WO2023029056A1 - 检测管 - Google Patents

检测管 Download PDF

Info

Publication number
WO2023029056A1
WO2023029056A1 PCT/CN2021/116786 CN2021116786W WO2023029056A1 WO 2023029056 A1 WO2023029056 A1 WO 2023029056A1 CN 2021116786 W CN2021116786 W CN 2021116786W WO 2023029056 A1 WO2023029056 A1 WO 2023029056A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sampling
reagent
detection tube
bottom wall
Prior art date
Application number
PCT/CN2021/116786
Other languages
English (en)
French (fr)
Inventor
杨圣武
马湖波
刘文胜
林永伟
吴述
许佳蓁
多明格斯·艾莉森·费雷拉
莫恩德·亚历克斯
拉门西·塞巴斯蒂安
卡纳留斯·玛丽亚
一田惠子
史密斯·克里斯
谢里丹·维多利亚
Original Assignee
皮乐迪有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 皮乐迪有限公司 filed Critical 皮乐迪有限公司
Priority to PCT/CN2021/116786 priority Critical patent/WO2023029056A1/zh
Publication of WO2023029056A1 publication Critical patent/WO2023029056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present application relates to the field of medical devices, in particular to a detection tube.
  • the sample needs to be transported and cultured, and the process of sample transport and culture needs to be kept completely sealed to avoid environmental pollution, and the airtightness of the sampling tube and the detection tube is particularly important.
  • the transfer method through the dropper in the prior art is slow and inefficient, and it is difficult to reliably complete large-scale testing and testing.
  • the process is accompanied by certain risks.
  • an object of the present application is to provide a detection tube, which is less difficult to operate, more convenient for sample transfer, and greatly improves the efficiency and safety of sample transfer.
  • the detection tube includes: a detection tube body, the detection tube body is formed with a sampling cavity suitable for accommodating a sampling tube, and a reagent reaction cavity is formed in the bottom wall of the sampling cavity; a needle, the A needle is formed on the inner wall of the sampling chamber, and a liquid guiding channel is formed inside the needle, and one end of the liquid guiding channel is open and the other end communicates with the reagent reaction chamber.
  • both the transfer of the sample and the detection of the sample occur in the detection tube, and there is no need to use other instruments to operate the medium in the sampling tube, which reduces the contact between the sample and the air, and improves the detection of the sample by the detection tube.
  • the reliability, and the cooperation between the detection tube and the sampling tube is simple and reliable, and the sample transfer efficiency is high.
  • the detection tube body includes: a bottom wall part, the reagent reaction chamber is arranged in the bottom wall part; a peripheral wall part, the peripheral wall part is arranged on the outer peripheral edge of the bottom wall part and
  • the sampling cavity is defined with the bottom wall, and a limiting member is provided on the peripheral wall to prevent the sampling tube from detaching from the sampling cavity.
  • the limiter includes a first limiter and a second limiter, and the first limiter and the second limiter are sequentially inserted in the sampling tube insertion direction. Arranged at intervals on the surrounding wall; wherein the first limiting member is adapted to engage with the sampling tube when the needle enters the sampling tube to limit the separation of the sampling tube; the second limiting member It is suitable for restricting the sampling tube from detachment when the sampling tube is in contact with the bottom wall of the sampling chamber.
  • the peripheral wall is provided with a first fitting hole, the first fitting hole is in the same extension direction as the detection tube body, and the part of the first fitting hole far away from the bottom wall is
  • the first stopper is provided on the side edge, and the free end of the first stopper is formed with a first protrusion protruding toward the sampling cavity;
  • a second matching hole is provided on the peripheral wall , the extending direction of the second matching hole is the same as that of the detection tube body, the side edge of the second matching hole away from the bottom wall is provided with the second stopper, and the second stopper
  • the free end of the piece is formed with a second protrusion protruding toward the sampling cavity.
  • At least part of the end surface of the needle is indented to form an exhaust groove, and at least one end of the exhaust groove is opened on the circumferential side wall of the needle to form an exhaust port.
  • the end surface is configured as an arc surface, a broken line surface, or a hyperbolic paraboloid.
  • chamfers are formed at the exhaust port.
  • the reagent reaction chamber includes: a collection chamber, the collection chamber communicates with the other end of the liquid guiding channel; a reagent chamber, the reagent chamber is suitable for containing reagents and is connected to the collection chamber connected.
  • the reagent chamber is configured in multiples, and an infusion channel is provided between each reagent chamber and the collection chamber, and the infusion channel is between the collection chamber and the reagent chamber. bending extension.
  • the reaction chamber further includes: a defoaming chamber, and the defoaming chamber communicates with the collection chamber and the reagent chamber respectively through the infusion channel.
  • the defoaming chamber is provided with a reagent inlet communicating with the collection chamber, and the size of the reagent gradually increases in a direction from the inlet to the defoaming chamber.
  • the bottom wall is provided with a light-in position and a light-out position for detecting the reagent chamber
  • the detection tube also includes: a first prism and a second prism, the first prism and the second prism are symmetrically arranged on both sides of the reagent chamber and are respectively facing the light entrance position and the light exit position, the The first prism is suitable for guiding the light incident from the light entrance position to the reagent chamber, and the second prism is suitable for guiding the light passing through the reagent chamber to the light exit position.
  • Fig. 1 is a schematic structural diagram of an inverted detection tube according to an embodiment of the present application
  • FIG. 2 is a top view of a detection tube according to an embodiment of the present application.
  • Fig. 3 is the sectional view of A-A section among Fig. 2;
  • FIG. 4 is a side view of a detection tube according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view of a detection tube according to an embodiment of the present application.
  • FIG. 6 is an exploded view of a detection tube according to an embodiment of the present application.
  • Fig. 7 is a side view of a detection tube according to an embodiment of the present application.
  • the detection tube body 21 the bottom wall part 211, the light entrance position 2111, the light exit position 2112, the first prism 2113, the second prism 2114,
  • peripheral wall portion 212
  • Hydrophobic gas-permeable film 24, heat-sealing film 25 Hydrophobic gas-permeable film 24, heat-sealing film 25.
  • the detection tube 2 according to the embodiment of the present application will be described below with reference to FIGS. 1-7 .
  • the detection tube 2 includes a detection tube body 21 and a needle 22.
  • the detection tube body 21 is formed with a sampling chamber suitable for accommodating a sampling tube, and a reagent reaction chamber is formed in the bottom wall of the sampling chamber.
  • the chamber 23 , the needle 22 is formed on the inner wall of the sampling chamber and a liquid guiding channel 220 is formed inside, one end of the liquid guiding channel 220 is open and the other end communicates with the reagent reaction chamber 23 .
  • the sampling cavity in the detection tube 2 can be used to accommodate the sampling tube after sampling.
  • the sampling tube stores enzyme-free water or other media for carrying samples.
  • the needle 22 When the sampling tube enters the sampling cavity, the needle 22 will penetrate Inside the sampling tube, the medium with the sample to be detected in the sampling tube will be introduced into the reagent reaction chamber 23 in the bottom wall of the detection tube body 21 by using the liquid guide channel 220 in the needle 22, and the sample can be stored in the reagent reaction chamber 23.
  • the reagent reacts, and the detection result of the sample can be judged according to the state of the reagent after the reaction is completed.
  • the sample needs to be transported and cultured, and the process of sample transport and culture needs to be kept completely sealed to avoid environmental pollution, and the airtightness of the sampling tube and the detection tube is particularly important.
  • the transfer method through the dropper in the prior art is slow and inefficient, and it is difficult to reliably complete large-scale testing and testing.
  • the process is accompanied by certain risks.
  • the applicant starts with the detection device and improves it, aiming to create a new type of detection device to reduce the difficulty of transfer and improve the transfer efficiency.
  • the sampling tube is kept in a sealed state and put into the sampling chamber in the detection tube body 21 to ensure that the sampling tube remains in a sealed state throughout the transfer process, reducing environmental pollution and improving safety.
  • the detection tube 2 is provided with a reagent reaction chamber 23 on the bottom wall of the sampling chamber and a needle 22 for piercing the sampling tube on the inner wall of the sampling chamber, so that when the sampling tube is accommodated in the sampling chamber, the needle 22 Pierce the inside of the sampling tube to transport the medium with the sample inside the sampling tube to the reagent reaction chamber through the liquid guide channel 220, so as to react the sample and complete the final detection.
  • both the transfer of the sample and the detection of the sample occur in the detection tube 2, and there is no need to use other instruments to operate the medium in the sampling tube, which reduces the contact between the sample and the air, and improves the quality of the detection tube 2.
  • the cooperation between the detection tube 2 and the sampling tube is simple and reliable, and the sample transfer efficiency is high.
  • the detection tube body 21 includes a bottom wall part 211 and a peripheral wall part 212, the reagent reaction chamber 23 is arranged in the bottom wall part 211, and the peripheral wall part 212 is arranged on the outer peripheral edge of the bottom wall part 211 and connected to the bottom wall
  • the part 211 defines a sampling cavity, and the surrounding wall part 212 is provided with a stopper for limiting the detachment of the sampling tube.
  • the bottom wall 211 and the peripheral wall 212 define a sampling chamber for accommodating a sampling tube.
  • the bottom wall 211 may be provided with a needle 22 for piercing the sampling tube. It can be used to restrict the sampling tube from leaving the sampling chamber after the needle 22 pierces the sampling tube, so as to limit the separation of the sampling tube from the needle 22 after the needle 22 pierces the sampling tube, and ensure that the inside of the sampling tube is kept sealed after the needle 22 punctures the sampling tube environment, avoiding the contact between the medium and the air in the environment, and improving the reliability of the transfer process.
  • the limit piece can also be used to limit the movement of the sampling tube after the sampling tube is fully inserted into the sampling cavity, so as to ensure the reliability of the flow of the medium in the sampling tube.
  • the setting of the limiter enables the detection tube 2 to be used only once. After the limiter is matched with the sampling tube, it cannot be reused except for destroying the detection tube 2 or the sampling tube, which also ensures the medical safety of the detection tube 2 and the sampling tube .
  • the limiter includes a first limiter 2121 and a second limiter 2122, and the first limiter 2121 and the second limiter 2122 are sequentially arranged at intervals in the insertion direction of the sampling tube.
  • the peripheral wall portion 212 When the sampling tube is inserted into the sampling cavity, the needle 22 will first puncture the sampling tube, and the sampling tube can still move to the bottom of the sampling cavity.
  • the positions of the first limiter 2121 and the second limiter 2122 are sequentially arranged along the insertion direction of the sampling tube.
  • the first limiter 2121 is suitable for clamping with the sampling tube when the needle 22 enters the sampling tube to limit the disengagement of the sampling tube.
  • the second stopper 2122 is adapted to cooperate with the sampling tube when the sampling tube is in contact with the bottom wall of the sampling cavity, so as to limit the sampling tube from leaving the sampling cavity.
  • the limit piece 2122 is suitable for maintaining the stability of the sampling tube, so as to ensure that the sampling tube cannot be separated from the sampling cavity during the detection process.
  • the peripheral wall 212 is provided with a first fitting hole 2101, the first fitting hole 2101 extends in the same direction as the detection tube body 21, and the second fitting hole 2102 is far from
  • a first limiting member 2121 is disposed on a side edge of the bottom wall portion 211 , and a first protrusion 2121 a protruding toward the sampling chamber is formed at a free end of the first limiting member 2121 .
  • the outer circumference of the sampling tube is provided with a matching portion, the matching portion is configured as an annular rib formed on the outer circumference of the lower end of the sampling tube, and the upper end surface of the annular rib is flat so as to be suitable for matching with the first protrusion provided on the first limiting member 2121.
  • the first protruding portion 2121a is adapted to limit the movement of the annular rib toward the pull-out direction.
  • the peripheral wall portion 212 is provided with a second fitting hole 2102, the second fitting hole 2102 extends in the same direction as the detection tube body 21, and the second fitting hole 2102 is provided on the side edge away from the bottom wall portion 211.
  • the upper end surface of the annular rib is flat so as to be suitable for abutting against the second protrusion 2122a provided on the second limiting member 2122, and the second protrusion 2122a is adapted to limit the movement of the annular rib toward the pulling-out direction.
  • the positions of the first protruding portion 2121a and the second protruding portion 2122a are sequentially arranged in the insertion direction of the sampling tube, and the first protruding portion 2121a is suitable for engaging with the mating portion after the needle 22 punctures the sampling tube , the second protruding portion 2122a is adapted to engage with the matching portion after the sampling tube is fully inserted into the sampling chamber.
  • At least part of the end surface of the needle 22 is concaved to form an exhaust groove 221, and at least one end of the exhaust groove 221 is opened on the circumferential side wall of the needle 22.
  • the surface of the sealing film will form a contact surface between the atmospheric pressure and the liquid pressure at the moment of puncture, resulting in simultaneous gas intake and liquid intake, so a large amount of gas enters the reagent reaction chamber 23 through the needle 22, As a result, large air bubbles appear in the reagent reaction chamber 23, which affects the analysis accuracy of the reagent detection results.
  • the purpose of the needle 22 according to the present application is to reduce the amount of gas sucked into the fluid system when the needle 22 pierces the fluid system, and at the puncture point of the sealing film, minimize the gap between the shaped holes formed after the needle 22 pierces the sealing film.
  • the end surface of the needle 22 is configured as an arc surface, a broken line surface or a hyperbolic paraboloid.
  • the end surface of the needle 22 is configured as a hyperbolic paraboloid, and the two concave ends of the hyperbolic paraboloid form an exhaust port 222, and the outer periphery of the end surface of the needle 22 is formed with convex edges facing each other. , the ribbed edge is used to pierce the sealing membrane on the sampling tube.
  • the exhaust port 222 is formed with a chamfer 223, and the chamfer 223 formed at the exhaust port 222 can further increase the size of the exhaust port 222, and improve the exhaust when the needle 22 pierces the sealing film. Gas effect to further reduce the possibility of gas entering the reagent reaction chamber 23.
  • the reagent reaction chamber 23 includes a collection chamber 231 and a reagent chamber 232, the collection chamber 231 communicates with the other end of the liquid guide channel 220, and the reagent chamber 232 is adapted to accommodate reagents and communicate with the reagent chamber 232.
  • the collection cavity 231 communicates.
  • the collection chamber 231 is used to collect the medium from the liquid guiding channel 220 , and after the collection of the medium is completed, it is introduced into the reagent chamber 232 and reacts with the reagent in the reagent chamber 232 .
  • the lower end of the bottom wall portion 211 forms a collecting groove, which is arranged at the center of the bottom wall portion 211 and faces the liquid guide channel 220 of the needle 22, and the lower end of the bottom wall portion 211 also A reagent tank is formed, and the reagent tank communicates with the collection tank through the flow channel groove.
  • a heat-sealing film 25 is provided at the lower end of the bottom wall, and the collection tank and the reagent tank are sealed by the heat-sealing film 25 to form a reagent chamber 232 and a collection chamber 231 .
  • the reagent tank is configured as a through groove passing through the bottom wall 211 in the thickness direction, and a hydrophobic and gas-permeable film 24 is arranged on the top surface of the bottom wall 211, and the heat-sealing film 25 and the hydrophobic and gas-permeable film 24 are shared. Used to seal the reagent reservoir to form a reagent chamber 232 .
  • the reagent cavity 232 is configured in multiples, and an infusion channel 234 is provided between each reagent cavity 232 and the collection cavity 231 , and the infusion channel 234 bends and extends between the collection cavity 231 and the reagent cavity 232 .
  • the reagent chamber 232 is structured as a plurality of purposes to accommodate multiple groups of reagents, the reagents located in each reagent chamber 232 can be the same or different, the same reagent can be used for a control test, and different reagents can be used for the same sample. Different types of tests.
  • An infusion channel 234 is provided between the reagent chamber 232 and the pooling chamber 231, and the flow rate of the medium can be slowed down by setting the infusion channel 234 to bend and extend. If the medium flow rate loaded with the sample is too fast, the reaction will be unstable, and the infusion channel 234 The bending setting can improve the detection stability of the detection tube 2 .
  • the reaction chamber further includes a defoaming chamber 233 , and the defoaming chamber 233 communicates with the collection chamber 231 and the reagent chamber 232 respectively through the infusion channel 234 .
  • the defoaming chamber 233 is located between the collection chamber 231 and the reagent chamber 232.
  • the defoaming chamber 233 is provided between the reagent chamber 232 and the collection chamber 231 to buffer the medium.
  • the medium passes through the infusion
  • the channel 234 flows into the defoaming chamber 233 and gradually fills the defoaming chamber 233.
  • most of the bubbles remain in the defoaming chamber 233, which can further reduce the number of bubbles entering the reagent chamber 232 and improve For the accuracy and reliability of medium detection.
  • the defoaming chamber 233 is provided with a reagent inlet connected to the collection chamber 231, and the size of the reagent inlet 2331 gradually increases toward the direction of the defoaming chamber 233.
  • the reagent passes through the reagent inlet 2331, the liquid flow path As the size increases, the gas in the fluid can be more fully captured in the defoaming chamber 233, thereby reducing the gas entering the reagent chamber 232, so that when detecting the reaction structure in the reagent chamber 232, the detection is more accurate and eliminates The observed influence of air bubbles on the detection results.
  • the reagent chamber 232 and the defoaming chamber 233 are constructed in a one-to-one correspondence and arranged symmetrically with respect to the center of the collection chamber 231 , so as to ensure that the flow rates of reagents entering different reagent chambers 232 are the same.
  • a hydrophobic gas-permeable membrane 24 is provided between the reagent reaction chamber 23 and the sampling chamber.
  • the flow of the reagent reaction chamber 23 is smooth, and the hydrophobic gas-permeable membrane 24 is arranged between the reagent reaction chamber 23 and the sampling chamber, and the air pressure of the reagent reaction chamber 23 can be maintained by using the hydrophobic gas-permeable membrane 24, so that the medium can enter the reagent reaction chamber through the liquid guide channel 220 Within 23.
  • a light entrance position 2111 and a light exit position 2112 are arranged on the bottom wall
  • the detection tube 2 also includes: a first prism 2113 and a second prism 2114, the first prism 2113 and the second prism
  • the two prisms 2114 are symmetrically arranged on both sides of the reagent chamber 232 and are respectively facing the light entrance position 2111 and the light exit position 2112.
  • the first prism 2113 is suitable for guiding the light incident from the light entrance position 2111 to the reagent chamber 232.
  • the second prism 2114 It is suitable for guiding the light passing through the reagent chamber 232 to the light exit position 2112 .
  • the detection tube 2 is suitable for optical detection.
  • the instrument for detecting the detection tube 2 is provided with an output unit for emitting light and a receiving unit for receiving light.
  • the light exiting position 2112 is facing directly, the light from the exiting unit enters the reagent chamber 232 under the refraction of the first prism 2113, and is led out by the light exiting position 2112 under the refraction of the second prism 2114, finally received by the receiving unit on the instrument, after the The color analysis of the light finally tells the detection result of the reagent.
  • the bottom wall part 211 is configured as a transparent member, a first light guide groove and a second light guide groove are arranged on both sides of the reagent chamber 232, and the bottom wall of the first light guide groove is inclined to form a It is the first prism 2113, and the bottom wall of the second light guide groove is inclined to be configured as the second prism 2114.
  • the part of the bottom wall part 211 that is opposite to the first light guide groove is configured as the light entrance position 2111, and the bottom wall part 211 The part facing the second light guide groove is configured as the light exit position 2112 .
  • the first prism 2113 and the second prism 2114 are respectively arranged at an angle of 40°-50° to the bottom surface of the bottom wall portion.
  • first feature and “second feature” may include one or more of these features.
  • a first feature being "on” or “under” a second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact but pass through them. Additional feature contacts between.
  • first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than Second feature.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Abstract

一种检测管(2),包括:检测管本体(21),检测管本体(21)形成有适于容纳采样管的采样腔,采样腔的底壁内形成有试剂反应腔(23);针头(22)形成于采样腔的内壁且针头(22)内部形成有导液通道,导液通道的一端敞开,另一端与试剂反应腔(23)连通。

Description

检测管 技术领域
本申请涉及医疗器械领域,尤其是涉及一种检测管。
背景技术
相关技术中,对于样品的采集完成后,需用将样品进行转运并进行培养,而样品的转运和培养过程需要保持全程的密封以避免环境污染,采样管以及检测管的密封性尤为重要。对于大批量的采样工作,现有技术中通过滴管的转运方式转运速度慢,效率低,难以可靠地完成大批量的检测化验,对于没有经过操作培训的用户,过程中还伴随一定的风险。对于采样完成后如何对采样管内部的样品进一步转运,以及对样品后续检测过程的优化成为了本领域的技术难题。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种检测管,该检测管的操作难度低,对于样品的转运更加方便,极大提高了样品转运的效率以及样品转运的安全性。
根据本申请的检测管根据本申请的包括:检测管本体,所述检测管本体形成有适于容纳采样管的采样腔,所述采样腔的底壁内形成有试剂反应腔;针头,所述针头形成于所述采样腔的内壁且所述针头内部形成有导液通道,所述导液通道的一端敞开另一端与所述试剂反应腔连通。
根据本申请的检测管,样品的转运与样品的检测均发生于检测管中,无需利用其它器具对采样管内的介质进行操作,减少了样品与空气之间的接触,提高了检测管对于样品检测的可靠性,并且检测管与采样管之间的配合方式简单可靠,样品的转运效率高。
根据本申请的一个实施例,所述检测管本体包括:底壁部,所述底壁部内设置有所述试剂反应腔;周壁部,所述周壁部设置于所述底壁部的外周沿并与所述底壁部限定出所述采样腔,所述周壁部上设置有限制所述采样管脱离采样腔的限位件。
根据本申请的一个实施例,所述限位件包括第一限位件和第二限位件,所述第一限位件与所述第二限位件在所述采样管插入方向上依次间隔布置于所述周壁部;其中所述第一限位件适于在所述针头进入所述采样管内时与所述采样管卡接以限制所述采样管脱离;所述第二限位件适于在所述采样管与所述采样腔的底壁接触时限制所述采样管脱离。
根据本申请的一个实施例,所述周壁部上设置有第一配合孔,所述第一配合孔与所述检测管本体延伸方向相同,所述第一配合孔的远离所述底壁部的侧边沿上设置有所述第一限位件,所述第一限位件的自由端形成有朝向所述采样腔凸出的第一凸起部;所述周壁部上设置有第二配合孔,所述第二配合孔与所述检测管本体延伸方向相同,所述第二配合孔的远离所述底壁部的侧边沿上设置有所述第二限位件,所述第二限位件的自由端形成有朝向所述采样腔凸出的第二凸起部。
根据本申请的一个实施例,所述针头的端面的至少部分内凹以形成有排气槽,所述排气槽的至少一端于所述针头的周向侧壁上敞开以形成排气口。
根据本申请的一个实施例,所述端面构造为弧形面、折线面、双曲抛物面。
根据本申请的一个实施例,所述排气口处形成有倒角。
根据本申请的一个实施例,所述试剂反应腔包括:汇集腔,所述汇集腔与所述导液通道的另一端连通;试剂腔,所述试剂腔适于容纳试剂且与所述汇集腔连通。
根据本申请的一个实施例,所述试剂腔构造为多个,每个所述试剂腔与所述汇集腔之间设置有输液通道,所述输液通道在所述汇集腔与所述试剂腔之间弯曲延伸。
根据本申请的一个实施例,所述反应腔还包括:消泡腔,所述消泡腔分别通过所述输液通道与所述汇集腔和所述试剂腔连通。
根据本申请的一个实施例,所述消泡腔设置有与所述汇集腔连通的试剂进口,所述试剂在进口朝向消泡腔的方向上尺寸逐渐增大。
根据本申请的一个实施例,所述底壁部上设置有用于检测试剂腔的进光位和出光位;
检测管还包括:第一棱镜和第二棱镜,所述第一棱镜与所述第二棱镜对称设置于所述试剂腔的两侧且分别与所述进光位和出光位正对,所述第一棱镜适于将由进光位射入的光线导向所述试剂腔,所述第二棱镜适于将经过所述试剂腔的光线导向所述出光位。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的的检测管倒置的结构示意图;
图2是根据本申请实施例的检测管的俯视图;
图3是图2中A-A截面的剖视图;
图4是根据本申请实施例的检测管的侧视图;
图5是根据本申请实施例的检测管的结构示意图;
图6是根据本申请实施例的检测管的爆炸图;
图7是根据本申请实施例的检测管的侧视图。
附图标记:
检测管2
检测管本体21,底壁部211,进光位2111,出光位2112,第一棱镜2113,第二棱镜2114,
周壁部212,
第一配合孔2101,第二配合孔2102,
第一限位件2121,第一凸起部2121a,第二限位件2122,第二凸起部2122a,
针头22,导液通道220,排气槽221,排气口222,倒角223,
试剂反应腔23,
汇集腔231,试剂腔232,消泡腔233,试剂进口2331,输液通道234;
疏水透气膜24,热封膜25。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图7描述根据本申请实施例的检测管2。
如图1-图3所示,根据本申请的检测管2包括检测管本体21以及针头22,检测管本体21形成有适于容纳采样管的采样腔,采样腔的底壁内形成有试剂反应腔23,针头22形成于采样腔的内壁且内部形成有导液通道220,导液通道220的一端敞开另一端与所述试剂反应腔23连通。
检测管2中的采样腔可以用于容纳完成采样后的采样管,采样管内部储存有无酶水或其他用于承载样品的介质,在采样管进入于采样腔过程中,针头22将刺入采样管内部,并将利用针头22内的导液通道220将采样管内带有待检测样品的介质导入至检测管本体21底壁内的试剂反应腔23中,样品可以与试剂反应腔23中所存储的试剂发生 反应,在反应完成后可以根据试剂的状态判断样品的检测结果。
相关技术中,对于样品的采集完成后,需用将样品进行转运并进行培养,而样品的转运和培养过程需要保持全程的密封以避免环境污染,采样管以及检测管的密封性尤为重要。对于大批量的采样工作,现有技术中通过滴管的转运方式转运速度慢,效率低,难以可靠地完成大批量的检测化验,对于没有经过操作培训的用户,过程中还伴随一定的风险。对于采样完成后如何对采样管内部的样品进一步转运,以及对样品后续检测过程的优化成为了本领域的技术难题。
为此,申请人由进行检测的器具入手进行改进,目的在于创造一种新型的检测器具以降低转运难度,提高转运效率。
完成采样后的采样管保持密封状态,并放入至检测管本体21内的采样腔中,以确保转运过程采样管全程保持密封状态,减少环境污染提高安全性。
进一步地,检测管2通过在采样腔的底壁上设置试剂反应腔23以及在采样腔内壁上设置用于刺穿采样管的针头22,使得采样管在容纳于采样腔的过程中,针头22刺入采样管内部将采样管内部的带有样品的介质通过导液通道220输送至试剂反应腔中,以对样品进行反应并完成最终的检测。
根据本申请的检测管2,样品的转运与样品的检测均发生于检测管2中,无需利用其它器具对采样管内的介质进行操作,减少了样品与空气之间的接触,提高了检测管2对于样品检测的可靠性,并且检测管2与采样管之间的配合方式简单可靠,样品的转运效率高。
根据本申请的一个实施例,检测管本体21包括底壁部211和周壁部212,底壁部211内设置有试剂反应腔23,周壁部212设置于底壁部211的外周沿并与底壁部211限定出采样腔,周壁部212上设置有限制采样管脱离的限位件。
底壁部211与周壁部212限定出采样腔以用于容纳采样管,底壁部211上可以设置有针头22以用于刺穿采样管,在周壁部212上设置有限位件,限位件可以用于在针头22刺穿采样管后限制采样管脱离采样腔,以在针头22刺穿采样管后,限制采样管与针头22脱离,确保针头22穿刺采样管后保持采样管的内部的密封环境,避免介质与环境中的空气接触,提高了转运过程的可靠性。限位件还可以用于在加采样管完全插入至采样腔后,限制采样管的移动,以确保采样管内介质流动的可靠性。
限位件的设置使检测管2仅能使用一次,在限位件与采样管配合后,除破坏检测管2或采样管外,无法重复利用,也保证了检测管2与采样管的医疗安全。
根据本申请的一个实施例,限位件包括第一限位件2121和第二限位件2122,第一 限位件2121与第二限位件2122在采样管的插入方向上依次间隔布置于周壁部212。采样管在插入采样腔的过程中,针头22首先会穿刺采样管,采样管仍可以继续移动至采样腔的底部。
第一限位件2121和第二限位件2122的位置在采样管的插入方向依次布置,第一限位件2121适于在针头22进入采样管内使与采样管卡接以限制采样管脱离。在采样管的继续移动过程中,第二限位件2122适于在采样管与采样腔的底壁接触时,第二限位件2122与采样管配合,以限制采样管脱离采样腔,第二限位件2122适于保持采样管的稳定性,以确保采样管在检测过程中采样管无法脱离采样腔。
如图1和图3所示,根据本申请的一个实施例,周壁部212上设置有第一配合孔2101,第一配合孔2101与检测管本体21延伸方向相同,第二配合孔2102的远离底壁部211的侧边沿上设置有第一限位件2121,第一限位件2121的自由端形成有朝向采样腔凸出的第一凸起部2121a。
采样管的外周设置有配合部,配合部构造为形成于采样管下端外周的环形凸筋,环形凸筋的上端面为平面以适于与第一限位件2121上所设置的第一凸起部2121a止抵,第一凸起部2121a适于限制环形凸筋朝向拔出方向移动。
根据本申请的一个实施例,周壁部212上设置有第二配合孔2102,第二配合孔2102与检测管本体21延伸方向相同,第二配合孔2102的远离底壁部211的侧边沿上设置有第二限位件2122,第二限位件2122的自由端形成有朝向采样腔凸出的第二凸起部2122a。环形凸筋的上端面为平面以适于与第二限位件2122上所设置的第二凸起部2122a止抵,第二凸起部2122a适于限制环形凸筋朝向拔出方向移动。
这里需要说明是,第一凸起部2121a与第二凸起部2122a的位置在采样管的插入方向上依次布置,第一凸起部2121a适于在针头22穿刺采样管后与配合部卡接,第二凸起部2122a适于在采样管完全插入至采样腔后与配合部卡接。
如图2及图5所示,根据本申请的一个实施例,针头22的端面的至少部分内凹以形成排气槽221,排气槽221的至少一端于针头22的周向侧壁上敞开以形成排气口222。针头22在穿刺采样管的密封膜瞬间,密封膜的上方有液体压力,密封膜的下方有大气压力。对于更传统针尖设计,密封膜的表面会在穿刺的瞬间形成大气与液体压力的接触面,导致气体摄入与液体摄入同时发生,因此大量的气体通过针头22进入到试剂反应腔23内,导致试剂反应腔23内出现大气泡,影响对于试剂检测结果的分析准确度。
根据本申请的针头22目的在于减少针头22刺穿流体系统时吸入流体系统的气体量,在密封膜的穿刺点处,尽量减少针头22穿刺密封膜后所形成的形孔之间的间隙。 利用在针头22端面上所形成的排气槽221,以及将针头22的端部设计为内凹形,可以在针头22穿刺的过程中将空气排出,从而极大减少了空气通过导液通道220进入至试剂反应腔23内。
根据本申请的一个实施例,针头22的端面构造为弧形面、折线面或双曲抛物面。
在本申请的一个具体实施例中,针头22的端面构造为双曲抛物面,双曲抛物面凹入的两端形成排气口222,针头22端面的外周沿形成有的彼此正对的凸棱边缘,凸棱边缘用于穿刺采样管上的密封膜。
根据本申请的一个实施例,排气口222出形成有倒角223,排气口222处所形成的倒角223可以进一步提高排气口222的尺寸,提高了在针头22穿刺密封膜时的排气效果,以进一步降低气体进入到试剂反应腔23的可能性。
如图1所示,根据本申请的一个实施例,试剂反应腔23包括,汇集腔231和试剂腔232,汇集腔231与导液通道220的另一端连通,试剂腔232适于容纳试剂且与汇集腔231连通。汇集腔231用于汇集来自导液通道220的介质,介质汇集完成后导入至试剂腔232中并与试剂腔232内的试剂反应。
在本申请的一个实施例中,底壁部211的低端形成汇集槽,汇集槽设置于底壁部211的中心且与针头22的导液通道220正对,底壁部211的低端还形成有试剂槽,试剂槽与汇集槽之间通过流道槽连通。底壁部的低端设置有热封膜25,通过设置热封膜25以将汇集槽以及试剂槽密封以形成试剂腔232以及汇集腔231。
在本申请的一个实施例中,试剂槽构造为在厚度方向贯通底壁部211的通槽,在底壁部211的顶面设置有疏水透气膜24,热封膜25与疏水透气膜24公共用于密封试剂槽以形成试剂腔232。
根据本申请的一个实施例,试剂腔232构造为多个,每个试剂腔232与汇集腔231之间设置有输液通道234,输液通道234在汇集腔231与试剂腔232之间弯曲延伸。将试剂腔232构造为多个的目的在容纳多组试剂,位于每个试剂腔232内的试剂可以相同也可以不同,相同的试剂可以用于对照试验,不同的试剂可以用于对同一样品进行不同类型的测试。
在试剂腔232与汇集腔231之间设置输液通道234,并且通过设置输液通道234弯曲延伸可以减缓介质的流速,载有样品的介质流速过快会导致反应的不稳定,而通过将输液通道234弯曲设置,可以提高检测管2检测的稳定性。
根据本申请的一个实施例,反应腔还包括消泡腔233,消泡腔233分别通过输液通道234与汇集腔231与试剂腔232连通。消泡腔233位于汇集腔231与试剂腔232之间, 为减小介质内的气泡,通过在试剂腔232与汇集腔231之间设置消泡腔233以用于对介质进行缓冲,介质通过输液通道234流动至消泡腔233内逐渐将消泡腔233填充,在介质的继续流动过程中,气泡大部分留存于消泡腔233内,可以进一步减小进入试剂腔232内的气泡数量,提高对于介质检测的精度及可靠性。
根据本申请的一个实施例,消泡腔233设置有与汇集腔231连通的试剂进口,试剂进口2331朝向消泡腔233的方向上尺寸逐渐增大,试剂在经过试剂进口2331时液体流道的尺寸增加,流体中的气体可以更充分地被捕捉在消泡腔233中,从而减小了进入试剂腔232内的气体,以使在检测试剂腔232内的反应结构时,检测更加准确,消除了气泡对于检测结果的观测影响。
根据本申请的一个实施例,试剂腔232、与消泡腔233构造为一一对应的多个且关于汇集腔231中心对称设置,从而确保试剂进入不同的试剂腔232内的流速流量相同。
根据本申请的一个实施例,试剂反应腔23与采样腔之间设置有疏水透气膜24,针头22插入至采样管后,将采样管内的样品容纳腔与试剂反应腔23连通后,为保证介质的流动顺畅,通过在试剂反应腔23与采样腔之间设置有疏水透气膜24,利用疏水透气膜24可以保持试剂反应腔23的气压,以使介质可以通过导液通道220进入至试剂反应腔23内。
如图1所示,根据本申请的一个实施例,底壁上设置有进光位2111和出光位2112,检测管2还包括:第一棱镜2113和第二棱镜2114,第一棱镜2113与第二棱镜2114对称设置于试剂腔232的两侧且分别与进光位2111和出光位2112正对,第一棱镜2113适于将由进光位2111射入的光线导向试剂腔232,第二棱镜2114适于将经过试剂腔232的光线导向出光位2112。
根据本申请的检测管2适用于光学检测,用于检测检测管2的仪器设置有用于发出光线的出射单元以及用于接收光线的接收单元,出射单元与进光位2111正对,接收单元与出光位2112正对,出射单元的光线在第一棱镜2113的折射下进入试剂腔232,并在第二棱镜2114的折射下由出光位2112导出,最终由仪器上的接收单元所接收,经过对光线的颜色分析最终得知试剂的检测结果。
根据本申请的一个实施例,底壁部211构造为透明件,位于试剂腔232的两侧设置有第一导光槽以及第二导光槽,第一导光槽的底壁倾斜设置以构造为第一棱镜2113,第二导光槽的底壁倾斜设置以构造为第二棱镜2114,底壁部211中与第一导光槽正对的部分构造为进光位2111,底壁部211中与第二导光槽正对的部分构造为出光位2112。
第一棱镜2113与第二棱镜2114分别与底壁部的底面呈40°-50°角设置。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
在本申请的描述中,“多个”的含义是两个或两个以上。
在本申请的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。
在本申请的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种检测管,其特征在于,包括:
    检测管本体,所述检测管本体形成有适于容纳采样管的采样腔,所述采样腔的底壁内形成有试剂反应腔;
    针头,所述针头形成于所述采样腔的内壁且所述针头内部形成有导液通道,所述导液通道的一端敞开另一端与所述试剂反应腔连通。
  2. 根据权利要求1所述的检测管,其特征在于,所述检测管本体包括:
    底壁部,所述底壁部内设置有所述试剂反应腔;
    周壁部,所述周壁部设置于所述底壁部的外周沿并与所述底壁部限定出所述采样腔,所述周壁部上设置有限制所述采样管脱离采样腔的限位件。
  3. 根据权利要求2所述的检测管,其特征在于,所述限位件包括第一限位件和第二限位件,所述第一限位件与所述第二限位件在所述采样管插入方向上依次间隔布置于所述周壁部;其中
    所述第一限位件适于在所述针头进入所述采样管内时与所述采样管卡接以限制所述采样管脱离;
    所述第二限位件适于在所述采样管与所述采样腔的底壁接触时限制所述采样管脱离。
  4. 根据权利要求3所述的检测管,其特征在于,所述周壁部上设置有第一配合孔,所述第一配合孔与所述检测管本体延伸方向相同,所述第一配合孔的远离所述底壁部的侧边沿上设置有所述第一限位件,所述第一限位件的自由端形成有朝向所述采样腔凸出的第一凸起部;
    所述周壁部上设置有第二配合孔,所述第二配合孔与所述检测管本体延伸方向相同,所述第二配合孔的远离所述底壁部的侧边沿上设置有所述第二限位件,所述第二限位件的自由端形成有朝向所述采样腔凸出的第二凸起部。
  5. 根据权利要求1-4中任意一项所述的检测管,其特征在于,所述针头的端面的至少部分内凹以形成有排气槽,所述排气槽的至少一端于所述针头的周向侧壁上敞开以形成排气口。
  6. 根据权利要求5所述的检测管,其特征在于,所述端面构造为弧形面、折线面、双曲抛物面。
  7. 根据权利要求6所述的检测管,其特征在于,所述排气口处形成有倒角。
  8. 根据权利要求1-7中任意一项所述的检测管,其特征在于,所述试剂反应腔包括:
    汇集腔,所述汇集腔与所述导液通道的另一端连通;
    试剂腔,所述试剂腔适于容纳试剂且与所述汇集腔连通。
  9. 根据权利要求8所述的检测管,其特征在于,所述试剂腔构造为多个,每个所述试剂腔与所述汇集腔之间设置有输液通道,所述输液通道在所述汇集腔与所述试剂腔之间弯曲延伸。
  10. 根据权利要求9所述的检测管,其特征在于,所述反应腔还包括:消泡腔,所述消泡腔分别通过所述输液通道与所述汇集腔和所述试剂腔连通。
  11. 根据权利要求10所述的检测管,其特征在于,所述消泡腔设置有与所述汇集腔连通的试剂进口,所述试剂在进口朝向消泡腔的方向上尺寸逐渐增大。
  12. 根据权利要求8-11中任意一项所述的检测管,其特征在于,所述底壁部上设置有用于检测试剂腔的进光位和出光位;
    检测管还包括:第一棱镜和第二棱镜,所述第一棱镜与所述第二棱镜对称设置于所述试剂腔的两侧且分别与所述进光位和出光位正对,所述第一棱镜适于将由进光位射入的光线导向所述试剂腔,所述第二棱镜适于将经过所述试剂腔的光线导向所述出光位。
  13. 根据权利要求1-12中任意一项所述的检测管,其特征在于,所述试剂反应腔与采样腔之间设置有疏水透气膜。
PCT/CN2021/116786 2021-09-06 2021-09-06 检测管 WO2023029056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116786 WO2023029056A1 (zh) 2021-09-06 2021-09-06 检测管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116786 WO2023029056A1 (zh) 2021-09-06 2021-09-06 检测管

Publications (1)

Publication Number Publication Date
WO2023029056A1 true WO2023029056A1 (zh) 2023-03-09

Family

ID=85411880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116786 WO2023029056A1 (zh) 2021-09-06 2021-09-06 检测管

Country Status (1)

Country Link
WO (1) WO2023029056A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229783C1 (de) * 1982-08-10 1984-01-05 B. Braun Melsungen Ag, 3508 Melsungen Blutenentnahmevorrichtung
EP0619096A1 (en) * 1993-02-22 1994-10-12 Issei Suzuki Needle assembly for a blood sample collection
EP1442705A1 (en) * 2003-01-16 2004-08-04 Becton, Dickinson and Company Blood collection set with venting mechanism
US6905483B2 (en) * 2002-06-07 2005-06-14 Becton, Dickinson And Company Flashback device for venous specimen collection
JP3674946B2 (ja) * 2001-03-01 2005-07-27 ニプロ株式会社 採血針
CN202553949U (zh) * 2012-04-27 2012-11-28 李国华 血气采血器
CN105744889A (zh) * 2013-09-17 2016-07-06 格莱恩比奥-奥内有限公司 用于体液、尤其是血液的提取单元
CN206244786U (zh) * 2016-11-17 2017-06-13 蔡向荣 一种病毒采样器
CN207396138U (zh) * 2017-11-01 2018-05-22 浙江浩普环保工程有限公司 一种内置移动式污染物采样装置
CN207457252U (zh) * 2017-11-23 2018-06-05 深圳迈瑞生物医疗电子股份有限公司 一种血红蛋白反应装置及样本分析仪
CN112553060A (zh) * 2020-11-19 2021-03-26 圣湘生物科技股份有限公司 样本处理装置及其处理方法
CN113063780A (zh) * 2021-03-17 2021-07-02 长春长光辰英生物科学仪器有限公司 一种用于光学检测的拭子样品流体系统及其使用方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3229783C1 (de) * 1982-08-10 1984-01-05 B. Braun Melsungen Ag, 3508 Melsungen Blutenentnahmevorrichtung
EP0619096A1 (en) * 1993-02-22 1994-10-12 Issei Suzuki Needle assembly for a blood sample collection
JP3674946B2 (ja) * 2001-03-01 2005-07-27 ニプロ株式会社 採血針
US6905483B2 (en) * 2002-06-07 2005-06-14 Becton, Dickinson And Company Flashback device for venous specimen collection
EP1442705A1 (en) * 2003-01-16 2004-08-04 Becton, Dickinson and Company Blood collection set with venting mechanism
CN202553949U (zh) * 2012-04-27 2012-11-28 李国华 血气采血器
CN105744889A (zh) * 2013-09-17 2016-07-06 格莱恩比奥-奥内有限公司 用于体液、尤其是血液的提取单元
CN206244786U (zh) * 2016-11-17 2017-06-13 蔡向荣 一种病毒采样器
CN207396138U (zh) * 2017-11-01 2018-05-22 浙江浩普环保工程有限公司 一种内置移动式污染物采样装置
CN207457252U (zh) * 2017-11-23 2018-06-05 深圳迈瑞生物医疗电子股份有限公司 一种血红蛋白反应装置及样本分析仪
CN112553060A (zh) * 2020-11-19 2021-03-26 圣湘生物科技股份有限公司 样本处理装置及其处理方法
CN113063780A (zh) * 2021-03-17 2021-07-02 长春长光辰英生物科学仪器有限公司 一种用于光学检测的拭子样品流体系统及其使用方法

Similar Documents

Publication Publication Date Title
CN111394234B (zh) 一种用于核酸扩增的数字化芯片及方法
WO2022121394A1 (zh) 多通道微流控加样装置、组件及其应用
CN111157723B (zh) 一种新型冠状病毒的快速检测盒
EP3674393A1 (en) Droplet detection apparatus
WO2023029056A1 (zh) 检测管
WO2023029054A1 (zh) 采集总成
CN116121039A (zh) 样品检测耗材及样品检测方法
CN217180938U (zh) 检测管
WO2023174208A1 (zh) 微流控芯片及微流控系统
CN202794018U (zh) 一种光纤接口的z型流通池
US20230111413A1 (en) Sample pretreatment tube
CN214735781U (zh) 一种密闭式核酸检测用具
WO2022213383A1 (zh) 一种封闭式核酸检测耗材及检测方法
US20220288580A1 (en) Liquid transfer device
CN116445269A (zh) 基于旋扭隔离阀的核酸检测卡及检测方法
CN113667597B (zh) 一种集液滴取样、样本处理、检测一体化的采样枪及方法
CN214142375U (zh) 一种核酸试剂反应装置
CN217180936U (zh) 采集总成
CN211148676U (zh) 穿刺取样针
CN217948111U (zh) 单人份实时荧光定量pcr扩增管
CN218824321U (zh) 检测管及其试剂管
CN205599189U (zh) 一种试剂瓶插管
CN217809346U (zh) 一种pcr管盖
CN111822064A (zh) 微流控基板及微流控芯片
CN218646990U (zh) 检测管及其反应管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955587

Country of ref document: EP

Kind code of ref document: A1