;优选为30-50:20-40:1。通过将上述三种单体的摩尔比限定在上述范围,能够进一步提高制备得到的聚合物作为增粘剂应用于无固相钻井液时的抗温性能和抗钙性能。
另外,本发明中,所述增粘剂的制备方法还包括:使式(D)所示单体和/或式(E)所示单体与式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中一起发生聚合反应。
Figure PCTCN2022106839-appb-000016
根据本发明,式(D)中,R 9、R 10、R 11和R 12的优选取代基与本发明第一方面式 (4)中对应的R 9、R 10、R 11和R 12相同,并且在本发明一个特别优选的实施方式中,式(D)中的R 9和R 10均为氢,R 11和R 12均为甲基,也即,式(D)所示单体为N,N-二甲基丙烯酰胺。
本发明的发明人发现,通过式(A)所示单体、式(B)所示单体和式(C)所示单体的基础上引入式(D)所示的单体,能够进一步提高聚合物的疏水缔合性能,可以与式(A)所示单体、式(B)所示单体和式(C)所示单体相互协同作用,能够进一步提高由此制备得到的增粘剂的抗温抗钙性能。
此外,式(D)所示单体的用量可以根据式(A)所示单体的用量来进行选择,并且可以在较大范围内变动。例如,式(A)所示单体和式(D)所示单体的摩尔比可以为10-100:1,优选为40-80:1。通过将式(D)所示单体的含量限定在上述范围,可以进一步提高所述增粘剂的抗温抗钙性能。
根据本发明,式(E)中,R 13、R 14、R 15、R 16和Z的优选取代基与本发明第一方面式(5)中对应的R 13、R 14、R 15、R 16和Z相同,并且在本发明一个特别优选的实施方式中,式(E)中的R 13为氢,R 14、R 15和R 16均为甲基,Z为1,2-亚乙基,也即,式(E)所示单体为甲基丙烯酸二甲氨基乙酯。
本发明的发明人发现,通过在式(A)所示单体、式(B)所示单体、式(C)所示单体以及可选的式(D)所示单体的基础上引入式(E)所示单体,能够与式(A)所示单体、式(B)所示单体和式(C)所示单体相互协同作用,从而进一步提高增粘剂的分子量,由此能够进一步提高所述增粘剂的粘度。并且通过上述各单体之间的相互协同作用,能够使得由此制备得到的增粘剂应用于无固相钻井液时能够进一步提高抗温和抗钙性能。
此外,式(E)所示单体的用量可以根据式(A)所示单体的用量来进行选择,并且可以在较大范围内变动。例如,式(A)所示单体和式(E)所示单体的摩尔比可以为10-100:1,优选为30-80:1。通过将式(E)所示单体的含量限定在上述范围,可以进一步提高制备得到的聚合物的抗温抗钙性能。
通过使式(D)所示单体或式(E)所示单体与式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中一起发生聚合反应,尤其是通过使式(D)所示单体和式(E)所示单体与式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中一起发生聚合反应,能够进一步提高制备得到的增粘剂的抗温抗钙性能,使得所得增粘剂在高温高钙环境下仍然能够保持优异的粘度。
另外,本发明中,所述引发剂可以为本领域常见的能够引发所述单体发生聚合反应的各种引发剂,例如,所述引发剂可以选自偶氮类引发剂和氧化还原类引发剂中的至少一种。优选地,所述引发剂为偶氮类引发剂和氧化还原类引发剂的混合物。
本发明中,所述偶氮类引发剂没有特别的限定,例如可以为偶氮二异丁腈、偶氮二 咪唑啉基丙烷二盐酸盐、2,2’-偶氮(2-脒基丙烷)二盐酸盐、4,4’-偶氮双(4-氰基戊酸)和2,2’-偶氮二异丁基脒盐酸盐中的至少一种,优选为2,2’-偶氮二异丁基脒盐酸盐、2,2’-偶氮(2-脒基丙烷)二盐酸盐和偶氮二咪唑啉基丙烷二盐酸盐中的至少一种。
本发明中,所述氧化还原类引发剂没有特别地限定,包括氧化剂和还原剂。其中,所述氧化剂例如可以为过硫酸铵、过硫酸钾、过硫酸钠和过氧化氢中的至少一种,优选为过硫酸铵和/或过硫酸钾。
另外,本发明中,所述还原剂可以选自无机还原剂和有机还原剂中的至少一种。
其中,所述无机还原剂例如可以为亚硫酸氢钠、亚硫酸钠、硫酸亚铁、硫代硫酸钠和尿素中的至少一种,优选为亚硫酸氢钠和/或亚硫酸钠。
其中,所述有机还原剂例如可以为N,N-二甲基乙醇胺、N,N-二甲基丙醇胺、N,N-二甲基哌嗪、N,N’-二甲基哌嗪、四甲基脲素、N,N-二甲基脲素、N,N,N’,N’-四甲基乙二胺、N,N’-二甲基乙二胺、N,N’-二甲基-1,3-丙二胺、3-甲氨基丙胺和N,N-二甲基乙二胺中的至少一种,优选为N,N’-二甲基-1,3-丙二胺或N,N,N’,N’-四甲基乙二胺,更优选为N,N,N’,N’-四甲基乙二胺。
本发明的发明人在研究中发现,当所述还原剂采用无机还原剂和有机还原剂的混合物时,不仅能够最大限度地在保证聚合物高分子量的前提下使得单体完全转化,并且能够进一步提高聚合得到的增粘剂的抗温抗钙性能。因此,本发明中,优选地,所述还原剂为无机还原剂和有机还原剂的混合物。
此外,本发明中,所述引发剂的用量没有特别的限定,只要能够引发所述聚合反应即可,可以根据参与聚合反应的单体的量来决定。例如,以聚合单体总重量(式(A)所示单体、式(B)所示单体、式(C)所示单体以及任选的式(D)所示单体和任选的式(E)所示单体的总量)为100重量份计,所述引发剂的总用量可以为0.1-1重量份,优选为0.3-0.6重量份。通过将所述引发剂的用量限定在上述范围,不仅可以保证聚合反应更加顺利地进行,并且可以调控聚合反应,从而进一步确保制备得到的增粘剂具备良好的抗温抗钙性能。
本发明中,当所述引发剂为偶氮类引发剂和氧化还原类引发剂的混合物时,所述氧化还原类引发剂的用量可以为引发剂总用量的30-90重量%,优选为60-80重量%,余量为所述偶氮类引发剂。
本发明中,在所述氧化还原类引发剂中,所述还原剂的用量可以为氧化剂和还原剂总用量的40-80重量%,优选为50-70重量%,余量为所述氧化剂。
此外,本发明中,当所述还原剂为所述无机还原剂和有机还原剂的混合物时,所述有机还原剂的用量可以为还原剂总用量的30-90重量%,优选为60-80重量%,余量为无机还原剂。由此,不仅可以进一步促进聚合反应的顺利进行,并且可以进一步提高制备得到的增粘剂的抗温抗钙性能。
另外,根据本发明,所述溶剂可以为本领域进行聚合反应的常规溶剂,没有特别的限定。例如可以为水,优选为去离子水。
此外,所述溶剂的用量没有特别的限定,可以根据所述聚合单体的总重量(式(A)所示单体、式(B)所示单体、式(C)所示单体以及任选的式(D)来决定,例如,所述溶剂的用量可以为聚合单体总重量的2-6倍,优选为3-5倍。通过将所述溶剂的用量控制在上述范围,不仅可以保证聚合反应更加顺利地进行,并且可以确保制备得到的增粘剂具备良好的抗温抗钙性能。
另外,本发明中,可以将所述单体、引发剂和溶剂等同时加入反应装置中并搅拌混合均匀;也可以首先将所述单体与所述溶剂混合,再加入所述引发剂引发反应;还可以首先将所述引发剂与所述溶剂混合,再向其中加入所述单体。
本发明中,优选地,首先将所述单体与所述溶剂混合,再加入所述引发剂引发反应。
根据本发明的第三方面,所述聚合反应的条件没有特别的限制,只要可以使得所述单体发生聚合即可。优选地,所述聚合反应的条件包括:温度为-10℃至15℃,优选为-10℃至0℃,更优选为-10℃至-5℃;时间为1-20小时,优选为5-10小时,更优选为8-10小时。由此可以进一步保证聚合反应快速且完全地进行。
此外,本发明中,所述聚合反应可以在pH为4-12的条件下进行,优选pH为5-10,更优选pH为6-9。
另外,所述聚合反应优选在惰性气体的存在下进行,所述惰性气体例如可以为氮气、氩气和氦气等,没有特别的限定。
本发明中,所述增粘剂的制备方法进一步包括:聚合反应结束后,将聚合反应所得产物进行造粒,接着与无机碱混捏后进行水解,得到水解产物,再将所得水解产物进行造粒、干燥和粉碎。
本发明中,对所述无机碱没有特别的限定,例如可以氢氧化钠、氢氧化钾和碳酸钠中的一种或多种,优选为氢氧化钠和/或氢氧化钾。
此外,本发明中,所述无机碱的用量没有特别的限定,例如,以聚合单体总重量(式(A)所示单体、式(B)所示单体、式(C)所示单体以及任选的式(D)所示单体和任选的式(E)所示单体的总量)为100重量份计,所述无机碱的用量可以为5-30重量份,优选为20-30重量份。
此外,本发明中,对所述水解的温度和时间等条件没有特别的限定,例如可以为40-100℃,优选为60-90℃,更优选为80-85℃;所述水解的时间例如可以为0.5-6h,优选为1-4h,更优选为2-3h。
本发明中,为了得到颗粒均匀的所述增粘剂,进一步地,所述制备方法还包括将粉碎后的产物进行筛分。
本发明中,所述造粒、干燥、粉碎和筛分等操作的方法均无特殊限定,可以采用本 领域常规或已知的方法进行,此处不再赘述。
根据本发明的第三方面所述方法制备得到的聚合物的红外谱图中,在1653cm -1附近未发现存在C=C伸缩振动峰,且在3017cm -1附近未发现存在双键的C-H伸缩振动峰,由此可以表明上述聚合反应进行充分,不存在未反应的残留单体。
另外,本发明第三方面制备得到的增粘剂具有本发明第一方面所述聚合物和本发明第二方面所述增粘剂的性能,此处不再赘述。
本发明第四方面提供一种钻井液,所述钻井液含有本发明第一方面所述聚合物或本发明第二方面所述增粘剂。并且优选地,所述钻井液为无固相钻井液,即所述钻井液中不含所述粘土和所述加重剂。
根据本发明第四方面,所述钻井液中,所述聚合物或所述增粘剂的含量可以为0.1-3重量%,优选为0.5-1.5重量%,由此,可以进一步提高所述钻井液的悬浮和携带岩屑性能。
此外,本发明所述钻井液的密度可以为1.01-2.30g/cm 3,优选为1.10-1.80g/cm 3
为了更好地说明本发明,下面结合实施例和对比例来进一步说明本发明的作用和效果,但本发明的范围不只局限于这些实施例。
以下实施例和对比例中,如无特别说明,所用材料均为常规市售品。
以下实施例和对比例中,粘均分子量根据GB12005.10-92中规定的方法测定,即,采用公式M=802[η] 1.25来计算聚合物的粘均分子量,其中,[η]为特性粘数,其按照GB12005.1-89所述方法测得。
表观粘度按照GB/T 16783.1中规定的方法测定。
以下实施例中使用的2-丙烯酰氧基-1,2,3-三羧基丙烷按照下述方法制备得到:
1)在单口烧瓶中加入19.2g的柠檬酸和80mL的N,N'-二甲基甲酰胺(DMF),之后搅拌至柠檬酸完全溶解;
2)用恒压滴液漏斗缓慢滴加20mL丙烯酰氯的DMF溶液(其中丙烯酰氯的含量为0.45g/mL),反应12h后,减压蒸馏除去DMF,得到产物,通过核磁共振分析可知所得产物即为2-丙烯酰氧基-1,2,3-三羧基丙烷。
实施例1
1)在配料釜中加入2840kg(40kmol)丙烯酰胺、6210kg(30kmol)2-丙烯酰胺基-2-甲基丙磺酸、246kg(1kmol)2-丙烯酰氧基-1,2,3-三羧基丙烷、66kg(0.67kmol)N,N-二甲基丙烯酰胺、125.6kg(0.8kmol)甲基丙烯酸二甲氨基乙酯以及重量为上述单体总重量4倍的去离子水,在搅拌状态下,用冷冻盐水控制溶液温度为-7℃,加入氢氧化钠 调节pH至7,得到混合单体溶液;
2)将步骤1)所得混合单体溶液泵入聚合釜中,通高纯氮气除氧0.5h后,依次加入14.12kg的N,N,N’,N’-四甲基乙二胺、6.04kg亚硫酸氢钠、13.44kg过硫酸铵和14.4kg的2,2’-偶氮(2-脒基丙烷)二盐酸盐,在-7℃下静置聚合反应10h,得到聚合物凝胶;
3)打开反应釜底球阀,用0.3MPa压缩空气将步骤2)得到的聚合物凝胶压出,通过造粒机造粒成4-6毫米的胶粒,之后取1500kg胶粒与400kg氢氧化钠粒颗粒捏合接触,在温度85℃下水解2h,经二次造粒后,在75℃热风条件下干燥2h后粉碎筛分至20-80目,得到聚合物A1。
聚合物A1的特性粘数和粘均分子量如表1所示。
聚合物A1的红外谱图如图1所示,通过图1可知,聚合物A1在1403cm -1和1573cm -1附近存在COO-共轭体系伸缩振动峰,在614cm -1和1051cm -1附近存在S=O特征振动峰,且在1192cm -1附近存在叔胺C-N的特征振动峰,由此可以说明单体2-丙烯酰胺基-2-甲基丙磺酸、2-丙烯酰氧基-1,2,3-三羧基丙烷和甲基丙烯酸二甲氨基乙酯成功聚合。
此外,聚合物A1的红外谱图中,在1653cm -1附近未发现存在C=C伸缩振动峰,且在3017cm -1附近未发现存在双键的C-H伸缩振动峰。由此可以说明聚合反应充分,不存在未反应的残留单体。
实施例2
1)在配料釜中加入3550kg(50kmol)丙烯酰胺、4140kg(20kmol)2-丙烯酰胺基-2-甲基丙磺酸、246kg(1kmol)2-丙烯酰氧基-1,2,3-三羧基丙烷、61.88kg(0.625kmol)N,N-二甲基丙烯酰胺、98.12kg(0.625kmol)甲基丙烯酸二甲氨基乙酯以及重量为上述单体总重量3倍的去离子水,在搅拌状态下,用冷冻盐水控制溶液温度为-5℃,加入氢氧化钠调节pH至8,得到混合单体溶液;
2)将步骤1)所得混合单体溶液泵入聚合釜中,通高纯氮气除氧0.5h后,依次加入12.2kg的N,N,N’,N’-四甲基乙二胺、8.2kg亚硫酸氢钠、8.7kg过硫酸铵和19.4kg的2,2’-偶氮(2-脒基丙烷)二盐酸盐,在-5℃下静置聚合反应9h,得到聚合物凝胶;
3)打开反应釜底球阀,用0.3MPa压缩空气将步骤2)得到的聚合物凝胶压出,通过造粒机造粒成4-6毫米的胶粒,之后取1500kg胶粒与400kg氢氧化钠颗粒捏合接触,在温度85℃下水解2h,经二次造粒后,在75℃热风条件下干燥2h后粉碎筛分至20-80目,得到聚合物A2。
聚合物A2的特性粘数和粘均分子量如表1所示。
聚合物A2的红外谱图与聚合物A1相似。
实施例3
1)在配料釜中加入2130kg(30kmol)丙烯酰胺、8280kg(40kmol)2-丙烯酰胺基-2-甲基丙磺酸、246kg(1kmol)2-丙烯酰氧基-1,2,3-三羧基丙烷、74.25kg(0.75kmol)N,N-二甲基丙烯酰胺、157kg(1kmol)甲基丙烯酸二甲氨基乙酯以及重量为上述单体总重量5倍的去离子水,在搅拌状态下,用冷冻盐水控制溶液温度为-10℃,加入氢氧化钠调节pH至9,得到混合单体溶液;
2)将步骤1)所得混合单体溶液泵入聚合釜中,通高纯氮气除氧0.5h后,依次加入10.4kg的N,N,N’,N’-四甲基乙二胺、2.6kg亚硫酸氢钠、13kg过硫酸铵和6.5kg的2,2’-偶氮(2-脒基丙烷)二盐酸盐,在-10℃下静置聚合反应8h,得到聚合物凝胶;
3)打开反应釜底球阀,用0.3MPa压缩空气将步骤2)得到的聚合物凝胶压出,通过造粒机造粒成4-6毫米的胶粒,之后取1500kg胶粒与400kg氢氧化钠粒碱捏合接触,在温度85℃下水解2h,经二次造粒后,在75℃热风条件下干燥2h后粉碎筛分至20-80目,得到聚合物A3。
聚合物A3的特性粘数和粘均分子量如表1所示。
聚合物A3的红外谱图与聚合物A1相似。
实施例4
按照与实施例1相同的方法进行,不同的是,
步骤1)中,在配料釜中加入5680kg(80kmol)丙烯酰胺、2070kg(10kmol)2-丙烯酰胺基-2-甲基丙磺酸、246kg(1kmol)2-丙烯酰氧基-1,2,3-三羧基丙烷、79.2kg(0.8kmol)N,N-二甲基丙烯酰胺、125.6kg(0.8kmol)甲基丙烯酸二甲氨基乙酯以及重量为上述单体总重量4倍的去离子水;
步骤2)中,依次加入12kg的N,N,N’,N’-四甲基乙二胺、5.2kg亚硫酸氢钠、11.5kg过硫酸铵和12.3kg的2,2’-偶氮(2-脒基丙烷)二盐酸盐。
得到聚合物A4。
聚合物A4的特性粘数和粘均分子量如表1所示。
聚合物A4的红外谱图与聚合物A1相似。
实施例5
按照实施例1所述方法进行,不同的是,步骤1)中,
不加入甲基丙烯酸二甲氨基乙酯,得到聚合物A5。
聚合物A5的特性粘数和粘均分子量如表1所示。
在聚合物A5的红外谱图中,在1403cm -1和1573cm -1附近存在COO-共轭体系伸缩振动峰,在614cm -1和1051cm -1附近存在S=O特征振动峰,由此可以说明单体2-丙烯 酰胺基-2-甲基丙磺酸和2-丙烯酰氧基-1,2,3-三羧基丙烷成功聚合。
此外,聚合物A5的红外谱图中,在1653cm -1附近未发现存在C=C伸缩振动峰,且在3017cm -1附近未发现存在双键的C-H伸缩振动峰。由此可以说明聚合反应充分,不存在未反应的残留单体。
实施例6
按照实施例1所述方法进行,不同的是,步骤1)中,
不加入N,N-二甲基丙烯酰胺,得到聚合物A6。
聚合物A6的特性粘数和粘均分子量如表1所示。
在聚合物A6的红外谱图中,在1403cm -1和1573cm -1附近存在COO-共轭体系伸缩振动峰,在614cm -1和1051cm -1附近存在S=O特征振动峰,并且在1192cm -1附近存在叔胺C-N的特征振动峰,由此可以说明单体2-丙烯酰胺基-2-甲基丙磺酸、2-丙烯酰氧基-1,2,3-三羧基丙烷和甲基丙烯酸二甲氨基乙酯成功聚合。
此外,聚合物A6的红外谱图中,在1653cm -1附近未发现存在C=C伸缩振动峰,且在3017cm -1附近未发现存在双键的C-H伸缩振动峰。由此可以说明聚合反应充分,不存在未反应的残留单体。
实施例7
按照实施例1所述方法进行,不同的是,步骤1)中,
不加入N,N-二甲基丙烯酰胺和甲基丙烯酸二甲氨基乙酯,得到聚合物A7。
聚合物A7的特性粘数和粘均分子量如表1所示。
聚合物A7的红外谱图中,在1403cm -1和1573cm -1附近存在COO-共轭体系伸缩振动峰,在614cm -1和1051cm -1附近存在S=O特征振动峰,由此可以说明单体2-丙烯酰胺基-2-甲基丙磺酸和2-丙烯酰氧基-1,2,3-三羧基丙烷成功聚合。
此外,在聚合物A7的红外谱图中,在1653cm -1附近未发现存在C=C伸缩振动峰,且在3017cm -1附近未发现存在双键的C-H伸缩振动峰。由此可以说明聚合反应充分,不存在未反应的残留单体。
实施例8
按照实施例1所述方法进行,不同的是,步骤2)中,
将N,N,N’,N’-四甲基乙二胺替换为相同重量的亚硫酸氢钠,得到聚合物A8。
聚合物A8的特性粘数和粘均分子量如表1所示。
聚合物A8的红外谱图与A1相似。
实施例9
按照实施例1所述方法进行,不同的是,步骤2)中,
将亚硫酸氢钠替换为相同重量的N,N,N’,N’-四甲基乙二胺,得到聚合物A9。
聚合物A9的特性粘数和粘均分子量如表1所示。
聚合物A9的红外谱图与A1相似。
对比例1
按照实施例1所述方法进行,不同的是,步骤1)中,
不加入2-丙烯酰氧基-1,2,3-三羧基丙烷,得到聚合物D1。
聚合物D1的特性粘数和粘均分子量如表1所示。
对比例2
按照实施例1所述方法进行,不同的是,步骤1)中,
2-丙烯酰氧基-1,2,3-三羧基丙烷由相同摩尔羧基量的甲基丙烯酸代替,得到聚合物D2。
聚合物D2的特性粘数和粘均分子量如表1所示。
对比例3
采用雪佛龙菲利普斯化工有限公司(Chevron Phillips Chemical)生产的聚合物增粘剂
Figure PCTCN2022106839-appb-000017
150作为聚合物D3。
聚合物D3的特性粘数和粘均分子量如表1所示。
对比例4
按照实施例1所述方法进行,不同的是,步骤1)中,
将所述5种单体替换为与上述5种单体总重量相同的2-丙烯酰氧基-1,2,3-三羧基丙烷,得到聚合物D4。
聚合物D4的特性粘数和粘均分子量如表1所示。
将聚合物D4与聚合物D1按照重量比1:1混合,得到聚合物D5。
表1:共聚物的特性粘数和粘均分子量结果
聚合物 特性粘数(mL/g) 粘均分子量(10 4)
A1 1679 862
A2 1761 915
A3 1606 816
A4 2406 1352
A5 1696 873
A6 1710 882
A7 1741 902
A8 1552 781
A9 1524 764
D1 1807 945
D2 1687 867
D3 1512 756
D4 482 181
测试例1
表观粘度测试
1)向350mL去离子水中加入130.9g甲酸钾,得到甲酸钾水溶液;
2)向步骤1)所得甲酸钾水溶液中加入1.75g无水碳酸钠和3.5g碳酸氢钠,搅拌均匀后在25℃±3℃的温度下密闭养护24h,之后向其中加入无水氯化钙并搅拌溶解,使得Ca 2+浓度为15000mg/L,得到无固相钻井液基浆;
3)取350g步骤2)所得无固相钻井液基浆,向其中边搅拌边缓慢加入2.45g聚合物样品,再用电动搅拌器搅拌溶解30min后,测定所得钻井液的密度为1.15g/cm 3,接着在高温滚子炉中180℃恒温滚动16h,冷却后搅拌5min,测定其对应的表观粘度AV,其结果如表2。
表2:表观粘度测定结果
聚合物 AV/mPa·s
A1 38
A2 37
A3 36
A4 28
A5 32
A6 31
A7 29
A8 33
A9 32
D1 21
D2 23
D3 17
D4 4
D5 12
通过表2的结果可以看出,在含钙无固相钻井液中加入本发明的聚合物作为增粘 剂,并在180℃下高温老化16h后的表观粘度可高达38mPa·s,远远优于目前国外同类产品
Figure PCTCN2022106839-appb-000018
150(对比例3)的表观粘度,表明本发明所述聚合物具有较好的增粘性、抗温性能以及抗钙性能,能够有效改善无固相钻井液在高温、高钙环境下的流变性。
通过上述聚合物A1-A3和A4的测试结果可以看出,通过将各个单体的用量控制在本发明所述优选范围内,可以进一步提高所得聚合物的抗温抗钙性能。
通过上述聚合物A1和A5-A7的测试结果可以看出,通过在式(A)所示单体、式(B)所示单体和式(C)所示单体的基础上进一步加入式(D)所示单体和/或式(E)所示单体,可以进一步提高所得聚合物的抗温抗钙性能。
此外,通过上述聚合物A1、A8和A9的测试结果可以看出,采用同时含有无机还原剂和有机还原剂的引发剂制备所述聚合物时,能够进一步提高制备得到的聚合物的抗温抗钙性能。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (17)

  1. 一种聚合物,其特征在于,该聚合物含有式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元,
    Figure PCTCN2022106839-appb-100001
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C10的直链或支链烷基;
    X为C1-C10的直链或支链亚烷基;
    Y为
    Figure PCTCN2022106839-appb-100002
    或C1-C10的直链或支链亚烷基;
    M为氢或碱金属;
    A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基。
  2. 根据权利要求1所述的聚合物,其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C4的直链或支链烷基,优选为氢、甲基或乙基;
    优选地,R 1、R 2、R 3、R 4、R 7和R 8各自独立地为氢;
    优选地,R 5和R 6各自独立地为甲基;
    优选地,X为C1-3的直链或支链亚烷基,更优选为亚甲基或1,2-亚乙基,进一步优选为亚甲基;
    优选地,Y为
    Figure PCTCN2022106839-appb-100003
    或C1-3的直链或支链亚烷基,更优选为
    Figure PCTCN2022106839-appb-100004
    亚甲基或1,2-亚乙基,进一步优选为
    Figure PCTCN2022106839-appb-100005
    优选地,M为氢或钠,更优选为氢;
    优选地,A 1、A 2和A 3各自独立地为键、亚甲基或1,2-亚乙基,更优选为键或亚甲基,进一步优选地,A 1和A 2均为亚甲基,A 3为键。
  3. 根据权利要求1或2所述的聚合物,其中,式(1)所示结构单元、式(2)所示结构单元和式(3)所示结构单元的摩尔比为10-80:10-60:1;优选为30-50:20-40:1。
  4. 根据权利要求1-3中任意一项所述的聚合物,其中,所述聚合物还含有式(4)所示结构单元和/或式(5)所示结构单元,
    Figure PCTCN2022106839-appb-100006
    其中,R 9、R 10、R 13和R 14各自独立地为氢或C1-C10的直链或支链烷基,优选为氢或C1-C4的直链或支链烷基,更优选为氢、甲基或乙基;
    R 11和R 12各自独立地为C1-C6的直链或支链烷基,优选为C1-C4的直链或支链烷基,更优选为甲基或乙基;
    R 15和R 16各自独立地为氢或C1-C6的直链或支链烷基,优选为氢或C1-C4的直链或支链烷基,更优选为氢、甲基或乙基;
    优选地,R 9、R 10和R 13各自独立地为氢;
    优选地,R 11、R 12、R 14、R 15和R 16各自独立地为甲基;
    Z为C1-C10的直链或支链亚烷基,优选为C1-C4的直链或支链亚烷基,更优选为亚甲基或1,2-亚乙基,进一步优选为1,2-亚乙基;
    优选地,式(1)所示结构单元和式(4)所示结构单元摩尔比为10-100:1,更优选为40-80:1;
    优选地,式(1)所示结构单元和式(5)所示结构单元的摩尔比为10-100:1,更优选为30-80:1。
  5. 根据权利要求1-4中任意一项所述的聚合物,其中,所述聚合物的特性粘数为1200-2600mL/g,优选为1500-1900mL/g;
    优选地,所述聚合物的粘均分子量为600万-1500万,更优选为750万-1000万。
  6. 根据权利要求1-5中任意一项所述的聚合物,其中,将所述聚合物以0.7重量%的添加量加入Ca 2+浓度为15000mg/L的无固相钻井液基浆中,并在180℃老化16h后的表观粘度为28mPa·s以上,优选为36mPa·s以上。
  7. 根据权利要求1-6中任意一项所述的聚合物,其中,所述聚合物的红外谱图在 1403cm -1和1573cm -1附近存在COO-共轭体系伸缩振动峰,且在614cm -1和1051cm -1附近存在S=O特征振动峰。
  8. 一种增粘剂,该增粘剂含有丙烯酰胺骨架结构,其特征在于,该增粘剂还含有磺酸基团和-C(A 1COOH)(A 2COOH)(A 3COOH),其中A 1、A 2和A 3各自独立地为键或C1-C3的亚烷基,将该增粘剂以0.7重量%的添加量加入Ca 2+浓度为15000mg/L的无固相钻井液基浆中,并在180℃老化16h后的表观粘度为28mPa·s以上,优选为36mPa·s以上。
  9. 根据权利要求8所述的增粘剂,其中,磺酸基团和-COOH的摩尔比为3-20:1,优选为6-14:1,
    优选地,-COOH的含量不低于2mol%,更优选为不低于3.2mol%。
  10. 一种增粘剂的制备方法,其特征在于,所述方法包括:在聚合反应条件下,在引发剂存在下,使式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中发生聚合反应,
    Figure PCTCN2022106839-appb-100007
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C10的直链或支链烷基;
    X为C1-C10的直链或支链亚烷基;
    Y为
    Figure PCTCN2022106839-appb-100008
    或C1-C10的直链或支链亚烷基;
    M为氢或碱金属;
    A 1、A 2和A 3各自独立地为键或C1-C3的直链或支链亚烷基。
  11. 根据权利要求10所述的方法,其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7和R 8各自独立地为氢或C1-C4的直链或支链烷基,优选为氢、甲基或乙基;
    优选地,R 1、R 2、R 3、R 4、R 7和R 8各自独立地为氢;
    优选地,R 5和R 6各自独立地为甲基;
    优选地,X为C1-3的直链或支链亚烷基,更优选为亚甲基或1,2-亚乙基,进一步优选为亚甲基;
    优选地,Y为
    Figure PCTCN2022106839-appb-100009
    或C1-3的直链或支链亚烷基,更优选为
    Figure PCTCN2022106839-appb-100010
    亚甲基或1,2-亚乙基,进一步优选为
    Figure PCTCN2022106839-appb-100011
    优选地,M为氢或钠,更优选为氢;
    优选地,A 1、A 2和A 3各自独立地为键、亚甲基或1,2-亚乙基,更优选为键或亚甲基,进一步优选地,A 1和A 2均为亚甲基,A 3为键。
  12. 根据权利要求10或11所述的方法,其中,式(A)所示单体、式(B)所示单体和式(C)所示单体的摩尔比为10-80:10-60:1;优选为30-50:20-40:1。
  13. 根据权利要求10-12中任意一项所述的方法,其中,所述方法还包括:使式(D)所示单体和/或式(E)所示单体与式(A)所示单体、式(B)所示单体和式(C)所示单体在溶剂中发生聚合反应,
    Figure PCTCN2022106839-appb-100012
    其中,R 9、R 10、R 13和R 14各自独立地为氢或C1-C10的直链或支链烷基,优选为氢或C1-C4的直链或支链烷基,更优选为氢、甲基或乙基;
    R 11和R 12各自独立地为C1-C6的直链或支链烷基,优选为C1-C4的直链或支链烷基,更优选为甲基或乙基;
    R 15和R 16各自独立地为氢或C1-C6的直链或支链烷基,优选为氢或C1-C4的直链或支链烷基,更优选为氢、甲基或乙基;
    优选地,R 9、R 10和R 13各自独立地为氢;
    优选地,R 11、R 12、R 14、R 15和R 16各自独立地为甲基;
    Z为C1-C10的直链或支链亚烷基,优选为C1-C4的直链或支链亚烷基,更优选为亚甲基或1,2-亚乙基,进一步优选为1,2-亚乙基;
    优选地,式(A)所示单体和式(D)所示单体的摩尔比为10-100:1,更优选为40-80:1;
    优选地,式(A)所示单体和式(E)所示单体的摩尔比为10-100:1,更优选为30-80:1。
  14. 根据权利要求10-13中任意一项所述的方法,其中,所述引发剂含有氧化还原体类引发剂,
    优选地,所述氧化还原体类引发剂中的还原剂为无机还原剂和有机还原剂的混合物;
    优选地,所述无机还原剂和有机还原剂的混合物中,所述有机还原剂的用量为30-90重量%,更优选为60-80重量%。
  15. 根据权利要求10-14中任意一项所述的方法,其中,所述聚合反应的条件包括:温度为-10℃至15℃,优选为-10℃至0℃;时间为1-20小时,优选为5-10小时;pH为4-12,优选为5-10。
  16. 一种钻井液,其特征在于,所述钻井液含有权利要求1-7中任意一项所述的聚合物或者权利要求8或9所述的增粘剂;
    优选地,所述钻井液为无固相钻井液。
  17. 根据权利要求16所述的钻井液,其中,所述钻井液中所述聚合物或所述增粘剂的含量为0.1-3重量%,优选为0.5-1.5重量%;
    优选地,所述钻井液的密度为1.01-2.30g/cm 3,优选为1.10-1.80g/cm 3
PCT/CN2022/106839 2021-09-06 2022-07-20 聚合物和增粘剂及其制备方法以及钻井液 WO2023029796A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280059130.5A CN117980358A (zh) 2021-09-06 2022-07-20 聚合物和增粘剂及其制备方法以及钻井液
GBGB2404320.0A GB202404320D0 (en) 2021-09-06 2022-07-20 Polymer, tackifier and preparation method therefor, and drilling fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111038721.8A CN115772243B (zh) 2021-09-06 2021-09-06 一种无固相钻井液用增粘剂及其制备方法与应用
CN202111038721.8 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029796A1 true WO2023029796A1 (zh) 2023-03-09

Family

ID=85387368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106839 WO2023029796A1 (zh) 2021-09-06 2022-07-20 聚合物和增粘剂及其制备方法以及钻井液

Country Status (3)

Country Link
CN (2) CN115772243B (zh)
GB (1) GB202404320D0 (zh)
WO (1) WO2023029796A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116693408A (zh) * 2023-08-07 2023-09-05 中海油田服务股份有限公司 环氧大豆油改性的增粘提切剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674574A (en) * 1986-09-26 1987-06-23 Diamond Shamrock Chemicals Company Fluid loss agents for oil well cementing composition
US4741843A (en) * 1986-09-26 1988-05-03 Diamond Shamrock Chemical Fluid loss control additives and drilling fluids containing same
CN1840555A (zh) * 2005-03-28 2006-10-04 第一工业制药株式会社 水溶性高分子聚合物、污泥用凝聚脱水剂和污泥凝聚脱水法
US20060247136A1 (en) * 2005-05-02 2006-11-02 Halliburton Energy Services, Inc. Viscosified treatment fluids comprising polycarboxylic acid gelling agents and associated methods
US20060243446A1 (en) * 2005-05-02 2006-11-02 Halliburton Energy Services, Inc. Viscosified treatment fluids comprising polycarboxylic acid gelling agents and associated methods
CN106589232A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 疏水缔合丙烯酰胺共聚物及其制备方法
CN106866878A (zh) * 2015-12-14 2017-06-20 中国石油化工股份有限公司 适用于高温高盐苛刻油藏的聚合物型调驱剂及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517333A (en) * 1983-12-12 1985-05-14 Exxon Research And Engineering Co. Novel viscosifiers for aqueous fluids based on polymer complexes
US4889887A (en) * 1986-05-19 1989-12-26 Union Carbide Chemicals And Plastics Company Inc. Gelable acid viscosifiers
CN1179990C (zh) * 2002-02-25 2004-12-15 中国石油天然气股份有限公司勘探开发研究院 两性离子聚合物及制备方法和用途
CN103113518B (zh) * 2013-02-27 2016-06-01 中国科学院长春应用化学研究所 钻井液增粘剂及其制备方法
GB2552091B (en) * 2015-03-31 2021-09-22 Halliburton Energy Services Inc Polymeric viscosifiers for use in water-based drilling fluids
CN107235862B (zh) * 2016-03-28 2018-12-28 中国石油化工股份有限公司 疏水单体、高分子聚合物及其制备方法和应用
CN106243266B (zh) * 2016-07-20 2018-10-19 天津中油渤星工程科技有限公司 一种钻井液用增粘剂及其制备方法、应用
CN108424490B (zh) * 2017-02-14 2020-12-18 中国石油化工股份有限公司 一种丙烯酰胺共聚物及其制备方法和应用
CN108753267B (zh) * 2018-05-25 2020-08-07 成都理工大学 钻井液完井液用抗超高温阴离子型聚合物降滤失剂及其制备方法
CN110938013A (zh) * 2019-12-13 2020-03-31 长江大学 一种立体笼状超支化单体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674574A (en) * 1986-09-26 1987-06-23 Diamond Shamrock Chemicals Company Fluid loss agents for oil well cementing composition
US4741843A (en) * 1986-09-26 1988-05-03 Diamond Shamrock Chemical Fluid loss control additives and drilling fluids containing same
CN1840555A (zh) * 2005-03-28 2006-10-04 第一工业制药株式会社 水溶性高分子聚合物、污泥用凝聚脱水剂和污泥凝聚脱水法
US20060247136A1 (en) * 2005-05-02 2006-11-02 Halliburton Energy Services, Inc. Viscosified treatment fluids comprising polycarboxylic acid gelling agents and associated methods
US20060243446A1 (en) * 2005-05-02 2006-11-02 Halliburton Energy Services, Inc. Viscosified treatment fluids comprising polycarboxylic acid gelling agents and associated methods
CN106589232A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 疏水缔合丙烯酰胺共聚物及其制备方法
CN106866878A (zh) * 2015-12-14 2017-06-20 中国石油化工股份有限公司 适用于高温高盐苛刻油藏的聚合物型调驱剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116693408A (zh) * 2023-08-07 2023-09-05 中海油田服务股份有限公司 环氧大豆油改性的增粘提切剂及其制备方法和应用
CN116693408B (zh) * 2023-08-07 2023-10-24 中海油田服务股份有限公司 环氧大豆油改性的增粘提切剂及其制备方法和应用

Also Published As

Publication number Publication date
CN115772243A (zh) 2023-03-10
GB202404320D0 (en) 2024-05-08
CN117980358A (zh) 2024-05-03
CN115772243B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
AU599615B2 (en) Hydrophobe associative composition containing a polymer of water-soluble monomer and an amphiphilic monomer
WO2023029796A1 (zh) 聚合物和增粘剂及其制备方法以及钻井液
WO2013138156A1 (en) Synthesis and application of high pressure high temperature fluid loss additive and rheology stabilizer
CN106554462B (zh) 包被剂及其制备方法和应用和石油钻井用钻井液
WO2013162902A1 (en) Synergistic combination of a fluid loss additive and rheology modifier
JPH0339119B2 (zh)
CN106496411B (zh) 一种具有多种环结构侧链的疏水缔合聚合物及其制备方法与它的用途
CN108676129B (zh) 一种梳型结构两性离子聚合物降滤失剂及其制备方法
CN115572347A (zh) 一种水基钻井液用抗高温抗高盐增粘提切剂及其制备方法与应用
CN115124667A (zh) 一种用于高温高密度盐水钻井液的降滤失剂的制备方法
CN105377923A (zh) 温度稳定的电解质水凝胶和原油和天然气矿床增产的方法
CN109554170B (zh) 一种抗钙抗高温钻井液降滤失剂及其制备方法
CN104974300B (zh) 一种压裂用降阻剂及其制备方法
CN103570867B (zh) 一种丙烯酰胺系三元共聚物及其制备方法和应用
CN111139039B (zh) 一种磺化酚醛树脂接枝改性聚合物降滤失剂及其制备方法
CN116903792A (zh) 多功能钻井处理剂及制备方法与其应用的泡沫钻井液
CN102453113B (zh) 氧化还原引发剂体系和丙烯酰胺聚合物及其制备方法和应用
CN111704695A (zh) 一种多功能钻井处理剂及其制备和应用
CN111139042B (zh) 一种基于降解的树脂改性聚合物降滤失剂及其制备方法
CN103570864B (zh) 一种丙烯酰胺系三元共聚物及其制备方法和应用
CN106279524B (zh) 一种页岩气压裂用减阻剂的制备方法及压裂用减阻剂
CN102453114A (zh) 氧化还原引发剂体系和丙烯酰胺聚合物及其制备方法和应用
CN105085306B (zh) 一种可聚合单体的制备方法和应用
CN102453115B (zh) 氧化还原引发剂体系和丙烯酰胺聚合物及其制备方法和应用
CN105085305B (zh) 一种可聚合单体的制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280059130.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2024/0201.1

Country of ref document: KZ

NENP Non-entry into the national phase

Ref country code: DE