WO2023029147A1 - 一种同平面多点三向载荷同步加载静力试验装置及方法 - Google Patents

一种同平面多点三向载荷同步加载静力试验装置及方法 Download PDF

Info

Publication number
WO2023029147A1
WO2023029147A1 PCT/CN2021/122747 CN2021122747W WO2023029147A1 WO 2023029147 A1 WO2023029147 A1 WO 2023029147A1 CN 2021122747 W CN2021122747 W CN 2021122747W WO 2023029147 A1 WO2023029147 A1 WO 2023029147A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
lever
point
load
same plane
Prior art date
Application number
PCT/CN2021/122747
Other languages
English (en)
French (fr)
Inventor
刘炳立
臧博
张宝康
周国栋
闫虎义
Original Assignee
北京空间机电研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京空间机电研究所 filed Critical 北京空间机电研究所
Publication of WO2023029147A1 publication Critical patent/WO2023029147A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts

Definitions

  • the invention relates to the technical field of spacecraft simulation tests, in particular to a static test device and method for synchronous loading of multi-point and three-way loads on the same plane.
  • the present invention provides a A static test device and method for synchronous loading of multi-point three-way loads on the same plane, the specific technical scheme is as follows.
  • a static test device for synchronous loading of multiple points and three directions on the same plane including a mounting plate, a loading column, a loading lever, a connecting plate through a rod, and a connecting rod.
  • a plurality of the loading levers are matched in three directions in the plane
  • three loading levers are respectively arranged in three directions to cooperate with each other; the three loading levers are connected to the loading mechanism and the loading column; Cooperate; the intersection between the loading lever and the loading lever is provided with a through hole.
  • the loading mechanism includes a loading transmission cylinder, a load-bearing platform and a force-measuring sensor, the load-bearing platform applies a load, the loading transmission cylinder is connected to the force-bearing platform, and the force-measuring sensor is arranged between the loading transmission cylinder and the force-bearing platform.
  • the three loading levers are connected in sequence and distributed to transmit the loading force, the first loading lever is connected with the loading transmission cylinder, the first loading lever is connected with the second loading lever, the second loading lever is connected with the third loading lever through the connecting rod connected.
  • the loading transmission cylinder is connected with the force component point on the first loading lever, the two ends of the first loading lever are respectively connected with the second loading lever and the loading column, and the two ends of the second loading lever are respectively connected with the connecting rod and the loading column. column, and the two ends of the third loading lever are respectively connected to the loading column.
  • the force component point on the first loading lever realizes a force component in the loading direction
  • the first loading lever is connected with the force component point on the second loading lever through a connecting rod, and the force component point on the second loading lever Realize the secondary force component in the loading direction
  • the second loading lever is connected with the force component point on the third loading lever through the connecting rod, and the force component point on the third loading lever realizes the third force component in the loading direction.
  • each mounting plate is arranged in the plane, and the axis of each mounting plate is equipped with a loading column; the ends of the three loading levers are matched to connect with the four loading columns.
  • the first direction in the plane is perpendicular to the second direction and the third direction, and the second direction is opposite to the third direction; the first loading lever and the second loading lever are respectively arranged in the three directions in the plane. lever and third loading lever.
  • a static test method for synchronous loading of multi-point three-way loads on the same plane using the above-mentioned static test device for simultaneous loading of multi-point three-way loads on the same plane, including: determining the stress conditions for joint loading of multiple loading points, designing The position of the force point; according to the position of the loading lever and the force point, determine the installation position of the connecting plate through the rod and the position of the through hole; use the load-bearing platform to apply the load, and each loading column is loaded synchronously in three directions, and the load size is adjusted Run multiple trials.
  • the load at the position of the loading point is adjusted by changing the magnitude of the load applied by the load-bearing platform when the working condition is changed during the test.
  • test device is mounted inside the satellite structure.
  • the beneficial effect of the multi-point three-directional load synchronous loading static test device and method in the same plane is that the synchronous application of loads in three directions at multiple loading points in the same plane is realized in the same plane, and the loading lever
  • the structural arrangement avoids mutual interference between tooling, and there is no need to disassemble and assemble the satellite structure during the test, thereby ensuring the accuracy of the test and improving the efficiency and scientific nature of the test.
  • Fig. 1 is a schematic diagram of the structure of the multi-point three-way load synchronously loaded static test device in the same plane;
  • Fig. 2 is a schematic diagram of the structure of the connecting plate through the rod
  • Fig. 3 is the force schematic diagram of loading column
  • Fig. 4 is the structural representation of 3 loading levers
  • FIGS. 1 to 4 a specific embodiment of a static test device and method for synchronous loading of multi-point and three-way loads in the same plane provided by the present invention will be described.
  • a static test device for synchronous loading of multi-point three-way loads on the same plane including a mounting plate 1, a loading column 2, a loading lever 3, a rod-through connecting plate 4 and a connecting rod 5, and the loading column is arranged on the mounting plate to facilitate the application of loads.
  • Each loading lever controls the loading force by distributing the loading force, and the connecting plate through the rod avoids mutual interference between the loading levers.
  • a plurality of loading levers cooperate to load in three directions in the plane respectively, and three loading levers are respectively arranged in the three directions to cooperate with each other.
  • Three loading levers are connected to the loading mechanism and the loading column, and the four loading columns of the test device are loaded in three directions, and three loading levers are set in each direction to load the four loading columns respectively.
  • Connecting rods are arranged at the position where the connecting rods are crossed, and the connecting rods are matched with the loading levers, thereby avoiding the interference between the loading levers in each loading direction and realizing the application of loads in the same plane; the connecting rods are in the shape of a rectangle , the middle part is provided with an oval hole or a rectangular hole, and the two ends are provided with connection holes. A through hole is left at the intersection between the loading lever and the loading lever, which ensures the application of the load.
  • the loading mechanism includes a loading transmission cylinder, a load-bearing platform and a force sensor.
  • the load-bearing platform applies a load.
  • the load transmission cylinder is connected to the load-bearing platform.
  • the load transmission cylinder transmits the force exerted by the load-bearing platform. Between the load-bearing platforms, it is used to monitor the loading size of the force.
  • the first loading lever 6 is connected with the loading transmission cylinder, and the loading transmission cylinder applies force in the first Load lever 6 on.
  • the first loading lever 6 is connected to the second loading lever 7, the second loading lever 7 is connected to the third loading lever 8 through a connecting rod, and the three loading levers are connected in sequence and transmit the load.
  • the loading drive cylinder is connected to the force component point on the first loading lever 6, and the two ends of the first loading lever 6 are respectively connected to the second loading lever 7 and the loading column, and the two ends of the second loading lever 7 are respectively connected to the connecting rod and the loading column.
  • the connecting rod is connected to the force component point on the third loading lever 8, and the two ends of the third loading lever 8 are respectively connected to the loading column.
  • the component force point on the first loading lever 6 realizes a component force on the loading direction, adjusts the length of the first component force point on the first loading lever 6, and can adjust the first loading lever to apply force to the loading column and the second loading lever 7 distribution ratio.
  • the first loading lever 6 is connected with the force component point 9 on the second loading lever 7 through the connecting rod, and the force component point on the second loading lever 7 realizes the secondary component force on the loading direction, by adjusting the force component point in the second loading lever
  • the position on 7 can realize that the second loading lever 7 is connected to the loading column and the third loading lever 8; Realize three force components in the loading direction.
  • the first direction in the plane is perpendicular to the second direction and the third direction respectively, the second direction is opposite to the third direction, the first direction is the X direction, the second direction is the -X direction, and the third direction is the Y direction.
  • the first loading lever, the second loading lever and the third loading lever are respectively arranged in three directions in the plane, a total of 9 loading levers are arranged in the plane, and the length of the third loading lever is equal to the distance between two loading columns.
  • a static test method for synchronous loading of multi-point three-way loads on the same plane using the above-mentioned static test device for simultaneous loading of multi-point three-way loads on the same plane, including: determining the stress conditions for joint loading of multiple loading points, designing The position of the force component point, calculate the component force ratio of each loading point according to the position of the force component point, and accurately calculate the loading force of each loading point after determining the loading in each direction.
  • the installation position of the through-rod connecting plate and the position of the through hole are determined according to the positions of the loading lever and the force component point, and the through-rod connecting plate avoids mutual interference between the connecting rods.
  • the load is applied by the load-bearing platform, and each loading column is loaded synchronously in three directions, and multiple tests can be carried out by adjusting the load size. Since the test device is installed inside the satellite structure, this loading method can directly adjust the working conditions without disassembling the satellite structure again, which ensures the accuracy of the test.
  • the load at the loading point is adjusted by changing the load applied by the load-bearing platform when the working condition is changed during the test.
  • the test device realizes the simultaneous application of loads in three directions at multiple loading points in the same plane.
  • the structural arrangement of the loading lever avoids mutual interference between tooling, and the satellite structure does not need to be disassembled during the test, thus ensuring The accuracy of the test is improved, and the efficiency and scientificity of the test are improved.

Abstract

本发明提供了一种同平面多点三向载荷同步加载静力试验装置及方法,涉及航天器模拟试验技术领域。该装置包括安装盘、加载柱、加载杠杆、穿杆连板和连杆,多个加载杠杆配合在平面内的三个方向上分别加载,每个方向上设置3个加载杠杆相互配合,连杆交叉布置的位置设置穿杆连板,穿杆连板和加载杠杆相配合;加载杠杆与加载杠杆之间的交汇处留设有贯穿孔。利用该装置进行卫星承载试验时,能够实现同一平面内多个加载点三个方向载荷的同步施加,避免了拆装卫星结构给试验带来的不确定性风险和成本,提高了试验的效率及科学性。

Description

一种同平面多点三向载荷同步加载静力试验装置及方法 技术领域
本发明涉及航天器模拟试验技术领域,尤其是一种同平面多点三向载荷同步加载静力试验装置及方法。
背景技术
航天器在初样或模样阶段为验证整星结构设计的合理性,发现设计不足,为了完善设计需进行结构静力试验;由于卫星结构承载的多样性及考虑在地面考核的完整性,结构需要做进行联合加载。卫星结构内在同一平面内的承载点,在进行三向载荷同步加载时,往往是因为工装的干涉而无法实施。
静力试验中在整星组装完毕后,舱内加载工装处在一个相对封闭的环境中,试验人员在转换工况时不能够对其安装状态做调整,若采用常规的试验方法,需在完成一个工况的试验后,依次拆除储箱以上舱段的加载工装,分离推进舱与载荷舱,拆除储箱加载工装,再依次安装下一工况的舱内加载工装,组装舱段,安装剩余加载工装,花费了大量的转换工况时间。
现有技术中没有可以通过一次性安装能够同时满足三个方向的加载的静力试验装置,需要对加载试验装置做进一步的改进。
技术解决方案
为了实现同平面内三向载荷的同步加载,节省工况转换过程中拆装工作的时间,避免拆装给试验带来的风险,节约成本,提高试验的效率及科学性,本发明提供了一种同平面多点三向载荷同步加载静力试验装置及方法,具体的技术方案如下。
一种同平面多点三向载荷同步加载静力试验装置,包括安装盘、加载柱、加载杠杆、穿杆连板和连杆,多个所述加载杠杆配合在平面内的三个方向上分别加载,三个方向上分别设置3个加载杠杆相互配合;所述3个加载杠杆连接加载机构和加载柱;所述连杆交叉布置的位置设置穿杆连板,穿杆连板和加载杠杆相配合;所述加载杠杆与加载杠杆之间的交汇处留设有贯穿孔。
优选的是,加载机构包括加载传动筒、承力平台和测力传感器,承力平台施加载荷,加载传动筒和承力平台相连,测力传感器设置在加载传动筒和承力平台之间。
还优选的是,3个加载杠杆依次连接并分配传递加载力,第一加载杠杆和加载传动筒相连,第一加载杠杆和第二加载杠杆相连,第二加载杠杆通过连杆和第三加载杠杆相连。
还优选的是,加载传动筒与第一加载杠杆上的分力点相连,所述第一加载杠杆两端分别连接第二加载杠杆和加载柱,第二加载杠杆的两端分别连接连杆和加载柱,第三加载杠杆的两端分别连接加载柱。
还优选的是,第一加载杠杆上的分力点实现加载方向上的一次分力;所述第一加载杠杆通过连杆与第二加载杠杆上的分力点连接,第二加载杠杆上的分力点实现加载方向上的二次分力;所述第二加载杠杆通过连杆与第三加载杠杆上的分力点连接,第三加载杠杆上的分力点实现加载方向上的三次分力。
还优选的是,平面内布置有四个安装盘,各个安装盘的轴心均安装有加载柱;所述3个加载杠杆的端部配合连接四个加载柱。
还优选的是,平面内的第一方向与第二方向和第三方向分别垂直,第二方向和第三方向相反;所述平面内的三个方向上分别布置第一加载杠杆、第二加载杠杆和第三加载杠杆。
一种同平面多点三向载荷同步加载静力试验方法,利用上述的一种同平面多点三向载荷同步加载静力试验装置,包括:确定多个加载点联合加载的受力条件,设计分力点的位置;根据加载杠杆和分力点的位置确定穿杆连板的安装位置,以及贯穿孔的位置;利用承力平台施加载荷,每个加载柱在三个方向上同步加载,调整载荷大小进行多次试验。
进一步优选的是,试验过程中转换工况时通过改变承力平台施加载荷的大小调整加载点位置的载荷。
进一步优选的是,试验装置安装在卫星结构内部。
有益效果
本发明提供的一种同平面多点三向载荷同步加载静力试验装置及方法的有益效果是,在同一平面内实现了同一平面内多个加载点三个方向载荷的同步施加,加载杠杆的结构布置避免了工装之间的相互干涉,试验过程中不需要拆装卫星结构,从而保证了试验的准确性,提高了试验的效率及科学性。
附图说明
图1是同平面多点三向载荷同步加载静力试验装置结构示意图;
图2是穿杆连板结构示意图;
图3是加载柱的受力示意图;
图4是3个加载杠杆的结构示意图;
图中:1-安装盘,2-加载柱,3-加载杠杆,4-穿杆连板,5-连杆,6-第一加载杠杆,7-第二加载杠杆,8-第三加载杠杆,9-分力点。
本发明的实施方式
结合图1至图4所示,对本发明提供的一种同平面多点三向载荷同步加载静力试验装置及方法具体实施方式进行说明。
一种同平面多点三向载荷同步加载静力试验装置,包括安装盘1、加载柱2、加载杠杆3、穿杆连板4和连杆5,安装盘上设置加载柱方便施加载荷,多个加载杠杆通过分配加载力控制加载力,穿杆连板避免了加载杠杆之间的相互干涉。多个加载杠杆配合在平面内的三个方向上分别加载,三个方向上分别设置3个加载杠杆相互配合。3个加载杠杆连接加载机构和加载柱,试验装置的4个加载柱均收到3个方向的加载,每个方向上设置3个加载杠杆对4个加载柱分别加载。连杆交叉布置的位置设置穿杆连板,穿杆连板和加载杠杆相配合,从而避免了各个加载方向上加载杠杆之间的干涉,实现同一平面内载荷的施加;穿杆连板呈长方形,中部设置有椭圆形孔或长方形孔,两端设置连接孔。加载杠杆与加载杠杆之间的交汇处留设有贯穿孔,保证了载荷的施加。
加载机构包括加载传动筒、承力平台和测力传感器,承力平台施加载荷,加载传动筒和承力平台相连,加载传动筒传递承力平台施加的力,测力传感器设置在加载传动筒和承力平台之间,用于监测力的加载大小。
第一方向、第二方向和第三方向上分别设置了3个加载杠杆,3个加载杠杆依次连接并分配传递加载力,第一加载杠杆6和加载传动筒相连,加载传动筒施加力在第一加载杠杆6上。第一加载杠杆6和第二加载杠杆7相连,第二加载杠杆7通过连杆和第三加载杠杆8相连,3个加载杠杆依次连接并传递载荷大小。具体的是加载传动筒与第一加载杠杆6上的分力点相连,第一加载杠杆6两端分别连接第二加载杠杆7和加载柱,第二加载杠杆7的两端分别连接连杆和加载柱,该连杆连接第三加载杠杆8上的分力点,第三加载杠杆8的两端分别连接加载柱。
第一加载杠杆6上的分力点实现加载方向上的一次分力,调整第一分力点在第一加载杠杆6上的长度,可以调整第一加载杠杆向加载柱和第二加载杠杆7施加力的分配比例。第一加载杠杆6通过连杆与第二加载杠杆7上的分力点9连接,第二加载杠杆7上的分力点实现加载方向上的二次分力,通过调整该分力点在第二加载杠杆7上的位置可以实现第二加载杠杆7向加载柱和第三加载杠杆8;第二加载杠杆7通过连杆与第三加载杠杆8上的分力点连接,第三加载杠杆8上的分力点实现加载方向上的三次分力。
平面内布置有四个安装盘,各个安装盘的轴心均安装有加载柱,加载杠杆传递加载力至加载柱上。3个加载杠杆通过端部配合连接四个加载柱,四个加载柱按比例分配载荷。平面内的第一方向与第二方向和第三方向分别垂直,第二方向和第三方向相反,第一方向为X向,第二方向为-X向,第三方向为Y向。平面内的三个方向上分别布置第一加载杠杆、第二加载杠杆和第三加载杠杆,平面内共布置9根加载杠杆,第三加载杠杆的长度等于其中2个加载柱之间的距离。
一种同平面多点三向载荷同步加载静力试验方法,利用上述的一种同平面多点三向载荷同步加载静力试验装置,包括:确定多个加载点联合加载的受力条件,设计分力点的位置,根据分力点的位置计算各个加载点的分力比例,确定各个方向上的加载后精确的计算各个加载点的加载受力。根据加载杠杆和分力点的位置确定穿杆连板的安装位置,以及贯穿孔的位置,穿杆连板避免了连杆之间的相互干涉。利用承力平台施加载荷,每个加载柱在三个方向上同步加载,调整载荷大小可以进行多次试验。由于试验装置安装在卫星结构内部,该加载方式可以直接调整工况,不需要再次拆装卫星结构,保证了试验的精度。
通过该方法在试验过程中转换工况时通过改变承力平台施加载荷的大小调整加载点位置的载荷。
该试验装置在同一平面内实现了同一平面内多个加载点三个方向载荷的同步施加,加载杠杆的结构布置避免了工装之间的相互干涉,试验过程中不需要拆装卫星结构,从而保证了试验的准确性,提高了试验的效率及科学性。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种同平面多点三向载荷同步加载静力试验装置,其特征在于,包括安装盘、加载柱、加载杠杆、穿杆连板和连杆,多个所述加载杠杆配合在平面内的三个方向上分别加载,三个方向上分别设置3个加载杠杆相互配合;所述3个加载杠杆连接加载机构和加载柱;所述连杆交叉布置的位置设置穿杆连板,穿杆连板和加载杠杆相配合;所述加载杠杆与加载杠杆之间的交汇处留设有贯穿孔。
  2. 根据权利要求1所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,所述加载机构包括加载传动筒、承力平台和测力传感器,承力平台施加载荷,加载传动筒和承力平台相连,测力传感器设置在加载传动筒和承力平台之间。
  3. 根据权利要求1所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,所述3个加载杠杆依次连接并分配传递加载力,第一加载杠杆和加载传动筒相连,第一加载杠杆和第二加载杠杆相连,第二加载杠杆通过连杆和第三加载杠杆相连。
  4. 根据权利要求3所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,所述加载传动筒与第一加载杠杆上的分力点相连,所述第一加载杠杆两端分别连接第二加载杠杆和加载柱,第二加载杠杆的两端分别连接连杆和加载柱,第三加载杠杆的两端分别连接加载柱。
  5. 根据权利要求3所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,所述第一加载杠杆上的分力点实现加载方向上的一次分力;所述第一加载杠杆通过连杆与第二加载杠杆上的分力点连接,第二加载杠杆上的分力点实现加载方向上的二次分力;所述第二加载杠杆通过连杆与第三加载杠杆上的分力点连接,第三加载杠杆上的分力点实现加载方向上的三次分力。
  6. 根据权利要求1所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,所述平面内布置有四个安装盘,各个安装盘的轴心均安装有加载柱;所述3个加载杠杆的端部配合连接四个加载柱。
  7. 根据权利要求1所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,所述平面内的第一方向与第二方向和第三方向分别垂直,第二方向和第三方向相反;所述平面内的三个方向上分别布置第一加载杠杆、第二加载杠杆和第三加载杠杆。
  8. 一种同平面多点三向载荷同步加载静力试验方法,利用权利要求1至7中任一项所述的一种同平面多点三向载荷同步加载静力试验装置,其特征在于,包括:确定多个加载点联合加载的受力条件,设计分力点的位置;根据加载杠杆和分力点的位置确定穿杆连板的安装位置,以及贯穿孔的位置;利用承力平台施加载荷,每个加载柱在三个方向上同步加载,调整载荷大小进行多次试验。
  9. 根据权利要求8所述的一种同平面多点三向载荷同步加载静力试验方法,其特征在于,所述试验过程中转换工况时通过改变承力平台施加载荷的大小调整加载点位置的载荷。
  10. 根据权利要求8所述的一种同平面多点三向载荷同步加载静力试验方法,其特征在于,所述试验装置安装在卫星结构内部。
PCT/CN2021/122747 2021-09-06 2021-10-09 一种同平面多点三向载荷同步加载静力试验装置及方法 WO2023029147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111036279.5A CN113588250B (zh) 2021-09-06 2021-09-06 一种同平面多点三向载荷同步加载静力试验装置及方法
CN202111036279.5 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029147A1 true WO2023029147A1 (zh) 2023-03-09

Family

ID=78241489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122747 WO2023029147A1 (zh) 2021-09-06 2021-10-09 一种同平面多点三向载荷同步加载静力试验装置及方法

Country Status (2)

Country Link
CN (1) CN113588250B (zh)
WO (1) WO2023029147A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588251B (zh) * 2021-09-06 2022-05-17 北京空间机电研究所 一种柱形舱段壁板结构模拟静力试验装置及方法
CN114486212B (zh) * 2021-12-31 2022-11-01 北京空间机电研究所 一种航天器基板静力试验装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202147846U (zh) * 2011-07-08 2012-02-22 中国飞机强度研究所 真空吸盘试验加载系统
JP2013156021A (ja) * 2012-01-26 2013-08-15 Mitsubishi Heavy Ind Ltd 複合荷重負荷装置
CN105043792A (zh) * 2015-04-18 2015-11-11 北京强度环境研究所 火箭壳体内部多点小范围多维力转化加载机构
CN106289989A (zh) * 2016-07-20 2017-01-04 西安理工大学 一种三向独立加载的大型真三轴仪
CN111183738B (zh) * 2015-03-23 2018-10-23 哈尔滨建成集团有限公司 一种静力试验加载装置
CN110733665A (zh) * 2019-10-10 2020-01-31 中航通飞研究院有限公司 一种水面飞行器船底水载荷的三维预置加载方法
CN113109146A (zh) * 2021-03-24 2021-07-13 浙江工业大学 平面加载框架系统升级为空间加载系统的设计方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180999A (zh) * 2013-05-28 2014-12-03 哈尔滨建成集团有限公司 结构件静强度试验载荷传递装置
CN109655245B (zh) * 2018-10-31 2020-06-30 中国飞机强度研究所 一种四垂尾载荷加载方法
CN209014258U (zh) * 2018-11-16 2019-06-21 青岛理工大学 动静态多功能试验伺服加载系统
CN110940574B (zh) * 2019-12-01 2022-07-01 西安航天动力测控技术研究所 一种用于静力试验的多点加载加力帽
CN112683668B (zh) * 2020-12-08 2022-09-06 信通院(保定)科技创新研究院有限公司 一种通信支架静力荷载试验装置
CN112945533B (zh) * 2021-02-06 2023-01-17 中国航发沈阳发动机研究所 一种航空发动机零部件的组合加载装置及方法
CN113291489B (zh) * 2021-05-31 2023-03-07 北京卫星制造厂有限公司 一种适用于大变形起落架结构静力试验的加载装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202147846U (zh) * 2011-07-08 2012-02-22 中国飞机强度研究所 真空吸盘试验加载系统
JP2013156021A (ja) * 2012-01-26 2013-08-15 Mitsubishi Heavy Ind Ltd 複合荷重負荷装置
CN111183738B (zh) * 2015-03-23 2018-10-23 哈尔滨建成集团有限公司 一种静力试验加载装置
CN105043792A (zh) * 2015-04-18 2015-11-11 北京强度环境研究所 火箭壳体内部多点小范围多维力转化加载机构
CN106289989A (zh) * 2016-07-20 2017-01-04 西安理工大学 一种三向独立加载的大型真三轴仪
CN110733665A (zh) * 2019-10-10 2020-01-31 中航通飞研究院有限公司 一种水面飞行器船底水载荷的三维预置加载方法
CN113109146A (zh) * 2021-03-24 2021-07-13 浙江工业大学 平面加载框架系统升级为空间加载系统的设计方法

Also Published As

Publication number Publication date
CN113588250A (zh) 2021-11-02
CN113588250B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2023029147A1 (zh) 一种同平面多点三向载荷同步加载静力试验装置及方法
WO2023029148A1 (zh) 一种高度可调的航天器储箱模拟加载静力试验装置及方法
CN109084982B (zh) 一种大推力火箭发动机三向力测量装置及测量方法
CN113588251B (zh) 一种柱形舱段壁板结构模拟静力试验装置及方法
CN110895186A (zh) 包含多个振动台的振动系统及振动试验方法
CN107255544A (zh) 载荷传感器校准装置
CN103407579B (zh) 一种大直径飞机机身试验加载夹具
JPH1194721A (ja) 2軸材料試験装置
CN105043899A (zh) 一种飞机大型壁板剪切加载装置
CN112528536B (zh) 一种由单位载荷响应计算多工况系统安装交点载荷的方法
CN109131933B (zh) 一种机身壁板框载荷施加装置
WO2023123732A1 (zh) 一种航天器舱体多点起吊静力试验加载装置及方法
CN114295401B (zh) 航天器舱体推进模块静力试验桁架式结构加载装置及方法
CN204807401U (zh) 墙体平面外水平均布荷载加载传力架装置
CN115541390A (zh) 一种大型复杂结构件双轴拉与压弯曲复合试验系统及方法
CN211179280U (zh) 一套新型楔形体悬臂梁加载装置
CN213658220U (zh) 一种微量天平校准装置
RU169802U1 (ru) Устройство для калибровки тензометрических весов
JP2009042251A (ja) 構造物試験機
CN111424989B (zh) 网架钢拉杆张拉施工方法及施工工装
CN220751568U (zh) 一种多向受载耳片接头疲劳试验加载装置
CN210513529U (zh) 一种多轴力传感器精密校准的加载装置
CN110618027A (zh) 一套新型楔形体悬臂梁加载装置
CN106908239A (zh) 一种剪切销承载载荷及其分配的测量方法
CN112591137A (zh) 一种飞机平尾大轴试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955676

Country of ref document: EP

Kind code of ref document: A1