WO2023028963A1 - 薄膜沉积装置及薄膜沉积方法及薄膜沉积设备 - Google Patents
薄膜沉积装置及薄膜沉积方法及薄膜沉积设备 Download PDFInfo
- Publication number
- WO2023028963A1 WO2023028963A1 PCT/CN2021/116302 CN2021116302W WO2023028963A1 WO 2023028963 A1 WO2023028963 A1 WO 2023028963A1 CN 2021116302 W CN2021116302 W CN 2021116302W WO 2023028963 A1 WO2023028963 A1 WO 2023028963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- thin film
- film deposition
- processing chamber
- heating tray
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 183
- 238000000427 thin-film deposition Methods 0.000 title claims abstract description 156
- 239000000758 substrate Substances 0.000 claims abstract description 438
- 238000010438 heat treatment Methods 0.000 claims abstract description 197
- 230000008569 process Effects 0.000 claims abstract description 172
- 230000007246 mechanism Effects 0.000 claims abstract description 79
- 238000000151 deposition Methods 0.000 claims abstract description 58
- 239000010409 thin film Substances 0.000 claims abstract description 58
- 230000001360 synchronised effect Effects 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 260
- 239000010408 film Substances 0.000 claims description 89
- 239000000463 material Substances 0.000 claims description 55
- 238000007736 thin film deposition technique Methods 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 238000005137 deposition process Methods 0.000 claims description 15
- 239000011261 inert gas Substances 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 230000003750 conditioning effect Effects 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000008021 deposition Effects 0.000 abstract description 24
- 238000005530 etching Methods 0.000 abstract description 20
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 abstract description 20
- 239000004065 semiconductor Substances 0.000 abstract description 11
- 238000010891 electric arc Methods 0.000 description 15
- 229910001873 dinitrogen Inorganic materials 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 239000002912 waste gas Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000009828 non-uniform distribution Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
Definitions
- the invention relates to the technical field of semiconductor manufacturing, in particular to a thin film deposition device, a thin film deposition method and a thin film deposition equipment.
- a layer stack of different materials is deposited onto a substrate.
- the substrate is placed in the vacuum processing chamber, firstly the first processing gas is introduced to form the first layer of the first material on the substrate; then plasma purification and gas purification are performed, and then the second A process gas is introduced to form a second layer of the second material on the substrate.
- the above-mentioned plasma cleaning and gas cleaning are repeated, and the first material and the second material are stacked and deposited on the substrate to form a thin film with a layer stack structure.
- three-dimensional (3D) memory can be made from a layer stack of alternating thin-film materials deposited on a substrate.
- 3D storage uses alternating layers of oxide and nitride films to achieve the purpose of storing data in a three-dimensional structure through related processes.
- These stacked structures may include multiple layers of the first material and the second material, such as a continuous stack of more than 300 or even 500 layers.
- the stack structure of the first material and the second material in the thin film material of the 3D storage stack may be oxide and silicon, silicon and doped silicon, or silicon and nitride.
- most of the thin film materials of these material combinations for 3D storage stacks can be applied to BiCS (Bit-Cost Scalable), TCAT (Terabit Cell Array Transistor) or other 3D storage structures.
- the stack structure of the first material and the second material may also be other material compositions, and the sequence of depositing the first material and the second material layer on the substrate may also be reversed.
- the control range makes the subsequent etching process unable to achieve the accuracy of via hole etching, resulting in the deviation of the etched via hole from the vertical direction during the etching process, which further leads to the failure of the semiconductor device.
- the heating tray needs to be fixed to ensure the flatness of the heating tray.
- the temperature distribution of the substrate will form a fixed pattern, which will lead to uneven heating of the substrate.
- the etching via hole deviates from the vertical direction during the etching process, which further leads to failure of the semiconductor device.
- the purpose of the present invention is to provide a thin film deposition device, a thin film deposition method and a thin film deposition equipment, which are used to solve the problem of poor uniformity of the deposited thin film on the substrate in the prior art.
- the present invention provides a thin film deposition device, comprising:
- a gas supply component arranged on the top wall of the processing chamber, is used to supply process gas to the inside of the processing chamber;
- a heating tray arranged under the gas supply assembly, for carrying and heating the substrate
- the radio frequency source is used to provide radio frequency power to excite the process gas inside the processing chamber to dissociate into plasma gas, and the plasma gas performs thin film deposition on the substrate;
- the rotation mechanism controls the rotation of the substrate or the heating tray or the synchronous rotation of the substrate and the heating tray, and the rotation axis of the rotation is vertical and passes through the substrate;
- the rotation mechanism drives the substrate to rotate or the heating tray to rotate, or the substrate and the heating tray to rotate synchronously, the RF source is kept on.
- the present invention also provides a thin film deposition device, comprising:
- a gas supply component arranged on the top wall of the processing chamber, is used to supply process gas to the inside of the processing chamber;
- a heating tray arranged under the gas supply assembly, for carrying and heating the substrate
- the radio frequency source is used to provide radio frequency power to excite the process gas inside the processing chamber to dissociate into plasma gas, and the plasma gas performs thin film deposition on the substrate;
- the rotating mechanism is connected with the gas supply component and is used to drive the gas supply component to rotate.
- the present invention also provides a thin film deposition device, comprising:
- a gas supply component arranged on the top wall of the processing chamber, is used to supply process gas to the inside of the processing chamber;
- a heating tray arranged under the gas supply assembly, for carrying and heating the substrate
- the radio frequency source is used to provide radio frequency power to excite the process gas inside the processing chamber to dissociate into plasma gas, and the plasma gas performs thin film deposition on the substrate;
- the rotation mechanism is connected with the heating tray, and is used to drive the heating tray to take the axis passing through the center of the substrate as the rotation axis to drive the substrate to rotate synchronously;
- the radio frequency source is adjusted to be off.
- the present invention also provides a thin film deposition device, comprising:
- a gas supply component arranged on the top wall of the processing chamber, is used to supply process gas to the inside of the processing chamber;
- a heating tray arranged under the gas supply assembly, for carrying and heating the substrate
- the radio frequency source is used to provide radio frequency power to excite the process gas inside the processing chamber to dissociate into plasma gas, and the plasma gas performs thin film deposition on the substrate;
- the lifting mechanism is connected with the support, and is used to drive the support to rise or fall in the vertical direction, so as to lift the substrate away from the heating tray or place the substrate on the heating tray;
- the rotating mechanism is connected with the heating tray, and is used to drive the heating tray to rotate around the axis passing through the center of the substrate;
- the radio frequency source is adjusted to be off.
- the present invention also provides a thin film deposition device, comprising:
- the gas supply assembly is arranged on the top wall of the processing chamber and has a first porous plate for supplying process gas to the inside of the processing chamber;
- a heating tray arranged under the gas supply assembly, for carrying and heating the substrate
- the gas regulating unit is arranged inside the gas supply assembly, the gas regulating unit has a second porous plate, the second porous plate is opposite to the first porous plate of the gas supply assembly, the second porous plate is opposite to the first porous plate of the gas supply assembly A gap between the perforated plates is adjustable.
- the present invention also provides a thin film deposition method, comprising the following steps:
- Step S1 placing the substrate in the processing chamber, and evacuating the processing chamber;
- Step S2 injecting process gas into the processing chamber, and turning on the radio frequency source, depositing a certain number of layers of film on the substrate;
- Step S3 stop feeding the process gas into the processing chamber, and feed non-process gas to maintain the pressure inside the processing chamber;
- Step S4 keeping the RF source turned on, rotating the substrate or the heating tray, or synchronously rotating the substrate and the heating tray by a set angle;
- Step S5 injecting process gas into the processing chamber again, and depositing a certain number of layers of thin films on the substrate;
- Step S6 stop feeding the process gas into the processing chamber, and feed non-process gas to maintain the pressure inside the processing chamber;
- Step S7 judging whether the number of layers of the film deposited on the substrate satisfies the set number of layers; if not, repeat the above steps S2-S6; if yes, execute step S8;
- Step S8 taking out the substrate from inside the processing chamber.
- the present invention also provides a thin film deposition method, comprising the following steps:
- Step S1 placing the substrate in the processing chamber, and evacuating the processing chamber;
- Step S2 injecting process gas into the processing chamber, and turning on the radio frequency source, depositing a certain number of layers of film on the substrate;
- Step S3 stop feeding the process gas into the processing chamber, and feed non-process gas to maintain the pressure inside the processing chamber;
- Step S4 adjusting the radio frequency source to be off, so that the heating tray drives the substrate to rotate synchronously by a set angle;
- Step S5 introducing process gas into the processing chamber, and adjusting the radio frequency source to be on, and then depositing a certain number of layers of thin films on the substrate;
- Step S6 stop feeding the process gas into the processing chamber, and feed non-process gas to maintain the pressure inside the processing chamber;
- Step S7 judging whether the number of layers of the film deposited on the substrate satisfies the set number of layers; if not, repeat the above steps S2-S6; if yes, execute step S8;
- Step S8 taking out the substrate from inside the processing chamber.
- the present invention also provides a thin film deposition method, comprising the following steps:
- Step S1 placing the substrate in the processing chamber, and evacuating the processing chamber;
- Step S2 injecting process gas into the processing chamber, and turning on the radio frequency source, depositing a certain number of layers of film on the substrate;
- Step S3 stop feeding the process gas into the processing chamber, and feed non-process gas to maintain the pressure inside the processing chamber;
- Step S4 adjusting the radio frequency source to be off, lifting the substrate, and driving the heating tray to rotate at a set angle, and then placing the substrate back on the heating tray;
- Step S5 introducing process gas into the processing chamber, and adjusting the radio frequency source to be on, and then depositing a certain number of layers of thin films on the substrate;
- Step S6 stop feeding the process gas into the processing chamber, and feed non-process gas to maintain the pressure inside the processing chamber;
- Step S7 judging whether the number of layers of the film deposited on the substrate satisfies the set number of layers; if not, repeat the above steps S2-S6; if yes, execute step S8;
- Step S8 taking out the substrate from inside the processing chamber.
- the present invention also provides a thin film deposition method, comprising the following steps:
- step S1 multiple substrates are sequentially put into the processing chamber to complete the thin film deposition process
- Step S2 rotating the gas supply assembly by a set angle
- step S3 the processing chamber is cleaned, and after the cleaning process is completed, steps S1-S3 are repeated.
- the present invention also provides a thin film deposition method, comprising the following steps:
- Step S1 placing a plurality of substrates in sequence in the processing chamber to complete the thin film deposition process
- Step S2 adjusting the gap between the second porous plate of the gas conditioning unit and the first porous plate of the gas supply assembly
- step S3 the processing chamber is cleaned, and after the cleaning process is completed, steps S1-S3 are repeated.
- the present invention also provides a thin film deposition equipment, comprising:
- Substrate loading port for placing substrates
- a front-end manipulator for transferring substrates between the substrate load port and the buffer device
- the thin film deposition device as described above is used for thin film deposition on the substrate;
- the process robot is used to transfer the substrate between the buffer device and the processing chamber of the thin film deposition device.
- the problem of poor uniformity of the deposited film when depositing super multi-layers (for example, >200 layers) is solved, so that when the number of layers deposited by the film exceeds 200 layers, the uniformity of the film deposition of the PECVD layer stack structure is realized It avoids the phenomenon that the thin film deposited on the substrate deviates from the vertical direction during the subsequent etching process, thereby ensuring the stability of the performance of the semiconductor device.
- Fig. 1 illustrates a schematic diagram of tilting of a multi-layer thin film deposited by the existing PECVD thin film deposition technology.
- FIG. 2A and FIG. 2B respectively illustrate schematic diagrams before and after the substrate of the thin film deposition device in Embodiment 1 provided by the present invention is lifted.
- FIG. 3A and FIG. 3B respectively illustrate the top view before and after the thimble rotation setting angle in Embodiment 1 provided by the present invention.
- FIG. 4A and FIG. 4B respectively illustrate schematic diagrams before and after the substrate of the thin film deposition device in Embodiment 5 provided by the present invention is lifted.
- Fig. 5 illustrates a top view of the support ring in Embodiment 5 provided by the present invention.
- FIG. 6A and FIG. 6B respectively illustrate schematic diagrams before and after the substrate of the thin film deposition device in Embodiment 6 provided by the present invention is lifted up.
- Fig. 7 illustrates the top view of the thimble and the support ring in Embodiment 6 provided by the present invention.
- 8A to 8D respectively illustrate the schematic diagrams of different set angles of rotation of the substrate provided by the present invention.
- FIG. 9 illustrates a schematic structural view of the thin film deposition apparatus in Embodiment 7 and Embodiment 10 provided by the present invention.
- FIG. 10 illustrates the schematic structural diagrams of the thin film deposition devices in Embodiment 8 and Embodiment 11 provided by the present invention.
- FIG. 11 illustrates a schematic structural view of a thin film deposition device in Embodiment 9 provided by the present invention.
- Fig. 12A illustrates a schematic diagram of non-uniform distribution of gas supplied by the gas supply component in the existing PECVD film deposition technology resulting in non-uniform deposited film.
- FIG. 12B illustrates a schematic diagram of the non-uniform deposited film caused by exhaust gas drawn by the air pump in the existing PECVD thin film deposition technology.
- FIG. 13A illustrates a schematic structural view of a thin film deposition device in Embodiment 12 provided by the present invention.
- 13B to 13C respectively illustrate the schematic views of the side walls of the gas regulating assembly in Embodiment 12 provided by the present invention stretching downward and compressing upward respectively.
- FIG. 14A illustrates a schematic structural view of a thin film deposition device in Embodiment 13 provided by the present invention.
- FIG. 14B to FIG. 14C respectively illustrate schematic diagrams of upward compression and downward stretching of the telescopic rod in Embodiment 13 provided by the present invention.
- FIG. 15 illustrates a schematic flowchart of the film deposition method in Embodiment 14 provided by the present invention.
- FIG. 16 illustrates a schematic flowchart of the film deposition method in Embodiment 18 provided by the present invention.
- FIG. 17 illustrates a schematic flowchart of the film deposition method in Embodiment 19 provided by the present invention.
- FIG. 18 illustrates a schematic flowchart of the film deposition method in Embodiment 20 provided by the present invention.
- FIG. 19 illustrates a schematic flowchart of the film deposition method in Embodiment 21 provided by the present invention.
- 20A to 20G respectively illustrate the schematic layout of the thin film deposition equipment in Embodiment 22 and Embodiment 23 provided by the present invention.
- the flatness of the substrate on the heating tray is different due to the uneven temperature distribution of the heating tray or the stress of the substrate, resulting in poor uniformity during the film deposition process.
- the thickness of the thin film of the layer stack structure formed on the substrate w increases, as shown in Figure 1 As shown, the stacked films are tilted by a certain angle ⁇ .
- the uniformity of the stacked film is deteriorated, causing the uniformity of the film on the substrate w to deviate from the controllable range, and the subsequent etching process cannot achieve through-hole etching.
- the accuracy of the etching process leads to the deviation of the etched via hole from the vertical direction during the etching process, which further leads to the failure of the semiconductor device.
- Embodiment 1 provides a thin film deposition device.
- the thin film deposition apparatus includes: a processing chamber 1 for thin film deposition; a gas supply assembly 2 arranged on the top wall of the processing chamber 1 for supplying 1 internal supply of process gas; heating tray 3, arranged under the gas supply assembly 2, for carrying and heating the substrate w; radio frequency source 5, for providing radio frequency power, forming a radio frequency electric field inside the processing chamber 1 to excite the processing chamber
- the process gas inside the chamber 1 is dissociated into plasma gas, and the dissociated plasma gas deposits thin films on the substrate w; the rotation mechanism 403 controls the rotation of the substrate w, and the rotation axis AA' of the rotation is vertical and passes through the substrate w .
- the rotation axis AA' of the rotation passes through the center O of the substrate w, so that the substrate w rotates around the rotation axis AA'.
- the rotation mechanism 403 drives the substrate w to rotate, stop feeding the process gas into the processing chamber 1, and feed inert gas or nitrogen gas into the processing chamber 1 to maintain the pressure in the processing chamber 1 and keep the RF source 5 is open. Because after depositing a certain number of layers of film on the substrate w, some impurity particles are suspended inside the processing chamber 1. At this time, keep the radio frequency source 5 in an open state, and the inside of the processing chamber 1 is filled with a radio frequency electric field, and the impurity particles are in the processing chamber.
- the charged impurity particles remain suspended and will not fall on the surface of the substrate w, which effectively prevents the impurity particles from falling on the thin film deposited on the substrate w, and avoids damage to the thin film deposited on the substrate w pollute.
- this embodiment 1 proposes to drive the substrate w to rotate while keeping the radio frequency source 5 turned on, which compensates for the uneven thickness of the film deposited on the substrate w, and realizes the uniformity and stability of the film deposition of the PECVD layer stack structure. The phenomenon that the thin film deposited on the substrate w deviates from the vertical direction during the subsequent etching process is avoided, thereby further ensuring the stability of the performance of the semiconductor device.
- the thin film deposition apparatus further includes: a support for supporting the substrate w; a lifting mechanism 402 connected with the support for driving the support to rise or fall in the vertical direction to Lifting the substrate w away from the heating tray 3 or placing the substrate w on the heating tray 3 .
- the rotating mechanism 403 is disposed at the bottom of the lifting mechanism 402 for driving the supporting member and the lifting mechanism 402 to rotate synchronously along the horizontal circumferential direction to drive the substrate w to rotate.
- the supporting member is a thimble 401 that can move vertically and horizontally
- the heating tray 3 is provided with a first through hole 301
- the thimble 401 is disposed in the first through hole 301 .
- the cross section of the first through hole 301 on the horizontal plane is arc-shaped or circular
- the center M of the arc-shaped or circular shape is on a vertical line with the center O of the substrate w.
- the lifting mechanism 402 can be a cylinder 402, and the cylinder 402 is connected to the bottom of the thimble 401;
- the rotating mechanism 403 can be a motor 403, and the motor 403 is connected to the bottom of the cylinder 402, and the cylinder 402 drives the thimble 401 to rise or fall.
- the motor 403 drives the cylinder 402 and the thimble 401 to rotate synchronously.
- the lifting mechanism 402 drives the thimble 401 to rise vertically and protrude from the first through hole 301 , and the thimble 401 lifts the substrate w, so that the substrate w is separated from the heating tray.
- the rotating mechanism 403 drives the thimble 401 to move along an arc-shaped trajectory in the first through hole 301, so that the substrate w rotates at a set angle, as shown in Figure 3A and Figure 3B; after the substrate w rotates at a set angle, the substrate w w stops rotating, the lifting mechanism 402 drives the thimble 401 to move down vertically, and the substrate w is placed on the heating tray 3 for subsequent film deposition.
- At least three thimbles 401 are used to lift the substrate w to rotate the substrate w to a set angle, which compensates for the uneven thickness of the film deposited on the substrate w, and realizes the uniform deposition of the PECVD layer stack structure film and stability, avoiding the phenomenon that the thin film deposited on the substrate w deviates from the vertical direction during the subsequent etching process, thereby further ensuring the stability of the performance of the semiconductor device.
- a door 101 is provided on the side wall of the processing chamber 1 , for manipulators to enter the processing chamber 1 before and after the thin film deposition process on the substrate w, and place or remove the substrate w from the heating tray 3 .
- the number of rotations of the substrate w is 5 times, and the set angle of each rotation is 60 degrees; it is also possible that the number of rotations of the substrate w is 3 times, and the setting angle of each rotation is 90 degrees; it is also possible that the number of rotations of the substrate w is 2 times, and the setting angle of each rotation is 120 degrees; the number of rotations of the substrate w is 1 time, and each time The set angle of rotation is 180 degrees.
- the deposition rate of the thin film on the substrate w is related to the multiple of the radio frequency power of the radio frequency source 5;
- the low-frequency frequency range of the radio frequency source 5 is 20KHz-400KHz.
- the gap between the back of the substrate w and the heating tray 3 is too large, which may easily lead to arc discharge. Therefore, in this embodiment 1, in order to avoid arc discharge phenomenon when the substrate w is separated from the heating tray 3 when the radio frequency source 5 is turned on, as shown in FIG. 2A and FIG. In order to prevent the substrate w from detaching from the heating tray 3 in the atmosphere of the plasma gas, the phenomenon of arc discharge occurs.
- the set value of the gap between the substrate w and the heating tray 3 is m, where 0 ⁇ m ⁇ 5 mm. Therefore, under the condition that the gap between the substrate w and the heating tray 3 is smaller than the set value, the RF source 5 is kept on to reduce the risk of arc discharge on the substrate w and ensure the safety and stability of the thin film deposition process.
- This embodiment 2 provides a thin film deposition device, compared with embodiment 1, the difference is:
- the heating tray 3 is provided with a second through hole 302.
- the radio frequency source 5 is kept on, and the RF source 5 is connected to the substrate w and the heating tray 3 through the second through hole 302.
- non-process gas is passed into the gap between them.
- the non-process gas is inert gas or nitrogen.
- the radio frequency source 5 is kept on to reduce the risk of arc discharge on the substrate w and ensure the safety and stability of the thin film deposition process.
- This embodiment 3 provides a thin film deposition device, compared with embodiment 1, the difference is:
- This embodiment 4 provides a thin film deposition device, compared with embodiment 1, the difference is:
- the radio frequency source 5 is adjusted to be off, and the processing chamber 1 is cleaned.
- the radio frequency source 5 is turned off, and nitrogen gas is supplied to the inside of the processing chamber 1 through the gas supply assembly 2 to purify the processing chamber 1 .
- this embodiment 5 provides a kind of film deposition device, compared with embodiment 1, the difference is:
- the support member is a support ring 404 arranged at the bottom of the edge of the substrate w, and the support ring 404 can be raised and lowered in the vertical direction and rotated around the center line AA' of the substrate w as the rotation axis.
- the support ring 404 is a circular ring with a notch a, or the support ring 404 includes multiple arcs located on the same circle.
- a door 101 is provided on the side wall of the processing chamber 1, for manipulators to enter the processing chamber 1 before and after the thin film deposition process on the substrate w, and place the substrate w on the support ring 404 or from the support ring 404 to remove the substrate w.
- the lifting mechanism 402 drives the support ring 404 to lift up in the vertical direction, lifts the substrate w, and separates the substrate w from the heating tray 3; then the rotating mechanism 403 drives the support
- the ring 404 rotates to drive the substrate w to rotate a set angle; the substrate w stops after rotating the set angle, and the lifting mechanism 402 drives the supporting ring 404 to move downward in the vertical direction, and the substrate w is placed on the heating tray 3 for thin film heating. deposition.
- the support ring 404 arranged at the bottom of the outer periphery of the substrate w is used to hold the substrate w up to adjust the rotation setting angle of the substrate w, so as to realize the rotation of the substrate w around the rotation axis AA', which compensates for the deposition on the substrate w.
- the inhomogeneity of the film thickness realizes the uniformity and stability of the film deposition of the PECVD layer stack structure.
- this embodiment 6 provides a thin film deposition device, compared with embodiment 1, the difference is:
- the thin film deposition apparatus further includes: a support member for supporting the substrate w, wherein the support member includes a thimble 401 and a support ring 404; a first lifting mechanism 402 is connected with the thimble 401 for driving The thimble 401 rises or falls in the vertical direction, which is used for the manipulator to take the substrate w from the heating tray 3 or place the substrate w on the heating tray 3; the second lifting mechanism 405 is connected with the support ring 404, and is used to drive the support ring 404 Up or down in the vertical direction to lift the substrate w away from the heating tray 3 or place the substrate w on the heating tray 3 .
- the rotating mechanism 403 is arranged at the bottom of the second lifting mechanism 405, and is used to drive the support ring 404 and the second lifting mechanism 405 to rotate synchronously with the center line AA' of the substrate w as the rotation axis, so as to drive the substrate w to rotate. .
- the heating tray 3 is provided with a first through hole 301 , and a thimble 401 is disposed in the first through hole 301 for supporting the substrate w through the first through hole 301 .
- the first lifting mechanism 402 drives the thimble 401 to rise vertically and protrudes from the first through hole 301 to carry the substrate w put in by the manipulator; then the second An elevating mechanism 402 drives the thimble 401 down vertically, and the thimble 401 retracts into the first through hole 301 , so that the substrate w is placed on the heating tray 3 for subsequent film deposition.
- the first lifting mechanism 402 drives the ejector pin 401 to rise vertically and protrudes from the first through hole 301 to lift the substrate w from the heating tray 3, It is convenient for the manipulator to take away the substrate w; then the first lifting mechanism 402 drives the thimble 401 to drop down in the vertical direction, and the thimble 401 retracts into the first through hole 301 .
- the second lifting mechanism 405 drives the support ring 404 to lift up in the vertical direction, lifts the substrate w, and separates the substrate w from the heating tray 3; then the rotation mechanism 403 drives the support ring 404 to rotate to drive the substrate w Rotate to set an angle; the substrate w rotates to a set angle and stops rotating, and the second lifting mechanism 405 drives the support ring 404 to move down vertically, and the substrate w is placed on the heating tray 3 for thin film deposition.
- Embodiment 7 provides a thin film deposition device.
- the thin film deposition device includes: a processing chamber 1 for thin film deposition; a gas supply assembly 2 arranged on the top wall of the processing chamber 1 for supplying process gas to the inside of the processing chamber 1; a heating tray 3 arranged on the top wall of the processing chamber 1
- the lower part of the gas supply component 2 is used to carry and heat the substrate w;
- the radio frequency source 5 is used to provide radio frequency power to form a radio frequency electric field inside the processing chamber 1 to excite the process gas inside the processing chamber 1 to dissociate into plasma gas , the dissociated plasma gas deposits thin films on the substrate w;
- the rotating mechanism 403 is connected with the heating tray 3, and is used to drive the heating tray 3 to rotate around the axis AA' passing through the center of the substrate w, thereby driving the substrate w synchronously rotate.
- the heating tray 3 drives the substrate w to rotate synchronously with the axis AA' passing through the center of the substrate w as the rotation axis.
- the axis of rotation AA' rotates in opposite directions.
- Embodiment 8 provides a thin film deposition device.
- the thin film deposition device includes: a processing chamber 1 for thin film deposition; a gas supply assembly 2 arranged on the top wall of the processing chamber 1 for supplying process gas to the inside of the processing chamber 1; a heating tray 3 arranged on the top wall of the processing chamber 1
- the lower part of the gas supply component 2 is used to carry and heat the substrate w; the radio frequency source 5 is used to provide radio frequency power to form a radio frequency electric field inside the processing chamber 1 to excite the process gas inside the processing chamber 1 to dissociate into plasma gas , the dissociated plasma gas deposits thin films on the substrate w.
- the thin film deposition device also includes: a support member for supporting the substrate w, wherein the support member is a support ring 404 arranged at the bottom of the edge of the substrate w; a lifting mechanism 402 connected with the support ring 404 and used for driving the support ring 404 to Up or down in a vertical direction to lift the substrate w away from the heating tray 3 or place the substrate w on the heating tray 3 .
- the rotating mechanism 403 is connected with the heating tray 3 and is used to drive the heating tray 3 to rotate around the axis AA' passing through the center of the substrate w.
- the rotation of the heating tray 3 with the axis AA' passing through the center of the substrate w as the rotation axis includes: after the heating tray 3 rotates around the rotation axis AA' in the positive direction at a set angle, and then rotates around the rotation axis AA' Rotate in reverse.
- the lifting mechanism 402 drives the support ring 404 to lift up in the vertical direction, lifts the substrate w, and separates the substrate w from the heating tray 3 , and then the rotating mechanism 403 drives the heating tray 3 Rotate a set angle; the heating tray 3 stops after rotating the set angle, and the lifting mechanism 402 drives the support ring 404 to move down vertically, and the substrate w is placed on the heating tray 3 for thin film deposition.
- this embodiment 9 provides a thin film deposition device, which includes: a processing chamber 1 for thin film deposition; a gas supply assembly 2 arranged on the top wall of the processing chamber 1, It is used to supply process gas to the inside of the processing chamber 1; the heating tray 3 is arranged under the gas supply assembly 2, and is used to carry and heat the substrate w; the radio frequency source 5 is used to provide radio frequency power to excite the gas inside the processing chamber 1.
- the process gas is dissociated into plasma gas, and the plasma gas deposits a thin film on the substrate w; the rotating mechanism 403 is connected with the gas supply assembly 2 and is used to drive the gas supply assembly 2 to rotate.
- the rotating mechanism 403 can be a motor 403, and the motor 403 is connected with the gas supply assembly 2 to drive the gas supply assembly 2 to rotate.
- the rotating mechanism 403 drives the gas supply assembly 2 to rotate at a set angle.
- the uniformity of the process gas supplied by the gas supply assembly 2 is improved, thereby improving the thickness uniformity of the deposited film on the substrate w, and realizing the uniformity and stability of the PECVD layer stack structure film deposition.
- this embodiment 10 provides a thin film deposition device, compared with embodiment 7, the difference is:
- the rotating mechanism 403 is connected with the heating tray 3, and is used to drive the heating tray 3 to rotate around the axis AA' passing through the center of the substrate w, so as to drive the substrate w to rotate synchronously.
- the radio frequency source 5 is adjusted to be off.
- this embodiment 11 provides a thin film deposition device, compared with embodiment 8, the difference is:
- the rotating mechanism 403 drives the heating tray 3 to rotate, it adjusts the radio frequency source 5 to be in an off state.
- the gas flow rate at the central position of the gas supply assembly 2 is greater than the gas flow rate at the outer periphery of the gas supply assembly 2, resulting in the thin film deposited on the substrate w during the film deposition process.
- the thickness of the central position of the substrate w is greater than the thickness of the outer peripheral edge, so that the film stacked on the surface of the substrate w is tilted at a certain angle ⁇ , resulting in uneven thickness of the deposited film on the substrate w, which leads to the deviation of the etched via hole from the vertical during the subsequent etching process. Orientation flaws.
- the processing chamber 1 is connected to an air pump for extracting waste gas during the deposition process of the processing chamber 1 .
- the extraction of the exhaust gas by the air pump can easily lead to the gas flow rate at the outer periphery of the gas supply assembly 2 being greater than the gas flow at the central position of the gas supply assembly 2, thus resulting in a film deposition process where the thickness of the thin film deposited on the substrate w at the central position is smaller than that at the outer periphery
- the thickness of the edge also causes the film stacked on the surface of the substrate w to incline at a certain angle ⁇ , resulting in uneven thickness of the deposited film on the substrate w, which leads to the defect that the etched through hole deviates from the vertical direction during the subsequent etching process.
- this embodiment 12 provides a thin film deposition device, specifically, as shown in FIG.
- the device includes: a processing chamber 1 for thin film deposition; a gas supply assembly 2 arranged on the top wall of the processing chamber 1 for supplying process gas to the inside of the processing chamber 1, and the gas supply assembly 2 has a first porous plate 21.
- the heating tray 3 is located under the gas supply assembly 2, and is used to carry and heat the substrate w; the gas adjustment unit 200 is arranged inside the gas supply assembly 2, and the bottom end of the gas adjustment unit 200 is provided with a second porous plate 201 , the second porous plate 201 is arranged opposite to the first porous plate 21 of the gas supply assembly 2 .
- the inhomogeneity of the internal plasma gas distribution realizes the uniformity and stability of the deposition of the stacked structure film on the substrate w in PECVD, and avoids the deviation of the through hole from the vertical direction during the subsequent etching process of the film deposited on the substrate w phenomenon, thereby further ensuring the stability of semiconductor device performance.
- the thin film deposition device further includes a radio frequency source 5, which is used to provide radio frequency power to form a radio frequency electric field inside the processing chamber 1 to excite the process gas inside the processing chamber 1 to dissociate into plasma gas.
- the dissociated plasma gas deposits thin films on the substrate w.
- the side wall 202 of the gas regulating assembly 200 can be stretched or shrunk in the vertical direction to adjust the gap between the second porous plate 201 and the first porous plate 21, so that the gas supply
- the process gas inside the component 2 can be fully mixed, thereby improving the defect that the uneven distribution of the plasma gas during the thin film deposition process causes uneven deposition of thin films on the surface of the substrate w.
- the side wall 202 of the gas adjustment assembly 200 is a bellows, which can be stretched downward or contracted upward in the vertical direction, so that the second end of the gas adjustment assembly 200 bottom
- the porous plate 201 is bent or arc-shaped to adjust the gap between the second porous plate 201 and the first porous plate 21, so that the process gas inside the gas supply assembly 2 can be fully mixed, thereby improving the plasma gas
- the uneven distribution leads to the uneven deposition of thin film on the surface of substrate w.
- this embodiment 13 provides a thin film deposition device, compared with embodiment 12, the difference is:
- the gas regulating assembly 200 includes a telescopic rod 203, and the telescopic rod 203 is connected to the second porous plate 201, and the telescopic rod 203 can be stretched or contracted in the vertical direction, so that the second porous plate 201 is bent or arc-shaped. , to adjust the gap between the second porous plate 201 and the first porous plate 21, so that the process gas inside the gas supply assembly 2 can be fully mixed, thereby improving the uneven distribution of the plasma gas inside the processing chamber 1 and causing the substrate w Defects of non-uniform film deposition on the surface.
- the telescopic rod 203 is arranged at the center of the gas conditioning unit 200 and connected to the center of the second porous plate 201 .
- FIG. 2A to FIG. 10 and FIG. 8 In order to solve the problem of uneven film deposition on the surface of the substrate w in the prior art, please refer to FIG. 2A to FIG. 10 and FIG. 8 and the thin film deposition devices in Examples 10-11.
- the film deposition method includes the following steps:
- Step S1 placing the substrate w in the processing chamber 1 of PECVD, and evacuating the processing chamber 1, so that the substrate w to be deposited with a thin film is in a vacuum environment;
- Step S2 inject process gas into the processing chamber 1, and turn on the radio frequency source 5, dissociate the process gas inside the processing chamber 1 into plasma gas, and deposit a certain number of layers of thin films on the substrate w;
- Step S3 stop feeding the process gas into the processing chamber 1, and feed a non-process gas, such as an inert gas or nitrogen gas, into the processing chamber 1 to maintain the pressure inside the processing chamber 1;
- a non-process gas such as an inert gas or nitrogen gas
- Step S4 keeping the radio frequency source 5 in an open state, rotating the substrate w or rotating the heating tray 3 or synchronously rotating the substrate w and the heating tray 3 by a set angle;
- Step S5 injecting process gas into the processing chamber 1 again, and then depositing a certain number of layers of thin films on the substrate w;
- Step S6 stop feeding the process gas into the processing chamber 1, and feed a non-process gas, such as an inert gas or nitrogen gas, into the processing chamber 1 to maintain the pressure inside the processing chamber 1;
- a non-process gas such as an inert gas or nitrogen gas
- Step S7 judging whether the number of layers of the deposited film on the substrate w satisfies the set number of layers; if not, repeat the above steps S2-S6; if yes, execute step S8;
- step S8 the substrate w is taken out from the PECVD processing chamber 1 to complete the film deposition process of the substrate w.
- the rotation axis AA' of the rotation of the substrate w or the rotation of the heating tray 3 or the synchronous rotation of the substrate w and the heating tray 3 is vertical and passes through the center O of the substrate w.
- the thin film deposited on the substrate w includes alternately deposited first material and second material.
- the first material is silicon oxide
- the second material is silicon nitride.
- the thin film deposition method further includes: after each material is deposited on the surface of the substrate w, the waste gas in the processing chamber 1 needs to be pumped away, and then subsequent process steps are performed.
- the charged impurity particles remain suspended and will not fall on the surface of the substrate w, which effectively prevents the impurity particles from falling on the thin film deposited on the substrate w, and avoids damage to the thin film deposited on the substrate w pollute.
- the number of rotations of the substrate w is 5 times, and the set angle of each rotation is 60 degrees; it is also possible that the number of rotations of the substrate w is 3 times, and the setting angle of each rotation is 90 degrees; it is also possible that the number of rotations of the substrate w is 2 times, and the setting angle of each rotation is 120 degrees; it is also possible that the number of rotations of the substrate w is 1 time , and the setting angle of each rotation is 180 degrees.
- the RF source 5 is kept on. After the substrate w is separated from the heating tray 3, the gap between the back of the substrate w and the heating tray 3 is too large, which may easily lead to the occurrence of arc discharge. . Therefore, in the fourteenth embodiment, in order to avoid the phenomenon of arc discharge when the substrate w is separated from the heating tray 3 when the radio frequency source 5 is turned on, it is necessary to adjust the gap between the substrate w and the heating tray 3 to be smaller than the set value, so as to avoid the substrate w In the plasma gas atmosphere, detachment from the heating tray 3 leads to the generation of arc discharge phenomenon.
- the set value of the gap between the substrate w and the heating tray 3 is m, where 0 ⁇ m ⁇ 5 mm. Therefore, under the condition that the gap between the substrate w and the heating tray 3 is smaller than the set value, the RF source 5 is kept on to reduce the risk of arc discharge on the substrate w and ensure the safety and stability of the thin film deposition process.
- Example 14 when the number of layers of film deposited on the surface of the substrate w is small (for example, less than 150 layers), the method of driving the heating tray 3 to drive the substrate w to rotate synchronously can be used to avoid arc discharge when the substrate w is lifted up. . In the case that the surface of the heating tray 3 is uneven, the method of lifting the substrate w and driving the substrate w to rotate or driving the heating tray 3 to solve the problem of uneven temperature of the heating tray 3 on the uniformity of the deposited film on the surface of the substrate w impact.
- This embodiment 15 provides a kind of film deposition method, compared with embodiment 14, the difference is:
- non-process gas is introduced into the gap between the substrate w and the heating tray 3 through the second through hole 302 on the heating tray 3, so as to reduce the occurrence of Risk of arcing.
- the non-process gas is an inert gas or nitrogen.
- the radio frequency source 5 is kept on to reduce the risk of arc discharge on the substrate w and ensure the safety and stability of the thin film deposition process.
- This embodiment 16 provides a thin film deposition method, compared with embodiment 14, the difference is:
- the RF source 5 in the open state, lower the RF power of the RF source 5 to be lower than the RF power of the RF source 5 during the film deposition process, so as to reduce the risk of arc discharge when the substrate w is separated from the heating tray 3, thereby Ensure the safety and stability of the thin film deposition process.
- This embodiment 17 provides a thin film deposition method, compared with embodiment 14, the difference is:
- the radio frequency source 5 is turned off and the processing chamber 1 is cleaned.
- the radio frequency source 5 can be turned off, and the nitrogen gas is supplied to the inside of the processing chamber 1 through the gas supply assembly 2, and the processing chamber Chamber 1 is decontaminated.
- this embodiment 18 provides a thin film deposition method, which is realized based on the thin film deposition apparatus in the above-mentioned embodiment 7 and embodiment 10.
- the film deposition method includes the following steps:
- Step S1 placing the substrate w in the processing chamber 1 of PECVD, and evacuating the processing chamber 1, so that the substrate w to be deposited with a thin film is in a vacuum environment;
- Step S2 inject process gas into the processing chamber 1, and turn on the radio frequency source 5, dissociate the process gas inside the processing chamber 1 into plasma gas, and deposit a certain number of layers of thin films on the substrate w;
- Step S3 stop feeding the process gas into the processing chamber 1, and feed an inert gas or nitrogen gas into the processing chamber 1 to maintain the pressure inside the processing chamber 1;
- Step S4 adjusting the radio frequency source 5 to be off, so that the heating tray 3 drives the substrate w to rotate synchronously by a set angle;
- Step S5 injecting the process gas into the processing chamber 1 again, and adjusting the radio frequency source 5 to be on, and then depositing a certain number of layers of film on the substrate w;
- Step S6 stop feeding the process gas into the processing chamber 1, and feed an inert gas or nitrogen gas into the processing chamber 1 to maintain the pressure inside the processing chamber 1;
- Step S7 judging whether the number of layers of the deposited film on the substrate w satisfies the set number of layers; if not, repeat the above steps S2-S6; if yes, execute step S8;
- step S8 the substrate w is taken out from the processing chamber 1 to complete the film deposition process.
- the rotation axis AA' that the heating tray 3 rotates synchronously with the substrate w is perpendicular to and passes through the center O of the substrate w.
- the synchronous rotation of the heating tray 3 with the axis AA' passing through the center of the substrate w as the rotation axis further includes: after the heating tray 3 rotates around the rotation axis AA' in the positive direction at a set angle, and then rotates Rotate in opposite directions about the axis of rotation AA'.
- the thin film deposited on the substrate w includes alternately deposited first material and second material.
- the thin film deposition method further includes: after each material is deposited on the surface of the substrate w, the waste gas in the processing chamber 1 needs to be pumped away, and then subsequent process steps are performed.
- the number of rotations of the substrate w is 5 times, and the set angle of each rotation is 60 degrees; it is also possible that the number of rotations of the substrate w is 3 times, and the setting angle of each rotation is 90 degrees; it is also possible that the number of rotations of the substrate w is 2 times, and the setting angle of each rotation is 120 degrees; it is also possible that the number of rotations of the substrate w is 1 time , and the setting angle of each rotation is 180 degrees.
- Embodiment 19 provides a thin film deposition method, which is implemented based on the thin film deposition devices in Embodiment 8 and Embodiment 11 above.
- the film deposition method includes the following steps:
- Step S1 placing the substrate w in the processing chamber 1 of PECVD, and evacuating the processing chamber 1, so that the substrate w to be deposited with a thin film is in a vacuum environment;
- Step S2 inject process gas into the processing chamber 1, and turn on the radio frequency source 5, dissociate the process gas inside the processing chamber 1 into plasma gas, and deposit a certain number of layers of thin films on the substrate w;
- Step S3 stop feeding the process gas into the processing chamber 1, and feed an inert gas or nitrogen gas into the processing chamber 1 to maintain the pressure inside the processing chamber 1;
- Step S4 adjusting the radio frequency source 5 to be off, jacking up the substrate w, driving the heating tray 3 to rotate at a set angle, and then placing the substrate w back on the heating tray 3;
- Step S5 inject process gas into the processing chamber 1, and adjust the radio frequency source 5 to be on, and then deposit a certain number of layers of thin films on the substrate w;
- Step S6 stop feeding the process gas into the processing chamber 1, and feed an inert gas or nitrogen gas into the processing chamber 1 to maintain the pressure inside the processing chamber 1;
- Step S7 judging whether the number of layers of the deposited film on the substrate w satisfies the set number of layers; if not, repeat the above steps S2-S6; if yes, execute step S8;
- step S8 the substrate w is taken out from the processing chamber 1 to complete the film deposition process.
- the rotation axis AA' of the heating tray 3 is vertical and passes through the center O of the substrate w.
- the rotation of the heating tray 3 with the axis AA' passing through the center of the substrate w as the rotation axis further includes: after the heating tray 3 rotates around the rotation axis AA' in the forward direction for a set angle, and then rotates around the rotation axis AA ' Rotate in reverse.
- the thin film deposited on the substrate w includes alternately deposited first material and second material.
- the thin film deposition method further includes: after each material is deposited on the surface of the substrate w, the waste gas in the processing chamber 1 needs to be pumped away, and then subsequent process steps are performed.
- this embodiment 20 provides a thin film deposition method, which is implemented based on the thin film deposition device in the above-mentioned embodiment 9.
- the film deposition method includes the following steps:
- Step S1 placing a plurality of substrates w into the processing chamber 1 in sequence to complete the film deposition process
- Step S2 rotating the gas supply assembly 2 by a set angle
- Step S3 cleaning the processing chamber 1 to ensure the cleanliness of the processing chamber 1, and repeating steps S1-S3 after the cleaning process is completed.
- the thin film deposited on the substrate w includes alternately deposited first material and second material.
- the multiple substrates w are placed in the processing chamber 1 sequentially to perform the thin film deposition process, including: after each material is deposited on the surface of each substrate w, the waste gas in the processing chamber 1 needs to be pumped away, and then the subsequent process is carried out. step.
- this embodiment 21 provides a thin film deposition method, which is realized based on the thin film deposition device in the above-mentioned embodiment 12.
- the bottom end of the gas supply assembly 2 is provided with a first porous plate 21; the gas supply assembly 2 is provided with a gas adjustment unit 200, and the bottom end of the gas adjustment unit 200 is provided with a second porous plate plate 201 , the second porous plate 201 is set opposite to the first porous plate 21 of the gas supply assembly 2 .
- the flow direction of the process gas inside the gas supply assembly 2 can be adjusted, so that the process gas inside the gas supply assembly 2 is fully mixed, thereby improving the processing chamber 1
- the non-uniform distribution of the internal plasma gas leads to the defect of non-uniform film deposition on the surface of the substrate w.
- adjusting the gap between the second porous plate 201 and the first porous plate 21 is achieved by adjusting the side wall 202 of the gas adjustment unit 200 to stretch or compress in the vertical direction.
- the thin film deposition method provided in this embodiment 21 comprises the following steps:
- Step S1 placing a plurality of substrates w into the processing chamber 1 in sequence to complete the film deposition process
- Step S2 adjusting the gap between the second porous plate 201 and the first porous plate 21 to adjust the flow direction of the process gas inside the gas supply assembly 2;
- Step S3 cleaning the processing chamber 1 to ensure the cleanliness of the processing chamber 1, and repeating steps S1-S3 after the cleaning process is completed.
- this embodiment 22 provides a thin film deposition method, which is realized based on the thin film deposition device in the above embodiment 13. Compared with embodiment 21, the difference is:
- a telescopic rod 203 is provided in the gas adjustment unit 200 . Adjusting the gap between the second porous plate 201 and the first porous plate 21 is achieved by adjusting the stretching or compressing the telescopic rod 203 in the vertical direction.
- the adjustment method of the rod 203 will not be described in detail here.
- this embodiment 23 provides a thin film deposition equipment, including: a substrate loading port 002 for placing a substrate w; a buffer device 003; a front-end manipulator 001 for loading the substrate at the port 002 and buffer
- the substrate w is transferred between the devices 003; the thin film deposition device in the above-mentioned embodiments 1-13 is used to perform thin film deposition on the substrate w; the process manipulator 004 is used between the buffer device 003 and the processing chamber 1 of the thin film deposition device Transfer the substrate w.
- the front-end robot 001 takes out the substrate w to be deposited from the substrate loading port 002, and places it on the buffer device 003; the process robot 004 takes out the substrate w from the buffer device 003, and places it in the processing chamber 1 of the thin film deposition device , thin film deposition is performed on the surface of the substrate w; after the film deposition is completed, the process manipulator 004 takes the substrate w out of the processing chamber 1 and places it on the buffer device 003; the front-end manipulator 001 takes the substrate w out of the buffer device 003, and Put back the substrate loading port 002 to complete the process operation of the thin film deposition equipment.
- Embodiment 23 as shown in FIG. 20A to FIG. 20C , there are multiple processing chambers 1 of the thin film deposition device, and the multiple processing chambers 1 are symmetrically arranged on both sides of the process manipulator 004 .
- process manipulators 004 there may be one or more process manipulators 004 .
- process manipulators 004 there are multiple process manipulators 004, as shown in FIG. 20A, there are multiple corresponding buffer devices 003.
- a non-contact magnetic levitation track is provided under the process manipulator 004 to ensure that the process manipulator 004 has no oil and no friction during the sliding process.
- a plurality of heating trays 3 may also be provided inside each processing chamber 1 for performing thin film deposition on multiple substrates w at the same time, so as to improve the process efficiency of thin film deposition.
- a plurality of heating trays 3 inside each processing chamber 1 may be arranged in a matrix structure.
- a plurality of heating trays 3 inside each processing chamber 1 are arranged in a triangular structure.
- this embodiment 24 provides a thin film deposition equipment, compared with embodiment 23, the difference is:
- a plurality of processing chambers 1 are sequentially arranged on the periphery of the process manipulator 004 .
- a plurality of substrates w can be placed inside the buffer device 003, and the centers of the plurality of substrates w form a circle, and the plurality of substrates w can be rotated along a rotation axis perpendicular to the center of the circle to change the number of substrates w.
- w is the internal position of the cache device 003.
- each processing chamber 1 is provided with three heating trays 3 for simultaneous film deposition on three substrates w, and the three heating trays 3 are arranged in a triangular structure.
- three substrates w can be placed inside the buffer device 003, and the three substrates w inside the buffer device 003 are arranged in a triangular structure.
- process manipulator 004 There is one process manipulator 004, and the structure of the process manipulator 004 is matched with the triangular structure formed by the three substrates w inside the buffer device 003 and the triangular structure formed by the three heating trays 3 in the processing chamber 1, so that the process manipulator 004 can move from Three substrates w are taken from the buffer device 003 at the same time and placed on the three heating trays 3 of the processing chamber 1 to improve the process efficiency of thin film deposition.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
Abstract
本发明揭示了一种薄膜沉积装置,包括:处理腔室;气体供应组件,设置于处理腔室顶壁;加热托盘,设置于气体供应组件下方,用于承载并加热基板;射频源;旋转机构,控制基板旋转或者加热托盘旋转或者基板与加热托盘同步旋转;旋转的旋转轴垂直且穿过基板;旋转时,保持射频源为打开状态。本发明补偿了基板上沉积的薄膜厚度的不均匀,实现了PECVD层堆栈结构薄膜沉积的均匀性和稳定性,避免了基板上沉积的薄膜在后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的现象,从而进一步保证了半导体器件性能的稳定性。
Description
本发明涉及半导体制造技术领域,尤其涉及一种薄膜沉积装置、薄膜沉积方法及薄膜沉积设备。
在等离子体增强化学气相沉积(PECVD)的真空处理腔室中,不同材料的层堆栈结构沉积至基板上。其中,将基板放到真空处理腔室中,首先将第一处理气体通入,用于在基板上形成第一层的第一材料;然后进行等离子体净化及气体净化,继而,再将第二处理气体通入,用于在基板上形成第二层的第二材料。重复上述的等离子体净化及气体净化,并且将第一材料和第二材料堆叠沉积在基板上,形成层堆栈结构的薄膜。其中,三维(3D)存储可由沉积在基板上的交替薄膜材料的层堆栈结构制成。
目前,3D储存使用氧化物与氮化物膜的交替层通过相关工艺实现在三维结构中达到储存数据的目的。这些堆栈结构可包括多层第一材料和第二材料,例如超过300层甚至500层的持续堆栈。
具体地,有些情况下3D储存堆栈的薄膜材料中的第一材料和第二材料堆栈结构可以是氧化物和硅、硅和掺杂硅、或者硅和氮化物。相应地,这些材料组合的3D储存堆栈的薄膜材料大多可应用于BiCS(Bit-Cost Scalable)、TCAT(万亿比特单元阵列晶体管(Terabit Cell Array Transistor))或者其它3D存储结构。另外,第一材料和第二材料堆栈结构也可以是其它材料组合物,且第一材料与第二材料层沉积至基板上的顺序也可相反。
然而,目前现有的PECVD设备存在以下问题:
1.随着基板表面层堆栈结构层数的升高,薄膜的厚度相应增加,直接导致薄膜的层与层之间的均匀性以及堆栈后总的薄膜的均匀性变差,进而导致在后续的刻蚀过程中无法得到垂直结构,从而限制了在薄膜堆栈过程中持续增加薄膜的层数。
目前的现有设备条件下,当沉积薄膜超过200层后薄膜的均匀性和质量发生降级,在不同种类薄膜的持续堆栈过程中会持续放大固定位置的偏差,从而导致基 板薄膜的均匀性偏离可控范围,而使后续的刻蚀工艺无法实现通孔刻蚀的精准度,导致在刻蚀工艺过程中发生刻蚀通孔偏离垂直方向,从而进一步导致半导体器件的失效。
2.气体喷淋头的长期使用产生的形变或者外界气泵对废气的抽取,导致气体供应组件供给的工艺气体分布不均,从而导致在薄膜沉积的过程中存在薄膜厚度的偏差,进而导致在刻蚀工艺过程中发生刻蚀通孔偏离垂直方向,从而进一步导致半导体器件的失效。
3.传统PECVD方式沉积薄膜时候,需要固定加热托盘,以保证加热托盘的平整度,然而固定加热托盘的同时,基板的温度分布会形成固定的图形,从而导致基板出现受热不均匀的问题,进而导致在刻蚀工艺过程中发生刻蚀通孔偏离垂直方向,进一步导致半导体器件的失效。
综上所述,有必要提出一种新的薄膜沉积装置及其方法,来解决上述问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提出一种薄膜沉积装置、薄膜沉积方法及薄膜沉积设备,用于解决现有技术中基板上沉积薄膜的均匀性差的问题。
为实现上述目的及其它相关目的,本发明提供了一种薄膜沉积装置,包括:
处理腔室,用于进行薄膜沉积;
气体供应组件,设置于处理腔室顶壁,用于向处理腔室内部供应工艺气体;
加热托盘,设置于气体供应组件下方,用于承载并加热基板;
射频源,用于提供射频功率,激发处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在基板上进行薄膜沉积;
旋转机构,控制基板旋转或者加热托盘旋转或者基板与加热托盘同步旋转,旋转的旋转轴垂直且穿过基板;
旋转机构驱动基板旋转或者加热托盘旋转或者基板与加热托盘同步旋转时,保持射频源为打开状态。
本发明还提供了一种薄膜沉积装置,包括:
处理腔室,用于进行薄膜沉积;
气体供应组件,设置于处理腔室顶壁,用于向处理腔室内部供应工艺气体;
加热托盘,设置于气体供应组件下方,用于承载并加热基板;
射频源,用于提供射频功率,激发处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在基板上进行薄膜沉积;
旋转机构,与气体供应组件连接,用于驱动气体供应组件旋转。
本发明还提供了一种薄膜沉积装置,包括:
处理腔室,用于进行薄膜沉积;
气体供应组件,设置于处理腔室顶壁,用于向处理腔室内部供应工艺气体;
加热托盘,设置于气体供应组件下方,用于承载并加热基板;
射频源,用于提供射频功率,激发处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在基板上进行薄膜沉积;
旋转机构,与加热托盘连接,用于驱动加热托盘以过基板中心的轴线为旋转轴,带动基板同步旋转;
旋转机构驱动加热托盘带动基板同步转动时,调整射频源为关闭状态。
本发明还提供了一种薄膜沉积装置,包括:
处理腔室,用于进行薄膜沉积;
气体供应组件,设置于处理腔室顶壁,用于向处理腔室内部供应工艺气体;
加热托盘,设置于气体供应组件下方,用于承载并加热基板;
射频源,用于提供射频功率,激发处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在基板上进行薄膜沉积;
支撑件,用于支撑基板;
升降机构,与支撑件连接,用于驱动支撑件沿竖直方向上升或下降,以托起基板离开加热托盘或放置基板于加热托盘上;
旋转机构,与加热托盘连接,用于驱动加热托盘以过基板中心的轴线为旋转轴旋转;
旋转机构驱动加热托盘转动时,调整射频源为关闭状态。
本发明还提供了一种薄膜沉积装置,包括:
处理腔室,用于进行薄膜沉积;
气体供应组件,设置于处理腔室顶壁,具有第一多孔板,用于向处理腔室内 部供应工艺气体;
加热托盘,设置于气体供应组件下方,用于承载并加热基板;
气体调节单元,设置于气体供应组件内部,气体调节单元具有第二多孔板,第二多孔板与气体供应组件的第一多孔板相对设置,第二多孔板与气体供应组件的第一多孔板之间的间隙可调。
本发明还提供了一种薄膜沉积方法,包括以下步骤:
步骤S1,将基板放置于处理腔室中,并对处理腔室抽真空;
步骤S2,向处理腔室内部通入工艺气体,并打开射频源,在基板上沉积一定层数的薄膜;
步骤S3,停止向处理腔室内部通入工艺气体,并通入非工艺气体,以保持处理腔室内部的压力;
步骤S4,保持射频源为打开状态,使基板旋转或者使加热托盘旋转或者使基板与加热托盘同步旋转一设定角度;
步骤S5,向处理腔室内部再次通入工艺气体,在基板上再沉积一定层数的薄膜;
步骤S6,停止向处理腔室内部通入工艺气体,并通入非工艺气体,以保持处理腔室内部的压力;
步骤S7,判断基板上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;
步骤S8,从处理腔室内部取出基板。
本发明还提供了一种薄膜沉积方法,包括以下步骤:
步骤S1,将基板放置于处理腔室中,并对处理腔室抽真空;
步骤S2,向处理腔室内部通入工艺气体,并打开射频源,在基板上沉积一定层数的薄膜;
步骤S3,停止向处理腔室内部通入工艺气体,并通入非工艺气体,以保持处理腔室内部的压力;
步骤S4,调整射频源为关闭状态,使加热托盘带动基板同步旋转一设定角度;
步骤S5,向处理腔室内部通入工艺气体,并调整射频源为打开状态,在基板上再沉积一定层数的薄膜;
步骤S6,停止向处理腔室内部通入工艺气体,并通入非工艺气体,以保持处理腔室内部的压力;
步骤S7,判断基板上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;
步骤S8,从处理腔室内部取出基板。
本发明还提供了一种薄膜沉积方法,包括以下步骤:
步骤S1,将基板放置于处理腔室中,并对处理腔室抽真空;
步骤S2,向处理腔室内部通入工艺气体,并打开射频源,在基板上沉积一定层数的薄膜;
步骤S3,停止向处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;
步骤S4,调整射频源为关闭状态,将基板顶起,并驱动加热托盘旋转一设定角度后,将基板放置回加热托盘上;
步骤S5,向处理腔室内部通入工艺气体,并调整射频源为打开状态,在基板上再沉积一定层数的薄膜;
步骤S6,停止向处理腔室内部通入工艺气体,并通入非工艺气体,以保持处理腔室内部的压力;
步骤S7,判断基板上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;
步骤S8,从处理腔室内部取出基板。
本发明还提供了一种薄膜沉积方法,包括以下步骤:
步骤S1将多片基板依次放入处理腔室内完成薄膜沉积工艺;
步骤S2,使气体供应组件旋转一设定角度;
步骤S3,对所述处理腔室进行清洗,清洗处理完成后,重复步骤S1-步骤S3。
本发明还提供了一种薄膜沉积方法,包括以下步骤:
步骤S1,将多片基板依次放入处理腔室内完成薄膜沉积工艺;
步骤S2,调节气体调节单元的第二多孔板与气体供应组件的第一多孔板之间的间隙;
步骤S3,对处理腔室进行清洗,清洗处理完成后,重复步骤S1-步骤S3。
本发明还提供了一种薄膜沉积设备,包括:
基板装载端口,用于放置基板;
缓存装置;
前端机械手,用于在基板装载端口和缓存装置之间传送基板;
如上述的薄膜沉积装置,用于对基板进行薄膜沉积;
工艺机械手,用于在缓存装置和薄膜沉积装置的处理腔室之间传送基板。
运用此发明,解决了沉积超多层(例如,>200层)时沉积的薄膜均匀性变差的问题,使得当薄膜沉积的层数超过200层时,实现了PECVD层堆栈结构薄膜沉积的均匀性和稳定性,避免了基板上沉积的薄膜在后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的现象,从而保证了半导体器件性能的稳定性。
附图概述
图1示例了采用现有PECVD薄膜沉积技术沉积高层数薄膜发生倾斜的示意图。
图2A和图2B分别示例了本发明提供的实施例1中薄膜沉积装置的基板被顶起前、后的示意图。
图3A和图3B分别示例了本发明提供的实施例1中顶针旋转设定角度前、后的俯视图。
图4A和图4B分别示例了本发明提供的实施例5中薄膜沉积装置的基板被顶起前、后的示意图。
图5示例了本发明提供的实施例5中支撑环的俯视图。
图6A和图6B分别示例了本发明提供的实施例6中薄膜沉积装置的基板被顶起前、后的示意图。
图7示例了本发明提供的实施例6中顶针和支撑环的俯视图。
图8A至图8D分别示例了本发明提供的基板旋转不同设定角度的示意图。
图9示例了本发明提供的实施例7和实施例10中薄膜沉积装置的结构示意图。
图10示例了本发明提供的实施例8和实施例11中薄膜沉积装置的结构示意图。
图11示例了本发明提供的实施例9中薄膜沉积装置的结构示意图。
图12A示例了现有PECVD薄膜沉积技术中气体供应组件供应气体分布不均 匀导致沉积薄膜不均匀的示意图。
图12B示例了现有PECVD薄膜沉积技术中气泵抽取废气导致沉积薄膜不均匀的示意图。
图13A示例了本发明提供的实施例12中薄膜沉积装置的结构示意图。
图13B至图13C分别示例了本发明提供的实施例12中气体调节组件的侧壁分别向下拉伸和向上压缩的示意图。
图14A示例了本发明提供的实施例13中薄膜沉积装置的结构示意图。
图14B至图14C分别示例了本发明提供的实施例13中伸缩杆分别向上压缩和向下拉伸的示意图。
图15示例了本发明提供的实施例14中薄膜沉积方法的流程示意图。
图16示例了本发明提供的实施例18中薄膜沉积方法的流程示意图。
图17示例了本发明提供的实施例19中薄膜沉积方法的流程示意图。
图18示例了本发明提供的实施例20中薄膜沉积方法的流程示意图。
图19示例了本发明提供的实施例21中薄膜沉积方法的流程示意图。
图20A至图20G分别示例了本发明提供的实施例22和实施例23中薄膜沉积设备的排布示意图。
本发明的较佳实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图20G。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
实施例一
在PECVD薄膜沉积过程中,由于加热托盘温度分布不均匀或者基板由于应力 导致基板在加热托盘上的平整度不同,从而导致薄膜沉积过程中均匀性变差。当在基板上交替沉积不同材料薄膜时,随着第一材料和第二材料交替堆栈在基板w上的层数升高,基板w上形成的层堆栈结构的薄膜的厚度增加,如图1中所示,导致了堆栈的薄膜发生一定角度Δ的倾斜。即,随着这些层堆栈结构层数的升高,恶化了堆栈后薄膜的均匀性,从而导致基板w上薄膜的均匀性偏离可控范围,而使后续的刻蚀工艺无法实现通孔刻蚀的精准度,导致在刻蚀工艺过程中发生刻蚀通孔偏离垂直方向,从而进一步导致半导体器件的失效。
为了解决上述问题,本实施例1提供了一种薄膜沉积装置。具体地,如图2A和图2B所示,该薄膜沉积装置包括:处理腔室1,用于进行薄膜沉积;气体供应组件2,设置于处理腔室1的顶壁,用于向处理腔室1内部供应工艺气体;加热托盘3,设置于气体供应组件2的下方,用于承载并加热基板w;射频源5,用于提供射频功率,在处理腔室1内部形成射频电场,激发处理腔室1内部的工艺气体解离为等离子体气体,解离后的等离子体气体在基板w上进行薄膜沉积;旋转机构403,控制基板w旋转,该旋转的旋转轴AA’垂直且穿过基板w。在本实施例1中,旋转的旋转轴AA’经过基板w的中心O,使得基板w绕着旋转轴AA’转动。
旋转机构403驱动基板w转动时,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内的压力,并保持射频源5为打开状态。因为在基板w上沉积一定层数的薄膜后,处理腔室1内部悬浮有部分杂质颗粒,此时,保持射频源5为打开状态,处理腔室1内部充满射频电场,杂质颗粒在处理腔室1内部射频电场的作用下带电,带电的杂质颗粒保持悬浮,不会掉落在基板w表面,有效防止了杂质颗粒掉落在基板w沉积的薄膜上,避免了对基板w上沉积的薄膜造成污染。
因此,本实施例1提出了在保持射频源5打开状态下,驱动基板w转动,补偿了基板w上沉积的薄膜厚度的不均匀,实现了PECVD层堆栈结构薄膜沉积的均匀性和稳定性,避免了基板w上沉积的薄膜在后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的现象,从而进一步保证了半导体器件性能的稳定性。
其中,如图2A和图2B所示,该薄膜沉积装置还包括:支撑件,用于支撑基板w;升降机构402,与支撑件连接,用于驱动支撑件沿竖直方向上升或下降,以托起基板w离开加热托盘3或放置基板w于加热托盘3上。
在本实施例1中,旋转机构403设置于升降机构402底端,用于驱动支撑件和升降机构402沿水平圆周方向同步旋转,以带动基板w旋转。
在本实施例1中,支撑件为可沿竖直方向和在水平圆周方向运动的顶针401,加热托盘3上开有第一通孔301,顶针401设置在第一通孔301内。如图3A和图3B所示,第一通孔301在水平面的截面为弧形或圆形,弧形或圆形的圆心M与基板w的圆心O在一条铅垂线上。
在本实施例1中,升降机构402可为气缸402,气缸402与顶针401的底部连接;旋转机构403可为马达403,马达403与气缸402的底部连接,气缸402驱动顶针401上升或下降,马达403驱动气缸402和顶针401同步旋转。
需要旋转基板w时,如图2B所示,升降机构402驱动顶针401沿竖直方向向上升起并从第一通孔301中伸出,顶针401将基板w顶起,使基板w脱离加热托盘3;然后旋转机构403驱动顶针401在第一通孔301中沿弧形轨迹移动,使基板w旋转一设定角度,如图3A和图3B所示;待基板w旋转设定角度后,基板w停止旋转,升降机构402驱动顶针401沿竖直方向向下移动,将基板w放置在加热托盘3上以进行后续的薄膜沉积。
顶针401可以有至少三个,相应地,第一通孔301为至少三个,且与顶针401一一对应。在本实施例1中,如图3A和图3B所示,顶针401为三个,且第一通孔301对应为三个,三个第一通孔301在水平面的截面为三个弧形。
在本实施例1中,采用至少三个顶针401将基板w托起以将基板w旋转设定角度,补偿了基板w上沉积的薄膜厚度的不均匀,实现了PECVD层堆栈结构薄膜沉积的均匀性和稳定性,避免了基板w上沉积的薄膜在后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的现象,从而进一步保证了半导体器件性能的稳定性。
其中,处理腔室1的侧壁上设置有门101,用于在基板w进行薄膜沉积工艺前、后,机械手进入处理腔室1内部,将基板w从加热托盘3上放置或取下。
其中,薄膜沉积结束后,(基板w旋转次数+1)*基板w每次旋转的设定角度=360°。在本实施例1中,如图8A至图8D所示,薄膜沉积结束后,基板w旋转次数为5次,且每次旋转的设定角度为60度;还可以是,基板w旋转次数为3次,且每次旋转的设定角度为90度;还可以是,基板w旋转次数为2次,且每次旋转的设定角度为120度;基板w旋转次数为1次,且每次旋转的设定角度为180度。
其中,基板w上薄膜的沉积速率与射频源5的射频功率的倍数有关;射频源5的高频频率为13.56MHz的整数倍n,且n满足:n=1,2,3,…,8;射频源5的低频频率范围为20KHz-400KHz。
然而,在基板w旋转过程中,保持射频源5为打开状态,基板w脱离加热托盘3后,基板w的背面和加热托盘3之间的间隙过大,易导致电弧放电现象的产生。因此,在本实施例1中,为了避免基板w在射频源5打开状态下脱离加热托盘3发生电弧放电现象,如图2A和图2B所示,需要调整基板w与加热托盘3的间隙小于设定值,以避免基板w在等离子体气体的氛围下,脱离加热托盘3导致电弧放电现象的产生。在本实施例1中,基板w与加热托盘3之间间隙的设定值为m,0<m≤5mm。因此,在基板w与加热托盘3之间的间隙小于设定值的条件下,保持射频源5为打开状态,降低基板w发生电弧放电的风险,保证了薄膜沉积工艺的安全性和稳定性。
实施例二
本实施例2提供了一种薄膜沉积装置,与实施例1相比,区别在于:
如图2A和图2B所示,加热托盘3上设置有第二通孔302,在基板w旋转过程中,保持射频源5为打开状态,通过第二通孔302向基板w与加热托盘3之间的间隙中通入非工艺气体,以降低基板w在脱离加热托盘3的情况下发生电弧放电的风险。其中,在本实施例2中,非工艺气体为惰性气体或氮气。
因此,在基板w与加热托盘3之间的间隙被非工艺气体充满时,保持射频源5为打开状态,降低基板w发生电弧放电的风险,保证了薄膜沉积工艺的安全性和稳定性。
本实施例的其他设置与实施例一相同,此处不再赘述。
实施例三
本实施例3提供了一种薄膜沉积装置,与实施例1相比,区别在于:
在基板w旋转过程中,保持射频源5为打开状态,调低射频源5的射频功率小于薄膜沉积工艺时的射频源5的射频功率,以降低基板w在脱离加热托盘3的情况下发生电弧放电的风险,保证了薄膜沉积工艺的安全性和稳定性。
本实施例的其他设置与实施例一相同,此处不再赘述。
实施例四
本实施例4提供了一种薄膜沉积装置,与实施例1相比,区别在于:
在基板w旋转之前,调整射频源5为关闭状态,并对处理腔室1进行净化处理。
由于在基板w上沉积一定层数的薄膜后,处理腔室1内部会存在杂质颗粒,处理腔室1内部越脏,基板w在处理腔室1内部脱离加热托盘3时,越容易发生电弧放电现象。因此,在基板w旋转之前,较佳的,关闭射频源5,通过气体供应组件2向处理腔室1内部供应氮气,对处理腔室1进行净化处理。
本实施例的其他设置与实施例一相同,此处不再赘述。
实施例五
请参阅图4A至图5,本实施例5提供了一种薄膜沉积装置,与实施例1相比,区别在于:
如图4A和图4B所示,支撑件为设置在基板w边缘底部的支撑环404,支撑环404可沿竖直方向升降以及以基板w的中心线AA’为旋转轴旋转。
在本实施例5中,如图5所示,支撑环404为带有缺口a的圆形环,或支撑环404包括位于同一个圆上的多段圆弧。相应地,处理腔室1的侧壁上设置有门101,用于在基板w进行薄膜沉积工艺前、后,机械手进入处理腔室1内部,将基板w放置在支撑环404上或从支撑环404上取走基板w。
如图4A和图4B所示,需要旋转基板w时,升降机构402驱动支撑环404沿竖直方向向上升起,将基板w托起,使基板w脱离加热托盘3;然后旋转机构403驱动支撑环404旋转以带动基板w旋转一个设定角度;基板w旋转设定角度后停止旋转,升降机构402驱动支撑环404沿竖直方向向下移动,将基板w放置在加热托盘3上以进行薄膜沉积。
在本实施例5中,采用设置在基板w外周底部的支撑环404将基板w托起以调整基板w旋转设定角度,来实现基板w绕着旋转轴AA’转动,补偿了基板w上沉积的薄膜厚度的不均匀,实现了PECVD层堆栈结构薄膜沉积的均匀性和稳定 性。
本实施例的其他设置与实施例一相同,此处不再赘述。
实施例六
请参阅图6A至图7,本实施例6提供了一种薄膜沉积装置,与实施例1相比,区别在于:
如图6A至图7所示,该薄膜沉积装置还包括:支撑件,用于支撑基板w,其中,支撑件包括顶针401和支撑环404;第一升降机构402与顶针401连接,用于驱动顶针401沿竖直方向上升或下降,用于机械手从加热托盘3上取走基板w或者将基板w放置在加热托盘3上;第二升降机构405与支撑环404连接,用于驱动支撑环404沿竖直方向上升或下降,以托起基板w离开加热托盘3或放置基板w于加热托盘3上。
在本实施例6中,旋转机构403设置于第二升降机构405底部,用于驱动支撑环404和第二升降机构405以基板w的中心线AA’为旋转轴同步旋转,以带动基板w旋转。
如图6A和图6B所示,加热托盘3上开有第一通孔301,顶针401设置在第一通孔301内,用于穿过第一通孔301支撑基板w。
机械手将基板w放入处理腔室1内部时,第一升降机构402驱动顶针401沿竖直方向向上升起,从第一通孔301中伸出,以承载机械手放入的基板w;然后第一升降机构402驱动顶针401沿竖直方向向下降落,顶针401缩回第一通孔301内,使得基板w放置在加热托盘3上,以进行后续的薄膜沉积。机械手从处理腔室1内部取走基板w时,第一升降机构402驱动顶针401沿竖直方向向上升起,从第一通孔301中伸出,将基板w从加热托盘3上顶起,便于机械手取走基板w;然后第一升降机构402驱动顶针401沿竖直方向向下降落,顶针401缩回第一通孔301内。
需要旋转基板w时,第二升降机构405驱动支撑环404沿竖直方向向上升起,将基板w托起,使基板w脱离加热托盘3;然后旋转机构403驱动支撑环404旋转以带动基板w旋转设定角度;基板w旋转设定角度后停止旋转,第二升降机构405驱动支撑环404沿竖直方向向下移动,将基板w放置在加热托盘3上以进行薄 膜沉积。
本实施例的其他设置与实施例一相同,此处不再赘述。
实施例七
如图9所示,本实施例7提供了一种薄膜沉积装置。该薄膜沉积装置包括:处理腔室1,用于进行薄膜沉积;气体供应组件2,设置于处理腔室1的顶壁,用于向处理腔室1内部供应工艺气体;加热托盘3,设置于气体供应组件2的下方,用于承载并加热基板w;射频源5,用于提供射频功率,在处理腔室1内部形成射频电场,激发处理腔室1内部的工艺气体解离为等离子体气体,解离后的等离子体气体在基板w上进行薄膜沉积;旋转机构403与加热托盘3连接,用于驱动加热托盘3以过基板w中心的轴线AA’为旋转轴旋转,从而带动基板w同步旋转。
旋转机构403驱动加热托盘3和基板w转动时,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内的压力,并保持射频源5为打开状态。
在本实施例7中,加热托盘3带动基板w以过基板w中心的轴线AA’为旋转轴同步旋转包括:加热托盘3绕着旋转轴AA’沿正向旋转设定角度后,再绕着旋转轴AA’沿反向旋转。
实施例八
如图10所示,本实施例8提供了一种薄膜沉积装置。该薄膜沉积装置包括:处理腔室1,用于进行薄膜沉积;气体供应组件2,设置于处理腔室1的顶壁,用于向处理腔室1内部供应工艺气体;加热托盘3,设置于气体供应组件2的下方,用于承载并加热基板w;射频源5,用于提供射频功率,在处理腔室1内部形成射频电场,激发处理腔室1内部的工艺气体解离为等离子体气体,解离后的等离子体气体在基板w上进行薄膜沉积。
该薄膜沉积装置还包括:支撑件,用于支撑基板w,其中,支撑件为设置在基板w边缘底部的支撑环404;升降机构402,与支撑环404连接,用于驱动支撑环404沿竖直方向上升或下降,以托起基板w离开加热托盘3或放置基板w于加热托盘3上。
在本实施例8中,旋转机构403与加热托盘3连接,用于驱动加热托盘3以过基板w中心的轴线AA’为旋转轴旋转。
旋转机构403驱动加热托盘3转动时,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内的压力,并保持射频源5为打开状态。
在本实施例8中,加热托盘3以过基板w中心的轴线AA’为旋转轴旋转包括:加热托盘3绕着旋转轴AA’沿正向旋转设定角度后,再绕着旋转轴AA’沿反向旋转。
如图10所示,需要旋转加热托盘3时,升降机构402驱动支撑环404沿竖直方向向上升起,将基板w托起,使基板w脱离加热托盘3,然后旋转机构403驱动加热托盘3旋转一个设定角度;加热托盘3旋转设定角度后停止旋转,升降机构402驱动支撑环404沿竖直方向向下移动,将基板w放置在加热托盘3上以进行薄膜沉积。
实施例九
如图11所示,本实施例9提供了一种薄膜沉积装置,该薄膜沉积装置包括:处理腔室1,用于进行薄膜沉积;气体供应组件2,设置于处理腔室1的顶壁,用于向处理腔室1内部供应工艺气体;加热托盘3,设置于气体供应组件2的下方,用于承载并加热基板w;射频源5,用于提供射频功率,激发处理腔室1内部的工艺气体解离为等离子体气体,等离子体气体在基板w上进行薄膜沉积;旋转机构403与气体供应组件2连接,用于驱动气体供应组件2旋转。
在本实施例9中,旋转机构403可为马达403,马达403与气体供应组件2连接,驱动气体供应组件2旋转。在本实施例9中,将多片基板w依次放入处理腔室1内完成薄膜沉积工艺后,旋转机构403驱动气体供应组件2旋转设定角度。
通过旋转气体供应组件2,改善气体供应组件2供应工艺气体的均匀性,从而改善了基板w上沉积薄膜的厚度均匀性,实现了PECVD层堆栈结构薄膜沉积的均匀性和稳定性。
实施例十
如图9所示,本实施例10提供了一种薄膜沉积装置,与实施例7相比,区别在于:
旋转机构403与加热托盘3连接,用于驱动加热托盘3以过基板w中心的轴线AA’为旋转轴旋转,从而带动基板w同步旋转。旋转机构403驱动加热托盘3带动基板w同步旋转时,调整射频源5为关闭状态。
本实施例的其他设置与实施例七相同,此处不再赘述。
实施例十一
如图10所示,本实施例11提供了一种薄膜沉积装置,与实施例8相比,区别在于:
旋转机构403驱动加热托盘3旋转时,调整射频源5为关闭状态。
本实施例的其他设置与实施例八相同,此处不再赘述。
实施例十二
在PECVD中,由于气体供应组件2的长期使用产生的形变,使得输送进入处理腔室1内部的工艺气体存在分布不均匀的情况,从而导致在基板的不同位置得到的气体流量不同,进而导致等离子体气体在基板上沉积的薄膜厚度存在偏差,从而导致在刻蚀工艺过程中发生刻蚀通孔偏离垂直方向,最终导致半导体器件的失效。
如图12A所示,工艺气体通入气体供应组件2时,气体供应组件2的中央位置处的气体流量大于气体供应组件2外周的气体流量,从而导致薄膜沉积工艺中,基板w上沉积的薄膜的中央位置的厚度大于外周边缘的厚度,使得基板w表面堆栈的薄膜发生一定角度Δ的倾斜,导致基板w上沉积薄膜的厚度不均匀,从而导致后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的缺陷。
如图12B所示,处理腔室1与气泵连接,用于抽取处理腔室1沉积过程中的废气。然而,气泵对废气的抽取很容易导致气体供应组件2外周的气体流量大于气体供应组件2中央位置处的气体流量,从而导致薄膜沉积工艺中,基板w上沉积的薄膜的中央位置的厚度小于外周边缘的厚度,同样使得基板w表面堆栈的薄膜发生一定角度Δ的倾斜,导致基板w上沉积薄膜的厚度不均匀,从而导致后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的缺陷。
为了解决上述沉积薄膜外周与中央位置处沉积不均匀的缺陷,请参阅图13A至图13C所示,本实施例12提供了一种薄膜沉积装置,具体地,如图13A所示,该薄膜沉积装置包括:处理腔室1,用于进行薄膜沉积;气体供应组件2,设置于处理腔室1顶壁,用于向处理腔室1内部供应工艺气体,气体供应组件2具有第一多孔板21;加热托盘3,位于气体供应组件2下方,用于承载并加热基板w;气体调节单元200,设置于气体供应组件2的内部,且气体调节单元200的底端设有第二多孔板201,第二多孔板201与气体供应组件2的第一多孔板21相对设置。调节第二多孔板201与第一多孔板21之间的间隙,以调节气体供应组件2内部工艺气体的气流方向,使得气体供应组件2内部的工艺气体能够充分混合,从而改善处理腔室1内部等离子体气体分布的不均匀性,实现PECVD中基板w上层堆栈结构薄膜沉积的均匀性和稳定性,避免基板w上沉积的薄膜在后续刻蚀工艺过程中刻蚀通孔偏离垂直方向的现象,从而进一步保证半导体器件性能的稳定性。
如图13A所示,该薄膜沉积装置还包括射频源5,射频源5用于提供射频功率,在处理腔室1内部形成射频电场,激发处理腔室1内部的工艺气体解离为等离子体气体,解离后的等离子体气体在基板w上进行薄膜沉积。其中,射频源5的高频频率为13.56MHz的整数倍n,且n满足:n=1,2,3,…,8;射频源5的低频频率范围为20KHz-400KHz。
如图13B至图13C所示,气体调节组件200的侧壁202可沿竖直方向拉伸或收缩,来调整第二多孔板201与第一多孔板21之间的间隙,使得气体供应组件2内部的工艺气体能够充分混合,从而改善等离子体气体在薄膜沉积过程中分布不均匀导致基板w表面沉积薄膜不均匀的缺陷。
在本实施例12中,如图13B和图13C所示,气体调节组件200的侧壁202为波纹管,可沿竖直方向向下拉伸或向上收缩,使得气体调节组件200底端的第二多孔板201呈一定弯折状或弧状,以调整第二多孔板201与第一多孔板21之间的间隙,使得气体供应组件2内部的工艺气体能够充分混合,从而改善等离子体气体分布不均匀导致基板w表面沉积薄膜不均匀的缺陷。
实施例十三
请参阅图14A至图14C,本实施例13提供了一种薄膜沉积装置,与实施例12 相比,区别在于:
气体调节组件200包括一伸缩杆203,且伸缩杆203与第二多孔板201连接,伸缩杆203可沿竖直方向拉伸或收缩,使得第二多孔板201呈一定弯折状或弧状,以调整第二多孔板201与第一多孔板21之间的间隙,从而使得气体供应组件2内部的工艺气体能够充分混合,进而改善处理腔室1内部等离子体气体分布不均匀导致基板w表面沉积薄膜不均匀的缺陷。
在本实施例13中,如图14A所示,伸缩杆203设置于气体调节单元200内部中央位置处,且与第二多孔板201的中心处连接。
本实施例的其他设置与实施例十二相同,此处不再赘述。
实施例十四
为了解决现有技术中基板w表面薄膜沉积不均匀的问题,请参阅图2A至图10和图15,本实施例14提供了一种薄膜沉积方法,该薄膜沉积方法是基于上述实施例1-8和实施例10-11中的薄膜沉积装置实现的。
具体地,该薄膜沉积方法包括以下步骤:
步骤S1,将基板w放置于PECVD的处理腔室1中,并对处理腔室1进行抽真空,使得待沉积薄膜的基板w处于真空环境中;
步骤S2,向处理腔室1内部通入工艺气体,并打开射频源5,将处理腔室1内部的工艺气体解离为等离子体气体,在基板w上沉积一定层数的薄膜;
步骤S3,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入非工艺气体,例如惰性气体或氮气,以保持处理腔室1内部的压力;
步骤S4,保持射频源5为打开状态,使基板w旋转或者使加热托盘3旋转或者使基板w与加热托盘3同步旋转一设定角度;
步骤S5,向处理腔室1内部再次通入工艺气体,然后在基板w上再沉积一定层数的薄膜;
步骤S6,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入非工艺气体,例如惰性气体或氮气,以保持处理腔室1内部的压力;
步骤S7,判断基板w上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;
步骤S8,将基板w从PECVD的处理腔室1内部取出,完成基板w的薄膜沉积工艺。
其中,基板w旋转或者加热托盘3旋转或者基板w与加热托盘3同步旋转的旋转轴AA’垂直且穿过基板w的中心O。
基板w上沉积的薄膜包括交替沉积的第一种材料和第二种材料。在本实施例14中,第一种材料为氧化硅,第二种材料为氮化硅。
其中,该薄膜沉积方法还包括:在基板w表面上每沉积一种材料后,都需要抽走处理腔室1内的废气,再进行后续工艺步骤。
使基板w旋转或者使加热托盘3旋转或者使基板w与加热托盘3同步旋转时,停止通入工艺气体,通入惰性气体或氮气,保持处理腔室1内的压力,保持射频源5为打开状态。因为在基板w上沉积一定层数的薄膜后,处理腔室1内部悬浮有部分杂质颗粒,此时,保持射频源5为打开状态,处理腔室1内部充满射频电场,杂质颗粒在处理腔室1内部射频电场的作用下带电,带电的杂质颗粒保持悬浮,不会掉落在基板w表面,有效防止了杂质颗粒掉落在基板w沉积的薄膜上,避免了对基板w上沉积的薄膜造成污染。
薄膜沉积结束后,(基板w旋转次数+1)*基板w每次旋转的设定角度=360°。在本实施例14中,如图8A至图8D所示,薄膜沉积结束后,基板w旋转次数为5次,且每次旋转的设定角度为60度;还可以是,基板w旋转次数为3次,且每次旋转的设定角度为90度;还可以是,基板w旋转次数为2次,且每次旋转的设定角度为120度;还可以是,基板w旋转次数为1次,且每次旋转的设定角度为180度。
然而,基板w旋转或者加热托盘3旋转时,保持射频源5为打开状态,基板w脱离加热托盘3后,基板w的背面和加热托盘3之间的间隙过大,易导致电弧放电现象的产生。因此,在本实施例14中,为了避免基板w在射频源5打开状态下脱离加热托盘3发生电弧放电现象,需要调整基板w与加热托盘3之间的间隙小于设定值,以避免基板w在等离子体气体的氛围下,脱离加热托盘3导致电弧放电现象的产生。在本实施例14中,基板w与加热托盘3之间间隙的设定值为m,0<m≤5mm。因此,在基板w与加热托盘3之间的间隙小于设定值的条件下,保持射频源5为打开状态,降低基板w发生电弧放电的风险,保证了薄膜沉积工 艺的安全性和稳定性。
在本实施例14中,在基板w表面沉积薄膜的层数不多(例如小于150层)时,可采用驱动加热托盘3带动基板w同步旋转的方式,以避免基板w被顶起发生电弧放电。在加热托盘3存在表面不平整的情况下,可采用将基板w顶起,驱动基板w旋转或者驱动加热托盘3旋转的方式,以解决加热托盘3温度不均匀对基板w表面沉积薄膜的均匀性造成的影响。
实施例十五
本实施例15提供了一种薄膜沉积方法,与实施例14相比,区别在于:
射频源5在打开状态下,通过加热托盘3上的第二通孔302向基板w与加热托盘3之间的间隙中通入非工艺气体,以降低基板w在脱离加热托盘3的情况下发生电弧放电的风险。其中,在本实施例15中,非工艺气体为惰性气体或氮气。
在基板w与加热托盘3之间的间隙被非工艺气体充满时,保持射频源5为打开状态,降低基板w发生电弧放电的风险,保证了薄膜沉积工艺的安全性和稳定性。
本实施例的其他设置与实施例十四相同,此处不再赘述。
实施例十六
本实施例16提供了一种薄膜沉积方法,与实施例14相比,区别在于:
保持射频源5为打开状态下,调低射频源5的射频功率小于薄膜沉积工艺时的射频源5的射频功率,以降低基板w在脱离加热托盘3的情况下发生电弧放电现象的风险,从而保证薄膜沉积工艺的安全性和稳定性。
本实施例的其他设置与实施例十四相同,此处不再赘述。
实施例十七
本实施例17提供了一种薄膜沉积方法,与实施例14相比,区别在于:
在基板w旋转或者加热托盘3旋转或者基板w与加热托盘3同步旋转之前,调整射频源5为关闭状态,并对处理腔室1进行净化处理。
由于在基板w上沉积一定层数的薄膜后,处理腔室1内部会存在杂质颗粒, 处理腔室1内部越脏,基板w在处理腔室1内部脱离加热托盘3时,越容易发生电弧放电现象。因此,在在基板w旋转或者加热托盘3旋转或者基板w与加热托盘3同步旋转之前,较佳的,可以关闭射频源5,通过气体供应组件2向处理腔室1内部供应氮气,对处理腔室1进行净化处理。
本实施例的其他设置与实施例十四相同,此处不再赘述。
实施例十八
请参阅图8A至图9和图16,本实施例18提供了一种薄膜沉积方法,该薄膜沉积方法是基于上述实施例7和实施例10中的薄膜沉积装置实现的。
具体地,薄膜沉积方法包括以下步骤:
步骤S1,将基板w放置于PECVD的处理腔室1中,并对处理腔室1进行抽真空,使得待沉积薄膜的基板w处于真空环境中;
步骤S2,向处理腔室1内部通入工艺气体,并打开射频源5,将处理腔室1内部的工艺气体解离为等离子体气体,在基板w上沉积一定层数的薄膜;
步骤S3,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内部的压力;
步骤S4,调整射频源5为关闭状态,使加热托盘3带动基板w同步旋转一设定角度;
步骤S5,向处理腔室1内部再次通入工艺气体,并调整射频源5为打开状态,然后在基板w上再沉积一定层数的薄膜;
步骤S6,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内部的压力;
步骤S7,判断基板w上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;
步骤S8,将基板w从处理腔室1内部取出,完成薄膜沉积工艺。
其中,加热托盘3与基板w同步旋转的旋转轴AA’垂直且穿过基板w的中心O。在本实施例18中,加热托盘3以过基板w中心的轴线AA’为旋转轴与基板w同步旋转进一步包括:加热托盘3绕着旋转轴AA’沿正向旋转设定角度后,再绕着旋转轴AA’沿反向旋转。
基板w上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
其中,该薄膜沉积方法还包括:在基板w表面上每沉积一种材料后,都需要抽走处理腔室1内的废气,再进行后续工艺步骤。
薄膜沉积结束后,(基板w旋转次数+1)*基板w每次旋转的设定角度=360°。在本实施例18中,如图8A至图8D所示,薄膜沉积结束后,基板w旋转次数为5次,且每次旋转的设定角度为60度;还可以是,基板w旋转次数为3次,且每次旋转的设定角度为90度;还可以是,基板w旋转次数为2次,且每次旋转的设定角度为120度;还可以是,基板w旋转次数为1次,且每次旋转的设定角度为180度。
实施例十九
请参阅图10和图17,本实施例19提供了一种薄膜沉积方法,该薄膜沉积方法是基于上述实施例8和实施例11中的薄膜沉积装置实现的。
具体地,薄膜沉积方法包括以下步骤:
步骤S1,将基板w放置于PECVD的处理腔室1中,并对处理腔室1进行抽真空,使得待沉积薄膜的基板w处于真空环境中;
步骤S2,向处理腔室1内部通入工艺气体,并打开射频源5,将处理腔室1内部的工艺气体解离为等离子体气体,在基板w上沉积一定层数的薄膜;
步骤S3,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内部的压力;
步骤S4,调整射频源5为关闭状态,将基板w顶起,并驱动加热托盘3旋转一设定角度后,将基板w放置回加热托盘3上;
步骤S5,向处理腔室1内部通入工艺气体,并调整射频源5为打开状态,然后在基板w上再沉积一定层数的薄膜;
步骤S6,停止向处理腔室1内部通入工艺气体,并向处理腔室1内部通入惰性气体或氮气,以保持处理腔室1内部的压力;
步骤S7,判断基板w上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;
步骤S8,将基板w从处理腔室1内部取出,完成薄膜沉积工艺。
其中,加热托盘3旋转的旋转轴AA’垂直且穿过基板w的中心O。在本实施例19中,加热托盘3以过基板w中心的轴线AA’为旋转轴旋转进一步包括:加热托盘3绕着旋转轴AA’沿正向旋转设定角度后,再绕着旋转轴AA’沿反向旋转。
在本实施例19中,基板w上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
其中,该薄膜沉积方法还包括:在基板w表面上每沉积一种材料后,都需要抽走处理腔室1内的废气,再进行后续工艺步骤。
实施例二十
请参阅图11和图18,本实施例20提供了一种薄膜沉积方法,该薄膜沉积方法是基于上述实施例9中的薄膜沉积装置实现的。
具体地,该薄膜沉积方法包括以下步骤:
步骤S1,将多片基板w依次放入处理腔室1内完成薄膜沉积工艺;
步骤S2,使气体供应组件2旋转一设定角度;
步骤S3,对处理腔室1进行清洗,以保证处理腔室1的清洁,清洗处理完成后,重复步骤S1-步骤S3。
在本实施例20中,基板w上沉积的薄膜包括交替沉积的第一种材料和第二种材料。其中,多片基板w依次放入处理腔室1内进行薄膜沉积工艺包括:在每片基板w表面上每沉积一种材料后,都需要抽走处理腔室1内的废气,再进行后续工艺步骤。
实施例二十一
请参阅图13A至图13C和图19,本实施例21提供了一种薄膜沉积方法,该薄膜沉积方法是基于上述实施例12中的薄膜沉积装置实现的。
如图13A至图13C所示,气体供应组件2底端设置有第一多孔板21;气体供应组件2内部设置有气体调节单元200,且气体调节单元200的底端设置有第二多孔板201,第二多孔板201与气体供应组件2的第一多孔板21相对设置。通过调节第二多孔板201与第一多孔板21之间的间隙可以调节气体供应组件2内部工艺 气体的气流方向,使得气体供应组件2内部的工艺气体充分混合,从而改善处理腔室1内部等离子体气体分布不均匀导致基板w表面沉积薄膜不均匀的缺陷。
具体地,如图13A至图13C所示,调节第二多孔板201与第一多孔板21之间的间隙是通过调节气体调节单元200的侧壁202沿竖直方向拉伸或压缩实现的,详细参照上述实施例12中阐述的气体调节单元200的侧壁202的调节方式,在此不做赘述。本实施例21提供的薄膜沉积方法包括以下步骤:
步骤S1,将多片基板w依次放入处理腔室1内完成薄膜沉积工艺;
步骤S2,调节第二多孔板201与第一多孔板21之间的间隙,以调节气体供应组件2内部工艺气体的气流方向;
步骤S3,对处理腔室1进行清洗,以保证处理腔室1的清洁,清洗处理完成后,重复步骤S1-步骤S3。
实施例二十二
请参阅图14A至图14C和图19,本实施例22提供了一种薄膜沉积方法,该薄膜沉积方法是基于上述实施例13中的薄膜沉积装置实现的。与实施例21相比,区别在于:
如图14A至图14C所示,气体调节单元200内设置伸缩杆203。调节第二多孔板201与第一多孔板21之间的间隙是通过调节伸缩杆203沿竖直方向拉伸或压缩实现的,详细参照上述实施例13中阐述的气体调节单元200的伸缩杆203的调节方式,在此不做赘述。
本实施例的其他设置与实施例二十一相同,此处不再赘述。
实施例二十三
请参阅图20A至图20G,本实施例23提供了一种薄膜沉积设备,包括:基板装载端口002,用于放置基板w;缓存装置003;前端机械手001,用于在基板装载端口002和缓存装置003之间传送基板w;上述实施例1-13中的薄膜沉积装置,用于对基板w进行薄膜沉积;工艺机械手004,用于在缓存装置003和薄膜沉积装置的处理腔室1之间传送基板w。
具体地,前端机械手001从基板装载端口002上取出待沉积的基板w,并放置 于缓存装置003上;工艺机械手004从缓存装置003上取出基板w,放置于薄膜沉积装置的处理腔室1中,在基板w表面进行薄膜沉积;薄膜沉积结束后,工艺机械手004将基板w从处理腔室1中取出,并放置于缓存装置003上;前端机械手001将基板w从缓存装置003上取出,并放回基板装载端口002,完成薄膜沉积设备的工艺操作。
在本实施例23中,如图20A至图20C所示,薄膜沉积装置的处理腔室1为多个,且多个处理腔室1对称排布于工艺机械手004的两侧。
同时,工艺机械手004可以为一个或多个。工艺机械手004为多个时,如图20A所示,对应的缓存装置003为多个。工艺机械手004为一个时,如图20B和图20C所示,该工艺机械手004下方设置有无接触式的磁悬浮轨道,以保证工艺机械手004在滑动过程中无油无摩擦。每个处理腔室1的内部还可以设置有多个加热托盘3,用于同时对多片基板w进行薄膜沉积,以提高薄膜沉积的工艺效率。
在本实施例23中,如图20A、图20C和图20D所示,每个处理腔室1内部的多个加热托盘3可以成矩阵结构排布。或者,在其他实施方式中,如图20B、图20E、图20F和图20G所示,每个处理腔室1内部的多个加热托盘3成三角形结构排布。
实施例二十四
请参阅图20D至图20G,本实施例24提供了一种薄膜沉积设备,与实施例23相比,区别在于:
如图20D至图20G所示,多个处理腔室1依序排布于工艺机械手004的外周。
如图20G所示,缓存装置003内部可放置多个基板w,多个基板w的中心构成一个圆,该多个基板w可沿垂直该圆的圆心为旋转轴旋转,以改变该多个基板w在缓存装置003内部的位置。
其中,如图20G所示,处理腔室1为五个,依序排布于工艺机械手004的外周。每个处理腔室1内部设置有三个加热托盘3,用于同时对三片基板w进行薄膜沉积,且三个加热托盘3成三角形结构排布。
在本实施例24中,缓存装置003的内部可以放置三片基板w,且缓存装置003内部三片基板w成三角形结构排布。
工艺机械手004为一个,工艺机械手004的结构与缓存装置003内部三片基板w所成的三角形结构和处理腔室1内的三个加热托盘3所构成的三角形结构相配合,便于工艺机械手004从缓存装置003中同时拿取三片基板w后放入处理腔室1的三个加热托盘3上,以提升薄膜沉积的工艺效率。
本实施例的其他设置与实施例二十三相同,此处不再赘述。
本发明通过上述实施方式及相关图式说明,己具体、详实的揭露了相关技术,使本领域的技术人员可以据以实施。而以上所述实施例只是用来说明本发明,而不是用来限制本发明的,本发明的权利范围,应由本发明的权利要求来界定。至于本文中所述元件数目的改变或等效元件的代替等仍都应属于本发明的权利范围。
Claims (61)
- 一种薄膜沉积装置,其特征在于,包括:处理腔室,用于进行薄膜沉积;气体供应组件,设置于所述处理腔室顶壁,用于向所述处理腔室内部供应工艺气体;加热托盘,设置于所述气体供应组件下方,用于承载并加热基板;射频源,用于提供射频功率,激发所述处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在所述基板上进行薄膜沉积;旋转机构,控制所述基板旋转或者所述加热托盘旋转或者基板与加热托盘同步旋转,所述旋转的旋转轴垂直且穿过所述基板;所述旋转机构驱动所述基板旋转或者所述加热托盘旋转或者基板与加热托盘同步旋转时,保持所述射频源为打开状态。
- 如权利要求1所述的薄膜沉积装置,其特征在于,进一步包括:支撑件和升降机构;支撑件,用于支撑基板;升降机构,与所述支撑件连接,用于驱动所述支撑件沿竖直方向上升或下降,以托起基板离开所述加热托盘或放置基板于所述加热托盘上;所述旋转机构设置于所述升降机构底端,用于驱动所述支撑件和所述升降机构沿水平圆周方向同步旋转,以带动基板旋转。
- 如权利要求2所述的薄膜沉积装置,其特征在于,所述支撑件为可沿竖直方向和水平圆周方向运动的顶针;所述加热托盘上开有第一通孔,所述顶针设置在所述第一通孔内;所述第一通孔在水平面的截面为弧形或圆形,所述弧形或圆形的圆心与基板的圆心在一条铅垂线上;需要旋转基板时,所述升降机构驱动所述顶针沿竖直方向向上升起并从所述第一通孔中伸出,将基板顶起,使得所述基板脱离所述加热托盘;所述旋转机构驱动所述顶针在所述第一通孔中沿弧形轨迹移动,使基板旋转一设定角度,待基板旋转设定角度后,基板停止旋转,所述升降机构驱动所述顶针沿竖直方向向下移动,将基板放置在加热托盘上以进行薄 膜沉积。
- 如权利要求3所述的薄膜沉积装置,其特征在于,所述顶针为至少三个,所述第一通孔为至少三个,且与所述顶针一一对应。
- 如权利要求2所述的薄膜沉积装置,其特征在于,所述支撑件为设置在基板边缘底部的支撑环;所述支撑环可沿竖直方向升降以及以基板的中心线为旋转轴旋转;需要旋转基板时,所述升降机构驱动支撑环沿竖直方向向上升起,将基板托起,使基板脱离加热托盘;所述旋转机构驱动所述支撑环旋转以带动基板旋转一设定角度,基板旋转设定角度后停止旋转,所述升降机构驱动支撑环沿竖直方向向下移动,将基板放置在加热托盘上以进行薄膜沉积。
- 如权利要求5所述的薄膜沉积装置,其特征在于,所述支撑环为带有缺口的圆形环,或所述支撑环包括位于同一个圆上的多段圆弧。
- 如权利要求1所述的薄膜沉积装置,其特征在于,进一步包括:支撑件、第一升降机构和第二升降机构;支撑件,用于支撑基板,所述支撑件包括顶针和支撑环;第一升降机构,与所述顶针连接,用于驱动所述顶针沿竖直方向上升或下降,以装载或卸载基板;第二升降机构,与所述支撑环连接,用于驱动所述支撑环沿竖直方向上升或下降,以托起基板离开所述加热托盘或放置基板于所述加热托盘上;所述旋转机构设置于所述第二升降机构底部,用于驱动所述支撑环和所述第二升降机构旋转,以带动基板旋转;所述加热托盘上开有第一通孔,所述顶针设置于所述第一通孔内。
- 如权利要求1所述的薄膜沉积装置,其特征在于,薄膜沉积结束后,(基板旋转次数+1)*基板每次旋转的设定角度=360°。
- 如权利要求1所述的薄膜沉积装置,其特征在于,所述旋转机构与所述加热托盘连接,用于驱动所述加热托盘以所述基板中心的轴线为旋转轴,带动基板同步旋转。
- 如权利要求1所述的薄膜沉积装置,其特征在于,进一步包括:支撑件和升降机构;所述支撑件,用于支撑基板;所述升降机构,与所述支撑件连接,用于驱动所述支撑件沿竖直方向上升或下降,以托起基板离开所述加热托盘或放置基板于所述加热托盘上;所述旋转机构与所述加热托盘连接,用于驱动所述加热托盘以过所述基板中心的轴线为旋转轴旋转。
- 如权利要求1所述的薄膜沉积装置,其特征在于,在所述基板或者所述加热托盘旋转时,保持所述射频源为打开状态,调整所述基板与所述加热托盘之间的间隙小于设定值。
- 如权利要求11所述的薄膜沉积装置,其特征在于,所述设定值为m,0<m≤5mm。
- 如权利要求1所述的薄膜沉积装置,其特征在于,所述加热托盘上设置有第二通孔,在所述基板或者所述加热托盘旋转时,保持所述射频源为打开状态,通过所述第二通孔向所述基板与所述加热托盘之间的间隙中通入非工艺气体。
- 如权利要求13所述的薄膜沉积装置,其特征在于,所述非工艺气体为氮气或惰性气体。
- 如权利要求1所述的薄膜沉积装置,其特征在于,在所述基板旋转或者所述加热托盘旋转或者基板与加热托盘同步旋转时,保持所述射频源为打开状态,调节所述射频源的射频功率小于薄膜沉积工艺时的射频功率。
- 如权利要求1所述的薄膜沉积装置,其特征在于,在所述基板旋转或者所述加热托盘旋转或者基板与加热托盘同步旋转之前,调整所述射频源为关闭状态,并对处理腔室进行净化处理。
- 如权利要求1所述的薄膜沉积装置,其特征在于,所述射频源的高频频率为13.56MHz的整数倍n,且n满足:n=1,2,3,…,8。
- 如权利要求1所述的薄膜沉积装置,其特征在于,所述射频源的低频频率范围为20KHz-400KHz。
- 一种薄膜沉积装置,其特征在于,包括:处理腔室,用于进行薄膜沉积;气体供应组件,设置于所述处理腔室顶壁,用于向所述处理腔室内部供应工艺气体;加热托盘,设置于所述气体供应组件下方,用于承载并加热基板;射频源,用于提供射频功率,激发所述处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在所述基板上进行薄膜沉积;旋转机构,与所述气体供应组件连接,用于驱动所述气体供应组件旋转。
- 一种薄膜沉积装置,其特征在于,包括:处理腔室,用于进行薄膜沉积;气体供应组件,设置于所述处理腔室顶壁,用于向所述处理腔室内部供应工艺气体;加热托盘,设置于所述气体供应组件下方,用于承载并加热基板;射频源,用于提供射频功率,激发所述处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在所述基板上进行薄膜沉积;旋转机构,与所述加热托盘连接,用于驱动所述加热托盘以过基板中心的轴线为旋转轴,带动基板同步旋转;所述旋转机构驱动所述加热托盘带动基板同步转动时,调整所述射频源为关闭状态。
- 如权利要求20所述的薄膜沉积装置,其特征在于,薄膜沉积结束后,(基板旋转次数+1)*基板每次旋转的设定角度=360°。
- 如权利要求20所述的薄膜沉积装置,其特征在于,所述射频源的高频频率为13.56MHz的整数倍n,且n满足:n=1,2,3,…,8。
- 如权利要求20所述的薄膜沉积装置,其特征在于,所述射频源的低频频率范围为20KHz-400KHz。
- 一种薄膜沉积装置,其特征在于,包括:处理腔室,用于进行薄膜沉积;气体供应组件,设置于所述处理腔室顶壁,用于向所述处理腔室内部供应工艺气体;加热托盘,设置于所述气体供应组件下方,用于承载并加热基板;射频源,用于提供射频功率,激发所述处理腔室内部的工艺气体解离为等离子体气体,等离子体气体在所述基板上进行薄膜沉积;支撑件,用于支撑基板;升降机构,与所述支撑件连接,用于驱动所述支撑件沿竖直方向上升或下降,以托起基板离开所述加热托盘或放置基板于所述加热托盘上;旋转机构,与所述加热托盘连接,用于驱动所述加热托盘以过基板中心的轴线为旋转轴旋转;所述旋转机构驱动所述加热托盘转动时,调整所述射频源为关闭状态。
- 如权利要求24所述的薄膜沉积装置,其特征在于,所述射频源的高频频率为13.56MHz的整数倍n,且n满足:n=1,2,3,…,8。
- 如权利要求24所述的薄膜沉积装置,其特征在于,所述射频源的低频频率范围为20KHz-400KHz。
- 一种薄膜沉积装置,其特征在于,包括:处理腔室,用于进行薄膜沉积;气体供应组件,设置于所述处理腔室顶壁,具有第一多孔板,用于向所述处理腔室内部供应工艺气体;加热托盘,设置于所述气体供应组件下方,用于承载并加热基板;气体调节单元,设置于所述气体供应组件内部,所述气体调节单元具有第二多孔板,第二多孔板与所述气体供应组件的第一多孔板相对设置,所述第二多孔板与所述气体供应组件的第一多孔板之间的间隙可调。
- 如权利要求27所述的薄膜沉积装置,其特征在于,所述气体调节单元的侧壁可沿竖直方向拉伸或收缩,以调节所述第二多孔板与所述第一多孔板之间的间隙。
- 如权利要求28所述的薄膜沉积装置,其特征在于,所述气体调节单元的侧壁为波纹管,可沿竖直方向向下拉伸或向上收缩。
- 如权利要求27所述的薄膜沉积装置,其特征在于,所述气体调节单元包括一伸缩杆,且所述伸缩杆与所述第二多孔板连接,所述伸缩杆可沿竖直方向拉伸或收缩,以调节所述第二多孔板与所述第一多孔板之间的间隙。
- 一种薄膜沉积方法,其特征在于,包括以下步骤:步骤S1,将基板放置于处理腔室中,并对处理腔室抽真空;步骤S2,向所述处理腔室内部通入工艺气体,并打开射频源,在基板上沉积一定层数的薄膜;步骤S3,停止向所述处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;步骤S4,保持所述射频源为打开状态,使基板旋转或者使加热托盘旋转或者使基板与加热托盘同步旋转一设定角度;步骤S5,向所述处理腔室内部再次通入工艺气体,在基板上再沉积一定层数的薄膜;步骤S6,停止向所述处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;步骤S7,判断基板上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;步骤S8,从所述处理腔室内部取出基板。
- 如权利要求31所述的薄膜沉积方法,其特征在于,所述基板上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
- 如权利要求33所述的薄膜沉积方法,其特征在于,所述第一种材料为氧化硅,所述第二种材料为氮化硅。
- 如权利要求31所述的薄膜沉积方法,其特征在于,薄膜沉积结束后,(基板旋转次数+1)*基板每次旋转的设定角度=360°。
- 如权利要求31所述的薄膜沉积方法,其特征在于,在基板旋转或者加热托盘旋转时,保持所述射频源为打开状态,调整基板与加热托盘之间的间隙小于设定值。
- 如权利要求35所述的薄膜沉积方法,其特征在于,所述设定值为m,0<m≤5mm。
- 如权利要求31所述的薄膜沉积方法,其特征在于,在基板旋转或者加热托盘旋转时,保持所述射频源为打开状态,向基板与加热托盘之间的间隙中通入非工艺气体。
- 如权利要求37所述的薄膜沉积方法,其特征在于,所述非工艺气体为氮气或惰性气体。
- 如权利要求31所述的薄膜沉积方法,其特征在于,在基板旋转或者加热托盘旋转或者基板与加热托盘同步旋转时,保持所述射频源为打开状态,调节所述射频源的射频功率小于薄膜沉积工艺时的射频功率。
- 如权利要求31所述的薄膜沉积方法,其特征在于,在基板旋转或者加热托盘旋转或者基板与加热托盘同步旋转之前,调整所述射频源为关闭状态,并对处理腔室进行净化处理。
- 一种薄膜沉积方法,其特征在于,包括以下步骤:步骤S1,将基板放置于处理腔室中,并对处理腔室抽真空;步骤S2,向所述处理腔室内部通入工艺气体,并打开射频源,在基板上沉积一定层数的薄膜;步骤S3,停止向所述处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;步骤S4,调整射频源为关闭状态,使加热托盘带动基板同步旋转一设定角度;步骤S5,向所述处理腔室内部通入工艺气体,并调整射频源为打开状态,在基板上再沉积一定层数的薄膜;步骤S6,停止向所述处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;步骤S7,判断基板上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;步骤S8,从处理腔室内部取出基板。
- 如权利要求41所述的薄膜沉积方法,其特征在于,所述基板上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
- 如权利要求42所述的薄膜沉积方法,其特征在于,所述第一种材料为氧化硅,所述第二种材料为氮化硅。
- 如权利要求41所述的薄膜沉积方法,其特征在于,薄膜沉积结束后,(基板旋转次数+1)*基板每次旋转的设定角度=360°。
- 一种薄膜沉积方法,其特征在于,包括以下步骤:步骤S1,将基板放置于处理腔室中,并对处理腔室抽真空;步骤S2,向所述处理腔室内部通入工艺气体,并打开射频源,在基板上沉积一定层数的薄膜;步骤S3,停止向所述处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;步骤S4,调整射频源为关闭状态,将基板顶起,并驱动加热托盘旋转一设定角度后,将基板放置回加热托盘上;步骤S5,向所述处理腔室内部通入工艺气体,并调整射频源为打开状态,在基板上再沉积一定层数的薄膜;步骤S6,停止向所述处理腔室内部通入工艺气体,并通入非工艺气体,以保持所述处理腔室内部的压力;步骤S7,判断基板上沉积薄膜的层数是否满足设定层数;若不满足,则重复上述步骤S2-S6;若满足,则执行步骤S8;步骤S8,从处理腔室内部取出基板。
- 如权利要求45所述的薄膜沉积方法,其特征在于,所述基板上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
- 如权利要求46所述的薄膜沉积方法,其特征在于,所述第一种材料为氧化硅,所述第二种材料为氮化硅。
- 一种薄膜沉积方法,其特征在于,包括以下步骤:步骤S1将多片基板依次放入处理腔室内完成薄膜沉积工艺;步骤S2,使气体供应组件旋转一设定角度;步骤S3,对所述处理腔室进行清洗,清洗处理完成后,重复步骤S1-步骤S3。
- 如权利要求48所述的薄膜沉积方法,其特征在于,所述基板上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
- 如权利要求49所述的薄膜沉积方法,其特征在于,所述第一种材料为氧化硅,所述第二种材料为氮化硅。
- 一种薄膜沉积方法,其特征在于,包括以下步骤:步骤S1,将多片基板依次放入处理腔室内完成薄膜沉积工艺;步骤S2,调节气体调节单元的第二多孔板与气体供应组件的第一多孔板之间的间隙;步骤S3,对处理腔室进行清洗,清洗处理完成后,重复步骤S1-步骤S3。
- 如权利要求51所述的薄膜沉积方法,其特征在于,调节第二多孔板与第一多孔板之间的间隙是通过调节气体调节单元的侧壁沿竖直方向拉伸或压缩。
- 如权利要求51所述的薄膜沉积方法,其特征在于,调节第二多孔板与第一多孔板之间的间隙是通过调节气体调节单元内部的伸缩杆沿竖直方向拉伸或压缩。
- 如权利要求51所述的薄膜沉积方法,其特征在于,所述基板上沉积的薄膜包括交替沉积的第一种材料和第二种材料。
- 如权利要求54所述的薄膜沉积方法,其特征在于,所述第一种材料为氧化硅,所述第二种材料为氮化硅。
- 一种薄膜沉积设备,其特征在于,包括:基板装载端口,用于放置基板;缓存装置;前端机械手,用于在所述基板装载端口和所述缓存装置之间传送所述基板;如权利要求1-30任意一项所述的薄膜沉积装置,用于对基板进行薄膜沉积;工艺机械手,用于在所述缓存装置和所述薄膜沉积装置的处理腔室之间传送所述基板。
- 如权利要求56所述的薄膜沉积设备,其特征在于,所述薄膜沉积装置的处理腔室为多个,且多个处理腔室对称排布于所述工艺机械手两侧或依序排布于所述工艺机械手外周。
- 如权利要求57所述的薄膜沉积设备,其特征在于,每个处理腔室内部放置有多个加热托盘,用于同时对多个基板进行薄膜沉积。
- 如权利要求58所述的薄膜沉积设备,其特征在于,所述每个处理腔室内部的多个加热托盘成矩阵结构排布。
- 如权利要求58所述的薄膜沉积设备,其特征在于,所述每个处理腔室内部的多个加热托盘成三角形结构排布。
- 如权利要求56所述的薄膜沉积设备,其特征在于,所述缓存装置内部可放置多个基板,多个基板的中心构成一个圆,该多个基板可沿垂直该圆的圆心为旋转轴旋转,以改变该多个基板在缓存装置内部的位置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/116302 WO2023028963A1 (zh) | 2021-09-02 | 2021-09-02 | 薄膜沉积装置及薄膜沉积方法及薄膜沉积设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/116302 WO2023028963A1 (zh) | 2021-09-02 | 2021-09-02 | 薄膜沉积装置及薄膜沉积方法及薄膜沉积设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023028963A1 true WO2023028963A1 (zh) | 2023-03-09 |
Family
ID=85410755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/116302 WO2023028963A1 (zh) | 2021-09-02 | 2021-09-02 | 薄膜沉积装置及薄膜沉积方法及薄膜沉积设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023028963A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116855892A (zh) * | 2023-09-05 | 2023-10-10 | 上海陛通半导体能源科技股份有限公司 | 一种高产能AlSi或AlSiCu薄膜的沉积方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924014A (zh) * | 2009-06-09 | 2010-12-22 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 进气装置及工艺腔室 |
US9892956B1 (en) * | 2016-10-12 | 2018-02-13 | Lam Research Corporation | Wafer positioning pedestal for semiconductor processing |
US20200173022A1 (en) * | 2018-11-30 | 2020-06-04 | Applied Materials, Inc. | Film stack overlay improvement for 3d nand application |
US20210074576A1 (en) * | 2019-09-10 | 2021-03-11 | Kioxia Corporation | Semiconductor manufacturing device |
-
2021
- 2021-09-02 WO PCT/CN2021/116302 patent/WO2023028963A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924014A (zh) * | 2009-06-09 | 2010-12-22 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 进气装置及工艺腔室 |
US9892956B1 (en) * | 2016-10-12 | 2018-02-13 | Lam Research Corporation | Wafer positioning pedestal for semiconductor processing |
US20200173022A1 (en) * | 2018-11-30 | 2020-06-04 | Applied Materials, Inc. | Film stack overlay improvement for 3d nand application |
US20210074576A1 (en) * | 2019-09-10 | 2021-03-11 | Kioxia Corporation | Semiconductor manufacturing device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116855892A (zh) * | 2023-09-05 | 2023-10-10 | 上海陛通半导体能源科技股份有限公司 | 一种高产能AlSi或AlSiCu薄膜的沉积方法 |
CN116855892B (zh) * | 2023-09-05 | 2023-12-08 | 上海陛通半导体能源科技股份有限公司 | 一种高产能AlSi或AlSiCu薄膜的沉积方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5316472A (en) | Vertical boat used for heat treatment of semiconductor wafer and vertical heat treatment apparatus | |
KR101676066B1 (ko) | 도포 처리 장치, 도포 현상 처리 시스템 및 도포 처리 방법 및 그 도포 처리 방법을 실행시키기 위한 프로그램을 기록한 기록 매체 | |
KR100269097B1 (ko) | 기판처리장치 | |
JP4850811B2 (ja) | 載置台、処理装置および処理システム | |
JPH0249424A (ja) | エッチング方法 | |
US20110168330A1 (en) | Support structure, load lock apparatus, processing apparatus and transfer mechanism | |
JP6062975B2 (ja) | 基板処理装置及び基板処理方法 | |
US20110031111A1 (en) | Substrate processing apparatus, positioning method and focus ring installation method | |
KR100995203B1 (ko) | 플라즈마 처리 장치내 구조체 및 플라즈마 처리 장치 | |
WO2023028963A1 (zh) | 薄膜沉积装置及薄膜沉积方法及薄膜沉积设备 | |
KR101000219B1 (ko) | 원자층 증착 장치 | |
JP2001148379A (ja) | 半導体基板の熱処理装置及び熱処理方法 | |
WO2023030439A1 (zh) | 薄膜沉积装置、薄膜沉积方法及薄膜沉积设备 | |
KR20170055141A (ko) | 기판 처리장치 및 기판 처리방법 | |
US8383429B2 (en) | Method and apparatus for thermal treatment of semiconductor workpieces | |
KR100511020B1 (ko) | 반도체소자 제조용 확산공정설비 | |
JP4776061B2 (ja) | 薄膜形成装置 | |
KR20160144315A (ko) | 표면 개질 방법, 컴퓨터 기억 매체, 표면 개질 장치 및 접합 시스템 | |
JPH01283391A (ja) | エッチング装置 | |
JP2607381B2 (ja) | エッチング装置 | |
TWI824208B (zh) | 遮罩收納裝置及包含其之成膜裝置 | |
JP2003347393A (ja) | 基板保持装置、及びその基板保持装置を用いた真空処理装置 | |
JPH1050802A (ja) | 基板処理装置 | |
CN220856518U (zh) | 晶舟组件及用于薄膜沉积的炉管装置 | |
KR101235334B1 (ko) | 기판 이송 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21955501 Country of ref document: EP Kind code of ref document: A1 |