WO2023027204A1 - 형광체 휠 장치, 및 이를 구비하는 영상투사장치 - Google Patents

형광체 휠 장치, 및 이를 구비하는 영상투사장치 Download PDF

Info

Publication number
WO2023027204A1
WO2023027204A1 PCT/KR2021/011264 KR2021011264W WO2023027204A1 WO 2023027204 A1 WO2023027204 A1 WO 2023027204A1 KR 2021011264 W KR2021011264 W KR 2021011264W WO 2023027204 A1 WO2023027204 A1 WO 2023027204A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
phosphor
wheel device
phosphor wheel
light
Prior art date
Application number
PCT/KR2021/011264
Other languages
English (en)
French (fr)
Inventor
김민성
홍근영
유영길
김경필
강보경
백승미
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020247008743A priority Critical patent/KR20240047440A/ko
Priority to PCT/KR2021/011264 priority patent/WO2023027204A1/ko
Publication of WO2023027204A1 publication Critical patent/WO2023027204A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof

Definitions

  • the present invention relates to a phosphor wheel device and an image projection device including the same, and more particularly, to a phosphor wheel device capable of providing high luminance light output with improved heat dissipation performance, and an image projection device including the same.
  • the phosphor wheel device is a device that is disposed inside the image projector and outputs light of a color corresponding to the phosphor when light is incident on the applied phosphor by rotation.
  • the phosphor wheel device has a problem in that since light is incident while rotating, the temperature rises frequently, and when the temperature rises, the conversion efficiency at the time of light output from the phosphor decreases.
  • Korean Patent Publication No. 2008-0001077 discloses a color wheel cooling structure of a projection system.
  • prior art documents disclose a color wheel cooling fan and a cooling passage for cooling a color wheel rotating at high speed.
  • An object of the present invention is to provide a phosphor wheel device capable of providing high luminance light output with improved heat dissipation performance, and an image projection device having the same.
  • another object of the present invention is to provide a phosphor wheel device capable of improving durability according to improved heat dissipation performance, and an image projection device having the same.
  • a phosphor wheel device for achieving the above object, and an image projector having the same, a base extending in a first direction, and a second attached to both ends of the base and intersecting the first direction
  • a plate including a protruding member extending in a direction and rotating about a rotation axis, a phosphor layer disposed in one region of the base and outputting light of at least one color by reflecting light incident on the base, the plate It is disposed spaced apart in the second direction and includes a blade that rotates around a rotational axis.
  • the horizontal distance between the protruding member and the blade is greater than the distance between the rotating shaft and the phosphor layer.
  • the distance between the point of incidence of light incident on the base and the rotation shaft is equal to or greater than the distance between the rotation shaft and the end of the blade.
  • the height of the blade is greater than the distance between the base and the blade.
  • the height of the blade is greater than the height of the base.
  • the height of the protruding member is greater than the height of the blade.
  • the phosphor layer is disposed in the first area of the base and outputs yellow light based on the blue light incident on the base, and the yellow phosphor is disposed in the second area on the base and outputs yellow light based on the blue light incident on the base. It may include a green phosphor that outputs green light by doing so.
  • the phosphor layer may further include a red phosphor disposed in a third region on the base and outputting red light based on blue light incident on the base.
  • the phosphor wheel device and the image projection device including the phosphor wheel device according to an embodiment of the present invention may further include a reflective layer disposed on the phosphor layer and the base, and an antireflection layer disposed on the phosphor layer.
  • the phosphor layer may be bonded onto the base after ceramicization by sintering and processing the phosphor.
  • the reflective layer may include silicon resin and nano TiO2 powder.
  • the blade is formed on a base substrate having an opening in the center, a first edge bonded to an end of the base substrate and inclined at a predetermined angle, and formed at one end of the first edge, spaced apart from another part of the first edge It may include a second edge forming a second opening.
  • the second edge may be formed parallel to the base substrate.
  • the base has a first base part having a first height, and a second base part having a second height higher than the first height, the protruding member is attached to both ends of the second base part in the first direction It may extend in a second direction intersecting with.
  • the protruding member includes a first protruding member attached to the first end of the base and a second protruding member attached to the second end of the base, the width of the first protruding member, the width of the second protruding member these may be different.
  • the phosphor wheel device according to an embodiment of the present invention and the image projection device having the same further include a motor for rotating the blade and a control unit for controlling the rotation speed of the motor, wherein the control unit controls the rotation speed of the motor. can be controlled to be constant.
  • the phosphor wheel device and the image projection device having the same further include a motor for rotating the blade, a temperature sensor for sensing the temperature of the plate, and a control unit for controlling the rotation speed of the motor.
  • the control unit may control the rotational speed of the motor to increase as the temperature sensed by the temperature sensor increases.
  • a phosphor wheel device and an image projection device having the same include a base extending in a first direction, and protruding members attached to both ends of the base and extending in a second direction crossing the first direction. Including, a plate rotating around a rotation axis, a phosphor layer disposed in one area of the base and outputting light of at least one color by reflecting light incident on the base, spaced apart from the plate in a second direction. It is arranged and includes a blade that rotates around a rotation axis. Accordingly, air is introduced to the lower portion of the plate on which the phosphor layer is disposed and air is discharged to the lower portion of the protruding member, thereby improving heat dissipation performance and enabling high-brightness light output.
  • the horizontal distance between the protruding member and the blade is greater than the distance between the rotating shaft and the phosphor layer. Accordingly, air is introduced to the lower portion of the plate on which the phosphor layer is disposed and air is discharged to the lower portion of the protruding member, thereby improving heat dissipation performance and enabling high-brightness light output.
  • the distance between the point of incidence of light incident on the base and the rotation shaft is equal to or greater than the distance between the rotation shaft and the end of the blade. Accordingly, air is introduced to the lower portion of the plate on which the phosphor layer is disposed and air is discharged to the lower portion of the protruding member, thereby improving heat dissipation performance and enabling high-brightness light output.
  • the height of the blade is greater than the distance between the base and the blade. Accordingly, air is introduced to the lower portion of the plate on which the phosphor layer is disposed and air is discharged to the lower portion of the protruding member, thereby improving heat dissipation performance and enabling high-brightness light output.
  • the height of the blade is greater than the height of the base. Accordingly, air is introduced to the lower portion of the plate on which the phosphor layer is disposed and air is discharged to the lower portion of the protruding member, thereby improving heat dissipation performance and enabling high-brightness light output.
  • the height of the protruding member is greater than the height of the blade. Accordingly, air is introduced to the lower portion of the plate on which the phosphor layer is disposed and air is discharged to the lower portion of the protruding member, thereby improving heat dissipation performance and enabling high-brightness light output.
  • the phosphor layer is disposed in the first area of the base and outputs yellow light based on the blue light incident on the base, and the yellow phosphor is disposed in the second area on the base and outputs yellow light based on the blue light incident on the base. It may include a green phosphor that outputs green light by doing so. Accordingly, it is possible to output yellow light and green light through the phosphor wheel device.
  • the phosphor layer may further include a red phosphor disposed in a third region on the base and outputting red light based on blue light incident on the base. Accordingly, it is possible to output yellow light, green light, and red light through the phosphor wheel device.
  • the phosphor wheel device and the image projection device including the phosphor wheel device according to an embodiment of the present invention may further include a reflective layer disposed on the phosphor layer and the base, and an antireflection layer disposed on the phosphor layer. Accordingly, it is possible to perform high luminance light output.
  • the phosphor layer may be bonded onto the base after ceramicization by sintering and processing the phosphor. Accordingly, it is possible to perform high luminance light output.
  • the reflective layer may include silicon resin and nano TiO2 powder. Accordingly, it is possible to perform high luminance light output.
  • the blade is formed on a base substrate having an opening in the center, a first edge bonded to an end of the base substrate and inclined at a predetermined angle, and formed at one end of the first edge, spaced apart from another part of the first edge It may include a second edge forming a second opening. Accordingly, it is possible to improve the air flow performance of the incoming air and the outgoing air.
  • the second edge may be formed parallel to the base substrate. Accordingly, it is possible to improve the air flow performance of the incoming air and the outgoing air.
  • the base has a first base part having a first height, and a second base part having a second height higher than the first height, the protruding member is attached to both ends of the second base part in the first direction It may extend in a second direction intersecting with. Accordingly, heat dissipation performance of the lower portion of the plate on which the phosphor layer is disposed is improved, and furthermore, high luminance light output can be performed.
  • the protruding member includes a first protruding member attached to the first end of the base and a second protruding member attached to the second end of the base, the width of the first protruding member, the width of the second protruding member these may be different. Accordingly, heat dissipation performance of the lower portion of the plate on which the phosphor layer is disposed is improved, and furthermore, high luminance light output can be performed.
  • the phosphor wheel device according to an embodiment of the present invention and the image projection device having the same further include a motor for rotating the blade and a control unit for controlling the rotation speed of the motor, wherein the control unit controls the rotation speed of the motor.
  • a motor for rotating the blade and a control unit for controlling the rotation speed of the motor, wherein the control unit controls the rotation speed of the motor.
  • the control unit controls the rotation speed of the motor.
  • the phosphor wheel device and the image projection device having the same further include a motor for rotating the blade, a temperature sensor for sensing the temperature of the plate, and a control unit for controlling the rotation speed of the motor.
  • the control unit may control the rotational speed of the motor to increase as the temperature sensed by the temperature sensor increases. Accordingly, the heat dissipation performance of the lower portion of the plate on which the phosphor layer is disposed is further improved, and furthermore, it is possible to perform high-intensity light output.
  • FIG 1 illustrates the appearance of an image projection device according to an embodiment of the present invention.
  • FIG. 2 is an example of an internal block diagram of the image projection device of FIG. 1 .
  • FIG. 3 is an example of an internal block diagram of the signal processing device of FIG. 2 .
  • FIG. 4 is an example of the structure of the optical device of FIG. 2 .
  • FIG. 5 is an example of a top view of the phosphor wheel of FIG. 4 .
  • FIG. 6 is an example of a cross-sectional view of a phosphor wheel device related to the present invention.
  • FIG. 7 is an example of a cross-sectional view of a phosphor wheel device according to an embodiment of the present invention.
  • 8A to 8E are diagrams referred to in the description of FIG. 7 .
  • 9A is an example of a cross-sectional view of a phosphor wheel device according to another embodiment of the present invention.
  • 9B is an example of a cross-sectional view of a phosphor wheel device according to another embodiment of the present invention.
  • FIG. 10A is a flowchart illustrating an example of a manufacturing method of the phosphor wheel device of FIG. 7 .
  • FIG. 10B is a flowchart illustrating another example of a manufacturing method of the phosphor wheel device of FIG. 7 .
  • 11A to 12C are diagrams referred to in the description of FIG. 7 .
  • module and “unit” for the components used in the following description are simply given in consideration of ease of writing this specification, and do not themselves give a particularly important meaning or role. Accordingly, the “module” and “unit” may be used interchangeably.
  • An optical device described herein is a device capable of outputting visible light. Such an optical device may be applied to an image projection device. Alternatively, it is also possible to apply to a lighting device.
  • the image projection device described in this specification is a device capable of projecting an image to the outside.
  • it may be a projector.
  • the image projection device described in the present invention can also be installed in another device as a component.
  • FIG 1 illustrates the appearance of an image projection device according to an embodiment of the present invention.
  • the image projection device 100 may output a projected image on the screen 200.
  • the screen 200 is illustrated as having a flat surface, but it is also possible to have a curved surface.
  • the user can view the projected image projected on the screen 200 .
  • FIG. 2 is an example of an internal block diagram of the image projection device of FIG. 1 .
  • an image projection device 100 may include a memory 120, a signal processing device 170, a communication device 135, an image output device 180, and a power supply unit 190. .
  • the image output device 180 may include a driving device 185 and an optical device 210 .
  • the driving device 185 can drive the optical device 210 .
  • a light source in the optical device 210 may be driven.
  • the optical device 210 may include optical components such as a light source and a lens for light output, particularly visible light output.
  • an optical device capable of providing high luminance light output with improved heat dissipation performance is provided. This will be described in detail with reference to FIG. 4 below.
  • the memory 120 may store programs for processing and controlling the signal processing device 170, and may perform a function for temporarily storing input or output data (eg, still images, moving images, etc.). may be
  • the communication device 135 serves as an interface with all external devices or networks connected to the image projector 100 by wire or wirelessly.
  • the communication device 135 can receive data from such an external device or receive power and transmit it to each component inside the image projector 100, and transmit data inside the image projector 100 to an external device.
  • the communication device 135 may receive a radio signal from an adjacent mobile terminal (not shown).
  • the radio signal may include various types of data such as a voice call signal, a video call signal, text data, or video data.
  • the communication device 135 may include a short-distance communication device (not shown).
  • Bluetooth Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, Near Field Communication (NFC), and the like may be used as short-range communication technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the signal processing device 170 may perform overall control operations of the image projection device 100 . Specifically, the operation of each unit in the image projection apparatus 100 can be controlled.
  • the signal processing device 170 may control a video image stored in the memory 120 or a video image received from the outside through the communication device 135 to be output to the outside as a projected image.
  • the signal processing device 170 may control the driving device 185 that controls the optical device 210 outputting visible light such as R, G, and B. Specifically, R, G, and B signals corresponding to video images to be displayed may be output to the driving device 185 .
  • the power supply unit 190 may receive external power or internal power under the control of the signal processing device 170 and supply power necessary for the operation of each component.
  • the power supply unit 190 supplies corresponding power throughout the image projection device 100 .
  • a signal processing device 170 that can be implemented in the form of a system on chip (SOC), an image output device 180 for displaying an image, and an audio output unit for outputting audio (not shown) can supply power.
  • SOC system on chip
  • FIG. 3 is an internal block diagram of the control unit of FIG. 2 .
  • the signal processing apparatus 170 includes a demultiplexer 310, an image processor 320, a processor 330, an OSD generator 340, a mixer ( 345), a frame rate converter 350, and a formatter 360.
  • a demultiplexer 310 includes a demultiplexer 310, an image processor 320, a processor 330, an OSD generator 340, a mixer ( 345), a frame rate converter 350, and a formatter 360.
  • an audio processing unit (not shown) and a data processing unit (not shown) may be further included.
  • the demultiplexer 310 demultiplexes the input stream.
  • the image processing unit 320 may perform image processing of the demultiplexed image signal. To this end, the image processing unit 320 may include an image decoder 225 and a scaler 235 .
  • the video decoder 225 decodes the demultiplexed video signal, and the scaler 235 performs scaling so that the resolution of the decoded video signal can be output from the video output device 180.
  • the image decoder 225 may include decoders of various standards.
  • the processor 330 may control overall operations within the image projection device 100 or the signal processing device 170 . In addition, the processor 330 may control operations of the demultiplexer 310, the image processor 320, and the OSD generator 340 within the signal processing device 170.
  • the OSD generating unit 340 may generate an OSD signal according to a user input or by itself.
  • the mixer 345 may mix the OSD signal generated by the OSD generator 340 and the decoded video signal image-processed by the image processor 320 .
  • the mixed video signal may be provided to the frame rate converter 350 .
  • the frame rate converter (FRC) 350 may convert the frame rate of an input image. Meanwhile, the frame rate conversion unit 350 may output as it is without separate frame rate conversion.
  • the formatter 360 receives the signal mixed in the mixer 345, that is, the OSD signal and the decoded video signal, and performs signal conversion for input to the video output unit 180.
  • a low voltage differential signal LVDS may be output.
  • FIG. 3 a block diagram of the signal processing device 170 shown in FIG. 3 is a block diagram for one embodiment of the present invention. Each component of the block diagram may be integrated, added, or omitted according to specifications of the signal processing device 170 that is actually implemented.
  • the frame rate conversion unit 350 and the formatter 360 are not provided in the signal processing device 170, but may be separately provided or separately provided as one module.
  • FIG. 4 is an example of the structure of the optical device of FIG. 2 .
  • an optical device 210a includes a light source 410 that outputs blue light B, and outputs light of a plurality of colors based on blue light B incident by rotation.
  • a phosphor wheel device 430 is included.
  • the light source 410 outputting blue light B may include a laser diode or the like.
  • the laser diode 410 may output blue laser light (B).
  • the blue light B output from the light source 410 may be condensed through a collimator lens 461 and then incident to the color filter 460 .
  • the optical device 210a is disposed after the output end of the phosphor wheel device 430 and sequentially outputs yellow light (Y), green light (G), and red light (R) by rotation.
  • a color filter 460 may be further included.
  • the color filter 460 includes a yellow area ARa for outputting yellow light Y, a green area ARb for outputting green light G, and a red area for outputting red light R. (ARc) and a blue area (ARd) for outputting blue light (B).
  • the color filter 460 when the blue light B from the light source 410 is incident on the yellow area ARa, the green area ARb, or the red area ARc for outputting the red light R, It reflects blue light (B).
  • the blue light B reflected by the color filter 460 is incident to the first reflection mirror 446 through a collimator lens 461b.
  • the first reflective mirror 446 reflects incident blue light B, and the blue light B reflected from the first reflective mirror 446 passes through a collimator lens 462 to separate the light. (420).
  • the light separation unit 420 transmits incident blue light (B) and reflects other yellow light (Y), green light (G), or red light (R).
  • the blue light (B) transmitted from the light separator 420 passes through a collimator lens 463 and is incident to the phosphor wheel device 430 .
  • the phosphor wheel device 430 outputs light of a plurality of colors based on blue light B incident by rotation.
  • the phosphor wheel device 430 includes a yellow phosphor (PHY) for outputting yellow light (Y) and a green phosphor (PHG) for outputting green light (G).
  • a yellow phosphor PHY
  • PEG green phosphor
  • the phosphor wheel device 430 When the blue light (B) is incident on the yellow phosphor (PHY) in the phosphor wheel device 430, the phosphor wheel device 430 reflects and outputs the yellow light (Y).
  • the phosphor wheel device 430 reflects and outputs the green light G.
  • the yellow light (Y) and the green light (G) sequentially output from the phosphor wheel device 430 are incident to the light splitter 420, and the light splitter 420, the yellow light (Y) and the green light (G) ) is reflected.
  • Yellow light (Y) and green light (G) reflected by the light separator 420 are incident to the color filter 460 .
  • the color filter 460 transmits the yellow light Y and outputs the yellow light Y.
  • the color filter 460 transmits the green light (G) and outputs the green light (G).
  • the color filter 460 When yellow light (Y) or green light (G) reflected by the light separator 420 is incident on the red area (ARc) of the color filter 460, the color filter 460 transmits the red light (R) and outputs the red light (R). do.
  • Yellow light (Y), green light (G), and red light (R) from the color filter 460 are outputted in a first direction by a collimator lens 469 .
  • the blue light B transmitted through the color filter 460 passes through the second reflection mirror 468 and is output in the first direction by a collimator lens 463 .
  • yellow light (Y), green light (G), red light (R), and blue light (B) are sequentially output in the first direction.
  • FIG. 5 is an example of a top view of the phosphor wheel of FIG. 4 .
  • a phosphor wheel device 430 is disposed in a plate PL and a first area AR1 on the plate PL, and is configured to output yellow light Y. It includes a yellow phosphor (PHY) and a green phosphor (PHG) disposed in the second area (AR2) on the plate (PL) for outputting green light (G).
  • PHY yellow phosphor
  • PEG green phosphor
  • the plate PL may include, for example, an aluminum (Al) base.
  • the phosphor wheel device 430 may further include a reflective layer LA disposed between the plate PL and the yellow phosphor PHY or the green phosphor PHG. Due to the reflective layer LA, when yellow light or green light is output from the yellow phosphor PHY or the green phosphor PHG, high luminance light output can be performed.
  • the reflective layer LA may include silicon resin and nano TiO2 powder. Accordingly, it is possible to perform high luminance light output.
  • the phosphor wheel device 430 may be rotated by the wheel motor 431 .
  • the size of the first area AR1 is larger than the size of the second area AR2. That is, it is preferable that the size of the first area AR1 coated with the green phosphor PHG is larger than the size of the second area AR2 coated with the yellow phosphor PHY. Accordingly, it is possible to perform high luminance light output.
  • the phosphor PH applied to the phosphor wheel device 430 may be ceramicized by sintering and processing the phosphor, and then attached to the base BS. Accordingly, it is possible to perform high luminance light output.
  • the thickness of the phosphor layer PH applied to the phosphor wheel device 430 is preferably thicker than that of the reflective layer LA.
  • a red phosphor (PHR) for red light output may be further applied to the phosphor wheel device 430 .
  • the phosphor wheel device 430b when the blue light (B) is incident on the yellow phosphor (PHY) in the phosphor wheel device 430b, the phosphor wheel device 430b reflects and outputs the yellow light (Y), and the blue light (B) , When incident on the green phosphor PHG in the phosphor wheel device 430b, the phosphor wheel device 430b reflects and outputs the green light G, and the blue light B is the red light in the phosphor wheel device 430b. When incident on the phosphor PHR, the phosphor wheel device 430b reflects and outputs the red light R.
  • FIG. 6 is an example of a cross-sectional view of a phosphor wheel device related to the present invention.
  • a phosphor wheel device 430x related to the present invention includes a substrate SBx having an opening BSx formed in the center, a phosphor PHX disposed on the substrate SBx, and a lower portion of the substrate SBx. It includes blades BLx spaced apart from each other.
  • Blue light B is incident on the phosphor PHX formed on the substrate SBx, yellow light is output by a yellow phosphor among the phosphors PHX, and green light is output by a green phosphor.
  • the temperature of the incident point on the substrate SBx where the blue light B is incident is higher than that of other regions, it is important to lower the increased temperature.
  • the phosphor wheel device 430 employs a cap-shaped plate having a bent end. This will be described with reference to FIG. 7 below.
  • FIG. 7 is an example of a cross-sectional view of a phosphor wheel device according to an embodiment of the present invention.
  • a phosphor wheel device 430 includes a plate PL having a bent end, a phosphor layer PH applied to a partial area on the plate PL, and a plate PL. It has a blade (BLD) disposed spaced apart from the bottom.
  • BLD blade
  • the plate PL according to the embodiment of the present invention is attached to a base BS extending in a first direction (x direction) and both ends of the base BS and intersects the first direction (x direction). and a protruding member CP extending in a second direction (-z direction).
  • the plate PL is preferably implemented as an AL plate for heat dissipation.
  • the phosphor layer PH is disposed in one area of the base BS, reflects light incident on the base BS, and outputs light of at least one color.
  • the blade BLD according to the embodiment of the present invention is disposed spaced apart from the plate PL in the second direction (-z direction) and rotates around the rotation axis Axis.
  • the cap-shaped plate PL air is introduced to the lower portion of the plate PL on which the phosphor layer PH is disposed, and air is discharged to the lower portion of the protruding member CP.
  • the air flow AFa flowing in the lower lateral direction after moving upward around the rotation axis Axis by the cap-type plate PL will be formed.
  • heat dissipation performance is improved, and furthermore, high luminance light output can be performed.
  • durability of the phosphor wheel device 430 can be improved according to the improved heat dissipation performance.
  • the horizontal distance Dc between the protruding member CP and the blade BLD is greater than the distance between the rotation axis Axis and the phosphor layer PH. Accordingly, air is introduced to the lower portion of the plate PL on which the phosphor layer PH is disposed and air is discharged to the lower portion of the protruding member CP, thereby improving heat dissipation performance and furthermore, performing high-brightness light output. be able to
  • the distance between the point of incidence of the light incident on the base BS and the rotation axis Axis is preferably equal to or greater than the distance between the rotation axis Axis and the end of the blade BLD. Accordingly, air is introduced to the lower portion of the plate PL on which the phosphor layer PH is disposed and air is discharged to the lower portion of the protruding member CP, thereby improving heat dissipation performance and furthermore, performing high-brightness light output. be able to
  • the height hm of the blade BLD is greater than the distance between the base BS and the blade BLD. Accordingly, air is introduced to the lower portion of the plate PL on which the phosphor layer PH is disposed and air is discharged to the lower portion of the protruding member CP, thereby improving heat dissipation performance and furthermore, performing high-brightness light output. be able to
  • the height hm of the blade BLD is greater than the height h2 of the base BS. Accordingly, air is introduced to the lower portion of the plate PL on which the phosphor layer PH is disposed and air is discharged to the lower portion of the protruding member CP, thereby improving heat dissipation performance and furthermore, performing high-brightness light output. be able to
  • the height h3 of the protruding member CP is preferably greater than the height hm of the blade BLD. Accordingly, air is introduced to the lower portion of the plate PL on which the phosphor layer PH is disposed and air is discharged to the lower portion of the protruding member CP, thereby improving heat dissipation performance and furthermore, performing high-brightness light output. be able to
  • the phosphor layer PH is disposed in the first region of the base BS, and includes a yellow phosphor PHY that outputs yellow light Y based on blue light B incident on the base BS.
  • a yellow phosphor PHY that outputs yellow light Y based on blue light B incident on the base BS.
  • It may include a green phosphor (PHG) disposed in the second region on the base (BS) and outputting green light (G) based on blue light (B) incident on the base (BS). Accordingly, yellow light (Y) and green light (G) can be output through the phosphor wheel device 430 .
  • the phosphor layer PH is disposed in the third region on the base BS, and further includes a red phosphor PHR that outputs red light R based on blue light B incident on the base BS.
  • a red phosphor PHR that outputs red light R based on blue light B incident on the base BS.
  • the phosphor layer PH may be bonded onto the base BS after ceramicization by sintering and processing the phosphor. Accordingly, it is possible to perform high luminance light output.
  • the phosphor wheel device 430 includes a reflective layer LA disposed on the phosphor layer PH and the base BS, and an antireflection layer LB disposed on the phosphor layer PH. ) may be further included. Accordingly, it is possible to perform high luminance light output.
  • the reflective layer LA may include silicon resin and nano TiO2 powder. Accordingly, it is possible to perform high luminance light output.
  • 8A to 8E are diagrams referred to in the description of FIG. 7 .
  • FIG. 8A is a view showing the top of the plate PL of FIG. 7
  • FIG. 8B is a view showing the bottom of the plate PL of FIG. 7 .
  • an opening OPN is formed in the central region of the plate PL, and a protruding member CP extending in the -z-axis direction is formed at an end of the donut-shaped base BS.
  • the protruding member CP is formed such that the end of the base BS is bent in the -z-axis direction.
  • the end of the protruding member CP is preferably rounded in consideration of the flow rate of the introduced air.
  • FIG. 8C illustrates the formation of the phosphor layer PH on the plate PL of FIG. 7 .
  • the phosphor layer PH is disposed in the first area AR1 on the plate PL and includes a yellow phosphor PHY for outputting yellow light Y, and a plate PL. ) and may include a green phosphor (PHG) for outputting green light (G).
  • PHY yellow phosphor
  • G green light
  • FIG. 8D is an internal exploded view of the phosphor wheel device 430 of FIG. 7 .
  • the motor 431, the blade (BLD), the plate (PL), the reflective layer (LA), the phosphor layer (PH), the anti-reflection layer (LB), and the housing for coupling. (MS) may be placed.
  • the phosphor wheel device of FIG. 7 (430) is completed.
  • FIG. 8E is a view showing a top surface of the blade BLD of FIG. 7 .
  • the blade BLD includes a base substrate BSb having an opening OPNb in the center, a first edge BSb2 bonded to an end of the base substrate BSb and inclined at a predetermined angle, A second edge BSb3 formed at one end of the first edge BSb2 and spaced apart from the other portion of the first edge BSb2 to form the second opening OPm may be included. Accordingly, it is possible to improve the air flow performance of the incoming air and the outgoing air.
  • the first edge BSb2 is formed in each of the eight edge areas OPM, but is not limited thereto, and various numbers of edge areas may be formed.
  • the second edge may be formed parallel to the base substrate BSb. Accordingly, it is possible to improve the air flow (AFa) performance of the incoming air and the outgoing air.
  • 9A is an example of a cross-sectional view of a phosphor wheel device according to another embodiment of the present invention.
  • a phosphor wheel device 430b according to another embodiment of the present invention is similar to the phosphor wheel device 430 of FIG. 7, but the difference is that the height or thickness of the base BS is not constant. there is.
  • the phosphor wheel device 430b is spaced apart from a plate PL having a bent end, a phosphor layer PH applied to a partial area on the plate PL, and a lower portion of the plate PL.
  • a blade BLD is disposed.
  • the phosphor layer PH and the blade BLD may be formed as shown in FIG. 7 .
  • the plate PL according to the embodiment of the present invention is attached to a base BS extending in a first direction (x direction) and both ends of the base BS and intersects the first direction (x direction). and a protruding member CP extending in a second direction (-z direction).
  • the base BS has a first base part BSa having a first height h2 and a second base part BSb having a second height hb higher than the first height h2.
  • the protruding member CP is attached to both ends of the second base part BSb and may extend in a second direction ( ⁇ z direction) crossing the first direction (x direction).
  • the height of the second base part BSb corresponding to the area where the phosphor layer PH is disposed is greater than that of the first base part BSa corresponding to the area where the phosphor layer PH is not disposed.
  • the heat dissipation performance of the lower portion of the plate PL on which the phosphor layer PH is disposed is improved, and furthermore, high luminance light output can be performed.
  • 9B is an example of a cross-sectional view of a phosphor wheel device according to another embodiment of the present invention.
  • a phosphor wheel device 430c according to another embodiment of the present invention is similar to the phosphor wheel device 430 of FIG. The difference is that the width is not constant.
  • the phosphor wheel device 430c is spaced apart from a plate PL having a bent end, a phosphor layer PH applied to a partial area on the plate PL, and a lower portion of the plate PL. and a blade BLD disposed thereon.
  • the phosphor layer PH and the blade BLD may be formed as shown in FIG. 7 .
  • the plate PL according to the embodiment of the present invention is attached to a base BS extending in a first direction (x direction) and both ends of the base BS and intersects the first direction (x direction). and a protruding member CP extending in a second direction (-z direction).
  • the protruding member CP includes a first protruding member CPa attached to the first end of the base BS and a second protruding member CPb attached to the second end of the base BS, ,
  • the width W2 of the first protruding member CPa may be different from the width W1 of the second protruding member CPb.
  • the width W2 of the first protrusion member CPa may be greater than the width W1 of the second protrusion member CPb.
  • the heat dissipation performance of the lower portion of the plate PL on which the phosphor layer PH is disposed is improved, and furthermore, high luminance light output can be performed.
  • FIG. 10A is a flowchart illustrating an example of a manufacturing method of the phosphor wheel device of FIG. 7 .
  • nano raw material powder capable of realizing YAG composition (Y3Al5O12:Ce) and LuAG composition (Lu3Al5O12:Ce) can be filled in a mold of desired shape (Ring, segment) and pressed. there is.
  • the pressing pressure at this time may be a pressure of 8 Ton (approximately 34 MPa).
  • CIP cold isostatic pressing
  • high-temperature heat treatment may be performed to densify the compact.
  • the high-temperature heat treatment temperature may be different according to the desired density.
  • a high-temperature heat treatment in the range of approximately 1500-1750° C. may be performed.
  • mirror processing may be performed in a desired shape.
  • a reflective layer LA is formed on the plate PL (S1020).
  • the reflective layer LA may include silicon resin and nano TiO2 powder.
  • TiO2 having a size of 0.2 to 0.5 ⁇ m may be mixed with resin and coated on the cap-shaped plate PL.
  • the coating at this time may be a bar coating, and the thickness may be approximately 80 to 120 um.
  • the ceramic phosphor processed in step 1015 is bonded to the printed reflective layer (eg, TiO 2 layer) and cured.
  • the curing temperature is approximately 150° C., and curing may be performed for 2 hours or more.
  • the plate PL on which the phosphor layer PH and the reflective layer LA are formed may be coupled to the cooling blade BLD and the motor 431 . Accordingly, the phosphor wheel device 430 of FIG. 7 can be configured.
  • FIG. 10B is a flowchart illustrating another example of a manufacturing method of the phosphor wheel device of FIG. 7 .
  • the reflective layer LA is formed on the plate PL (S1050).
  • the reflective layer LA may include silicon resin and nano TiO2 powder.
  • TiO2 having a size of 0.2 to 0.5 ⁇ m may be mixed with resin and coated on the cap-shaped plate PL.
  • the coating at this time may be a bar coating, and the thickness may be approximately 80 to 120 um.
  • the plate PL on which the reflective layer LA is formed is cured.
  • the curing temperature is approximately 150° C., and curing may be performed for 2 to 6 hours.
  • a phosphor having an average particle diameter of about 18 ⁇ m can be mixed with silicone resin and printed as bar coating.
  • the phosphor at this time may include a YAG composition (Y3Al5O12:Ce) for yellow light and a LuAG composition (Lu3Al5O12:Ce) for green light.
  • YAG composition Y3Al5O12:Ce
  • LuAG composition Lu3Al5O12:Ce
  • the plate PL on which the phosphor PH is formed is cured (S1065).
  • the curing temperature is approximately 150° C., and curing may be performed for 2 to 6 hours.
  • the plate PL on which the phosphor layer PH and the reflective layer LA are formed may be coupled to the cooling blade BLD and the motor 431 . Accordingly, the phosphor wheel device 430 of FIG. 7 can be configured.
  • 11A to 12C are diagrams referred to in the description of FIG. 7 .
  • FIG. 11A is a diagram comparing luminance performances of the phosphor wheel device 430x of FIG. 6 and the phosphor wheel device 430 of FIG. 7 .
  • GRa represents the luminance level of the phosphor wheel device 430x of FIG. 6
  • GRb represents the luminance level of the phosphor wheel device 430 of FIG. 7 .
  • luminance is greatly improved, and thus high luminance light output is possible.
  • FIG. 11B is a diagram comparing temperature performances of the phosphor wheel device 430x of FIG. 6 and the phosphor wheel device 430 of FIG. 7 .
  • GRc represents the temperature level of the phosphor wheel device 430x of FIG. 6
  • GRd represents the temperature level of the phosphor wheel device 430 of FIG. 7 .
  • the temperature is greatly reduced, the heat dissipation performance is greatly improved, and eventually the durability is improved.
  • 12A is an example of an internal block diagram of a phosphor wheel device according to another embodiment of the present invention.
  • a phosphor wheel device 1200 includes a motor 431 that rotates a blade BLD and a controller 1270 that controls a rotational speed of the motor 431. can include more.
  • controller 1270 may control the rotational speed of the motor 431 to be constant, as shown in FIG. 12B.
  • FIG. 12B illustrates a graph GRma in which the rotational speed of the motor 431 is constant.
  • the rotational speed of the motor 431 at this time may be approximately 7200 RPM.
  • the heat dissipation performance of the lower portion of the cap-shaped plate PL on which the phosphor layer PH is disposed is improved, and furthermore, high-brightness light output can be performed.
  • the phosphor wheel device 1200 may further include a temperature sensor 1210 for sensing the temperature of the plate PL inside the phosphor wheel device 1200 .
  • controller 1270 may control the rotational speed of the motor 431 to be varied according to the temperature sensed by the temperature sensor 1210 .
  • the controller 1270 may control the rotational speed of the motor 431 to increase as the temperature sensed by the temperature sensor 1210 increases, as shown in FIG. 12C .
  • the phosphor wheel device according to the embodiment of the present invention and the image projection device having the same are not limited to the configuration and method of the embodiments described above, but the embodiments can be modified in various ways. All or part of each embodiment may be configured by selectively combining them.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

본 발명은 형광체 휠 장치, 및 이를 구비하는 영상투사장치이다. 본 발명의 실시예에 따른 형광체 휠 장치는, 제1 방향으로 연장되는 베이스와, 베이스의 양 단부에 부착되며 제1 방향과 교차하는 제2 방향으로 연장되는 돌출부재를 포함하며, 회전축을 중심으로 회전하는 플레이트와, 베이스의 일 영역에 배치되며, 베이스 상으로 입사되는 광을 반사하여 적어도 하나의 색상의 광을 출력하는 형광체층과, 플레이트에 제2 방향으로 이격되어 배치되며, 회전축을 중심으로 회전하는 블레이드를 포함한다. 이에 의해, 방열 성능이 개선되며 고휘도의 광출력을 수행할 수 있게 된다.

Description

형광체 휠 장치, 및 이를 구비하는 영상투사장치
본 발명은 형광체 휠 장치, 및 이를 구비하는 영상투사장치이며, 더욱 상세하게는 방열 성능이 개선되며 고휘도의 광출력을 수행할 수 있는 형광체 휠 장치, 및 이를 구비하는 영상투사장치이다.
형광체 휠 장치는, 영상투사장치 내부에 배치되며, 회전에 의해, 광이 도포된 형광체에 입사되는 경우, 형광체에 대응하는 색상의 광을 출력하는 장치이다.
한편, 형광체 휠 장치는, 회전하면서, 광이 입사되므로, 온도 상승이 빈번히 발생하며, 온도 상승시, 형광체에서의 광 출력시의 변환 효율이 저하되는 문제가 있다.
한국공개특허공보 제2008-0001077호(이하, 선행 문헌 이라 함)에는, 프로젝션 시스템의 컬러 휠 냉각 구조가 개시된다.
특히, 선행 문헌에는, 고속으로 회전하는 컬러 휠을 냉각하기 위한 컬러 휠 냉각팬 및 냉각 유로가 개시된다.
그러나, 선행 문헌은, 먼지 유입 등으로 인하여 밀페된 케이스 내부의 공기만을 유동시켜, 컬러 휠을 냉각하므로, 온도 감소가 실제로 어려우며, 광원 시스템 온도가 대략 200℃ 초과시에 신뢰성 불량이 발생하는 단점이 있다.
본 발명의 목적은, 방열 성능이 개선되며 고휘도의 광출력을 수행할 수 있는 형광체 휠 장치, 및 이를 구비하는 영상투사장치를 제공함에 있다.
한편, 본 발명의 다른 목적은, 방열 성능 개선에 따라 내구성을 향상시킬 수 있는 형광체 휠 장치, 및 이를 구비하는 영상투사장치를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 제1 방향으로 연장되는 베이스와, 베이스의 양 단부에 부착되며 제1 방향과 교차하는 제2 방향으로 연장되는 돌출부재를 포함하며, 회전축을 중심으로 회전하는 플레이트와, 베이스의 일 영역에 배치되며, 베이스 상으로 입사되는 광을 반사하여 적어도 하나의 색상의 광을 출력하는 형광체층과, 플레이트에 제2 방향으로 이격되어 배치되며, 회전축을 중심으로 회전하는 블레이드를 포함한다.
한편, 돌출부재와 블레이드 사이의 수평 거리 보다, 회전축과 형광체층 사이의 거리 보다 더 크다.
한편, 베이스 상으로 입사되는 광의 입사 지점과 회전축 사이의 거리는, 회전축과 블레이드의 단부 사이의 거리와 동일하거나 더 크다.
한편, 베이스와 블레이드 사이의 거리 보다, 블레이드의 높이가 더 크다.
한편, 베이스의 높이 보다, 블레이드의 높이가 더 크다.
한편, 돌출부재의 높이는, 블레이드의 높이 보다 더 크다.
한편, 형광체층은, 베이스의 제1 영역에 배치되며, 베이스 상으로 입사되는 청색광에 기초하여 노란색광을 출력하는 노란색 형광체와, 베이스 상의 제2 영역에 배치되며, 베이스 상으로 입사되는 청색광에 기초하여 녹색광을 출력하는 녹색 형광체를 포함할 수 있다.
한편, 형광체층은, 베이스 상의 제3 영역에 배치되며, 베이스 상으로 입사되는 청색광에 기초하여 적색광을 출력하는 적색 형광체를 더 포함할 수 있다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 형광체층과 베이스 상에 배치되는 반사층과, 형광체층 상에 배치되는 반사 방지층을 더 포함할 수 있다.
한편, 형광체층은, 형광체를 소결 및 가공하여 세라믹화한 후, 베이스 상에 접착될 수 있다.
한편, 반사층은, 실리콘 레진과 나노 TiO2 분말을 포함할 수 있다.
한편, 블레이드는, 중앙에 개구가 형성된 베이스 기판과, 베이스 기판의 단부에 접합되며, 소정 각도로 경사지게 형성된 제1 에지와, 제1 에지의 일 단부에 형성되며, 제1 에지의 다른 일부와 이격되에 제2 개구를 형성하는 제2 에지를 포함할 수 있다.
한편, 제2 에지는 베이스 기판과 평행하게 형성될 수 있다.
한편, 베이스는, 제1 높이를 가지는 제1 베이스 파트와, 제1 높이 보다 높은 제2 높이를 가지는 제2 베이스 파트를 가지며, 돌출부재는, 제2 베이스 파트의 양 단부에 부착되며 제1 방향과 교차하는 제2 방향으로 연장될 수 있다.
한편, 돌출부재는, 베이스의 제1 단부에 부착되는 제1 돌출 부재와, 베이스의 제2 단부에 부착되는 제2 돌출 부재를 포함하고, 제1 돌출 부재의 폭과, 제2 돌출 부재의 폭이 서로 다를 수 있다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 블레이드를 회전시키는 모터와, 모터의 회전 속도를 제어하는 제어부를 더 포함하고, 제어부는, 모터의 회전 속도가 일정하도록 제어할 수 있다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 블레이드를 회전시키는 모터와, 플레이트의 온도를 센싱하는 온도 센서와, 모터의 회전 속도를 제어하는 제어부를 더 포함하고, 제어부는, 온도 센서에서 감지되는 온도가 증가할수록, 모터의 회전 속도가 증가하도록 제어할 수 있다.
본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 제1 방향으로 연장되는 베이스와, 베이스의 양 단부에 부착되며 제1 방향과 교차하는 제2 방향으로 연장되는 돌출부재를 포함하며, 회전축을 중심으로 회전하는 플레이트와, 베이스의 일 영역에 배치되며, 베이스 상으로 입사되는 광을 반사하여 적어도 하나의 색상의 광을 출력하는 형광체층과, 플레이트에 제2 방향으로 이격되어 배치되며, 회전축을 중심으로 회전하는 블레이드를 포함한다. 이에 따라, 형광체층이 배치되는 플레이트의 하부에 공기가 유입되고, 돌출부재의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
또한, 방열 성능 개선에 따라 형광체 휠 장치의 내구성을 향상시킬 수 있게 된다.
한편, 돌출부재와 블레이드 사이의 수평 거리 보다, 회전축과 형광체층 사이의 거리 보다 더 크다. 이에 따라, 형광체층이 배치되는 플레이트의 하부에 공기가 유입되고, 돌출부재의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 베이스 상으로 입사되는 광의 입사 지점과 회전축 사이의 거리는, 회전축과 블레이드의 단부 사이의 거리와 동일하거나 더 크다. 이에 따라, 형광체층이 배치되는 플레이트의 하부에 공기가 유입되고, 돌출부재의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 베이스와 블레이드 사이의 거리 보다, 블레이드의 높이가 더 크다. 이에 따라, 형광체층이 배치되는 플레이트의 하부에 공기가 유입되고, 돌출부재의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 베이스의 높이 보다, 블레이드의 높이가 더 크다. 이에 따라, 형광체층이 배치되는 플레이트의 하부에 공기가 유입되고, 돌출부재의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 돌출부재의 높이는, 블레이드의 높이 보다 더 크다. 이에 따라, 형광체층이 배치되는 플레이트의 하부에 공기가 유입되고, 돌출부재의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 형광체층은, 베이스의 제1 영역에 배치되며, 베이스 상으로 입사되는 청색광에 기초하여 노란색광을 출력하는 노란색 형광체와, 베이스 상의 제2 영역에 배치되며, 베이스 상으로 입사되는 청색광에 기초하여 녹색광을 출력하는 녹색 형광체를 포함할 수 있다. 이에 따라, 형광체 휠 장치를 통해, 노란색광과 녹색광을 출력할 수 있게 된다.
한편, 형광체층은, 베이스 상의 제3 영역에 배치되며, 베이스 상으로 입사되는 청색광에 기초하여 적색광을 출력하는 적색 형광체를 더 포함할 수 있다. 이에 따라, 형광체 휠 장치를 통해, 노란색광과 녹색광, 적색광을 출력할 수 있게 된다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 형광체층과 베이스 상에 배치되는 반사층과, 형광체층 상에 배치되는 반사 방지층을 더 포함할 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 형광체층은, 형광체를 소결 및 가공하여 세라믹화한 후, 베이스 상에 접착될 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 반사층은, 실리콘 레진과 나노 TiO2 분말을 포함할 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 블레이드는, 중앙에 개구가 형성된 베이스 기판과, 베이스 기판의 단부에 접합되며, 소정 각도로 경사지게 형성된 제1 에지와, 제1 에지의 일 단부에 형성되며, 제1 에지의 다른 일부와 이격되에 제2 개구를 형성하는 제2 에지를 포함할 수 있다. 이에 따라, 유입되는 공기와 유출되는 공기의 에어 플로우 성능을 향상시킬 수 있게 된다.
한편, 제2 에지는 베이스 기판과 평행하게 형성될 수 있다. 이에 따라, 유입되는 공기와 유출되는 공기의 에어 플로우 성능을 향상시킬 수 있게 된다.
한편, 베이스는, 제1 높이를 가지는 제1 베이스 파트와, 제1 높이 보다 높은 제2 높이를 가지는 제2 베이스 파트를 가지며, 돌출부재는, 제2 베이스 파트의 양 단부에 부착되며 제1 방향과 교차하는 제2 방향으로 연장될 수 있다. 이에 따라, 형광체층이 배치되는 플레이트의 하부의 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 돌출부재는, 베이스의 제1 단부에 부착되는 제1 돌출 부재와, 베이스의 제2 단부에 부착되는 제2 돌출 부재를 포함하고, 제1 돌출 부재의 폭과, 제2 돌출 부재의 폭이 서로 다를 수 있다. 이에 따라, 형광체층이 배치되는 플레이트의 하부의 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 블레이드를 회전시키는 모터와, 모터의 회전 속도를 제어하는 제어부를 더 포함하고, 제어부는, 모터의 회전 속도가 일정하도록 제어할 수 있다. 이에 따라, 형광체층이 배치되는 플레이트의 하부의 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는, 블레이드를 회전시키는 모터와, 플레이트의 온도를 센싱하는 온도 센서와, 모터의 회전 속도를 제어하는 제어부를 더 포함하고, 제어부는, 온도 센서에서 감지되는 온도가 증가할수록, 모터의 회전 속도가 증가하도록 제어할 수 있다. 이에 따라, 형광체층이 배치되는 플레이트의 하부의 방열 성능이 더욱 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 영상투사장치의 외관을 예시한다.
도 2는 도 1의 영상투사장치의 내부 블록도의 일예이다.
도 3은 도 2의 신호 처리 장치의 내부 블록도의 일예이다.
도 4는 도 2의 광학 장치 구조의 일예이다.
도 5는 도 4의 형광체 휠의 상면도의 일예이다.
도 6은 본 발명과 관련한 형광체 휠 장치의 단면도의 일예이다.
도 7은 본 발명의 일 실시예에 따른 형광체 휠 장치의 단면도의 일예이다.
도 8a 내지 도 8e는 도 7의 설명에 참조되는 도면이다.
도 9a는 본 발명의 다른 실시예에 따른 형광체 휠 장치의 단면도의 일예이다.
도 9b는 본 발명의 또 다른 실시예에 따른 형광체 휠 장치의 단면도의 일예이다.
도 10a는 도 7의 형광체 휠 장치의 제조 방법의 일예를 나타내는 순서도이다.
도 10b는 도 7의 형광체 휠 장치의 제조 방법의 다른 예를 나타내는 순서도이다.
도 11a 내지 도 12c는 도 7의 설명에 참조되는 도면이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
본 명세서에서 기술되는 광학장치는, 가시광을 출력할 수 있는 장치이다. 이러한 광학장치는, 영상투사장치에 적용될 수 있다. 또는, 조명장치에 적용되는 것도 가능하다.
한편, 본 명세서에서 기술되는 영상투사장치는, 외부에 영상을 투사할 수 있는 장치이다. 예를 들어, 프로젝터(projector)일 수 있다.
한편, 본 발명에서 기술되는 영상투사장치는, 하나의 부품으로서 다른 기기 내에 장착되는 것도 가능하다. 예를 들어, 이동 단말기에 장착되는 것이 가능하며, 또는 에어컨, 냉장고, 조리기기, 로봇 청소기 등의 가전기기 내에 포함되는 것도 가능하며, 또는 자동차 등의 차량 내에 장착되는 것도 가능하다.
이하에서는 이러한 영상투사장치에 대해 상세히 기술한다.
도 1은 본 발명의 일 실시예에 따른 영상투사장치의 외관을 예시한다.
도면을 참조하면, 영상투사장치(100)는, 스크린(200) 상에 투사 영상을 출력할 수 있다.
도면에서는, 스크린(200)이 평평한 면을 가지는 것으로 예시하나, 곡면을 가지는 것도 가능하다.
사용자는, 스크린(200) 상에 투사된 투사 영상을 시청할 수 있게 된다.
도 2는 도 1의 영상투사장치의 내부 블록도의 일예이다.
도면을 참조하면, 영상투사장치(100)는, 메모리(120), 신호처리장치(170), 통신 장치(135), 영상출력장치(180), 및 전원 공급부(190) 등을 구비할 수 있다.
한편, 영상출력장치(180)는, 구동 장치(185)와, 광학 장치(210)를 구비할 수 있다.
구동 장치(185)는, 광학 장치(210)를 구동할 수 있다. 특히, 광학 장치(210) 내의 광원을 구동하 수 있다.
광학 장치(210)는, 광 출력, 특히 가시광 출력을 위해, 광원, 렌즈 등의 광학 부품을 구비할 수 있다.
특히, 본 발명의 실시예에서는, 방열 성능이 개선되며 고휘도의 광출력을 수행할 수 있는 광학 장치를 제공한다. 이에 대해서는, 도 4 이하를 참조하여 상술한다.
메모리(120)는 신호처리장치(170)의 처리 및 제어를 위한 프로그램이 저장될 수도 있고, 입력되거나 출력되는 데이터들(예를 들어, 정지영상, 동영상 등)의 임시 저장을 위한 기능을 수행할 수도 있다.
통신 장치(135)는 영상투사장치(100)에 유선 또는 무선으로 연결되는 모든 외부기기 또는 네트워크와의 인터페이스 역할을 수행한다. 통신 장치(135)는 이러한 외부 기기로부터 데이터를 전송받거나 전원을 공급받아 영상투사장치(100) 내부의 각 구성 요소에 전달할 수 있고, 영상투사장치(100) 내부의 데이터가 외부 기기로 전송되도록 할 수 있다.
특히, 통신 장치(135)는, 인접하는 이동 단말기(미도시)로부터 무선 신호를 수신할 수 있다. 여기서, 무선 신호는, 음성 호 신호, 화상 통화 호 신호, 또는 문자 데이터, 영상 데이터 등 다양한 형태의 데이터를 포함할 수 있다.
이를 위해, 통신 장치(135)는, 근거리 통신 장치(미도시)를 구비할 수 있다. 근거리 통신 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), 지그비(ZigBee), NFC(Near Field Communication) 등이 이용될 수 있다.
신호처리장치(170)는, 영상투사장치(100)의 전반적인 제어 동작을 수행할 수 있다. 구체적으로, 영상투사장치(100) 내의 각 유닛의 동작을 제어할 수 있다.
신호처리장치(170)는, 메모리(120)에 저장되는 비디오 영상, 또는 통신 장치(135)을 통해 외부로부터 수신되는 비디오 영상을, 투사 영상으로서, 외부에 출력되도록 제어할 수 있다.
이를 위해, 신호처리장치(170)는, R,G,B 등의 가시광을 출력하는 광학 장치(210)를 제어하는 구동 장치(185)를 제어할 수 있다. 구체적으로, 표시할 비디오 영상에 대응하는 R,G,B 신호를, 구동 장치(185)에 출력할 수 있다.
전원 공급부(190)는 신호처리장치(170)의 제어에 의해 외부의 전원 또는 내부의 전원을 인가받아 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다.
전원 공급부(190)는, 영상투사장치(100) 전반에 걸쳐 해당 전원을 공급한다. 특히, 시스템 온 칩(System On Chip,SOC)의 형태로 구현될 수 있는 신호처리장치(170)와, 영상 표시를 위한 영상출력장치(180), 및 오디오 출력을 위한 오디오 출력부(미도시)에 전원을 공급할 수 있다.
도 3은 도 2의 제어부의 내부 블록도이다.
도면을 참조하여 설명하면, 본 발명의 일실시예에 의한 신호처리장치(170)는, 역다중화부(310), 영상 처리부(320), 프로세서(330), OSD 생성부(340), 믹서(345), 프레임 레이트 변환부(350), 및 포맷터(360)를 포함할 수 있다. 그 외 오디오 처리부(미도시), 데이터 처리부(미도시)를 더 포함할 수 있다.
역다중화부(310)는, 입력되는 스트림을 역다중화한다.
영상 처리부(320)는, 역다중화된 영상 신호의 영상 처리를 수행할 수 있다. 이를 위해, 영상 처리부(320)는, 영상 디코더(225), 및 스케일러(235)를 구비할 수 있다.
영상 디코더(225)는, 역다중화된 영상신호를 복호화하며, 스케일러(235)는, 복호화된 영상신호의 해상도를 영상출력장치(180)에서 출력 가능하도록 스케일링(scaling)을 수행한다. 영상 디코더(225)는 다양한 규격의 디코더를 구비하는 것이 가능하다.
프로세서(330)는, 영상투사장치(100) 내 또는 신호처리장치(170) 내의 전반적인 동작을 제어할 수 있다. 또한, 프로세서(330)는, 신호처리장치(170) 내의 역다중화부(310), 영상 처리부(320), OSD 생성부(340) 등의 동작을 제어할 수 있다.
OSD 생성부(340)는, 사용자 입력에 따라 또는 자체적으로 OSD 신호를 생성할 수 있다.
믹서(345)는, OSD 생성부(340)에서 생성된 OSD 신호와 영상 처리부(320)에서 영상 처리된 복호화된 영상 신호를 믹싱할 수 있다. 믹싱된 영상 신호는 프레임 레이트 변환부(350)에 제공될 수 있다.
프레임 레이트 변환부(Frame Rate Conveter, FRC)(350)는, 입력되는 영상의 프레임 레이트를 변환할 수 있다. 한편, 프레임 레이트 변환부(350)는, 별도의 프레임 레이트 변환 없이, 그대로 출력하는 것도 가능하다.
한편, 포맷터(Formatter)(360)는, 믹서(345)에서 믹싱된 신호, 즉 OSD 신호와 복호화된 영상 신호를 입력받아, 영상 출력부(180)로 입력을 위한, 신호 변환을 수행할 수 있다. 예를 들어, 낮은 전압 차분 신호(LVDS)를 출력할 수 있다.
한편, 도 3에 도시된 신호처리장치(170)의 블록도는 본 발명의 일실시예를 위한 블록도이다. 블록도의 각 구성요소는 실제 구현되는 신호처리장치(170)의 사양에 따라 통합, 추가, 또는 생략될 수 있다.
특히, 프레임 레이트 변환부(350), 및 포맷터(360)는 신호처리장치(170) 내에 마련되지 않고, 각각 별도로 구비되거나, 하나의 모듈로서 별도로 구비될 수도 있다.
도 4는 도 2의 광학 장치 구조의 일예이다.
도면을 참조하면, 본 발명의 실시예에 따른 광학 장치(210a)는, 청색광(B)을 출력하는 광원(410), 회전에 의해 입사되는 청색광(B)에 기초하여 복수 색상의 광을 출력하는 형광체 휠 장치(430)를 포함한다.
한편, 청색광(B)을 출력하는 광원(410)은, 레이저 다이오드 등을 포함할 수 있다. 예를 들어, 레이저 다이오드(410)는 청색의 레이저광(B)을 출력할 수 있다.
광원(410)에서 출력되는 청색광(B)은, 광학 렌즈(collimator lens)(461)를 거쳐 집광되어, 컬러 필터(460)로 입사될 수 있다.
본 발명의 실시예에 따른 광학 장치(210a)는, 형광체 휠 장치(430)의 출력단 이후에 배치되며, 회전에 의해, 노란색광(Y), 녹색광(G), 적색광(R)을 순차적으로 출력하는 컬러 필터(460)를 더 포함할 수 있다.
예를 들어, 컬러 필터(460)는, 노란색광(Y)의 출력을 위한 노란색 영역(ARa), 녹색광(G)의 출력을 위한 녹색 영역(ARb), 적색광(R)의 출력을 위한 적색 영역(ARc), 청색광(B)의 출력을 위한 청색 영역(ARd)을 포함할 수 있다.
컬러 필터(460)는, 광원(410)으로부터의 청색광(B)이, 노란색 영역(ARa), 녹색 영역(ARb), 또는 적색광(R)의 출력을 위한 적색 영역(ARc)에 입사되는 경우, 청색광(B)을 반사한다.
컬러 필터(460)에서 반사된 청색광(B)은, 광학 렌즈(collimator lens)(461b)를 거쳐 제1 반사 미러(446)로 입사된다.
제1 반사 미러(446)는, 입사되는 청색광(B)을 반사시키며, 제1 반사 미러(446)에서 반사된 청색광(B)은, 광학 렌즈(collimator lens)(462)를 거쳐, 광 분리부(420)로 입사된다.
광 분리부(420)는, 입사되는 청색광(B)은 투과시키며, 그 외 노란색광(Y), 녹색광(G), 또는 적색광(R)은 반사시킨다.
광 분리부(420)에서 투과된 청색광(B)은, 광학 렌즈(collimator lens)(463)를 거쳐, 형광체 휠 장치(430)로 입사된다.
형광체 휠 장치(430)는, 회전에 의해 입사되는 청색광(B)에 기초하여 복수 색상의 광을 출력한다.
구체적으로, 형광체 휠 장치(430)는, 노란색광(Y)의 출력을 위한 노란색 형광체(PHY)와, 녹색광(G)의 출력을 위한 녹색 형광체(PHG)를 포함한다.
청색광(B)이, 형광체 휠 장치(430) 내의 노란색 형광체(PHY)에 입사되는 경우, 형광체 휠 장치(430)는, 노란색광(Y)을 반사하여 출력한다.
한편, 청색광(B)이, 형광체 휠 장치(430) 내의 녹색 형광체(PHG)에 입사되는 경우, 형광체 휠 장치(430)는, 녹색광(G)을 반사하여 출력한다.
형광체 휠 장치(430)에서 순차적으로 출력되는 노란색광(Y)과 녹색광(G)은, 광 분리부(420)로 입사되며, 광 분리부(420)는, 노란색광(Y)과 녹색광(G)을 반사시킨다.
광 분리부(420)에서 반사된 노란색광(Y)과 녹색광(G)은, 컬러 필터(460)로 입사된다.
광 분리부(420)에서 반사된 노란색광(Y)이 컬러 필터(460)의 노란색 영역(ARa)에 입사되는 경우, 컬러 필터(460)는 노란색광(Y)을 투과하여 출력한다.
광 분리부(420)에서 반사된 녹색광(G)이 컬러 필터(460)의 녹색 영역(ARb)에 입사되는 경우, 컬러 필터(460)는 녹색광(G)을 투과하여 출력한다.
광 분리부(420)에서 반사된 노란색광(Y) 또는 녹색광(G)이 컬러 필터(460)의 적색 영역(ARc)에 입사되는 경우, 컬러 필터(460)는 적색광(R)을 투과하여 출력한다.
컬러 필터(460)로부터의 노란색광(Y), 녹색광(G), 적색광(R)은 광학 렌즈(collimator lens)(469)에 의해, 제1 방향으로 출력된다.
한편, 컬러 필터(460)에서 투과된 청색광(B)은, 제2 반사 미러(468)를 거쳐, 광학 렌즈(collimator lens)(463)에 의해 상기 제1 방향으로 출력된다.
따라서, 제1 방향으로, 노란색광(Y), 녹색광(G), 적색광(R), 청색광(B)이 순차적으로 출력되게 된다.
도 5는 도 4의 형광체 휠의 상면도의 일예이다.
도면을 참조하면, 본 발명의 실시예에 따른 형광체 휠 장치(430)는, 플레이트(PL)와, 플레이트(PL) 상의 제1 영역(AR1)에 배치되며, 노란색광(Y)의 출력을 위한 노란색 형광체(PHY)와, 플레이트(PL) 상의 제2 영역(AR2)에 배치되며, 녹색광(G)의 출력을 위한 녹색 형광체(PHG)를 포함한다.
플레이트(PL)는, 예를 들어, 알루미늄(Al) 베이스를 포함할 수 있다.
한편, 형광체 휠 장치(430)는, 플레이트(PL)와, 노란색 형광체(PHY) 또는 녹색 형광체(PHG) 사이에 배치되는 반사층(LA)을 더 포함할 수 있다. 이러한, 반사층(LA)으로 인하여, 노란색 형광체(PHY) 또는 녹색 형광체(PHG)에서 노란색광 또는 녹색광의 출력시, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 반사층(LA)은, 실리콘 레진과 나노 TiO2 분말을 포함할 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 형광체 휠 장치(430)는, 휠 모터(431)에 의해, 회전할 수 있다.
한편, 제1 영역(AR1)의 사이즈가, 제2 영역(AR2)의 사이즈 보다 더 큰 것이 바람직하다. 즉, 녹색 형광체(PHG)가 도포된 제1 영역(AR1)의 사이즈가, 노란색 형광체(PHY)가 도포된 제2 영역(AR2)의 사이즈 보다 더 큰 것이 바람직하다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 형광체 휠 장치(430)에 도포된 형광체(PH)는, 형광체를 소결 및 가공하여 세라믹화한 후, 베이스(BS) 상에 접착될 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 형광체 휠 장치(430)에 도포된 형광체층(PH)의 두께는, 반사층(LA)의 두께 보다 더 두꺼운 것이 바람직하다.
한편, 도 5와 달리, 형광체 휠 장치(430)에, 노란색 형광체(PHY)와, 녹색 형광체(PHG) 외에, 추가로, 적색광 출력을 위한 적색 형광체(PHR)가 더 도포되는 것도 가능하다.
이에 따라, 청색광(B)이, 형광체 휠 장치(430b) 내의 노란색 형광체(PHY)에 입사되는 경우, 형광체 휠 장치(430b)은, 노란색광(Y)을 반사하여 출력하며, 청색광(B)이, 형광체 휠 장치(430b) 내의 녹색 형광체(PHG)에 입사되는 경우, 형광체 휠 장치(430b)은, 녹색광(G)을 반사하여 출력하며, 청색광(B)이, 형광체 휠 장치(430b) 내의 적색 형광체(PHR)에 입사되는 경우, 형광체 휠 장치(430b)은, 적색광(R)을 반사하여 출력한다.
도 6은 본 발명과 관련한 형광체 휠 장치의 단면도의 일예이다.
도면을 참조하면, 본 발명과 관련한 형광체 휠 장치(430x)는, 중앙에 개구(BSx)가 형성된 기판(SBx), 기판(SBx) 상에 배치되는 형광체(PHX), 기판(SBx)의 하부에 이격되어 배치되는 블레이드(BLx)를 포함한다.
기판(SBx) 상의 형성되는 형광체(PHX)에, 청색광(B)이 입사되고, 형광체(PHX) 중 노란색 형광체에 의해 노란색광이 출력되고, 녹색 형광체에 의해 녹색광이 출력된다.
한편, 기판(SBx) 상의 청색광(B)이 입사되는 입사 지점에는, 다른 영역 보다 더 온도가 상승하므로, 상승되는 온도를 낮춰주는 것이 중요하다.
그러나, 도면과 같이, 기판(SBx)과 블레이드(BLx)가 서로 이격되어 평행하게 배치되는 경우, 블레이드(BLx)의 회전에 의한 공기가, 기판(SBx)에 거의 접촉하지 않고, 기판(SBx) 주변으로 흐르게 된다.
이에 따라, 블레이드(BLx)의 회전에 의한, 방열 기능이, 원활하게 동작하지 못하게 된다.
특히, 100W 이상의 초고출력 청색 레이저광을 사용하는 경우, 기판(SBx)에서 나오는 구동 발열로 인해, 블레이드(BLx)의 회전에 의한 공기의 흐름(AFx)만으로는 온도 감소가 어렵게 된다.
또한, 형광체 휠 장치(430x)의 온도가 200℃ 초과시 신뢰성 불량이 발생하게 된다.
이러한 점을 해결하기 위해, 본 발명의 일 실시예에 따른 형광체 휠 장치(430)는, 단부가 구부러진 캡(cap)형 플레이트를 적용한다. 이에 대해서는, 도 7 이하를 참조하여 기술한다.
도 7은 본 발명의 일 실시예에 따른 형광체 휠 장치의 단면도의 일예이다.
도면을 참조하면, 본 발명의 실시예에 따른 형광체 휠 장치(430)는, 단부가 구부러진 플레이트(PL)와, 플레이트(PL) 상의 일부 영역에 도포되는 형광체층(PH)과, 플레이트(PL) 하부에 이격되어 배치되는 블레이드(BLD)를 구비한다.
한편, 본 발명의 실시예에 따른 플레이트(PL)는, 제1 방향(x 방향)으로 연장되는 베이스(BS)와, 베이스(BS)의 양 단부에 부착되며 제1 방향(x 방향)과 교차하는 제2 방향(-z 방향)으로 연장되는 돌출부재(CP)를 포함한다.
한편, 플레이트(PL)는, 방열을 위해, AL 플레이트로 구현되는 것이 바람직하다.
한편, 본 발명의 실시예에 따른 형광체층(PH)은, 베이스(BS)의 일 영역에 배치되며, 베이스(BS) 상으로 입사되는 광을 반사하여 적어도 하나의 색상의 광을 출력한다.
한편, 본 발명의 실시예에 따른 블레이드(BLD)는, 플레이트(PL)에 제2 방향(-z 방향)으로 이격되어 배치되며, 회전축(Axis)을 중심으로 회전한다.
이러한, 캡(cap)형 플레이트(PL)에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부에 공기가 유입되고, 돌출부재(CP)의 하부로 공기가 유출된다.
즉, 도 6의 플랫한 에어 플로우(AFx)와 달리, 캡(cap)형 플레이트(PL)에 의해, 회전축(Axis)을 중심으로 상부 방향으로 이동하였다가 하부 측면 방향으로 흐르는 에어 플로우(AFa)가 형성되게 된다.
도 7의 에어 플로우(AFa)는, 유로가 구부러지므로, 도 6의 플랫한 에어 플로우(AFx)에 비해, 공기 유속이 더 빠르게 된다.
따라서, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다. 또한, 방열 성능 개선에 따라 형광체 휠 장치(430)의 내구성을 향상시킬 수 있게 된다.
한편, 돌출부재(CP)와 블레이드(BLD) 사이의 수평 거리(Dc) 보다, 회전축(Axis)과 형광체층(PH) 사이의 거리 보다 더 큰 것이 바람직하다. 이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부에 공기가 유입되고, 돌출부재(CP)의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 베이스(BS) 상으로 입사되는 광의 입사 지점과 회전축(Axis) 사이의 거리는, 회전축(Axis)과 블레이드(BLD)의 단부 사이의 거리와 동일하거나 더 큰 것이 바람직하다. 이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부에 공기가 유입되고, 돌출부재(CP)의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 베이스(BS)와 블레이드(BLD) 사이의 거리 보다, 블레이드(BLD)의 높이(hm)가 더 큰 것이 바람직하다. 이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부에 공기가 유입되고, 돌출부재(CP)의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 베이스(BS)의 높이(h2) 보다, 블레이드(BLD)의 높이(hm)가 더 큰 것이 바람직하다. 이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부에 공기가 유입되고, 돌출부재(CP)의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 돌출부재(CP)의 높이(h3)는, 블레이드(BLD)의 높이(hm) 보다 더 큰 것이 바람직하다. 이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부에 공기가 유입되고, 돌출부재(CP)의 하부로 공기가 유출됨으로써, 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
한편, 형광체층(PH)은, 베이스(BS)의 제1 영역에 배치되며, 베이스(BS) 상으로 입사되는 청색광(B)에 기초하여 노란색광(Y)을 출력하는 노란색 형광체(PHY)와, 베이스(BS) 상의 제2 영역에 배치되며, 베이스(BS) 상으로 입사되는 청색광(B)에 기초하여 녹색광(G)을 출력하는 녹색 형광체(PHG)를 포함할 수 있다. 이에 따라, 형광체 휠 장치(430)를 통해, 노란색광(Y)과 녹색광(G)을 출력할 수 있게 된다.
한편, 형광체층(PH)은, 베이스(BS) 상의 제3 영역에 배치되며, 베이스(BS) 상으로 입사되는 청색광(B)에 기초하여 적색광(R)을 출력하는 적색 형광체(PHR)를 더 포함할 수 있다. 이에 따라, 형광체 휠 장치(430)를 통해, 노란색광(Y)과 녹색광(G), 적색광(R)을 출력할 수 있게 된다.
한편, 형광체층(PH)은, 형광체를 소결 및 가공하여 세라믹화한 후, 베이스(BS) 상에 접착될 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 본 발명의 실시예에 따른 형광체 휠 장치(430)는, 형광체층(PH)과 베이스(BS) 상에 배치되는 반사층(LA)과, 형광체층(PH) 상에 배치되는 반사 방지층(LB)을 더 포함할 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
한편, 반사층(LA)은, 실리콘 레진과 나노 TiO2 분말을 포함할 수 있다. 이에 따라, 고휘도의 광출력을 수행할 수 있게 된다.
도 8a 내지 도 8e는 도 7의 설명에 참조되는 도면이다.
도 8a는 도 7의 플레이트(PL)의 상부를 도시한 도면이고, 도 8b는 도 7의 플레이트(PL)의 하부를 도시한 도면이다.
도면을 참조하면, 플레이트(PL)의 중앙 영역에는 개구(OPN)이 형성되고, 도넛 형상의 베이스(BS)의 단부에, -z축 방향으로 연장되는 돌출부재(CP)가 형성된다.
즉, 베이스(BS)의 단부가, -z축 방향으로 구부러진 형태로 돌출부재(CP)가 형성된다.
한편, 돌출부재(CP)의 단부에는, 유입된 공기 유속을 고려하여, 라운딩 처리되는 것이 바람직하다.
도 8c는 도 7의 플레이트(PL)의 상에 형광체층(PH)이 형성되는 것을 예시한다.
도면을 참조하면, 형광체층(PH)은, 도 5와 같이, 플레이트(PL) 상의 제1 영역(AR1)에 배치되며 노란색광(Y)의 출력을 위한 노란색 형광체(PHY)와, 플레이트(PL) 상의 제2 영역(AR2)에 배치되며, 녹색광(G)의 출력을 위한 녹색 형광체(PHG)를 포함할 수 있다.
도 8d는 도 7의 형광체 휠 장치(430)의 내부 분해도를 도시한 도면이다.
도면을 참조하면, -z축에서 z축 방향으로, 모터(431), 블레이드(BLD), 플레이트(PL), 반사층(LA), 형광체층(PH), 반사 방지층(LB), 결합을 위한 하우징(MS)이 배치될 수 있다.
모터(431), 블레이드(BLD), 플레이트(PL), 반사층(LA), 형광체층(PH), 반사 방지층(LB), 결합을 위한 하우징(MS)의 결합에 의해, 도 7의 형광체 휠 장치(430)가 완성되게 된다.
도 8e는 도 7의 블레이드(BLD)의 상면을 도시한 도면이다.
도면을 참조하면, 블레이드(BLD)는, 중앙에 개구(OPNb)가 형성된 베이스 기판(BSb)과, 베이스 기판(BSb)의 단부에 접합되며, 소정 각도로 경사지게 형성된 제1 에지(BSb2)와, 제1 에지(BSb2)의 일 단부에 형성되며, 제1 에지(BSb2)의 다른 일부와 이격되에 제2 개구(OPm)를 형성하는 제2 에지(BSb3)를 포함할 수 있다. 이에 따라, 유입되는 공기와 유출되는 공기의 에어 플로우 성능을 향상시킬 수 있게 된다.
도면에서는, 8개의 에지 영역(OPM)에 각각 제1 에지(BSb2)가 형성되는 것을 예시하나, 이에 한정되지 않으며, 다양한 개수의 에지 영역이 형성되는 것이 가능하다.
한편, 제1 에지(BSb2)의 단부까지의 거리가 커질수록, 블레이드(BLD)의 높이는 커지게 되며, 에어 플로우(AFa)의 공기 유속이 더 빨라질 수 있게 된다.
한편, 제2 에지는 베이스 기판(BSb)과 평행하게 형성될 수 있다. 이에 따라, 유입되는 공기와 유출되는 공기의 에어 플로우(AFa) 성능을 향상시킬 수 있게 된다.
도 9a는 본 발명의 다른 실시예에 따른 형광체 휠 장치의 단면도의 일예이다.
도면을 참조하면, 본 발명의 다른 실시예에 따른 형광체 휠 장치(430b)는, 도 7의 형광체 휠 장치(430)와 유사하나, 베이스(BS)의 높이 또는 두께가 일정하지 않은 것에 그 차이가 있다.
본 발명의 다른 실시예에 따른 형광체 휠 장치(430b)는, 단부가 구부러진 플레이트(PL)와, 플레이트(PL) 상의 일부 영역에 도포되는 형광체층(PH)과, 플레이트(PL) 하부에 이격되어 배치되는 블레이드(BLD)를 구비한다.
형광체층(PH)과, 블레이드(BLD)는 도 7과 같이 형성될 수 있다.
한편, 본 발명의 실시예에 따른 플레이트(PL)는, 제1 방향(x 방향)으로 연장되는 베이스(BS)와, 베이스(BS)의 양 단부에 부착되며 제1 방향(x 방향)과 교차하는 제2 방향(-z 방향)으로 연장되는 돌출부재(CP)를 포함한다.
한편, 베이스(BS)는, 제1 높이(h2)를 가지는 제1 베이스 파트(BSa)와, 제1 높이(h2) 보다 높은 제2 높이(hb)를 가지는 제2 베이스 파트(BSb)를 가지며, 돌출부재(CP)는, 제2 베이스 파트(BSb)의 양 단부에 부착되며 제1 방향(x 방향)과 교차하는 제2 방향(-z 방향)으로 연장될 수 있다.
특히, 형광체층(PH)이 배치되지 않는 영역에 대응하는 제1 베이스 파트(BSa) 보다, 형광체층(PH)이 배치되는 영역에 대응하는 제2 베이스 파트(BSb)의 높이가 더 크도록 형성함으로써, 온도가 더 높은 형광체층(PH) 주변 영역에 대한 방열이 더 효과적일 수 있다.
이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부의 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
도 9b는 본 발명의 또 다른 실시예에 따른 형광체 휠 장치의 단면도의 일예이다.
도면을 참조하면, 본 발명의 다른 실시예에 따른 형광체 휠 장치(430c)는, 도 7의 형광체 휠 장치(430)와 유사하나, 베이스(BS)의 양 단부에 형성되는 돌출 부재(CP)의 폭이 일정하지 않은 것에 그 차이가 있다.
본 발명의 또 다른 실시예에 따른 형광체 휠 장치(430c)는, 단부가 구부러진 플레이트(PL)와, 플레이트(PL) 상의 일부 영역에 도포되는 형광체층(PH)과, 플레이트(PL) 하부에 이격되어 배치되는 블레이드(BLD)를 구비한다.
형광체층(PH)과, 블레이드(BLD)는 도 7과 같이 형성될 수 있다.
한편, 본 발명의 실시예에 따른 플레이트(PL)는, 제1 방향(x 방향)으로 연장되는 베이스(BS)와, 베이스(BS)의 양 단부에 부착되며 제1 방향(x 방향)과 교차하는 제2 방향(-z 방향)으로 연장되는 돌출부재(CP)를 포함한다.
한편, 돌출부재(CP)는, 베이스(BS)의 제1 단부에 부착되는 제1 돌출 부재(CPa)와, 베이스(BS)의 제2 단부에 부착되는 제2 돌출 부재(CPb)를 포함하고, 제1 돌출 부재(CPa)의 폭(W2)과, 제2 돌출 부재(CPb)의 폭(W1)이 서로 다를 수 있다.
특히, 도면과 같이, 제1 돌출 부재(CPa)의 폭(W2)이 제2 돌출 부재(CPb)의 폭(W1) 보다 더 클 수 있다.
이에 따라, 형광체층(PH)이 배치되는 플레이트(PL)의 하부의 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
도 10a는 도 7의 형광체 휠 장치의 제조 방법의 일예를 나타내는 순서도이다.
도면을 참조하면, 먼저 형광체 성형 및 소결을 수행한다(S1010).
형광체(PHY) 성형을 위해, 예를 들어, YAG 조성(Y3Al5O12:Ce), LuAG 조성 (Lu3Al5O12:Ce)을 구현할수 있는 나노 원료 분말을 원하는 형태(Ring, segment)의 몰드에 충진하여 가압할 수 있다. 이때의 가압 압력은, 8 Ton(대략 34MPa)의 압력일 수 있다.
다른 예로, Fh, YAG 나노 분말을 충진시켜 성형하는 것도 가능하다.
한편, 선택적으로 CIP(냉간정수압성형)을 통해서 균일한 성형체를 구현할 수도 있다.
한편, 소결을 위해, 성형체를 치밀화 시키기위해 고온 열처리를 수행할 수 있다. 이때, 원하는 밀도에 따라 고온 열 처리 온도가 다를 수 있다.
예를 들어, 93~98%의 치밀화를 얻기위해, 대략 1500~1750℃ 범위의 고온 열 처리가 수행될 수 있다.
다음, 형광체 가공을 수행한다(S1015).
예를 들어, 원하는 형상으로 경면 가공을 수행할 수 있다.
다음, 반사층(LA)을 플레이트(PL)에 형성한다(S1020).
반사층(LA)은, 실리콘 레진과 나노 TiO2 분말을 포함할 수 있다.
예를 들어, 0.2~0.5um 크기의 TiO2를 레진(Resin)과 혼합하여, 캡형상의 플레이트(PL)에 코팅할 수 있다. 이때의 코팅은 바(Bar) 코팅일 수 있으며, 그 두께는 대략 80~120um일 수 있다.
다음, 형광체를 접합하고(S1030), 경화를 수행한다(S1040)
제1015 단계(S1015)에서 가공된 세라믹 형광체를, 인쇄된 반사층(예를 들어, TiO2층) 상부에 접착하여 경화시킨다.
이때의 경화 온도는 대략 150℃ 이며, 2시간 이상 경화가 수행될 수 있다.
그 이후, 형광체층(PH)과 반사층(LA)이 형성된 플레이트(PL)을 냉각 블레이드(BLD), 및 모터(431)와 체결할 수 있다. 이에 따라, 도 7의 형광체 휠 장치(430)가 구성될 수 있게 된다.
도 10b는 도 7의 형광체 휠 장치의 제조 방법의 다른 예를 나타내는 순서도이다.
도면을 참조하면, 먼저, 반사층(LA)을 플레이트(PL)에 형성한다(S1050).
반사층(LA)은, 실리콘 레진과 나노 TiO2 분말을 포함할 수 있다.
예를 들어, 0.2~0.5um 크기의 TiO2를 레진(Resin)과 혼합하여, 캡형상의 플레이트(PL)에 코팅할 수 있다. 이때의 코팅은 바(Bar) 코팅일 수 있으며, 그 두께는 대략 80~120um일 수 있다.
다음, 경화를 수행한다(S1055).
반사층(LA)이 형성된 플레이트(PL)를, 경화시킨다.
이때의 경화 온도는 대략 150℃ 이며, 2시간 내지 6시간 동안경화가 수행될 수 있다.
다음, 형광체를 접합한다(S1060).
예를 들어, 평균 입경이 약 18um인 형광체를 실리콘 레진과 혼합하여 바코 팅으로 인쇄할 수 있다.
이때의 형광체는, 노랜삭광을 위한 YAG 조성(Y3Al5O12:Ce), 녹색광을 위한 LuAG 조성(Lu3Al5O12:Ce)을 포함할 수 있다.
다음, 형광체(PH)가 형성된 플레이트(PL)를, 경화시킨다(S1065).
이때의 경화 온도는 대략 150℃ 이며, 2시간 내지 6시간 동안경화가 수행될 수 있다.
그 이후, 형광체층(PH)과 반사층(LA)이 형성된 플레이트(PL)을 냉각 블레이드(BLD), 및 모터(431)와 체결할 수 있다. 이에 따라, 도 7의 형광체 휠 장치(430)가 구성될 수 있게 된다.
도 11a 내지 도 12c는 도 7의 설명에 참조되는 도면이다.
도 11a는 도 6의 형광체 휠 장치(430x)와 도 7의 형광체 휠 장치(430)의 휘도 성능을 비교한 도면이다.
GRa는 도 6의 형광체 휠 장치(430x)의 휘도 레벨을 나타내며, GRb는 도 7의 형광체 휠 장치(430)의 휘도 레벨을 나타낸다.
본 발명의 실시예에 따른 도 7의 형광체 휠 장치(430)에 의하면, 휘도가 크게 향상되어, 고휘도의 광 출력이 가능하게 된다.
도 11b는 도 6의 형광체 휠 장치(430x)와 도 7의 형광체 휠 장치(430)의 온도 성능을 비교한 도면이다.
GRc는 도 6의 형광체 휠 장치(430x)의 온도 레벨을 나타내며, GRd는 도 7의 형광체 휠 장치(430)의 온도 레벨을 나타낸다.
본 발명의 실시예에 따른 도 7의 형광체 휠 장치(430)에 의하면, 온도가 크게 감소되어, 방열 성능이 크게 개선되며, 결국 내구성이 향상되게 된다.
도 12a는 본 발명의 또 다른 실시에에 따른 형광체 휠 장치의 내부 블록도의 일예이다.
도면을 참조하면, 본 발명의 또 다른 실시에에 따른 형광체 휠 장치(1200)는, 블레이드(BLD)를 회전시키는 모터(431)와, 모터(431)의 회전 속도를 제어하는 제어부(1270)를 더 포함할 수 있다.
예를 들어, 제어부(1270)는, 도 12b와 같이, 모터(431)의 회전 속도가 일정하도록 제어할 수 있다.
도 12b는, 모터(431)의 회전 속도가 일정한 그래프(GRma)를 예시한다. 이때의 모터(431)의 회전 속도는, 대략 7200RPM일 수 있다.
이러한, 모터(431)의 고속 회전에 의해, 형광체층(PH)이 배치되는 캡형태의 플레이트(PL)의 하부의 방열 성능이 개선되며, 나아가 고휘도의 광출력을 수행할 수 있게 된다.
본 발명의 또 다른 실시에에 따른 형광체 휠 장치(1200)는, 형광체 휠 장치(1200)의 내부의 플레이트(PL)의 온도 센싱을 위한 온도 센서(1210)를 더 구비할 수 있다.
그리고, 제어부(1270)는, 온도 센서(1210)에서 감지되는 온도에 따라, 모터(431)의 회전 속도가 가변되도록 제어할 수 있다.
예를 들어, 제어부(1270)는, 도 12c와 같이, 온도 센서(1210)에서 감지되는 온도가 증가할수록, 모터(431)의 회전 속도가 증가하도록 제어할 수 있다.
도 12b는, 온도가 증가함에 따라, 모터(431)의 회전 속도가 증가하는 것을 예시한다.
이와 같이, 플레이트(PL)의 온도를 센싱하고, 플레이트(PL)의 온도가 증가함에 따라, 모터(431)의 회전 속도가 증가시킴으로써, 적응적으로, 형광체층(PH)이 배치되는 플레이트(PL)의 하부의 방열 성능을 개선할 수 있게 된다. 그리고, 고휘도의 광출력을 수행할 수 있게 된다.
본 발명의 실시예에 따른 형광체 휠 장치, 및 이를 구비하는 영상투사장치는 상기한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (18)

  1. 제1 방향으로 연장되는 베이스와, 상기 베이스의 양 단부에 부착되며 상기 제1 방향과 교차하는 제2 방향으로 연장되는 돌출부재를 포함하며, 회전축을 중심으로 회전하는 플레이트;
    상기 베이스의 일 영역에 배치되며, 상기 베이스 상으로 입사되는 광을 반사하여 적어도 하나의 색상의 광을 출력하는 형광체층;
    상기 플레이트에 상기 제2 방향으로 이격되어 배치되며, 상기 회전축을 중심으로 회전하는 블레이드;를 포함하는 형광체 휠 장치.
  2. 제1항에 있어서,
    상기 돌출부재와 상기 블레이드 사이의 수평 거리 보다, 상기 회전축과 상기 형광체층 사이의 거리 보다 더 큰 것을 특징으로 하는 형광체 휠 장치.
  3. 제1항에 있어서,
    상기 베이스 상으로 입사되는 광의 입사 지점과 상기 회전축 사이의 거리는, 상기 회전축과 상기 블레이드의 단부 사이의 거리와 동일하거나 더 큰 것을 특징으로 하는 형광체 휠 장치.
  4. 제1항에 있어서,
    상기 베이스와 상기 블레이드 사이의 거리 보다, 상기 블레이드의 높이가 더 큰 것을 특징으로 하는 형광체 휠 장치.
  5. 제1항에 있어서,
    상기 베이스의 높이 보다, 상기 블레이드의 높이가 더 큰 것을 특징으로 하는 형광체 휠 장치.
  6. 제1항에 있어서,
    상기 돌출부재의 높이는, 상기 블레이드의 높이 보다 더 큰 것을 특징으로 하는 형광체 휠 장치.
  7. 제1항에 있어서,
    상기 형광체층은,
    상기 베이스의 제1 영역에 배치되며, 상기 베이스 상으로 입사되는 청색광에 기초하여 노란색광을 출력하는 노란색 형광체와,
    상기 베이스 상의 제2 영역에 배치되며, 상기 베이스 상으로 입사되는 상기 청색광에 기초하여 녹색광을 출력하는 녹색 형광체;를 포함하는 것을 특징으로 하는 형광체 휠 장치.
  8. 제7항에 있어서,
    상기 형광체층은,
    상기 베이스 상의 제3 영역에 배치되며, 상기 베이스 상으로 입사되는 상기 청색광에 기초하여 적색광을 출력하는 적색 형광체;를 더 포함하는 것을 특징으로 하는 형광체 휠 장치.
  9. 제1항에 있어서,
    상기 형광체층과 상기 베이스 상에 배치되는 반사층;
    상기 형광체층 상에 배치되는 반사 방지층을 더 포함하는 것을 특징으로 하는 형광체 휠 장치.
  10. 제1항에 있어서,
    상기 형광체층은,
    형광체를 소결 및 가공하여 세라믹화한 후, 상기 베이스 상에 접착되는 것을 특징으로 하는 형광체 휠 장치.
  11. 제9항에 있어서,
    상기 반사층은,
    실리콘 레진과 나노 TiO2 분말을 포함하는 것을 특징으로 하는 형광체 휠 장치.
  12. 제1항에 있어서,
    상기 블레이드는,
    중앙에 개구가 형성된 베이스 기판;
    상기 베이스 기판의 단부에 접합되며, 소정 각도로 경사지게 형성된 제1 에지;
    제1 에지의 일 단부에 형성되며, 상기 제1 에지의 다른 일부와 이격되에 제2 개구를 형성하는 제2 에지;를 포함하는 것을 특징으로 하는 형광체 휠 장치.
  13. 제12항에 있어서,
    상기 제2 에지는 상기 베이스 기판과 평행하게 형성되는 것을 특징으로 하는 형광체 휠 장치.
  14. 제1항에 있어서,
    상기 베이스는,
    제1 높이를 가지는 제1 베이스 파트와, 상기 제1 높이 보다 높은 제2 높이를 가지는 제2 베이스 파트를 가지며,
    상기 돌출부재는,
    상기 제2 베이스 파트의 양 단부에 부착되며 상기 제1 방향과 교차하는 상기 제2 방향으로 연장되는 것을 특징으로 하는 형광체 휠 장치.
  15. 제1항에 있어서,
    상기 돌출부재는,
    상기 베이스의 제1 단부에 부착되는 제1 돌출 부재와,
    상기 베이스의 제2 단부에 부착되는 제2 돌출 부재를 포함하고,
    상기 제1 돌출 부재의 폭과, 상기 제2 돌출 부재의 폭이 서로 다른 것을 특징으로 하는 형광체 휠 장치.
  16. 제1항에 있어서,
    상기 블레이드를 회전시키는 모터;
    상기 모터의 회전 속도를 제어하는 제어부;를 더 포함하고,
    상기 제어부는,
    상기 모터의 회전 속도가 일정하도록 제어하는 것을 특징으로 하는 형광체 휠 장치.
  17. 제1항에 있어서,
    상기 블레이드를 회전시키는 모터;
    상기 플레이트의 온도를 센싱하는 온도 센서;
    상기 모터의 회전 속도를 제어하는 제어부;를 더 포함하고,
    상기 제어부는,
    상기 온도 센서에서 감지되는 온도가 증가할수록, 상기 모터의 회전 속도가 증가하도록 제어하는 것을 특징으로 하는 형광체 휠 장치.
  18. 청색광을 출력하는 광원;
    회전에 의해 입사되는 상기 청색광에 기초하여 복수 색상의 광을 출력하는 형광체 휠 장치;를 포함하고,
    상기 형광체 휠 장치는,
    제1항 내지 제17항 중 어느 한 항의 형광체 휠 장치를 포함하는 것을 특징으로 하는 영상투사장치.
PCT/KR2021/011264 2021-08-24 2021-08-24 형광체 휠 장치, 및 이를 구비하는 영상투사장치 WO2023027204A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247008743A KR20240047440A (ko) 2021-08-24 2021-08-24 형광체 휠 장치, 및 이를 구비하는 영상투사장치
PCT/KR2021/011264 WO2023027204A1 (ko) 2021-08-24 2021-08-24 형광체 휠 장치, 및 이를 구비하는 영상투사장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/011264 WO2023027204A1 (ko) 2021-08-24 2021-08-24 형광체 휠 장치, 및 이를 구비하는 영상투사장치

Publications (1)

Publication Number Publication Date
WO2023027204A1 true WO2023027204A1 (ko) 2023-03-02

Family

ID=85321720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011264 WO2023027204A1 (ko) 2021-08-24 2021-08-24 형광체 휠 장치, 및 이를 구비하는 영상투사장치

Country Status (2)

Country Link
KR (1) KR20240047440A (ko)
WO (1) WO2023027204A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990062141A (ko) * 1997-12-31 1999-07-26 윤종용 전자렌지용 송풍팬장치
JP2015206940A (ja) * 2014-04-22 2015-11-19 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2017111176A (ja) * 2015-12-14 2017-06-22 セイコーエプソン株式会社 波長変換素子、照明装置、プロジェクター、および波長変換素子の製造方法
JP2019091011A (ja) * 2017-11-14 2019-06-13 パナソニックIpマネジメント株式会社 蛍光体ホイールおよびこれを備えた光変換装置
WO2019131730A1 (ja) * 2017-12-27 2019-07-04 京セラ株式会社 カラーホイール、およびプロジェクタ
KR20200091162A (ko) * 2019-01-22 2020-07-30 엘지전자 주식회사 프로젝터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990062141A (ko) * 1997-12-31 1999-07-26 윤종용 전자렌지용 송풍팬장치
JP2015206940A (ja) * 2014-04-22 2015-11-19 日本電気硝子株式会社 プロジェクター用蛍光ホイール及びプロジェクター用発光デバイス
JP2017111176A (ja) * 2015-12-14 2017-06-22 セイコーエプソン株式会社 波長変換素子、照明装置、プロジェクター、および波長変換素子の製造方法
JP2019091011A (ja) * 2017-11-14 2019-06-13 パナソニックIpマネジメント株式会社 蛍光体ホイールおよびこれを備えた光変換装置
WO2019131730A1 (ja) * 2017-12-27 2019-07-04 京セラ株式会社 カラーホイール、およびプロジェクタ
KR20200091162A (ko) * 2019-01-22 2020-07-30 엘지전자 주식회사 프로젝터

Also Published As

Publication number Publication date
KR20240047440A (ko) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2021080214A1 (en) Display apparatus and operating method thereof
WO2021080209A1 (en) Display apparatus and operating method thereof
WO2010143797A1 (ko) 프로젝터의 제어방법
WO2023027204A1 (ko) 형광체 휠 장치, 및 이를 구비하는 영상투사장치
WO2020011056A1 (zh) 智能控制装置及其实现方法、智能电视
WO2023013862A1 (ko) 전자 장치 및 그 영상 처리 방법
WO2021132993A1 (en) Projector
WO2023120756A1 (ko) 형광체 휠 및 이를 구비하는 영상투사장치
WO2024147374A1 (ko) 형광체 휠 장치 및 이를 구비하는 영상투사장치
WO2018101542A1 (ko) 다결정 형광막 및 그 제조 방법 및 그를 이용한 차량 램프 장치
WO2023277232A1 (ko) 영상투사장치
WO2016017885A1 (en) Screen and laser display apparatus using the same
WO2024038921A1 (ko) 광학 장치, 및 이를 구비하는 영상투사장치
WO2023003140A1 (ko) 전자 장치 및 이의 제어 방법
WO2017217800A1 (en) Mems scanner package and scanning projector including the same
WO2022039298A1 (ko) Pov 디스플레이 장치 및 그 제어방법
WO2023113135A1 (ko) 디스플레이 장치
WO2024167116A1 (ko) 투사 장치 및 그 제어 방법
WO2023038160A1 (ko) 디스플레이 장치
WO2023022422A1 (ko) 전자 장치 및 이의 제어 방법
WO2024136033A1 (ko) 영상을 투사할 수 있는 전자장치
WO2023055139A1 (ko) 전자 장치 및 이의 제어 방법
WO2024122686A1 (ko) 무선 전송 장치 및 무선 디스플레이 시스템
WO2023249271A1 (ko) 영상을 크롭하여 투사하는 전자 장치 및 그 제어 방법
WO2023096142A1 (ko) 각도 조절 장치 및 전자장치의 각도 조절 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247008743

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21955124

Country of ref document: EP

Kind code of ref document: A1