WO2023027262A1 - Atomic layer deposition apparatus for powders - Google Patents

Atomic layer deposition apparatus for powders Download PDF

Info

Publication number
WO2023027262A1
WO2023027262A1 PCT/KR2021/018982 KR2021018982W WO2023027262A1 WO 2023027262 A1 WO2023027262 A1 WO 2023027262A1 KR 2021018982 W KR2021018982 W KR 2021018982W WO 2023027262 A1 WO2023027262 A1 WO 2023027262A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
reactor
mesh structure
gas
atomic layer
Prior art date
Application number
PCT/KR2021/018982
Other languages
French (fr)
Korean (ko)
Inventor
김재웅
송수한
박형상
Original Assignee
(주)아이작리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아이작리서치 filed Critical (주)아이작리서치
Publication of WO2023027262A1 publication Critical patent/WO2023027262A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a powder coating apparatus, and more particularly, to an atomic layer deposition apparatus for powder capable of preventing powder aggregation at a lower portion.
  • ALD atomic layer deposition
  • the atomic layer deposition process is a vacuum process in which atomic layer deposition is performed. It has excellent step coating properties and is capable of adjusting the thickness in units of several nanometers, so it is a very advantageous method for coating the surface of a small powder.
  • this bottom powder compaction phenomenon removes voids between the powders and interferes with the inflow of the source and reaction gas from the bottom, so that the atomic layer deposition process is not performed, and the source of the equipment is not performed because the internal purge is not performed. There are problems with clogged supply lines.
  • the present invention is intended to solve various problems, including the above problems, and solves the compaction phenomenon of the lower part of the powder that hinders the inflow of the lower gas through a structure in which the mesh surface operates simultaneously with the central axis based on the lower double mesh
  • And friction for powder dispersion aims to provide an atomic layer deposition apparatus for powder that interacts with the inside of the reaction chamber to improve uniformity.
  • these tasks are illustrative, and the scope of the present invention is not limited thereby.
  • An atomic layer deposition apparatus for powder according to the spirit of the present invention for solving the above problems includes a cylindrical reactor in which a powder receiving space is formed in which powder can be accommodated;
  • a stirring device including a drive shaft portion formed to be rotatable with respect to the central axis of the reactor and a stirring portion formed on the drive shaft portion to stir the powder; a lower mesh structure coupled to a lower portion of the reactor to prevent external leakage of the powder;
  • a shower head disposed below the lower mesh structure and bonded to the lower portion of the reactor to supply at least one of a raw material gas, a purge gas, and a reaction gas from the bottom to the top to provide it to the gas flow space.
  • the mesh is formed to cover the top of the reactor, the gas supplied into the reactor is exhausted to the outside, and the powder loaded inside the reactor is not leaked to the outside. It may further include an upper mesh structure formed so that the drive unit formed outside the reactor and the drive shaft unit formed inside the reactor are connected in a central region.
  • the upper mesh structure so as to supply the powder to the inside of the reactor, at least a portion of the powder injection unit formed as a valve communicating the inside and outside of the reactor; may include.
  • a support bearing formed between the drive shaft portion and the shower head so that the drive shaft portion can be rotated while being supported by the shower head may include.
  • a powder inflow prevention unit coupled to the lower portion of the upper mesh structure so that powder does not flow between the drive shaft unit and the upper mesh structure, and formed to surround the upper region of the drive shaft unit;
  • the stirring unit may be formed by selecting at least one of a helical type, a ribbon type, a ribbon helical type, an anchor type, a turbine type, a propeller type, and combinations thereof.
  • the lower mesh surface in the reaction chamber operates simultaneously with the central axis to relieve the compaction effect at the bottom to facilitate the flow of the source and reaction gas, and for powder dispersion. Friction can interact with the interior of the reaction chamber to improve uniformity.
  • the dilution rate inside the powder is increased, and thus, it has an effect of obtaining uniform deposition characteristics between the powder particles.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a transmittance diagram showing an atomic layer deposition apparatus for powder according to some embodiments of the present invention.
  • FIG. 2 is a cross-sectional view showing a lower portion of the atomic layer deposition apparatus for powder of FIG. 1 .
  • FIG. 3 is a cross-sectional view showing an upper portion of the atomic layer deposition apparatus for powder of FIG. 1 .
  • FIG. 1 is a transmittance diagram showing an atomic layer deposition apparatus for powder according to some embodiments of the present invention
  • FIG. 2 is a cross-sectional view showing a lower portion of the atomic layer deposition apparatus for powder of FIG. 1
  • FIG. 3 is a view for powder of FIG. It is a cross-sectional view showing the top of the atomic layer deposition apparatus.
  • the atomic layer deposition apparatus for powder includes a reactor 100, a stirring device 200, an auxiliary mesh structure 300, and a lower mesh structure ( 400) and a shower head 500.
  • the reactor 100 has a powder receiving space (A) in which powder can be accommodated.
  • the reactor 100 has a powder accommodating space (A) in which powder can be filled, and selects at least one of a source gas, a purge gas, and a reaction gas in the powder accommodating space (A). It may be a cylindrical structure capable of being sealed by supplying gas.
  • the inside of the reactor 100 may be filled with powder, and a processing gas is injected from at least one surface of the reactor 100 so that the processing gas moves into the reactor 100 and the processing gas is added to the filled powder. Being in contact, atomic layer deposition can be performed.
  • the reactor 100 is not limited to a cylinder, and all tubular structures formed in a variety of shapes, such as a polygonal cylinder shape or an elliptical cylinder shape, may be applied.
  • the stirring device 200 may include a driving shaft part 210 formed to be rotatable about the central axis of the reactor 100 and a stirring part 220 formed on the driving shaft part 210 so as to stir the powder. .
  • the driving shaft unit 210 is a shaft formed to rotate the stirring unit 220 inside the reactor 100 .
  • the driving shaft unit 210 is formed at the center of the reactor 100 and can transfer rotational force generated outside the reactor 100 to the stirring unit 220 .
  • the agitator 220 is formed in the powder accommodating space (A) inside the reactor 100 to stir the powders filled in the powder accommodating space (A).
  • the stirring unit 220 may be formed by selecting at least one of a helical type, a ribbon type, a ribbon helical type, an anchor type, a turbine type, a propeller type, and combinations thereof.
  • the auxiliary mesh structure 300 is formed on the bottom of the reactor 100 to prevent downward leakage of the powder, and is coupled to the bottom of the drive shaft 210 to prevent the powder from leaking. ) can be rotated according to the rotation of
  • the auxiliary mesh structure 300 may be formed inside the reactor 100 to support the powder accommodated in the powder receiving space (A). That is, it may be formed so that powder does not fall downward of the auxiliary mesh structure 300 .
  • the auxiliary mesh structure 300 may include a flange-shaped body portion 310 coupled to the drive shaft portion 210 as a whole by having a central portion vertically penetrated and the driving shaft portion 210 coupled to the central portion.
  • a first mesh network 320 may be formed on at least a portion of the auxiliary mesh structure 300 .
  • the powder may be loaded on the top of the first mesh network 320, and the gas supplied from the bottom of the auxiliary mesh structure 300 may flow between the first mesh networks 320 and be supplied to the powder loaded on the top. there is.
  • the first mesh network 320 may include micro-holes. Accordingly, the processing gas supplied to the powder accommodating space A may move into the reactor 100 through the first mesh network 320 .
  • the auxiliary mesh structure 300 rotates in conjunction with the rotation of the driving shaft 210, the powder loaded on top of the auxiliary mesh structure 300 may also rotate. At this time, the mixing of the powders loaded on the upper portion of the auxiliary mesh structure 300 can be uniformly mixed by friction between the inner wall surface of the reactor 100 and the stirring device 200.
  • the first mesh network 320 may be used by adjusting the aperture ratio in various ways according to the particle size of the powder to be used.
  • the material of the first mesh network 320 may be coated with a material that does not easily react, such as AlOx or SiOx, to the stainless steel material according to the characteristics of the source gas used. Accordingly, an anti-deposition film may be formed through various materials and various coatings according to the type of the processing gas.
  • the auxiliary mesh structure 300 may include a fixing part 330 coupled to the body part 310 so that the first mesh network 320 may be fixed to a portion of the auxiliary mesh structure 300 .
  • the central portion of the fixing part 330 passes through the upper and lower portions, and an accommodating part capable of accommodating the first mesh network 320 is formed in an area other than the central part of the fixing part 330, and a drive shaft portion is formed in the center of the fixing part 330. (210) can be combined.
  • the fixing part 330 is coupled to the lower part of the main body part 310 coupled to the drive shaft part 210, and may be fastened so as to be fixed with the main body part 310.
  • a bearing accommodating part to which a bearing can be coupled may be formed at a lower portion of the fixing part 330 .
  • a lower flange portion 110 may be coupled to a lower portion of the reactor 100 .
  • the lower flange portion 110 is formed in a disk shape, the inside penetrates vertically to include an inner diameter, and the outer surface is formed as a stepped portion and may include an upper outer diameter that is the outer surface of the upper portion of the stepped portion.
  • the lower flange portion 110 is coupled to the lower portion of the reactor 100 so that the outer diameter of the upper portion can contact and be coupled to the inner diameter of the reactor 100 .
  • a sealing portion may be formed between the outer diameter of the upper part and the diameter of the reactor 100 .
  • the lower flange portion 110 is inserted into the reactor 100 with the outer diameter of the upper portion to partially block a space in which powder or gas flows between the reactor 100 and the auxiliary mesh structure 300 to prevent leakage of powder or gas.
  • the lower mesh structure 400 may be coupled to a lower portion of the reactor 100 .
  • the lower mesh structure 400 may include a disk-shaped structure coupled to the lower portion of the reactor 100 and a second mesh network coupled to the upper portion of the structure.
  • the lower mesh structure 400 may be a circular second mesh network through which a central portion passes.
  • the lower mesh structure 400 may be a second mesh network inserted above the shower head 500 .
  • the second mesh network may be used by adjusting the aperture ratio in various ways according to the particle size of the powder to be used.
  • the second mesh network may use a mesh having an aperture ratio different from that of the first mesh network 320 .
  • the material of the second mesh network may be coated with a material that does not easily react, such as AlOx or SiOx, to a stainless steel material according to the characteristics of the source gas used. Accordingly, an anti-deposition film may be formed through various materials and various coatings according to the type of the processing gas.
  • the lower mesh structure 400 may be formed below the auxiliary mesh structure 300 and spaced apart from the auxiliary mesh structure 300 by a predetermined distance.
  • the auxiliary mesh structure 300 is formed inside the reactor 100, and the lower mesh structure 400 is coupled to the upper part of the showerhead 500 under the reactor 100, and the auxiliary mesh structure 300 and A space may be formed between the lower mesh structure 400 .
  • a gas flow space (B) may be formed between the lower mesh structure 400 and the auxiliary mesh structure 300, and the gas flow space (B) is an inflow of raw material gas, purge gas, and reaction gas flowing from the lower part. can be done smoothly.
  • the shower head 500 is disposed below the lower mesh structure 400, and supplies at least one of a raw material gas, a purge gas, and a reaction gas from the bottom to the top to supply a gas flow space (B ) It may be coupled to the bottom of the reactor 100 to provide.
  • the shower head 500 may be installed under the reactor 100 so that the process gas supplied through the gas supply line can be evenly distributed, and the shower head 500 includes a plurality of nozzles or injection holes. can do. At this time, the processing gas supplied through the gas supply line passes through the shower head 500, and as the processing gas passing through the shower head 500 rises, an atomic layer may be deposited on the surface of the powder particles.
  • the gas supply line may be a pipe or tube line such as a gas supply pipe that is connected to the shower head 500 and forms a gas supply passage through which the processing gas can be sequentially supplied to the powder accommodated in the powder accommodating space (A).
  • the processing gas may include a raw material gas, a purge gas, and a reaction gas.
  • atomic layers can be deposited on powder particles in a time-division manner while basically repeating sequential gas supply cycles such as raw material gas, purge gas, reaction gas, and purge gas using the shower head 500 and the gas supply line. .
  • a support bearing 700 may be formed between the driving shaft 210 and the showerhead 500 so that the driving shaft 210 can rotate while being supported by the showerhead 500 .
  • the support bearing 700 may be formed as a radial bearing, the outer ring coupled to the lower portion of the auxiliary mesh structure 300, and the inner ring coupled to the connection portion 510 connected to the center of the showerhead 500.
  • the support bearing 700 may be coupled to the bearing accommodating part formed below the fixing part 330 .
  • the outer ring of the support bearing 700 may not contact the showerhead 500, but the inner ring may contact the showerhead 500. Therefore, the showerhead 500 coupled to the inner ring of the support bearing 700 through the connecting portion 510 is fixed, and the auxiliary mesh structure 300 coupled to the outer ring of the support bearing 700 through the fixing portion 330 And the stirring device 200 can be rotated.
  • the support bearing 700 may be formed as a thrust bearing.
  • the connecting portion 510 is a cylindrical connecting shaft coupled to the support bearing 700 .
  • the outer surface of the connecting portion 510 is formed with a step, and the support bearing 700 may be coupled to a bearing coupling region formed in the middle portion. At this time, the support bearing 700 may be inserted in one direction of the connection part 510 by a step of the connection part 510 and blocked in the other direction.
  • connection part 510 may be coupled to the center of the shower head 500 and fixed to the shower head 500 . Therefore, the shower head 500 and the lower mesh structure 400 coupled to the shower head 500 are fixed, and the auxiliary mesh structure 300 can rotate.
  • the atomic layer deposition apparatus for powder of the present invention may include an upper mesh structure 600 .
  • the upper mesh structure 600 is formed to cover the top of the reactor 100, the gas supplied into the reactor 100 is exhausted to the outside and the powder loaded inside the reactor 100 is prevented from leaking to the outside.
  • a mesh may be formed.
  • the upper mesh structure 600 may be coupled to an upper portion of the reactor 100 by forming a cover portion 630 capable of covering the reactor 100 .
  • the upper mesh structure 600 may be connected to an exhaust unit that exhausts the processing gas after the powder accommodated in the powder accommodating space A is processed through the processing gas.
  • the upper mesh structure 600 may include a second mesh network 620 to prevent the powder from scattering to the outside of the reactor 100 .
  • the second mesh network 620 may include fine holes. Accordingly, the processed gas or unreacted gas may be exhausted to the outside through the second mesh network 620 .
  • the size of the microholes may be larger than particles included in the supplied gas and may be smaller than powders filled in the reactor 100 . Accordingly, it is possible to prevent loss of powder caused by nano-sized or micro-sized powder floating in the powder accommodating space A when pumping or processing gas or unreacted gas is discharged.
  • the upper mesh structure 600 may be formed such that a drive unit formed outside the reactor 100 and a drive shaft unit 210 formed inside the reactor 100 are connected in a central region.
  • the driving unit may be a motor capable of rotating the driving shaft unit 210, and the driving unit transmits rotational force from the top of the upper mesh structure 600 through the center of the upper mesh structure 600 to the upper mesh structure 600. ) It is possible to rotate the drive shaft portion 210 by passing it to the drive shaft portion 210 coupled to the lower portion.
  • the upper mesh structure 600 may include a powder injection unit 610 .
  • the powder injection unit 610 may be formed as a valve communicating the inside and outside of the reactor 100 so as to supply the powder to the inside of the reactor 100 .
  • the atomic layer deposition apparatus for powder according to the present invention may include a powder inflow prevention unit 800 .
  • the powder inflow prevention unit 800 is coupled to the lower portion of the upper mesh structure 600 to prevent powder from entering between the driving shaft unit 210 and the upper mesh structure 600, and is formed to surround the upper region of the driving shaft unit 210. It can be.
  • the powder inflow prevention unit 800 may include a protection unit 810 , an upper sealed bearing 820 , a lower sealed bearing 830 and a feed through 840 .
  • the protection unit 810 is formed in a cylindrical shape and may be coupled to a lower portion of the center of the upper mesh structure 600 .
  • the driving shaft portion 210 to which the upper sealed bearing 820 and the lower sealed bearing 830 are coupled may be inserted into the protection unit 810 . Therefore, the protection unit 810 coupled to the upper mesh structure 600 is fixed, and the drive shaft unit 210 coupled to the protection unit 810, the upper sealed bearing 820, and the lower sealed bearing 830 rotates. can be driven
  • a feed through 840 may be coupled to a lower portion of the protection unit 810 .
  • the driving shaft 210 can be rotated through the upper sealed bearing 820 and the lower sealed bearing 830, and the powder is prevented from leaking into the powder inflow prevention unit 800. And, accordingly, it is possible to prevent the powder from leaking out of the reactor 100 along the driving shaft portion 210.
  • the atomic layer deposition apparatus for powder is formed so that the lower mesh unit and the stirring device can be driven simultaneously to prevent compaction of the powder located in the lower part of the reactor.
  • the powder coating process can be performed while maintaining high uniformity by solving the inflow problem of gases.
  • the present invention facilitates the powder process, which was previously difficult to mix and process due to agglomeration, so that it can be applied to CVD or powder mixing processes as well as ALD such as this facility.

Abstract

An atomic layer deposition apparatus for powders of the present invention may comprise: a cylindrical reactor having a powder accommodating space in which powders can be accommodated; a stirring device including a drive shaft part formed to be rotatable with respect to the central axis of the reactor, and a stirring part formed on the drive shaft part to agitate the powders; a lower mesh structure coupled to a lower portion of the reactor so as to prevent external leakage of the powders; an auxiliary mesh structure formed above the lower mesh structure so as to be spaced apart from the lower mesh structure by a predetermined distance to form a gas flow space, and coupled to a lower portion of the drive shaft part to prevent compaction of the powders and rotated according to the rotation of the drive shaft part; and a showerhead disposed below the lower mesh structure and connected to the lower portion of the reactor so as to supply at least one of a raw material gas, a purge gas, and a reaction gas from the lower side to the upper side to provide the at least one gas in the gas flow space.

Description

파우더용 원자층 증착 장치Atomic layer deposition equipment for powder
본 발명은 파우더 코팅 장치에 관한 것으로서, 보다 상세하게는 하부의 파우더 응집을 방지할 수 있는 파우더용 원자층 증착 장치에 관한 것이다.The present invention relates to a powder coating apparatus, and more particularly, to an atomic layer deposition apparatus for powder capable of preventing powder aggregation at a lower portion.
분말 촉매를 비롯한 이차 전지의 전극, 연료 전지 MLCC 등 파우더 코팅 시장의 급격한 발전과 더불어 기존 코팅 대비 고품질의 파우더 코팅을 요구하는 분야가 점차 증가하고 있다. 이러한 수요에 따라 기존 습식 공정 대비 고품질의 박막 제조가 가능한 원자층 증착 공정(Atomic layer deposition, ALD)을 이용한 파우더 코팅이 각광받고 있다.Along with the rapid development of the powder coating market, such as powder catalysts, secondary battery electrodes, and fuel cell MLCC, fields requiring higher quality powder coatings are gradually increasing. In response to this demand, powder coating using atomic layer deposition (ALD), which can produce high-quality thin films compared to conventional wet processes, is in the spotlight.
원자층 증착 공정은 원자층 단위로 증착하는 진공 공정으로 단차 피복 특성이 매우 우수하며 수 nm 단위의 두께 조절이 가능하여 사이즈가 작은 파우더 표면을 코팅하는데 매우 유리한 방법이다.The atomic layer deposition process is a vacuum process in which atomic layer deposition is performed. It has excellent step coating properties and is capable of adjusting the thickness in units of several nanometers, so it is a very advantageous method for coating the surface of a small powder.
그러나, 기존의 수직으로 세워진 유동 층상(fluidized bed, FB) 방식의 파우더 코팅용 원자층 증착 장치의 경우, 샤워헤드를 이용한 가스공급만으로는 파우더의 균일한 증착이 용이하지 않았다. 따라서, 균일도 확보를 위한 별도의 진동공정이나 임펠러를 추가하여 균일도를 향상시켰다. 하지만 유동층 층상 방식의 원자층 증착 공정 특성상 임펠러를 이용한 공정에서 임펠러의 압력과 파우더 하중에 의해 하부에 위치한 파우더가 다져지면서 응집되는 현상이 발생하는 문제점이 있다.However, in the case of an atomic layer deposition apparatus for powder coating of a conventional vertically erected fluidized bed (FB) method, it is not easy to uniformly deposit powder only by supplying gas using a shower head. Therefore, uniformity was improved by adding a separate vibration process or impeller to secure uniformity. However, due to the nature of the atomic layer deposition process of the fluidized bed layer method, there is a problem in that the powder located at the bottom is compacted and agglomerated due to the pressure of the impeller and the powder load in the process using the impeller.
또한, 이러한 하부 파우더 다져짐 현상은 파우더 사이의 공극을 제거하여 하부로부터 유입되는 소스, 반응 가스의 유입을 방해하여 원자층 증착 공정이 이루어지지 않게 되며, 또한, 내부 퍼지가 이루어지지 않으므로 설비의 소스 공급라인이 막히는 문제점들이 있다.In addition, this bottom powder compaction phenomenon removes voids between the powders and interferes with the inflow of the source and reaction gas from the bottom, so that the atomic layer deposition process is not performed, and the source of the equipment is not performed because the internal purge is not performed. There are problems with clogged supply lines.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 하부 이중 메쉬를 기반으로 메쉬면이 중심축과 동시에 작동하는 구조를 통하여 하부 가스 유입을 방해하는 파우더의 하부 다져짐 현상을 해소하고 파우더 분산을 위한 마찰은 반응 챔버 내부와 상호 작용하여 균일도를 향상시키는 파우더용 원자층 증착 장치를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is intended to solve various problems, including the above problems, and solves the compaction phenomenon of the lower part of the powder that hinders the inflow of the lower gas through a structure in which the mesh surface operates simultaneously with the central axis based on the lower double mesh And friction for powder dispersion aims to provide an atomic layer deposition apparatus for powder that interacts with the inside of the reaction chamber to improve uniformity. However, these tasks are illustrative, and the scope of the present invention is not limited thereby.
상기 과제를 해결하기 위한 본 발명의 사상에 따른 파우더용 원자층 증착 장치는, 내부에 분말이 수용될 수 있는 분말 수용 공간이 형성되는 원통형상의 리액터; 상기 리액터의 중심축을 기준으로 회전가능하도록 형성되는 구동축부와 상기 분말을 교반시킬 수 있도록 상기 구동축부에 형성된 교반부를 포함하는 교반 장치; 상기 분말의 외부 누출을 방지하도록 상기 리액터의 하부에 결합되는 하부 메쉬 구조체; 상기 하부 메쉬 구조체와 소정 거리 이격되어 가스 유동 공간이 형성되도록 상기 하부 메쉬 구조체의 상부에 형성되고, 상기 분말의 다져짐 현상을 방지하도록 상기 구동축부의 하부에 결합되어 상기 구동축부의 회전에 따라 회전되는 보조 메쉬 구조체; 및 상기 하부 메쉬 구조체의 하방에 배치되되, 원료가스, 퍼지가스 및 반응가스 중 어느 하나 이상을 하방에서 상방으로 공급하여 상기 가스 유동 공간에 제공하도록 상기 리액터 하부에 겹합되는 샤워헤드;를 포함할 수 있다.An atomic layer deposition apparatus for powder according to the spirit of the present invention for solving the above problems includes a cylindrical reactor in which a powder receiving space is formed in which powder can be accommodated; A stirring device including a drive shaft portion formed to be rotatable with respect to the central axis of the reactor and a stirring portion formed on the drive shaft portion to stir the powder; a lower mesh structure coupled to a lower portion of the reactor to prevent external leakage of the powder; An assistant formed on the upper part of the lower mesh structure to form a gas flow space at a predetermined distance from the lower mesh structure, coupled to the lower part of the driving shaft part to prevent compaction of the powder, and rotated according to the rotation of the driving shaft part. mesh structure; And a shower head disposed below the lower mesh structure and bonded to the lower portion of the reactor to supply at least one of a raw material gas, a purge gas, and a reaction gas from the bottom to the top to provide it to the gas flow space. there is.
또한, 본 발명에 따르면, 상기 리액터의 상부를 덮을 수 있도록 형성되고, 상기 리액터 내부로 공급되는 가스는 외부로 배기하고 상기 리액터 내부에 적재된 상기 분말은 외부로 누출되지 않도록 매쉬가 형성되며, 상기 리액터 외부에 형성된 구동부와 상기 리액터 내부에 형성된 상기 구동축부가 중심영역에서 연결되도록 형성되는 상부 메쉬 구조체;를 더 포함할 수 있다.In addition, according to the present invention, the mesh is formed to cover the top of the reactor, the gas supplied into the reactor is exhausted to the outside, and the powder loaded inside the reactor is not leaked to the outside. It may further include an upper mesh structure formed so that the drive unit formed outside the reactor and the drive shaft unit formed inside the reactor are connected in a central region.
또한, 본 발명에 따르면, 상기 상부 메쉬 구조체는, 상기 리액터 내부에 상기 분말을 공급할 수 있도록, 적어도 일부분이 상기 리액터의 내부와 외부를 연통시키는 밸브로 형성되는 분말 주입부;를 포함할 수 있다.In addition, according to the present invention, the upper mesh structure, so as to supply the powder to the inside of the reactor, at least a portion of the powder injection unit formed as a valve communicating the inside and outside of the reactor; may include.
또한, 본 발명에 따르면, 상기 구동축부가 상기 샤워헤드에 지지되면서 회전될 수 있도록 상기 구동축부와 상기 샤워헤드 사이에 형성되는 지지 베어링;을 포함할 수 있다.In addition, according to the present invention, a support bearing formed between the drive shaft portion and the shower head so that the drive shaft portion can be rotated while being supported by the shower head; may include.
또한, 본 발명에 따르면, 상기 구동축부와 상기 상부 메쉬 구조체 사이로 분말이 유입되지 않도록 상기 상부 메쉬 구조체의 하부에 결합되고, 상기 구동축부의 상부 영역을 둘러싸도록 형성되는 분말 유입 방지부;를 더 포함할 수 있다.In addition, according to the present invention, a powder inflow prevention unit coupled to the lower portion of the upper mesh structure so that powder does not flow between the drive shaft unit and the upper mesh structure, and formed to surround the upper region of the drive shaft unit; can
또한, 본 발명에 따르면, 상기 교반부는 적어도 헬리컬형, 리본형, 리본헬리컬형, 앵커형, 터빈형, 프로펠러형 및 이들의 조합들 중 어느 하나 이상을 선택하여 이루어질 수 있다.In addition, according to the present invention, the stirring unit may be formed by selecting at least one of a helical type, a ribbon type, a ribbon helical type, an anchor type, a turbine type, a propeller type, and combinations thereof.
상기한 바와 같이 이루어진 본 발명의 일부 실시예들에 따르면, 반응 챔버 내 하부 메쉬면이 중심축과 동시에 작동하여 하부 다져짐 효과를 완화하여 소스 및 반응가스의 유동을 원활하게 하며, 파우더 분산을 위한 마찰은 반응 챔버 내부와 상호 작용하여 균일도를 향상시킬 수 있다.According to some embodiments of the present invention made as described above, the lower mesh surface in the reaction chamber operates simultaneously with the central axis to relieve the compaction effect at the bottom to facilitate the flow of the source and reaction gas, and for powder dispersion. Friction can interact with the interior of the reaction chamber to improve uniformity.
또한, 반응 챔버 내의 분말의 플루다이징 현상을 개선하여 분말 내부의 희석율을 높이고, 이에 따라, 분말 입자와 분말 입자 사이에서 균일한 증착 특성을 얻을 수 있는 효과를 갖는 것이다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.In addition, by improving the fluidizing phenomenon of the powder in the reaction chamber, the dilution rate inside the powder is increased, and thus, it has an effect of obtaining uniform deposition characteristics between the powder particles. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치를 나타내는 투과도이다.1 is a transmittance diagram showing an atomic layer deposition apparatus for powder according to some embodiments of the present invention.
도 2는 도 1의 파우더용 원자층 증착 장치의 하부를 나타내는 단면도이다.2 is a cross-sectional view showing a lower portion of the atomic layer deposition apparatus for powder of FIG. 1 .
도 3은 도 1의 파우더용 원자층 증착 장치의 상부를 나타내는 단면도이다.3 is a cross-sectional view showing an upper portion of the atomic layer deposition apparatus for powder of FIG. 1 .
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, several preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified in many different forms, and the scope of the present invention is as follows It is not limited to the examples. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art. In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity of explanation.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.Hereinafter, embodiments of the present invention will be described with reference to drawings schematically showing ideal embodiments of the present invention. In the drawings, variations of the depicted shape may be expected, depending on, for example, manufacturing techniques and/or tolerances. Therefore, embodiments of the inventive concept should not be construed as being limited to the specific shape of the region shown in this specification, but should include, for example, a change in shape caused by manufacturing.
도 1은 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치를 나타내는 투과도이고, 도 2는 도 1의 파우더용 원자층 증착 장치의 하부를 나타내는 단면도이고, 도 3은 도 1의 파우더용 원자층 증착 장치의 상부를 나타내는 단면도이다.1 is a transmittance diagram showing an atomic layer deposition apparatus for powder according to some embodiments of the present invention, FIG. 2 is a cross-sectional view showing a lower portion of the atomic layer deposition apparatus for powder of FIG. 1, and FIG. 3 is a view for powder of FIG. It is a cross-sectional view showing the top of the atomic layer deposition apparatus.
먼저, 도 1에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 파우더용 원자층 증착 장치는, 크게 리액터(100), 교반 장치(200), 보조 메쉬 구조체(300), 하부 메쉬 구조체(400) 및 샤워헤드(500)를 포함할 수 있다.First, as shown in FIG. 1, the atomic layer deposition apparatus for powder according to some embodiments of the present invention includes a reactor 100, a stirring device 200, an auxiliary mesh structure 300, and a lower mesh structure ( 400) and a shower head 500.
리액터(100)는 내부에 분말이 수용될 수 있는 분말 수용 공간(A)이 형성되는 The reactor 100 has a powder receiving space (A) in which powder can be accommodated.
도 1에 도시된 바와 같이, 리액터(100)는 분말이 충진될 수 있는 분말 수용 공간(A)이 형성되고, 분말 수용 공간(A)에 적어도 원료 가스, 퍼지 가스, 반응 가스 중 어느 하나를 선택하여 이루어지는 가스를 공급하는 일종의 밀폐가 가능한 통 형상의 구조체일 수 있다.As shown in FIG. 1, the reactor 100 has a powder accommodating space (A) in which powder can be filled, and selects at least one of a source gas, a purge gas, and a reaction gas in the powder accommodating space (A). It may be a cylindrical structure capable of being sealed by supplying gas.
구체적으로, 리액터(100)의 내부에는 분말이 충진될 수 있고, 리액터(100)의 적어도 한면에서 처리 가스가 주입되어 상기 처리 가스가 리액터(100) 내부로 이동하여 충진된 분말에 상기 처리 가스가 접촉되므로서 원자층 증착이 수행될 수 있다.Specifically, the inside of the reactor 100 may be filled with powder, and a processing gas is injected from at least one surface of the reactor 100 so that the processing gas moves into the reactor 100 and the processing gas is added to the filled powder. Being in contact, atomic layer deposition can be performed.
리액터(100)는 원통에만 국한되지 않고 다각통 형상이나 타원통 형상 등 매우 다양한 형상으로 형성된 통형상의 구조체가 모두 적용될 수 있다.The reactor 100 is not limited to a cylinder, and all tubular structures formed in a variety of shapes, such as a polygonal cylinder shape or an elliptical cylinder shape, may be applied.
교반 장치(200)는 상기 분말을 교반시킬 수 있도록 리액터(100)의 중심축을 기준으로 회전가능하도록 형성되는 구동축부(210)와 구동축부(210)에 형성된 교반부(220)를 포함할 수 있다.The stirring device 200 may include a driving shaft part 210 formed to be rotatable about the central axis of the reactor 100 and a stirring part 220 formed on the driving shaft part 210 so as to stir the powder. .
구동축부(210)는 리액터(100) 내부에 교반부(220)를 회전시킬 수 있도록 형성된 샤프트이다. 구동축부(210)는 리액터(100)의 중심에 형성되어 리액터(100) 외부에 발생되는 회전력을 교반부(220)에 전달할 수 있다.The driving shaft unit 210 is a shaft formed to rotate the stirring unit 220 inside the reactor 100 . The driving shaft unit 210 is formed at the center of the reactor 100 and can transfer rotational force generated outside the reactor 100 to the stirring unit 220 .
교반부(220)는 리액터(100) 내부의 분말 수용 공간(A)에 형성되어, 분말 수용 공간(A)에 충진되는 분말들을 교반시킬 수 있다.The agitator 220 is formed in the powder accommodating space (A) inside the reactor 100 to stir the powders filled in the powder accommodating space (A).
교반부(220)는 적어도 헬리컬형, 리본형, 리본헬리컬형, 앵커형, 터빈형, 프로펠러형 및 이들의 조합들 중 어느 하나 이상을 선택하여 이루어질 수 있다.The stirring unit 220 may be formed by selecting at least one of a helical type, a ribbon type, a ribbon helical type, an anchor type, a turbine type, a propeller type, and combinations thereof.
그러나, 이러한 교반부(220)는 도면이나 언급된 형태 이외에도 상기 분말을 혼합할 수 있도록 구동축부(210)에 설치되는 모든 형태의 날개차들이 모두 적용될 수 있다.However, all types of impellers installed on the driving shaft part 210 to mix the powder may be applied to the stirring unit 220 in addition to the shapes mentioned in the drawings.
보조 메쉬 구조체(300)는, 도 2에 도시된 바와 같이, 리액터(100)의 하부에 형성되어 상기 분말의 하방 누출을 방지할 수 있고, 구동축부(210)의 하부에 결합되어 구동축부(210)의 회전에 따라 회전될 수 있다.As shown in FIG. 2 , the auxiliary mesh structure 300 is formed on the bottom of the reactor 100 to prevent downward leakage of the powder, and is coupled to the bottom of the drive shaft 210 to prevent the powder from leaking. ) can be rotated according to the rotation of
보조 메쉬 구조체(300)는 리액터(100) 내부에 형성되어 분말 수용 공간(A)에 수용된 분말을 지지할 수 있다. 즉, 보조 메쉬 구조체(300)의 하방으로 분말이 낙하되지 않도록 형성될 수 있다.The auxiliary mesh structure 300 may be formed inside the reactor 100 to support the powder accommodated in the powder receiving space (A). That is, it may be formed so that powder does not fall downward of the auxiliary mesh structure 300 .
보조 메쉬 구조체(300)는 중심부가 상하 관통되어 구동축부(210)가 중심부에 결합되어 전체적으로 구동축부(210)에 결합된 플랜지 형상의 본체부(310)를 포함할 수 있다.The auxiliary mesh structure 300 may include a flange-shaped body portion 310 coupled to the drive shaft portion 210 as a whole by having a central portion vertically penetrated and the driving shaft portion 210 coupled to the central portion.
보조 메쉬 구조체(300)는 적어도 일부에 제 1 메쉬망(320)이 형성될 수 있다. 제 1 메쉬망(320)은 상부에 분말이 적재될 수 있으며, 보조 메쉬 구조체(300) 하부에서 공급되는 가스가 제 1 메쉬망(320) 사이로 유동되어 상부에 적재된 분말에 공급되도록 형성될 수 있다.A first mesh network 320 may be formed on at least a portion of the auxiliary mesh structure 300 . The powder may be loaded on the top of the first mesh network 320, and the gas supplied from the bottom of the auxiliary mesh structure 300 may flow between the first mesh networks 320 and be supplied to the powder loaded on the top. there is.
제 1 매쉬망(320)은 미세홀(Micro-hole)을 포함할 수 있다. 따라서, 제 1 매쉬망(320)을 통해, 분말 수용 공간(A)에 공급되는 상기 처리 가스가 리액터(100)의 내부로 이동할 수 있다.The first mesh network 320 may include micro-holes. Accordingly, the processing gas supplied to the powder accommodating space A may move into the reactor 100 through the first mesh network 320 .
보조 메쉬 구조체(300)는 구동축부(210)의 회전과 연동되어 회전하므로, 보조 메쉬 구조체(300)의 상부에 적재된 분말들도 회전될 수 있다. 이때, 보조 메쉬 구조체(300)의 상부에 적재된 분말들의 혼합은 리액터(100) 내벽면과 교반장치(200)의 마찰로 균일한 혼합이 이루어질 수 있다.Since the auxiliary mesh structure 300 rotates in conjunction with the rotation of the driving shaft 210, the powder loaded on top of the auxiliary mesh structure 300 may also rotate. At this time, the mixing of the powders loaded on the upper portion of the auxiliary mesh structure 300 can be uniformly mixed by friction between the inner wall surface of the reactor 100 and the stirring device 200.
제 1 메쉬망(320)은 사용하는 분말의 입도에 따라 개구율을 다양하게 조절하여 사용할 수 있다. 또한, 또한 제 1 메쉬망(320)의 재질은 사용되는 소스가스의 특성에 맞게 스테인레스 스틸 재질에 AlOx, SiOx 등의 반응이 일어나기 어려운 물질로 코팅될 수 있다. 따라서, 상기 처리 가스의 종류에 따라 다양한 재질 및 다양한 코팅을 통하여 증착 방지막을 형성할 수 있다.The first mesh network 320 may be used by adjusting the aperture ratio in various ways according to the particle size of the powder to be used. In addition, the material of the first mesh network 320 may be coated with a material that does not easily react, such as AlOx or SiOx, to the stainless steel material according to the characteristics of the source gas used. Accordingly, an anti-deposition film may be formed through various materials and various coatings according to the type of the processing gas.
보조 메쉬 구조체(300)는 제 1 메쉬망(320)이 보조 메쉬 구조체(300)의 일부분에 고정될 수 있도록 본체부(310)와 결합되는 고정부(330)를 포함할 수 있다.The auxiliary mesh structure 300 may include a fixing part 330 coupled to the body part 310 so that the first mesh network 320 may be fixed to a portion of the auxiliary mesh structure 300 .
고정부(330)는 중심부가 상하 관통되어, 고정부(330)의 중심부를 제외한 영역에는 제 1 메쉬망(320)을 수용할 수 있는 수용부가 형성되고, 고정부(330)의 중심부에는 구동축부(210)가 결합될 수 있다. 이때, 고정부(330)는 구동축부(210)에 결합된 본체부(310)의 하부에 결합되며, 본체부(310)와 고정되도록 체결될 수 있다.The central portion of the fixing part 330 passes through the upper and lower portions, and an accommodating part capable of accommodating the first mesh network 320 is formed in an area other than the central part of the fixing part 330, and a drive shaft portion is formed in the center of the fixing part 330. (210) can be combined. At this time, the fixing part 330 is coupled to the lower part of the main body part 310 coupled to the drive shaft part 210, and may be fastened so as to be fixed with the main body part 310.
고정부(330)는 하부에 베어링이 결합될 수 있는 베어링 수용부가 형성될 수 있다.A bearing accommodating part to which a bearing can be coupled may be formed at a lower portion of the fixing part 330 .
도 2에 도시된 바와 같이, 리액터(100)의 하부에 하부 플랜지부(110)가 결합될 수 있다.As shown in FIG. 2 , a lower flange portion 110 may be coupled to a lower portion of the reactor 100 .
하부 플랜지부(110)는 원판형상으로 형성되고, 내부가 상하로 관통되어 내경을 포함하고, 외면은 단턱부로 형성되어 상기 단턱부 상부의 외면인 상부 외경을 포함할 수 있다.The lower flange portion 110 is formed in a disk shape, the inside penetrates vertically to include an inner diameter, and the outer surface is formed as a stepped portion and may include an upper outer diameter that is the outer surface of the upper portion of the stepped portion.
하부 플랜지부(110)는 리액터(100)의 하부에 결합되어, 상기 상부 외경이 리액터(100) 내경에 접촉하여 결합될 수 있다. 이때, 상기 상부 외경 및 리액터(100) 경 사이에는 실링부가 형성될 수 있다.The lower flange portion 110 is coupled to the lower portion of the reactor 100 so that the outer diameter of the upper portion can contact and be coupled to the inner diameter of the reactor 100 . At this time, a sealing portion may be formed between the outer diameter of the upper part and the diameter of the reactor 100 .
하부 플랜지부(110)는 상기 상부 외경이 리액터(100)에 삽입되어 리액터(100)와 보조 메쉬 구조체(300) 사이에 분말 또는 가스가 유동되는 공간을 일부 차단시켜 분말 또는 가스의 누출을 방지할 수 있다.The lower flange portion 110 is inserted into the reactor 100 with the outer diameter of the upper portion to partially block a space in which powder or gas flows between the reactor 100 and the auxiliary mesh structure 300 to prevent leakage of powder or gas. can
하부 메쉬 구조체(400)는 리액터(100)의 하부에 결합될 수 있다.The lower mesh structure 400 may be coupled to a lower portion of the reactor 100 .
하부 메쉬 구조체(400)는 리액터(100)의 하부에 결합되는 원판형상의 구조체 및 상기 구조체 상부에 결합되는 제 2 메쉬망을 포함할 수 있다.The lower mesh structure 400 may include a disk-shaped structure coupled to the lower portion of the reactor 100 and a second mesh network coupled to the upper portion of the structure.
또한, 하부 메쉬 구조체(400)는 중심부가 관통된 원형의 제 2 메쉬망일 수 있다. 예컨대, 도 2에 도시된 바와 같이, 하부 메쉬 구조체(400)는 샤워헤드(500)의 상부에 삽입되는 제 2 메쉬망일 수 있다.Also, the lower mesh structure 400 may be a circular second mesh network through which a central portion passes. For example, as shown in FIG. 2 , the lower mesh structure 400 may be a second mesh network inserted above the shower head 500 .
이때, 상기 제 2 메쉬망은 사용하는 분말의 입도에 따라 개구율을 다양하게 조절하여 사용할 수 있다. 또한, 상기 제 2 메쉬망은 제 1 메쉬망(320)과 서로 다른 개구율의 메쉬를 사용할 수 있다.At this time, the second mesh network may be used by adjusting the aperture ratio in various ways according to the particle size of the powder to be used. In addition, the second mesh network may use a mesh having an aperture ratio different from that of the first mesh network 320 .
상기 제 2 메쉬망의 재질은 사용되는 소스가스의 특성에 맞게 스테인레스 스틸 재질에 AlOx, SiOx 등의 반응이 일어나기 어려운 물질로 코팅될 수 있다. 따라서, 상기 처리 가스의 종류에 따라 다양한 재질 및 다양한 코팅을 통하여 증착 방지막을 형성할 수 있다.The material of the second mesh network may be coated with a material that does not easily react, such as AlOx or SiOx, to a stainless steel material according to the characteristics of the source gas used. Accordingly, an anti-deposition film may be formed through various materials and various coatings according to the type of the processing gas.
하부 메쉬 구조체(400)는 보조 메쉬 구조체(300)의 하방에서 보조 메쉬 구조체(300)와 소정 거리 이격되어 형성될 수 있다.The lower mesh structure 400 may be formed below the auxiliary mesh structure 300 and spaced apart from the auxiliary mesh structure 300 by a predetermined distance.
구체적으로, 보조 메쉬 구조체(300)는 리액터(100) 내부에 형성되고, 하부 메쉬 구조체(400)는 리액터(100)의 하부의 샤워헤드(500) 상부에 결합되어, 보조 메쉬 구조체(300)와 하부 메쉬 구조체(400) 사이에 공간이 형성될 수 있다.Specifically, the auxiliary mesh structure 300 is formed inside the reactor 100, and the lower mesh structure 400 is coupled to the upper part of the showerhead 500 under the reactor 100, and the auxiliary mesh structure 300 and A space may be formed between the lower mesh structure 400 .
즉, 하부 메쉬 구조체(400)와 보조 메쉬 구조체(300) 사이에 가스 유동 공간(B)이 형성될 수 있으며, 가스 유동 공간(B)은 하부로부터 유입되는 원료가스, 퍼지가스 및 반응 가스의 유입을 원활하게 할 수 있다.That is, a gas flow space (B) may be formed between the lower mesh structure 400 and the auxiliary mesh structure 300, and the gas flow space (B) is an inflow of raw material gas, purge gas, and reaction gas flowing from the lower part. can be done smoothly.
도 2에 도시된 바와 같이, 샤워헤드(500)는 하부 메쉬 구조체(400)의 하방에 배치되되, 원료가스, 퍼지가스 및 반응가스 중 어느 하나 이상을 하방에서 상방으로 공급하여 가스 유동 공간(B)에 제공하도록 리액터(100) 하부에 겹합될 수 있다.As shown in FIG. 2, the shower head 500 is disposed below the lower mesh structure 400, and supplies at least one of a raw material gas, a purge gas, and a reaction gas from the bottom to the top to supply a gas flow space (B ) It may be coupled to the bottom of the reactor 100 to provide.
구체적으로, 샤워헤드(500)는 가스 공급 라인을 통해 공급된 처리 가스가 골고루 분배될 수 있도록 리액터(100)의 하부에 설치될 수 있으며, 샤워헤드(500)는 다수의 노즐 또는 분사홀을 포함할 수 있다. 이때, 상기 가스 공급 라인을 통해 공급된 상기 처리 가스는 샤워헤드(500)를 통과하고, 샤워헤드(500)를 통과한 상기 처리 가스가 상승되면서 분말의 입자 표면에 원자층을 증착시킬 수 있다Specifically, the shower head 500 may be installed under the reactor 100 so that the process gas supplied through the gas supply line can be evenly distributed, and the shower head 500 includes a plurality of nozzles or injection holes. can do. At this time, the processing gas supplied through the gas supply line passes through the shower head 500, and as the processing gas passing through the shower head 500 rises, an atomic layer may be deposited on the surface of the powder particles.
상기 가스 공급 라인은 샤워헤드(500)에 연결되고, 상기 처리 가스를 분말 수용 공간(A)에 수용된 분말에 순차적으로 공급할 수 있는 가스 공급 유로를 형성하는 가스 공급관 등의 파이프나 튜브 라인일 수 있다. 이때, 상기 처리 가스는 원료가스, 퍼지가스, 반응가스를 포함할 수 있다.The gas supply line may be a pipe or tube line such as a gas supply pipe that is connected to the shower head 500 and forms a gas supply passage through which the processing gas can be sequentially supplied to the powder accommodated in the powder accommodating space (A). . In this case, the processing gas may include a raw material gas, a purge gas, and a reaction gas.
따라서, 샤워헤드(500) 및 상기 가스 공급 라인를 이용하여 기본적으로 원료가스, 퍼지가스, 반응가스, 퍼지가스 등의 순차적인 가스 공급 사이클을 반복하면서 분말 입자에 원자층을 시분할적으로 증착시킬 수 있다.Therefore, atomic layers can be deposited on powder particles in a time-division manner while basically repeating sequential gas supply cycles such as raw material gas, purge gas, reaction gas, and purge gas using the shower head 500 and the gas supply line. .
도 2에 도시된 바와 같이, 구동축부(210)가 샤워헤드(500)에 지지되면서 회전될 수 있도록 구동축부(210)와 샤워헤드(500) 사이에 지지 베어링(700)이 형성될 수 있다.As shown in FIG. 2 , a support bearing 700 may be formed between the driving shaft 210 and the showerhead 500 so that the driving shaft 210 can rotate while being supported by the showerhead 500 .
예컨대, 지지 베어링(700)은 레디얼 베어링으로 형성되어, 외륜은 보조 메쉬 구조체(300)의 하부에 결합되고, 내륜은 샤워헤드(500)의 중심부에 연결된 연결부(510)에 결합될 수 있다. 구체적으로, 지지 베어링(700)은 고정부(330)의 하부에 형성된 상기 베어링 수용부에 결합될 수 있다.For example, the support bearing 700 may be formed as a radial bearing, the outer ring coupled to the lower portion of the auxiliary mesh structure 300, and the inner ring coupled to the connection portion 510 connected to the center of the showerhead 500. Specifically, the support bearing 700 may be coupled to the bearing accommodating part formed below the fixing part 330 .
이때, 지지 베어링(700)의 외륜은 샤워헤드(500)에 접촉하지 않고, 내륜은 샤워헤드(500)에 접촉할 수 있다. 따라서, 지지 베어링(700)의 내륜에 연결부(510)를 통하여 결합된 샤워헤드(500)는 고정되고, 지지 베어링(700)의 외륜에 고정부(330)를 통하여 결합된 보조 메쉬 구조체(300) 및 교반장치(200)는 회전될 수 있다.At this time, the outer ring of the support bearing 700 may not contact the showerhead 500, but the inner ring may contact the showerhead 500. Therefore, the showerhead 500 coupled to the inner ring of the support bearing 700 through the connecting portion 510 is fixed, and the auxiliary mesh structure 300 coupled to the outer ring of the support bearing 700 through the fixing portion 330 And the stirring device 200 can be rotated.
또한, 지지 베어링(700)은 스러스트 베어링으로 형성될 수 있다.Also, the support bearing 700 may be formed as a thrust bearing.
연결부(510)는 지지 베어링(700)에 결합되는 원기둥형상의 연결축이다. 연결부(510)의 외면은 단차를 가지고 형성되어 중간부에 형성된 베어링 결합영역에 지지 베어링(700)이 결합될 수 있다. 이때, 지지 베어링(700)은 연결부(510)의 단차에 의해 연결부(510)의 일측 방향에서 삽입되고, 타측 방향은 차단될 수 있다.The connecting portion 510 is a cylindrical connecting shaft coupled to the support bearing 700 . The outer surface of the connecting portion 510 is formed with a step, and the support bearing 700 may be coupled to a bearing coupling region formed in the middle portion. At this time, the support bearing 700 may be inserted in one direction of the connection part 510 by a step of the connection part 510 and blocked in the other direction.
연결부(510)의 타측은 샤워헤드(500)의 중심부에 결합되어, 샤워헤드(500)에 고정될 수 있다. 따라서, 샤워헤드(500) 및 샤워헤드(500)에 결합된 하부 메쉬 구조체(400)는 고정되고, 보조 메쉬 구조체(300)는 회전할 수 있다.The other side of the connection part 510 may be coupled to the center of the shower head 500 and fixed to the shower head 500 . Therefore, the shower head 500 and the lower mesh structure 400 coupled to the shower head 500 are fixed, and the auxiliary mesh structure 300 can rotate.
도 3에 도시된 바와 같이, 본 발명의 파우더용 원자층 증착 장치는 상부 메쉬 구조체(600)를 포함할 수 있다.As shown in FIG. 3 , the atomic layer deposition apparatus for powder of the present invention may include an upper mesh structure 600 .
상부 메쉬 구조체(600)는 리액터(100)의 상부를 덮을 수 있도록 형성되고, 리액터(100) 내부로 공급되는 가스는 외부로 배기하고 리액터(100) 내부에 적재된 상기 분말은 외부로 누출되지 않도록 매쉬가 형성될 수 있다.The upper mesh structure 600 is formed to cover the top of the reactor 100, the gas supplied into the reactor 100 is exhausted to the outside and the powder loaded inside the reactor 100 is prevented from leaking to the outside. A mesh may be formed.
구체적으로, 상부 메쉬 구조체(600)는 리액터(100)를 덮을 수 있는 덮개부(630)가 형성되어 리액터(100)의 상부에 결합될 수 있다.Specifically, the upper mesh structure 600 may be coupled to an upper portion of the reactor 100 by forming a cover portion 630 capable of covering the reactor 100 .
상부 메쉬 구조체(600)는 분말 수용 공간(A)에 수용된 분말이 처리 가스를 통하여 처리 공정이 이루어진 후에 상기 처리 가스를 배기하는 배기부와 연결될 수 있다.The upper mesh structure 600 may be connected to an exhaust unit that exhausts the processing gas after the powder accommodated in the powder accommodating space A is processed through the processing gas.
상부 메쉬 구조체(600)는 상기 분말이 리액터(100) 외측으로 비산되지 않도록 제 2 매쉬망(620)을 포함할 수 있다.The upper mesh structure 600 may include a second mesh network 620 to prevent the powder from scattering to the outside of the reactor 100 .
제 2 매쉬망(620)은 미세홀을 포함할 수 있다. 따라서, 공정 처리가 수행된 가스나 미반응 가스는 제 2 매쉬망(620)을 통해 외부로 배기될 수 있다.The second mesh network 620 may include fine holes. Accordingly, the processed gas or unreacted gas may be exhausted to the outside through the second mesh network 620 .
상기 미세홀의 크기는, 공급되는 가스에 포함되는 입자보다 클 수 있고, 리액터(100)의 내부에 충진되는 분말 보다 작을 수 있다. 이에 따라, 펌핑 수행이나 공정 처리가 수행된 가스, 미반응 가스 배출 시, 나노 크기 또는 마이크로 크기의 분말이 분말 수용 공간(A)을 부유함으로써 발생되는 분말의 소실을 방지할 수 있다.The size of the microholes may be larger than particles included in the supplied gas and may be smaller than powders filled in the reactor 100 . Accordingly, it is possible to prevent loss of powder caused by nano-sized or micro-sized powder floating in the powder accommodating space A when pumping or processing gas or unreacted gas is discharged.
상부 메쉬 구조체(600)는 리액터(100) 외부에 형성된 구동부와 리액터(100) 내부에 형성된 구동축부(210)가 중심영역에서 연결되도록 형성될 수 있다. 예컨대, 상기 구동부는 구동축부(210)를 회전시킬 수 있는 모터일 수 있으며, 상기 구동부가 회전력을 상부 메쉬 구조체(600)의 상부에서 상부 메쉬 구조체(600)의 중심부를 통과하여 상부 메쉬 구조체(600) 하부에 결합된 구동축부(210)에 전달하여 구동축부(210)를 회전시킬 수 있다.The upper mesh structure 600 may be formed such that a drive unit formed outside the reactor 100 and a drive shaft unit 210 formed inside the reactor 100 are connected in a central region. For example, the driving unit may be a motor capable of rotating the driving shaft unit 210, and the driving unit transmits rotational force from the top of the upper mesh structure 600 through the center of the upper mesh structure 600 to the upper mesh structure 600. ) It is possible to rotate the drive shaft portion 210 by passing it to the drive shaft portion 210 coupled to the lower portion.
상부 메쉬 구조체(600)는 분말 주입부(610)를 포함할 수 있다.The upper mesh structure 600 may include a powder injection unit 610 .
도 3에 도시된 바와 같이, 분말 주입부(610)는 리액터(100) 내부에 상기 분말을 공급할 수 있도록, 적어도 일부분이 리액터(100)의 내부와 외부를 연통시키는 밸브로 형성될 수 있다.As shown in FIG. 3 , at least a portion of the powder injection unit 610 may be formed as a valve communicating the inside and outside of the reactor 100 so as to supply the powder to the inside of the reactor 100 .
도 1 및 도 3에 도시된 바와 같이, 본 발명의 파우더용 원자층 증착 장치는 분말 유입 방지부(800)를 포함할 수 있다.As shown in FIGS. 1 and 3 , the atomic layer deposition apparatus for powder according to the present invention may include a powder inflow prevention unit 800 .
분말 유입 방지부(800)는 구동축부(210)와 상부 메쉬 구조체(600) 사이로 분말이 유입되지 않도록 상부 메쉬 구조체(600)의 하부에 결합되고, 구동축부(210)의 상부 영역을 둘러싸도록 형성될 수 있다.The powder inflow prevention unit 800 is coupled to the lower portion of the upper mesh structure 600 to prevent powder from entering between the driving shaft unit 210 and the upper mesh structure 600, and is formed to surround the upper region of the driving shaft unit 210. It can be.
구체적으로, 분말 유입 방지부(800)는 보호부(810), 상부 밀폐형 베어링(820), 하부 밀폐형 베어링(830) 및 피드스루(840)를 포함할 수 있다.Specifically, the powder inflow prevention unit 800 may include a protection unit 810 , an upper sealed bearing 820 , a lower sealed bearing 830 and a feed through 840 .
보호부(810)는 원통형상으로 형성되어 상부 메쉬 구조체(600)의 중심부 하부에 결합될 수 있다.The protection unit 810 is formed in a cylindrical shape and may be coupled to a lower portion of the center of the upper mesh structure 600 .
보호부(810)의 내부에는 상부 밀폐형 베어링(820) 및 하부 밀폐형 베어링(830)이 결합된 구동축부(210)가 삽입될 수 있다. 따라서, 상부 메쉬 구조체(600)에 결합된 보호부(810)는 고정되어 있으며, 보호부(810)와 상부 밀폐형 베어링(820) 및 하부 밀폐형 베어링(830)으로 결합된 구동축부(210)는 회전구동 될 수 있다.The driving shaft portion 210 to which the upper sealed bearing 820 and the lower sealed bearing 830 are coupled may be inserted into the protection unit 810 . Therefore, the protection unit 810 coupled to the upper mesh structure 600 is fixed, and the drive shaft unit 210 coupled to the protection unit 810, the upper sealed bearing 820, and the lower sealed bearing 830 rotates. can be driven
보호부(810)의 하부에는 피드스루(840)가 결합될 수 있다.A feed through 840 may be coupled to a lower portion of the protection unit 810 .
따라서, 분말 유입 방지부(800)는 상부 밀폐형 베어링(820) 및 하부 밀폐형 베어링(830)을 통하여 구동축부(210)가 회전될 수 있으며, 분말 유입 방지부(800) 내부로 분말이 누출되지 않도록 하고, 이에 따라, 구동축부(210)를 따라 리액터(100) 외부로 분말이 누출되는 것을 방지할 수 있다.Therefore, in the powder inflow prevention unit 800, the driving shaft 210 can be rotated through the upper sealed bearing 820 and the lower sealed bearing 830, and the powder is prevented from leaking into the powder inflow prevention unit 800. And, accordingly, it is possible to prevent the powder from leaking out of the reactor 100 along the driving shaft portion 210.
본 발명의 일 실시예에 따른 파우더용 원자층 증착 장치는, 하부 메쉬부와 교반장치가 동시에 구동할 수 있도록 형성하여 리액터 하부에 위치한 분말이 다져지는 현상을 방지할 수 있으며, 이로 인해 발생되는 처리 가스들의 유입 문제를 해결하여 높은 균일도를 유지하면서 분말 코팅 공정이 이루어질 수 있다.The atomic layer deposition apparatus for powder according to an embodiment of the present invention is formed so that the lower mesh unit and the stirring device can be driven simultaneously to prevent compaction of the powder located in the lower part of the reactor. The powder coating process can be performed while maintaining high uniformity by solving the inflow problem of gases.
또한, 본 발명을 통해 기존에 뭉침 현상으로 인해 혼합 및 공정이 어려웠던 파우더의 공정을 원활하게 하여 본 설비와 같은 ALD 뿐만 아니라 CVD나 파우더 혼합 공정에 적용이 가능하다. In addition, the present invention facilitates the powder process, which was previously difficult to mix and process due to agglomeration, so that it can be applied to CVD or powder mixing processes as well as ALD such as this facility.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (6)

  1. 내부에 분말이 수용될 수 있는 분말 수용 공간이 형성되는 원통형상의 리액터;A cylindrical reactor in which a powder receiving space in which powder can be accommodated is formed;
    상기 리액터의 중심축을 기준으로 회전가능하도록 형성되는 구동축부와 상기 분말을 교반시킬 수 있도록 상기 구동축부에 형성된 교반부를 포함하는 교반 장치;A stirring device including a drive shaft portion formed to be rotatable with respect to the central axis of the reactor and a stirring portion formed on the drive shaft portion to stir the powder;
    상기 분말의 외부 누출을 방지하도록 상기 리액터의 하부에 결합되는 하부 메쉬 구조체;a lower mesh structure coupled to a lower portion of the reactor to prevent external leakage of the powder;
    상기 하부 메쉬 구조체와 소정 거리 이격되어 가스 유동 공간이 형성되도록 상기 하부 메쉬 구조체의 상부에 형성되고, 상기 분말의 다져짐 현상을 방지하도록 상기 구동축부의 하부에 결합되어 상기 구동축부의 회전에 따라 회전되는 보조 메쉬 구조체; 및An assistant formed on the upper part of the lower mesh structure to form a gas flow space at a predetermined distance from the lower mesh structure, coupled to the lower part of the driving shaft part to prevent compaction of the powder, and rotated according to the rotation of the driving shaft part. mesh structure; and
    상기 하부 메쉬 구조체의 하방에 배치되되, 원료가스, 퍼지가스 및 반응가스 중 어느 하나 이상을 하방에서 상방으로 공급하여 상기 가스 유동 공간에 제공하도록 상기 리액터 하부에 겹합되는 샤워헤드;a showerhead disposed under the lower mesh structure and bonded to the lower portion of the reactor to supply at least one of a raw material gas, a purge gas, and a reaction gas from the bottom to the top to supply the gas flow space;
    를 포함하는, 파우더용 원자층 증착 장치.Containing, atomic layer deposition apparatus for powder.
  2. 제 1 항에 있어서,According to claim 1,
    상기 리액터의 상부를 덮을 수 있도록 형성되고, 상기 리액터 내부로 공급되는 가스는 외부로 배기하고 상기 리액터 내부에 적재된 상기 분말은 외부로 누출되지 않도록 매쉬가 형성되며, 상기 리액터 외부에 형성된 구동부와 상기 리액터 내부에 형성된 상기 구동축부가 중심영역에서 연결되도록 형성되는 상부 메쉬 구조체;It is formed to cover the top of the reactor, a mesh is formed so that the gas supplied into the reactor is exhausted to the outside and the powder loaded inside the reactor does not leak to the outside, and the driving unit formed outside the reactor and the an upper mesh structure formed so that the driving shaft portion formed inside the reactor is connected in a central region;
    를 더 포함하는, 파우더용 원자층 증착 장치.Further comprising, an atomic layer deposition apparatus for powder.
  3. 제 2 항에 있어서,According to claim 2,
    상기 상부 메쉬 구조체는,The upper mesh structure,
    상기 리액터 내부에 상기 분말을 공급할 수 있도록, 적어도 일부분이 상기 리액터의 내부와 외부를 연통시키는 밸브로 형성되는 분말 주입부;a powder injection unit having at least a portion formed as a valve communicating the inside and outside of the reactor so as to supply the powder to the inside of the reactor;
    를 포함하는, 파우더용 원자층 증착 장치.Containing, atomic layer deposition apparatus for powder.
  4. 제 1 항에 있어서,According to claim 1,
    상기 구동축부가 상기 샤워헤드에 지지되면서 회전될 수 있도록 상기 구동축부와 상기 샤워헤드 사이에 형성되는 지지 베어링;a support bearing formed between the drive shaft and the shower head so that the drive shaft can rotate while being supported by the shower head;
    을 포함하는, 파우더용 원자층 증착 장치.Containing, atomic layer deposition apparatus for powder.
  5. 제 1 항에 있어서,According to claim 1,
    상기 구동축부와 상기 상부 메쉬 구조체 사이로 분말이 유입되지 않도록 상기 상부 메쉬 구조체의 하부에 결합되고, 상기 구동축부의 상부 영역을 둘러싸도록 형성되는 분말 유입 방지부;A powder inflow prevention unit coupled to a lower portion of the upper mesh structure so as not to introduce powder between the driving shaft unit and the upper mesh structure, and formed to surround an upper region of the driving shaft unit;
    를 더 포함하는, 파우더용 원자층 증착 장치.Further comprising, an atomic layer deposition apparatus for powder.
  6. 제 1 항에 있어서,According to claim 1,
    상기 교반부는 적어도 헬리컬형, 리본형, 리본헬리컬형, 앵커형, 터빈형, 프로펠러형 및 이들의 조합들 중 어느 하나 이상을 선택하여 이루어지는, 파우더용 원자층 증착 장치.Wherein the stirring unit is formed by selecting at least one of a helical type, a ribbon type, a ribbon helical type, an anchor type, a turbine type, a propeller type, and combinations thereof.
PCT/KR2021/018982 2021-08-27 2021-12-14 Atomic layer deposition apparatus for powders WO2023027262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210114060A KR20230031618A (en) 2021-08-27 2021-08-27 Atomic layer deposition apparatus for powder
KR10-2021-0114060 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023027262A1 true WO2023027262A1 (en) 2023-03-02

Family

ID=85323003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018982 WO2023027262A1 (en) 2021-08-27 2021-12-14 Atomic layer deposition apparatus for powders

Country Status (2)

Country Link
KR (1) KR20230031618A (en)
WO (1) WO2023027262A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013296A (en) * 2012-05-14 2015-02-04 피코순 오와이 Powder particle coating using atomic layer deposition cartridge
KR101868703B1 (en) * 2016-12-14 2018-06-18 서울과학기술대학교 산학협력단 Reactor for coating powder
US20200024736A1 (en) * 2018-07-19 2020-01-23 Kaushal Gangakhedkar Particle Coating Methods and Apparatus
KR20200039136A (en) * 2018-10-05 2020-04-16 (주)아이작리서치 Apparatus of plasma atomic layer depositing on powder
KR20210007033A (en) * 2018-06-12 2021-01-19 어플라이드 머티어리얼스, 인코포레이티드 Rotary reactor for uniform particle coating into thin films

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013296A (en) * 2012-05-14 2015-02-04 피코순 오와이 Powder particle coating using atomic layer deposition cartridge
KR101868703B1 (en) * 2016-12-14 2018-06-18 서울과학기술대학교 산학협력단 Reactor for coating powder
KR20210007033A (en) * 2018-06-12 2021-01-19 어플라이드 머티어리얼스, 인코포레이티드 Rotary reactor for uniform particle coating into thin films
US20200024736A1 (en) * 2018-07-19 2020-01-23 Kaushal Gangakhedkar Particle Coating Methods and Apparatus
KR20200039136A (en) * 2018-10-05 2020-04-16 (주)아이작리서치 Apparatus of plasma atomic layer depositing on powder

Also Published As

Publication number Publication date
KR20230031618A (en) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2019194347A1 (en) Deposition apparatus capable of applying powder particles, and method for applying powder particles
TWI253479B (en) Mixer, and device and method for manufacturing thin-film
WO2018221822A1 (en) Apparatus and method for reaction
KR101868703B1 (en) Reactor for coating powder
CN105648422A (en) Gaseous phase atomic layer deposition device for electrode powder material coating and application
WO2021033909A1 (en) Chemical vapor deposition device used to deposit thin film layer on powder particle-type material
WO2011027987A2 (en) Gas-discharging device and substrate-processing apparatus using same
WO2014003296A1 (en) Process chamber and substrate processing device
US20020059904A1 (en) Surface sealing showerhead for vapor deposition reactor having integrated flow diverters
TWI767631B (en) Gas distributors and semiconductor equipment in semiconductor equipment
JP2003504866A (en) Method and apparatus for delivering uniform gas to a substrate during CVD and PECVD processes
WO2014003298A1 (en) Process chamber and substrate processing method
WO2023027262A1 (en) Atomic layer deposition apparatus for powders
KR20090021931A (en) Gas injecting assembly and apparatus for depositing thin film on wafer using the same
WO2020130539A1 (en) Batch reactor
KR20120034087A (en) Gas injecting assembly and apparatus for depositing thin film on wafer using the same
WO2021235772A1 (en) Powder atomic layer deposition equipment and gas supply method therefor
WO2015072661A1 (en) Reaction inducing unit, substrate treating apparatus, and thin-film deposition method
CN212712772U (en) Reduction furnace
WO2021150046A1 (en) Plasma surface treatment apparatus for conductive powder
WO2021002590A1 (en) Gas supply device for substrate processing device, and substrate processing device
WO2021025498A1 (en) Gas inflow device and substrate processing device using same
EP1451387A1 (en) Chemical vapor deposition reactor
WO2020235912A1 (en) Substrate processing device
WO2023027263A1 (en) Sputtering apparatus for powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE