WO2023029291A1 - 快速泄压保护的刹车控制伺服阀 - Google Patents

快速泄压保护的刹车控制伺服阀 Download PDF

Info

Publication number
WO2023029291A1
WO2023029291A1 PCT/CN2021/138434 CN2021138434W WO2023029291A1 WO 2023029291 A1 WO2023029291 A1 WO 2023029291A1 CN 2021138434 W CN2021138434 W CN 2021138434W WO 2023029291 A1 WO2023029291 A1 WO 2023029291A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
oil
brake
solenoid valve
Prior art date
Application number
PCT/CN2021/138434
Other languages
English (en)
French (fr)
Inventor
金瑶兰
谢作建
丁建军
王思民
方群
Original Assignee
上海衡拓液压控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海衡拓液压控制技术有限公司 filed Critical 上海衡拓液压控制技术有限公司
Publication of WO2023029291A1 publication Critical patent/WO2023029291A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/36Other control devices or valves characterised by definite functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/42Arrangement or adaptation of brakes
    • B64C25/44Actuating mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • F16K31/082Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet using a electromagnet and a permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • F16K31/084Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet the magnet being used only as a holding element to maintain the valve in a specific position, e.g. check valves

Definitions

  • the present application relates to an aircraft brake control servo valve, in particular to a brake control servo valve capable of realizing rapid pressure relief and preventing non-commanded brake pressure output in the brake pressure from causing the aircraft's wheel brakes to lock and then cause a tire blowout.
  • Brake control servo valves are usually used in aircraft automatic anti-skid brake systems. According to the input electrical control signal, they output corresponding high-precision brake control pressure proportionally and quickly to realize the functions of aircraft parking, anti-skid, and braking.
  • the most serious failure mode is non-command brake pressure output, that is, there is still pressure output after the input signal of the brake control servo valve is cut off, and the anti-skid function of the brake system fails. This failure will cause the brakes of the aircraft to lock and cause the tire to blow out, which poses a great threat to the safety of the aircraft.
  • the present application provides a brake control servo valve with a quick pressure release protection function.
  • a brake control servo valve with rapid pressure relief protection is provided, the brake control servo valve is composed of a torque motor, a jet amplifier, a pilot stage and a power stage, and the power stage includes a hydraulic solenoid valve, A slide valve assembly, an electromagnet, and a valve assembly.
  • the hydraulic solenoid valve has an oil inlet J, an oil return port H, a hydraulic solenoid valve pressure output port P, and a load chamber pressure output port S.
  • the hydraulic solenoid valve The pressure output port P of the hydraulic solenoid valve is connected with the pressure output port S of the load chamber, and a check valve is added in the middle, so that when the hydraulic solenoid valve is powered off, the high-pressure oil in the brake chamber will pass through the normal opening of the hydraulic servo valve spool
  • the one-way valve and the brake bypass flow into the oil tank in two ways to improve the controllability of the brake pressure. It is used to effectively prevent the oil from being discharged during the emergency period and improve the anti-lock capability of the aircraft's brakes, so as to avoid tire burst caused by the continuous output of the brake pressure. fetal.
  • the hydraulic solenoid valve when the hydraulic solenoid valve is energized, the high-pressure oil enters the oil supply port of the hydraulic servo valve and the rear side of the check valve of the brake bypass at the same time. At this time, the brake pressure is always lower than the oil supply pressure, and the one-way The valve is always closed; when the hydraulic solenoid valve is powered off, the back side of the one-way valve is connected to the back pressure of the oil return. At this time, the pressure of the brake chamber is always greater than or equal to the back pressure of the oil return, and the high-pressure oil in the brake chamber passes through the one-way valve. into the tank.
  • the hydraulic servo valve also has a motor oil supply port J1, a main valve oil supply port J2, an oil return port H, and a load port S0.
  • the load port S0 is connected to the oil return port.
  • the port H is connected, the oil supply port J2 is closed, and the pressure in the load chamber is equal to the oil return pressure; when the positive control current flows through the torque motor coil, a control torque is generated to deflect the armature assembly clockwise, and the jet tube in the jet amplifier shifts to the left , the pressure difference is formed in the two control chambers of the receiver, and the pressure difference acts on the spool ring area of the hydraulic solenoid valve of the power stage, and the spool moves to the right, so that the oil return window is covered and the oil inlet window is opened; the pressure oil flows from the main valve
  • the oil supply port J2 enters the load port S0 of the output of the load chamber, so that the pressure acts on the feedback end surface of the spool of the power stage until the feedback force and the control force are balanced.
  • the torque motor is composed of a permanent magnet, upper and lower magnet conductors, an armature assembly, a control coil, and a spring tube.
  • the torque motor is fixed on the upper part of the hydraulic servo valve and connected to a jet amplifier for converting electrical signals to It is converted into mechanical motion and drives the action of the jet amplifier.
  • the jet amplifier is a non-throttling hydraulic amplifier, which is composed of a jet tube, a nozzle and a receiver. According to the output rotation angle of the torque motor, the jet tube drives the spraying of the nozzle to the receiver. The position is shifted, causing the recovery pressure in the two receiving holes to be different, so as to realize the conversion and amplification of the control power.
  • the pilot stage is composed of a compression spring, a spool, and a valve body to ensure the linearity and stability of the control; when the jet amplifier has pressure output to control the movement of the spool, the compression spring The resulting spring force is balanced against the control force acting on the control spool; the displacement of said spool is transmitted to the torque motor via the feedback spring assembly to re-stabilize the nozzle in a new position.
  • the spool valve assembly is composed of a valve core, a valve body and a bushing, and is used to amplify the power of the differential pressure signal of the jet amplifier, output the pressure to the load chamber, and feed back the pressure to the
  • the spool realizes the closed-loop control of the power stage to ensure that the output pressure is proportional to the input current.
  • the electromagnet is used to convert an electrical signal into a mechanical motion to drive the valve assembly to act.
  • the valve assembly is the pilot control switch of the hydraulic solenoid valve, which is composed of inner and outer steel ball seats and steel balls.
  • the hydraulic solenoid valve After the hydraulic solenoid valve is powered on, the push rod of the electromagnet pushes the steel ball Pressed onto the sealing ring of the inner steel ball seat, the valve is closed, the main valve controls the oil circuit and the oil return communication; after the hydraulic lock is powered off, the steel ball is punched to the outer steel ball seat under the action of hydraulic pressure On the sealing ring belt, the valve opens, and the main valve controls the oil circuit to connect with the oil inlet.
  • the electromagnet when the anti-skid of the wheel brake system fails, the electromagnet is powered off, the spool of the hydraulic solenoid valve moves to the right, and its oil supply circuit is cut off; when the spool of the hydraulic servo valve is stuck in the stroke On the far right side, block the oil return port H of the hydraulic solenoid valve, so that the oil in the brake cannot be discharged through the oil return port H in the load chamber from the pressure output port S of the load chamber to the load port S0.
  • the oil at the cavity pressure output port S flows out quickly through the check valve, and finally flows out through the oil return port H of the hydraulic solenoid valve.
  • the application can effectively prevent the oil from being discharged during the emergency period, improve the anti-lock capability of aircraft brakes, and avoid tire blowouts caused by continuous output of brake pressure. It is not affected by the pressure output of the hydraulic servo valve, which improves the overall reliability of the brake control servo valve. Integrating the one-way valve into the whole improves the integration of the brake control servo valve.
  • Figure 1 is a schematic structural diagram of the applied brake control servo valve with quick pressure relief protection
  • Hydraulic servo valve 11. Torque motor; 12. Jet amplifier; 13. Pilot stage; 14. Slide valve assembly; 2. Hydraulic solenoid valve; 21. Check valve; 22. Hydraulic solenoid valve core; 23. Valve Components; 24. Electromagnet.
  • a brake control servo valve with rapid pressure relief protection including a torque motor, a jet amplifier, a pilot stage and a power stage.
  • the power stage includes a hydraulic solenoid valve, a slide valve assembly, an electromagnet, and a valve assembly.
  • the hydraulic solenoid valve has an oil inlet J, an oil return port H, a hydraulic solenoid valve pressure output port P and a load chamber pressure output port S.
  • the pressure output port P of the hydraulic solenoid valve is connected with the pressure output port S of the load chamber, and a check valve is arranged in the middle, so that when the hydraulic solenoid valve is powered off, the high-pressure oil in the brake chamber passes through the normal opening of the hydraulic servo valve spool and
  • the one-way valve of the brake bypass flows into the oil tank in two ways to improve the controllability of the brake pressure, which is used to effectively prevent the oil from being discharged during the emergency period, improve the anti-lock braking ability of the aircraft brake, and avoid tire blowout caused by the continuous output of the brake pressure .
  • a brake control servo valve 1 with rapid pressure relief protection mainly includes a torque motor 11 , a jet amplifier 12 , a pilot stage 13 and a power stage.
  • the oil supply port of the torque motor 11 can be represented by J1.
  • the oil supply port of the main valve of the brake control servo valve 1 can be represented by J2.
  • the oil return port of the brake control servo valve 1 can be represented by H.
  • the load port of the brake control servo valve 1 can be represented by S0.
  • the load port S0 communicates with the oil return port H, the oil supply port J2 of the main valve is closed, and the load chamber of the brake control servo valve 1 for liquid flow (including the valve located inside the brake control servo valve 1)
  • a plurality of liquid flow chambers, for example, in which oil flows) has a pressure equal to the oil return pressure.
  • the brake control servo valve 1 may be a hydraulic servo valve 1 .
  • the hydraulic servo valve 1 includes a torque motor 11 , a jet amplifier 12 , a pilot stage 13 , a slide valve assembly 14 and a hydraulic solenoid valve 2 including a hydraulic control valve spool 22 .
  • the electrical control signal can be input into the hydraulic servo valve 1 to control it.
  • the spool valve assembly 14 and hydraulic solenoid valve 2 may collectively be referred to as a power stage.
  • the torque motor 11 is fixed on the upper part of the hydraulic servo valve 1 .
  • the torque motor 1 mainly includes permanent magnets, upper and lower magnet conductors, armature components, control coils, spring tubes and the like.
  • the torque motor 11 is used to convert the input electrical control signal into mechanical motion.
  • the permanent magnet of the torque motor 11 can generate a polarized magnetic field, and the input electrical control signal can generate a control magnetic field through the control coil.
  • the torque of the polarity of the signal causes the moving part of the torque motor 11 to generate mechanical motion to form a displacement.
  • the torque motor 11 has a motor oil supply port J1 for inputting oil. The oil will flow through the torque motor 11 and then into the two receiving holes of the receiver of the jet amplifier 12 (as will be described later).
  • the jet amplifier 12 is a non-throttling hydraulic amplifier.
  • the jet amplifier 12 mainly includes a jet pipe, a nozzle and a receiver including two receiving holes. According to the output rotation angle of the torque motor 11, the jet tube can drive the nozzle to shift the spray position of the nozzle, causing the recovery pressure in the two receiving holes of the receiver to be different, thereby generating a pressure difference signal, and then realizing the conversion and amplification of the control power effect.
  • the pilot stage 13 mainly includes a spring assembly (for example, it may be a compression spring), a valve core, a first valve body and the like.
  • the pilot stage 13 is used to ensure the linearity and stability of the electrical control.
  • the jet booster 12 outputs pressure to control the movement of the spool of the pilot stage 13, the spring assembly is compressed to generate a spring force, which is balanced with the control force on the control spool.
  • the spool can generate a certain displacement, which is fed back to the torque motor 11 through the spring assembly, which can stabilize the nozzle of the jet amplifier 12 at a new position.
  • the slide valve assembly 14 mainly includes a valve core, a second valve body and a bushing.
  • the spool valve assembly 14 is the second stage hydraulic amplifier of the hydraulic servo valve 1 .
  • the spool valve assembly 14 further amplifies the power of the pressure difference signal of the jet amplifier 12, outputs the pressure to the load chamber of the hydraulic servo valve 1, and feeds back the pressure to the hydraulic solenoid valve spool 22 described below to realize power level adjustment.
  • the closed-loop control ensures that the output pressure of the slide valve assembly 14 is proportional to the input current of the hydraulic servo valve 1 .
  • the torque motor 11 will produce an output rotation angle after being energized, which can drive the nozzle of the jet amplifier 12 to make the injection position of the nozzle of the jet amplifier 12 deviate, thereby causing the two receiving holes of the receiver of the jet amplifier 12
  • the recovery pressure is different, forming a pressure difference.
  • This pressure difference can cause a certain displacement of the spool in the pilot stage 13 .
  • the certain displacement can be fed back to the torque motor 11 through the spring assembly, so that the nozzle of the jet tube can be stabilized at a new position again.
  • the spool valve assembly 14 can further amplify the power of the pressure difference signal directed at the jet amplifier 12, output the pressure to the load chamber of the hydraulic servo valve 1, and feed back the pressure to the hydraulic solenoid valve spool 22 described below to realize the power level closed-loop control.
  • the hydraulic solenoid valve 2 includes a check valve 21 , a hydraulic solenoid valve spool 22 , a valve assembly 23 and an electromagnet 24 .
  • the one-way valve 21 is arranged between the pressure output port P of the hydraulic solenoid valve 2 and the pressure output port S channel of the load chamber of the brake control servo valve 1, and plays a role of one-way flow of liquid.
  • the hydraulic solenoid valve 2 also includes an oil inlet J, an oil return port H, a load chamber pressure output port S and a hydraulic solenoid valve pressure output port P.
  • the pressure output port P of the hydraulic solenoid valve communicates with the pressure output port S of the load chamber.
  • the one-way valve 21 is arranged between the pressure output port P of the hydraulic solenoid valve and the pressure output port S of the load chamber.
  • the one-way valve 21 is used for, when the hydraulic solenoid valve 2 is energized, the high-pressure oil enters the main valve oil supply port J2 of the hydraulic servo valve 1 and the rear side of the brake bypass one-way valve at the same time. In this state, the brake pressure is always lower than the oil supply pressure, so the one-way valve 21 is always in a closed state.
  • the hydraulic solenoid valve 2 is powered off, the rear side of the brake bypass check valve is connected to the oil back pressure.
  • the pressure of the brake chamber is always greater than or equal to the oil return back pressure, and the check valve 21 is always in an open state, so the high-pressure oil in the brake chamber will flow into the oil tank through the check valve 21 .
  • the current input to the hydraulic servo valve 1 is zero at this time, the spool of the pilot stage 13 is reset under the action of the spring assembly, and the brake cavity is also communicated with the oil return port H. That is, when the hydraulic solenoid valve 2 is powered off, the high-pressure oil in the brake chamber will flow into the fuel tank through the normal opening of the hydraulic solenoid valve spool 22 and the brake bypass check valve, which improves the controllability of the brake pressure.
  • Valve assembly 23 is the pilot control switch of hydraulic lock, mainly comprises inner steel ball seat assembly, outer steel ball seat assembly and steel ball. After the hydraulic lock is energized, the push rod of the electromagnet 24 presses the steel ball onto the sealing ring of the inner steel ball seat assembly, the valve assembly 23 is closed, and the main valve control oil circuit of the hydraulic servo valve 1 communicates with the oil return port. After the hydraulic lock is powered off, under the action of hydraulic pressure, the steel ball is punched onto the sealing ring of the outer steel ball seat again, the valve assembly 23 is opened, and the main valve control oil circuit of the hydraulic servo valve 1 communicates with the oil supply port.
  • the electromagnet 24 may include a coil and a movable iron core.
  • the electromagnet 24 is used to convert the electric signal into mechanical motion, so as to drive the valve assembly to move.
  • a voltage applied across the coil of the electromagnet 24 causes a constant current to flow through the coil, thereby establishing a certain ampere-turn magnetic potential.
  • a magnetic flux loop is formed along the movable iron core and the working air gap, so that the electromagnet 24 generates a certain suction force, so that the push rod of the electromagnet 24 can move accordingly.
  • the electromagnet 24 is arranged in the hydraulic solenoid valve 2 and is mainly used for controlling the valve assembly 23 .
  • the electromagnet 24 When the electromagnet 24 is energized, the electromagnetic force of the control valve assembly 23 is greater than the hydraulic pressure inside the hydraulic solenoid valve 2, the valve assembly 23 is in a closed state, and the hydraulic solenoid valve spool 22 is in the left limit position under the action of the oil supply pressure.
  • the oil supply circuit of servo valve 1 is connected.
  • the valve assembly 23 When the electromagnet 24 is powered off, the valve assembly 23 is in an open state under the action of the oil supply pressure of the oil inlet J, and the oil supply pressure acts on the end face of the hydraulic solenoid valve spool 22, pushing the hydraulic solenoid valve spool 22 to At the right limit position, the oil supply circuit of the hydraulic servo valve is cut off.
  • the electromagnet 24 when the electromagnet 24 is energized, the push rod of the electromagnet 24 presses the steel ball onto the sealing ring of the inner steel ball seat assembly, the valve assembly 23 is closed, and the main valve of the hydraulic servo valve 1 controls the oil circuit and oil return. Port H is connected.
  • the electromagnetic force controlling the spool 22 of the hydraulic solenoid valve is greater than the hydraulic pressure inside the hydraulic solenoid valve 2, the valve assembly 23 is in a closed state, the spool 22 of the hydraulic solenoid valve is in the left limit position under the action of the oil supply pressure, and the hydraulic servo The oil supply line of valve 1 is connected.
  • the input signal of the hydraulic servo valve 1 will be cut off, that is, the electromagnet 24 will be de-energized, the hydraulic solenoid valve spool 22 will move to the right, and the oil supply circuit of the hydraulic servo valve will be blocked. cut off.
  • the hydraulic solenoid valve spool 22 of the power stage of the hydraulic servo valve If the hydraulic solenoid valve spool 22 of the power stage of the hydraulic servo valve is stuck, the hydraulic solenoid valve spool 22 will be stuck on the far right side of its stroke, blocking the oil return port H, causing the oil in the brake chamber (from The oil in the pipeline from the pressure output port S of the load chamber to the load port S0 is also part of the oil in the load chamber) and cannot be discharged through the oil return port H.
  • the check valve 21 After the check valve 21 is added, the oil at the first pressure output port S can flow out quickly through the check valve (the other side of the oil flowing out of the check valve has no pressure), and finally through the return oil of the hydraulic solenoid valve 2 Mouth H outflow.
  • This application has better working stability and reliability.
  • the check valve 21 to control the oil outflow can prevent the oil with a certain pressure from being blocked in the S port and cannot be discharged, and avoid the aircraft tire burst caused by the aircraft brake lock to the greatest extent. fetal.
  • the brake control servo valve of the present application has high integration, strong anti-pollution ability, and is manufactured according to modular design, which is convenient for use and maintenance.
  • the pressure output port P of the hydraulic solenoid valve is communicated with the pressure output port S of the load chamber, and the pressure output port P of the hydraulic solenoid valve is connected to the pressure output port S of the load chamber.
  • a one-way valve is arranged between the pressure output ports S, which can simplify the design process of the brake control servo valve, reduce its processing steps, and improve its machinability.
  • a single hydraulic lock has a limited effect on the overall pressure relief of the brake control servo valve, but according to the technical solution of the present application, the overall function of the brake control servo valve is more definite, and the pressure relief effect is more obvious.
  • the brake control servo valve after the input signal is cut off, the brake control servo valve can quickly release pressure even if the valve core is stuck, so as to prevent the brake lock of the aircraft caused by the stuck valve core of the hydraulic servo valve. die.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种带快速泄压保护的刹车控制伺服阀,由力矩马达(11)、射流放大器(12)、先导级(13)和功率级组成,功率级包括液压电磁阀(2)、滑阀组件(14)、电磁铁(24)、活门组件(23),液压电磁阀具有一个进油口J、一个回油口H、一个液压电磁阀压力输出口P和一个负载腔压力输出口S,液压电磁阀的液压电磁阀压力输出口P与负载腔压力输出口S之间连通,并在中间加入单向阀(21),使得液压电磁阀断电时,刹车腔的高压油会通过液压伺服阀阀芯的常开口和刹车旁通的单向阀两路流入油箱,提高刹车压力的可控性。

Description

快速泄压保护的刹车控制伺服阀
相关申请的交叉引用
本申请要求于2021年08月31日提交中国专利局、申请号为202111011747.3的中国专利申请的优先权,所述专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种飞机刹车控制伺服阀,具体涉及一种能够实现快速泄压、防止刹车压力中的非指令刹车压力输出而导致飞机的机轮刹车抱死进而导致爆胎的刹车控制伺服阀。
背景技术
刹车控制伺服阀通常应用于飞机自动防滑刹车系统中,其根据输入的电控制信号,成比例地、快速地输出相应的高精度刹车控制压力,实现飞机的停机、防滑、刹车等功能。在刹车控制伺服阀的故障模式及危害性分析中,最严重的故障模式为非指令刹车压力输出,即在切断刹车控制伺服阀的输入信号后仍有压力输出,刹车系统防滑功能失效。该故障会引起飞机机轮刹车抱死而导致飞机爆胎,对飞机安全造成极大的威胁。
通常情况下,机轮刹车系统防滑失效后,会切断刹车控制伺服阀的输入信号,刹车压力迅速降至零。但若有污染物进入滑阀间隙导致阀芯卡死,则阀芯无法关闭刹车输出口,刹车压力将无法被快速泄掉,这将会引起刹车抱死。
本领域亟需一种具有快速泄压保护功能,能够在切断输入信号后,即使阀芯卡死也能够进行快速泄压的刹车控制伺服阀。
发明内容
根据本申请的各种实施例,提供本申请提出一种带快速泄压保护功能的刹车控制伺服阀。
根据本申请的一方面,提供一种带快速泄压保护的刹车控制伺服阀,该刹车控制伺服阀包括由力矩马达、射流放大器、先导级和功率级组成,所述功率级包括液压电磁阀、滑阀组件、电磁铁、活门组件,所述液压电磁阀具有一个进油口J、一个回油口H、一个液压电磁阀压力输出口P和一个负载腔压力输出口S,所述液压电磁阀的液压电磁阀压力输出口P与负载腔压力输出口S之间连通,并在中间加入单向阀,使得液压电磁阀断电时,刹车腔的高压油会通过 液压伺服阀阀芯的常开口和刹车旁通的单向阀两路流入油箱,提高刹车压力的可控性,用于有效防止油液在紧急时段无法排出,提高飞机刹车防抱死能力,以避免刹车压力持续输出导致轮胎爆胎。
在其中一个实施例中,当液压电磁阀通电时,高压油同时进入液压伺服阀供油口和刹车旁通的单向阀后侧,此时刹车压力始终低于供油压力,所述单向阀始终处于关闭状态;当液压电磁阀断电时,所述单向阀后侧接回油背压,此时刹车腔的压力始终大于等于回油背压,刹车腔的高压油通过单向阀流入油箱。
在其中一个实施例中,所述液压伺服阀还具有马达供油口J1,主阀供油口J2,回油口H,负载口S0,当无电流输入时,所述负载口S0与回油口H相通,供油口J2关闭,负载腔的压力等于回油压力;当正控制电流流过力矩马达线圈时产生一控制力矩使衔铁组件顺时针偏转,射流放大器中的射流管向左偏移,接受器两控制腔内形成压差,该压差作用到功率级的液压电磁阀的阀芯环形面积上,阀芯右移,使回油窗口遮盖,进油窗口开启;压力油从主阀供油口J2进入负载腔输出的负载口S0,使压力又作用在功率级的阀芯反馈端面上,直到反馈力与控制力平衡为止。
在其中一个实施例中,所述力矩马达由永久磁铁、上下导磁体、衔铁组件、控制线圈、弹簧管组成,所述力矩马达固定于液压伺服阀上部,并连接射流放大器,用于将电信号转换为机械运动,驱动射流放大器动作。
在其中一个实施例中,所述射流放大器是一种非节流式的液压放大器,由射流管、喷嘴及接受器组成,根据力矩马达的输出转角,所述射流管带动喷嘴对接受器的喷射位置产生偏移,引起两接受孔中的恢复压力不同,从而实现控制功率的转换及放大作用。
在其中一个实施例中,所述先导级由压缩弹簧、阀芯、阀体组成,用于确保控制的线性和稳定性;当射流放大器有压力输出,控制阀芯运动时,所述压缩弹簧所产生的弹簧力与作用在控制阀芯上的控制力相平衡;所述阀芯的位移通过反馈弹簧组件传递至力矩马达,使喷嘴重新稳定在一个新的位置上。
在其中一个实施例中,所述滑阀组件由阀芯、阀体及衬套组成,用于将射流放大器的压差信号的功率进行放大,输出压力至负载容腔,并将该压力反馈至阀芯实现功率级的闭环控制,保证输出压力与输入电流成正比。
在其中一个实施例中,所述电磁铁,用于将电信号转换为机械运动驱动活门组件动作。
在其中一个实施例中,所述活门组件为液压电磁阀的先导控制开关,由内、外钢球座和钢 球组成,液压电磁阀通电工作后,所述电磁铁的推杆顶动钢球压到内钢球座的密封环带上,活门关闭,主阀控制油路和回油沟通;液压锁断电后,在液压力的作用下,所述钢球又被冲压到外钢球座的密封环带上,活门开启,主阀控制油路与进油接通。
在其中一个实施例中,当机轮刹车系统防滑失效后,所述电磁铁断电,所述液压电磁阀阀芯右移,其供油路被切断;当液压伺服阀的阀芯卡在行程最右侧,堵住液压电磁阀回油口H,导致刹车中的油液从负载腔压力输出口S到负载口S0管路中负载腔油液无法通过回油口H排出时,所述负载腔压力输出口S处的油液通过单向阀快速流出,最后通过液压电磁阀回油口H流出。
本申请能有效防止油液在紧急时段无法排出,提高飞机刹车防抱死能力,以避免刹车压力持续输出导致轮胎爆胎。并不受液压伺服阀压力输出的影响,提高刹车控制伺服阀的整体可靠性。将单向阀集成于整体中,提升了刹车控制伺服阀的集成度。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1为申请的带快速泄压保护的刹车控制伺服阀的结构示意图;
附图标记说明:
1.液压伺服阀;11.力矩马达;12.射流放大器;13.先导级;14.滑阀组件;2.液压电磁阀;21.单向阀;22.液压电磁阀阀芯;23.活门组件;24.电磁铁。
具体实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连 通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
下面结合附图与实施例对本申请作进一步说明。
一种带快速泄压保护的刹车控制伺服阀,包括力矩马达、射流放大器、先导级和功率级组成。所述功率级包括液压电磁阀、滑阀组件、电磁铁、活门组件。所述液压电磁阀具有一个进油口J、一个回油口H、一个液压电磁阀压力输出口P和一个负载腔压力输出口S。液压电磁阀压力输出口P与负载腔压力输出口S之间连通,并在中间设置有单向阀,使得液压电磁阀断电时,刹车腔的高压油通过液压伺服阀阀芯的常开口和刹车旁通的单向阀两路流入油箱,提高刹车压力的可控性,用于有效防止油液在紧急时段无法排出,提高飞机刹车防抱死能力,以避免刹车压力持续输出导致轮胎爆胎。
如图1所示,一种带快速泄压保护的刹车控制伺服阀1,主要包括力矩马达11、射流放大器12、先导级13和功率级等。力矩马达11的供油口可由J1来表示。刹车控制伺服阀1的主阀供油口可由J2来表示。刹车控制伺服阀1的回油口可由H来表示。刹车控制伺服阀1的负载口可由S0来表示。无电流输入刹车控制伺服阀1时,负载口S0与回油口H相通,主阀供油口J2关闭,刹车控制伺服阀1的供液体流动的负载腔(包括位于刹车控制伺服阀1内部的多个液体流动腔,例如,油液在其内部流动)的压力等于回油压力。
具体地,在本实施例中,刹车控制伺服阀1可以为液压伺服阀1。该液压伺服阀1包括力矩马达11、射流放大器12、先导级13、滑阀组件14和包括液压控制阀阀芯22的液压电磁阀2。电气控制信号可输入液压伺服阀1中,以对其进行控制。滑阀组件14和液压电磁阀2可统称为功率级。
在本申请中,力矩马达11固定于液压伺服阀1的上部。力矩马达1主要包括永久磁铁、上下导磁体、衔铁组件、控制线圈、弹簧管等。在液压伺服阀1中,力矩马达11用于将输入的电气控制信号转换为机械运动。力矩马达11的永久磁铁可产生极化磁场,输入的电气控制信号可通过控制线圈产生控制磁场,极化磁场与控制磁场之间进行相互作用,以产生与电气控制信号成比例并能反映电气控制信号的极性的力矩,从而使力矩马达11的运动部产生机械运 动,形成位移。力矩马达11具有马达供油口J1,用于油液的输入。油液将流过力矩马达11,然后射入射流放大器12的接受器的两个接受孔(如稍后将描述的)中。
射流放大器12是一种非节流式的液压放大器。射流放大器12主要包括射流管、喷嘴及包括两个接受孔的接受器。根据力矩马达11的输出转角,射流管可带动喷嘴使喷嘴的喷射位置产生偏移,引起接受器的两个接受孔中的恢复压力不同,从而产生压力差信号,进而实现控制功率的转换及放大作用。
先导级13主要包括弹簧组件(例如,可以为压缩弹簧)、阀芯、第一阀体等。先导级13用于确保电气控制的线性和稳定性。射流放大器12输出压力以控制先导级13的阀芯运动时,弹簧组件被压缩而产生弹簧力,该弹簧力与用于控制阀芯上的控制力相平衡。阀芯可产生一定位移,并通过弹簧组件反馈传递至力矩马达11,这可使射流放大器12的喷嘴重新稳定在一个新的位置上。
滑阀组件14主要包括阀芯、第二阀体及衬套。滑阀组件14是液压伺服阀1的第二级液压放大器。滑阀组件14将射流放大器12的压力差信号的功率进行进一步放大,输出压力至液压伺服阀1的负载腔,并将该压力反馈至下述的液压电磁阀阀芯22,以实现功率级的闭环控制,保证滑阀组件14的输出压力与液压伺服阀1的输入电流成正比。
具体地,力矩马达11在通电后会产生输出转角,其可带动射流放大器12的喷嘴使射流放大器12的喷嘴的喷射位置产生偏移,从而引起射流放大器12的接收器的两个接受孔中的恢复压力不同,形成压力差。这种压力差可使先导级13中的阀芯产生一定位移。该一定位移通过弹簧组件可被反馈传递至力矩马达11,进而使射流管的喷嘴重新稳定在一个新的位置上。滑阀组件14可将针对射流放大器12的压力差信号的功率进行进一步放大,输出压力至液压伺服阀1的负载腔,并将该压力反馈至下述的液压电磁阀阀芯22以实现功率级的闭环控制。
当正控制电流流过力矩马达11的控制线圈时,将产生控制力矩,使衔铁组件顺时针偏转,从而射流管向左偏移,接受器的两个接受孔内形成压力差,该压力差作用到功率级的液压控制阀阀芯22的环形面积上,液压控制阀阀芯22将右移,造成液压伺服阀的回油口被关闭,进油口被打开。具有压力的油液从供油口J2进入负载腔,并输出负载压力。此负载压力又作用在功率级的液压控制阀阀芯22的反馈端面上,从而产生反负载力,直到反负载力与和控制力矩相对应的控制力平衡为止。
液压电磁阀2包括单向阀21、液压电磁阀阀芯22、活门组件23、电磁铁24。单向阀21设置于液压电磁阀2的压力输出口P和刹车控制伺服阀1的负载腔的压力输出口S通道之间, 起到使液体单向流通的作用。液压电磁阀2还包括进油口J、回油口H、负载腔压力输出口S和液压电磁阀压力输出口P。液压电磁阀压力输出口P与负载腔压力输出口S连通。
根据本申请的实施例,单向阀21设置在液压电磁阀压力输出口P与负载腔压力输出口S之间。单向阀21用于,当液压电磁阀2通电时,高压油液同时进入液压伺服阀1的主阀供油口J2和刹车旁通单向阀的后侧。在此状态下,刹车压力始终低于供油压力,因此,单向阀21始终处于关闭状态。当液压电磁阀2断电时,刹车旁通单向阀后侧接回油背压。在此状态下,刹车腔的压力始终大于等于回油背压,单向阀21始终处于打开状态,因此,刹车腔的高压油液会通过单向阀21流入油箱。通常此时输入液压伺服阀1的电流为零,先导级13的阀芯在弹簧组件的作用下复位,刹车腔也会与回油口H连通。即,液压电磁阀2断电时,刹车腔的高压油会通过液压电磁阀阀芯22的常开口和刹车旁通单向阀两路流入油箱,提高了刹车压力的可控性。
活门组件23是液压锁的先导控制开关,主要包括内钢球座组件、外钢球座组件和钢球。液压锁通电工作后,电磁铁24的推杆将钢球压到内钢球座组件的密封环带上,活门组件23关闭,液压伺服阀1的主阀控制油路和回油口连通。液压锁断电后,在液压力的作用下,钢球又被冲压到外钢球座的密封环带上,活门组件23打开,液压伺服阀1的主阀控制油路与供油口连通。
根据本申请的实施例,电磁铁24可包括线圈和活动铁芯。在液压电磁阀2中,电磁铁24用于将电信号转换为机械运动,以驱动所述活门组件运动。施加在电磁铁24的线圈两端的电压使线圈中产生一个恒定电流,从而建立一定安匝的磁势。在这个磁势作用下,沿着活动铁芯和工作气隙形成一个磁通回路,使电磁铁24产生一定的吸力,从而电磁铁24的推杆可进行相应的运动。电磁铁24设置在液压电磁阀2中,主要用于控制活门组件23。当电磁铁24通电时,控制活门组件23的电磁力大于液压电磁阀2内部的液压力,活门组件23处于关闭状态,液压电磁阀阀芯22在供油压力的作用下处于左极限位置,液压伺服阀1的供油路接通。当电磁铁24断电时,活门组件23在进油口J的供油压力的作用下处于打开状态,供油压力作用在液压电磁阀阀芯22的端面上,推动液压电磁阀阀芯22处于右极限位置,液压伺服阀供油路被切断。
具体地,当电磁铁24通电时,电磁铁24的推杆将钢球压到内钢球座组件的密封环带上,活门组件23关闭,液压伺服阀1的主阀控制油路和回油口H连通。此时,控制液压电磁阀阀芯22的电磁力大于液压电磁阀2内部的液压力,活门组件23处于关闭状态,液压电磁阀阀芯 22在供油压力的作用下处于左极限位置,液压伺服阀1的供油路接通。
当电磁铁24断电时,在液压电磁阀2内部的液压力的作用下,钢球又被冲压到外钢球座的密封环带上。活门组件23在进油口J的供油压力的作用下处于开启状态。活门组件23打开,主阀控制油路与进油口J接通。供油压力作用在液压电磁阀阀芯22的端面(例如,活塞的端面)上,推动液压电磁阀阀芯22处于右极限位置,液压伺服阀1的供油路被切断。
根据本申请,在机轮的刹车系统防滑失效后,会切断液压伺服阀1的输入信号,即电磁铁24将被断电,液压电磁阀阀芯22右移,液压伺服阀的供油路被切断。若液压伺服阀的功率级的液压电磁阀阀芯22卡死,则液压电磁阀阀芯22将卡在其行程最右侧,堵住了回油口H,导致刹车腔中的油液(从负载腔压力输出口S到负载口S0的管路中的油液,也是负载腔中的油液中的一部分)无法通过回油口H排出。在增加单向阀21后,第一压力输出口S处的油液可以通过单向阀快速流出(单向阀的流出油液的另一侧无压力),最后通过液压电磁阀2的回油口H流出。本申请具有较好的工作稳定性和可靠性,用单向阀21控制油液流出能防止有一定压力的油液堵在S口无法排出,最大限度避免造成飞机刹车抱死导致的飞机轮胎爆胎。此外,本申请的刹车控制伺服阀集成度高,抗污染能力强,按模块化设计制造,便于使用和维护。
相对于现有技术,在根据本申请的刹车控制伺服阀中,将液压电磁阀的压力输出口P与负载腔的压力输出口S连通,并在液压电磁阀的压力输出口P与负载腔的压力输出口S之间设置有单向阀,如此可项简化刹车控制伺服阀的设计流程,减少其加工环节,提升其可加工性。单独的液压锁对于刹车控制伺服阀的整体的泄压效果有限,而根据本申请的技术方案,刹车控制伺服阀的整体功能更加明确,泄压效果更加明显。
根据本申请的上述实施例的刹车控制伺服阀能够在切断输入信号后,即使阀芯卡死也能够快速泄压的刹车控制伺服阀,防止飞机因液压伺服阀的阀芯卡死而引起刹车抱死。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种带快速泄压保护的刹车控制伺服阀,包括力矩马达、射流放大器、先导级和功率级,
    其特征在于,所述功率级包括液压电磁阀、滑阀组件,所述液压电磁阀包括单向阀、电磁铁和活门组件,所述液压电磁阀具有进油口、回油口、液压电磁阀压力输出口和负载腔压力输出口,所述液压电磁阀压力输出口与所述负载腔压力输出口连通,
    所述单向阀设置在所述液压电磁阀压力输出口与所述负载腔压力输出口之间。
  2. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述进油口、所述回油口、所述液压电磁阀压力输出口和所述负载腔压力输出口的数量为一个,所述单向阀设置为使得液压电磁阀断电时,刹车腔的高压油通过刹车控制伺服阀的阀芯的开口和刹车旁通单向阀流入油箱,提高刹车压力的可控性,当所述刹车控制伺服阀用于飞机中时,有效防止油液在紧急时段无法排出,提高所述飞机的刹车防抱死能力,以避免刹车压力的持续输出而导致轮胎爆胎。
  3. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述单向阀被构造为用于当液压电磁阀通电时,高压油液同时进入所述刹车控制伺服阀的进油口和刹车旁通单向阀的后侧,使得刹车压力始终低于供油压力,所述单向阀处于关闭状态;当液压电磁阀断电时,所述单向阀后侧接回油背压,使得刹车腔的压力始终大于等于回油背压,刹车腔的高压油液通过所述单向阀流入油箱。
  4. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于:所述力矩马达包括永久磁铁、上下导磁体、衔铁组件、控制线圈、弹簧管,所述力矩马达固定于所述刹车控制伺服阀上部,并连接所述射流放大器,用于将电信号转换为机械运动,驱动所述射流放大器运动。
  5. 根据权利要求4所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述刹车控制伺服阀还具有供液体流动的负载腔、马达供油口、主阀供油口、和负载口,所述液压电磁阀还包括可移动阀芯;
    当无电流输入所述刹车控制伺服阀时,所述负载口与所述回油口相通,所述主阀供油口关闭,所述负载腔的压力等于回油压力;
    当正控制电流流过所述力矩马达的所述控制线圈时产生控制力矩,使所述衔铁组件顺时针偏转,从而所述射流放大器的射流管向左偏移,所述射流放大器的接受器的两个控制腔内形成压力差,所述压力差作用到所述功率级的所述液压电磁阀的所述可移动阀芯的环形面积 上,所述可移动阀芯右移,使所述回油口被切断,所述进油口打开;压力油从所述主阀供油口进入所述负载腔的负载口,从而所述压力油产生的压力又作用在所述功率级的可移动阀芯的反馈端面上,产生反负载力,直到所述反负载力与和所述控制力矩相对应的控制力平衡为止。
  6. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述液压电磁阀还包括可移动阀芯,所述射流放大器是一种非节流式的液压放大器,包括射流管、喷嘴及包括两个接受孔的接受器,
    根据力矩马达的输出转角,所述射流管带动所述喷嘴使所述接受器的喷射位置产生偏移,引起两个所述接受孔中的恢复压力不同,从而产生压力差信号。
  7. 根据权利要求6所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述先导级包括弹簧组件、阀芯、阀体,所述先导级用于确保控制的线性和稳定性;
    当所述射流放大器输出压力以控制所述阀芯运动时,所述弹簧组件被压缩而产生的弹簧力,所述弹簧力与用于控制阀芯的控制力相平衡;
    所述阀芯的位移通过通过弹簧组件反馈传递至所述力矩马达,使所述喷嘴重新稳定在一个新的位置上。
  8. 根据权利要求7所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述弹簧组件为压缩弹簧。
  9. 根据权利要求6所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述刹车控制伺服阀包还包括供液体流动的负载腔,所述滑阀组件包括阀芯、第二阀体及衬套,所述滑阀组件用于将所述射流放大器的所述压力差信号的功率进行放大,输出压力至所述负载腔,并将所述压力反馈至所述可移动阀芯以实现所述功率级的闭环控制,使得输出的所述压力与输入电流成正比。
  10. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述电磁铁用于将电信号转换为机械运动,以驱动所述活门组件运动。
  11. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述活门组件为所述液压电磁阀的先导控制开关,所述活门组件包括内钢球座组件、外钢球座组件和钢球,
    当所述液压电磁阀通电工作后,所述电磁铁的推杆将所述钢球压到所述内钢球座的密封环带上,所述活门组件关闭,所述刹车控制伺服阀的主阀控制油路和所述回油口连通;
    当所述液压电磁阀断电后,在所述液压电磁阀内的液压力的作用下,所述钢球又被冲压到所述外钢球座的密封环带上,所述活门组件打开,所述主阀控制油路与所述进油口接通。
  12. 根据权利要求1所述的带快速泄压保护的刹车控制伺服阀,其特征在于,所述液压电磁阀还包括可移动阀芯,所述刹车控制伺服阀包还包括供液体流动的负载腔,
    当所述电磁铁断电时,所述液压电磁阀的所述可移动阀芯右移,所述刹车控制伺服阀的供油路被切断;
    当所述可移动阀芯卡在其行程的最右侧时,所述负载腔压力输出口处的油液通过单向阀快速流出,最后通过所述液压电磁阀的所述回油口流出。
PCT/CN2021/138434 2021-08-31 2021-12-15 快速泄压保护的刹车控制伺服阀 WO2023029291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011747.3A CN113719490A (zh) 2021-08-31 2021-08-31 一种带快速泄压保护的刹车控制伺服阀
CN202111011747.3 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023029291A1 true WO2023029291A1 (zh) 2023-03-09

Family

ID=78679672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138434 WO2023029291A1 (zh) 2021-08-31 2021-12-15 快速泄压保护的刹车控制伺服阀

Country Status (2)

Country Link
CN (1) CN113719490A (zh)
WO (1) WO2023029291A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116357776A (zh) * 2023-06-02 2023-06-30 太原理工大学 用于液压支架的三通调速阀
CN117646750A (zh) * 2023-10-20 2024-03-05 河北尚泰合力液压元件有限公司 一种锚杆钻机及其液压推进系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110206773A (zh) * 2019-06-24 2019-09-06 上海衡拓液压控制技术有限公司 刹车系统中具有快速泄压功能的液压锁
CN113719490A (zh) * 2021-08-31 2021-11-30 上海衡拓液压控制技术有限公司 一种带快速泄压保护的刹车控制伺服阀
CN115817806A (zh) * 2022-12-16 2023-03-21 北京特种机械研究所 液压伺服泵控飞机刹车转弯减摆一体化方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133107A (ja) * 1995-11-07 1997-05-20 Tokyo Seimitsu Sokki Kk 電磁比例サーボ弁
CN101776097A (zh) * 2009-12-09 2010-07-14 中冶南方工程技术有限公司 轧机压下系统专用三通电液伺服阀
CN108708884A (zh) * 2018-07-26 2018-10-26 上海衡拓液压控制技术有限公司 变增益压力伺服阀
CN208719041U (zh) * 2018-07-26 2019-04-09 上海衡拓液压控制技术有限公司 变增益压力伺服阀
CN109630489A (zh) * 2018-11-06 2019-04-16 襄阳航宇机电液压应用技术有限公司 一种电液压力伺服阀
CN110206937A (zh) * 2019-06-24 2019-09-06 上海衡拓液压控制技术有限公司 消除压力伺服阀压力下降过程中压力抖动的装置
CN110206773A (zh) * 2019-06-24 2019-09-06 上海衡拓液压控制技术有限公司 刹车系统中具有快速泄压功能的液压锁
CN210599624U (zh) * 2019-06-24 2020-05-22 上海衡拓液压控制技术有限公司 刹车系统中具有快速泄压功能的液压锁
CN113719490A (zh) * 2021-08-31 2021-11-30 上海衡拓液压控制技术有限公司 一种带快速泄压保护的刹车控制伺服阀
CN215890647U (zh) * 2021-08-31 2022-02-22 上海衡拓液压控制技术有限公司 带快速泄压保护的刹车控制伺服阀

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133107A (ja) * 1995-11-07 1997-05-20 Tokyo Seimitsu Sokki Kk 電磁比例サーボ弁
CN101776097A (zh) * 2009-12-09 2010-07-14 中冶南方工程技术有限公司 轧机压下系统专用三通电液伺服阀
CN108708884A (zh) * 2018-07-26 2018-10-26 上海衡拓液压控制技术有限公司 变增益压力伺服阀
CN208719041U (zh) * 2018-07-26 2019-04-09 上海衡拓液压控制技术有限公司 变增益压力伺服阀
CN109630489A (zh) * 2018-11-06 2019-04-16 襄阳航宇机电液压应用技术有限公司 一种电液压力伺服阀
CN110206937A (zh) * 2019-06-24 2019-09-06 上海衡拓液压控制技术有限公司 消除压力伺服阀压力下降过程中压力抖动的装置
CN110206773A (zh) * 2019-06-24 2019-09-06 上海衡拓液压控制技术有限公司 刹车系统中具有快速泄压功能的液压锁
CN210599624U (zh) * 2019-06-24 2020-05-22 上海衡拓液压控制技术有限公司 刹车系统中具有快速泄压功能的液压锁
CN113719490A (zh) * 2021-08-31 2021-11-30 上海衡拓液压控制技术有限公司 一种带快速泄压保护的刹车控制伺服阀
CN215890647U (zh) * 2021-08-31 2022-02-22 上海衡拓液压控制技术有限公司 带快速泄压保护的刹车控制伺服阀

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116357776A (zh) * 2023-06-02 2023-06-30 太原理工大学 用于液压支架的三通调速阀
CN116357776B (zh) * 2023-06-02 2023-08-01 太原理工大学 用于液压支架的三通调速阀
CN117646750A (zh) * 2023-10-20 2024-03-05 河北尚泰合力液压元件有限公司 一种锚杆钻机及其液压推进系统

Also Published As

Publication number Publication date
CN113719490A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2023029291A1 (zh) 快速泄压保护的刹车控制伺服阀
US8517475B2 (en) Brake apparatus
US20130291535A1 (en) Actuating device, method for operating an actuating device, and solenoid valve arrangement
CN111065561B (zh) 电子气动式驻车制动控制装置和车辆制动设备
JPH0347959Y2 (zh)
CN215890647U (zh) 带快速泄压保护的刹车控制伺服阀
US20120085601A1 (en) Shut-off valve for hydraulic system
US8869831B2 (en) Variable configuration traction valve
JPH07503204A (ja) アンチロック制御付き液圧ブレーキシステム
US6786236B2 (en) Electrohydraulic servo valve
EP2765314A2 (en) High gain servo valve
JPH07503203A (ja) アンチロック制御付ブレーキシステム
US3827761A (en) Automotive antiskid device with safety apparatus
CN101815639A (zh) 用于陆地车辆的电液制动单元
CN112747124B (zh) 两级电磁阀
WO2009108249A1 (en) Brake control valve with aav stability
CA2695375C (en) Valve with integrated quick release and method to control said valve
CN109630489B (zh) 一种电液压力伺服阀
US5083075A (en) Electromagnetically operated control system
JPS6317155A (ja) 圧力モジユレ−タ
GB2620081A (en) 3/2-way valve concept for a hydraulic actuation system
CN117536936A (zh) 一种带快速泄压保护的压力伺服阀
EP2807413B1 (en) Force multiplying solenoid valve
JPS5885750A (ja) 作業用車両のブレ−キ装置
JP2561950B2 (ja) 車輌用油圧アンチロック制動系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE